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Abstract

Attempts to constrain the spread of Covid-19 included the temporal

reintroduction of travel restrictions and border controls within the Schengen

area. While such restrictions clearly involve costs, their benefits have been

disputed. We use a new set of daily regional data of confirmed Covid-

19 cases from the respective statistical agencies of 18 Western European

countries. Our data starts with calendar week 10 (starting 2nd March

2020) and extends to calendar week 17 (ending 26th April 2020), which

allows us to test for treatment effects of border controls. We use Poisson

models with fixed effects and controls for the stringency of national measures,

as well as a Bayesian spatio-temporal specification using an integrated

nested Laplace approximation (INLA) to take unobserved spatio-temporal

heterogeneity into account. Both approaches suggest that border controls

had a significant effect to limit the pandemic.
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1 Introduction

The outbreak of the Covid-19-pandemic led to a massive return of the nation

state. National governments around the world took far-reaching measures to

control the spread of the disease, from decisions to close shops, restaurants

and schools to a full-blown lock-down of public life. In Europe, the crisis

is a fundamental challenge to the principles of the European Union, notably

solidarity, policy coordination and free movement across national borders.

In this paper we focus on the temporal reintroduction of national border

controls within the Schengen area. Border controls are obviously costly, even

though it is hard to estimate such costs. For example, Felbermayr, Gröschl, and

Steinwachs (2016) suggest that the controls imposed in the wake of the refugee

crisis in 2015 amounted to a reduction of EU28 real GDP by over 12 billion

Euro (or 0.10%) per year. For the current crisis, Meninno and Wolff (2020)

argue that these costs must be substantially larger, given the increase in cross-

border commuting since 2015. The major question is whether the (temporary)

closure of borders had benefits that could justify such costs. According to

Nicolas Schmit, Jobs and Social Rights Commissioner the closure of borders,

such as the border between Germany and Luxembourg was just a reflex, which

doesn’t add anything to health security. (cf. The New York Times, 17th April

2020). But maybe border controls did help to contain Covid-19?

Attempts to conduct an encompassing cost-benefit analysis for policy measures

to contain Covid-19 are difficult and contentious (see for example Gros (2020),

Broughel and Kotrous (2020)). Instead we focus on one crucial aspect: to what

extent did the reintroduction of border controls reduce the number of infections?

Arguably, if we would not find any systematic evidence for the effectiveness of

controls on limiting the spread of the disease it would be hard to justify them.

Our approach is to collect daily data at the level of European regions within
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nation states. Our data starts roughly one week before the introduction of

border controls, which allows us to test for treatment effects. Based on two quite

different approaches, we find that border controls reduced the number of Covid-

19 cases significantly, by about 6% to 25%, depending on the specification. Our

paper is related to several attempts to test for the effects of control measures

on the spread of Covid-19, including Hartl, Wälde, and Weber (2020) who use

a simple linear trend model to test for the effect of the public shutdown on the

spread of Covid-19 in Germany, and Mitze et al. (2020), who use a synthetic

control method to test for the effect of introducing face masks.

The rest of our paper is organized as follows: we first provide a short survey

of the spread of Covid-19 across European regions and the introduction of border

controls. Next, we describe our data and our main estimation strategy using

a PPML estimator. We then discuss the robustness of our findings using a

Bayesian count specification implemented through the integrated nested Laplace

approximation introduced by Rue, Martino, and Chopin (2009) to capture

unobserved heterogeneity in the spatial structure of our data, and conclude.

2 The spread of Covid-19 and border controls

According to the WHO, the pandemic reached Europe on 25th January 2020

with first cases reported in France, followed by Germany on 28th January and

Italy on 30th January 2020 (WHO Situation Reports, 5, 8, 11, 2020). By 1st

March 2020, there were 1,457 confirmed cases (with 31 deaths) in the European

region (WHO definition), spreading rapidly. One month later, by 1st April

2020 there were 463,677 cases and 30,085 deaths, most of which occurred within

the European Union (WHO SR 41 and 72, 2020). Italy introduced the first

large-scale measures on 21st February 2020 with a lock-down of initially 11

municipalities, next 4 provinces and on 8 March for the whole country (Maurice
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et al. 2020). At the European level, the Commission mobilized additional funds

for research on 1st February, extended on 24th February, set-up a “response

team” on 2nd March 2020 and suggested to relax the fiscal rules of the Stability

and Growth Pact. Most importantly, the European Central Bank announced on

18th March 2020 measures of unprecedented scale to support economic activity

in the Euro-Zone. While this was a very quick response to the pandemic, notably

if compared to the financial crisis, it still left the impression that the European

Union was caught off guard and unprepared.

