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Abstract

Using 40 countries’ subnational data, we estimate age-specific mortality-temperature relationships
and extrapolate them to countries without data today and into a future with climate change. We
uncover a U-shaped relationship where extreme cold and hot temperatures increase mortality
rates, especially for the elderly. Critically, this relationship is flattened by both higher incomes and
adaptation to local climate. Using a revealed preference approach to recover unobserved
adaptation costs, we estimate that the mean global increase in mortality risk due to climate
change, accounting for adaptation benefits and costs, is valued at roughly 3.2% of global GDP in
2100 under a high emissions scenario. Notably, today’s cold locations are projected to benefit,
while today’s poor and hot locations have large projected damages. Finally, our central estimates
indicate that the release of an additional ton of CO2 today will cause mortality-related damages of
$36.6 under a high emissions scenario and using a 2% discount rate, with an interquartile range
accounting for both econometric and climate uncertainty of [-$7.8, $73.0]. Under a moderate
emissions scenario, these damages are valued at $17.1 [-$24.7, $53.6]. These empirically
grounded estimates exceed the previous literature’s estimates by an order of magnitude.
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Abstract

Using 40 countries’ subnational data, we estimate age-specific mortality-temperature relationships

and extrapolate them to countries without data today and into a future with climate change. We

uncover a U-shaped relationship where extreme cold and hot temperatures increase mortality rates, es-

pecially for the elderly. Critically, this relationship is flattened by both higher incomes and adaptation

to local climate. Using a revealed preference approach to recover unobserved adaptation costs, we esti-

mate that the mean global increase in mortality risk due to climate change, accounting for adaptation

benefits and costs, is valued at roughly 3.2% of global GDP in 2100 under a high emissions scenario.

Notably, today’s cold locations are projected to benefit, while today’s poor and hot locations have large

projected damages. Finally, our central estimates indicate that the release of an additional ton of CO2

today will cause mortality-related damages of $36.6 under a high emissions scenario and using a 2%

discount rate, with an interquartile range accounting for both econometric and climate uncertainty of

[-$7.8, $73.0]. Under a moderate emissions scenario, these damages are valued at $17.1 [-$24.7, $53.6].

These empirically grounded estimates exceed the previous literature’s estimates by an order of magnitude.

JEL Codes: Q51, Q54, H23, H41, I14.



1 Introduction

Understanding the likely global economic impacts of climate change is of tremendous practical value to

both policymakers and researchers. On the policy side, decisions are currently made with incomplete and

inconsistent information on the benefits of greenhouse gas emissions reductions. These inconsistencies are

reflected in global climate policy, which is at once both lenient and wildly inconsistent. To date, the economics

literature has struggled to mitigate this uncertainty, lacking empirically founded and globally comprehensive

estimates of the total burden imposed by climate change that account for the benefits and costs of adaptation.

This problem is made all the more difficult because emissions today influence the global climate for hundreds

of years. Thus, any reliable estimate of the damage from climate change must include projections of economic

impacts that are both long-run and at global scale.

Decades of study have accumulated numerous theoretical and empirical insights and important findings

regarding the economics of climate change, but a fundamental gulf persists between the two main types of

analyses. On the one hand, there are stylized models able to capture the multi-century and global nature

of climate change, such as “integrated assessment models” (IAMs) (e.g., Nordhaus, 1992; Tol, 1997; Stern,

2006); their great appeal is that they provide an answer to the question of what the global costs of climate

change will be. However, IAMs require many assumptions and this weakens the authority of their answers.

On the other hand, there has been an explosion of highly resolved empirical analyses whose credibility lies

in their use of real world data and careful econometric measurement (e.g., Schlenker and Roberts, 2009;

Deschênes and Greenstone, 2007). Yet these analyses tend to be limited in geographic extent and/or rely

on short-run changes in weather that are unlikely to fully account for adaptation to gradual climate change

(Hsiang, 2016). At its core, this dichotomy persists because researchers have traded off between being

complete in scale and scope or investing heavily in data collection and analysis.

This paper aims to resolve the tension between these approaches by providing empirically-derived esti-

mates of climate change’s impacts on global mortality risk. Importantly, these estimates are at the scale

of IAMs, yet grounded in detailed econometric analyses using high-resolution globally representative data,

and account for adaptation to gradual climate change. The analysis proceeds in three steps that lead to the

paper’s three main findings.

First, we estimate regressions to infer age-specific mortality-temperature relationships using historical

data. These regressions are fit on the most comprehensive dataset ever collected on annual, subnational

mortality statistics from 40 countries that cover 38% of the global population. The benefits of adaptation to

climate change and the benefits of projected future income growth are estimated by allowing the mortality-

temperature response function to vary with long-run climate (e.g., Auffhammer, 2018) and income per capita

(e.g., Fetzer, 2014). This modeling of heterogeneity allows us to predict the structure of the mortality-

temperature relationship across locations where we lack mortality data, yielding estimates for the entire

world.

These regressions uncover a plausibly causal U-shaped relationship where extremely cold and hot tem-

peratures increase mortality rates, especially for those aged 65 and older. Moreover, this relationship is quite

heterogeneous across the planet: we find that both income and long-run climate substantially moderate mor-
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tality sensitivity to temperature. When we combine these results with current global data on climate, income,

and population, we find that the effect of an additional very hot day (35◦C / 95◦F) on mortality in the >64

age group is ∼50% larger in regions of the world where mortality data are unavailable. This finding suggests

that prior estimates may understate climate change impacts, because they disproportionately rely on data

from wealthy economies and temperate climates. However, we note that because modern populations have

not experienced multiple alternative climates, the estimates of heterogeneity rely on cross-sectional variation

and they must be considered associational.

Second, we combine the regression results with standard future predictions of climate, income and popula-

tion to project future climate change-induced mortality risk both in terms of fatality rates and its monetized

value. The paper’s mean estimate of the projected increase in the global mortality rate due to climate change

is 73 deaths per 100,000 at the end of the century under a high emissions scenario (i.e., Representative Con-

centration Pathway (RCP) 8.5), with an interquartile range of [6, 101] due both to econometric and climate

uncertainty. This effect is similar in magnitude to the current global mortality burden of all cancers or all

infectious diseases. It is noteworthy that these impacts are predicted to be unequally distributed across the

globe: for example, mortality rates in Accra, Ghana are projected to increase by 17% at the end of the

century under a high emissions scenario, while in London, England, mortality rates are projected to decrease

by 8% due to milder winters. Importantly, a failure to account for climate adaptation and the benefits of

income growth would lead to overstating the mortality costs of climate change by a factor of about 3.

Of course, adaptation is costly; we develop a stylized revealed preference model that leverages observed

differences in temperature sensitivity across space to infer these costs. When monetizing projected deaths

due to climate change with the value of a statistical life (VSL) and adding the estimated costs of adaptation,

the total mortality burden of climate change is equal to roughly 3.2% of global GDP at the end of the century

under a high emissions scenario. We find that poor countries are projected to disproportionately experi-

ence impacts through deaths, while wealthy countries experience impacts largely through costly adaptation

investments.

Third, we use these estimates to compute the global marginal willingness-to-pay (MWTP) to avoid the

alteration of mortality risk associated with the temperature change from the release of an additional metric

ton of CO2. We call this the excess mortality “partial” social cost of carbon (SCC); a “full” SCC would

encompass impacts across all affected outcomes. Our estimates imply that the excess mortality partial SCC is

roughly $36.6 [-$7.8, $73.0] (in 2019 USD) with a high emissions scenario (RCP8.5) under a 2% discount rate

and using an age-varying VSL. This value falls to $17.1 [-$24.7, $53.6] with a moderate emissions scenario

(RCP4.5). The excess mortality partial SCC is lower in this scenario because the relationship between

mortality risk and temperature is convex, meaning that marginal damages are greater under higher baseline

emissions.

Overall, this paper’s results suggest that the temperature related mortality risk from climate change is

substantially greater than previously understood. For example, the estimated mortality partial SCC is more

than an order of magnitude larger than the partial SCC for all health impacts embedded in the FUND IAM.

Further, under the high emissions scenario, the estimated excess mortality partial SCC is ∼72% of the Biden
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Administration’s full interim SCC.1

In generating these results, this paper overcomes multiple challenges that have plagued the previous

literature. The first challenge is that CO2 is a global pollutant, so it is necessary to account for the het-

erogeneous costs of climate change across the entire planet. The second challenge is that today, there is

substantial adaptation to climate, as people successfully live in both Houston, TX and Anchorage, AK, and

climate change will undoubtedly lead to new adaptations in the future. The extent to which investments in

adaptation can limit the impacts of climate change is a critical component of damage estimates. We address

both of these challenges by combining extensive data with an econometric approach that models heterogene-

ity in the mortality-temperature relationship, allowing us to predict mortality-temperature relationships at

high resolution globally and into the future as climate and incomes evolve. Specifically, we develop estimates

of climate change impacts at high resolution, effectively allowing for 24,378 representative agents. In con-

trast, the previous literature has assumed the world is comprised of, at maximum, 170 heterogenous regions

(Burke, Hsiang, and Miguel, 2015), but typically far fewer (Nordhaus and Yang, 1996; Tol, 1997).

A final challenge is that adaptation responses are costly, and these costs must be accounted for in a

full assessment of climate change impacts. While our revealed preference approach to inferring adaptation

costs relies on a strong set of simplifying assumptions, it can be directly estimated with available data

and represents an important advance on previous literature, which has either quantified adaptation benefits

without estimating costs (e.g., Heutel, Miller, and Molitor, 2017) or tried to measure the costs of individual

adaptive investments in selected locations (e.g., Barreca et al., 2016), an approach that is poorly equipped

to capture the wide range of potential responses to warming.

The rest of this paper is organized as follows: Section 2 provides definitions and some basic intuition

for the economics of adaptation to climate change in the context of mortality. Section 3 details data used

throughout the analysis. Section 4 describes our empirical model and estimations results. Section 5 presents

projections of climate change impacts with and without the benefits of adaptation. Section 6 outlines a

revealed preference approach that allows us to infer adaptation costs and uses this framework to present

empirically-derived projections of the mortality risk of climate change accounting for the costs and benefits

of adaptation. Section 7 constructs a partial SCC, Section 8 discusses key limitations of the analysis, and

Section 9 concludes.

2 Conceptual framework

This section sets out a simple conceptual framework that guides the empirical model the paper uses to

estimate society’s willingness to pay (WTP) to avoid the mortality risks from climate change. In estimating

these mortality risks, it is critical to account for individuals’ compensatory responses, or adaptations, to

climate change, such as investments in air conditioning. These adaptations have both benefits that reduce

the risks of extreme temperatures and costs in the form of foregone consumption. Thus, the full mortality

risk of climate change is the sum of changes in mortality rates after accounting for adaptation and the costs

1This comparison is made using our preferred valuation scenario, which includes an age-adjusted VSL and a discount rate
of 2%. The Biden Administration’s interim SCC uses a 3% discount rate and an age-invariant VSL. Under these valuation
assumptions, the estimated excess mortality partial SCC is 44% of the Biden Administration’s full interim SCC.
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of those adaptations. Here, we define some key objects that the paper will estimate, including the full value

of mortality risk due to climate change.

We define the climate as the joint probability distribution over a vector of possible conditions that can be

expected to occur over a specific interval of time. Following the notation of Hsiang (2016), let C be a vector

of parameters describing the entire joint probability distribution over all relevant climatic variables (e.g., C

might contain the mean and variance of daily average temperature and rainfall, among other parameters).

We define weather realizations as a random vector c drawn from a distribution characterized by C. Mortality

risk is a function of both weather c and a composite good b = ξ(b1, ..., bK) comprising all choice variables

bk that could influence mortality risk, such as installation of air conditioning and time allocated to indoor

activities. The endogenous choices in b are the outcome of a stylized model in which individuals maximize

expected utility by trading off consumption of a numeraire good and b, subject to a budget constraint, as

outlined in detail in Section 6. Mortality risk is then captured by the probability of death f = f(b, c).

Climate change will influence mortality risk through two pathways.2 First, a change in C will directly

alter realized weather draws, changing c. Second, a change in C can alter individuals’ beliefs about their

likely weather realizations, shifting how they act, and ultimately changing their endogenous choice variables

b. Endogenous adjustments to b therefore capture all long-run adaptation to the climate (e.g., Mendelsohn,

Nordhaus, and Shaw, 1994; Kelly, Kolstad, and Mitchell, 2005). Since the climate C determines both c and

b, the probability of death at an initial climate Ct0 is written as:

Pr(death | Ct0) = f(b(Ct0), c(Ct0)), (1)

where c(C) is a random vector c drawn from the distribution characterized by C.

Many previous empirical estimates assume that individuals do not make any adaptations or compensatory

responses to an altered climate (e.g., Deschênes and Greenstone, 2007; Houser et al., 2015). Under this

approach, the change in mortality risk incurred due to a change in climate from Ct0 to Ct is calculated as:

mortality effects of climate change without adaptation = f(b(Ct0), c(Ct))− f(b(Ct0), c(Ct0)), (2)

which ignores the fact that individuals will choose new values of b as their beliefs about C evolve.

A more realistic estimate for the change in mortality due to a change in climate is:

mortality effects of climate change with adaptation = f(b(Ct), c(Ct))− f(b(Ct0), c(Ct0)). (3)

If the climate is changing such that the mortality risk from Ct is higher than Ct0 when holding b fixed, then

the endogenous adjustment of b will generate benefits of adaptation weakly greater than zero, since these

damages may be partially mitigated. In practice, the sign of the difference between Equations 2 and 3 will

depend on the degree to which climate change reduces extremely cold days versus increases extremely hot

days, and the optimal adaptation that agents undertake in response to these competing changes.

Several analyses have estimated reduced-form versions of Equation 3, confirming that accounting for

2Hsiang (2016) describes these two channels as a “direct effect” and a “belief effect.”
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endogenous changes to technology, behavior, and investment mitigates the direct effects of climate in a

variety of contexts (e.g., Barreca et al., 2016).3 Importantly, however, while this approach accounts for the

benefits of adaptation, it does not account for its costs. If adjustments to b were costless and provided

protection against the climate, then we would expect universal uptake of highly adapted values for b so

that temperature would have no effect on mortality. But we do not observe this to be true: for example,

Heutel, Miller, and Molitor (2017) find that the mortality effects of extremely hot days in warmer climates

(e.g., Houston) are much smaller than in more temperature climates (e.g., Seattle).4 We denote the costs of

achieving adaptation level b as A(b), measured in dollars of forgone consumption.

A full measure of the economic burden of climate change must account not only for the benefits generated

by compensatory responses to these changes, but also their cost. Thus, the total cost of changing mortality

risks that result from a climate change Ct0 → Ct is:

full value of mortality risk due to climate change =

V SL [f(b(Ct), c(Ct))− f(b(Ct0), c(Ct0))]︸ ︷︷ ︸
observable change in mortality rate

+A(b(Ct))−A(b(Ct0))︸ ︷︷ ︸
adaptation costs

, (4)

where V SL is the value of a statistical life. It is apparent that omitting the costs of adaptation, A(b), would

lead to an incomplete measure of the full costs of mortality risk due to climate change.

This paper develops an empirical model to quantify climate change’s impact on mortality risk at global

scale, accounting for the benefits of adaptation, consistent with Equation 3. Throughout the analysis, we

consider the effects of climate change induced changes in daily average temperature, such that the mortality

risk of climate change implies effects of temperature only (as opposed to other climate variables, such as

precipitation). Because income may also influence the choice variables in b, we include the benefits of income

growth in this empirical model, in addition to the benefits of climate adaptation. This empirical approach

and the resulting climate change impact projections are detailed in Sections 4 and 5, respectively.

However, an empirical estimation of the full value of mortality risk due to climate change, shown in

Equation 4, is more difficult, as total changes in adaptation costs between time periods cannot be observed

directly. In principle, data on each adaptive action could be gathered and modeled (e.g., Deschênes and

Greenstone, 2011), but since there exists an enormous number of possible adaptive margins that together

make up the vector b, computing the full cost of climate change using such an enumerative approach quickly

becomes intractable. To make progress on quantifying the full value of mortality risk due to climate change,

we develop a stylized revealed preference approach that leverages observed differences in climate sensitivity

across locations to infer adaptation costs associated with the mortality risk from climate change. This

approach, and resulting estimates of the full (monetized) value of the mortality risk due to climate change,

are reported in Section 6.

Section 7 uses these estimates to compute the global marginal willingness-to-pay (MWTP) to avoid the

alteration of mortality risk associated with the release of an additional metric ton of CO2. We call this the

3For additional examples, see Schlenker and Roberts (2009); Hsiang and Narita (2012); Hsiang and Jina (2014); Barreca
et al. (2015); Heutel, Miller, and Molitor (2017); Auffhammer (2018).

4Carleton and Hsiang (2016) document that such wedges in observed sensitivities to climate—which they call “adaptation
gaps”—are a pervasive feature of the broader climate damages literature.
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excess mortality “partial” social cost of carbon (SCC); a “full” SCC would encompass impacts across all

affected sectors (e.g., labor productivity, damages from sea level rise, etc.).

3 Data

To estimate the mortality risks of climate change at global scale, we assemble a novel dataset composed of

rich historical mortality records, high-resolution historical climate data, and future projections of climate,

population, and income across the globe. Section 3.1 describes the data necessary to estimate f(b, c), the

relationship between mortality and temperature, accounting for differences in climate and income. Section

3.2 outlines the data we use to predict the mortality-temperature relationship across the entire planet today

and project its evolution into the future as populations adapt to climate change. Appendix B provides a

more extensive description of each of these datasets.

3.1 Data to estimate the mortality-temperature relationship

3.1.1 Mortality data

Our mortality data are collected independently from 40 countries.5 Combined, this dataset covers mortality

outcomes for 38% of the global population, representing a substantial increase in coverage relative to existing

literature; prior studies investigate an individual country (e.g., Burgess et al., 2017) or region (e.g., Deschenes,

2018), or combine small nonrandom samples from across multiple countries (e.g., Gasparrini et al., 2015).

Table 1 summarizes each dataset, while spatial coverage, resolution, and temporal coverage are shown in

Figure B1. We harmonize all records into a single multi-country unbalanced panel dataset of age-specific

annual mortality rates, using three age categories: <5, 5-64, and >64, where the unit of observation is ADM2

(e.g., a county in the U.S.) by year.

3.1.2 Historical climate data

The analysis is performed with two separate groups of historical data on precipitation and temperature. First,

we use the Global Meteorological Forcing Dataset (GMFD) (Sheffield, Goteti, and Wood, 2006), which relies

on a weather model in combination with observational data. Second, we repeat our analysis with climate

datasets that strictly interpolate observational data across space onto grids, combining temperature data

from the daily Berkeley Earth Surface Temperature dataset (BEST) (Rohde et al., 2013) with precipitation

data from the monthly University of Delaware dataset (UDEL) (Matsuura and Willmott, 2007). Table 1

summarizes these data; full data descriptions are provided in Appendix B.2. We link climate and mortality

data by aggregating gridded daily temperature data to the annual measures at the same administrative

level as the mortality records (i.e., ADM2) using a procedure detailed in Appendix B.2.4 that allows for the

recovery of potential nonlinearities in the mortality-temperature relationship.

5We additionally use data from India as cross-validation of our main results, as the India data do not have records of
age-specific mortality rates. The inclusion of India increases our data coverage to 55% of the global population.
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Table 1: Historical mortality & climate data

Mortality records
Average annual Average
mortality rate∗† covariate values∗�

Global GDP Avg. Annual
pop. per daily avg. days

Country N Spatial scale× Years Age categories All-age >64 yr. share� capita⊗ temp.� > 28◦C
Brazil 228,762 ADM2 1997-2010 <5, 5-64, >64 525 4,096 0.028 11,192 23.8 35.2

Chile 14,238 ADM2 1997-2010 <5, 5-64, >64 554 4,178 0.002 14,578 14.3 0

China 7,488 ADM2 1991-2010 <5, 5-64, >64 635 7,507 0.193 4,875 15.1 25.2

EU 13,013 NUTS2‡ 1990.-2010 <5, 5-64, >64 1,014 5,243 0.063 22,941 11.2 1.6

France⊕ 3,744 ADM2 1998-2010 0-19, 20-64, >64 961 3,576 0.009 31,432 11.9 0.3

India∧ 12,505 ADM2 1957-2001 All-age 724 – 0.178 1,355 25.8 131.4

Japan 5,076 ADM1 1975-2010 <5, 5-64, >64 788 4,135 0.018 23,241 14.3 8.3

Mexico 146,835 ADM2 1990-2010 <5, 5-64,>64 561 4,241 0.017 16,518 19.1 24.6

USA 401,542 ADM2 1968-2010 <5, 5-64, >64 1,011 5,251 0.045 30,718 13 9.5

All Countries 833,203 – – – 780 4,736 0.554 20,590 15.5 32.6

Historical climate datasets
Dataset Citation Method Resolution Variable Source
GMFD, V1 Sheffield, Goteti, and Wood (2006) Reanalysis & 0.25◦ temp. & Princeton University

Interpolation precip.
BEST Rohde et al. (2013) Interpolation 1◦ temp. Berkeley Earth
UDEL Matsuura and Willmott (2007) Interpolation 0.5◦ precip. University of Delaware

∗In units of deaths per 100,000 population.
†To remove outliers, particularly in low-population regions, we winsorize the mortality rate at the 1% level at high end of the
distribution across administrative regions, separately for each country.
� All covariate values shown are averages over the years in each country sample.
× ADM2 refers to the second administrative level (e.g., county), while ADM1 refers to the first administrative level (e.g., state).

NUTS2 refers to the Nomenclature of Territorial Units for Statistics 2nd (NUTS2) level, which is specific to the European Union (EU)
and falls between first and second administrative levels.
� Global population share for each country in our sample is shown for the year 2010.
⊗ GDP per capita values shown are in constant 2005 dollars purchasing power parity (PPP).
� Average daily temperature and annual average of the number of days above 28◦C are both population weighted, using population
values from 2010.
‡ EU data for 33 countries were obtained from a single source. Detailed description of the countries within this region is presented in
Appendix B.1.
. Most countries in the EU data have records beginning in the year 1990, but start dates vary for a small subset of countries. See
Appendix B.1 and Table B1 for details.
⊕ We separate France from the rest of the EU, as higher resolution mortality data are publicly available for France.

∧ It is widely believed that data from India understate mortality rates due to incomplete registration of deaths.

3.1.3 Covariate data

The analysis allows for heterogeneity in the age-specific mortality-temperature relationship as a function of

two long-run covariates: a measure of climate (in our main specification, long-run average temperature) and

income per capita. We assemble time-invariant measures of both these variables at the ADM1 unit (e.g.,

state) level using GMFD climate data and a combination of the Penn World Tables (PWT), Gennaioli et al.

(2014), and Eurostat (2013). These covariates are measured at ADM1 scale (as opposed to the ADM2 scale

of the mortality records) due to limited availability of higher resolution income data. The construction of

the income variable requires some estimation to downscale to ADM1 level; details on this procedure are

provided in Appendix B.3.

In a set of robustness checks detailed in Section 4.2 and Appendix D.6, we analyze five additional sources

of heterogeneity, each of which has been suggested in the literature as an important driver of long-run

wellbeing (Alesina and Rodrik, 1994; Glaeser et al., 2004; La Porta and Shleifer, 2014; Bailey and Goodman-

Bacon, 2015; World Bank, 2020). These data include country-by-year obvservations of institutional quality
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from the Center for Systemic Peace (2020), access to healthcare services and labor force informality from

the World Bank (2020), educational attainment from the World Bank (2020) and Organization of Economic

Cooperaton and Development (2020), and within-country income inequality from the World Inequality Lab

(2020).

3.2 Data for projecting the mortality-temperature relationship around the world

& into the future

3.2.1 Unit of analysis for projections

We partition the global land surface into a set of 24,378 regions and for each region we generate location-

specific projected damages of climate change. The finest level of disaggregation in previous estimates of

global climate change damages divides the world into 170 regions (Burke, Hsiang, and Miguel, 2015), but

most papers account for much less heterogeneity (Nordhaus and Yang, 1996; Tol, 1997). These regions

(hereafter, impact regions) are constructed such that they are either identical to, or are a union of, existing

administrative regions. They (i) respect national borders, (ii) are roughly equal in population across regions,

and (iii) display approximately homogenous within-region climatic conditions. Appendix C details the

algorithm used to create impact regions.

3.2.2 Climate projections

We use a set of 21 high-resolution, bias-corrected, global climate projections produced by NASA Earth

Exchange (NEX) (Thrasher et al., 2012)6 that provide daily temperature and precipitation through the

year 2100. We obtain climate projections based on two standardized emissions scenarios: Representative

Concentration Pathways 4.5 (RCP4.5, an emissions stabilization scenario) and 8.5 (RCP8.5, a scenario with

intensive growth in fossil fuel emissions) (Van Vuuren et al., 2011; Thomson et al., 2011)).

These 21 climate models systematically underestimate tail risks of future climate change (Tebaldi and

Knutti, 2007; Rasmussen, Meinshausen, and Kopp, 2016).7 To correct for this, we follow Hsiang et al. (2017)

by assigning probabilistic weights to climate projections and use 12 surrogate models that describe local

climate outcomes in the tails of the climate sensitivity distribution (Rasmussen, Meinshausen, and Kopp,

2016). Figure B2 shows the resulting weighted climate model distribution. The 21 models and 12 surrogate

models are treated identically in our calculations and we describe them collectively as the surrogate/model

mixed ensemble (SMME). Gridded output from these 33 projections are aggregated to impact regions; full

details on the climate projection data are in Appendix B.2.

Only 6 of the 21 models we use to construct the SMME provide climate projections after 2100 for

both high and moderate emissions scenarios, and none simulate the impact of a marginal ton of CO2.

6The dataset we use, called the NEX-GDDP, downscales global climate model (GCM) output from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) archive (Taylor, Stouffer, and Meehl, 2012), an ensemble of models typically used
in national and international climate assessments.

7The underestimation of tail risks in the 21-model ensemble is for several reasons, including that these models form an
ensemble of opportunity and are not designed to sample from a full distribution, they exhibit idiosyncratic biases, and have
narrow tails. We are correcting for their bias and narrowness with respect to global mean surface temperature (GMST)
projections, but our method does not correct for all biases.
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Therefore, to include post-2100 years in our estimates of the mortality partial SCC, we rely on the Finite

Amplitude Impulse Response (FAIR) simple climate model, which has been developed especially for this

type of calculation (Millar et al., 2017).8 Details on our implementation of FAIR are in Appendix G.

3.2.3 Socioeconomic projections

Projections of population and income are a critical ingredient in the analysis, and for these we rely on the

Shared Socioeconomic Pathways (SSPs), which describe a set of plausible scenarios of socioeconomic de-

velopment over the 21st century. We use SSP2, SSP3, and SSP4, which yield emissions in the absence of

mitigation policy that fall between RCP4.5 and RCP8.5 in integrated assessment modeling exercises (Riahi

et al., 2017). For population, we use the International Institute for Applied Systems Analysis (IIASA) SSP

population projections, which provide estimates of population by age cohort at country-level in five-year

increments (IIASA Energy Program, 2016). National population projections are allocated to impact regions

based on current satellite-based within-country population distributions from Bright et al. (2012) (see Ap-

pendix B.3.3). Projections of national income per capita are similarly derived from the SSP scenarios, using

both the IIASA projections and the Organization for Economic Co-operation and Development (OECD)

Env-Growth model (Dellink et al., 2015) projections. We allocate national income per capita to impact

regions using current nighttime light satellite imagery from the NOAA Defense Meteorological Satellite

Program (DSMP). Appendix B.3.2 provides details on this calculation.

Because SSP projections are not available after the year 2100, our calculation of the mortality partial

SCC relies on an extrapolation of the relationship between climate change damages and global temperature

change to later years; see Section 7 for details.

4 Empirical estimates of the mortality-temperature relationship,

accounting for income and climate heterogeneity

Here we describe an empirical approach to quantify the heterogeneous impact of temperature on mortality

across the globe using historical data. This method allows us to capture differences in temperature sensitivity

across distinct populations in our sample, and thus to quantify the benefits of adaptation as observed

historically. The following section details how we combine this empirical information with standard projection

data to construct estimates of the mortality risk of climate change, accounting for the benefits of adaptation.

4.1 Empirical model

We estimate the mortality-temperature relationship using a pooled sample of age-specific mortality rates

across 40 countries. The effect of temperature on mortality rates is identified using year-to-year variation

in the distribution of daily weather following, for example, Deschênes and Greenstone (2011). Additionally,

8FAIR is a zero-dimensional structural representation of the global climate designed to capture the temporal dynamics and
equilibrium response of global mean surface temperature to greenhouse gas forcing. Appendix G shows that our simulation
runs with FAIR create warming distributions that match those from the climate projections in the high-resolution models in
the SMME.
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we allow the effect of temperature to vary with average temperature (i.e., long-run climate) and average per

capita incomes.9 This approach provides separate estimates for the effect of climate-driven adaptation and

income growth on the shape of the mortality-temperature relationship, as they are observed in the historical

record.

The two factors defining this interaction model reflect the economics governing adaptation. First, a higher

long-run average temperature incentivizes investment in heat-related adaptive behaviors, as the return to

any given adaptive mechanism is higher the more frequently the population experiences days with life-

threatening temperatures. Second, higher incomes relax agents’ budget constraints and hence facilitate

adaptive behavior. In other words, people live successfully in both Anchorage, AK and Houston, TX due to

compensatory responses to their climate, while the wealthy purchase more safety. To capture these effects,

we interact a nonlinear temperature response function with location-specific measures of climate and per

capita income.

We fit the following model:

Mait =ga(Tit , TMEANs, log(GDPpc)s) + qca(Rit) + αai + δact + εait, (5)

where a indicates age category with a ∈ {< 5, 5-64, > 64}, i denotes the second administrative level (ADM2,

e.g., county),10 s refers to the first administrative level (ADM1. e.g., state or province), c denotes country,

and t indicates years. Thus, Mait is the age-specific all-cause mortality rate in ADM2 unit i in year t. αai is

a fixed effect for age×ADM2, and δact a vector of fixed effects that allow for shocks to mortality that vary

at the age× country × year level.

Our focus in Equation 5 is the effect of temperature on mortality, conditional on average climate and

income, which is represented by the age-specific response function ga(·). Before describing the functional

form of this response, we note that our climate data are provided at the grid-cell-by-day level. To align

gridded daily temperatures with annual administrative mortality records, we first take nonlinear functions

of grid-level daily average temperature and sum these values across the year. We then collapse annual

observations across grid cells within each ADM2 using population weights in order to represent temperature

exposure for the average person within an administrative unit.11 This process allows for the recovery of a

nonlinear relationship between mortality and temperature at the grid cell level, even though Equation 5 is

estimated at a higher level of aggregation (Hsiang, 2016). The nonlinear transformations of daily temperature

9These two factors have been the focus of studies modeling heterogeneity across the broader climate-economy literature.
For examples, see Mendelsohn, Nordhaus, and Shaw (1994); Kahn (2005); Auffhammer and Aroonruengsawat (2011); Hsiang,
Meng, and Cane (2011); Graff Zivin and Neidell (2014); Moore and Lobell (2014); Davis and Gertler (2015); Heutel, Miller,
and Molitor (2017); Isen, Rossin-Slater, and Walker (2017).

10This is usually the case. However, as shown in Table 1, the EU data is reported at Nomenclature of Territorial Units for
Statistics 2nd (NUTS2) level, and Japan reports mortality at the first administrative level.

11Specifically, we summarize gridded daily average temperatures Tzd across grid cells z and days d to create the annual
ADM2-level vector Tit as follows:

Tit =

∑
z∈i

wzi
∑
d∈t

Tzd,
∑
z∈i

wzi
∑
d∈t

T 2
zd,

∑
z∈i

wzi
∑
d∈t

T 3
zd,

∑
z∈i

wzi
∑
d∈t

T 4
zd


Aggregation across grid cells within an ADM2 is conducted using time-invariant population weights wzi, which represent the
share of i’s population that falls into grid cell z (see Appendix B.2.4 for details).
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are captured by the annual, ADM2-level vector Tit, and we then choose ga(·) to be a linear function of the

nonlinear elements of Tit.

In our main specification, Tit contains fourth order polynomials of daily average temperatures, summed

across the year. We emphasize results from the polynomial model because it strikes a balance between

providing sufficient flexibility to capture important nonlinearities, parsimony, and limiting demands on the

data. Analogous to temperature, we summarize daily grid-level precipitation in the annual ADM2-level

vector Rit. We construct Rit as a second-order polynomial of daily precipitation, summed across the year,

and estimate an age- and country-specific linear function of this vector, represented by qac(·).
In a set of robustness checks we explore the sensitivity of the results to alternative functional forms for

temperature. Specifically, we alternatively define Tit as a vector of binned daily average temperatures, as a

vector of restricted cubic splines of daily average temperatures, and as a 2-part linear spline of daily average

temperatures.12

The impact of weather realizations Tit on mortality is identified from the plausibly random year-to-year

variation in temperature within a geographic unit. Specifically, the age×ADM2 fixed effects αai ensure that

we isolate within-location year-to-year variation in temperature and rainfall exposure, which is as good as

randomly assigned. The age×country×year fixed effects δact account for any time-varying trends or shocks

to age-specific mortality rates which are unrelated to the climate. We explore robustness to alternative sets

of fixed effects in Table D2.

The mortality-temperature response function ga(·) depends on TMEAN , the sample-period average

annual temperature, and the logarithm of GDPpc, the sample-period average of annual GDP per capita.

The model does not include uninteracted terms for TMEAN and GDPpc because they are collinear with αai,

which effectively shuts down the possibility of the climate influencing the mortality rate equally on all days,

regardless of daily temperature. This is because we define climate adaptation to be actions or investments

that reduce the risk of temperatures that threaten human well-being, as is common in the literature (e.g.,

Hsiang (2016)). The paper’s analysis therefore allows the benefits (and, as discussed later, the costs) of

adaptation to influence the shape of the mortality-temperature relationship, but not its level.

We implement a form of ga(·) that exploits linear interactions between the ADM1-level covariates and all

nonlinear elements of the temperature vector Tit. While long-run climate and GDP per capita enter linearly,

they are interacted with all the terms of the fourth order polynomial Tit. More details on implementation of

this regression are given in Appendix D.1.13 We estimate Equation 5 without any regression weights since

12In the binned specification, annual values are calculated as the number of days in region i in year t that have
an average temperature that falls within a fixed set of 5◦C bins. The bin edges are positioned at the locations
{−∞,−15,−10,−5, 0, 5, 10, 15, 20, 25, 30, 35,+∞} in ◦C. In the restricted cubic spline specification, daily spline terms are
summed across the year and knots are positioned at the locations {−12,−7, 0, 10, 18, 23, 28, 33} in ◦C. In the linear spline
specification, heating degree days below 0◦C and cooling degree days above 25◦C are summed across the year.

13To see how we implement Equation 5 in practice, let βa indicate the vector of four coefficients that describes the age-specific
fourth-order polynomial mortality-temperature response function. In estimating Equation 5, we allow βa to change with climate
and income by modeling each element of βa as a linear function of these two variables. Using this notation, our estimating
equation is:

Mait = (γ0,a + γ1,aTMEANs + γ2,a log(GDPpc)s)︸ ︷︷ ︸
βa

Tit + qca(Rit) + αai + δact + εait,

where γ0,a,γ1,a, and γ2,a are each vectors of length four, the latter two describing the effects of TMEAN and log(GDPpc) on
the sensitivity of mortality Mait to temperature Tit.
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we are explicitly modeling heterogeneity in treatment effects rather than integrating over it (Solon, Haider,

and Wooldridge, 2015).

A central challenge in understanding the extent of adaptation is that there exists no experimental or

quasi-experimental variation in climate as opposed to weather. Put simply, meaningful variation in climate

within a location is not available in recorded history. So, while plausibly random year-to-year fluctuations

in temperature within locations are used to identify the effect of weather events in Equation 5, we must use

cross-sectional variation in climate and income between locations to estimate heterogeneity in the mortality-

temperature relationship. We therefore interpret our heterogeneity results as associational.

Nevertheless, we believe this model generates informative estimates of the impact of climate change

on mortality for several reasons, including: alternative sources of heterogeneity in mortality sensitivity to

temperature have little effect on the estimated response functions; the model performs well out-of-sample

on a variety of cross-validation tests; and estimated response functions are robust to a host of alternative

specifications. These tests are discussed in detail in Section 4.2.

4.2 Empirical results

Tabular results for the estimation of Equation 5 are reported in Table D1 for each of the three age groups.

As these terms are difficult to interpret, we visualize this heterogeneity by dividing the sample into terciles

of income and terciles of climate (i.e., the two interaction terms), and then further dividing the sample into

the intersection of these two groups of three. This partitions the log(GDPpc) × TMEAN space into nine

subsamples. We plot predicted response functions at the mean value of climate and income within each of

these nine subsamples, using the coefficients in Table D1. The result is a set of predicted response functions

that vary across the joint distribution of income and average temperature within the sample data. The

resulting response functions are shown in Figure 1 for the >64 age category (other age groups are shown in

Appendix D.1), where average incomes are increasing across subsamples vertically and average temperatures

are increasing across subsamples horizontally.

The Figure 1 results are broadly consistent with the economic prediction that people adapt to their

climate and that income is protective. For example, within each income tercile in Figure 1, the effect of hot

days (e.g., days >35◦C) declines as one moves from left (cold climates) to right (hot climates). This finding

reflects that individuals and societies make compensatory adaptations in response to their climate (e.g.,

people install air conditioning in hot climates more frequently than in cold ones). With respect to income,

Figure 1 reveals that moving from the bottom (low income) to top (high income) within a climate tercile

causes a substantial flattening of the response function, especially at high temperatures. Thus, protection

from extreme temperatures appears to be a normal good.

Two statistics help to summarize the findings from Figure 1. First, in the >64 age category across all

income values, moving from the coldest to the hottest tercile saves on average 7.9 (p-value=0.06) deaths

per 100,000 at 35◦C. Second, moving from the poorest to the richest tercile across all climate values in the

sample saves approximately 5.0 (p-value=0.1) deaths per 100,000 at 35◦C for the > 64 age category.