The main reason for this perception is that only national and regional

governments could take immediate action against the disease, because health

care falls within the competence of the member states, according to the Treaty

of Lisbon (Brehon 2020). Among the first actions taken by national governments

were the reintroduction of border controls. On 11th March 2020 Austria introduced

controls on the land border with Italy, followed by Hungary on the border with

Austria and Slovenia on 12nd March, Switzerland on the continental borders

with Italy on 13th March. Within a few weeks most countries in the Schengen

area have reintroduced border controls, with few exceptions such as the border

between the Netherlands and Germany.

3 Data, method and main results

While we still lack the data to fully understand the dynamics of the pandemic,

we can approximate the spread of the disease by looking at confirmed Covid-

19 cases across regions within nation-states and over time. To this end, we

collected daily regional data of confirmed new Covid-19 cases from the respective

statistical agencies of 18 Western European countries1 from calendar week 10
1Those are Andorra, Austria, Belgium, Denmark, France, Finland, Germany, Ireland, Italy,

Liechtenstein, Luxembourg, the Netherlands, Norway, Portugal, Spain, Switzerland, Sweden
and UK – in other words: All of Western Europe except for the isolated island of Iceland.
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(starting 2nd March 2020) to calendar week 17 (ending 26th April 2020). For

France, we approximate daily new cases by the number of hospitalized per day

and region and rescale them to the number of confirmed cases with national

data. We aggregate the data to the level of 213 roughly equally sized sub-

national regions that closely follow the definition of European NUTS2 regions.

Finally, we rescale all regional daily case counts to match the national totals

reported by Johns Hopkins University’s Coronavirus Resource Center.

Figure 1 shows the spread of Covid-19 across European regions during this

period in terms of new confirmed cases per two-week period. As we can see,

the spread of the disease shows a very strong regional pattern, while the effects

of national borders are not obvious. During the first two weeks of our sample

(panel 1a), incidence was concentrated in Norther Italy and parts of Spain.

Calendar weeks 12 and 13 (panel 1b) saw a quick spread, in many cases across

national borders (with interesting exceptions – see France-Spain). During this

period, border controls were enacted. Weeks 14 and 15 (panel 1c) saw the apex

of new cases, with incidence all over the map. Calendar weeks 16 and 17 (panel

1d) already saw a reduction in new cases as most countries surpassed the height

of their incidence curve during the first wave of 2020.

The spatial patterns in the raw daily case data are hard to interpret due to

differences in national testing and reporting schemes, differences in data quality,

and possible confounders. For the remainder of the paper, we thus condition

our data on region fixed effects, and country-specific time fixed effects.2

How did borders and border controls matter? Figure 2 illustrates the extent

of border controls and two definitions of our treatment group. We also list

the date of border control enactments for each country pair. Note that the
2Since we include region fixed effects, we do not need to control for population or GDP

and absolute case numbers are just as informative as case rates. Also, country-specific time
trends should absorb major differences in testing and reporting behavior, as well as changes
in containment policies such as social distancing.
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(a) March 2 to March 15 (b) March 16 to March 29

(c) March 30 to April 12 (d) April 13 to April 26

Figure 1: New confirmed Covid-19 cases per 1,000 inhabitants in specified calendar
weeks. See text for details on the data sources.
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we always assume a symmetric impact of border controls: If France controls

its border with Germany, both French and German border regions are treated,

even if Germany technically introduces border controls only later (or not at all).