12



% population in 2010: 3

-2
0

0
20

40
60

-2
0

0
20

40
60

-2
0

0
20

40
60

-5 5 15 25 35

D
ea

th
s 

pe
r 1

00
k

D
ea

th
s 

pe
r 1

00
k

D
ea

th
s 

pe
r 1

00
k

Temperature (°C)  

Cold Temperate Hot

High
income

Middle
income

Low
income

-5 5 15 25 35 -5 5 15 25 35

% population in 2010: 1.5
% population in 2100: 1

% population in 2010: 6.5
% population in 2100: 4.5

% population in 2010: 5.5
% population in 2100: 23

% population in 2010: 3
% population in 2100:0

% population in 2010: 2.5
% population in 2100: 0

% population in 2010: 9
% population in 2100: 55.5

% population in 2100: 0
% population in 2010: 5
% population in 2100: 0.5

% population in 2010: 63.5
% population in 2100: 16

-2
0

0
20

40
60

-2
0

0
20

40
60

-2
0

0
20

40
60

D
ea

th
s 

pe
r 1

00
k

D
ea

th
s 

pe
r 1

00
k

D
ea

th
s 

pe
r 1

00
k

Temperature (°C)  Temperature (°C)  

Figure 1: Heterogeneity in the mortality-temperature relationship (age >64 mortality rate).
Each panel represents a predicted mortality-temperature response function for the >64 age group for a subset of the income-
average temperature covariate space within our data sample. Response functions in the lower left apply to the low-income, cold
regions of our sample, while those in the upper right apply to the high-income, hot regions of our sample. Regression estimates
are from a fourth-order polynomial in daily average temperature and are estimated using GMFD weather data with a sample
that was winsorized at the 1% level on the top end of the distribution only. All response functions are estimated jointly in a
stacked regression model that is fully saturated with age-specific fixed effects, and where each temperature variable is interacted
with each covariate. Values in the top left-hand corner of each panel show the percentage of the global population that reside
within each in-sample tercile of average income and average temperature in 2010 (black text) and as projected in 2100 (red
text, SSP3). Other age groups are shown in Figures D1 and D2.

4.3 Sensitivity analyses

4.3.1 Age group heterogeneity

Consistent with prior literature (e.g., Deschênes and Moretti, 2009; Heutel, Miller, and Molitor, 2017), we

uncover substantial heterogeneity across age groups within our multi-country sample. Figure 2 displays

the average mortality-temperature response for each of our three age categories (<5, 5-64, >64),14 while

Appendix D.1 shows the influence of income and climate on the mortality-temperature relationships for each

age group. On average across the globe, we find that people over the age of 64 experience approximately

4.7 extra deaths per 100,000 for a day at 35◦C (95◦F) compared to a day at 20◦C (68◦F), a substantially

larger effect than that for younger cohorts, which exhibit little response. This age group is also more severely

affected by cold days; estimates suggest that people over the age of 64 experience 3.4 deaths per 100,000 for

a day at −5◦C (23◦F) compared to a day at 20◦C, while there is a relatively weak mortality response to these

cold days for other age categories. Overall, these results demonstrate that the elderly are disproportionately

harmed by additional hot days and disproportionately benefit from reductions in cold days.

14Age-specific regression estimates in Figure 2 are estimated jointly in a stacked regression model that is fully saturated with
age-specific fixed effects and has no income or climate interaction terms (Equation D.17). See Appendix D.2.1 for details.
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Figure 2: Mortality-temperature response function with demographic heterogeneity. Mortality-
temperature response functions are estimated for populations <5 years of age (green), between 5 and 64
years of age (blue), >64 years of age (red), and pooled across all ages (black, with associated 95% confidence
intervals shaded in grey). Regression estimates shown are from a fourth-order polynomial in daily average
temperature and are estimated using GMFD weather data with a sample that was winsorized at the 1%
level. All age-specific response functions are estimated jointly in a stacked regression model that is fully
saturated with age-specific fixed effects (Equation D.17). Confidence intervals are shown only for the all-age
response function; statistical significance for age-specific response functions can be seen in Table D2.

4.3.2 Alternative fixed effects

Table D2 reports on the robustness of the estimated mortality-temperature relationship to alternative spatial

and temporal controls. Tabular results show the average multi-country marginal effect of temperature

evaluated at various temperatures. These estimates can be interpreted as the change in the number of deaths

per 100,000 per year resulting from one additional day at each temperature, compared to the reference day of

20◦C (68◦F). Columns (1)-(3) increase the saturation of temporal controls in the model specification, ranging

from country-year fixed effects in column (1) to country-year-age fixed effects in column (2), and adding age-

specific state-level linear trends in column (3). Our preferred specification is column (2), as column (1)

does not account for differential temporal shocks to mortality rates by age group, while in column (3) we

cannot reject the null of equal age-specific, ADM1-level trends. However, estimated age-specific responses

are similar across all specifications. This result is robust to alternative functional form assumptions (i.e.,

different nonlinear functions of Tit), including a non-parametric binned regression, as well as to the use of

alternative, independently-sourced, climate datasets (Figure D3).
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4.3.3 Alternative specifications

In Table D2, columns (4) and (5) provide results for the average mortality-temperature relationship under

alternative specifications. In column (4), we address the fact that some of the data are drawn from countries

which may have less capacity for data collection than others in the sample. Because the mortality data are

collected by institutions in different countries, it is possible that some sources are systematically less precise.

To account for this, we re-estimate the model using Feasible Generalized Least Squares (FGLS) under the

assumption of constant variance within each ADM1 unit.15 In column (5), we allow for the possibility

that temperatures can exhibit lagged effects on health and mortality (e.g., Deschênes and Moretti, 2009;

Barreca et al., 2016; Guo et al., 2014). Lagged effects within and across months in the same calendar year

are accounted for in the net annual mortality totals used in all specifications. However, it is possible that

temperature exposure in December of each year affects mortality in January of the following year. To account

for this, in column (5) we define a 13-month exposure window to additionally account for temperatures

previous December.16 Table D2 shows that the results for both of these alternative specifications are similar

in sign and magnitude to those from column (2).

Figure D3 displays the results of estimating the mortality-temperature relationship using a set of alter-

native functional forms of temperature (i.e., different formulations of the temperature vector Tit) and using

two different climate datasets to obtain those temperatures (see Appendix B.2 for details on these climate

datasets). We explore three functional forms in addition to the main fourth-order polynomial specification:

bins of daily average temperature, restricted cubic splines, and piecewise linear splines. The first two are

especially demanding of the data, particularly in the context of Equation 5, which allows for heterogeneity

in temperature sensitivity. Overall, the results for these alternative functional form specifications are similar

to the fourth-order polynomial when using both climate datasets (see Appendix D.2 for details).

Finally, we find that the coefficients in Equation 5 are qualitatively unchanged when we use alternative

characterizations of the climate (see Appendix D.4) or if we omit precipitation controls (see Appendix D.5).

4.3.4 Additional sources of heterogeneity

In order to predict responses around the world and inform projections of damages in the future, it is necessary

for all covariates in Equation 5 to be available globally today, at high spatial resolution, and that credible

projections of their future evolution are available. One reason we use average incomes and climate in Equation

5 is that both variables meet these criteria.

However, a valid critique of this model is that other factors likely explain heterogeneity in the mortality-

temperature relationship, yet are omitted from Equation 5. To address this possibility, we collect data on

five other candidate variables that could explain heterogeneity in mortality sensitivity to temperature, such

15To do this, we estimate the model in Equation D.17 using population weights and our preferred specification (column (2)).
Using the residuals from this regression, we calculate an ADM1-level weight that is equal to the average value of the squared
residuals, where averages are taken across all ADM2-age-year level observations that fall within a given ADM1. We then
inverse-weight the regression in a second stage, using this weight. All ADM2-age-year observations within a given ADM1 are
assigned the same weight in the second stage, where ADM1 locations with lower residual variance are given higher weight. For
some ADM2s, there are insufficient observations to identify age-specific variances; to ensure stability, we dropped the ADM2s
with less than 5 observations per age group. This leads us to drop 246 (of >800,000) observations in this specification.

16The specification in column (5) defines the 13-month exposure window such that for a given year t, exposure is calculated
as January to December temperatures in year t and December temperature in year t− 1.
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as institutional quality, doctors per capita, and educational attainment.17 Appendix D.6 shows that adding

these variables as additional interaction terms when estimating Equation 5 generates very similar predicted

response functions in historical data. This suggests that a model which employs only income and climate

explains a large amount of the heterogeneity across space.

Further, we find that including only climate and income as interaction effects out-performs a model that

includes additional interaction terms when those variables are not available in future projections. Appendix

D.6 shows that including these potential determinants of heterogeneity when estimating Equation 5, but

omitting them when generating predictions (as would be necessary when making climate change impact

projections), substantially increases prediction error.

4.3.5 Out-of-sample performance

In the next section, we use coefficients estimated from Equation 5, in combination with local-level observa-

tions and projections of TMEAN and log(GDPpc), to generate predicted response functions in all regions

of the world, including where mortality data are unavailable, both in the present and into future. To assess

the performance of our model in predicting mortality-temperature relationships out-of-sample, we implement

multiple custom cross-validation exercises designed to mimic the spatial and temporal extrapolation that is

required when using available historical data to generate global climate change projections decades into the

future. These tests are described in detail in Appendix D.7, but we summarize their results here.

We perform three cross-validation exercises. In each case, we compare the performance of Equation 5 to

the performance of a benchmark model without TMEAN and log(GDPpc) interactions; that is, a model that

ignores adaptation and benefits of income. We do so because most prior literature has estimated impacts of

climate change using spatially and/or temporally homogeneous response functions (e.g., Hsiang et al., 2017;

Deschênes and Greenstone, 2011). The first exercise uses standard k-fold cross-validation (Friedman et al.,

2001), but constrains all observations within an ADM1 (e.g., state) to remain in either the “testing” or the

“training” sample within each fold, in order to account for spatial and temporal correlation within these

regions. The second exercise subsamples the data based on the in-sample distributions of TMEAN and

log(GDPpc) and tests the model’s ability to predict mortality rates in populations with different incomes

and climates than the estimation sample. The final exercise subsamples data based on time, testing the

model’s ability to predict future mortality-temperature relationships.

In all three cases, we find that the model in Equation 5 performs well, both when compared to measures of

in-sample model fit and when compared to the out-of-sample performance of a model that omits interaction

effects. In particular, Equation 5 performs well in predicting mortality rates in the lowest income and

hottest locations, even when those locations are omitted from the estimating sample (see Panel B of Table

D5). This is an important result, given the under-representation of low income and hot climates in our

mortality records, relative to the global population (see Figure 3). We investigate this finding further in

Appendix D.8, where we show strong predictive performance in India, a hot and relatively poor country

that is not used in estimation due to its lack of age-specific mortality rates. We do find that Equation 5

17In collecting these data, we note that obtaining any of them at subnational scales is a substantial challenge and in most
cases not possible. See Appendix D.6 for details.
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occasionally over-estimates or under-estimates future mortality sensitivity to hot days in some age groups

and for some income levels (see Figure D9). To address this concern, we explore in Appendix F.4 the

sensitivity of our main climate change projections to alternative assumptions about the rates of adaptation.

5 Projections of climate change impacts on future mortality rates

This section begins by using the empirical results from Section 4 to extrapolate mortality-temperature

relationships to the parts of the world where historical mortality data are unavailable. We then combine

these estimates with projected changes in climate exposure and income growth to quantify expected climate

change induced mortality risk, accounting for climate model and econometric uncertainty. The paper’s

ultimate aim is to develop an estimate of the full mortality-related costs of climate change (i.e., the sum of

the increase in deaths and adaptation costs shown in Equation 4), but adaptation costs are not observed

directly (see Section 2). Therefore, here we display empirically-derived estimates of changes in mortality

rates due to climate change, highlighting the difference between projections that do and do not account for

the benefits of adaptation. In the following section, we use a stylized revealed preference approach to infer

adaptation costs, which allows for a complete measure.

5.1 Defining three measures of climate change impacts

Here we define three measures of climate change impacts that elucidate the roles of adaptation and income

growth in determining the full mortality-related costs of climate change. The empirical estimation of each of

these measures is first reported in units of deaths per 100,000 using the estimates of ĝa(·) reported in Section

4, although it is straightforward to monetize these measures using estimates of the value of a statistical life

(VSL), and we do so in the next section.

The first measure is the mortality effects of climate change with neither adaptation nor income growth,

which provides an estimate of the increases in mortality rates when each impact region’s response function

in each year t is a function of their initial period (indicated as t0) level of income and average climate

(recall Equation 2). In other words, mortality sensitivity to temperature is assumed not to change with

future income or temperature. This is a benchmark model often employed in previous work. Specifically,

the expected climate induced mortality risk that we estimate for an impact region and age group in a future

year t under this measure are (omitting subscripts for impact regions and age groups for clarity):18

(i) Mortality effects of climate change with neither adaptation nor income growth:

ĝ(Tt, TMEANt0 , log(GDPpc)t0)︸ ︷︷ ︸
mortality risk with climate change

and without adaptation

− ĝ(Tt0 , TMEANt0 , log(GDPpc)t0)︸ ︷︷ ︸
current mortality risk

The second measure is the mortality effects of climate change with benefits of income growth, which allows

response functions to change with future incomes. This measure captures the change in mortality rates that

18Note that in all estimates of climate change impacts, population growth is accounted for as an exogenous projection that
does not depend on the climate.
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would be expected from climate change if populations became richer, but they did not respond optimally to

warming by adapting above and beyond how they would otherwise cope with their historical climate. This

measure is defined as:

(ii) Mortality effects of climate change with benefits of income growth:

ĝ(Tt, TMEANt0 , log(GDPpc)t)︸ ︷︷ ︸
mortality risk with climate change

and benefits of income growth

− ĝ(Tt0 , TMEANt0 , log(GDPpc)t)︸ ︷︷ ︸
mortality risk without climate change

and with benefits of income growth

Note that in expression (ii), the second term represents a counterfactual predicted mortality rate that would

be realized under current temperatures, but in a population that benefits from rising incomes over the coming

century. This counterfactual includes the prediction, for example, that air conditioning will become much

more prevalent in a country like India as the economy grows, regardless of whether climate change unfolds

or not.

The third measure is the mortality effects of climate change with benefits of income growth and adaptation,

and in this case populations adjust to experienced temperatures in the warming scenario (recall Equation

3). This metric is an estimate of the observable deaths that would be expected under a warming climate,

accounting for the benefits of optimal adaptation and income growth:

(iii) Mortality effects of climate change with benefits of income growth and adaptation:

ĝ(Tt, TMEANt, log(GDPpc)t)︸ ︷︷ ︸
mortality risk with climate change, benefits

of income growth, and adaptation

− ĝ(Tt0 , TMEANt0 , log(GDPpc)t)︸ ︷︷ ︸
mortality risk without climate change

and with benefits of income growth

As above, expression (iii) includes the subtraction of a counterfactual in which incomes rise but climate is

held fixed.

Year t0 is treated as the baseline period, which we define to be the years 2001-2010, so we are measuring

the impact of climate change since this period.19 These three measures are all reported below in units of

deaths per 100,000, using the estimates of ĝ(·) shown in Section 4.

5.2 Methods for climate change projection: spatial extrapolation

The fact that carbon emissions are a global pollutant requires that estimates of climate damages used to

inform an SCC must be global in scope. A key challenge for generating such globally-comprehensive estimates

in the case of mortality is the absence of data throughout many parts of the world. Often, registration of

births and deaths does not occur systematically. Although we have, to the best of our knowledge, compiled

the most comprehensive mortality data file ever collected, our 40 countries only account for 38% of the global

population (55% if India is included, although it only contains all-age mortality rates). This leaves more

than 4.2 billion people unrepresented in the sample of available data, which is especially troubling because

19While anthropogenic warming has been detected in the climate record far earlier than 2001-2010, we estimate impacts of
climate change only since this period.
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these populations have incomes and live in climates that may differ from the parts of the world where data

are available.

To achieve the global coverage essential to understanding the costs of climate change, we use the results

from the estimation of Equation 5 on the observed 38% global sample to estimate the sensitivity of mortality

to temperature everywhere, including the unobserved 62% of the world’s population. Specifically, the results

from this model enable us to use two observable characteristics – average temperature and income – to

predict the mortality-temperature response function for each of our 24,378 impact regions. Importantly, it

is not necessary to recover the overall mortality rate for these purposes.

To see how this is done, we note that the projected response function for any impact region r requires

three ingredients. The first are the estimated coefficients ĝa(·) from Equation 5. The second are estimates of

GDP per capita at the impact region level.20 And third is the average annual temperature (i.e., a measure of

the long-run climate) for each impact region, where we use the same temperature data that were assembled

for the regression in Equation 5.

We then predict the shape of the response function for each age group a, impact region r, and year t,

up to a constant: ĝart = ĝa(Trt, TMEANrt, log(GDPpc)rt). The various fixed effects in Equation 5 are

unknown and omitted, since they were nuisance parameters in the original regression. This results in a

unique, spatially heterogeneous, and globally comprehensive set of predicted response functions for each

location on Earth.

The accuracy of the predicted response functions will depend, in part, on its ability to capture responses

in regions where mortality data are unavailable. An imperfect but helpful exercise when considering whether

our model is representative is to evaluate the extent of common overlap between the two samples. Figure 3A

shows this overlap in 2015, where the grey squares reflect the joint distribution of GDP and climate in the

full global partition of 24,378 impact regions and orange squares represent the analogous distribution only

for the impact regions in the sample used to estimate Equation 5. It is evident that temperatures in the

global sample are generally well-covered by our data, although we lack coverage for the poorer end of the

global income distribution due to the absence of mortality data in poorer countries. As discussed in Section

4, we explore this extrapolation to lower incomes with a set of robustness checks in Appendix D.

5.3 Methods for climate change projection: temporal extrapolation

As discussed in Section 2, a measure of the full mortality risk of climate change must account for the benefits

that populations realize from optimally adapting to a gradually warming climate, as well as from income

growth relaxing the budget constraint and enabling compensatory investments. Thus, we allow each impact

region’s mortality-temperature response function to evolve over time, reflecting projected changes in climate

and incomes that come from a set of internationally standardized and widely used scenarios. Specifically,

we model the evolution of response functions in region r and year t based on these projections and the

estimation results from fitting Equation 5.

Some details about these projections are worth noting. First, a 13-year moving average of income per

20The procedure is described in Section 3.2 and Appendix B.3.2
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Figure 3: Joint coverage of income and long-run average temperature for estimating and full
samples. Joint distribution of income and long-run average annual temperature in the estimating sample (red-orange), as
compared to the global sample of impact regions (grey-black). Panel A shows in grey-black the global sample for regions in
2015. Panel B shows in grey-black the global sample for regions in 2100 under a high-emissions scenario (RCP8.5) using climate
model CCSM4 and a median growth scenario (SSP3). In both panels, the in-sample frequency in red-orange indicates coverage
for impact regions within our data sample in 2015.

capita in region r is calculated using national forecasts from the Shared Socioeconomics Pathways (SSP),

combined with a within-country allocation of income based on present-day nighttime lights (see Appendix

B.3.2), to generate a new value of log(GDPpc)rt. The length of this time window is chosen based on a

goodness-of-fit test across alternative window lengths (see Appendix E.1). Second, a 30-year moving average

of temperatures for region r is updated in each year t to generate a new level of TMEANrt. Finally, the

response curves ĝart = ĝa(Trt, TMEANrt, log(GDPpc)rt) are calculated for each region for each age group

in each year with these updated values of TMEANrt and log(GDPpc)rt.

Figure 3B shows that over the coming decades, temperatures and incomes are predicted to rise beyond the

support of the global cross-section in our data. Thus, we must impose two constraints, guided by economic

theory and by the physiological literature, to ensure that future response functions are consistent with the

fundamental characteristics of mortality-temperature responses in the historical record and demonstrate

plausible out-of-sample projections.21 First, we impose the constraint that the response function must be

weakly monotonic around an empirically estimated, location-specific, optimal mortality temperature, called

the minimum mortality temperature (MMT). That is, we assume that temperatures farther from the MMT

(either colder or hotter) must be at least as harmful as temperatures closer to the MMT. This assumption

is important because Equation 5 uses within-sample variation to parameterize how the U-shaped response

function flattens; with extrapolation beyond the support of historically observed income and climate, this

behavior could go “beyond flat”, such that extremely hot and cold temperature days reduce mortality relative

to the MMT (Figure E1). In fact, this is guaranteed to occur mechanically if enough time elapses, because

income and climate interact with the response function linearly in Equation 5. However, such behavior is

21See Appendix E.2 for details on these assumptions and their implementation.
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inconsistent with a large body of epidemiological and econometric literature recovering U-shaped mortality-

temperature relationships under many functional form assumptions and in diverse locations (Gasparrini

et al., 2015; Burgess et al., 2017; Deschênes and Greenstone, 2011), as well as what we observe in our data.

As a measure of its role in our results, the weak monotonicity assumption binds for the >64 age category at

35◦C in 9% and 18% of impact regions in 2050 and 2100, respectively.22,23

Second, we assume that rising income cannot make individuals worse off, in the sense of increasing the

temperature sensitivity of mortality. Because increased income per capita strictly expands the choice set of

individuals considering whether to make adaptive investments, it should not increase the effect of temperature

on mortality rates. Consistent with this intuition, we find that income is protective against extreme heat for

all age groups. However, for some age groups, the estimation of Equation 5 recovers statistically insignificant

but positive effects of income on mortality sensitivity to extreme cold (Table D1). Therefore, we constrain

the marginal effect of income on temperature sensitivity to be weakly negative in future projections, although

we place no restrictions on the cross-sectional effect of income when estimating Equation 5.24

With these two constraints, we project annual impacts of climate change separately for each impact

region and age group from 2001 to 2100. Specifically, we apply projected changes in the climate to each

region’s response function, which is evolving as climate and income evolve. The nonlinear transformations of

daily average temperature that are used in the function ga(Trt) are computed under both the RCP4.5 and

RCP8.5 emissions scenarios for all 33 climate projections in the SMME (as described in Section 3.2). This

distribution of climate models captures uncertainties in the climate system through 2100.

5.4 Methods for accounting for uncertainty in projected mortality effects of

climate change

An important feature of the analysis is to characterize the uncertainty inherent in these projections of the

mortality impacts of climate change.25 As discussed in Section 5.3, we construct estimates of the mortality

risk of climate change for each of 33 distinct climate projections in the SMME that together capture the

uncertainty in the climate system.26 Additionally, uncertainty in the estimates of ĝa(·) is an important

second source of uncertainty in our projected impacts that is independent of physical uncertainty.

In order to account for both of these sources of uncertainty, we execute a Monte Carlo simulation following

the procedure in Hsiang et al. (2017). First, for each age category, we randomly draw a set of parameters,

22The frequency with which the weak monotonicity assumption binds will depend on the climate model and the emissions
and socioeconomic trajectories used; reported statistics refer to the CCSM4 model under RCP8.5 with SSP3.

23In imposing this constraint, we hold the MMT fixed over time at its baseline level in 2015 (Figure E1D). We do so because
the use of spatial and temporal fixed effects in Equation 5 implies that response function levels are not identified; thus, while
we allow the shape of response functions to evolve over time as incomes and climate change, we must hold fixed their level by
centering each response function at its time-invariant MMT. Note that these fixed effects are by definition not affected by a
changing weather distribution. Thus, their omission does not influence estimates of climate change impacts.

24The assumption that rising income cannot increase the temperature sensitivity of mortality binds for the >64 age category
under realized temperatures in 30% and 24% of impact region days in 2050 and 2100, respectively.

25See Burke et al. (2015) for a discussion of combining physical uncertainty from multiple models in studies of climate change
impacts.

26Note that while the SMME fully represents the tails of the climate sensitivity distribution as defined by a probabilistic
simple climate model (see Appendix B.2.3), there remain important sources of climate uncertainty that are not captured in our
projections, due to the limitations of both the simple climate model and the GCMs. These include some climate feedbacks that
may amplify the increase of global mean surface temperature, as well as some factors affecting local climate that are poorly
simulated by GCMs.
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corresponding to the terms composing ĝa(·), from an empirical multivariate normal distribution characterized

by the covariance between all of the parameters from the estimation of Equation 5.27 Second, using these

parameters in combination with location- and time-specific values of income and average climate provided

by a given SSP scenario and RCP-specific climate projection from each of the 33 climate projections in the

SMME, we construct a predicted response function for each of our 24,378 impact regions. Third, with these

response functions in hand, we use daily weather realizations for each impact region from the corresponding

simulation to predict an annual mortality impact. Finally, this process is repeated until approximately 1,000

projection estimates are complete for each impact region, age group, and RCP-SSP combination.

With these ∼1,000 response functions, we calculate the mortality effects of climate change (i.e., expres-

sions (i)-(iii) above) for each impact region for each year between 2001 and 2100. The resulting calculation

is computationally intensive, requiring ∼94,000 hours of CPU time across all scenarios reported in the main

text and Appendix. When reporting projected impacts in any given year, the reports summary statistics

(e.g., mean, median) of this entire distribution.

5.5 Results: spatial extrapolation of temperature sensitivity

Figure 4 reports on our extrapolation of mortality-temperature response functions to the entire globe for the

>64 age category (see Figure D4 for other age groups). In panel A, these predicted mortality-temperature

responses are plotted for each impact region for 2001-2010 average values of income and climate and for the

impact regions that fall within the countries in our mortality dataset (“in-sample”). Despite a shared overall

shape, panel A reveals substantial heterogeneity across regions in this temperature response. Geographic

heterogeneity within our sample is shown for hot days in the map in panel C, where colors indicate the

marginal effect of a day at 35◦C, relative to a day at a location-specific minimum mortality temperature.

Grey areas are locations where mortality data are unavailable.

Panels C and D of Figure 4 show analogous plots, but now extrapolated to the entire globe. We can

fill in the estimated mortality effect of a 35◦C day for regions without mortality data by using 2001-2010

location-specific information on average income and climate. The predicted responses at the global scale

imply that a 35◦C day increases the average mortality rate across the globe for the oldest age category by

10.1 deaths per 100,000 relative to a location-specific minimum mortality temperature.28 It is important

to note that the effect in locations without mortality data is 11.7 deaths per 100,000, versus 7.8 within

the sample of countries for which mortality data are available, largely driven by the fact that our sample

represents wealthier locations where temperature responses are more muted.

Overall, there is substantial heterogeneity across the planet. Additionally, it is evident that the effects

of temperature on human well-being are quite different in places where we are and are not able to obtain

subnational mortality data.

27Note that coefficients for all age groups are estimated jointly in Equation 5, such that across-age-group covariances are
accounted for in this multivariate distribution.

28This average impact of a 35◦C is derived by taking the unweighted average level of the mortality-temperature response
function evaluated at 35◦C across each of 24,378 impact regions globally.
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Figure 4: Using income and climate to predict current response functions globally (age >64
mortality rate). In panels A and C, grey lines are predicted response functions for impact regions, each representing a
population of 276,000 on average. Solid black lines are the unweighted average of the grey lines, where the opacity indicates
the density of realized temperatures (Hsiang, 2013). Panels B and D show each impact region’s mortality sensitivity to a day
at 35◦C, relative to a location-specific minimum mortality temperature. The top row shows all impact regions in the sample
of locations with historical mortality data (included in main regression tables), and the bottom row shows extrapolation to all
impact regions globally. Predictions shown are averages over the period 2001-2010 using the SSP3 socioeconomic scenario and
climate model CCSM4 under the RCP8.5 emissions scenario. Figure D4 shows analogous results for other age groups.

5.6 Results: projection of future climate change impacts

The previous subsection demonstrated that the model of heterogeneity outlined in Equation 5 allows us

to extrapolate mortality-temperature relationships to regions of the world without mortality data today.

However, to calculate the full global mortality risks of climate change, it is also necessary to allow these

response functions to change through time to capture the benefits of adaptation and the effects of income

growth. This subsection reports on using our model of heterogeneity and downscaled projections of income

and climate to predict impact region-level response functions for each age group and year, as described

in Section 5.3. Uncertainty in these estimated response functions is accounted for through Monte Carlo

simulation, as described in Section 5.4. Throughout this subsection, we show results relying on income and

population projections from the socioeconomic scenario SSP3 because its historic global growth rates in GDP

per capita and population match observed global growth rates over the 2000-2018 period much more closely
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than other SSPs (see Table B3). Appendix F shows results using SSP2 and SSP4, and the methodology we

develop can be applied to any available socioeconomic scenario.

5.6.1 Mortality impacts of climate change for 24,378 global regions

Figure 5 shows the spatial distribution of the mortality effects of climate change with benefits of income

growth and adaptation (expression (iii)) in 2100 under the emissions scenario RCP8.5, expressed in death-

equivalents per 100,000. Other measures of climate change impacts (expressions (i) and (ii)) are mapped in

Appendix Figure F1. To construct these estimates, we generate impact-region specific predictions of mor-

tality damages from climate change for all years between 2001 and 2100, separately for each age group. The

map displays the spatial distribution of the mean estimate across our ensemble of Monte Carlo simulations,

accounting for both climate and statistical uncertainty and pooling across all age groups.29 The density

plots for select cities show the full distribution of impacts across all Monte Carlo simulations, with the white

line equal to the mean estimate displayed on the map.

Figure 5: The mortality impacts of future climate change. The map indicates the impact of climate
change on mortality rates, measured in units of deaths per 100,000 population, in the year 2100. Estimates come from a model
accounting for the benefits of adaptation and income growth, and the map shows the climate model weighted mean estimate
across Monte Carlo simulations conducted on 33 climate models; density plots for select regions indicate the full distribution of
estimated impacts across all Monte Carlo simulations. In each density plot, solid white lines indicate the mean estimate shown
on the map, while shading indicates one, two, and three standard deviations from the mean. All values shown refer to the
RCP8.5 emissions scenario and the SSP3 socioeconomic scenario. See Figure F6 for an analogous map of impacts for RCP4.5
and SSP3.

Figure 5 makes clear that the costs of climate change-induced mortality risks are distributed unevenly

around the world, even when accounting for the benefits of income growth and adaptation. Despite the

gains from adaptation shown in Figure E2, there are large increases in mortality risk in the global south.

For example, in Accra, Ghana, climate change is predicted to lead to approximately 100 more days >32◦C

(∼90◦F) per year and cause 140 additional deaths per 100,000 annually under RCP8.5 in 2100. If adaptation

to climate and benefits of income growth were ignored, climate change would be predicted to cause 260

29When calculating mean values across estimates generated for each of the 33 climate models that form our ensemble, we
use model-specific weights. These weights are constructed as described in Appendix B.2.3 in order to accurately reflect the full
probability distribution of temperature responses to changes in greenhouse gas concentrations.
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Figure 6: Time series of projected mortality rate impacts of climate change. All lines show predicted
mortality effects of climate change across all age categories and are represented by a mean estimate across a set of Monte Carlo
simulations accounting for both climate model and statistical uncertainty. In panel A, each colored line represents a partial
mortality effect. Orange (expression (i)): mortality effects without adaptation. Yellow (expression (ii)): mortality effects with
benefits of income growth. Green (expression (iii)): mortality effects with benefits of income growth and adaptation. Panel B
shows the 10th-90th percentile range of the Monte Carlo simulations for the mortality effects with benefits of income growth
and adaptation (equivalent to the green line in panel A), as well as the mean and interquartile range. The boxplots show
the distribution of mortality rate impacts in 2100 under both RCPs. All line estimates shown refer to the RCP8.5 emissions
scenario and all line and boxplot estimates refer to the SSP3 socioeconomic scenario. Figure F7 shows the equivalent for SSP3
and RCP4.5.

additional deaths per 100,000 in this scenario. In contrast, there are gains in many impact regions in the

global north, including in London, England, where climate change is predicted to save approximately 70

lives per 100,000 annually. When the benefits of adaptation and income growth are included, these changes

amount to a 17% increase in Accra’s annual mortality rate and an 8% decline in London’s.

5.6.2 Aggregate global mortality consequences of climate change

Figure 6 plots predictions of global increases in the mortality rate (deaths per 100,000) for all three measures

of climate change impacts, under emissions scenario RCP8.5. The measures are calculated for each of the

24,378 impact regions and then aggregated to the global level. In panel A, each line shows a mean estimate

for the corresponding climate change impact measure and year. Averages are taken across the full set of

Monte Carlo simulation results from all 33 climate models, and all draws from the empirical distribution

of estimated regression parameters, as described in Section 5.4. In panel B, the 25th-75th and 10th-90th

percentile ranges of the Monte Carlo simulation distribution are shown for the mortality effects of climate

change with benefits of income growth and adaptation (expression (iii)); the black line represents the same

average value in both panels. Boxplots to the right summarize the distribution of mortality impacts for

both RCP8.5 and the moderate emissions scenario of RCP4.5, and Figure F7 replicates the entire figure for

RCP4.5.

Figure 6A illustrates that the mortality cost of climate change would be 221 deaths per 100,000 by 2100,

on average across simulation runs (orange line), if the beneficial impacts of adaptation and income are shut

down. This is a large estimate; if it were correct, the mortality costs of climate change would be roughly

equivalent in magnitude to all global deaths from cardiovascular disease today (WHO, 2018).

However, we estimate that future income growth and adaptation to climate substantially reduce these
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impacts, a finding that follows directly from the large gains to adaptation and income recovered in the

historical record in Section 4. Higher incomes lower the mortality effect of climate change to an average of

104 deaths per 100,000 in 2100 (yellow line), although this estimate exhibits substantial uncertainty (Table

D1, Figure F3). Climate adaptation reduces this further to 73 deaths per 100,000 (green line). Although

much lower than the no adaptation projection, these smaller counts of direct mortality remain economically

meaningful—for comparison, the 2019 mortality rate from automobile accidents in the United States was 11

per 100,000.

These large benefits of income growth and climate adaptation are driven by substantial changes in the

mortality-temperature relationship over the 21st century. For example, for the >64 age group, the average

global increase in the mortality rate on a 35◦C day (relative to a day at location-specific minimum mortality

temperatures) declines by roughly 75% between 2015 and 2100, going from 10.1 per 100,000 to just 2.4 per

100,000 in 2100 (see Figure E2). Increasing incomes account for 77% of the decline, with adaptation to

climate explaining the remainder; income gains account for 89% and 82% of the decline for the <5 and 5-64

categories, respectively.30

The values in Figure 6A are mean values aggregated across results from the 33 high-resolution climate

models and all Monte Carlo simulation runs, but the full distribution of our estimated damages across climate

models (panel B of Figure 6) is right-skewed. Indeed, there is meaningful mass in the “right” tail of potential

mortality risk. As evidence of this, the median value of the mortality effects of climate change with benefits

of income growth and adaptation under RCP8.5 at end of century is 42 deaths per 100,000, as compared to

a mean value of 73, and the 10th to 90th percentile range is [-22, 197].

Figure 6B and Appendix Figure F5 display the expected implications of emissions mitigation. The

average estimate of the mortality effects of climate change with benefits of income growth and adaptation of

73 deaths per 100,000 by the end of the century under RCP8.5 falls to 11 under the emissions stabilization

scenario of RCP4.5 (where emissions decline after 2050). For RCP4.5, the median end-of-century estimate

is 4, and the 10th to 90th percentile range is [-36, 62].

As a point of comparison to the limited literature estimating the global mortality consequences of climate

change, we contrast these results to the FUND model, which is unique among the IAMs for calculating

separate mortality impacts as a component of its SCC calculation. Although it is difficult to make a direct

comparison due to differences in socioeconomic and emissions scenarios, different treatments of adaptation,

and the inclusion of diarrhea and vector-borne diseases in FUND, the closest analog is to compare our

estimates of the mortality impacts of climate change including adaptation benefits, a change of 73 deaths per

100,000 by 2100 under RCP8.5, to FUND’s reference scenario change of 0.33 deaths per 100,000 in the same

year (Anthoff and Tol, 2014).31 The FUND model was calibrated decades ago based on limited mortality data

from just 20 cities largely in wealthy and temperate locations; it is apparent that modern econometric tools

and large-scale datasets provide a substantially different picture of the mortality consequences of climate

30These values apply to socioeconomic scenario SSP3.
31This value was calculated by running the MimiFUND model (v3.12.1) and extracting global additional deaths from all

modeled causes. Additional deaths are calculated as the difference between the reference scenario in MimiFUND and a baseline
in which both temperature and CO2 are held constant at their 2005 levels. See Table B4 for details on the differences between
our approach, that of FUND, and that of other empirical estimates of the impacts of climate change on mortality.
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change.

Before proceeding, we note that a limitation of our empirical approach is that we must sometimes

extrapolate response functions to temperatures outside of those historically observed within our data. To

address the concern that out-of-sample behavior is disproportionately influencing our results, we repeat

the projections of mortality risk changes with two extra sets of restrictions imposed upon our empirically-

estimated response functions. These two restrictions, described in detail in Appendix F.3, are: i) forcing

the response function to be flat for all temperatures outside the observed range, so that, for example, a

42◦C day is no more damaging than a 40◦C day; or ii) setting the marginal effect to be linearly increasing

in the out-of-sample regions with a slope equal to the slope at the edge of the observed range. Figure F10

reveals that these two restrictions on out-of-sample behavior have negligible effects on our overall impacts.

The value of the mortality impact of climate change including benefits of income growth and adaptation

is approximately 1 death per 100,000 smaller by 2100 under RCP 8.5 in the case of the flat out-of-sample

restriction (see Appendix F.3 for details).

6 The full value of the mortality risk of climate change

The empirical results above demonstrate that populations with similar incomes but different climates expe-

rience strikingly different mortality sensitivity to warming, with warmer populations benefiting from lower

sensitivity to increasing heat. These differences reflect a wide variety of compensatory actions and, as high-

lighted in Equation 4 in Section 2, a full measure of the economic burden of climate change must account for

these costs of adaptation. However, it is impossible to enumerate and observe all of the actions individuals

take to modify their mortality risk of climate change.

This section develops a revealed preference approach that uses the observed differences in temperature

sensitivity to infer measures of location-specific adaptation costs. Specifically, we assume that the differential

mortality sensitivities to temperature are due to differential uptake of adaptive technologies, behaviors, or

other investments. After all, if these investments were costless, we would expect universal uptake, such

that mortality rates would exhibit little to no response to temperature across the globe. The approach

therefore assumes that differences in the mortality sensitivity to temperature between locations can be the

basis for inferring adaptation costs. This revealed preference approach relies on a strong set of simplifying

assumptions, but it can be directly estimated with available data, even when the many dimensions of

adaptation remain unobservable.

After outlining our approach for recovering adaptation costs, this section presents projections of the full

mortality risk of climate change into the future, accounting for the benefits and costs of adaptation. We

additionally demonstrate how the impacts of climate change on mortality and on mortality-related adaptation

costs are projected to occur unequally across the globe.
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6.1 Revealed preference approach to infer adaptation costs

As in Section 2, we define the the climate as the joint probability distribution over a vector of possible

conditions that can be expected to occur over a specific interval of time. Ct describes this probability

distribution in time period t and c(Ct) is a random vector of weather realizations drawn from the distribution

characterized by Ct.

Consider a single representative agent who derives utility in each time period t from consumption of a

numeraire good xt. This agent faces mortality risk ft = f(bt, ct), which depends both on the weather and on

adaptive behaviors and investments captured by the composite good bt. As discussed in Section 2, changes

in the climate C influence mortality risk through altering weather realizations c and through changing beliefs

about the weather, hence changing adaptive behaviors b.

In bringing this framework to our empirical analysis (see Section 6.2 for details), we allow for 24,378

representative agents, one for each of the impact regions that together span the globe. We see this as

a substantial improvement upon the existing estimates of global climate change damages that inform the

SCC, even though there is heterogeneity in preferences, climate, and income within these regions. For

example, the DICE IAM assumes a single homogeneous global region (Nordhaus, 1992), the RICE IAM

assumes 10 homogeneous regions (Nordhaus and Yang, 1996), the FUND IAM assumes 16 homogeneous

regions (Tol, 1997), and the empirically-derived SCC estimates in Ricke et al. (2018) are country-level.

Each region’s representative agent simultaneously chooses consumption of the numeraire xt and of the

composite good bt in each period to maximize utility given her expectations of the weather, subject to

an exogenous budget constraint and conditional on the climate. We let f̃(bt,Ct) = Ect [f(bt, c(Ct)) | Ct]
represent the expected probability of death. This agent therefore solves:

max
bt,xt

u(xt)
[
1− f̃(bt,Ct)

]
s.t. Yt ≥ xt +A(bt), (6)

where A(bt) represents expenditures for all adaptive investments, and Y is an income we take to be exogenous.

Under these assumptions, the first order conditions of Equation 6 define optimal adaptation as a function of

income and the climate: b∗(Yt,Ct), which we sometimes denote below as b∗t for simplicity.32

We use this framework to derive an empirically tractable expression for the full value of mortality risk

due to climate change, following Equation 4. We begin by rearranging the agent’s first order conditions

and using the conventional definition of the VSL (i.e., V SL = u(x)

[1−f̃(b,C)]∂u/∂x
following, for example, Becker

(2007) and Viscusi and Aldy (2003)33) to show that in any time period t,

∂A(b∗t )

∂b
=

−u(x∗t )

∂u/∂x[1− f̃(b∗t ,Ct)]

∂f̃(b∗t ,Ct)

∂b
= −V SLt

∂f̃(b∗t ,Ct)

∂b
(7)

That is, marginal adaptation costs (lefthand side) equal the value of marginal adaptation benefits (righthand

side), when evaluated at the optimal level of adaptation b∗ and consumption x∗. This expression enables

32Note that income was omitted in the simplified motivation in Section 2, but enters as an argument of b∗t here via the budget
constraint.

33Note that this definition assumes the utility and marginal utility of consumption when dead is zero.
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us to use estimates of marginal adaptation benefits, which we obtain from the previous section’s estimation

results, to infer estimates of marginal adaptation costs.

To make the expression in Equation 7 of greater practical value, we note that the total derivative of

expected mortality risk with respect to a change in the climate is the sum of two terms:

df̃(b∗t ,Ct)

dC
=
∂f̃(b∗t ,Ct)

∂b

∂b∗t
∂C

+
∂f̃(b∗t ,Ct)

∂C
(8)

The first term on the righthand side of Equation 8 represents the expected impacts on mortality of all

changes in adaptive investments induced by the change in climate; in practice, this term cannot be observed

or estimated because of the countless elements of the b vector.34 The second term is the direct effect that

the climate would have if individuals did not adapt (i.e., the partial derivative).35 If, as is expected, climate

change produces an increase in the frequency of heat events that threaten human health, it would be natural

to expect the first term to be negative, as people make adjustments that save lives. In this case, we expect

the second term to be positive, reflecting the impacts of heat on fatalities absent those adjustment.

Equation 8 makes clear that we can express the unobservable mortality benefits of adaptation (i.e.,
∂f̃(b∗t ,Ct)

∂b
∂b∗t
∂C ) as the difference between the total and partial derivatives of the expected probability of death

with respect to climate. This has important practical value because both of these terms can be estimated,

as we describe below.

The combination of this algebraic manipulation with Equation 7 allows us to develop an expression for

the total adaptation costs incurred as the climate changes gradually from t0 to t that is entirely composed

of elements which can be estimated:36

A(b∗(Yt,Ct))−A(b∗(Yt,Ct0)) =

∫ t

t0

∂A(b∗s)

∂b

∂b∗s
∂C

dCs
ds

ds = −
∫ t

t0

V SLs

[
df̃(b∗s,Cs)

dC
− ∂f̃(b∗s,Cs)

∂C

]
dCs
ds

ds

(9)

Equation 9 outlines how we can use estimates of the total and partial derivatives of mortality risk—with

respect to the climate—to infer marginal adaptation costs, even though adaptation itself is not directly

observable. In the next subsection, we show how we use the empirical model described in Section 4 to

separately identify the total derivative df̃
dC and the partial derivative ∂f̃

∂C . We empirically quantify these

values globally in Section 6.3.

A few details of this approach are worth underscoring. First, the total adaptation costs associated with

the climate shifting fromCt0 toCt are calculated by integrating marginal benefits of adaptation for a series of

infinitesimal changes in climate (Equation 9), where marginal benefits continually evolve with the changing

climate C. Thus, total adaptation costs in a given period, relative to a base period, are the sum of the

adaptation costs induced by a series of small changes in climate in the preceding periods (see Appendix A.1

for a visual description).

34This term is often known in the environmental health literature as the effect of “defensive behaviors” (Deschênes, Greenstone,
and Shapiro, 2017) and in the climate change literature as “belief effects” (Deryugina and Hsiang, 2017); in our context these
effects result from changes in individuals’ defensive behaviors undertaken because their beliefs about the climate have changed.

35This term is known in the climate change literature as the “direct effect” of the climate (Deryugina and Hsiang, 2017).
36Note that x is fully determined by b and income Y through the budget constraint.
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Second, the total adaptation benefits associated with the climate shifting from Ct0 to Ct are defined

as the dollar value of the difference between the effects of climate change with optimal adaptation and

without any adaptation: −V SLt[f̃(b∗(Yt,Ct),Ct)–f̃(b∗(Yt,Ct0),Ct)]. In contrast to total adaptation costs,

this expression relies on the relationship between mortality and temperature that holds only at the final

climate, Ct. Therefore, when the marginal benefits of adaptation are greater at the final climate than at

previous climates, the total benefits of adaptation will exceed total adaptation costs, generating an adaptation

“surplus”.37 For example, at a climate between Ct0 and Ct, the marginal unit of air conditioning (a key

form of adaptation) purchased will have benefits that are exactly equal to its costs. However, at the warmer

climate Ct, this same unit of air conditioning becomes inframarginal, and is likely to have benefits that

exceed its costs. Appendix A.2 derives a formal expression for this adaptation surplus.

Third, while we integrate over changes in climate in Equation 9, we hold income fixed at its endpoint

value. This is because the goal is to develop an estimate of the additional adaptation expenditures incurred

due to the changing climate only. In contrast, changes in expenditures due to rising income will alter

mortality risk under climate change, but are not a consequence of the changing climate; therefore they are

not included in our calculation of the total mortality-related costs of climate change.

Finally, this revealed preference approach is purposefully parsimonious so that it can be tightly linked

to available data, but such simplification necessarily involves several strong assumptions. We assume that

adaptation costs are a function of technology and do not depend on the climate, so that, for example,

individuals in Seattle can purchase the same air conditioners as individuals in Houston can. We assume that

f̃(·) is continuous and differentiable, that markets clear for all technologies and investments represented by

the composite good b, as well as for the numeraire good x, and that all choices b and x can be treated as

continuous. We assume that neither adaptation investments nor the climate directly enter the utility function,

because the paper’s focus is limited to the mortality risks of climate change.38 Perhaps most importantly,

the problem in Equation 6 is static. That is, we assume that there is a competitive and frictionless rental

market for all capital goods (e.g., air conditioners), so that fixed costs of capital can be ignored, and that

all rental decisions are contained in b. While this rules out complementarities between adaptation decisions

made by the representative agent in different time periods by assuming that such complementarities can

be accommodated by sellers of adaptation services, it has to date been standard in the literature (e.g.,

Deryugina and Hsiang, 2017; Deschênes and Greenstone, 2011) and accounting for dynamic decision-making

would necessitate an ambitious extension of the current paper.39

37Note that we derive an adaptation surplus assuming continuous adaptation investments b; Guo and Costello (2013) find
that adaptation surplus is higher when forward-looking agents invest in discrete adaptation behaviors or technologies.

38In an alternative specification detailed in Appendix A.4, we allow agents to derive utility both from x and from the choice
variables in b; for example, air conditioning may increase utility directly, in addition to lowering mortality risk. Under this
alternative framework, the costs of adapting to climate change that we can empirically recover, A(b), are net of any changes
in direct utility benefits or costs. Similarly, a model that assumes that climate enters utility directly would also lead to any
adaptation costs associated with the direct effects of climate change being “netted out” in our approach to recovering adaptation
costs.

39For example, the central contribution of Lemoine (2018) is to incorporate complementarity in adaptation actions across
periods in a standard model of climate change impact estimation. This paper analyzes only a two-period complementarity, yet
estimation in our context would require accurate weather forecast data for all locations and years in our estimating sample, a
binding constraint for early years and in developing countries. It is also worth noting that the quantitative impacts of adding
dynamic decision-making in Lemoine (2018) were minor, changing the end-of-century estimated losses to U.S. agriculture due
to climate change from 47% under a static model to 50% under a dynamic model (see Table 2).
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6.2 Computing adaptation costs using empirical estimates

To empirically estimate the adaptation costs incurred as the climate changes gradually from t0 to t, following

Equation 9, we calculate the following approximation (see Section A.3 for details):

̂A(b∗(Yt,Ct))−A(b∗(Yt,Ct0)) ≈ −
∫ t

t0

V SLs

[
d

ˆ̃
f(b∗s,Cs)

dC
− ∂

ˆ̃
f(b∗s,Cs)

∂C

]
dCs
ds

ds

≈ −
t∑

τ=t0+1

V SLτ

(
∂E[ĝ]

∂TMEAN

∣∣∣∣
Cτ ,Yt

)
︸ ︷︷ ︸

γ̂1E[T ]τ

(TMEANτ − TMEANτ−1) , (10)

where the first line of Equation 10 is identical to Equation 9, except that we use “hat” notation to indicate

that
ˆ̃
f(·) is an empirical estimate of expected mortality risk. The second (approximate) equality follows from

(i) taking the total and partial derivative of our estimating equation (Equation 5) with respect to climate

— where the total derivative accounts for adaptation while the partial does not, (ii) substituting terms and

simplifying the expression, and (iii) implementing a discrete-time approximation for the continuous integral

(see Appendix A.3 for a full derivation). The under-braced object, γ̂1E[T ]τ , is the product of the expectation

of temperature and the coefficient associated with the interaction between temperature and climate from

our estimation of Equation 5: it represents our estimate of marginal adaptation benefits.40 This derivative

is then multiplied by the change in average temperature between each period.41 Finally, we treat the VSL

as a function of income, which evolves as incomes increase over time (see Section 7).

These adaptation cost estimates are calculated annually for each impact region and age group, as in

Section 5, and for each of the 33 high-resolution climate model projections. These estimates enable us to

develop a complete measure of the mortality costs of climate change that captures both the benefits and

costs of adaptation. We continue to call this empirical estimate of Equation 4 the full mortality risk of

climate change:

(iv) Full mortality risk due to climate change (including adaptation costs, recall Equation 4):

ĝ(Tt, TMEANt, log(GDPpc)t)− ĝ(Tt0 , TMEANt0 , log(GDPpc)t)︸ ︷︷ ︸
mortality effects of climate change with benefits of income growth and adaptation (iii)

+
1

V SLt

[
̂A(TMEANt, GDPpct)−A(TMEANt0 , GDPpct)

]
.︸ ︷︷ ︸

estimated adaptation costs

The adaptation cost term is multiplied by 1
V SL to convert it from dollars to lives. This conversion is important

because it enables us to report the full mortality risk of climate change in a single unit, lives, rather than in

lives and dollars. We note that using human lives serves as a natural numeraire in this revealed preference

framework since we estimate adaptation costs based on lives that could be saved via adaptation, but are not.

40Recall that the specific functional form we use to estimate mortality risk as a function of temperature, climate, and income

is g(·) = (γ0 + γ1TMEANt + γ2 log(GDPpc)t)Tt. Thus, the partial derivative
∂E[ĝ]

∂TMEAN
is equivalent to γ̂1E[T ]τ .

41We assume that individuals use the recent past to form expectations about current temperature realizations, so this
expectation is computed over the prior 15 years, with weights of historical observations linearly declining in time.
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We refer to these as “death equivalents”, or the number of avoided deaths equal in value to the adaptation

costs incurred.

6.3 Projections of the full mortality risk of climate change, accounting for adap-

tation benefits and costs

Table 2 summarizes the results for the full mortality risks of climate change at the end of the century,

accounting for adaptation benefits and costs. The columns follow expressions (i)-(iv) detailed in Sections 5

and 6.2. Specifically, column 1 reports the mortality cost of climate change when the beneficial impacts of

adaptation and income are shut down. Columns 2 and 3 show the change in mortality risk due to the benefits

of income growth and climate adaptation, respectively; both reduce mortality, so the entries are negative.

Column 4 presents estimates of adaptation costs in units of “death equivalents”, following the calculation in

Section 6.2. Finally, columns 5a and 5b show the full mortality risk of climate change, measured in deaths

per 100,000 and monetized as a proportion of total global GDP in 2100.

6.3.1 Global estimates of the full mortality risk of climate change

Panel A of Table 2 shows mean estimates for the globe, averaging over a set of Monte Carlo simulations

accounting for both climate and statistical uncertainty. The interquartile ranges across simulation runs are

in brackets. Column 5a shows that, on average across the globe, the estimated full mortality risk due to

climate change (i.e., expression (iv)) is projected to equal ∼85 deaths per 100,000 under RCP8.5 by 2100

(Appendix Figure F2 shows annual results over the century and Table F1 shows results for RCP4.5).42 Of

this full mortality risk, climate adaptation costs are estimated at ∼12 death equivalents per 100,000 (column

4), while increases in mortality rates account for the remaining 73 deaths per 100,000 (sum of columns 1

through 3). It is noteworthy that our estimate for the global average benefits of adaptation (column 3; 31

deaths per 100,000) exceeds the costs of these adjustments, demonstrating that the adaptation surplus of 19

deaths per 100,000 is substantial.43

42We previously noted considerable heterogeneity across age-groups in our results. We display the underlying age group
heterogeneity of these projections in Appendix F.

43Appendix A.2 details the derivation of adaptation benefits and adaptation surplus.
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Table 2: Estimated 2100 full mortality risks of climate change, globally and regionally (high emissions scenario, RCP8.5)

Mortality effects of climate change Full mortality risk
of climate change

No income growth Benefits of Benefits of Costs of climate
or adaptation income growth climate adaptation adaptation

deaths/100k deaths/100k deaths/100k deaths/100k deaths/100k % of GDP
(1) (2) (3) (4) (5a) (5b)

Panel A: Global estimates
Mean Impacts 220.6 -116.5 -31.0 11.7 84.8 3.2

IQR [76.4, 258.8] [-149.4, -39.2] [-60.1, 3.8] [0.2, 19.4] [17.4, 116.4] [-5.4, 9.1]

Panel B: Regional estimates
China 112.0 -81.8 -28.8 17.7 19.1 1.9
USA 14.8 -13.2 -1.8 10.2 10.1 1.0
India 334.4 -248.2 -25.6 2.1 62.7 6.0
Pakistan 589.1 -161.7 -105.0 53.6 376.0 27.5
Bangladesh 382.5 -89.3 -79.3 34.7 248.5 18.5
Europe -14.3 -6.2 -74.8 90.8 -4.7 0.1
Sub-Saharan Africa 232.5 -77.4 -34.5 10.5 131.8 8.4

All columns show predicted mortality effects of climate change across all age categories and are represented by a mean estimate across a set of Monte Carlo simulations
accounting for both climate model and statistical uncertainty. In the first row, brackets indicate the interquartile range (IQR). Columns 1-4 each indicate a partial
mortality effect of climate change, in units of deaths per 100,000. Column 1 (expression (i)): mortality effects of climate change without benefits of income or adaptation
to climate change. Column 2 (expression (ii) - expression (i)): benefits of income growth. Column 3 (expression (iii) - expression (ii)): benefits of adaptation to climate
change. Column 4 (Equation 10): mortality-related costs of adaptation inferred using a revealed preference approach, measured in “death equivalents”. Columns 5a-5b
(expression (iv)): the full mortality risk of climate change, measured in deaths per 100,000 (column 5a) and represented as % of 2100 GDP (column 5b) using an
age-adjusted value of the U.S. EPA VSL with an income elasticity of one applied to all impact regions. Column 5a is equivalent to the sum of columns 1 through 4. All
estimates shown rely on the RCP8.5 emissions scenario and the SSP3 socioeconomic scenario. Table F1 shows equivalent results for SSP3 and RCP4.5 and details the
regional definitions for Europe and sub-Saharan Africa.
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Column 5b of Table 2 shows the monetized full mortality risk of climate change at the end of the century.

To construct these estimates, we use the value of a statistical life (VSL) to convert changes in mortality rates

into dollars. Our primary approach relies on the U.S. EPA’s VSL estimate of $10.95 million (2019 USD).44

We transform the VSL into a value per life-year lost using a method described in Appendix H.1, which allows

us to compute the total value of expected life-years lost due to climate change, accounting for the different

mortality-temperature relationships among the three age groups documented above. We allow the VSL to

vary with income, as the level of consumption affects the relative marginal utilities of a small increment

of consumption and a small reduction in the probability of death. Consistent with existing literature (e.g.,

Viscusi, 2015), our primary estimates use an income elasticity of unity to adjust the U.S. estimates of the

VSL to different income levels across the world and over time.45 When computing the mortality partial SCC

in Section 7, we provide multiple alternative valuation assumptions in addition to this benchmark case.

The resulting estimates in column 5b are substantial. For example, under RCP8.5, they amount to 3.2%

of global GDP in 2100, with an interquartile range of [-5.4%, 9.1%]. Under RCP4.5 (shown in Table F1),

they fall to 0.6% [-3.9%, 4.6%] of global GDP. The uncertainty around these estimates is also meaningful

and while we leave explicit pricing of this uncertainty to future work, accounting for it with a certainty

equivalence-style calculation would only increase the estimated welfare loss from climate change.

These results suggest that the mortality risks from climate change are much greater than had previ-

ously been understood. For instance, these mortality-related damages amount to ∼49-135% of the damages

reported for all sectors of the economy in FUND, PAGE, and DICE, when the damage functions from

each model are evaluated at the mean end-of-century warming observed in our multi-model ensemble under

RCP8.5. Under RCP4.5, our mortality-related damages amount to 32-61% of the damages from DICE and

PAGE, while damages from FUND are negative at RCP4.5 levels of warming.46

The results in this and the previous section have relied on a single benchmark emissions and socioeco-

nomic scenario (RCP8.5, SSP3). Appendix F reports on the sensitivity of the full mortality risk of climate

change results to alternative choices about the economic and population scenario, the emissions scenario,

and assumptions regarding the rate of adaptation. These exercises underscore that the projected impacts of

climate change over the remainder of the 21st century depend on difficult-to-predict factors such as policy,

technology, and demographics. However, we note that under both emissions scenarios RCP8.5 and RPC4.5,

under all SSP scenarios, and under an alternative projection in which the rate of adaptation is determinis-

tically slowed, the average estimate of the full mortality risk due to climate change is positive (both RCPs)

and steadily increasing (RCP8.5) throughout the 21st century.

44This VSL is from the 2012 U.S. EPA Regulatory Impact Analysis (RIA) for the Clean Power Plan Final Rule, which
provides a 2020 income-adjusted VSL in 2011 USD, which we convert to 2019 USD. This VSL is also consistent with income-
and inflation-adjusted versions of the VSL used in the U.S. EPA RIAs for the National Ambient Air Quality Standards (NAAQS)
for Particulate Matter (2012) and the Repeal of the Clean Power Plan (2019), among many other RIAs.

45The EPA considers a range of income elasticity values for the VSL, from 0.1 to 1.7 (U.S. Environmental Protection Agency,
2016b), although their central recommendations are 0.7 and 1.1 (U.S. Environmental Protection Agency, 2016). A review by
Viscusi (2015) estimates an income-elasticity of the VSL of 1.1.

46To conduct this comparison, we use the damage functions reported for each IAM in the Interagency Working Group on
Social Cost of Carbon (2010), which are indexed against warming relative to the pre-industrial climate. We evaluate each
damage function at the mean end-of-century warming (4◦C for RCP8.5 and 1.8◦C for RCP4.5) across the SMME climate
model ensemble used in our analysis, after adjusting warming to align pre-industrial temperature anomalies from the IAMs
with the anomalies relative to 2001-2010 from our analysis (Lenssen et al., 2019). We note that these leading IAMs use different
socioeconomic scenarios and climate models than those used throughout this paper.
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6.3.2 Unequal distribution of mortality risk from climate change.

Panel B of Table 2 displays estimates of the end-of-century mortality risk of climate change for select countries

and regions of the world. These results indicate that the full mortality risk caused by climate change varies

substantially across the globe. Notably, monetized estimates in column 5b are very high in some regions,

such as Pakistan and Bangladesh, where impacts amount to 27.5% and 18.5% of GDP, respectively.47 The

share of the full mortality risk that is due to actual deaths (first term in expression (iv)) versus compensatory

investments (second term in expression (iv)) also differs across regions. Some locations suffer large increases

in mortality rates, such as India, where 97% of the full mortality risk due to climate change is attributable

to rising death rates. Other regions avoid excess mortality through expensive adaptation. For example, the

U.S. is projected to benefit from a small decline in the mortality rate of -0.2 deaths per 100,000 at end of

century, but is also projected to incur adaptation costs amounting to 10 death equivalents per 100,000.
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Figure 7: Climate change impacts and adaptation costs are correlated with present-day income
and climate. Figure shows the mortality risk of climate change in 2100 (RCP8.5, SSP3) against deciles of 2015 per capita
income (A) and average annual temperature (B). Dark colors indicate mean changes in death rates, accounting for the benefits
of income growth and climate adaptation, while light colors indicate mean changes in adaptation costs, measured in death
equivalents. For all bars shown, means are taken across impact regions falling into the corresponding decile of income or climate
and across Monte Carlo simulations that account both for econometric and climate model uncertainty. Black outlined circles
indicate the mean estimate of the full mortality risk of climate change, which is the sum of deaths and adaptation costs, and
black vertical lines indicate the interquartile range of the distribution across impact regions within each decile. The income
and average temperature deciles are calculated across 24,378 global impact regions and are population weighted using 2015
population values.

To visualize these distributional consequences, Figure 7 plots the full mortality risk of climate change

in 2100 (dark bars), as well as the mean impact of climate change on adaptation costs (light bars), against

deciles of present-day income (panel A) and present-day average temperature (panel B). These results reveal

47Note that Table 2 indicates that for Europe, the full mortality risk of climate change as measured in deaths per 100,000
(column 5a) is negative, while it is positive when measured in % of GDP (column 5b). This is because throughout much of
Europe, climate change leads to lives being saved due to fewer extremely cold days, particularly for the >64 age group. Under
the valuation approach shown in Table 2, an age-adjusted VSL is used, which lowers the relative weight placed on these lives
saved in the older age group, as compared to increased mortality risk due to hot days in other age groups.
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that the magnitude and composition of future mortality risks under climate change are strongly correlated

with current incomes and climate. Panel A shows that the share of the full mortality risk due to adaptation

costs is higher at higher incomes, indicating that wealthier locations are predicted to pay for future adaptive

investments, while such costs are predicted to be much smaller in poor parts of the globe. In contrast,

mortality rates are projected to increase much more dramatically in today’s poor countries, indicating that

climate impacts in these places will largely take the form of people living shorter lives. Further, the full

mortality risk of climate change (shown in black and white circles) is still borne disproportionately by regions

that are poor today. Finally, there is substantial variance across impact regions within each income decile, as

shown by the interquartile range, underscoring the importance of geographic resolution in projecting climate

impacts.

A similar figure in panel B demonstrates that the hottest locations today suffer the largest predicted

increases in death rates, while the coldest are estimated to pay the highest adaptation costs. The magnitude

of impacts in the top decile of the current long-run climate distribution are noteworthy and raise questions

about the habitability of these locations at the end of the century.

7 The mortality partial social cost of carbon

This section uses the estimates of the full mortality risk of climate change to monetize the mortality-related

social cost generated by emitting a marginal ton of CO2. This calculation represents the component of the

total SCC that is mediated through excess mortality, but it leaves out adverse impacts in other sectors of

the economy, such as reduced labor productivity or changing food prices. Hence, it is a mortality partial

SCC.

7.1 Definition: the mortality partial social cost of carbon

The mortality partial social cost of carbon at time t is defined as the marginal social cost from the change

in mortality risk imposed by the emission of a marginal ton of CO2 in time period t. For a discount rate δ,

the mortality partial SCC is:

Mortality partial SCCt (dollars) =

∫ ∞
t

e−δ(s−t)
dDs(Cs)

dC

∂Cs
∂Et

ds, (11)

where Ds(Cs) represents a “damage function” describing total global economic losses (inclusive of both

adaptation benefits and costs) due to changes in mortality risk in time period s, as a function of the global

climate C (Nordhaus, 1992; Hsiang et al., 2017), and where Et represents total global greenhouse gas

emissions in period t. Ds(·) varies over time, s, because the mortality sensitivity of temperature and total

monetized impacts of climate change evolve over time due to changes in per capita income, the climate, and

in the underlying population. Thus, the damages from a marginal change in emissions will vary depending

on the year in which they are evaluated. In practice, we approximate Equation 11 by combining empirically

grounded estimated damage functions Ds(·) with climate model simulations of the impact of a small change

in emissions on the global climate, i.e., ∂Cs∂Et
.
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Expressing the mortality partial SCC using a damage function has three key practical advantages. First,

the damage function represents a parsimonious, reduced-form description of the otherwise complex depen-

dence of global economic damage on the global climate. Second, as we demonstrate below, it is possible to

empirically estimate damage functions from the climate change projections described in Section 6. Finally,

because they are fully differentiable, empirical damage functions can be used to compute marginal costs of

an emissions impulse released in year t by differentiation. The construction of these damage functions, as

well as the implementation of the mortality partial SCC, are detailed in the following subsections.

7.2 Constructing damage functions for excess mortality risk

There are two key components of a damage function for excess mortality risk. First, the change in global mean

surface temperature, ∆GMSTrmt, which indicates the overall magnitude of warming. We compute this value

for each of the two emissions scenarios r, each of the 33 climate models m, and each year t.48 Second, total

monetized losses due to changes in mortality risk, inclusive of adaptation benefits and cost, Dirmt, captures

total damages for a given level of warming. We compute this value by summing projected estimates of the

monetized full mortality risk of climate change across all 24,378 global impact regions, separately for each

draw i of the uncertain parameters recovered from estimation of the mortality-temperature relationship in

Equation 5, emissions scenario r, climate model m, and year t. Therefore, for a given value of ∆GMSTrmt,

there is variation in damages Dirmt due to econometric uncertainty captured by simulation runs i and

differential spatial distribution of warming across climate models.

Due to differences in the source of climate projections pre- and post-2100, and lack of available socioeco-

nomic projections after 2100, there are some important methodological differences in how we estimate the

relationship between damages Dirmt and warming ∆GMSTrmt for years before versus after 2100. This sub-

section details these differences and also explains the approach to account for damage function uncertainty.

7.2.1 Computing damage functions through 2100.

For each year t from 2020 to 2097, we estimate a set of quadratic damage functions that relate the to-

tal global value of mortality-related climate change damages (Dirmt) to the magnitude of global warming

(∆GMSTrmt):

Dirmt = α+ ψ1,t∆GMSTrmt + ψ2,t∆GMST 2
rmt + εirmt. (12)

Specifically, to construct the damage function separately for each year t, we combine all 9,750 Monte Carlo

simulation runs within a 5-year window centered on t and estimate the regression in Equation 12.49This

approach allows the recovered damage function Dt(∆GMST ) to evolve flexibly over the century. We note

that pre-2100 damage functions are indistinguishable if we use a third-, fourth- or fifth-order polynomial,

and we show robustness of our mortality partial SCC estimates to functional form choice in Appendix H.4.

48Our climate change impacts are calculated relative to a baseline of 2001-2010. Therefore, we define changes in global mean
surface temperature (∆GMST ) as relative to this same period. Note that the ∆GMSTrmt value in each climate model is a
summary parameter, resulting from the complex interaction of many physical elements of the model, including the equilibrium
climate sensitivity, a number that describes how much warming is associated with a specified change in greenhouse gas emissions.

49Because the projections in Section 6 end in 2100, 2097 is the last year for which a centered 5-year window of estimated
damages can be constructed, and therefore is the last year for which we estimate Equation 12.
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Figure 8A illustrates the procedure for the end-of-century damage function. Each data point plots a

value of Dirmt from an individual Monte Carlo simulation (vertical axis) against the corresponding value

of ∆GMSTrmt (horizontal axis), where scatter points for years t=2095 through t=2100 are shown. Red

points indicate simulation runs from the high emissions scenario (r=RCP8.5) and blue points indicate runs

from the low emissions scenario (r=RCP4.5).50 The median end-of-century warming relative to 2001-2010

under RCP8.5 across our climate models is +3.7◦C, while under RCP4.5 it is +1.6◦C. The black line is

the end-of-century quadratic damage function, estimated following Equation 12.51 The estimated damage

function recovers total (undiscounted) damages with an age-varying VSL at 3.7◦C and 1.6◦C of $7.8 and

$1.2 trillion USD, respectively. Analogous curves are constructed for all years, starting in 2020.

7.2.2 Computing post-2100 damage functions

Even with standard discount rates, a meaningful fraction of the present discounted value of damages from

the release of CO2 today will occur after 2100 (Kopp and Mignone, 2012), so it is important to develop

post-2100 damage functions. The pre-2100 approach cannot be used for these later years because only 6

of the 21 GCMs that we use to build our SMME ensemble simulate the climate after 2100 for both RCP

scenarios. Further, the SSPs needed to project the benefits of income growth and changes in demographic

compositions also end in 2100.

To estimate post 2100-damages, we develop a method to extrapolate changes in the damage function

beyond 2100 using the observed evolution of damages near the end of the 21st century. The motivating

principle of the extrapolation approach is that these observed changes in the shape of the damage function

near the end of the century provide plausible estimates of future damage function evolution after 2100. This

reduced-form approach allows our empirical results to constrain and guide a projection to years beyond

2100. To execute this extrapolation, we pool values Dirmt from 2085-2100 and estimate a quadratic model

similar to Equation 12, but interacting each term linearly with year t.52 This allows estimation of a damage

surface as a parametric function of year, which can then be used to predict extrapolated damage functions

for all years after 2100, smoothly transitioning from our climate model-based damage functions prior to 2100.

Appendix G provides a detailed explanation of the approach.

Panel B of Figure 8 illustrates damages functions every 10 years prior to 2100, as well as extrapolated

damage functions for the years 2150, 2200, 2250, and 2300. In dollar terms, these extrapolated damages

continue to rise post-2100, suggesting larger damages for a given level of warming. This finding comes

directly from the estimation of Equation 12 that found that in the latter half of the 21st century the full

mortality damages are larger when they occur later, holding constant the degree of warming. This finding

that mortality costs rise over time is the net result of countervailing forces. On the one hand, damages

50This scatterplot includes simulation runs for RCP4.5 and RCP8.5 for all projections in our 33-member ensemble under our
benchmark method of valuation – the age-invariant EPA VSL with an income elasticity of one applied to all impact regions – in
the end-of-century years 2095-2100. See Appendix H for results across different valuation assumptions. Due to the dependence
of damages on GDP per capita and on demographics, we estimate separate damage functions following Equation 12 separately
for every SSP scenario. Results across different scenarios are also shown in Appendix H.

51The damage function in Figure 8 is estimated for the year 2097, the latest year for which a full 5-year window of damage
estimates can be constructed.

52We use 2085-2100 because the time evolution of damages becomes roughly linear conditional on ∆GMST by this period.
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Figure 8: Empirically-derived mortality-only damage functions. Both panels show damage functions
relating empirically-derived total global mortality damages to anomalies in global mean surface temperature (∆GMST) under
socioeconomic scenario SSP3. In panel A, each point (red = RCP8.5, blue = RCP4.5) indicates the value of the full mortality
risk of climate change in a single year (ranging from 2095 to 2100) for a single simulation of a single climate model, accounting
for both costs and benefits of adaptation. The black line is the quadratic damage function estimated through these points.
The distribution of temperature anomalies at end of century (2095-2100) under two emissions scenarios across our 33 climate
models is in the bottom panel. In panel B, the end-of-century damage function is repeated. Damage functions are shown in
dark blue for every 10 years pre-2100, each of which is estimated analogously to the end-of-century damage function and is
shown covering the support of ∆GMST values observed in the SMME climate models for the associated year. Our projection
results generate mortality damages only through 2100, due to limited availability of climate and socioeconomic projections for
years beyond that date. To capture impacts after 2100, we extrapolate observed changes in damages over the 21st century to
generate time-varying damage functions through 2300. The resulting damage functions are shown in light grey for every 50
years post-2100, each of which is extrapolated. The distribution of temperature anomalies around 2200 (2181-2200) under two
emissions scenarios using the FAIR simple climate model is in the bottom panel. To value lives lost or saved, in both panels
we use the age-varying U.S. EPA VSL and an income elasticity of one applied to all impact regions.

are larger in later years because there are larger and older populations53 with higher VSLs due to rising

incomes. On the other hand, damages are smaller in later years because populations are better adapted due

to higher incomes and a slower rate of warming, enabling gradual adaptation. The results suggest the former

dominates by end of century, causing damages to be trending upward when high-resolution simulations end

in 2100. Below and in Appendix H, we explore the sensitivity of the results to alternative extrapolation

approaches.

7.2.3 Accounting for uncertainty in damage function estimation.

As discussed, there is substantial uncertainty in projected mortality effects of climate change due to statistical

uncertainty in the estimation of mortality-temperature response functions, as well as climate uncertainty

arising from differences across the 33 climate models. The approach described above details the estimation

53In SSP3, the share of the global population in the >64 age category rises from 8.2% in 2015 to 16.2% in 2100.
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of a damage function using the conditional expectation function through the full distribution of simulation

results. In addition to reporting the predicted damages resulting from this damage function describing

(conditional) expected values, we also estimate a set of quantile regressions to capture the full distribution

of simulated mortality impacts.54 Just as above for the mean damage function, extrapolation past the year

2100 is accomplished using a linear time interaction, estimated separately for each quantile. In the sections

below, we use these quantiles to characterize uncertainty in the mortality partial SCC estimates. Thus,

central estimates of the mortality partial SCC use the mean regression from Equation 12, while ranges

incorporating damage uncertainty use the full set of time-varying quantile regressions.

7.3 Computing marginal damages from a marginal carbon dioxide emissions

pulse

We empirically approximate the mortality partial SCC from Equation 11 for emissions that occur in the year

2020 as:

Mortality partial SCC2020 ≈
2300∑
t=2020

e−δ(t−2020) ∂D̂t(∆GMST )

∂∆GMST

d∆GMSTt
dCO22020

, (13)

where ∆GMST approximates the multi-dimensional climate vectorC, and changes in CO2 represent changes

in global emissions E.55 Additionally, we assume that discounted damages from an emissions pulse in year

2020 become negligible after 2300, and we approximate the integral in Equation 11 with a discrete sum

using time steps of one year. The values ∂D̂t(∆GMST )
∂∆GMST are the marginal global damages in each year t that

occur as a result of this small change in all future global temperatures; they are computed using the damage

functions described in the last subsection. The term d∆GMSTt
dCO22020

is the increase in ∆GMST that occurs at

each year t along a baseline climate trajectory as a result of a marginal unit of emissions in 2020, which we

approximate with an “infinitesimally small” pulse of CO2 emissions. Because it is computationally infeasible

to compute this value and account for uncertainty about the physical magnitude and timing of warming for

all 33 climate models in the SMME, we use an alternative, global climate model to estimate d∆GMSTt
dCO22020

, as

detailed below.