To test for the role of national borders for the spread of the disease we

estimate a series of difference-in-differences regressions of the form

Ir,n,d = exp(αi + βd,(n) + γDr,d + εr,d) (1)

where Ir,n,d are new cases in region r, in country n on day d, αi and βd,(n)

are region and time fixed effects (which in some specifications are allowed to

be country-specific), Dr,d is a dummy for regions affected by border controls.

Since our sample extends well before the onset of border controls, this dummy

is time-varying. γ is our coefficient of interest, capturing the causal effect of

border controls on daily cases.3

We present results for two different definitions of the treatment: a broad

definition and a narrow definition. In our first set of results, we distinguish

regions located at controlled borders from those not located at controlled borders.

In this specification γ will pick up variation between the two groups over time

that is not explained by average (or country-specific) time effects, depending on

the specification. However, borders might have mattered for some regions much

more than for others in the first place. Intuitively, the introduction of travel

restrictions should have mattered for regions that experienced intense cross-

border commuting beforehand, such as regions on the border between Belgium

and Germany, but much less (or not at all) for border regions with little cross-

border commuting.

Therefore, in an alternative specification we consider only those border
3We note that due to the staggered treatment timing, the estimated coefficients present

weighted averages of the underlying group-time average treatment effects that are likely to
underestimate the actual average treatment effect (Callaway and Sant’Anna 2019).
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regions as treated that experienced intense cross-border commuting before the

introduction of border controls: in this case, the treated regions are all border

regions with an above-mean share of their workforce (> 0.9 %) commuting to a

workplace across a national border in 2019. For example, 30 % of the workforce

of the Belgian region Luxembourg and 11.3 % of the workforce of bordering

French Lorraine were cross-border commuters in 2019, hence both regions belong

to our intensity-based treatment definition. In contrast, Spanish Aragon and

bordering French Midi-Pyrénées both had no significant cross-border commuting

in 2019, hence they are excluded from the intensity-based treatment definition.

Moreover, we account for the possibility of a time lag in the effect of border

controls. In one specification we assume that controls can have an immediate

effect on the spread of the disease. In a second specification we assume that

controls have an effect only with a time lag of at least one week, following Lauer

et al. (2020).

Before we consider the findings of our difference-in-differences regressions, we

need to discuss whether regions in both, treatment and control groups followed

similar trends before the treatment. If not, our results might be spurious as

they would pick up differences in trends rather than effects from some treatment

(Bertrand, Duflo, and Mullainathan 2004). A major challenge in our setting is

the staggered introduction of border controls across European regions, together

with the relatively limited number of pre-treatment observations. Hence, we lack

the data to formally test for common trends. Instead, we rely on a graphical

analysis as shown in figure 3. Note that we show the narrow definition of the

treatment group here, based on border regions with above average commuting

before the treatment and country-specific time effects.

The key takeaway from figure 3a is that treated regions showed a somewhat

higher level of (conditional) confirmed Covid-19 cases compared to control regions
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before the (staggered) introduction of controls, but that trends in both groups

were similar. After the introduction of border controls, the levels in treated

regions converge to those in control regions, i.e. there is evidence for a trend

break sometime after the treatment. In figure 3b we plot the exponentiated

γ-coefficients over time, where an exponentiated coefficient significantly lower

than 1 indicates a reduction in cases. The effect of being a treated border region

becomes consistently (and significantly) negative only after the introduction of

border controls, whereas we see no clear pattern before the treatment(s).

Table 1 shows our first set of results, using a PPML estimator. This method

consistently estimates average marginal effects even if the data is not (conditionally)

Poisson-distributed. The first three models allow for immediate effects of border

controls. The last three models “shift” the onset of border controls by 7 days to

take the incubation time and reporting delay into account.

The point estimates for γ in all models suggest that border controls led to

a reduction in the number of reported Covid-19 cases. In table 1 we transform

them to report the percentage change in cases relative to the control group

together with the p-values. We see that the size of the effect is much larger, once

we use the narrow, intensity-based treatment definition (compare columns 1, 2

and 4, 5). Intuitively, the introduction of border controls mattered much more

for regions with a substantial number of cross-border commuters beforehand,

compared to border regions with little or no commuting. The effects become

statistically significant once we use an intensity-based definition of the treatment

together with country-specific time effects.4 We report heteroscedasticity-robust

standard errors clustered on the region level.