7.3.1 Applying a simple climate model to the damage function.

To calculate the change in ∆GMSTt due to a marginal pulse of CO2 in 2020, we use the Finite Amplitude

Impulse Response (FAIR) simple climate model. We use FAIR to calculate ∆GMSTt trajectories for emis-

sions scenarios RCP4.5 and RCP8.5, both with and without an exogenous “pulse” of 1 gigaton C (equivalent

to 3.66Gt CO2) in the year 2020, the smallest emission quantity for which a warming signal can be separated

from noise within the FAIR climate model. In FAIR, this emissions pulse perturbs the trajectory of atmo-

spheric CO2 concentrations and ∆GMST for 2020-2300, with dynamics that are influenced by the baseline

RCP scenario. In each emissions scenario, we then predict damages D̂t(∆GMSTt) for ∆GMST values from

54We estimate a damage function for every 5th percentile from the 5th to 95th.
55We use CO2 to represent changes in all global greenhouse gas (GHG) emissions as it is the most abundant GHG and the

warming potential of all other GHGs are generally reported in terms of their CO2 equivalence.
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Figure 9: Change in emissions, concentrations, temperature, and damages due to a marginal
emissions pulse in 2020. Panel A shows a 1GtC emissions pulse (equivalent to 3.66Gt CO2) in 2020 for emissions
scenario RCP8.5. Panel B displays the effect of this pulse on atmospheric CO2 concentrations, relative to the baseline. In panel
C, the impact of the pulse of CO2 on temperature is shown where the levels are anomalies in global mean surface temperature
(GMST) in Celsius. In panels A-C, shaded areas indicate the inter-quartile range due to climate sensitivity uncertainty, while
solid lines are median estimates. Panel D shows the change in discounted damages over time due to a 1 Gt pulse of CO2 in 2020
under socioeconomic scenario SSP3, as estimated by our empirically-derived damage functions, using a 2% annual discount rate
and the age-varying U.S. EPA VSL with an income elasticity of one applied to all impact regions. The shaded area indicates
the inter-quartile range due to climate sensitivity and damage function uncertainty, while the solid line is the median estimate.

the “RCP + pulse” simulation and difference them from predicted damages for ∆GMST values from the

baseline “RCP only” simulation. The resulting damages due to the pulse are converted into USD per one

metric ton CO2. There is naturally uncertainty in these ∆GMST trajectories, and our approach accounts

for uncertainty associated with four key parameters of the FAIR model (i.e., the transient climate response,

equilibrium climate sensitivity, the short thermal adjustment time, and the time scale of rapid carbon uptake

by the ocean mixed layer). This approach, detailed in Appendix G, ensures that the distribution of transient

warming responses we use to generate partial SCC values matches the corresponding distributions from the

IPCC Assessment Report 5 (AR5).

7.3.2 Summarizing the impacts of a marginal increase in CO2 emissions.

Figure 9 graphically depicts the difference between the “RCP + pulse” and baseline RCP trajectories for

four key outcomes.56 The pulse in emissions is shown in panel A. Its influence on CO2 concentrations is

reported in panel B; the immediate decline followed by a century-long increase is largely due to dynamics

involving the ocean’s storage and release of emissions. Panel C displays the resulting change in temperature,

which makes clear that a pulse today will influence temperatures even three centuries later. The solid lines

are median estimates, while the shaded blue area in panels A-C depicts the inter-quartile range of each year’s

outcome, reflecting uncertainty about the climate system (see Appendix G for details).

Panel D plots the discounted (2% discount rate) stream of damages due to this marginal pulse of emissions.

The temporal pattern of the present value of mortality damages reflects several factors, including: the

nonlinearity of the damage function (e.g., Figure 8), which itself depends on nonlinearities in location-

56Using the trajectories in Figure 9 is consistent with the “SCC experiment” that is used in IAMs to calculate an SCC
(National Academies of Sciences, Engineering, and Medicine, 2017). We discuss uncertainties in FAIR configuration parameters
below and in Appendix G. The median values of parameter-specific distributions used for the central mortality partial SCC
estimate include a transient climate response (TCR) of 1.6 and an equilibrium climate sensitivity (ECS) of 2.7.
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specific mortality-temperature relationships (e.g., Figure 1); the discount rate; and the dynamic temperature

response to emissions (panel C). The peak present value of annual damages from a ton of CO2 emissions

are $0.16 in year 2104; by year 2277, annual damages are always less than $0.02. It is noteworthy that

about two-thirds of the present value of damages occur after the year 2100. The shaded grey area represents

the inter-quartile range of each year’s outcome, and reflects uncertainty in the climate system as well as

uncertainty in the damage function. RCP4.5 results are shown in Figure G5 and additional details are in

Appendix G.

7.4 Estimates of the partial social cost of carbon due to excess mortality risk

Table 3 reports mortality partial SCC estimates. The columns apply four different annual discount rates –

three used in prior estimates of the SCC (2.5%, 3%, and 5%) (Interagency Working Group on Social Cost

of Carbon, 2010; National Academies of Sciences, Engineering, and Medicine, 2017), and one lower rate

that aligns more closely with recent global capital markets (2%) (Board of Governors of the US Federal

Reserve System, 2020). Panel A uses the U.S. EPA’s VSL of $10.95 million (2019 USD), transformed into

value per life-year lost (see Appendix H.1 for details). This accounts for the different mortality-temperature

relationships among the three age groups documented above.57 Panel B is based on an age-invariant value

of $10.95 million (2019 USD) for the VSL. Both approaches then adjust for cross sectional variation in

incomes among contemporaries and global income growth. Appendix H presents results under a wide range

of additional valuation scenarios, including an alternative and lower Ashenfelter and Greenstone (2004) VSL

of $2.39 million (2019 USD),58 and an approach where the VSL is adjusted only based on global average

income such that the lives of contemporaries are valued equally, regardless of their relative incomes.

The estimates in Table 3 utilize the median values of FAIR’s four key parameter distributions and the

mean global damage function. Interquartile ranges (IQRs) are reported, reflecting uncertainty in climate

sensitivity (uncertainty in the simple climate model FAIR) and in the damage function. All values represent

the global sum of each impact region’s MWTP today (2019 USD) to avoid the release of an additional metric

ton of CO2 in 2020, including both the costs and benefits of adaptation.

Column 1 and panel A of Table 3 reports our preferred estimates of the mortality partial SCC. These

are based on a δ = 2% discount rate and an age-varying VSL. Under this valuation approach, the mortality

partial SCC is $17.1 [-$24.7, $53.6] for the low to moderate emissions scenario and $36.6 [-$7.8, $73.0] for

the high emissions scenario. We highlight a 2% discount rate because it conservatively reflects changes in

global capital markets over the last several decades: while the Interagency Working Group on Social Cost

of Greenhouse Gases (2016) recommends a discount rate of 3% based on the real 10-year Treasury rate

calculated in 2003, the average 10-year Treasury Inflation-Indexed Security from 2003 to present is just

1.01% (Board of Governors of the US Federal Reserve System, 2020). We show results for a discount rate

57In the main text, a simple life-years calculation that assigns each life-year lost the same economic value is used. In Appendix
H, we also show calculations that adjust the value of remaining life by age at death using the estimates of age-specific value
of remaining life from Murphy and Topel (2006), which produces results that differ only slightly from those under the primary
approach.

58See Appendix Table H1 for a comparison of these VSL values with values from the OECD, which are higher than Ashenfelter
and Greenstone (2004), but lower than the U.S. EPA’s VSL.
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Table 3: Estimates of a partial social cost of carbon for excess mortality risk incorporating
the costs and benefits of adaptation

Annual discount rate
δ = 2% δ = 2.5% δ = 3% δ = 5%

Panel A: Age-adjusted globally varying value of a statistical life (2019 US Dollars)

Moderate emissions scenario (RCP4.5) 17.1 11.2 7.9 2.9
Full uncertainty IQR [-24.7, 53.6] [-18.9, 36.0] [-15.2, 26.3] [-8.5, 11.5]

High emissions scenario (RCP8.5) 36.6 22.0 14.2 3.7
Full uncertainty IQR [-7.8, 73.0] [-10.6, 46.8] [-11.4, 32.9] [-8.9, 13.0]

Panel B: Globally varying value of a statistical life (2019 US Dollars)

Moderate emissions scenario (RCP4.5) 14.9 9.8 6.7 1.7
Full uncertainty IQR [-21.2, 63.5] [-17.9, 43.5] [-15.7, 32.1] [-11.8, 14.7]

High emissions scenario (RCP8.5) 65.1 36.9 22.1 3.5
Full uncertainty IQR [3.0, 139.0] [-2.4, 83.1] [-5.6, 53.4] [-9.3, 16.0]

In both panels, an income elasticity of one is used to scale the U.S. EPA VSL value (alternative values using the VSL
estimate from (Ashenfelter and Greenstone, 2004) are shown in Appendix H). All regions thus have heterogeneous
valuation, based on local income. All SCC values are for the year 2020, measured in PPP-adjusted 2019 USD, and are
calculated from damage functions estimated from projected results under the socioeconomic scenario SSP3 (alternative
values using other SSP scenarios are shown in Appendix H). In panel A, SCC estimates use an age adjustment that
values deaths by the expected number of life-years lost, using an equal value per life-year (see Appendix H.1 for details
and Appendix H.2 for alternative calculations that allow the value of a life-year to vary with age, based on Murphy and
Topel (2006)). In panel B, SCC calculations use value of a statistical life estimates that do not vary with age. Point
estimates rely on the median values of the four key input parameters into the climate model FAIR and a conditional
mean estimate of the damage function. The uncertainty ranges are interquartile ranges [IQRs] including both climate
sensitivity uncertainty and damage function uncertainty (see Appendix G for details).

of 1.5% in Appendix Table H4. We emphasize the age-varying VSL approach because standard economic

reasoning implies that valuation of life lost should vary by age (Jones and Klenow, 2016; Murphy and Topel,

2006).

When following the Interagency Working Group on Social Cost of Greenhouse Gases (2016) preference

for a discount rate of δ = 3% and the use of an age-invariant VSL, the central estimate of the mortality

partial SCC is $6.7 per metric ton of CO2 for the low to moderate emissions scenario (RCP4.5), with an

IQR of [-$15.7, $32.1], and $22.1 [-$5.6, $53.4] per metric ton for the high emissions scenario (RCP8.5).

Some other features of these results are worth underscoring. First, mortality partial SCC estimates

for RCP4.5 are systematically lower than RCP8.5 primarily because the damage function is convex, so

marginal damages increase in the high emissions scenario. Second, the combination of this convexity, which

itself is accentuated at higher quantiles of the damage function, and the skewness of the climate sensitivity

distribution causes the distribution of partial SCCs to also be right skewed with a long right tail. For example,

the 95th and 99th percentiles of the partial SCC for δ = 2% and an age-varying VSL for RCP8.5 are $290.3

and $704.1, respectively; with δ = 3% and an age-invariant VSL these values are $175.3 and $391.9. It is

apparent that a certainty equivalent estimate of the mortality partial SCC based on standard assumptions

of risk aversion, which is beyond the scope of this paper, would be much larger than the mean estimates

reported here. Third, in Appendix G we show that uncertainty in the partial SCC is consistently dominated
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by uncertainty in the damage function, as opposed to uncertainty in climate sensitivity. Fourth, all mortality

partial SCC estimates shown in the main text rely on an exogenous socioeconomic trajectory; in Table H6

we show that endogenizing impacts of climate change on income growth based on prior literature (Burke,

Hsiang, and Miguel, 2015) has only a small effect on our mortality partial SCC results. Fifth, in Appendix H

we show that replacing the extrapolation of damage functions to years beyond 2100 with a damage function

frozen at its 2100 shape for all years 2101-2300 lowers our central estimate of the mortality partial SCC by

21%. This indicates that damage function extrapolation has a modest impact on our partial SCC estimates,

due in part to the important role of discounting (Table H7). Finally, while Table 3 reflects what we believe

to be mainstream valuation and socioeconomic scenarios, Appendix Tables H2-H8 report estimates based

on multiple alternative approaches. Naturally, the resulting SCC estimates vary under different valuation

assumptions and baseline socioeconomic trajectories, and we point readers to these specifications for a more

comprehensive set of results.

8 Limitations

As the paper has detailed, the mortality risk changes from climate change and the mortality partial SCC

have many ingredients. We have tried to probe the robustness of the results to each of them, but there are

three issues that merit special attention when interpreting the results, because they are outside the scope of

the analysis.

8.0.1 Migration Responses.

First, the estimates in the paper do not reflect the possibility of migration responses to climate change.

If migration were costless, it seems likely that the full mortality risk and mortality partial SCC would be

smaller, as people from regions with high damages (e.g., sub-Saharan Africa) may move to regions with low

or even negative damages (e.g., Scandinavia). However, both distant and recent history in the U.S. and

around the globe underscores that borders are meaningful and that there are substantial costs to migration

which might limit the scale of feasible migrations. Indeed, existing empirical evidence of climate-induced

migration, based on observable changes in climate to date, is mixed (Carleton and Hsiang, 2016).

8.0.2 Humidity.

Second, our estimates do not directly incorporate the role of humidity in historical mortality-temperature

relationships nor in projections of future impacts. There is growing evidence that humidity influences human

health through making it more difficult for the human body to cool itself during hot conditions (e.g., Sherwood

and Huber, 2010; Barreca, 2012). While temperature and humidity are highly correlated over time, they are

differentially correlated across space, implying that our measures of heterogeneous mortality-temperature

relationships may be influenced by the role of humidity. To date, lack of high-resolution historical humidity

data and highly uncertain projections of humidity under climate change (Sherwood and Fu, 2014) have

limited our ability to include this heterogeneity in our work. However, emerging work on this topic (Yuan,
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Stein, and Kopp, 2019; Li, Yuan, and Kopp, 2020) will provide opportunities to explore humidity in future

research.

8.0.3 Technological Change.

Third, the paper’s projections incorporate advancements in technology that enhance adaptive ability, even

though we have not explicitly modeled technological change. In particular, we allow mortality-temperature

response functions to evolve in accordance with rising incomes and temperatures and do not restrict them

to stay within the bounds of the current observed distribution of temperature responses. However, while

our estimates reflect technical advancement as it historically relates to incomes and climate, they do not

reflect the seemingly high probability of climate-biased technical change that lowers the relative costs of

goods which reduce the health risks of high temperatures. Therefore, the paper’s results will overstate the

mortality risk of climate change if directed technological innovations lower the relative costs of adapting to

high temperatures.

9 Conclusion

This paper has outlined a new method for empirically estimating the global costs of climate change for a

single sector of the economy using micro data. We have implemented this approach in the context of mortality

risks associated with temperature change. Specifically, this paper develops a framework for estimating the

annual total impact of climate change on mortality risk, accounting for the benefits and costs of adaptation,

both globally and for 24,378 regions that comprise the planet. It then uses these estimates to compute a

mortality “partial” SCC, defined as the global marginal willingness-to-pay to avoid the changes in mortality

risk caused by the release of an additional metric ton of CO2.

There are three noteworthy methodological innovations and key findings. First, we leverage highly

resolved data covering roughly half of the world’s population to estimate flexible empirical models relating

mortality rates to temperature. These regressions uncover a plausibly causal U-shaped relationship where

extreme cold and hot temperatures increase mortality rates, especially for those aged 65 and older. Moreover,

this relationship is quite heterogeneous across the planet as both income and long-run climate substantially

moderate mortality sensitivity to temperature. Further when combined with current global data on climate,

income, and population, the results imply that the effect of a hot day (35◦C / 95◦F) on mortality in the >64

age group is ∼50% larger in regions of the world without available mortality data. This suggests that prior

estimates from wealthy economies and temperature climates are likely to understate the impacts of climate

change on human mortality.

Second, we use these regression results along with future projections of climate, income, and population

to estimate future climate change-induced mortality risk both in terms of fatality rates and its monetized

value. We find that, under a high emissions scenario, the projected impact of climate change on mortality

will be comparable globally to leading causes of death today, such as cancer and infectious disease (Figure

10). We also estimate large benefits from mitigation, as the end of century estimate of the full mortality risk

of climate change falls from 85 deaths per 100,000 under the high emissions growth RCP8.5 scenario to 14
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per 100,000 under the more moderate RCP4.5 scenario. Importantly, these projected impacts include the

benefits of adaptation to gradual climate change; estimates that do not account for adaptation overstate the

mortality impacts of climate change in 2100 by more than a factor of about 3. Additionally, we outline and

implement a revealed preference method to infer the costs of these adaptation investments, which amount

to, on average, 12 death equivalents per 100,000 out of the total of 85 deaths per 100,000 in 2100 in the

RCP8.5 scenario.

Further, the estimated mortality-related damages from climate change are distributed unevenly across

the world. For example, by 2100, we project that climate change will cause annual damages equivalent to

approximately 160 additional deaths per 100,000 in Accra, Ghana, but will also generate annual benefits

equivalent to approximately 9 lives per 100,000 in London, England. Notably, the degree to which the full

mortality risk of climate change is realized through actual deaths, as opposed to costly adaptation, varies

widely across space and time. For example, Figure 10 shows that today’s poor locations tend to bear a larger

share of the projected burden in the form of direct mortality impacts, while today’s rich face large increases

in projected adaptation costs.
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Figure 10: The impact of climate change in 2100 is comparable to contemporary leading causes
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Finally, we use these projections to develop the first empirically grounded estimates of the mortality

partial SCC. Using a 2% discount rate and age-varying VSL, the 2020 mortality partial SCC is roughly
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$36.6 (in 2019 USD) with a high emissions scenario and $17.1 with a moderate one. There is substantial

uncertainty around these estimates, arising both from climate sensitivity and damage function uncertainty.

For example, the interquartile ranges of the mortality partial SCC are [-$7.8, $73.0] and [-$24.7, $53.6],

under high and moderate emissions scenarios, respectively. These ranges underscore the nature of the

climate challenge and highlight that, while beyond the scope of this paper, valuing this uncertainty under

risk aversion will raise the mortality partial SCC.

Overall, the paper’s findings suggest that previous research has significantly understated climate change

damages due to mortality. For example, the mortality damages we estimate in 2100 account for 49% to

135% of total damages across all sectors of the economy according to leading IAMs. Moreover, the mortality

partial SCC reported here, under comparable valuation assumptions, is more than 10 times larger than the

total health impacts embedded in the FUND IAM (Diaz, 2014).59

We believe that this paper has highlighted a key role for systematic empirical analysis in providing a

clearer picture of the magnitude of the costs of climate change and how, why, and where they are likely to

emerge in the future. Advances in access to data and computing have removed the need to rely so heavily

on assumptions when estimating the economic costs of climate change. Looking ahead, the paper’s general

approach can be applied to other aspects of the global economy besides mortality risk, and doing so is a

promising area for future research.

59Diaz (2014) computes comparable partial SCC values for FUND (δ = 3%, “business as usual” emissions) and reports values
for three comparable health impacts (diarrhea, vector borne diseases, and cardiopulmonary) that total less than $2 (2019 USD).
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A Using revealed preference to estimate adaptation costs

A.1 Graphical solution to inferring unobserved adaptation cost

In Section 2, we lay out a framework for recovering the costs of adapting to climate change that is micro-

founded by a standard utility maximization problem. Figure A1 depicts this optimal adaptation problem

faced by individuals and illustrates how we overcome two key empirical challenges to measuring adaptation

costs: (1) the universe of adaptation adjustments and their costs are not directly observable and (2) adaptive

adjustments are continuous for continuous changes in climate. The problem must be displayed in three

dimensions because it involves at least three orthogonal subspaces: climate (C), adaptive adjustments

to climate (b), and an outcome (expressed in dollars of WTP). For illustrative simplicity, here we assume

income is held fixed, and we consider a simplified example with univariate climate and univariate adaptation.

Further, for this example, higher C = C indicates higher temperatures and higher b = b indicates greater

adaptation (i.e., greater protection) from high temperatures, where these terms are unbolded to indicate

that they are scalars.

In the lower left panel of Figure A1, the green surface illustrates adaptation costs A(b) which are not

directly observable to the econometrician. The height of this surface represents the costs that households

would bear to obtain a level of adaptation b. Because we assume markets for adaptive technologies are

competitive, A(b) could represent60 the lower envelope of all firm cost-functions (offer curves) that would

supply b, as illustrated by the projection of the surface onto the A× b plane. Because adaptation costs are

a function of technology, they do not depend on the climate and so ∂A/∂C = 0 everywhere, i.e., individuals

in Seattle can purchase the same adaptation technology (e.g., air conditioners) as individuals in Houston.

In the lower right panel of Figure A1, the red surface illustrates the expected benefits an individual would

accrue for inhabiting some climate C and selecting adaptation b. The height of this surface is a total WTP

for adaptation, conditional on the climate: it is equal to the VSL times the expected survival probability

1− f̃(b, C) at each position (b, C). For notational simplicity, we refer to this WTP surface as V . At low levels

of adaptation, V declines rapidly with higher temperature C because survival probability declines quickly.

At higher levels of adaptation, V declines more gradually with C because adaptation protects individuals

against temperature. The solid black lines follow this WTP surface at fixed temperatures, showing how an

individual in a given climate would benefit from additional adaptation (bid curves).

Agents at each climate endogenously adapt by selecting the optimal level of b such that the marginal costs

equal the marginal benefits. This can be seen on the lower left panel at climates Ct0 and Ct, where slices of

the benefits surface V are drawn overlaid in red and are tangent to A(b) at the blue circles. Corresponding

slices of the adaptation cost surface A are overlaid in green on the benefits surface in the lower right panel.

The blue line traces out the equilibrium at different climates. For each climate C there is an optimal level

of adaptation b∗(C) endogenously chosen, illustrated by the projection of the equilibrium downward onto

the C × b plane in both panels. The projection of the equilibrium onto the A × C plane on the left panel

illustrates how adaptation expenditures rise with temperature, and the projection onto the V × C plane

60In Appendix A.4 below, A are net costs since they are net any utility benefits or costs of b.
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Figure A1: Use of revealed preference to recover WTP for an unobservable adaptation. Hori-
zontal dimensions are climate C, representing temperature, and adaptation level b. Vertical dimensions are
adaptation costs A(b) in the left panel and expected survival benefits V (b, C) = V SL[1− f̃(b, C)] in the right
panel, both in units of dollars of WTP. Tangency planes at the top depict infinitesimal surfaces spanning
∂C × ∂b∗

∂C at a point along the equilibrium adaptation path b∗(C), which is drawn in blue. Adaptation costs,
as a function of the climate, are the height of the green wedge on the A × C plane in the lower left panel.
The value of mortality risk imposed by the climate is the red wedge on the V × C plane in the lower right
panel.

on the right panel illustrates how expected survival benefits decline with temperature, or equivalently, how

mortality costs rise with temperature. The sum of changes to these adaptation expenditures and the value

of mortality costs is the full cost of changes to the climate.

A key innovation to our analysis is fully accounting for adaptation costs A(b) even though neither A(.)

nor b is observed. Indeed, there may be a very large, even infinite, number of ways that populations adapt

to climate that cannot be feasibly enumerated by the econometrician. All the econometrician can observe

are the effects of adaptation on survival probability 1 − f̃ . If a climate were gradually warmed from Ct0

to Ct, individuals would continuously respond by adapting along b∗(C) and traveling up the cost surface in

the lower left panel, eventually incurring costs A(b∗(Ct)) rather than the initial costs A(b∗(Ct0)) that they

incurred prior to warming. We point out that the change in this total adaptation cost A(b∗(Ct))−A(b∗(Ct0))

can be inferred based only on the shape of the benefits surface along the equilibrium, information that is

recoverable by the econometrician.
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To show this, at the top of Figure A1 we draw tangency planes for both the costs and benefits surfaces

for a single location along the equilibrium adaptation locus between Ct0 and Ct, indicated by black squares

on the two surfaces in the lower left and lower right panels. Both tangency planes span an area ∂C × ∂b∗

∂C ,

indicating how much additional adaptation populations undertake (∂b
∗

∂C ) for an exogenous change in climate

(∂C), changes that would cause them to traverse each of these planes from their respective left-most corner to

their right-most corner. The corresponding change in survival benefits is dV
dC = ∂V

∂C + ∂V
∂b

∂b∗

∂C (downward pink

arrow on the right), which the econometrician can observe by computing the change in survival probability

due to climate between two adjacent locations after allowing them both to fully adapt to their respective

climates. If the cooler location is heated by ∂C but not permitted to adapt, its survival benefits change by

∂V
∂C (downward red arrow), a counterfactual outcome that the econometrician can compute by simulating

a warmer environment without allowing for adaptation. The difference between these two changes is equal

to the benefits of marginal adaptations ∂V
∂b

∂b∗

∂C (upward green arrow, right panel). Along the equilibrium

b∗(C), these marginal benefits of adaptation must equal their marginal costs, thus we know the corresponding

increase in unobserved adaptation costs ∂A
∂b

∂b∗

∂C (upward green arrow, left panel) must be equal in magnitude

to ∂V
∂b

∂b∗

∂C . By continuously computing and differencing the total and partial derivatives of V with respect

to an incremental change in climate dC (i.e., dV
dC −

∂V
∂C ), we recover the marginal benefits of unobserved

incremental adaptations (∂V∂b
∂b∗

∂C ), which we know must also equal their marginal costs (∂A∂b
∂b∗

∂C ). Then by

integrating these marginal costs with respect to the climate (shown in the A × C plane of the lower left

panel) we can compute the total change in adaptation costs A(b∗(Ct)) − A(b∗(Ct0)) for the non-marginal

change in climate from Ct0 to Ct. This intuition holds for an unknown number of margins of adaptation and

a climate of arbitrary dimension, which we allow for in the main text and in derivations below.

A.2 Surplus generated from compensatory investments

As discussed in the main text, the equivalence of marginal adaptation benefits and marginal adaptation

costs at each point along the equilibrium pathway b∗(Y,C) (Equation 7) does not imply that our estimates

of total adaptation costs are equivalent to total adaptation benefits for any given population at fixed climate

C. In general, we expect total adaptation benefits to exceed total adaptation costs, generating surplus from

compensatory investments. Here, we define this surplus and illustrate why it is not zero. Empirically, we

find that this surplus is substantial (see Section 5.5).

We define adaptation surplus as the total benefits of adapting to climate change (i.e., the dollar value

of the difference between mortality effects of climate change with and without the benefits of adaptation)

minus the total cost of adaptation (i.e., the integral of marginal adaptation costs along the climate change

trajectory, as shown in Equation 9). This surplus can be evaluated at any future climate Ct. That is,
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adaptation surplus under a climate changing from time period t0 to t can be written as:61

Adaptation surplus (Ct0 → Ct) = −V SL[f̃(b∗(Ct),Ct)− f̃(b∗(Ct0),Ct)]︸ ︷︷ ︸
total adaptation benefits

− [A(b∗(Ct))−A(b∗(Ct0))]︸ ︷︷ ︸
total adaptation costs

= −
∫ b∗(Ct)

b∗(Ct0 )

V SL
df̃(b,Ct)

db
db−

∫ b∗(Ct)

b∗(Ct0 )

∂A(b)

∂b
db∗

(A.1)

where both integrals represent line integrals, and where db∗ indicates that the line integral is calculated

along the optimal pathway b∗(C).

The first term in the definition of adaptation surplus in Equation A.1 is the total benefits of adaptation,

defined as [minus] the mortality effects of climate Ct with optimal adaptation (i.e. b∗(Ct)) minus the

mortality effects of that same climate, but with adaptation fixed at its initial level (i.e., b∗(Ct0)). The

second term is the total costs of adaptation, defined as the adaptation costs under optimal adaptation in

climate Ct minus adaptation costs under optimal adaptation in the initial climate Ct0 . Adaptation benefits

(the first term) can be computed by integrating df̃(b,Ct)
db , the marginal mortality effect of adaptation evaluated

at fixed climate Ct. Note that this integration is not computed over the optimal pathway, as the climate is

fixed at Ct and any b 6= b∗(Ct) is thus off-equilibrium. Adaptation costs (the second term) can be computed

by integrating marginal adaptation costs of b along the optimal pathway b∗(C).

The expression for adaptation surplus in Equation A.1 is represented as the difference between two

integrals, each computed over the unobserved choice vector b. To empirically identify adaptation surplus,

we aim to rewrite this expression as a difference between integrals which are computed over the multi-

dimensional climate C, which changes over time. This is an important step, as changes in the climate C

are empirically identifiable, while adjustments to b are unobserved by the econometrician. As shown below

(as well as in Section 2 in the main text), total adaptation costs, the second term in Equation A.1, can be

rewritten as an integral over time using a simple change of variables. However, rewriting total adaptation

benefits, the first term in Equation A.1, as an integral over time (and hence, climate C) requires multiple

steps, which we outline below.

To see how we construct an empirically tractable expression for total adaptation benefits (first term in

Equation A.1), we first consider a visual illustration. Figure A2 shows the construction of total adaptation

benefits using the same notation and format as the lower right panel of Figure A1. As in Figure A1, the red

surface represents how expected survival benefits V (b, C) = V SL[1 − f̃(b(C), C)] depend on both climate

C and adaptation b, in the case where both climate and adaptation are univariate. The basic idea is that

we want to quantify the vertical difference between points s and r (i.e., s − r), which can be computed

empirically as the vertical difference q− r minus the difference q− s. To see why, note that the total benefits

of adaptation incurred under a climate change from Ct0 to Ct are represented by the vertical difference

61Note that income only influences the calculation of surplus arising from climate-driven adaptation via changes in the VSL.
Therefore, we abstract away from income changes throughout this section, including omitting Y as an argument of b∗, for
simplicity of exposition.
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Figure A2: Recovering total benefits of adaptation using revealed preference. Horizontal dimen-
sions are climate C, representing temperature, and adaptation level b. The vertical dimension is expected
survival benefits V (b, C) = V SL[1 − f̃(b, C)], in units of dollars of WTP. The equilibrium adaptation path
{b∗(C), C} is drawn in blue (line q → s), and the off-equilibrium path {b∗(Ct0), C} is drawn in black (line
q → r). To derive the total benefits of adaptation under a change in climate from Ct0 to Ct, we integrate
the surface along the green line (line r → s), evaluating changes in survival benefits at a fixed climate Ct,
as adaptation evolves from b∗(Ct0) to b∗(Ct). The magnitude of total adaptation benefits is shown on the
V × C plane on the right panel.

between points s and r (shown on the V × C plane on the right panel), because this height measures the

total mortality benefits realized from optimally investing in adaptation b∗(Ct) when experiencing climate

Ct, instead of holding adaptation fixed at its initial level b∗(Ct0). This difference can be computed in two

ways. First, total benefits of adaptation can be computed by traversing along the off-equilibrium green line

between points r and s; that is, by holding C fixed at C2 and integrating V (b, C) over b from b∗(Ct0) to

b∗(Ct). This integration along the green line represents the definition of total adaptation benefits written

in Equation A.1. However, this same vertical distance can alternatively be calculated by traversing along

the off-equilibrium black line between points q and r (i.e., holding b fixed at b∗(Ct0) and integrating V (b, C)

over C from Ct0 to Ct), and then subtracting off the value of the survival impacts of the optimal pathway

from Ct0 to Ct (i.e., the height of the surface at point q minus point s). This integration over C (twice) is

empirically identifiable, as changes in climate can, in principle, be observed.

Now, consider the construction of total adaptation benefits in an arbitrary multi-dimensional b×C space.

We first note that the Gradient Theorem implies path independence of line integrals on smooth functions;

thus, for a continuous and differentiable surface V SL[1− f̃(b,C)], the integral along any path on this surface

depends only on the endpoints of that path. Equation A.1 writes total adaptation benefits using a path

along the surface in the b dimension between the end points {b∗(Ct),Ct} and {b∗(Ct0),Ct}.62 However,

as discussed above, we cannot compute traversing of this path, as changes in b are unobservable. Thus, we

need to define an alternative computable path between the same endpoints. If we can construct a loop on

62Note that while Figure A2 illustrates total adaptation benefits using the expected survival benefits surface V SL[1− f̃(b,C)],
the definition can be equivalently written using [minus] the expected mortality costs surface, −V SL[f̃(b,C)], as in Equation
A.1. For parsimony, we use the latter notation here and in the subsequent expressions.
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the surface that connects the two endpoints, the sum of the desired segment and the remaining segments

defining that loop must equal zero, because the line integral over any closed loop L must, by construction,

equal zero. We can then rearrange this identity to isolate the computable segments of the loop, allowing us

to back out the unobserved segment defining the total benefits of adaptation.

We define such a loop that begins at {b∗(Ct0),Ct0} (analogous to point q in Figure A2) and traverses

along the off-equilibrium path from Ct0 to Ct with adaptation fixed at b∗(Ct0) (analogous to the black line

between q and r in Figure A2). In the second segment, it traverses in the b dimension, holding C fixed at

Ct, to arrive at {b∗(Ct),Ct} (analogous to the green line in Figure A2 and equal to the total benefits of

adaptation). Finally, our path arrives back at its starting point by integrating along the optimal pathway

b∗(C) (analogous to the blue line between q and s in Figure A2):

∮
L

∇[V SLf̃(b,C)] · ∂b∂C =

∫ t

t0

V SL
∂f̃(b∗(Ct0),Cs)

∂C

dCs
ds

ds+

∫ b∗(Ct)

b∗(Ct0 )

V SL
df̃(b,Ct)

db
db

+

∫ t0

t

V SL
df̃(b∗(Cs),Cs)

dC

dCs
ds

ds

= 0 (A.2)

By rearranging Equation A.2 (including changing the direction of integration for the third segment), we can

use this closed loop, which is composed of two computable segments and a third that is unobservable, to

calculate the total benefits of adaptation:

Total adaptation benefits = −
∫ b∗(Ct)

b∗(Ct0 )

V SL
df̃(b,Ct)

db
db

= −
∫ t

t0

V SL

[
df̃(b∗(Cs),Cs)

dC
− ∂f̃(b∗(Ct0),Cs)

∂C

]
dCs
ds

ds (A.3)

Using Equation A.3 and a change of variables to rewrite the total costs of adaptation as an integral over C,

we can rewrite Equation A.1 as:

Adaptation surplus (Ct0 → Ct) = −
∫ t

t0

V SL


df̃(b∗(Cs),Cs)

dC︸ ︷︷ ︸
mortality risk
w/ adaptation

− ∂f̃(b∗(Ct0),Cs)

∂C︸ ︷︷ ︸
mortality risk

w/o adaptation


dCs
ds

ds

−
∫ t

t0

∂A(b∗(Cs))

∂b

∂b∗s
∂C

dCs
ds

ds (A.4)

While the total adaptation benefits term in Equation A.4 (the first term) is composed of values that are,

in principle, empirically identifiable, the adaptation cost expression (the second term) remains unobservable

because the net cost function A(b∗(C)) is unknown. Thus, we take a final step to rewrite the entire adaptation

surplus expression in Equation A.4 in terms of objects that are measurable, using Equation 9 from the main
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text to substitute for the object
∫ t
t0

∂A(b∗(Cs))
∂b

∂b∗s
∂C

dCs
ds ds:

Adaptation surplus (Ct0 → Ct) = −
∫ t

t0

V SL

[
df̃(b∗(Cs),Cs)

dC
− ∂f̃(b∗(Ct0),Cs)

∂C

]
dCs
ds

ds

+

∫ t

t0

V SL

[
df̃(b∗(Cs),Cs)

dC
− ∂f̃(b∗(Cs),Cs)

∂C

]
dCs
ds

ds

=

∫ t

t0

V SL

[
∂f̃(b∗(Ct0),Cs)

∂C
− ∂f̃(b∗(Cs),Cs)

∂C

]
dCs
ds

ds (A.5)

In Equation A.5, the first term inside the integral represents the marginal mortality effect of a change in

climate evaluated at climate C, but holding adaptation actions fixed at the levels that were optimal under

the original climate, Ct0 . In contrast, the second term represents the marginal mortality effect of a change

in climate evaluated at climate C, allowing adaptation actions b∗(C) to evolve optimally with the changing

climate. Note that because the second term is a partial derivative, its integral is not the total change in the

mortality rate. While the two partial derivatives in Equation A.5 will be identical when C = Ct0 , if they

diverge at some point after C warms beyond Ct0 , then surplus will be nonzero. Thus, a sufficient condition

for positive surplus is:

∂f̃(b∗(Ct0),Cs)

∂C
>
∂f̃(b∗(Cs),Cs)

∂C
∀s ∈ (t0, t] (A.6)

This condition says that mortality risk must rise more with changes in the climate at lower levels of adap-

tation. If this condition holds, the difference between the two partial derivatives in Equation A.6 is weakly

positive, and the total adaptation surplus over the climate trajectory Ct0 → Ct is positive.

A.3 Implementation details for the empirical estimation of adaptation costs

In Section 6.2, we describe how we use econometric estimation of Equation 5 in combination with climate

model projections to construct empirical estimates of changes in adaptation costs due to climate change,

following the theoretical derivation in Section 2. Here, we provide some additional details on this implemen-

tation.

Theoretically, adaptation costs can be computed by taking the difference between the total and partial

derivative of expected mortality risk with respect to changes in the climate (Equation 9), and integrating this

difference. To empirically construct an estimate of these costs, we begin by taking expectations of Equation

5 over weather realizations T , to specify our empirically estimated expected mortality risk for an age group

a in region r for year t:

ˆ̃
f(.)art ≡ E[f̂(.)art] = E[ĝa (Trt, TMEANrt, log(GDPpc)rt)︸ ︷︷ ︸

ĝart(·)

] + ... (A.7)

where we omit the various estimated terms orthogonal to temperature, which fall out after differentiation.
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Recall that the estimates ĝart(·) describe the shape of the annual response function in region r and year t for

age group a, taking as inputs the summary climate parameter TMEAN and log income per capita, where

the coefficients used to construct ĝart(·) are recovered from the regression in Equation 5. The expectation of

ĝ(·) is computed over realizations of temperature for region r in year t from the prior 15 years, with weights

of historical observations linearly declining in time. Below we omit subscripts for clarity, but the following

calculation is conducted yearly for each age and region separately, for each of our 33 high-resolution climate

models.

We differentiate expected mortality risk
ˆ̃
f(.) with respect to a small change in climate C, by computing

how
ˆ̃
f(.) would change if the distribution of daily temperatures shifted due to a change in climate. The climate

directly affects mortality by altering the distribution of daily temperatures to which populations are exposed

and indirectly affects mortality risk by altering the shape of the mortality-temperature response function.

Importantly, our econometric framework allows us to develop estimates of both the partial derivative, which

captures the direct effect only where no adaptation is allowed to take place, and the total derivative, which

reflects both direct effects and the changing slope of the response function.

In our econometric framework, the partial derivative of expected mortality risk with respect to the climate

is captured through a change in events T , the argument of E[ĝ(·)], and conditional on climate C (TMEAN)

and income Y (log(GDPpc)). The partial effect of the climate on expected mortality risk is then:

∂
ˆ̃
ft
∂C

=
∂

ˆ̃
ft
∂T

∂Tt
∂C

=
∂E[ĝ]

∂T

∣∣∣∣
Ct,Yt

∂Tt
∂C

(A.8)

Here, ∂T
∂C is the change in the all nonlinear elements of T that describe the daily temperature distribution,

resulting from an incremental change in climate.

In contrast, the total derivative of expected mortality risk with respect to a change in climate reflects

endogenous adaptations through adjustments to b, which in turn change the shape of the response function.

Our econometric framework captures these effects through the TMEAN interactions in g(·), which modify

the shape of a region’s response function based on long run average conditions. When we compute the total

derivative of
ˆ̃
f(.) with respect to the climate, we consider both the partial effect of changes to T and the

effect of adaptive adjustments captured by the effect of TMEAN . The total effect of the climate on expected

mortality risk is:

d
ˆ̃
ft
dC

=
∂

ˆ̃
ft
∂C

+
∂

ˆ̃
ft
∂b

∂b∗t
∂C

=
∂

ˆ̃
ft
∂T

∂Tt
∂C

+
∂

ˆ̃
ft

∂TMEAN

∂TMEAN t

∂C

=
∂E[ĝ]

∂T

∣∣∣∣
Ct,Yt

∂Tt
∂C

+
∂E[ĝ]

∂TMEAN

∣∣∣∣
Ct,Yt

∂TMEAN t

∂C
(A.9)

where ∂E[ĝ]
∂TMEAN captures the ways in which incremental changes in TMEAN affect the shape of the mortality

response function, multiplied by the distribution of daily temperatures, T . ∂TMEAN
∂C is the amount that

long-run average temperatures are estimated to change during a period of incremental climatic change.

As shown in Equation 10 in the main text, the difference between the total and partial derivatives of
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expected mortality risk with respect to the climate is thus the difference between Equations A.9 and A.8:

d
ˆ̃
ft
dC
− ∂

ˆ̃
ft
∂C

=
∂E[ĝ]

∂TMEAN

∣∣∣∣
Ct,Yt

∂TMEAN t

∂C
(A.10)

The righthand side of Equation A.10 is fully computable for years in our projection using a combination

of empirically estimated parameters, ĝ(·), and climate projections, {T , TMEAN}. Substituting Equation

A.10 into Equation 9 from the main text allows us to estimate non-marginal changes in adaptation costs

incurred as the climate of each population changes. In each projection, we solve for adaptation costs as a

region’s climate evolves from time period t0 to t:

̂A(b∗(Yt,Ct))−A(b∗(Yt,Ct0)) ≈ −
∫ t

t0

V SLs

[
d

ˆ̃
fs
dC
− ∂

ˆ̃
fs
∂C

]
dCs
ds

ds

≈ −
t∑

τ=t0+1

V SLτ

(
∂E[ĝ]

∂TMEAN

∣∣∣∣
Cτ ,Yt

)
(TMEANτ − TMEANτ−1)

≈ −
t∑

τ=t0+1

V SLτ γ̂1E[T ]τ (TMEANτ − TMEANτ−1) , (A.11)

where the second equality results from substitution of Equation A.10 into Equation 9 and from employing a

discretized approximation of the continuous integral (we use discrete time-steps of one year). As noted in the

main text, recall that we hold income fixed at its endpoint value in the calculation of Equation A.11. This

is because the goal of the calculation is to develop an estimate of the additional adaptation expenditures

incurred due to the changing climate only. Changes in adaptation expenditures due to rising incomes may

change mortality risk under climate change, but these changes are voluntary and are not the consequence of

the changing climate, and are therefore not included in our calculation of the total mortality-related costs

of climate change. These income effects are accounted for econometrically in the estimation of Equation 5

through the interaction with income and they influence predicted temperature-mortality relationships in all

of our calculations, but we do not track the cost of these effects and these costs are intentionally excluded

from our calculation of climate-change-induced adaptation spending.

As noted in the main text, we treat the VSL as invariant to changes in the climate, although we allow

it to be a function of income, which evolves with time. These adaptation cost estimates are calculated for

each impact region, age group, and year, using a baseline period t0 of 2001 to 2010, for each of our 33

high-resolution climate model projections.

A.4 Alternative specification: Including adaptation in the utility function

Throughout the main text, we construct estimates of adaptation costs derived from a representative agent’s

problem in which utility is a function only of a consumption good x. In this simple model (see Equation 6),

there is no direct utility benefit of adaptation behaviors or investments b; instead, the actions represented by

this composite good influence the agent’s problem only through changing mortality risk. In an alternative

specification shown here, we allow agents to derive utility both from consumption of x and also possibly
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from the choice variables in b (for example, air conditioning might increase utility directly, regardless of its

effect on mortality risk). We demonstrate that the implications of this alternative model are purely in the

interpretation of our empirically derived adaptation cost estimates; the calculation described in Section 6.2

of the main text does not change.

As in Section 2 of the main text, we consider a single representative global agent who faces mortality

risk ft = f(bt, ct) in each period t. We further assume there exists some numeraire good xt for which utility

u(xt, bt) is quasilinear. As above, this agent maximizes utility conditional on expected weather realizations,

subject to an exogenous budget constraint and exogenously determined emissions. Letting f̃(bt,Ct) =

Ect [f(bt, c(Ct)) | Ct] represent the expected probability of death, the agent solves:

max
bt,xt

u(xt, bt)
[
1− f̃(bt,Ct)

]
s.t. Yt ≥ xt +A(bt), (A.12)

where A(bt) is the composite price of all adaptive investments and Y is exogenously determined income. As

in the main text, we assume that f̃(·) is continuous and differentiable, that markets clear for all technologies

and investments represented by the composite b, as well as for the numeraire good x, and that all choices b

and x can be treated as continuous.

Rearranging the agent’s first order conditions and using the conventional definition of the VSL,63 we can

write:

∂A(b∗t )

∂bt
− ∂u/∂b

∂u/∂x︸ ︷︷ ︸
net marginal cost of b

=
−u(x∗t , b

∗
t )

∂u/∂x[1− f̃(b∗t ,Ct)]

∂f̃(b∗t ,Ct)

∂b
= −V SLt

∂f̃(b∗t ,Ct)

∂b︸ ︷︷ ︸
marginal survival

benefit of b

(A.13)

This expression governs expenditures on adaptation. Its righthand side is the product of the negative of the

VSL and the marginal change in expected mortality risk due to a change in adaptation, so it represents the

expected marginal benefit (in dollar value) of adjusting b through its effect on mortality risk. This object is

identical to its counterpart in Equation 7 in the main text. The lefthand side has two parts. The first term

represents the marginal cost of all pecuniary expenditures incurred due to a marginal change in adaptation

b, such as spending on units of air conditioning. The second term represents [minus] the dollar value of all

non-mortality marginal utility benefits or costs derived from a marginal change in b, such as the utility of

enjoying air conditioning or the disutility of exercising at midnight to avoid daytime heat (note that this

object is expressed in dollars of WTP by dividing through by the marginal utility of consumption, ∂u/∂x).

Together, these two terms can be interpreted as the net marginal cost of all adaptive actions composing the

composite b, because non-mortality marginal benefits and costs are removed from the marginal pecuniary

expenditures term ∂A/∂b.

Both terms composing net marginal costs in Equation A.13 are unobservable. In contrast, the marginal

survival benefit can be rewritten as the product of the negative of the VSL and the difference between the

total and partial derivatives of mortality risk with respect to the climate – i.e., df̃
dC −

∂f̃
∂C (see Equation 8).

63As described in the main text, the value of a statistical life is defined as the willingness to pay for a marginal increase in
the probability of survival (Becker, 2007). Mathematically, this object is utility divided by the product of the probability of

survival and the marginal utility of consumption: V SL =
u(x)

[1−f̃(b,C)]∂u/∂x
.
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As discussed in the main text, we develop an empirical model that allows us to estimate both the total and

partial derivates, rendering the marginal survival benefits empirically tractable.

In the main text, we use this insight to develop an expression for the additional adaptation costs in-

curred as the climate changes gradually, which is composed of observable terms. This expression remains

unchanged under the alternative model specification described here, with the exception that the adaptation

costs recovered are net of utility benefits or costs incurred due to changes in optimal adaptation b∗. Here,

the additional net adaptation costs incurred as the climate changes gradually from period t0 to period t are:

A(b∗(Yt,Ct))−A(b∗(Yt,Ct0))− 1

∂u/∂x
[u(x∗(Yt,Ct), b

∗(Yt,Ct))− u(x∗(Yt,Ct0), b∗(Yt,Ct0))]

=

∫ t

t0

[
∂A(b∗s)

∂b
− ∂u(x∗s, b

∗
s)/∂b)

∂u(x∗s, b
∗
s)/∂x)

]
db∗s
dC

dCs
ds

ds

= −
∫ t

t0

V SLs

[
df̃(b∗s,Cs)

dC
− ∂f̃(b∗s,Cs)

∂C

]
dCs
ds

ds, (A.14)

where the last line relies on substitution from Equations A.13 and 8. The righthand side of Equation A.14

can be approximated empirically as shown in Section 6.2 in the main text. Thus, the only implication of

this alternative model specification is that adaptation cost estimates should be interpreted as pecuniary

expenditures net of direct utility benefits and costs.

Similarly, the mortality “partial” social cost of carbon shown in the main text, which relies on an estimate

of adaptation costs, is unchanged under this alternative model specification. However, as in Equation A.14,

the mortality partial SCC should be interpreted here as the marginal willingness to pay to avoid the alteration

of mortality risk associated with a marginal increase in greenhouse gas emissions inclusive of the benefits and

costs of adaptations undertaken to reduce mortality risk. Indeed, the omission of the direct utility benefits

and costs of adaptation behaviors and technologies from the mortality partial SCC is intentional, because

they are not a response to mortality-related risks. However, these utility effects are caused by climate change

and should be included in a full, all-sector SCC.
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B Data appendix

B.1 Mortality data

Our mortality data represent 41 countries. In some cases our data represent the universe of reported deaths

in those countries, while in others (e.g., China), data are representative samples, as no vital statistics registry

system exists. Combined, our dataset covers mortality outcomes for 55% of the global population. Data

are drawn from multiple, often restricted, national and international sources, all mortality datasets contain

information on deaths per 100,000 population from all causes at a monthly or annual frequency, and all except

India contain age-specific mortality rates. Each of the countries’ data are drawn from distinct databases,

details of which are provided below. Figure B1 displays the spatial coverage and resolution of all mortality

records used, as well as their temporal coverage.

Figure B1: Mortality statistics used to estimate the relationship between mortality, tempera-
ture, climate, and income. Figure shows the spatial distribution and resolution of mortality statistics from all countries
used to generate regression estimates of the temperature-mortality relationship. Temporal coverage for each country is shown
under the map (the dotted line for the European Union (EU) time series indicates that start dates vary for a small subset of
countries).

B.1.1 Brazil

Brazilian mortality data at the ADM2-month level were obtained from the Mortality Information System

(SIM) of the Ministry of Health in Brazil (Ministry of Health in Brazil, 2019).64 We use data from 1997-2010

and aggregate the monthly data to annual frequency. Data were provided for both place of death and place

of residence. As with all subsequent datasets, we assign weather exposure to deaths in our data at the place

of residence, as this is provided for all sources. Data were downloaded in 5-year age groups which were then

aggregated to the age groups used in the analysis. ADM2-level populations were obtained from the same

source. Administrative boundary files were downloaded from GADM (Global Administrative Areas, 2012).

64http://datasus.saude.gov.br/sistemas-e-aplicativos/eventos-v/sim-sistema-de-informacoes-de-mortalidade.
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Brazilian death data as downloaded contained a number of ADM2 units with missing values for deaths and

no values of zero, implying that these are a mix of true zeros and missing values. To ascertain whether they

are more likely to be the former, we examined the relationship between death counts and population in all

ADM2 units, and then in only those ADM2 units that ever show a missing value in any year. We found that

missing values are more likely to occur in low population ADM2 units, suggesting that these are places that

should have recorded zero deaths. We consequently treat these missing values as zeros, but in robustness

tests find that treating them as missing does not substantially change any of our results.

B.1.2 Chile

Chilean mortality data at the ADM2 level are obtained from the vital registration system maintained by the

Department of Statistics and Information (Departmento de Estad́ısticas e Información de Salud, DEIS) at

the Ministry of Health (Ministry of Health, Chile, 2015).65 We use data at the ADM2 level for 1997-2012.

The vital registration system contains information on individual dates of deaths (often with missing values

for days but always containing years) which we aggregate within administrative units to provide the ADM2

total count of deaths in each unit. This also provides data with arbitrarily accurate age grouping, and we

aggregate in accordance with the age groups in our analysis. ADM2 population data were downloaded from

the National Institute of Statistics (Instituto Nacional de Estad́ısticas, INE)66 and merged with the death

counts to calculate mortality rates. Administrative boundary files were downloaded from GADM (Global

Administrative Areas, 2012).

B.1.3 China

Chinese mortality data are the same as those used in Chen et al. (2013), and were provided by the authors of

that paper. The data come from the Chinese Disease Surveillance Points system and are not the universe of

mortality as in much of the rest of our sample, but rather a representative sample of the Chinese population

benchmarked to the 1990 Chinese census. Locations are given as geographic coordinates relating to the

centroid of the surveillance area. Data used in Chen et al. (2013) span from 1991-2000 and cover 145

points to which we assign a climate exposure at the level of the ADM2 unit containing that point. We

supplement this with data on a further 161 points from 2004-2012 which were benchmarked to the 2000

census to reflect population changes. This gives us a total of 203 disease surveillance points due to overlap

in some points across both periods. Due to the difficulty of establishing consistency between the overlapping

points in the two time periods, we include a time-period specific fixed effect in our regressions to allow for

unobservable differences in disease and mortality monitoring extent and capacity across time periods. The

data record deaths in 5 year age groups, as well as population estimates required to calculate mortality rates.

Administrative boundaries for the ADM2 and ADM1 level are obtained from Chen et al. (2013) for the 2000

census boundaries, and points are assigned to an administrative unit based on being contained within those

boundaries.

65Data are available here: http://www.deis.cl/bases-de-datos-defunciones/.
66Data are available here: http://www.ine.cl/estadisticas/demograficas-y-vitales
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B.1.4 European Union

The EU maintains a centralized statistical database known as EuroStat (Eurostat, 2013)67 which contains

data on mortality counts and rates for all member countries at EU-specific administrative regions known as

“Nomenclature of territorial units for statistics” (NUTS) boundaries.68 Data on mortality were obtained at

NUTS2 level for all member states between the years 1990-2014, though individual countries start and end

years vary, as described in Table B1. Population data for each NUTS2 region were obtained through the

EuroStat database. We download age-specific data according to the age groups used in the main analysis

(<5, 5-64, >64). It is noted in the metadata that populations for NUTS2 regions are estimated to be

applicable to the first day of each year, whereas mortality data are counted at the end of that year. Because

of this, we offset the assignment of population and mortality by one year, so that, for example, 2005 mortality

is matched with 2006 population on January 1st. Administrative shapefiles are downloaded from the same

source, and the 2013 version is used in the analysis. We drop the data on France from the EU dataset, as

we obtain a higher spatial resolution source directly from the French government.

B.1.5 France

Mortality data for France are obtained at the ADM2-month level from the Institut National D’etudes De-

mographiques (National Institute for the Study of Demography (INED), 2019)69 for the years 1998-2010.

Data from this source do not have a categorization of mortality for a <5 year old age group, as used in

the main analysis. The youngest age group for which there are data is ages 0-19. In the main analysis,

we assign the mortality rates in the French data for the 0-19 age group to the <5 age group when pooling

across countries. As this introduces some measurement error, we perform a robustness check in which we

alternatively assign the deaths in the 0-19 age group to our 5-64 age group; this leads to a minimal change in

the multi-country pooled results shown in Table D2. We aggregate the monthly data to the annual level for

consistency with other countries’ mortality records, and obtain administrative boundary files from GADM

(Global Administrative Areas, 2012).

B.1.6 India

Annual data on Indian mortality rates at the district (i.e., ADM2) level were obtained from Burgess et al.

(2017). A more thorough description of the data is given by the authors. The Indian data are not used in

our main analysis, due to the absence of age-specific mortality rates and the importance of age in defining

the mortality-temperature response function (e.g., see Figure 2). However, these data are used to assess the

external validity of our extrapolation methods, as discussed in Appendix D.8.

67Data are available here: http://ec.europa.eu/eurostat/data/database.
68Administrative boundary files were downloaded from: http://ec.europa.eu/eurostat/web/gisco/geodata/

reference-data/administrative-units-statistical-units/nuts.
69Data are available here: https://www.ined.fr/en/.

A14



B.1.7 Japan

Japanese data on mortality and population at the prefecture-year70 level were obtained from the National

Institute of Population and Social Security Research71 for the years 1975-2012. Data are available for

all 47 prefectures of Japan, with no changes to administrative boundaries in that time. Mortality rates

were downloaded as single-year age groups, which were then aggregated into the age groups used in the

main analysis (<5, 5-64, >64). Prefecture (i.e., ADM1) boundaries were obtained from GADM (Global

Administrative Areas, 2012).

B.1.8 Mexico

Mexican data on municipality-month deaths were obtained for the years 1990-2010 from the National In-

stitute of Statistics and Geographical Information (INEGI), whose open-microdata repository contains the

raw mortality files.72 The data contain detailed information, including the municipality of occurrence and of

residence, date, and age at death. We assign locations of deaths based on municipalities of residence. Data

were downloaded as monthly mortality counts, then aggregated into municipality-age-year counts, using the

age groups from the main analysis (<5, 5-64, >64). These counts were merged with municipality-by-year

population values estimated from the Mexican census and as maintained at Minnesota Population Center’s

Integrated Public Use Microdata Series, International.73 There were seven municipalities (less than 0.5% of

total municipalities) that had inharmonious borders across data sets and years due to administrative splits or

mergers; we assigned these municipalities into their respective unions before the splits or after the mergers.

B.1.9 United States

U.S. data on the universe of mortality and population at the county-year level were obtained from the

Center for Disease Control (CDC) Compressed Mortality Files (CMF)74 for the years 1968-2010. CDC

removes values for county-year-age totals that are fewer than 10 deaths to preserve anonymity in the data

in public files, and we obtain these through a data user agreement with CDC. There is some overlap in

years available in the restricted and unrestricted datasets, and where both are available we use the restricted

data due to better spatial coverage. In the restricted data, zeros are coded as missing, and so we reassign

all missing values to zero. Data were downloaded in 5-year age groups and then aggregated to the age

groups used in the main analysis (<5, 5-64, >64). The CMF reports deaths at the county of residence.

Administrative boundaries are obtained from the TIGER datasets of the U.S. Census Bureau.75

70Japanese mortality data are the only data in our sample at first administrative level (i.e., ADM1). Though this is equivalent
administratively to states in the U.S., the small size of the prefectures makes them comparable in geographic scale to large U.S.
counties or EU NUTS2 regions.

71Data are available here: http://www.ipss.go.jp/index-e.asp.
72The initial link we used was http://www3.inegi.org.mx/sistemas/microdatos/encuestas.aspx?c=33388&s=est as of July,

2015. This link has been moved since, and now is being maintained at http://en.www.inegi.org.mx/proyectos/registros/

vitales/mortalidad/ as of June, 2018.
73Minnesota Population Center. Integrated Public Use Microdata Series, International: Version 7.0 [dataset]. Minneapolis,

MN: IPUMS, 2018. http://doi.org/10.18128/D020.V7.0.
74Partial data are freely available through the CDC Wonder database.
75Data are available here: https://www.census.gov/geo/maps-data/data/tiger-line.html.
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B.1.10 Aggregate data

Data from each country were standardized as annual rates for the age groups <5, 5-64, and >64, and

were merged into a single file. We note that in all cases, place of residence is used for the assignment of

temperature exposure to death records. In cases of inharmonious borders between years, we assign exposure

based on a temporally consistent set of boundaries that are chosen to be in the most aggregate form, i.e.,

before administrative units split or after they merge.

76France is estimated using data from a different source and the EuroStat version of the France data is not used.
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Table B1: Details of the European Union mortality sample

Code Country Number of NUTS2 regions Years

AT Austria 9 1990-2014 (no data for 1995)
BE Belgium 11 1990-2014
BG Bulgaria 6 1990-2014
CH Switzerland 7 1991-2014
CY Cyprus 1 1993-2014 (data before 1993 is not disaggre-

gated by age group)
CZ Czech Republic 8 1992-2014
DE Germany 50 2002-2014 (2 regions are only available from

2011-2014)
DK Denmark 5 2007-2014
EE Estonia 1 1990-2014
EL Greece 4 1990-2014 (data after 2013 is disaggregated

into 13 regions)
ES Spain 19 1990-2014
FI Finland 5 1990-2014
FR France 22 1990-2014 (an additional 4 regions are avail-

able in 2014)76

HR Croatia 2 2001-2014
HU Hungary 7 1990-2014
IE Ireland 2 1997-2014
IS Iceland 1 1990-2014
IT Italy 21 1990-2014 (2 regions only have age-specific in-

formation after 2001)
LI Liechtenstein 1 1994-2014
LT Lithuania 1 1990-2014
LU Luxembourg 1 1990-2014
LV Latvia 1 2002-2014
ME Montenegro 1 2005-2014
MK Macedonia 1 1995-2014
MT Malta 1 1995-2014 (mortality rates for ages <5 are only

available from 1995)
NL Netherlands 12 2001-2014
NO Norway 7 1990-2014
PL Poland 16 1991-2014
PT Portugal 7 1992-2014
RO Romania 8 1990-2014
SE Sweden 8 1990-2014
SI Slovenia 2 2014
SK Slovakia 4 1997-2014
TR Turkey 26 2009-2014
UK United Kingdom 40 1999-2014 (4 regions only have data available

after 2000, 2 after 2002, 5 for 2014 only)
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B.2 Climate data

This appendix describes the climate data that we use throughout our analysis, as well as the methods

that we use to make these data spatially and temporally consistent with the resolution of both historical

mortality records and with future projection information. Broadly speaking, we use two classes of climate

data: the first is historical data that we use to estimate the mortality-temperature relationship; the second is

projected data on future climate, which we use to generate climate change damage estimates under various

emissions scenarios. In this appendix, we describe the historical data, describe the projection data, detail our

method for constructing a probabilistic ensemble of future climate projections at high resolution using these

projection data, and finally we outline our method for spatial and temporal aggregation of both historical

and projection climate data.

B.2.1 Historical climate data

Data on historical climate exposure is used to estimate the mortality-temperature response function as well

as the heterogeneity in these responses across income and climate spaces. We use two separate groups

of historical data on precipitation and temperature from independent sources. First, we use a reanalysis

product, the Global Meteorological Forcing Dataset (GMFD) (Sheffield, Goteti, and Wood, 2006), which

relies on a climate model in combination with observational data to create globally-comprehensive data on

daily mean, maximum, and minimum temperature and precipitation (see Auffhammer et al. (2013) for a

discussion of reanalysis data). Second, we repeat our analysis with climate datasets that strictly interpolate

observational data across space onto grids. This comparison is important, as the sources of measurement

error are likely to differ across reanalysis (which relies in part on a physical climate model) and interpolation

(which relies purely on statistical methods such as kriging). For interpolated products, we use the daily

Berkeley Earth Surface Temperature dataset (BEST) (Rohde et al., 2013) in combination with the monthly

University of Delaware precipitation dataset (UDEL) (Matsuura and Willmott, 2007).

The GMFD dataset serves as our primary historical climate data source for analysis. A primary reason for

this choice is that GMFD is used to bias-correct the climate model projections (described below), and using

any other estimated relationship with these projection data would consequently be inconsistent. We use

BEST and UDEL in order to ensure consistency of our estimated response surfaces across climate datasets.

Global Meteorological Forcing Dataset for Land Surface Modeling The main dataset used in this

analysis is the Global Meteorological Forcing Dataset (GMFD) (Sheffield, Goteti, and Wood, 2006). These

data provide surface temperature and precipitation information using a combination of both observations and

reanalysis. The reanalysis process takes observational weather data and uses a weather forecasting model to

interpolate both spatially and temporally in order to establish a gridded dataset of meteorological variables.

The particular reanalysis used is the NCEP/NCAR reanalysis, which is downscaled and bias-corrected using

a number of station-based observational datasets to remove biases in monthly temperature and precipitation

(Sheffield, Goteti, and Wood, 2006). Data are available on a 0.25◦×0.25◦ resolution grid from 1948-2010.

The temporal frequency is up to 3-hourly, but the daily data are used for this analysis. We obtain daily

average temperatures and monthly average precipitation for all grid cells globally.

A18



Berkeley Earth Surface Temperature The Berkeley Earth Surface Temperature (BEST) dataset

provides temperatures from 1701-2018 over land from a combination of observational records (Rohde et al.,

2013), with spatially disaggregated data available from 1753.77 During the time periods used within this

paper (varying between 1957-2014), as many as 37,000 station records, representing 14 separate databases of

station data, are incorporated into the BEST data. Station data are incorporated using a kriging methodol-

ogy that allows for the incorporation of more stations with shorter time series than other well-known global

surface temperature interpolation data (like the UDEL temperature dataset). In particular, the spatial av-

eraging method uses close neighbors of a station to identify discontinuities in a particular time series that

may be due to instrumental change or re-positioning, and decreases the influence of these changes in the

spatially averaged grid (Rohde et al., 2013). This does have the potential drawback of over-smoothing the

spatial heterogeneity in temperatures (National Center for Atmospheric Research Staff (Eds), 2015). BEST

data are provided at daily frequency on a 1◦×1◦ resolution grid, and we utilize the daily average 2m air

temperature variable for each grid cell.

University of Delaware Climate Dataset The University of Delaware climate dataset (UDEL) (Mat-

suura and Willmott, 2007) is used for precipitation in combination with the BEST data. UDEL provides

gridded, interpolated data derived from weather stations on many variables at a monthly frequency and

on a 0.5◦×0.5◦ resolution grid. Data are available from 1900-2014. The UDEL data are based on two un-

derlying datasets of stations and have fewer observations underlying the interpolated grid, as compared to

BEST. This is likely to lead to some decrease in interpolation accuracy in areas where the spatial coverage

of weather stations is low (e.g., sub-Saharan Africa). The interpolation procedure used is based on inverse

distance weighting to the central point of each grid cell, and the authors note that other data, like altitude

and atmospheric characteristics, are used to improve that interpolation. The monthly average precipitation

is obtained for all grid cells globally.

B.2.2 Climate projection data

Data on the future evolution of the climate is obtained from a multi-model ensemble of Global Climate

Model (GCM) output. However, two important limitations arise when integrating GCM outputs into the

current analysis. First, the relatively coarse resolution (∼ 1◦ of longitude and latitude) of GCMs limits their

ability to capture small-scale climate patterns, which render them unsuitable for climate impact assessment

at high spatial resolution. Second, the GCM climate variables exhibit large local bias when compared with

observational data.

To address both of these limitations, we use a high-resolution (0.25◦ X 0.25◦) set of global, bias-corrected

climate projections produced by NASA Earth Exchange (NEX): the Global Daily Downscaled Projections

(GDDP) (Thrasher et al., 2012).78 The NEX-GDDP dataset comprises 21 climate projections, which are

downscaled from the output of global climate model (GCM) runs in the Coupled Model Intercomparison

Project Phase 5 (CMIP5) archive (Taylor, Stouffer, and Meehl, 2012). The statistical downscaling algorithm

77Data are available here: http://berkeleyearth.org/data/.
78Climate projections used were from the NEX-GDDP dataset, prepared by the Climate Analytics Group and NASA Ames

Research Center using the NASA Earth Exchange, and distributed by the NASA Center for Climate Simulation (NCCS).
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used to generate the NEX-GDDP dataset is the Bias-Correction Spatial Disaggregation (BCSD) method

(Wood et al., 2004; Thrasher et al., 2012), which was developed to address the aforementioned two limitations.

This algorithm first compares the GCM outputs with observational data on daily maximum temperature,

daily minimum temperature, and daily precipitation during the period 1950-2005. NEX-GDDP uses a

climate dataset from GMFD for this purpose (Sheffield, Goteti, and Wood, 2006). A daily, quantile-specific

relationship between GCM outputs and observations is derived from this comparison. This relationship is

then used to adjust the GCM outputs in historical and in future time periods so that the systemic bias of

the GCM is removed. To disaggregate the bias-corrected GCM outputs to higher resolution, this algorithm

interpolates the daily changes relative to climatology in GCM outputs into the spatial resolution of GMFD,

and merges the fine-resolution changes with the climatology of the GMFD data.

For each GCM, three different datasets are generated. The first uses historical emissions to simulate the

response of the climate to historical forcing from 1850 to 2005. The second and third use projected emissions

from Representative Concentration Pathways 4.5 and 8.5 (RCP4.5 and RCP8.5) to simulate emissions under

those two emissions scenarios up to 2100. RCP 4.5 represents a “stabilization” scenario in which total

radiative forcing is stabilized around 2100 (Riahi et al., 2011; Van Vuuren et al., 2011); RCP8.5 simulates

climate change under intensive growth in fossil fuel emissions from 2006 to the end of the 21st century. We

use daily average temperature and daily precipitation in the RCP4.5 and RCP8.5 scenarios from this dataset,

where the daily average temperature is approximated as the mean of daily maximum and daily minimum

temperatures.

B.2.3 SMME and model surrogates

The CMIP5 ensemble of GCMs described above is an “ensemble of opportunity”, not a systematic sample

of possible futures. Thus, it does not produce a probability distribution of future climate change. Moreover,

relative to simple climate models designed for probabilistic sampling of the global mean surface temperature

(GMST) response to radiative forcing, the CMIP5 ensemble systematically fails to sample tail outcomes

(Tebaldi and Knutti, 2007; Rasmussen, Meinshausen, and Kopp, 2016). To provide an ensemble of climate

projections with a probability distribution of GMST responses consistent with that estimated by a prob-

abilistic simple climate model, we use the surrogate model mixed ensemble (SMME) method (Rasmussen,

Meinshausen, and Kopp, 2016) to assign probabilistic weights to climate projections produced by GCMs and

to improve representation of the tails of the distribution missing from the ensemble of GCMs. Generally

speaking, the SMME uses (1) a weighting scheme based on a probabilistic projection of global mean surface

temperature from a simple climate model (in this case, MAGGIC6) (Meinshausen, Raper, and Wigley, 2011)

and (2) a form of linear pattern scaling (Mitchell, 2003) that preserves high-frequency variability to construct

model surrogates to fill the tails of probability distribution that are not captured by the GCM ensembles.

This method provides us with an additional 12 surrogate models.

The SMME method first divides the unit interval [0,1] into a set of bins. For this analysis, the bins are

centered at the 1st, 6th, 11th, 16th, 33rd, 50th, 67th, 82nd, 89th, 94th, and 99th percentiles. Bins are narrower

in the tails to ensure samples are created for portions of the GMST probability distribution function that are
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Figure B2: Future climate projections from the surrogate model/mixed ensemble (SMME).
Figure shows the 21 climate models (outlined maps) and 12 model surrogates (maps without outlines) that are weighted in
climate change projections so that the weighted distribution of the 2080 to 2099 global mean surface temperature anomaly
(∆GMST) exhibited by the 33 total models matches the probability distribution of estimated ∆GMST responses (blue-gray
line) under RCP8.5. For this construction, the anomaly is relative to values in 1986-2005.

not captured by CMIP5 models. The bounds and center of each bin are assigned corresponding quantiles of

GMST anomalies for 2080-2099 from simple climate model (SCM) output; in the application here and that

of Rasmussen, Meinshausen, and Kopp (2016), this output came from the MAGICC6 (Meinshausen, Raper,

and Wigley, 2011) model, constrained to match historical temperature observations and the conclusions of

the IPCC Fifth Assessment Report regarding equilibrium climate sensitivity. The GMST of CMIP5 models

are categorized into bins according to their 2080-2099 GMST anomalies.

If the number of CMIP5 models in a bin is less than 2, surrogate models are generated to raise the

total number of models to 2 in that bin. The surrogate models are produced by using the projected annual

GMST of the SCM that is consistent with the bin’s central quantile to scale the spatial pattern of a selected

CMIP5 model, then adding the intercept and residual from the same model. There are two cases of selecting

CMIP5 models for pattern and residual. When there is only one CMIP5 model in a bin, an additional model

is selected that has a GMST projection close to GMST in the bin and a precipitation projection over the

region of interest complementary to the model already in the bin (i.e., if the model in the bin is relatively dry,

then a relatively wet pattern is selected, and vice versa.) When there is no CMIP5 model, two models are

picked with GMST projections close to that of the bin, with one model being relatively wet and one being

relatively dry. In the final probabilistic distribution, the total weight of the bin is equally divided among the

CMIP5 models and surrogate models in the bin. For instance, if four models are in the bin centered at the

30th percentile, bounded by the 20th – 40th percentiles, each will be assigned a probability of 20%÷4 = 5%.

The resulting distribution of GMST for all members of the SMME is shown in Figure B2.
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B.2.4 Aggregation of gridded climate data to administrative boundaries

We link gridded historical climate data to administrative mortality records by aggregating grid cell infor-

mation to the same spatial and temporal level as the mortality records (see Table 1). Similarly, to generate

future climate change impact projections at each of our 24,378 custom impact regions (impact regions are

administrative regions or agglomerations of administrative regions; see Appendix C for details), we aggregate

grid cell information to impact region scale. In both cases, nonlinear transformations of temperature and

rainfall are computed at the grid cell level before averaging values across space using population weights

and finally summing over days within a year. This procedure recovers grid-by-day-level nonlinearities in

the mortality-temperature (and mortality-precipitation) relationship, because mortality events are additive

(Hsiang, 2016).

To see how this calculation is operationalized, consider the fourth-order polynomial specification for

temperature used in our main set of results for estimation of Equations D.17 and 5. In this case, we begin

with data on average temperatures for each day d at each grid cell z, generating observations Tzd. These

grid-level values must then be aggregated to the level of an administrative unit i in year t. To do this,

we first raise grid-level temperature to the power p, computing (Tzd)
p for p ∈ {1, 2, 3, 4}. We then take a

spatial average of these values over administrative unit i, weighting the average by grid-level population (and

accounting for fractional grid cells that fall partially within administrative units). Population weights are

time-invariant and calculated from the 2011 Landscan dataset (Bright et al., 2012). We then sum these daily

polynomial terms T pzd over days in the year t. The vector of annual, administrative-level-by-year temperature

variables we use for estimation is thus:

Tit =

[∑
d∈t

∑
z∈i

wzi(Tzd)
1,
∑
d∈t

∑
z∈i

wzi(Tzd)
2, ...,

∑
d∈t

∑
z∈i

wzi(Tzd)
P

]

where wzi is the share of i’s population that falls into grid cell z, and where superscripts indicate polynomial

powers. This nonlinear transformation performed prior to aggregation allows the aggregated measure of

temperature to capture grid-by-day level exposure to very hot and very cold temperatures. In the econometric

estimation of Equations D.17 and 5, quadratic polynomials in precipitation are similarly calculated and

weighted averages are taken over administrative units. In Appendix Figure D3, we show robustness of the

mortality-temperature relationship to four different nonlinear functional forms of temperature, all of which

undergo an analogous grid-level transformation before averaging across space and summing over time. In

future projections, all daily gridded climate projection data from each of the 33 members of the SMME are

analogously aggregated across space and time.

B.3 Socioeconomic data and downscaling methodologies

This appendix provides details of the socioeconomic data used throughout our analysis, which includes his-

torical subnational incomes, future projections of incomes, and future projections of population counts and

age distributions. Additionally, because we require these variables at high spatial resolution both for econo-

metric estimation and for future projections, we detail the downscaling procedures we use to disaggregate
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available socioeconomic data, which is generally provided at relatively low resolution.

B.3.1 Historical income data

Our main specification (Equation 5) estimates heterogeneity in mortality-temperature responses as a function

of income and long-run average temperature in each location. In order to obtain income data for each

subnational region in our mortality records, we draw subnational incomes from three main sources, using a

combination of subnational GDP datasets as well as globally-comprehensive national GDP data:

• Penn World Tables (PWT) national GDP.79 This dataset provides national level incomes from

1950 to 2014 for most of the countries in the world. We use Penn World Tables version 9.0 to obtain

national level income for all countries in our sample (Brazil, Chile, China, France, India, Japan, Mexico,

USA, and the 33 EU countries listed in Table B1).

• Eurostat (2013) subnational GDP.80 This dataset provides national and sub-national level income

data for the European countries in our dataset. We use this dataset to obtain subnational income at

the NUTS2 level of aggregation, which is the level at which we observe mortality records.

• Gennaioli et al. (2014) subnational GDP. This dataset provides national and sub-national income

data for 1,503 administrative regions from 83 countries. We use this dataset to obtain subnational level

income data for all countries outside the EU: Brazil, Chile, China, France,81 India, Japan, Mexico, and

USA. Data are provided by the authors at the first administrative subdivision for each country (i.e.,

ADM1).

Using these data, we construct a consistent multi-country panel of subnational incomes at the NUTS2 level

for EU countries and ADM1 level for the non-EU countries, which can be used for estimation of Equation

5. To do so, we use Eurostat (2013) and Gennaioli et al. (2014) to downscale the PWT national-level

incomes. We prefer this approach to using the subnational data directly, as there are known inconsistencies

in measurement of subnational GDP across countries. Thus, we make the assumption that the within-

country distributions of GDP recorded in Eurostat (2013) and Gennaioli et al. (2014) are accurate, but the

exact levels may not be. We rely on the PWT data as a consistent measure of GDP levels for all countries;

thus, our subnational GDP estimates sum to national GDP from PWT for all countries in the sample. For

administrative region s in country c in year t we calculate a weight, νsct that will apportion national income

to subnational regions as follows:

79Penn World Tables (PWT) database: https://www.rug.nl/ggdc/productivity/pwt/.
80Eurostat database: http://ec.europa.eu/eurostat/data/database.
81As noted in Appendix B.1, we use higher resolution mortality data from France than that which is available through

EuroStat. Therefore, we also rely on administrative income data from Gennaioli et al. (2014) instead of lower resolution income
data from EuroStat.
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νsct =


GDPpcEurostatsct∑
s∈cGDPpc

Eurostat
sct

if c ∈ EU

GDPpcGennaiolisct∑
s∈cGDPpc

Gennaioli
sct

otherwise

GDPpcsct =νsct ×GDPpcPWT
ct

where GDPpcPWT corresponds to per capita GDP drawn from the PWT dataset. Using these estimates of

administrative-level GDP per capita, we construct the time-invariant income covariate log(GDPpc)s used

for estimation of Equation 5 as follows. First, we take the log of our GDP per capita estimate for year t and

region s. Second, we use a Bartlett kernel to compute a weighted average of lagged values of log(GDPpc)st,

where the length of the kernel is empirically derived as described in Appendix E.1. We take this approach

because changes in income are unlikely to immediately translate into changes in mortality-temperature

sensitivity. Finally, we average this Bartlett kernel value across all years in the sample for each region s

(note that the length of the panel varies by country, as shown in Figure B1).