How to read these coefficients? Our preferred specification is shown in

column 6, where we control for region effects and country-specific time effects,
4The number of observations decreases because three countries composed of a single region

(Andorra, Liechtenstein, Luxembourg) drop out of the sample. Neither the drop of these three
regions nor the introduction of country-specific time effects itself are driving our results.
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Instant impact 7-day lagged impact

(1) (2) (3) (4) (5) (6)
Location Intensity Intensity Location Intensity Intensity

Border control -7.04 -40.83 -42.93∗∗∗ -18.31 -30.92 -25.08∗∗
(0.75) (0.21) (0.00) (0.22) (0.29) (0.02)

Fixed effects region region region region region region
day day day*country day day day*country

Observations 11928 11928 11462 11928 11928 11462
Regions 213 213 210 213 213 210
Pseudo R2 0.81 0.81 0.91 0.81 0.81 0.91

Table 1: The reported coefficients are the percentage changes in cases relative to the
control group due to border controls, i.e. (eγ − 1) ∗ 100. Numbers in parentheses are
p-values.

use a narrow definition of the treatment group and test for lagged effects. A

value of -25.08 (column 6) means that daily cases are reduced by 25.08 % due

to border controls. Using the mean number of daily new cases across our whole

sample (92.387), this amounts to a reduction by 92.387 ∗ 0.251 = 23.189, about

23 cases per day less for an “average” region.

4 Robustness

A major challenge in our setting is the spatial nature of our data and the fact

that we cannot control for temporal variation of local containment policies that

differed from national policies. As indicated by figure 1, the spread of Covid-19

followed a particular spatial pattern, which is not well captured by our PPML

model. In figure 4 below we provide a measure of spatial correlation in our

dependent variable, conditional on region and country-time effects. To this end,

we first compute from table 1, col. 6 the spatial lag of the residuals for each

region. Next, we group the (standardized) residuals into 100 equally sized bin

and plot each bin’s mean against the average spatial lag in that bin. Given the

strong spatial patterns seen in figure 1 this suggests that our PPML method
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helps to reduce spatial correlation in the residuals, but does not eliminate it.

Moreover, it is likely that our PPML estimation overstates the true treatment

effect from border controls, because the higher incidence in some border regions

before the treatment (see figure 3a) would have led to the implementation of

local containment policies before they were introduced at the national level.

Our country-specific time effects would thus not control for such local measures,

which should bias our estimated treatment effects upwards.

To control for both the spatial structure and temporal dynamics of the

data and also account for potentially unobserved spatio-temporal heterogeneity,

we specify a Bayesian spatial-temporal count data model which we implement

using the INLA formalism for Bayesian inference in latent Gaussian models.

This is provided by the R-INLA project (www.r-inla.org) using the capacities

of the R environment (R Core Team 2020). Bayesian methods have become

widespread in applied epidemiology and public heath research, notably due

to the development of Markov Chain Monte Carlo methods (MCMC) and,

more recently, the development of more computationally efficient alternatives

including INLA and variational Bayes approaches, see Blangiardo et al. (2013),

Bakka et al. (2018). To this end, we construct a first-order spatial lag structure

over the regional entities defined through a contiguity-based spatial weighting

matrix which we use to set up a conditional autoregressive specification of

the spatial effect (Besag 1972; Besag 1974). Further, to allow for potentially

unobserved spatial heterogeneity, we additionally included a spatial random

effect assuming an iid Gaussian distribution. By this, we allow for both structured

and unstructured spatial effects such that the model also absorbs unobserved

spatial heterogeneity (Fahrmeir, Kneib, and Lang 2004). Again, treating the

number of new confirmed Covid-19 cases as outcome, the spatio-temporal count

model includes time effects, the distance from a continental border, the share of
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Global effect Std. Dev. Implied percentage change
Border control -0.06 0.01 -6.20***
Constant -4.18 0.88

Table 2: Main coefficients from the INLA model. See text for details on the
specification.

commuters in the workforce, a time-varying dummy for border controls and

an offset.5 Table 2 shows the main parametric results, figure 5 shows the

distribution of the structured and unstructured component of spatial effects.