Note that data in Eurostat (2013) are an annual panel. However, the data collected by Gennaioli et al.

(2014) are drawn from disparate sources, often using census data, which are typically not annual, leading to

an unbalanced panel. To construct annual values of income per capita using the Gennaioli et al. (2014) data,

we linearly interpolate between years, before constructing the Bartlett kernel and taking averages across all

years. For instances where we need to extrapolate backwards in time (i.e., when mortality data are available

earlier than income data), we extrapolate backwards logarthmically. All subnational income data are in

constant 2005 dollars PPP. A summary of the available years of data before interpolation is given in Table

B2.

Country ISO code Years in mortality sample Years in income sample82

Brazil BRA 1997-2009 1995, 2000, 2005, 2010

China CHN 1991-2012 1990, 1995, 2000, 2005, 2010

Chile CHL 1997-2012 1995, 2000, 2010

EU 1990-2012 2003-2012

France FRA 1998-2012 1995, 2000, 2005, 2010

India IND 1957-2001 1980, 1985, 1990, 1995, 2000, 2005,
2010

Japan JPN 1975-2012 1975, 1980, 1985, 1990, 1995, 2000,
2005, 2009

Mexico MEX 1990-2012 1995, 2000, 2005, 2010

USA USA 1968-2013 1965, 1970, 1975, 1980, 1985, 1990,
1995, 2000, 2005, 2009

Table B2: Temporal coverage of mortality records and years of available subnational income
data.

82EU subnational income data come from Eurostat (2013). For all other countries, subnational income data are obtained
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B.3.2 Income projections and downscaling methodology

Future projections of national incomes are derived from the Organization for Economic Co-operation and

Development (OECD) Env-Growth model (Dellink et al., 2015) and the International Institute for Applied

Systems Analysis (IIASA) GDP model (Samir and Lutz, 2014), as part of the “socioeconomic conditions”

(population, demographics, education, income, and urbanization projections) of the Shared Socioeconomic

Pathways (SSPs). The SSPs propose a set of plausible scenarios of socioeconomic development over the 21st

century in the absence of climate impacts and policy for use by the Integrated Assessment Modeling (IAM)

and Impacts, Adaptation, and Vulnerability (IAV) scientific communities.

While there are many models within the SSP database, only the IIASA GDP model and OECD Env-

Growth model provide GDP per capita projections for a wide range of countries. The IIASA GDP model

describes incomes that are lower than the OECD Env-Growth model, so we produce results for both of these

models to capture uncertainty within each socioeconomic scenario (we compute results for three socioeco-

nomic scenarios: SSP2, SSP3, and SSP4). To construct annual estimates, we smoothly interpolate between

the time series data in the SSP database, which are provided in 5-year increments. For each 5-year period,

we calculate the average annual growth rate, and apply this growth rate to produce each year’s estimate of

GDP per capita.83

Throughout the main text, we show results relying on SSP3, although sensitivity of all main results to

socioeconomic scenario are shown in the Appendix. While the methodology we develop to estimate future

impacts of climate change on mortality, as well as a partial mortality-only SCC, can be applied to any

available socioeconomic scenario, we emphasize SSP3 because its historic global growth rates in GDP per

capita and population match observed global growth rates over the 2000-2018 period much more closely than

either SSP2 or SSP4, as shown below in Table B3.

Although the SSP scenarios provide national-level income projections, our high-resolution analysis re-

quires estimates of location-specific GDP within country borders. To generate values of income for each

of our 24,378 impact regions over time, we allocate national GDP per capita values from the SSPs across

impact regions within a country through a downscaling procedure that relies on nightlights imagery from

the NOAA Defense Meteorological Satellite Program (DMSP). This approach proceeds in two steps. First,

we use available subnational income data from Gennaioli et al. (2014) in combination with higher-resolution

income data from the U.S., China, Brazil, and India, to empirically estimate the relationship between GDP

per capita and nightlight intensity.84 Second, we use this estimated relationship to allocate national-level

GDP data across impact regions within each country, based on relative intensity of night lights in the present.

While this approach models heterogeneity in income levels across impact regions, each region grows in the

future at the same rate as the national country projection from the SSPs. We detail these two steps below.

Estimation of the GDP-nightlights relationship While there exists a growing literature linking

from Gennaioli et al. (2014).
83OECD estimates of income are provided for 184 countries and IIASA’s GDP projections cover 171 countries. For the

remaining countries, we apply the average GDP per capita from the available countries for the baseline period, and allow this
income to grow at the globally averaged growth rate.

84Due to cross-country inconsistencies in subnational income data, the income data for the US are primarily used to estimate
the relationship between GDP per capita and nightlights intensity; other countries’ data provide validation only.
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Table B3: Comparison of SSP growth rates to observed data in the historical record This table
shows global average growth rates in GDP per capita and in population from observational data (World
Bank), as well as from each SSP scenario used in our analysis. Note that International Institute for Applied
Systems Analysis (IIASA) GDP model (Samir and Lutz, 2014) only provides GDP per capita estimates after
2010. For both GDP per capita and population, and for each historical time period, SSP3 matches historical
data more closely; we therefore show climate change projection results using this scenario throughout the
main text.

Reference Scenario

World Bank SSP2 SSP3 SSP4

GDP per capita
OECD (2000-2018) 2.39% 2.65% 2.57% 2.63%
OECD (2010-2018) 2.37% 3.01% 2.85% 2.98%
IIASA (2010-2018) 2.37% 3.69% 3.17% 3.55%

Population
IIASA (2000-2018) 1.21% 1.13% 1.18% 1.12%
IIASA (2010-2018) 1.17% 1.04% 1.13% 1.02%

economic output to nightlights intensity, we take an unconventional regression approach to recovering this

relationship because our goal is to apportion national income within a country, as opposed to predict the

level of income at any given location. In particular, we are interested in the ratio GDPpcrc∑
r∈c wrcGCPpcrc

for

impact region r in country c (where wrc is a region-specific population weight), which will allow us to

predict income at the impact region level, given projections of national GDP per capita from the SSPs,∑
r∈c wrcGDPpcrc = GDPpcSSPc . Thus, we estimate a regression relating relative GDP per capita to relative

nightlights intensity, where each administrative region’s values are calculated as relative to the country mean.

The dependent variable for administrative region i in country c and year t is thus GDPpcict∑
i∈c wictGDPpcict

.85 To

construct a measure of location-specific relative nightlight intensity, we calculate a z-score of nightlights

(ZNL) for each administrative region i within a country c using:

ZNLict =
NLict −NLct
σ(NLct)

where NLct is the country average nightlights intensity, σ(NLct) is the standard deviation of nightlights

intensity across all administrative regions within country c, and where the stable nightlights data prod-

uct from 1992-2012 is used to construct time-varying measures of average nightlights intensity across an

administrative region, NLict.

The regression we estimate is as follows:

GDPpcict∑
i∈c wictGDPpcict

= α+ βZNLict + εict (B.15)

where β represents the impact of a one standard deviation increase in a region’s nightlights intensity, relative

to its country average, on that region’s relative GDP per capita.

Allocation of national GDP to impact regions using relative nightlight intensity We use the

85As discussed, the income data available from Gennaioli et al. (2014) are at the first administrative level (i.e. ADM1).
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estimated coefficients from Equation B.15 to compute income at impact region level. To do so, we construct

values ZNLrct = NLrct−NLct
σ(NLct)

for each impact region r using the average of stable nightlights from DMSP

across the years 2008-2012. We then estimate GDPpcrct as follows:

ĜDPpcrct =
[
α̂+ β̂ZNLrct

]
×GDPpcSSPct

where
∑
r∈c wrcGDPpcrc comes from one of the SSP projected income scenarios. The result of this approach

is that the subnational downscaled incomes will sum to the national income from the SSPs, as these ratios

sum to one, by construction.

B.3.3 Population projections and downscaling methodology

Future projections of national populations are derived from the International Institute for Applied Sys-

tems Analysis (IIASA) (Samir and Lutz, 2014) population projections as part of the Shared Socioeconomic

Pathways (SSPs).86 The IIASA SSP population projections provide estimates of population by age cohort,

gender, and level of education for 193 countries from 2010 to 2100 in five-year increments. Each projection

corresponds to one of the five SSPs, as defined in O’Neill et al. (2014). These populations are mapped to

impact regions by country code using 3-digit country ISO-codes.

To assemble population projections for each of our 24,378 impact regions, we downscale the country-level

projections from the SSPs using 2011 high-resolution LandScan estimates of populations (Bright et al., 2012).

Populations for impact regions in countries or areas not given in the SSP database are held constant at the

values estimated by LandScan in 2011. Thus, for any given impact region r in year t, population for scenario

v (poprtv) is estimated as:

p̂oprtv =

 popSSPctv

(
popLandScanr,2011∑
r∈c pop

LandScan
r,2011

)
, if r ∈ C

popLandScanr,2011 , if r /∈ C
(B.16)

where popSSPctv is the SSP population given for country c and year t for scenario v, popLandScanr,2011 is the LandScan

estimate for impact region r, and C is the set of 193 countries available in the SSP Database. Note that while

this approach distributes country-level projections of population heterogeneously to impact regions within a

country, it fixes the relative population distribution within each country at the observed distribution today.

The division of population totals into the three age categories used throughout the analysis (0-4, 5-64, >64)

is assumed to be constant across all impact regions within a country, and is thus taken directly from the

SSPs.

B.4 Scale and scope of existing empirically-based estimates of the mortality

risk of climate change

86The population data are accessed from the SSP database (IIASA Energy Program, 2016).
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Table B4: Scale and scope of existing empirically-based estimates of the mortality risk of climate change. Table highlights papers
quantifying the mortality risks of climate change that either are broad in spatial scope (e.g., covering multiple countries) or aim to account for at
least one driver of adaptation (e.g., income). The first row highlights the present study, while the last row indicates the studies used to calibrate the
mortality component of the FUND IAM, which is currently used to inform the U.S. government’s social cost of carbon (SCC).

Study authors Spatial extent
Temporal
extent

Types of adaptation accounted for
Future climate
change projections

Climate
adaptation

Income-related
adaptation

Adaptation costs

Carleton et al.,
2021

Estimated on 40
countries,
empirically-based
extrapolation to
global

1968 - 2010 Yes Yes Yes

Yes:
ensemble of 33
IPCC-recommended
climate models

Burgess et al.,
2017

India 1957 - 2000

Yes:
rural vs. urban,
income, credit
access

Yes:
1 climate model;
adaptation not
projected

Barreca et al.,
2016

United States 1900 - 2004

Yes:
region-specific
models are
estimated

Yes:
healthcare
access, electricity
access, A/C
adoption

Deschenes, 2018
16 East, South, and
SE Asian countries

1960 - 2015
Yes:
1 climate model

Heutel et al.,
2017

United States 1992 - 2011 Yes

Yes:
ensemble of 21
IPCC-recommended
climate models

Portnykh, 2017 Russia 2006 - 2014 Yes
Yes:
1 climate model

Geruso &
Spears, 2018
(infant only)

53 developing
countries across
Africa, Latin
America, and Asia

1980 - 2010
Yes:
literacy, income

Guo et al., 2018

412 municipalities in
N. America, S.
America, Europe,
Asia, and Oceania

1984 - 2015

Yes:
local heat wave
thresholds
dependent on
future
temperatures

Yes:
5 climate models

Martens, 1998
(calibrates the
FUND model)

20 cities in N.
America, S.
America, Europe,
Asia, Africa, and
Oceania

Meta-
analysis,
time
periods vary

Yes:
3 climate models

A
28



C Spatial units for projection: “Impact regions”

We create a set of custom boundaries that define the spatial units for which location-specific projected

damages of climate change are computed. To do so, we utilize politically defined regions, as opposed to a

regular grid, as socioeconomic data are generally collected at this scale and because administrative regions

are relevant to policy-makers. These regions, hereafter referred to as “impact regions”, are constructed such

that they are identical to existing administrative regions or are a union of a small number of administrative

regions. We use version 2 of the Global Administrative Region dataset (GADM) (Global Administrative

Areas, 2012), which contains 218,328 spatial units, to delineate boundaries. However, for computational

feasibility and greater comparability across regions, we agglomerate these regions to create a set of 24,378

custom impact regions. To conduct this agglomeration, we establish a set of criteria that ensures these

impact regions have approximately comparable populations and are internally consistent with respect to

mean temperature, diurnal temperature range, and mean precipitation. A map of these regions is shown in

Figure C1, and we detail this agglomeration algorithm below.

Figure C1: Map of the 24,378 “impact regions” for which location-specific projections are
calculated. We use a clustering algorithm to form these regions from the full set of GADM administrative
regions, such that they are roughly similar in total population, and so that they are approximately internally
homogenous with respect to mean temperature, diurnal temperature range, and mean precipitation.

C.1 Algorithm for construction of impact region boundaries

We develop an algorithm which agglomerates administrative units from GADM into a smaller set of impact

regions. Our goal is to create a set of approximately 20,000 impact regions that are spatially compact, of

approximately equal population, and exhibit internally homogeneous climates. This procedure is conducted

in three steps.

Step 1: Constructing a target region count for each country First, for each country, we generate

a target number of regions; this is the number of regions that a country should roughly be divided into,

based on its spatial extent, population, and climatic variability, and conforming to the goal of constructing

approximately 20,000 global regions. We create this target for country c as the arithmetic mean of a
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population-based target and a climate-based target:

targetc =
1

2
[population target+ climate target]

=
1

2

[
20000

popc∑
c popc

+ 20000
AcVc∑
cAcVc

]
where popc is population of country c in 2011 from Landscan (see Appendix B.3.3) and Ac is the total area

of country c. The variable Vc is a measure of a country’s internal climate variability, relative to the global

average, and is defined as follows:

Vc =
V arz[T ]

Ec[V arz[T ]]
+

V arz[D]

Ec[V arz[D]]
+

V arz[R]

Ec[V arz[R]]
+

V arz[Q]

Ec[V arz[Q]]

where T is mean daily temperature, D is the diurnal temperature range, R is precipitation in the wettest

month of the year, Q is precipitation in the driest month of the year, and where variances are taken over

grid cells z within country c and expectations are taken over all countries c.

Step 2: Categorization of countries based on their target region count Second, we catego-

rize countries based on whether there exists an administrative level in the GADM dataset (e.g. ADM1,

which are equivalent to U.S. states; ADM2, which are equivalent to U.S. counties) for which the number

of administrative units is roughly equivalent to the target number of regions. This categorization process

leads to each country being divided into one of three cases, as shown in Figure C2. First, if there exists

a GADM administrative level l, in country c, for which Nl, the number of administrative regions at level

l, lies within the range 1
2 targetc ≤ Nl ≤ 2targetc, we simply use the administrative level l as our set of

impact regions for country c. Countries which fall into this category are shown in shades of blue in Figure

C2. This categorization includes the case where targetc ≤ 1, in which case the entire country (i.e. ADM0

in GADM) is one impact region (shown in the lightest blue). Second, if the target number of regions for

country c exceeds the maximum available region disaggregation in GADM, we simply use the highest reso-

lution administrative level available from GADM. Countries which fall into this category are shown in dark

blue in Figure C2. Finally, for all other countries, administrative units from GADM must be agglomerated

to construct impact regions at a lower level of spatial resolution; these countries are shown in red in Figure

C2. The agglomeration algorithm is described below.

Step 3: Agglomeration algorithm for impact region construction The third step in the process

of constructing impact regions is to develop an agglomeration algorithm that will cluster administrative units

from GADM into lower spatial resolution regions. Note that this third step only has to be conducted for the

countries shown in red in Figure C2, as all other countries have a target number of impact regions that is

well approximated by existing GADM administrative regions at some level l. For these remaining counties,

the algorithm proceeds as follows.

First, we calculate a set of attributes at the highest administrative level available from GADM within

each country. As the agglomerations are performed, the attributes of each new agglomerated region are

generated from its component regions. These attributes are as follows:
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Figure C2: Categorization of countries based on the method used to construct impact regions
out of GADM administrative regions. A country’s target number of impact regions is targetc, as
computed in the text. Countries in shades of blue have target values that can be approximated by one of
the available GADM administrative levels l, such as ADM1 or ADM2, as there exists a level l such that
the total number of administrative regions, Nl, falls within the range 1

2 targetc ≤ Nl ≤ 2targetc. Darker
shades denote higher administrative levels, which have more regions. The ADM0 (country) level is also used
if targetc ≤ 1, and the highest available administrative level is used if targetc is greater than the maximum
Nl for country c. Finally, countries in red require agglomeration from the native GADM regions, as there
is no administrative level l which satisfies the range criterion above, given the target region count targetc.
This agglomeration algorithm is described in the text. We make an exception for the United States, shown
in red, and represent it at ADM2 (county) level.

• The set of GADM regions within the agglomeration

• The set of neighboring agglomerated regions

• Population (pop),87 and area (A)

• Socioeconomic and climatic traits ({T}): population density, average temperature, diurnal temp range,

wet season precipitation, and dry season precipitation

• Centroids of all GADM regions contained within the agglomeration ({(Lat, Lon)})

The agglomeration process is a greedy algorithm, which performs the following steps:

1. A set of proposed agglomerations is generated. For a given region r within a containing administrative

region Sl of administrative level l, these consist of:

• The combination of r with each of its neighbors within Sl.

• The next higher administrative region, Sl+1 (e.g., all counties within the same state).

• If neither of the above is available (e.g., an island state, with Sl equalling the country), the

combination of r and the closest neighbor also at the first administrative level.

87Population data are from Landscan (Bright et al., 2012), as in Appendix B.3.3.
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2. Each proposed agglomeration from step 1, across all regions, is scored. For a region r containing

subregions indexed by j, the scores consist of a weighted sum of the following:

Attribute Expression Weight

Area (
∑
j
Aj/A0)2, where A0 is the average US county area 0.01

Population (
∑
j
popj/pop0)2, where pop0 is the average US county popula-

tion

1

Dispersion V ar[Lat] + V ar[Lon cos E[Lat]] 10

Other traits
∑
T
V ar[Tr]/T0, where T0 is 1 for population density, 100 for el-

evation, 8.0 for mean temperature, 2.1 for diurnal temperature

range, 25.0 for wet season precipitation and 2.6 for dry season

precipitation

100

Circumference M n
6
√
M

, where M is the number of contained regions and n is

the number of neighboring regions

1

3. The agglomeration with the smallest score from step 2 is identified.

4. The regions within the new agglomeration are merged, and new properties are applied to the new

region.

5. This process repeats until the target number of regions targetc for country c is reached.
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D Econometric estimation: Additional results, robustness, out-

of-sample validation

This appendix shows additional illustrations of and tabular results for the main econometric regressions used

and discussed throughout the main text (Figures D1 and D2, and Table D1), results obtained using a pooled

version of the main model in which no heterogeneity in the mortality-temperature relationship is modeled

(Figure 2 and Table D2), a set of robustness checks for the main empirical results (Figures D3, D5, D6, and

D7 and Tables D3 and D4), and a set of out-of-sample validation tests designed to evaluate the accuracy

with which our estimates predict mortality-temperature responses in locations and time periods that are not

used for estimation (Figures D8, D9, and D10 and Tables D5 and D6).

D.1 Age-specific heterogeneity of the mortality-temperature response function

by average income and average climate

The estimation of Equation 5 tests for systematic heterogeneity in the mortality-temperature response func-

tion by modeling interactions between the temperature variables (T ) and the ADM1-level covariates of

average climate (TMEAN) and average income (log(GDPpc)). To see how we implement Equation 5 in

practice, note that in Equation D.17, we estimate ga(·) as the inner product between the nonlinear functions

of temperature Tit and a vector of coefficients βa; that is, ga(Tit) = βaTit. For example, in the polynomial

case, Tit is a vector of length P and contains the annual sum of daily average temperatures raised to the

powers p = 1, ..., P and aggregated across grid cells. The coefficients βa therefore fully describe the age-

specific nonlinear response function. In Equation 5, we allow ga(Tit) to change with climate and income

by allowing each element of βa to be a linear function of these two variables. We do not include a triple

interaction between temperature, climate and income. Using this notation, our estimating equation is:

Mait = (γ0,a + γ1,aTMEANs + γ2,a log(GDPpc)s)︸ ︷︷ ︸
βa

Tit + qca(Rit) + αai + δact + εait

where γ0,a,γ1,a, and γ2,a are each vectors of length P , the latter two describing the effects of TMEAN and

log(GDPpc) on the sensitivity of mortality Mait to temperature Tit.

Tabular results from this estimation are reported in Table D1 for each of the three age groups of interest.

Each coefficient represents the change in the temperature-sensitivity of mortality rates associated with a

marginal increase in the relevant covariate (e.g., TMEAN), evaluated at the daily temperature shown.

All temperature sensitivities are shown relative to a moderate day at 20◦C. For example, higher incomes

correspond with lower sensitivity of infant mortality to both cold temperatures (coefficient of -0.87 on a -5◦C

day), and to hot temperatures (coefficient of -0.93 on a 35◦C day).88 Although not all of the coefficients

would be judged statistically significant by conventional criteria, it is noteworthy that higher incomes and

warmer climates are associated with lower mortality consequences of hot days for all age categories. Income

88Because our covariates are linearly interacted with the full vector of temperature variables describing the nonlinear mortality-
temperature response, the effect of each covariate depends on the realized daily temperature.
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and climate are associated with cold day mortality differentially across age groups, with some evidence that

higher income locations exhibit more extreme cold day sensitivity for the oldest age group. This relationship

may arise due to age being positively correlated with income within the over 64 category, as older individuals

are more susceptible to cold-related death risks (Deschênes and Moretti, 2009).

Table D1: Marginal effect of covariates on temperature sensitivity of mortality rates. Coefficients
(standard errors) represent the marginal effect of increasing each covariate by one unit on the temperature
sensitivity of mortality, evaluated at each of the shown daily average temperatures. Temperature sensitivity
is defined as the impact of a particular temperature on mortality rates, relative to a moderate day at 20◦C.
Regression is a fourth-order polynomial in daily average temperature, estimated using GMFD weather data
with a sample that was winsorized at the top 1% level. All response functions are estimated jointly in a
stacked regression model that is fully saturated with age-specific fixed effects. Each temperature variable is
interacted with each covariate.

Age < 5 Age 5-64 Age >64
log(GDPpc) TMEAN log(GDPpc) TMEAN log(GDPpc) TMEAN

35◦ C -0.887* -0.099* -0.236 -0.031* -3.881 -0.624*
(0.536) (0.053) (0.160) (0.018) (2.380) (0.331)

30◦C -0.280 -0.044 -0.019 -0.014 -0.189 -0.292**
(0.277) (0.028) (0.068) (0.009) (0.910) (0.141)

20◦C – – – – – –
– – – – – –

0◦C -0.973* 0.029 0.050 -0.030* 0.269 -0.731***
(0.536) (0.031) (0.150) (0.018) (2.019) (0.153)

-5◦C -1.165* 0.028 0.216 -0.040** 3.097 -0.920***
(0.629) (0.032) (0.210) (0.020) (2.956) (0.202)

Regression includes age× ADM2 fixed effects and age× country × year fixed effects. Adjusted R2 = 0.933; N=820,237. Standard

errors clustered at the ADM1 level. *** p<0.01, ** p<0.05, * p<0.1

As these terms are difficult to interpret, we visualize this heterogeneity in the main text in Figure 1 by

dividing the sample into terciles of income and climate (i.e., the two interaction terms), creating nine discrete

bins describing the log(GDPpc) × TMEAN space. We plot the predicted response functions at the mean

value of covariates within each of these nine bins, using the coefficients shown in Table D1. This results in a

set of predicted response functions that vary across the joint distribution of income and average temperature

within our sample data, shown in Figure 1 for the >64 age category. Figures D1 and D2 replicate this figure

for the other two age groups in our analysis.

D.2 Results and robustness with pooled model

In the main text, we estimate the mortality-temperature relationship while explicitly modeling heterogeneity

due to income and climate. In this sub-section, we instead show a series of results using a model without

interactions, yielding average treatment effects within age groups. One key advantage of this simpler model is

that it is straightforward to examine robustness of estimates to various datasets and fixed effect specifications.

Below we describe the model, show results for average mortality-temperature relationships by age group,

demonstrate robustness to other functional forms of temperature and other climate datasets, and show results

for alternate model specifications.
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Figure D1: Heterogeneity in the mortality-temperature relationship (ages <5 mortality rate).
Each panel represents a predicted response function for the ages <5 mortality rate for a subset of the income-
average temperature covariate space within our data sample. Response functions in the lower left are the
predicted mortality-temperature sensitivities for low income, cold regions of our sample, while those in the
upper right apply to the high income, hot regions of our sample. Regression estimates are from a fourth-order
polynomial in daily average temperature and are estimated using GMFD weather data with a sample that
was winsorized at the 1% level on the top end of the distribution only. All response functions are estimated
jointly in a stacked regression model that is fully saturated with age-specific fixed effects, and where each
temperature variable is interacted with each covariate and a dummy for each age category.

D.2.1 Estimating a pooled multi-country mortality-temperature response function

Here we estimate a pooled, multi-country, age-specific, mortality-temperature response function. The model

exploits year-to-year variation in the distribution of daily weather to identify the response of all-cause

mortality to temperature, following, for example, Deschênes and Greenstone (2011). Specifically, we estimate

the following equation on the pooled mortality sample from 40 countries:

Mait = ga(Tit) + qac(Rit) + αai + δact + εait (D.17)

where a indicates age category with a ∈ {< 5, 5-64, > 64}, i denotes the second administrative level (ADM2,

e.g., county),89 c denotes country, and t indicates years. Thus, Mait is the age-specific all-cause mortality

rate in ADM2 unit i in year t. αai is a fixed effect for age × ADM2, and δact a vector of fixed effects that

allow for shocks to mortality that vary at the age× country × year level.

89This is usually the case. However, as shown in Table 1, the EU data is reported at Nomenclature of Territorial Units for
Statistics 2nd (NUTS2) level, and Japan reports mortality at the first administrative level.
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Figure D2: Heterogeneity in the mortality-temperature relationship (ages 5-64 mortality rate).
Each panel represents a predicted response function for the ages 5-64 mortality rate for a subset of the income-
average temperature covariate space within our data sample. Response functions in the lower left are the
predicted mortality-temperature sensitivities for low income, cold regions of our sample, while those in the
upper right apply to the high income, hot regions of our sample. Regression estimates are from a fourth-order
polynomial in daily average temperature and are estimated using GMFD weather data with a sample that
was winsorized at the 1% level on the top end of the distribution only. All response functions are estimated
jointly in a stacked regression model that is fully saturated with age-specific fixed effects, and where each
temperature variable is interacted with each covariate and a dummy for each age category.

Our focus in Equation D.17 is the effect of temperature on mortality, represented by the response function

ga(·), which varies by age. As in our our main specification, Tit contains polynomials of daily average

temperatures (up to fourth order), summed across the year. These calculations are performed at the grid

cell level before being aggregated up to the level of the administrative units in the data. Results for alternative

functional form specifications are shown in Figure D3 and the consequences of alternate functional forms for

climate change projection results are shown in Appendix F. Analogous to temperature, we summarize daily

grid-level precipitation in the annual ADM2-level vector Rit. We construct Rit as a second-order polynomial

of daily precipitation, summed across the year, and estimate an age- and country-specific linear function of

this vector, represented by qac(·).
We fit the multi-country pooled model in Equation D.17 using weighted least squares, weighting by age-

specific population so that the coefficients correspond to the average person in the relevant age category and

to account for the greater precision associated with mortality estimates from larger populations.90 Standard

90We constrain population weights to sum to one for each year in the sample, across all observations. That is, our weight for
an observation in region i in year t for age group a is ωa

it = popait/
∑

i

∑
a popait. This adjustment of weights is important in

our context, as we have a very unbalanced panel, due to the merging of heterogeneous country-specific mortality datasets.
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errors are clustered at the first administrative level (ADM1, e.g., state), instead of at the unit of treatment

(ADM2, e.g., county), to account for spatial as well as temporal correlation in error structure. Robustness of

this model to alternative fixed effects and error structures is shown in Table D2, and to alternative climate

datasets in Figure D3.

Age-specific pooled multi-country mortality-temperature response functions. As prior work

has shown that age cohorts respond differently to temperature, and because we expect considerable demo-

graphic transitions in the future, we allow for heterogeneity across age groups in Equation D.17. Specifically,

we allow for separate mortality-temperature response functions ga(Tit) for each of three age categories (<5,

5-64, >64). Figure 2 in the main text displays the mortality-temperature responses for each age group, esti-

mated from Equation D.17 and using the pooled 40-country sample and our preferred specification (column

(2) in Table D2). This reveals substantial heterogeneity across age groups within our multi-country sample:

people over the age of 64 experience approximately 4.7 extra deaths per 100,000 for a day at 35◦C (95◦F)

compared to a day at 20◦C (68◦F), a substantially larger effect than that for younger cohorts, which exhibit

little response. This age group is also more severely affected by cold days; estimates indicate that people over

the age of 64 experience 3.4 deaths per 100,000 for a day at −5◦C (23◦F) compared to a day at 20◦C, while

there is a relatively weak mortality response to these cold days for other age categories. Overall, these results

demonstrate that the elderly are disproportionately harmed by additional hot days and disproportionately

benefit from reductions in cold days, consistent with prior evidence from the U.S. (Deschênes and Moretti,

2009; Heutel, Miller, and Molitor, 2017). It is important to note, however, that the oldest age group (over

64 years) accounts for just 12% of the population in our historical sample.

Robustness to temperature functional form and climate data. Figure D3 displays the results

of estimating a version of Equation D.17 using a set of different functional forms of temperature (i.e.,

different formulations of the temperature vector Tit) and using two different climate datasets to obtain those

temperatures (see Appendix B.2 for details on these climate datasets). Here we show the mortality response

ga(Tit) for the >64 age group. The four functional forms estimated are fourth-order polynomials, bins of daily

average temperature, restricted cubic splines, and piecewise linear splines. The binned functional form is an

important benchmark, as it is closest to being fully non-parametric; the similarity of the binned regression

response functions with those from three other functional forms is reassuring. The GMFD climate data (top)

and BEST climate data (bottom) are drawn from independent sources, as described in Appendix B.2, and

lead to broadly similar response functions across all functional forms. All regressions include age× ADM2

fixed effects and age× country × year fixed effects, and are population weighted.

Alternative specifications. In Table D2, marginal effects of temperature on age-specific mortality

rates are shown for a range of alternative specifications. These estimates can be interpreted as the change in

the number of deaths per 100,000 per year resulting from one additional day at each temperature, compared

to the reference day of 20◦C (68◦F). Columns (1)-(3) increase the saturation of temporal controls in the

model specification, ranging from country-year fixed effects in column (1) to country-year-age fixed effects

in column (2), and adding age-specific state-level linear trends in column (3). Our preferred specification

is column (2), as column (1) does not account for differential temporal shocks to mortality rates by age

group, while in column (3) we cannot reject the null of equal age-specific, ADM1-level trends. In column
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Table D2: Temperature-mortality response function with demographic heterogeneity esti-
mated using pooled subnational data. Regression estimates are from a fourth-order polynomial in daily average
temperature and are estimated using GMFD weather data with a sample that was winsorized at the top 1% level. Point
estimates indicate the effect of a single day at each daily average temperature value shown, relative to a day with an average
temperature of 20◦C (68◦F).

Age-specific mortality rate (per 100,000)

(1) (2) (3) (4) (5)
Panel A: <5 years of age

35◦ C 2.218*** -0.003 0.041 0.074 -0.060
(0.487) (0.252) (0.157) (0.212) (0.252)

30◦ C 1.303*** -0.077 0.009 0.027 -0.076
(0.217) (0.102) (0.065) (0.092) (0.102)

20◦C – – – – –
– – – – –

0◦ C -2.098*** -0.030 -0.083 -0.051 -0.094
(0.312) (0.122) (0.108) (0.044) (0.118)

-5◦ C -2.224*** -0.141 -0.117 -0.011 -0.195
(0.380) (0.121) (0.104) (0.075) (0.121)

Panel B: 5 - 64 years of age
35◦ C 4.551*** 0.017 0.019 0.089 0.035

(0.656) (0.110) (0.067) (0.182) (0.110)
30◦ C 2.583*** 0.057 0.034 0.039 0.069

(0.253) (0.065) (0.036) (0.081) (0.064)
20◦C – – – – –

– – – – –
0◦ C -4.116*** -0.124* -0.094* -0.008 -0.126**

(0.292) (0.064) (0.050) (0.040) (0.059)
-5◦ C -4.689*** -0.116 -0.093* -0.002 -0.115

(0.364) (0.079) (0.051) (0.056) (0.073)

Panel C: >64 years of age
35◦ C -3.686** 4.712** 2.059 4.868*** 4.855**

(1.773) (1.939) (1.318) (1.884) (1.885)
30◦ C -1.870** 2.691*** 1.003* 2.446*** 2.772***

(0.770) (0.828) (0.587) (0.706) (0.800)
20◦C – – – – –

– – – – –
0◦ C 8.282*** 2.023*** 1.751*** 1.242*** 1.691**

(0.762) (0.731) (0.510) (0.373) (0.713)
-5◦ C 10.458*** 3.431*** 2.493*** 2.014*** 2.909***

(0.905) (0.959) (0.579) (0.523) (0.909)

Adj R-squared 0.982 0.987 0.989 0.999 0.987
N 820697 820237 820237 819991 820237
Age×ADM2 FE Yes Yes Yes Yes Yes
Country×Year FE Yes – – – –
Age×Country×Year FE – Yes Yes Yes Yes
Age×ADM1 linear trend – – Yes – –
Precision weighting (FGLS) – – – Yes –
13-month exposure – – – – Yes

Standard errors clustered at the ADM1 (e.g., state) level.
Regressions in columns (1)-(3), and (5) are population-weighted.
Column (4) weights use a precision-weighting approach (see text).
*** p<0.01, ** p<0.05, * p<0.1
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Figure D3: Robustness of the mortality-temperature relationship to alternative functional
forms and to different historical climate datasets (age >64). Row 1 shows the mortality-temperature
response function as estimated using daily temperature and precipitation data from the Global Meteorological
Forcing Dataset (GMFD). Row 2 shows the same response, using daily temperatures from Berkeley Earth
Surface Temperature (BEST), and monthly precipitation from the University of Delaware. Each column
displays a distinct functional form, with the fourth-order polynomial shown in column 1 overlaid in teal on
each subsequent column. See Section 4 for details on each functional form.

(4), we address the fact that some of our data are drawn from countries which may have less capacity

for data collection than others in the sample. Because our mortality data are collected by institutions in

different countries, it is possible that some sources are systematically less precise. To account for this, we

re-estimate our model using Feasible Generalized Least Squares (FGLS) under the assumption of constant

variance within each ADM1 unit.91 In column (5), we address the possibility that temperatures can exhibit

lagged effects on health and mortality (e.g., Deschênes and Moretti, 2009; Barreca et al., 2016; Guo et al.,

2014). Lagged effects within and across months in the same calendar year are accounted for in the net annual

mortality totals used in all specifications. However, it is possible that temperature exposure in December of

each year affects mortality in January of the following year. To account for this, in column (5) we define a

13-month exposure window to additionally account for temperatures previous December.92 Table D2 shows

that the results for both of these alternative specifications are similar in sign and magnitude to those from

column (2).

91To do this, we estimate the model in Equation D.17 using population weights and our preferred specification (column (2)).
Using the residuals from this regression, we calculate an ADM1-level weight that is equal to the average value of the squared
residuals, where averages are taken across all ADM2-age-year level observations that fall within a given ADM1. We then
inverse-weight the regression in a second stage, using this weight. All ADM2-age-year observations within a given ADM1 are
assigned the same weight in the second stage, where ADM1 locations with lower residual variance are given higher weight. For
some ADM2s, there are insufficient observations to identify age-specific variances; to ensure stability, we dropped the ADM2s
with less than 5 observations per age group. This leads us to drop 246 (of >800,000) observations in this specification.

92The specification in column (5) defines the 13-month exposure window such that for a given year t, exposure is calculated
as January to December temperatures in year t and December temperature in year t− 1.
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D.3 Additional results: Spatial extrapolation of temperature sensitivity

Figure D4 reports on our extrapolation of mortality-temperature response functions to the entire globe for

the <5 age group as well as the >64 age group shown in the main text in Figure 4. As in Figure 4, panels A

and B show predicted mortality-temperature responses for each impact region for 2001-2010 average values

of income and climate and for the impact regions that fall within the countries in our mortality dataset

(“in-sample”). Geographic heterogeneity within our sample is shown for hot days in the maps in panels C

and D, where colors indicate the marginal effect of a day at 35◦C, relative to a day at a location-specific

minimum mortality temperature. Grey areas are locations where mortality data are unavailable. Figure

4E–H show analogous plots, but now extrapolated to the entire globe.

Figure D4: Using income and climate to predict current response functions globally (ages <5
and 5-64). In panels A, B, E and F, grey lines are predicted response functions for impact regions, each representing a
population of 276,000 on average. Solid black lines are the unweighted average of the grey lines, where the opacity indicates the
density of realized temperatures (Hsiang, 2013). Panels C, D, G and H show each impact region’s mortality sensitivity to a day
at 35◦C, relative to a location-specific minimum mortality temperature. The top row shows all impact regions in the sample
of locations with historical mortality data (included in main regression tables), and the bottom row shows extrapolation to all
impact regions globally. Column titles indicate corresponding age categories. Predictions shown are averages over the period
2001-2010 using the SSP3 socioeconomic scenario and climate model CCSM4 under the RCP8.5 emissions scenario. Figure 4
shows the analogous figure for age >64.
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D.4 Robustness of estimates of subnational heterogeneity in the mortality-

temperature response function to an alternative characterization of long-

run average climate

Our primary results rely on a parsimonious representation of the climate: to capture adaptation to long-run

climate, we interact our nonlinear temperature variables (T ) with the long run average annual temperature

(TMEAN), conditioning on income (log(GDPpc)). In this specification, TMEAN acts as a summary

statistic of the long-run average climate, and we find that the mortality sensitivity to high temperatures

declines as TMEAN rises. To test the robustness of this finding, here we use a richer characterization of the

climate, replacing our climate interaction term TMEAN in Equation 5 with two interaction terms: long-run

average heating degree days (HDDs), calculated relative to a 20◦C threshold, and long-run average cooling

degree days (CDDs), also calculated relative to 20◦C. We re-estimate Equation 5 with these characterizations

of average exposure to cold (HDD) and hot (CDD) days, linearly interacting each climate covariate with

each element of T , as is done in the main specification using TMEAN .

The marginal effect of each climate variable on the temperature sensitivity of mortality is shown in Table

D3. Consistent with our main results in Table D1, warmer climates (as captured by higher CDDs) are

associated with lower sensitivity of mortality rates to high daily temperatures. This finding is particularly

true for the older age group.
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The coefficients in Table D3 determine the spatial and temporal heterogeneity in response functions that

we predict at the impact region, age, and year level across the globe. To see a visual example of how this

alternative model compares to our primary specification, in Figure D5 we show the slope of the response func-

tion evaluated at 35◦C under the primary specification (y-axis) and the alternative HDD/CDD specification

(x-axis), for each age group. Each scatter point represents one ADM1 region within our estimating sample.

Consistent with Tables D1 and D3, we see that across age groups, the more nuanced characterization of the

climate using cooling and heating degree days has a minimal effect on our predicted response functions.
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Figure D5: Predicted mortality-temperature response functions in-sample are similar under
alternative characterizations of long-run average annual temperature. Each panel contains a scat-
ter plot of the slope (i.e., derivative) of the predicted mortality-temperature response function, evaluated at
35◦C, under two distinct characterizations of the long-run average climate. On the y-axis, the response func-
tion is predicted using coefficients from a version of Equation 5 in which all nonlinear temperature variables
are interacted with long-run annual average temperature (this is the main specification used throughout the
analysis). On the x-axis, the response function is predicted using coefficients from a version of Equation
5 in which all nonlinear temperature variables are interacted with long-run annual average heating degree
days (HDDs) below 20◦C and cooling degree days (CDDs) above 20◦C. Predictions shown are for all ADM1
regions within our estimating sample. Each column shows predictions for a different age category.
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D.5 Robustness of the mortality-temperature response function to omission of

precipitation
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Figure D6: Predicted mortality-temperature response functions are similar with versus with-
out precipitation controls (age >64). Each panel shows the predicted mortality-temperature relationship
resulting from the estimation of a version of Equation 5, and evaluated at the population-weighted mean
value of the logarithm of GDP per capita and long run average temperature within the lowest income tercile
of the estimation sample (left panel), and the highest income tercile of the estimation sample (right panel).
The main regression model (Equation 5) is shown in the solid blue line, while a version of Equation 5 omitting
the country-specific quadratic precipitation controls is shown in the dashed red line. Vertical dashed lines
indicate the 99.5th percentile of the daily temperature distribution in each income group. 95% confidence
intervals for both regression models are shown in the shaded areas.

D.6 Robustness of the mortality-temperature response function to inclusion of

additional sources of heterogeneity

The analysis implemented in the main text relies on a two-factor model to explain heterogeneity in the

mortality-temperature relationship. There are three primary reasons we use just income and long-run average

climate to model heterogeneity. First, these covariates are conceptually intuitive determinants of adaptation;

looser budget constraints enable more investment in adaptive technologies and behaviors, while increased

exposure to a particular weather event leads to updated beliefs and corresponding adaptive investments.

Second, both covariates have been shown to be important in explaining heterogeneity in climate impacts

across a number of other contexts.93 Finally, substantial research has been conducted to generate projected

93See, for example, Mendelsohn, Nordhaus, and Shaw (1994); Kahn (2005); Auffhammer and Aroonruengsawat (2011); Hsiang,
Meng, and Cane (2011); Graff Zivin and Neidell (2014); Moore and Lobell (2014); Davis and Gertler (2015); Heutel, Miller,
and Molitor (2017); Isen, Rossin-Slater, and Walker (2017)
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scenarios of both of these covariates into the future, as described in Appendix B.

However, a valid critique of this model is that other factors that likely explain heterogeneity in the

mortality-temperature relationship are omitted from our main estimating equation (Equation 5). In this

section, we examine five additional covariates that plausibly influence the mortality-temperature relationship,

but for which projections into the future are not available (potentially due to the impossibility of that

exercise). First, we show that the inclusion of these additional variables into the interaction model in

Equation 5 has a negligible impact on predicted mortality-temperature relationships. Second, we show

that including these covariates in estimation, but omitting them when generating predictions, as would be

necessary when generating a climate change impact projection, leads to substantial bias.

The five variables, all of which are only available across our sample at the national level, are:

1. Institutions. We use the polity scores from the Center for Systemic Peace (2020). This measure of the

strength of democratic institutions has been widely discussed in the literature on economic growth (e.g.,

Glaeser et al., 2004). There are numerous ways in which the strength of institutions could moderate

the mortality-temperature relationship, for example, by leading to greater responsiveness of politicians

to the population of a country and so providing more public goods or healthcare access. These data

are available for all countries in our sample.

2. Healthcare. In order to capture variation in the quality of healthcare across countries directly, we

use the number of doctors per capita obtained from the World Development Indicators (World Bank,

2020). These data are available for all countries in our sample, although some years are missing.

3. Education. As a proxy for the education level of our sample, we use the percent of population that have

at least completed a secondary education obtained by combining data from the World Bank (2020) and

Organization of Economic Cooperaton and Development (2020). Each source has substantial gaps, with

the former providing better coverage for developing countries and the latter providing better coverage

for developed countries. The combination provides maximum coverage of our mortality sample. Where

the sample overlaps, the data are close in both levels and trends, but a slight discrepancy arises

due to differences in how the variable is defined: World Bank (2020) is defined as the measure of

adults 25+ who have completed secondary education, while in Organization of Economic Cooperaton

and Development (2020) it is constrained to adults 25-64. To combine these two datasets, we use

the observations in which both datasets are available and regress World Bank (2020) observations

on Organization of Economic Cooperaton and Development (2020) observations. We then add the

recovered intercept term to the World Bank (2020) data so that average levels across the two datasets

match. We then use the union of these two datasets in our regressions, averaging the two sources for

observations with data available from both.

4. Inequality. We capture inequality using national-level Gini coefficients from the World Inequality

Database (World Inequality Lab, 2020). Data are available for all countries in our sample with the

exception of Bulgaria, Montenegro, Malta, and pre-1990 Japan.
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5. Informality. It is plausible that the ability to smooth income or health shocks due to temperature

exposures may be affected by the access to stable employment. Informality in the labor force has been

pointed out to be an important determinant of growth across countries (e.g., La Porta and Shleifer,

2014). We use the percent of population self-employed from the World Development Indicators as it is

widely available and is mentioned by La Porta and Shleifer (2014) as being a good proxy for informality.

However, no data exist for this variable before 1991, meaning that some of our observations, primarily

from the US and Japan, are omitted when this variable is used.

We combine these variables with our data in the same manner as the covariates in our two-factor model,

which involves taking the time-invariant average over the period for which we have data for each country.

We then run the following regression:

Maict =ga(Tit, TMEANs, log(GDPpc)s, COV ARc) + qca(Rit) + αai + δact + εait, (D.18)

where COV ARc is one of the five alternative covariates mentioned above. All other variables are identical

to our main model in Equation 5. Due to missing data for certain countries, merging these data results

in sample sizes that are in most cases smaller than our original sample. Only the institutions regression

has 100% of the observations as our original sample, while health (91.5%), education (81.7%), inequality

(99.7%), and informality (72.8%) all have smaller sample sizes.

We conduct two tests using the results from estimating Equation D.18 for each alternative covariate.

First, we assess whether each added interaction variable actually explains substantial heterogeneity that is

not already captured by our two-factor model. These results are shown in Figure D7, where we use the

coefficients estimated in Equations 5 and D.18 to predict mortality-temperature response functions for our

main model and for the model including the alternate covariate. We predict responses using average values

of income and climate in the lowest income tercile of our data (left column) and in the highest income tercile

of our data (right column). Since the sample sizes differ across variables due to data availability constraints,

we re-estimate the main model using a comparable sample for each additional covariate, leading to some

variation in the main model response function across rows. The daily distribution of temperatures in each

income group is shown in the top row.

Figure D7 shows that differences between the main model (blue solid lines) and the alternative models

(red dashed lines) are small across most of the temperature support. Some larger differences do emerge,

for example in the mortality-temperature response in poorer countries when including an interaction with

education, but across all covariates, none of the differences from our main model are statistically significant.

Moreover, the majority of these slightly larger differences occur in the coldest 0.5% of our sample (with the

middle 99% of the temperature distribution indicated by vertical dashed lines). The implication of this test

is that, while the alternative covariates do in some cases explain some heterogeneity in the temperature-

mortality relationship, the difference in predicted mortality-temperature relationships between our main

model and these alternatives is never statistically significant and is substantively small across most of the

temperature support, reaching a maximum only at the coldest temperatures, which are rare in our sample

and are likely to become increasingly rare globally as the Earth warms.
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Figure D7: Predicted mortality-temperature response functions are robust to inclusion of
additional interaction terms (age >64). Comparison of response functions estimated using Equation 5
(“main model”, blue line) and including additional covariates using Equation D.18 (“alternative model”, red
dashed line) for the >64 age group. Samples are adjusted according to data availability for each covariate.
The left panel shows the predicted response evaluated at the population-weighted mean level of income,
climate, and the corresponding covariate across all observations that fall into the lowest tercile of GDP per
capita in our estimation sample, while the right shows the corresponding predicted response for observations
in the highest tercile of GDP per capita in our estimation sample. The area between the vertical dashed
lines is the middle 99% of the distribution of temperatures indicated by the histogram. As samples vary
slightly (see Table D4) across each comparison, the middle 99% varies slightly across figures, as does the
main model line. Results for other age groups are similar.
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Second, we perform a test to understand the consequences of explicitly modeling heterogeneity for a

variable that does not have values projected into the future. To do so, we predict mortality rates in-

sample and compute the Root Mean Squared Error (RMSE) using a model in which an additional covariate

is included in estimation, but not in prediction, as would be necessary when generating future climate

change impact projections. We compare these RMSE values to those from our two-factor model, where both

interaction terms can be included in climate change impact projections.

In Table D4 the RMSE values are shown for both cases. The “Main Model” column shows the RMSE

from estimation of Equation 5 using the sample that varies slightly across rows based on data availability

of each of the alternate covariates. The “Alternative Model” column shows the RMSE from estimation of

Equation D.18 for each additional covariate, where predicted values are generated by setting the coefficient

on the alternate covariate to zero. This second case mimics the situation in which we estimate a model with

an interaction term for a variable that cannot be projected into the future. The key comparison is between

the RMSE for the “Main Model” and the RMSE for the “Alternative Model”, shown in the final “Difference”

column. For each of these additional covariates, the alternative model exhibits a substantially worse model

fit (i.e., the “Difference” column is negative), implying that the inclusion of a covariate in estimation for

which there are no data in the future would lead to a model that performs strictly worse than the two-factor

model used throughout the paper.

Table D4: Evaluating omission of additional sources of heterogeneity in climate projections.
Each row corresponds to model performance metrics from the estimation of Equation D.18 with the inclusion
of the named covariate. All covariates other than those in the main model (Equation 5) are observed at
country level. Sample sizes differ across rows due to the availability of data for each of the covariates, with
sample sizes ranging from 73% to 100% of our main estimating sample. The “RMSE Main Model” column
shows the in-sample root mean squared error (RMSE) of our main model estimated using Equation 5. The
“RMSE Alternative Model” column shows the in-sample RMSE of a model that is estimated using Equation
D.18, but where predictions are generated omitting the impact of the additional covariate. This is done to
mimic a situation in which estimation includes historical data on additional determinants of heterogeneity,
but climate change projections must be made without projection data for that additional covariate. The
differences, all negative, are shown in the difference column and indicate that the RMSEs of our main
estimation equation are consistently lower than those for the alternative models.

Model Covariate Observations
Proportion of
Full Sample

RMSE
Main Model

RMSE Alter-
native Model

Difference

Institutions Polity 2 Score 820,237 1.000 565.19 567.26 -2.07
Health Doctors per Capita 750,486 0.915 572.87 574.68 -1.80
Education Secondary School Completion Rate 670,454 0.817 518.62 559.34 -40.72
Inequality GINI Coefficient 817,744 0.997 566.03 575.13 -9.10
Informality Self Employed percent of LF 597,059 0.728 602.65 607.42 -4.76

Sources: Center for Systemic Peace (Polity2), World Development Indicators (Doctors Per Capita, Secondary Completion Rate,
Self Employment), World Inequality Database (GINI), OECD (Secondary Completion Rate)
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D.7 Cross-validation to assess out-of-sample performance

Throughout our analysis, we use coefficients estimated from Equation 5 in the main text, in combination

with local-level observations and projections of TMEAN and log(GDPpc), to generate predicted response

functions in all regions of the world, including where mortality data are unavailable, both in the present and

into future (see Section 5.2 for details). In contrast, much prior work generates projected impacts of climate

change using spatially and/or temporally homogeneous response functions (e.g., Hsiang et al., 2017; De-

schênes and Greenstone, 2011). To assess the performance of our model in predicting mortality-temperature

relationships out-of-sample, in this section we implement multiple custom cross-validation exercises designed

to mimic the spatial and temporal extrapolation that is required when using available historical data to

generate global climate change projections decades into the future.

We perform three cross-validation exercises, each of which provides multiple measures of the out-of-

sample performance of Equation 5. In each case, we compare these performance metrics to the performance

of a benchmark model that ignores adaptation, and to a measure of in-sample model fit. Because we are

assessing the performance of our interaction model in predicting mortality sensitivity to temperature, as

opposed to mortality rates overall, all measures of model fit are reported using residualized data, in which

all fixed effects and controls are removed from identifying variation prior to estimation.94 Results from all

three tests are shown in Table D5, and are discussed in the following subsections.

D.7.1 K-fold cross-validation with spatial blocking

First, we conduct a standard k-fold cross-validation analysis with 10 folds. Because of the panel structure of

our data and because we use ADM1 level climate and income variables to determine mortality sensitivity to

temperature (see Equation 5), we spatially block when defining these ten folds, ensuring that all ADM2×
year × age observations that fall within the same ADM1 are removed from the sample in the same fold.

This ensures that the strong serial and spatial correlation between observations within an ADM1 does not

artificially inflate our measure of out-of-sample performance. Panel B of Table D5 shows the root mean

squared error (RMSE) from our main interaction model, Equation 5, as well as from a benchmark model

that does not account for any form of adaptation. These results show that our interaction model strongly

out-performs this benchmark model (RMSE decline of 12.62). Moreover, our interaction model obtains high

out-of-sample performance when compared to the in-sample RMSE shown in Panel A (RMSE increase of

0.15).

D.7.2 Cross-validation using blocking by covariate values

Second, we design a custom cross-validation analysis that systematically removes blocks of data based on

long-run climate and income, the two covariates determining mortality sensitivity to temperature in Equation

5. This exercise is designed to mimic the spatial extrapolation we conduct to generate mortality-temperature

relationships in locations without mortality data, based solely on their long-run climate and income (see

94Following the main specification in the paper, we remove age×ADM2 fixed effects, age× country × year fixed effects, as
well as country-specific quadratic precipitation controls.
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Sample Observations
% of global
population
(2010)

% of global
population
(2100)

RMSE
(adaption
model)

RMSE (no
adaption
model)

RMSE dif-
ference

A: In-sample model fit

Full Sample In-Sample 820,698 – – 565.19 577.80 -12.62

B: 10-fold cross-validation at ADM1 level

Full Sample Out-of-Sample 820,698 – – 565.34 577.97 -12.62

C: 9-fold cross-validation across income × long-run temperature covariate space

Full Sample Out-of-Sample 820,698 – – 565.51 577.88 -12.37

By held-out block
Low Income - Cold 4156 6.5 0.0 367.46 372.69 -5.23
Low Income - Moderate 15,279 9.0 0.5 644.94 650.49 -5.55
Low Income - Hot 334,968 65.5 46.0 534.72 546.21 -11.49
Middle Income - Cold 3507 1.5 0.0 571.85 566.54 5.31
Middle Income - Moderate 15,108 1.0 0.0 554.08 552.70 1.38
Middle Income - High 78,160 2.0 24.5 530.68 530.93 -0.25
High Income - Cold 125,934 5.0 2.0 617.93 643.54 -25.61
High Income - Moderate 137,706 5.0 5.0 593.86 605.36 -11.50
High Income - Hot 105,880 4.0 22.0 577.63 588.77 -11.14

D: 2-fold cross-validation across time (post-2004 hold-out)

Pre-2005 In-Sample 607,979 – – 565.72 577.85 -12.13
Post-2004 In-Sample 212,719 – – 563.72 578.38 -14.66

Post 2004 Out-of-Sample 212,719 – – 564.00 578.36 -14.36

Table D5: Evaluation of out-of-sample model performance This table presents results from three
separate cross-validation exercises. Panel A shows the in-sample model performance of the interaction
model in Equation 5 in the main text. For panels B, C, and D, a section of the data is omitted from the
sample and Equation 5 is re-estimated using the remaining observations. The mortality rates of the omitted
observations are then predicted out-of-sample, and the root mean squared error (RMSE) is calculated and
shown in the column titled “RMSE (adaptation model)”. This process is repeated, but with a regression
equation that omits any model of heterogeneity; RMSE values for this model are shown in the column titled
“RMSE (no adaptation model)”. Differences between the model with adaptation (i.e., Equation 5) and
the model without adaptation are shown in the “RMSE difference” column, with negative values indicating
that our main estimating equation performs better than the benchmark model without adaptation. Panel B
reports results from k-fold cross-validation, panel C from a custom cross-validation that blocks data based
on long-run income per capita and average temperatures, and panel D from a custom cross-validation that
divides the data into pre-2005 and 2005-2010 samples. All results are shown using residualized data in which
age × ADM2 fixed effects and age × country × year fixed effects were removed from all variables before
cross-validation was conducted. See text for details.

Section 5.2 for details). To conduct this analysis, we split our sample into 9 “blocks”, based on the tercile

of the long-run climate and income distributions that each observation falls into.95 For example, one block

corresponds to observations in the lowest income tercile and the coldest climate tercile, while another block

95Because long-run climate and income are observed at the ADM1 level, terciles are defined using the distribution over unique
ADM1s. We compute these distributions independently for each variable.
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corresponds to observations in the middle income tercile and the hottest climate tercile. We then repeatedly

remove each block of the data, re-estimate Equation 5 using the remaining 8 blocks of data, and generate

out-of-sample predictions for the removed block. In Panel C we show out-of-sample RMSE results for each

block, as well as for the full sample.

We draw three main conclusions from the results in Panel C of Table D5. First, the interaction model

overall performs well when predicting mortality rates in locations where income and climate fall outside the

estimation sample ranges. The full-sample out-of-sample RMSE from this exercise is only slightly higher than

the in-sample RMSE (RMSE increase of 0.32), which relies on the full dataset for estimation. Additionally,

this exercise produces only a slightly higher RMSE than the standard k-fold cross-validation shown in Panel

A (RMSE increase of 0.17). Note that this climate and income blocking exercise is much more challenging

than k-fold cross-validation, as entire portions of the income and climate distributions are omitted from

estimation. Second, the interaction model out-performs the no-adaptation benchmark model overall, and

in 7 out of 9 blocks of the data, encompassing 100% of global population at 2100. This indicates that the

model in Equation 5 provides substantially more accurate mortality rate predictions than a model ignoring

heterogeneity based on income and long-run climate. Finally, the interaction model performs particularly

well in the low income and hot climate block, conditions that will be experienced by 46% of the global

population in 2100 under SSP3. We further demonstrate predictive power in hot and low income conditions

in another out-of-sample exercise described in Section D.8 below.

D.7.3 Cross-validation using temporal blocking

Our third out-of-sample analysis assesses our model’s ability to predict mortality and mortality-temperature

sensitivity into the future. To conduct this analysis, we split our sample into observations that fall before

the year 2005, and those after (and including) 2005. We choose this cutoff because it ensures a roughly

balanced set of countries in both samples (see Figure B1). We then use the pre-2005 data to estimate the

interaction model in Equation 5, and use these regression results to predict mortality rates in the 2005-2010

data. Results are shown in Panel D of Table D5. These RMSE comparisons show that our interaction

model performs well when predicting residualized mortality rates in years that were not used in estimation,

showing little RMSE increase relative to an in-sample estimation using 2005-2010 data only (RMSE increase

of 0.28), and relative to the full sample in-sample RMSE (RMSE increase of 1.19). The interaction model

substantially out-performs a model without adaptation in this out-of-sample test (RMSE decline of 14.36).

D.7.4 Visualizing out-of-sample performance

In addition to the tabular results shown in Table D5, here we show visualizations of the predictive perfor-

mance of the interaction model for the two cross-validation approaches based on spatial or temporal blocking.

Specifically, we display the difference between out-of-sample predicted mortality-temperature response func-

tions and estimates of those same response functions using a subset of the sample data. While the tabular

results of out-of-sample performance in Table D5 indicate overall measures of fit, these figures help visualize

when and to what extent the model accurately extrapolates mortality-temperature sensitivity in different
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portions of the sample. This exercise differs from the RMSE exercise shown above in that the comparison is

between two estimated response functions, neither of which is known with certainty. In contrast, the RMSE

table reports error between the true mortality rate observations and predicted mortality rates.

First, Figure D8 plots the differences in the >64 mortality-temperature relationship between an out-

of-sample prediction and an “in-sample” estimation using a subset of the data, for four of the 9 blocks in

the spatial blocking exercise described above. The solid red line indicates the difference between: (i) the

mortality-temperature response function predicted for each block (e.g., high income and cold climate in the

upper left) by the estimation of Equation 5 using the remaining 8 blocks of data, and (ii) the mortality-

temperature response function estimated using a model without interactions with data from within that

block alone. 95% confidence intervals on the difference are shown in the shaded red area,96 and vertical

dashed lines indicate the middle 99% of the daily temperature distribution within each block.97

Figure D8 demonstrates that the differences between in-sample and out-of-sample response functions

are rarely statistically significant for the >64 age group (these results are similar for other age groups).

Statistically significant differences only arise at the extreme cold end of the temperature distribution, often

in blocks where those temperatures are rarely realized (e.g., cold temperatures in the hot climate blocks).

Moreover, for the majority of observed temperatures, the magnitude of these differences are small relative

to the overall mortality-temperature response function (see Figure 1).

Analogous to Figure D8, the temporal extrapolation performance of our interaction model is shown in

Figure D9, which plots the differences in the >64 mortality-temperature relationship between an out-of-

sample prediction and an in-sample estimation for the lowest and highest income terciles of the full sample

income distribution. The solid red line indicates the difference between: (i) the mortality-temperature

response function predicted for each income tercile by the estimation of Equation 5 using pre-2005 data only,

and (ii) the mortality-temperature response function estimated using a model without interactions with data

from 2005-2010 only. The 95% confidence intervals on the difference are shown in the shaded red area,98 and

vertical dashed lines indicate the 99.5th percentile of the daily temperature distribution within each income

group. As above, this exercise differs from results shown in Table D5 in that the comparison is between two

estimated response functions, neither of which is known with certainty.

Figure D9 demonstrates that, for the >64 age group, adaptation to heat is over-estimated in low income

regions (left panel) and under-estimated in high income regions (right panel). That is, using data from

before 2005 leads to predicted mortality sensitivity to temperature in 2005-2010 that is too low in low

income regions and too high in high income regions, relative to an in-sample estimate. These differences

are statistically significant for the low income group and of modest size (∼5 deaths per 100,000 per 30◦C

day). In contrast, differences between out-of-sample predicted response functions and in-sample estimated

response functions are small and statistically insignificant for other age groups. To show the implications

96Standard errors on the difference between response functions are calculated by running the interaction model for the 8
blocks of data and the uninteracted model for the remaining 1 block of data in a stacked regression saturated with block-level
indicators.

97Note that vertical dashed lines are omitted from Figure D8 if the 0.5th or 99.5th percentile of the data do not fall between
-5◦C and 35◦C.

98Standard errors on the difference between response functions are calculated by running the interaction model for the
pre-2005 data and the uninteracted model for the 2005-2010 data in a stacked regression saturated with pre-2005 indicators.
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Figure D8: Differences between spatial out-of-sample predicted mortality-temperature re-
sponse functions and in-sample estimated response functions (age >64mortality rate). Each
panel shows the difference between (i) an out-of-sample predicted mortality-temperature relationship result-
ing from the estimation of a version Equation 5 using all data except observations falling within the income
and climate “block” indicated (e.g., high income and cold, low income and hot), and (ii) an in-sample
estimated mortality-temperature relationship resulting from the estimation of a similar model without inter-
actions using data from within the income and climate block alone. Positive values indicate the out-of-sample
prediction overestimates mortality sensitivity to temperature relative to an in-sample estimation (and vice
versa for negative values). Histograms show the distribution of daily temperature for all locations falling
within the indicated block and vertical dashed lines indicate the middle 99% of the daily temperature distri-
bution within each block. 95% confidence intervals are computed by running the out-of-sample and in-sample
regressions in a stacked regression model saturated with block-level indicators. Results for other age groups
are similar.

of both under- and over-estimating rates of adaptation, we show in Section F.4 sensitivity of our projected

mortality impacts of climate change to assumptions about the rate of adaptation over the 21st century.
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Figure D9: Differences between temporal out-of-sample predicted mortality-temperature re-
sponse functions and in-sample estimated response functions (age >64 mortality rate). Each
panel shows the difference between (i) an out-of-sample predicted mortality-temperature relationship re-
sulting from the estimation of Equation 5 using on all data before 2005, and (ii) an in-sample estimated
mortality-temperature relationship resulting from the estimation of a similar model without interactions
using data from 2005-2010 alone. Histograms show the distribution of daily temperature for all locations
falling within the indicated block and vertical dashed lines indicate the 99th percentile of the daily temper-
ature distribution within each block. 95% confidence intervals are computed by running the out-of-sample
and in-sample regressions in a stacked regression model saturated with block-level indicators. Results for
other age groups show smaller and statistically insignificant differences between out-of-sample and in-sample
response functions.

D.8 Replication of Burgess et al. (2017) and out-of-sample model validation in

India

As discussed above in Appendix D.7, the accuracy of the spatial and temporal extrapolation of response

functions conducted in the main text depends in part on the representativeness of the observed sample.

In the ideal case, we would have data for countries that cover the full distribution of income and climate,

but as shown in Figure 3 in the main text, our observed sample lacks coverage for the poorest and hottest

regions of the global income-climate distribution. The results in Appendix D.7 provide some confidence that

we are able to extrapolate our estimates to the poorer and hotter regions of the world within our sample.

However, a reasonable concern is that countries with subnational, age-specific mortality rate data may be

different than the countries without such data. These are often developing countries where mortality data

are either inconsistently collected or not collected at all. To address this concern, here we expand upon

the cross-validation experiments shown above to test how our model performs in a region that is both lower

income and hotter than our estimation sample. India represents the poorest and hottest country for which we

have been able to obtain mortality records, and therefore provides an important check on the extrapolation
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performance of our interaction model.

To execute this validation test, we use data from Burgess et al. (2017) and compare mortality-temperature

relationships estimated using these data to those predicted for India from our main estimating equation,

Equation 5. The primary reason that we do not use data from India in our main estimation is that they do

not contain age-specific mortality rates, and we show that age at death is a key source of heterogeneity (see

Figure 2).

We begin by estimating a version of the main specification in Burgess et al. (2017):

Mit = f(Tit) + q(Rit) + αi + λ1
rt+ λ2

rt
2 + εit. (D.19)

The outcome Mit is the all-age mortality rate for district i in year t, which we estimate in levels rather than

in logs, as in Burgess et al. (2017), to ensure direct comparability with our main specification. To generate

comparable functional forms, we estimate Equation D.19 using a fourth-order polynomial, denoted by f(Tit),

as we have used this as our main specification (Burgess et al. (2017) use a binned temperature specification).

We control for precipitation, denoted by q(Rit), identically to Burgess et al. (2017) via a set of three dummy

variables, each of which takes the value of 1 when total annual rainfall in district i and year t falls within each

of three location-specific rainfall terciles. Due to the negligible effect of precipitation on our estimates of the

mortality-temperature relationship (see Figure D6), this choice makes little difference. Following Burgess

et al. (2017), we also include a set of district fixed effects, αi, and linear and quadratic trends for each

“climate region” (of which the authors note there are four separate regions) r of India. Observations are

weighted by district population and standard errors are clustered at the ADM2 level.

We then use the estimates from Equation 5 to predict the mortality-temperature relationship across

India. To do so, we first predict mortality-temperature response functions for India for each of the three age

groups in our main estimation, using the population-weighted average values of ADM1-level incomes and

average temperatures across the country. Once we have the predicted age-specific national responses, we take

the age-weighted average of these response functions to generate an all-age average mortality-temperature

response function across India. We compute this average using age-specific population values from the year

2015, which are available in the Burgess et al. (2017). We cluster standard errors at the ADM1 level (in

India, this is equivalent to the state level), as in all our specifications throughout the main text. For the

purposes of assessing out-of-sample performance of our main model as it compares to alternative models

estimated in the literature, we also predict an all-India response function using estimates for a version of

Equation 5 that models only heterogeneity in long-run income and one that models only heterogeneity in

long-run average temperature.

Figure D10 shows the result of this replication and out-of-sample validation exercise for India. The figure

compares our predicted responses in India (in blue) to the mortality-temperature response estimated using

India’s data alone (in red), following Burgess et al. (2017). Our model performs well, despite containing no

information on Indian mortality rates: for the hotter end of the response function, where much of the low

income world resides, our prediction is, if anything, conservative in extrapolating out-of-sample. Included

in the figure are two dashed blue lines which show the predicted mortality-temperature relationship using
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estimates from models with only one or the other of our two interaction terms. The model using estimates

from Equation 5 replicates the country model more closely than both alterative models.99
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Figure D10: Out-of-sample validation of the mortality-temperature response function in India.
Dark blue lines indicate out-of-sample predicted response function using coefficients from the interaction
model in Equation 5, as well as versions interacting with only income (long-dashed line) and only climate
(short-dashed line). The red line is estimated following Burgess et al. (2017) using all-age mortality data for
India, as described in the text. The relative congruence between red and solid dark blue lines shows that our
interaction model generates reasonable predicted response functions in the poorest and hottest regions of the
world, the subset of the covariate space for which the main estimating sample has the least representation.
Note that all curves are centered on their respective minimum mortality temperatures, as we use these curves
to compute predicted deaths below in Table D6, and all predicted deaths reported in the paper use location-
and model-specific minimum mortality temperatures.

In addition to the comparison of response functions in Figure D10, Table D6 reports quantitative differ-

ences in predicted mortality rates across the four models. This table summarizes the quantitative difference

between the response functions shown in Figure D10. Mortality rates are predicted in-sample for each model

by taking the product of the historical distribution of temperature exposure with the response function.100

Table D6 shows that predicted mortality rates follow the same pattern as the response functions in Figure

D10, with all out-of-sample model predictions falling below Burgess et al. (2017) predicted mortality rates.

These out-of-sample predictions under-estimate in-sample predicted mortality rates by 37% (full interaction

model in Equation 5), 42% (interaction model with income only), and 78% (interaction model with long-

99Note that in Figure D10, each response function is centered such that the predicted change in mortality is zero at the value
of its minimum mortality temperature (MMT). This recentering is arbitrary, as the inclusion of fixed effects in Equation D.19
implies that the level of the response function is not recoverable; only slopes are causally identified. However, we choose this
approach to match the quantitative exercise shown in Table D6, which uses the MMT as the reference temperature in order to
mimic the climate change projection approach we take throughout the main text.
100These values should be interpreted as mortality rates relative to a temperature distribution in which the minimum mortality

temperature (MMT) is experienced every day. This is analogous to the climate change impact projections we conduct in Section
5, where all impacts are reported relative to location-specific MMTs.
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run temperature only). However, all predicted values fall within the large confidence interval given by the

in-sample model’s prediction. We conclude that our estimates compare well to an in-sample model in India

both quantitatively and qualitatively, while noting that the out-of-sample values tend to be conservative.

Model Predicted Lower Upper Difference % difference
mortality 95% CI 95% CI

Burgess et al. (2017) 119.67 -867.85 1107.20 0.00 0.00
Full interaction (Eq. 5) 74.87 -8.26 158.00 -44.80 -37.44
Income-only interaction 69.22 -6.96 145.40 -50.45 -42.16
Climate-only interaction 26.15 -4.37 56.66 -93.53 -78.15

Table D6: Evaluation of differences in predicted mortality rates when using an in-sample
estimation for India versus an out-of-sample predicted response function. Each row refers to a
different empirical model of the mortality-temperature relationship in India. The Burgess et al. (2017) model
in the first row is estimated following Burgess et al. (2017) using all-age mortality data from India. In all
three remaining rows, the mortality-temperature relationship is predicted from a form of Equation 5, relying
on data from 40 other countries; no Indian data are used. Predicted mortality represents total deaths per
100,000 per year that are attributable to historical temperature variation. Differences indicate the difference
between out-of-sample predicted mortality rates from models in rows 2-4, relative to the model in row 1.
Out-of-sample predicted mortality in rows 2-4 are smaller than predicted mortality with the India data, but
within the confidence interval.
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E Implementation of projection of future adaptation and benefits

of income growth

In the main analysis, our estimates of the full mortality risk of climate change account for both the benefits

and the costs of adaptation, as well as the benefits of income growth. In this appendix, we provide details

on our implementation of adaptation and income benefits in future climate change projections. In Appendix

E.1 we detail the procedure we use to determine the temporal dynamics of income effects on the mortality-

temperature relationship in future years, in Appendix E.2 we describe the assumptions we impose on the

process of adaptation and income benefits over the course of the 21st century, and in Appendix E.3 we show

a visual example of how the the mortality-temperature relationship is projected to change over time.

E.1 Determining the temporal dynamics of income effects

We estimate the relationship between long-run average climate, average income, and mortality-temperature

sensitivity via the estimation of Equation 5 using cross-sectional variation in climate and income in combi-

nation with year-to-year variation in daily average temperatures. In generating future projections of climate

change impacts (i.e. results in Section 5.5), we apply the estimated coefficients from Equation 5 over time,

allowing impact region response functions to evolve as the climate warms and incomes grow. To do so, we

must make an assumption regarding the rate at which the income and average climate covariates update.

Here, we detail how we define this speed of adjustment in the case of income growth. While we can derive

a duration over which updating occurs in the case of income due to substantial time series variation in in-

comes in our observed data, the historical trends for temperature have been small to date, making a similar

derivation infeasible. Thus, for the case of updating based on long-run average climate, we use the standard

definition of “climate” and assume a duration of 30 years.

In future projections, we estimate impact region response functions using time-varying measures of

log(GDPpc)rt (see Section 5.3 for details):

ĝart = ĝa(Trt | TMEANrt, log(GDPpc)rt).

The temporal structure of the covariate log(GDPpc)rt mediates the rate of income-based adaptation. If the

income covariate were held fixed at historical levels, no income-based adaptation would be implemented. At

the other extreme, if the contemporaneous income for year t were applied in each year, then changes in income

would be assumed to translate into immediate changes in mortality-temperature sensitivity. This case is also

implausible, as benefits of income are likely to take multiple years to manifest, as richer governments and

citizens invest in adaptive capital and enjoy greater health. To allow for this intermediate case, we construct

the income covariate used for future projections with a weighted average of recent year incomes, according

to a Bartlett kernel. Specifically, to calculate the covariate log(GDPpc)rt, we compute:

log(GDPpc)rt =

∑L
s=1(L− s+ 1) ˚log(GDPpc)r,t−s∑L

s=1(L− s+ 1)
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where L is the total number of lags (in years) and ˚log(GDPpc)rt is the instantaneous log income for region

r in year t.

To find a plausible length L for the Bartlett kernel, we study changes in the response of mortality for

people over 64 to temperature in the United States, where we have access to a long panel of mortality rates

and income data (1968 to 2010). First, we estimate the following model:

Mait −Mai,t−1 = βt [Tit − Ti,t−1] + qa(Rit) + εit (E.20)

where Mait is the mortality rate for region i in period t and age group a > 64, Tit is the vector of polynomials

of daily average temperatures (up to the fourth order), Rit is the vector of cumulative monthly precipitation

(up to the second order), as in the main text (see Equation D.17). Coefficients are estimated for the difference

between each pair of years in order to remove the year fixed effect. This produces a series of coefficients, βt,

and their standard errors, σt. We then use a Bayesian model to estimate the length of the Bartlett kernel

that best explains the change in these coefficients over time. Under the model, each coefficient βpt of vector

βt is a draw from a Gaussian distribution with a mean that varies with national average income. That is,

βpt ∼ N (θp + φp log(GDPpc)t, τp + σpt)

In this model, θp and φp correspond to the uninteracted and income-interacted coefficients from our standard

model in Equation 5, respectively. τp is a hyper-parameter which controls the rate of pooling of the data; if

it is 0, inverse-variance weighting is used across individual year estimates.