The main finding from this exercise is that even if we allow for a very flexible

form of unobserved spatio-temporal effects, we still find that border controls

reduced the number of confirmed Covid-19 cases significantly. According to the

INLA approach, the introduction of border controls reduced the number of daily

new cases by roughly 6 %, compared to 25 % suggested by the PPML estimator.

5 Conclusion

The temporal reintroduction of border controls within the Schengen area helped

to contain the spread of Covid-19. While such restrictions clearly involve costs,

their benefits have been disputed. In this paper we used a new set of daily

regional data of confirmed Covid-19 cases from the respective statistical agencies

of 18 Western European countries, running from calendar week 10 (starting 2

March 2020) to calendar week 17 (ending 26 April 2020). This allowed us to test

for treatment effects of border controls. Based on a PPML estimator with region

fixed effects and country-specific time effects, we show that border controls were

associated with a 25% reduction in daily cases. Importantly, we show that

border controls mattered only for regions with a substantial number of cross-

border commuters prior to the crisis. As a robustness check, we use a Bayesian
5We model both the temporal dependence and the duration of the border controls by a

second-order random walk specification of the effect.
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INLA approach to take unobserved spatio-temporal heterogeneity into account,

for example due to local containment policies that might have differed from

nation-wide measures. With this we find smaller, but still significant effects in

the area of 6 %. We conclude that the temporal introduction of border controls

was certainly costly, but made an important contribution to contain the spread

of Covid-19. At the same time it is likely that better policy coordination at

the European level could have generated these benefits at lower economic (and

political) costs, for example if based on a closer monitoring of cross-border

commuting flows. We leave this question for further research.
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country pair enactment
AND-ESP March 17
AND-FRA March 17
AUT-CHE March 11
AUT-DEU March 11
AUT-ITA March 11
AUT-LIE March 11
AUT-HUN March 12
AUT-SVK March 12
AUT-CZE March 12
BEL-DEU March 16
BEL-FRA March 20
BEL-LUX March 20
BEL-NLD March 20
CHE-DEU March 13
CHE-FRA March 13
CHE-ITA March 13
DEU-CZE March 14
DEU-DNK March 12
DEU-FRA March 16
DEU-LUX March 16
DEU-POL March 15
ESP-PRT March 16
ESP-FRA March 17
FIN-NOR March 16
FIN-RUS March 16
FIN-SWE March 19
FRA-ITA March 14
FRA-LUX March 14
ITA-SVN March 14
NOR-SWE March 16

Figure 2: Border controls in European regions. The map on the left shows our
treatment and control groups. Light-gray regions ( ) are located at controlled borders.
Dark-gray regions ( ) are a subset of the former with high levels of cross-border
commuting in 2019. The table on the right lists the dates of border control enactment
for all country pairs, including East European countries not included in our sample.
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(a) Groupwise conditional means
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Figure 3: Visual checks for parallel trends. Panel 3a plots average daily new cases in
the treatment and control groups, conditional on day and region fixed effects. Panel
3b shows (exponentiated) coefficients of the treatment group dummy for each day,
conditional on country-day and region fixed effects In both panels, gray areas show
the 10 % confidence interval for robust standard errors clustered at the region level.
Also note that the “France spike” seen in panel 3a does not show up in panel 3b,
because it is absorbed by the France-specific time effects.
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35°N

40°N

45°N

50°N

55°N

60°N

65°N

70°N

10°W 0° 10°E 20°E 30°E

−0.002

−0.001

0.000

p.mean

(a) Structured heterogeneity

35°N

40°N

45°N

50°N

55°N

60°N

65°N

70°N

10°W 0° 10°E 20°E 30°E

−2

−1

0

1

unstruc

(b) Unstructured heterogeneity

Figure 5: Spatial heterogeneity
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