The covariate log(GDPpc)t is calculated as a Bartlett kernel over a maximum of 25 years of delayed

income levels. National real income data from the U.S. Bureau of Economic Analysis is used to construct

log(GDPpc)t. The kernel is characterized by the unknown lag parameter L, which is also estimated by the

model. The maximum likelihood estimate for the Bartlett kernel length is 13 years, with a 95% confidence

interval of 9.7 years. We therefore use a Bartlett kernel of length 13 when constructing the income covariate

used to predict future response functions for all impact regions in all years and for all age groups.

E.2 Adaptation constraints imposed in the projection of climate change impacts

As discussed in Section 5.2, we impose two assumptions when applying our econometrically-derived model

of adaptation to generate projections of future climate change. These assumptions are guided by economic

theory as well as the physiological literature and are used to ensure plausible out-of-sample projections over

the 21st century. Graphical intuition for these constraints is shown in Figure E1.

Assumption #1: Weak monotonicity. A large body of epidemiological and econometric literature

has recovered U-shaped relationships between mortality rates and daily temperatures, where both extreme

cold and extreme heat increase the risk of death. These parabolic response functions have been recovered in

studies using a wide range of functional form assumptions (e.g., binned daily temperatures, restricted cubic

splines, or polynomials) and across diverse locations globally (e.g., Gasparrini et al., 2015; Burgess et al.,

2017; Deschênes and Greenstone, 2011). As shown in Section 6, we also recover U-shaped relationships
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Figure E1: Two assumptions imposed in climate projections ensure that full adaptation is
defined as a flat-line response function and that responses conform to basic physical and
economic constraints. Panel A demonstrates heuristically the importance of imposing assumptions on the
shape of response functions under adaptation over the 21st century. As shown, linearly declining mortality
rate sensitivity to hot days occurs over the course of the century as populations adapt. However, linear
extrapolation can lead to mortality benefits on hot days, as shown with the dashed line and grey dots. Our
assumptions (shown in teal) ensure that full adaptation is realized when hot days impose zero additional
mortality risk. Panels B through D represent an empirical example of how the imposition of these constraints
can change the shape of the adapted response function, for the Chicago, Illinois impact region. Panel B has
no assumptions, panel C imposes the assumption that income is weakly protective, and panel D imposes the
assumption of weak monotonicity around a time-invariant minimum mortality temperature (MMT).

between mortality rates and daily temperatures across our multi-country sample. In our projections of

future mortality responses to daily temperature, we ensure consistency with this literature and with our own

estimates from historical data by imposing the constraint that the response function must remain weakly

monotonic around an empirically estimated minimum mortality temperature. That is, we assume that

temperatures farther from the minimum mortality temperature (either colder or hotter) must be at least as

harmful as temperatures closer to the minimum mortality temperature.

To implement this assumption, we first identify a range of physiologically optimal temperatures. Drawing

on extensive research across epidemiology and medicine (e.g., Curriero et al., 2002; Guo et al., 2014), as well

as ergonomics (e.g., Seppanen, Fisk, and Lei, 2006; Hancock, Ross, and Szalma, 2007), we let this range of

possible minimum mortality risk cover the temperatures 10◦C to 30◦C. We then search, within this range,

for the temperature at which the location-specific response function in each impact region r in the baseline

years of 2001-2015 is minimized. Because distinct populations may differ substantially in the temperature at

which mortality is minimized,101 it is important to note that we allow these minimum mortality temperatures

101E.g., Guo et al. (2014) demonstrate that mortality risk is smallest around the 75th percentile of local temperatures in 12
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(MMTs) to be spatially heterogeneous. With these optimal temperatures in hand, we impose the assumption

that mortality rates must remain weakly increasing in daily temperatures to both the left and the right of this

minimum. To operationalize this, we calculate impacts along an adjusted response function that is defined as

the cumulative maximum to the right and left of the minimum mortality temperature along each region- and

year-specific response function derived from our response surface estimated in Equation 5. Consistent with

prior literature (Heutel, Miller, and Molitor, 2017; Curriero et al., 2002; Gasparrini et al., 2015), we find that

these minimum mortality temperatures are highly correlated both with both long-run average temperature

(positively) and with income (negatively).

This assumption is important because Equation 5 parameterizes the flattening of the U-shaped response

function such that, with enough warming or sufficiently high income, the mortality-response function could

become an inverted-U-shape. This is guaranteed to occur mechanically at some future date, as a result of

extrapolating response functions out of the support of historically observed data. To avoid this unrealistic

behavior, we impose weak monotonicity. An example of this assumption in practice is given in panel E of

Figure E1.102

In imposing the weak monotonicity constraint, we fix the MMT at its baseline level in 2015 for each

impact region. We do so because the use of spatial and temporal fixed effects in Equation 5 implies that

response function levels are not identified; thus, while we allow the shape of response functions to evolve

over time as incomes and climate change, we must hold fixed their level by centering each response function

at its time-invariant MMT.103

Assumption #2: Rising income cannot increase the temperature sensitivity of mortality.

We assume that because increased income per capita strictly expands the choice set of individuals considering

whether to make adaptive investments, future increases in income cannot raise the impacts of temperature

on mortality rates. While we place no restrictions on the cross-sectional effect of income on the temperature

sensitivity as estimated in Equation 5, we do not allow any income gains through time to raise the marginal

effect of temperature on mortality. Note that this condition will only be binding if the marginal effect of

income estimated in Equation 5 is positive for some nonempty set of temperatures. Further note that we

impose this assumption first, before imposing weak monotonicity, as described under assumption #1. An

example of this assumption in practice is given in panel C of Figure E1.

A visual example of the influence of these constraints can be seen for one example impact region (Chicago,

Illinois) in Figure E1. Under these assumptions, we estimate projected daily impacts separately for each

impact region, and then aggregate these high resolution effects to state, country, and global levels, using

population weighting.

different countries.
102See Appendix F.4 for results in which we explore a scenario with slower rates of adaptation. Under this alternative scenario,

Assumption #1 binds much less frequently.
103Note that these fixed effects are by definition not affected by a changing weather distribution. Thus, their omission does

not influence estimates of climate change impacts.
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E.3 Projected benefits of adaptation

Figure E2 provides an examination of projected changes in the mortality-temperature relationship over time,

which is a key ingredient for projections of future damages and adaptation. We plot the spatial distribution

of the change in the mortality-temperature relationship evaluated at 35◦C between 2015 and 2050 (panel A)

and 2015 and 2100 (panel B) for the >64 age category. Specifically, these values are calculated as:

ĝa(T35, TMEANrt, log(GDPpc)rt)− ĝa(T35, TMEANr,2015, log(GDPpc)r,2015),

where T35 is a fourth order polynomial for a daily temperature of 35◦C, a indicates the >64 age group, and t

is either 2050 or 2100. The maps reveal that in most regions of the world, there is a clear downward trend in

the sensitivity of mortality rates to high temperatures, as locations get both richer and hotter as the century

unfolds. For the >64 age group, the average global increase in the mortality rate on a 35◦C day (relative

to a day at location-specific minimum mortality temperatures) declines by roughly 75% between 2015 and

2100, going from 10.1 per 100,000 to just 2.4 per 100,000 in 2100.

Figure E2: Spatial and temporal heterogeneity in temperature sensitivity. Pan-
els A and B indicate the change in mortality sensitivity to hot days (35◦C) for the oldest age cat-
egory (>64) between 2015 and 2050 (A), and between 2015 and 2100 (B). Specifically, these values
are ĝa(T35, TMEANr,2050, log(GDPpc)r,2050) − ĝa(T35, TMEANr,2015, log(GDPpc)r,2015) in panel A and
ĝa(T35, TMEANr,2100, log(GDPpc)r,2100) − ĝa(T35, TMEANr,2015, log(GDPpc)r,2015) in panel B, where T35 is a fourth
order polynomial for a daily temperature of 35◦C and where the age group is a > 64. Darker colors signify larger predicted
adaptation to heat. All values shown refer to the RCP8.5 emissions scenario and the SSP3 socioeconomic scenario.
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F Climate change projections: Additional results and robustness

This appendix provides additional illustrations of the main climate change projection results used and dis-

cussed throughout the main text (i.e., Section 5.5), as well as a robustness check and sensitivity analysis

regarding the functional form of the mortality-temperature relationship, different assumptions about the

behavior of the relationship outside of the historical sample values, and assumptions regarding the rate of

adaptation.

F.1 Additional climate change projection results

Alternative measures of climate change impacts In Figure 5 of the main text, we show a map of impact

region-level mean estimates of the mortality effects of climate change, accounting for adaptation and income

benefits, but not adaptation costs. However, in Sections 5 and 6.2 we also define three other measures of

expected climate change impacts: (i) mortality effects of climate change with neither adaptation nor income

growth; (ii) mortality effects of climate change with benefits of income growth; (iv) full mortality risk of

climate change, accounting both for adaptation and income benefits as well as adaptation costs. Panels A,

B and D in Figure F1 below show projected impacts for each of these alternative measures; for comparison,

panel C repeats the mortality effects of climate change with benefits of adaptation and income growth map

from the main text.

Section 5 also presents a time series of aggregate global mortality consequences of climate change for

measures (i), (ii), and (iii). Figure F2 adds estimates of measure (iv) to the same figure, showing the mean

estimate of the full mortality risk of climate change over time, as well as the uncertainty surrounding this

mean, as captured by Monte Carlo simulations.

Finally, Figure F3 presents the same time series of aggregate global mortality consequences of climate

change for measures (i) and (ii), as in Figure F2, but adds shading to indicate the uncertainty surrounding

the mortality effects of climate change with benefits of income growth. Just as in Table D1, the uncertainty

in the estimated relationship between income per capita and the temperature sensitivity of mortality is

apparent.

Climate change projections by age group In the main text, Figure 6 displays a time series of climate

change impacts on the global average mortality rate. This aggregate value represents, in each year, the sum

across age-specific projections, where death rates are population weighted by age-specific population values.

Below in Figure F4, we show each of these age-specific projections for SSP3 and RCP8.5 (for reference, Table

1 shows that the average mortality rate for the oldest age group is 4,736 deaths per 100,000 in our estimation

sample). While all age groups have a mean estimate that is above zero by end-of-century, the oldest age

group dominates our projections in terms of death rates. These large demographic differences are taken into

account in our valuation steps (see Section 7 and Appendix G).

Climate change projections by socioeconomic scenario Throughout Section 5.5 of the main text,

we display climate change projection results under the socioeconomic scenario SSP3. Each SSP scenario

models a different possible pathway of economic development, population growth, and demographics; here,

we show the global mortality effects of climate change under two alternative scenarios (SSP2 and SSP4,
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Figure F1: Mortality costs of climate change under alternative adaptation scenarios. All maps
show predicted mortality effects of climate change and colors in each impact region represent the mean esti-
mate across a set of Monte Carlo simulations accounting for both climate model and statistical uncertainty.
Panel A shows estimates of the change in mortality rates when each impact region does not adapt. Panel
B shows estimates of the change in mortality rates when impact region mortality sensitivity to temperature
changes with future income, but not to future temperatures. Panel C allows populations to additionally
adjust to experienced temperatures in the warming scenario, showing mortality rate changes when mortality
sensitivity to temperature evolves with both future income and temperature. Finally, panel D shows the full
mortality risk of climate change. This measure allows the mortality sensitivity to temperature to change with
future income and future temperature, while also accounting for the costs of adapting to a warming climate.
Adaptation costs are calculated are measured in units of death equivalents. All projections shown refer to
the RCP8.5 emissions scenario and the SSP3 socioeconomic scenario and are calculated as the climate model
weighted mean estimate across Monte Carlo simulations conducted on 33 climate models.

alongside SSP3). In each column, we show results for two separate modeling groups that produce projections

for each SSP (IIASA and OECD, as discussed in Appendices B.3.2 and B.3.3).

Gains from mitigation spatially and in aggregate. Figure 5 displays climate change impacts

spatially under the socioeconomic scenario SSP3 for the entire globe. Figure F6 shows a comparison between

impacts under RCP8.5 and RCP4.5, showing the gains from mitigation. As expected, reducing emissions to

the level of RCP4.5 is predicted to have substantial benefits in terms of reduced mortality risks from climate

change. However, the spatial pattern of impacts remains, with clearly unequal distribution of impacts

between places that are relatively poor today versus places that are relatively wealthy. Figure F7 replicates

the aggregate time series (Figure 6 in the main text) for RCP4.5 under the SSP3 scenario, and Table F1

replicates the aggregate mortality damage estimates for 2100 (Table 2 in the main text) for RCP4.5 under

SSP3.104 The gains from reducing emissions are evident in both sets of aggregate results.

104In Table 2 in the main text and F1 here, Europe includes the Aland Islands, Albania, Andorra, Austria, Belarus, Belgium,
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Figure F2: Time series of projected full mortality risk of climate change. All lines show predicted
mortality effects of climate change across all age categories and are represented by a mean estimate across a set of Monte Carlo
simulations accounting for both climate model and statistical uncertainty. In panel A, each colored line represents a partial
mortality effect, while the black line shows the full mortality risk due to climate change, accounting for both adaptation costs
and benefits. Orange (expression (i)): mortality effects without adaptation. Yellow (expression (ii)): mortality effects with
benefits of income growth. Green (expression (iii)): mortality effects with benefits of income growth and adaptation. Black
(expression (iv)): full mortality risk calculated as the sum of mortality effects with adaptation and income growth benefits
plus estimates of costs incurred to achieve adaptation, measured in units of death equivalents. Panel B shows the 10th-90th

percentile range of the Monte Carlo simulations for the full mortality risk of climate change (black line in panel A), as well
as the mean and interquartile range. The boxplots show the distribution of full mortality risk impacts in 2100 under both
RCPs. All line estimates shown refer to the RCP8.5 emissions scenario and all line and boxplot estimates refer to the SSP3
socioeconomic scenario. Figure F7 shows the equivalent for SSP3 and RCP4.5.
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Figure F3: Uncertainty in the mortality effects of climate change including benefits of income
growth. Both solid lines show predicted mortality effects of climate change across all age categories and are represented by
a mean estimate across a set of Monte Carlo simulations accounting for both climate model and statistical uncertainty. Shaded
areas indicate the 10th-90th percentile range of the Monte Carlo simulations. The orange line and confidence interval shows the
mortality effects without adaptation (expression (i)), while the yellow line and confidence interval shows the mortality effects
with benefits of income growth (expression (ii)). Both projection estimates shown refer to the RCP8.5 emissions scenario and
the SSP3 socioeconomic scenario.

Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Faroe Islands, Finland, France, Germany,
Gibraltar, Greece, Guernsey, Hungary, Iceland, Ireland, Isle of Man, Italy, Jersey, Kosovo, Latvia, Liechtenstein, Lithuania,
Luxembourg, Macedonia, Malta, Moldova, Monaco, Montenegro, Netherlands, Norway, Poland, Portugal, Romania, Russia, San
Marino, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine, United Kingdom, and Vatican City. Similarly, sub-
Saharan Africa includes Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Central African Republic,
Chad, Comoros, Cote d’Ivoire, Democratic Republic of the Congo, Djibouti, Equatorial Guinea, Eritrea, Ethiopia, Gabon,
Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Mauritius, Mayotte,
Mozambique, Namibia, Niger, Nigeria, Reunion, Republic of Congo, Rwanda, Saint Helena, Sao Tome and Principe, Senegal,
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Figure F4: Heterogeneity in climate change impacts on mortality by age group. All lines show
predicted mortality effects of climate change across all age categories and are represented by a mean estimate
across a set of Monte Carlo simulations accounting for both climate model and statistical uncertainty. Each
line represents one of the three age groups used in the analysis: <5, 5-64, and >64. Results are shown for the
combination of SSP3 and RCP8.5 with a fourth-order polynomial functional form of temperature. Figure 6
in the main text represents the sum across these age-specific projections, where death rates are population
weighted by age-specific population values.

Seychelles, Sierra Leone, Somalia, South Africa, South Sudan, Sudan, Swaziland, Tanzania, Togo, Uganda, Western Sahara,
Zambia, and Zimbabwe.
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Figure F5: The full mortality risk of climate change under different scenarios of population
growth, economic growth, and emissions. Rows denote different Shared Socioeconomic Pathway (SSP)
scenarios, columns denote two separate modeling groups that produce data for each SSP, and each panel
shows a time series of the total mortality costs of climate change for RCP 4.5 and RCP 8.5. Both lines
indicate total predicted mortality costs due to climate change, accounting for both adaptation benefits and
costs, and indicate the mean estimate across a set of Monte Carlo simulations accounting for both climate
model and statistical uncertainty. RCP8.5 is a high-emissions scenario, while RCP4.5 is a scenario with
aggressive emissions reductions. The OECD economic projections tends to exhibit slightly higher income
growth than the IIASA economic projections. Throughout the main analysis, projection results relying on
IIASA and OECD socioeconomic projections are both used and weighted equally.
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Full mortality risk of climate change: SSP3-RCP4.5 (2100) Full mortality risk of climate change: SSP3-RCP8.5 (2100)

Figure F6: The mortality risk of future climate change under RCP4.5 and RCP8.5 for SSP3.
These maps indicate the full mortality risk of climate change, measured in units of deaths per 100,000 population, in the year
2100. Estimates account for both the costs and the benefits of adaptation, and the map shows the weighted mean estimate
across Monte Carlo simulations conducted on 33 climate models, accounting for both econometric and climate uncertainty. All
values shown refer to the SSP3 socioeconomic scenario.
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Figure F7: Time series of projected mortality risk of climate change under RCP4.5 for SSP3.
All lines show predicted mortality effects of climate change across all age categories and are represented by a mean estimate
across a set of Monte Carlo simulations accounting for both climate model and statistical uncertainty. In panel A, each colored
line represents a partial mortality effect, while the black line shows the full mortality risk due to climate change, accounting
for both adaptation costs and benefits. Orange (expression (i)): mortality effects without adaptation. Yellow (expression (ii)):
mortality effects with benefits of income growth. Green (expression (iii)): mortality effects with benefits of income growth and
adaptation. Black (expression (iv)): full mortality risk calculated as the sum of mortality effects with adaptation and income
growth benefits plus estimates of costs incurred to achieve adaptation, measured in units of death equivalents. Panel B shows
the 10th-90th percentile range of the Monte Carlo simulations for the full mortality risk of climate change (black line in panel
A), as well as the mean and interquartile range. The boxplots show the distribution of full mortality risk impacts in 2100 under
both RCPs. All line estimates shown refer to the RCP4.5 emissions scenario and all line and boxplot estimates refer to the
SSP3 socioeconomic scenario.

A68



Table F1: Estimates of the global mortality risk of climate change in 2100 (moderate emissions scenario, RCP4.5)

Mortality effects of climate change Full mortality risk
of climate change

No income growth Benefits of Benefits of Costs of climate
or adaptation income growth climate adaptation adaptation

deaths/100k deaths/100k deaths/100k deaths/100k deaths/100k % of GDP
(1) (2) (3) (4) (5a) (5b)

Panel A: Global estimates
Globe 40.3 -26.5 -3.0 3.5 14.2 0.6

IQR [7.8, 57.9] [-47.8, -2.6] [-16.3, 8.1] [-0.9, 7.5] [-12.3, 35.2] [-3.9, 4.6]

Panel B: Regional estimates
China 14.8 -8.6 -12.5 9.9 3.4 0.5
USA -9.0 -1.0 -2.7 12.7 -0.1 0.2
India 78.0 -69.6 3.6 -1.0 11.1 1.5
Pakistan 144.3 -44.3 -18.6 16.1 97.6 8.0
Bangladesh 77.2 -21.9 -13.3 7.1 49.1 4.5
Europe -28.0 6.5 -42.0 50.6 -12.8 -0.7
Sub-Saharan Africa 37.6 -16.1 -1.5 0.5 20.5 1.7

All columns show predicted mortality effects of climate change across all age categories and are represented by a mean estimate across a set of Monte Carlo simulations
accounting for both climate model and statistical uncertainty. In the first row, brackets indicate the interquartile range (IQR). Columns 1-4 each indicate a partial
mortality effect of climate change, in units of deaths per 100,000. Column 1 (expression (i)): mortality effects of climate change without benefits of income or adaptation
to climate change. Column 2 (expression (ii) - expression (i)): benefits of income growth. Column 3 (expression (iii) - expression (ii)): benefits of adaptation to climate
change. Column 4 (Equation 10): mortality-related costs of adaptation inferred using a revealed preference approach, measured in “death equivalents”. Columns 5a-5b
(expression (iv)): the full mortality risk of climate change, measured in deaths per 100,000 (column 5a) and represented as % of 2100 GDP (column 5b) using an
age-adjusted value of the U.S. EPA VSL with an income elasticity of one applied to all impact regions. Column 5a is equivalent to the sum of columns 1 through 4.
All estimates shown rely on the RCP4.5 emissions scenario and the SSP3 socioeconomic scenario. Note that benefits of income growth are positive for Europe (column
2) because higher incomes lower mortality sensitivity to extreme cold, as well as to extreme heat (see Table D1 and Figure 1). In Europe, many lives are saved under
climate change due to reductions in extreme cold, and accounting for income growth lowers the estimated number of lives saved.
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The impact of climate change in 2100 under RCP4.5 compared to contemporary leading

causes of death. Figure F8 presents the same results as Figure 10 in the main text, but for RCP4.5. As

can be seen, despite the overall decrease in the average impact under SSP3 and RCP4.5 when compared to

RCP8.5, much of the inequality in both the impacts and the adaptation costs that was evident in Figure 10

remains.
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Figure F8: The impact of climate change in 2100 under RCP4.5 compared to contemporary
leading causes of death. Impacts of climate change (grey, teal, and coral) are calculated for the year 2100 for SSP3 and
include changes in death rates (solid colors) and changes in adaptation costs, measured in death equivalents (light shading).
Global averages for RCP 8.5 and RCP 4.5 are shown in grey, demonstrating the gains from mitigation. Income and average
climate groups under RCP4.5 are separated by tercile of the 2015 global distribution across all 24,378 impact regions. Blue
bars on the right indicate average mortality rates globally in 2018, with values from WHO (2018).
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F.2 Robustness: Alternative functional form for the mortality-temperature re-

lationship

As discussed in Section D.2, we experiment with four distinct nonlinear transformations of daily temper-

ature captured by Tit in Equations D.17 and 5 in the main text. The fourth order polynomial is our

main specification because it strikes a balance between providing sufficient flexibility to capture important

nonlinearities, parsimony, and limiting demands on the data when covariate interactions are introduced in

Equation 5. However, the binned specification, in which Tit contains binned daily temperatures with a fixed

set of 5◦C bins, is the most flexible functional form. In Figure D3, we show that the binned and fourth or-

der polynomial functional forms recover similar mortality-temperature response functions across our pooled

multi-country sample. Below in Figure F9, we show that this similarity carries through to generate similar

climate change impact projections across the binned and polynomial functional forms. Both projections are

constructed using estimation of the interaction model in Equation 5 in combination with high-resolution

covariates TMEAN and log(GDPpc) to generate impact region-specific response functions (see Section 5.2

for details).
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Figure F9: Robustness of impact projections to alternate functional forms of temperature. Each
line represents the time series of changes to the mortality rate due to climate change under the socioeconomic
scenario SSP3 and the emissions scenario RCP 8.5. Results shown are for a single climate model (CCSM4).
Lines shown refer to estimates of mortality effects of climate change without adaptation or benefits of
income growth, in which response functions do not evolve over time. In orange is the projected impact of
climate change estimated using a fourth-order polynomial functional form of temperature in estimation of
the regression model in Equation 5. In green is the same object, but with binned daily temperatures used as
a functional form in estimation. While the binned regression imposes far fewer restrictions on the regression
than does the polynomial, the projected impacts under these two sets of parameterizations are strikingly
similar.
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F.3 Sensitivity analysis: Alternative assumptions on out-of-sample extrapola-

tion of response functions

The paper uses historical data to estimate the mortality-temperature response and uses the results to project

the impacts of temperatures in the future. A key challenge, however, is that climate change will cause

locations to experience temperatures that have not been observed in the historical record (e.g., see Figure

3), thus necessitating out of sample predictions.

Figure F10 probes the sensitivity of the projections of mortality risk changes up to 2100 to alternative

assumptions about the relationship between mortality and temperature at temperatures that are not observed

in available data sets. Specifically, for all temperatures above the maximum and below the minimum daily

temperatures within our dataset, we alter the slope of the impact region-specific response functions in two

ways. First for “constant out-of-sample extrapolation”, we set the marginal effect of temperature fluctuations

to equal the value at the maximum if above the maximum temperature, and vice versa for temperatures below

the minimum (Figure F10B). This implies that the response function is flat for all temperatures outside the

observed range. For “linear out-of-sample” extrapolation, we set the marginal effect to be linearly increasing

in the out-of-sample regions with a slope equal to the slope between the response function evaluated at the

maximum (minimum) and the maximum minus 0.1C (plus 0.1C) (Figure F10C). It is apparent that neither

of these alternatives have a meaningful effect on the overall projected impacts; looking at projections from

a single GCM, the projected impact of climate change on mortality rates, including the benefits of income

growth and adaptation, is 13.6 per 100,000 in 2100 under RCP8.5 in the paper’s main specification (Panel

A) and 12.6 per 100,000 and 13.4 per 100,000 in Panels B and C.
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Figure F10: Two alternative assumptions on out-of-sample extrapolation of response functions.
A) Time series projection of main model with no out-of-sample restrictions. B) Time series projection of
response functions with constant out-of-sample restrictions above the maximum and below the minimum tem-
peratures in our estimating sample. C) Time series projection of response functions with linearly increasing
out-of-sample restrictions above the maximum and below the minimum temperatures in our estimating sam-
ple, with a slope equal to the slope between the response function evaluated at the maximum (minimum)
and the maximum minus 0.1C (plus 0.1C). All projections rely on the CCSM4 climate model under RCP
8.5 and SSP3.

F.4 Sensitivity analysis: Alternative assumptions on the rate of adaptation

In our main results, we use the estimated coefficients from Equation 5 in combination with high-resolution

data on the covariates TMEAN and log(GDPpc) to extrapolate response functions both across space (to

capture spatial heterogeneity in the mortality-temperature relationship) and over time (to capture future

changes in the mortality-temperature relationship due to adaptation and benefits of income growth). As

discussed in Section 4, the estimation of Equation 5 relies on cross-sectional variation in TMEAN and

log(GDPpc), in combination with plausibly random year-to-year variation in daily temperatures. However,

as discussed in Appendix E.1, we apply the estimated coefficients from Equation 5 over time when computing

future climate change impacts; in doing so, we must make an assumption regarding the rate at which mortality

sensitivity to temperature declines with changing covariates. As discussed previously, our main specification

relies on a 13-year Bartlett kernel for log(GDPpc) and a 30-year Bartlett kernel for TMEAN .

Here, we conduct two sensitivity analyses, each of which adjusts the assumed rate of adaptation. In the

first, the speed at which the mortality-temperature response function changes with time-varying covariates is

deterministically reduced by half. In the second, this rate is increased by 150%. These exercises are used to

understand how climate change impact projections change if the evolution of the response function towards
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zero (see Figure E1) is assumed to occur more slowly or more quickly.

In the main model, income grows for each impact region r according to GDPrt = ρctGDPr,t−1, where

c indicates the country that region r falls into, and ρct is a country- and year-specific growth rate given

exogenously by the SSP scenarios. The kernel-averaged climatic temperature for region r used in the main

model is TMEANrt = TMEANr,t−1 + ∆TMEANrt. In this “slow adaptation” alternative approach (see

Figure F11B), we replace income growth with GDPrt =
(
ρct−1

2 + 1
)
GDPr,t−1 after the year 2015, and

we reduce linear growth in temperature by replacing it with TMEANrt = TMEANr,t−1 + ∆TMEANrt
2 .

In the “fast adaptation” alternative approach (see Figure F11C), we similarly replace income growth with

GDPrt = 1.5ρctGDPr,t−1 after the year 2015, and we reduce linear growth in temperature by replacing it

with TMEANrt = TMEANr,t−1 + 1.5∆TMEANrt. Note that both the primary specification and reduced

growth analyses generate identical covariates (and hence, response functions) in 2015.
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Figure F11: Impacts of climate change on mortality under alternative assumptions about rates
of adaptation. Time series of projected full mortality risk of climate change (black line), as compared to
partial estimates from incomplete accounting of the costs and benefits of adaptation (other colors). All lines
show predicted mortality impacts of climate change across all age categories under the RCP8.5 emissions
scenario, for the socioeconomic scenario SSP3, and using a single climate model (CCSM4). Panel A shows
results for our standard model of adaptation, as described in Section 5.2. Panel B shows results for an
alternative model of adaptation in which the rate of adaptation to both income growth and to a warming
climate is cut in half. Panel C shows results for an alternative model in which the rate of adaptation to both
income growth and to a warming climate is increased by 150%.
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G Calculation of a mortality partial social cost of carbon

In principle, one could compute a mortality partial social cost of carbon (SCC) estimate by perturbing

each global climate model (GCM) in the Surrogate Mixed-Model Ensemble (SMME) with a pulse of CO2

and projecting mortality for each location in both the original and perturbed simulations. However, in

practice, such a procedure is both prohibitively costly from a computational standpoint and would also

prevent the calculation of an SCC for any climate trajectory that did not exactly coincide with one of the

33 models. Instead, we rely on a “simple climate model”,105 in combination with our empirically-derived

damage functions, to construct mortality partial SCC estimates. We detail this implementation below.

G.1 Computing post-2100 damage functions

For data availability reasons, it is necessary to develop an alternative approach to estimate post-2100 damage

functions. Only 6 of the 21 GCMs that we use to build our SMME ensemble (see Section 3.2) are run by

their respective modeling teams to simulate the climate after the year 2100 for both RCP scenarios and

post-2100 data are not available in the NEX-GDDP downscaled and bias-corrected projections that we use

for generating high-resolution impact projections. Similarly, the SSPs needed to project the benefits of

income growth and changes in demographic compositions also end in 2100. While one approach is to simply

end economic cost calculations in 2100, as was done in Hsiang et al. (2017), neglecting post-2100 damages

is a substantial omission because a large fraction of costs, in NPV, are thought to occur after 2100 at 3%

discount rates (Kopp and Mignone, 2012).

To estimate post 2100-damages, we develop a method to extrapolate changes in the damage function

beyond 2100 using the observed evolution of damages near the end of the 21st century. The year-specific

damage functions estimated using Equation 12 reveal that in the latter half of the 21st century, full mortality

damages are larger for a given level of warming if warming occurs later in time and damage functions become

more convex with time at the end of the 21st century. The finding that mortality costs rise over time is the

net result of countervailing forces. On the one hand, later years are projected to have larger and older106

populations with higher VSLs due to rising income, facts that raise damages. On the other hand, populations

are better adapted due to higher incomes and a slower rate of warming projected in later years, an effect

that would lower damages. Our results suggest the former dominates by end of century, causing damages to

be trending upward at the moment that our high-resolution simulations end in 2100.

The motivating principle of our extrapolation approach is that these observed changes in the shape of

the damage function near the end of the century provide plausible estimates of future damage function

evolution after 2100. To execute this extrapolation, we pool values Dirmt from 2085-2100 and estimate a

quadratic model similar to Equation 12, but interacting each term linearly with year t (we use 2085-2100

because the evolution of damages over time becomes roughly linear conditional on ∆GMST by this period).

The temporal trend over the entire 21st century is convex, implying that our linearization is, if anything,

105See Hsiang and Kopp (2018) for a description of climate model classes.
106In SSP3, the share of the global population in the most vulnerable >64 age category rises from 8.2% in 2015 to 16.2% in

2100.
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conservative. The specific interaction model we estimate is:

Dirmt = α+ ν1∆GMSTrmt × t+ ν2∆GMST 2
rmt × t+ εirmt

This allows us to estimate a damage surface as a parametric function of year. We then predict extrapolated

damage functions for all years after 2100, smoothly transitioning from our flexible climate model-based

damage functions prior to 2100.

G.2 Set up of the climate module using a simple climate model

A core component of any analysis of the SCC is the climate module used to estimate both the baseline

climate and the response of the climate system to a marginal change in greenhouse gas emissions. The Finite

Amplitude Impulse Response (FAIR) model (Millar et al., 2017) satisfies key criteria for such a module,

including those outlined by the National Academies of Sciences, Engineering, and Medicine (2017). In par-

ticular, the National Academies of Sciences, Engineering, and Medicine (2017) recommends that the climate

module be transparent, simple, and “consistent with the current, peer-reviewed scientific understanding

of the relationships over time between CO2 emissions, atmospheric CO2 concentrations, and CO2-induced

global mean surface temperature change, including their uncertainty” (National Academies of Sciences, En-

gineering, and Medicine, 2017, p.88). For this last criterion, the authors recommend that the module be

“assessed on the basis of its response to long-term forcing trajectories (specifically, trajectories designed to

assess equilibrium climate sensitivity, transient climate response and transient climate response to emissions,

as well as historical and high- and low-emissions scenarios) and its response to a pulse of CO2 emissions.”

The authors specifically point to the FAIR model as an example of a model that is structurally capable of

meeting all these criteria.

The FAIR model is defined by five equations that represent the evolution of global mean variables over

time t. Global mean surface temperature GMST is the sum of two temperature variables, T0 and T1,

representing the slow and fast climate system response to forcing F :

dTi
dt

=
qiF − Ti

di
, i ∈ {0, 1}, (G.21)

where the qi values collectively define the equilibrium climate sensitivity (ECS), and where the di values

(the thermal adjustment times) along with qi define the transient climate response (TCR). The ECS is the

sensitivity of the climate (as measured by GMST increases) to a doubling of atmospheric CO2, relative to

some initial state. The TCR is the average temperature response to a doubling of CO2 in which the CO2

increases by 1% each year. The ECS is larger than the TCR, as it captures the time taken for the climate

system to fully adjust to increased CO2.

The CO2 concentration above the pre-industrial baseline, R, is the sum of four fractions, Rj , representing

different uptake timescales:
dRj
dt

= ajE −
Rj
αjτj

, j ∈ {0, 1, 2, 3} (G.22)
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where E is the CO2 emissions rate, aj values represent the fraction of emissions that enter each atmospheric

fraction, τj values represent the base uptake time scale for each fraction, and where αj is a state-dependent

coefficient that reflects feedbacks from temperature onto uptake timescales. The remaining three equations

describe forcing F as a function of R and of exogenous non-CO2 forcing, and α as a function of global mean

surface temperature and atmospheric CO2 concentrations (see Millar et al. (2017) for details).

We obtain the latest release of the FAIR model, which was version 1.3.2 at the time of computation, from

its online repository.107 As described below in Section G.2.1, we develop a methodology to generate mortality

partial SCC estimates that capture uncertainty in climate sensitivity by varying four core parameters in

FAIR: the equilibrium climate sensitivity (ECS), the transient climate response (TCR), the short thermal

adjustment time (d2), and the time scale of rapid carbon uptake by the ocean mixed layer (τ3). By varying

these four parameters across thousands of Monte Carlo simulations, we are able to capture uncertainty in

the short and long term response of temperature and the carbon cycle to changes in emissions. The median

values across our uncertainty distributions (described in detail below) for each core model parameter are as

follows: ECS is 2.72◦C per CO2 doubling, TCR is 1.58◦C per CO2 doubling, d2 is 3.66 years, and τ3 is 4.03

years. Throughout our implementation, all other parameters in FAIR are held fixed at their default values.

The two scenarios considered in this analysis, RCP4.5 and RCP8.5, represent two widely divergent

emissions and climatic pathways, especially in years beyond 2050. Following the method used in previous

estimates of the SCC, including in the National Academies of Sciences, Engineering, and Medicine (2017),

we include projections starting in the current period (here defined as 2020) through the year 2300. Due

to the long residence times of CO2 in the atmosphere and the changes in global mean surface temperature

associated with CO2 emissions, SCC estimates can vary significantly depending on the definition of this

window, especially when low discount rates are applied. To illustrate the large differences across RCP

scenarios, Figure G1 shows fossil CO2 emissions, CO2 concentrations, total radiative forcing (the difference

between incoming solar radiation and outgoing terrestrial radiation), and temperature as anomalies from

FAIR’s reference state, which is year 1765, for the median climate parameters listed above and under each

emissions scenario.

In order to estimate the marginal effect of CO2 emissions, we add two additional scenarios to the “control

scenarios” of RCP4.5 and RCP8.5. Each additional scenario adds a 1 GtC (3.66 Gt CO2) pulse of fossil CO2

emissions in 2020 to each of the control scenarios described above. The FAIR model is then run again for

these pulse scenarios, resulting in a new time series of concentrations, forcing, and temperature anomalies.

The difference between the control and pulse scenarios, including climate uncertainty (discussed below), is

shown in the main text Figure 9; as described below and in Section 7, this difference is used to construct

mortality partial SCC estimates.

107https://github.com/OMS-NetZero/FAIR/tree/v1.3.2.
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Figure G1: Behavior of key variables in the FAIR simple climate model under median climate
parameters. Each panel shows the temporal trajectory of key variables in FAIR that are used in our
calculation of the social cost of carbon. The trajectories shown arise under FAIR run with median climate
parameter values calculated from our uncertainty distributions for the equilibrium climate sensitivity, tran-
sient climate response, short thermal adjustment time, and time scale of rapid carbon uptake by the ocean
mixed layer. The values are shown as anomalies from the year 1765, FAIR’s reference state.

G.2.1 Methodology for capturing uncertainty in climate sensitivity within the simple climate

model FAIR

A complete study of the mortality partial SCC should represent the uncertainty in key model parameters,

including the joint probability distribution of the ECS and TCR. We discuss here our approach to modeling

this climate sensitivity uncertainty.

The analysis described above relies solely on the simple climate model FAIR with key climate parameters

set to median values that are computed from their uncertainty distributions. We now discuss the development

of those uncertainty distributions and the representation of climate uncertainties in FAIR. To represent

climate uncertainties, we vary TCR, ECS, d2, and τ3 such that our climate uncertainties conform to those

of the literature. These four parameters represent the behavior of the short and long timescales of response

of temperature and the carbon cycle. For TCR and ECS, we draw upon constraints from the IPCC Fifth

Assessment Report (AR5) (Collins, Knutti et al., 2013); for d2 and τ3 we follow Millar et al. (2017), based

on analysis of Joos et al. (2013) and Geoffroy et al. (2013).

In general, we produce initial distributions of these parameters based on the literature constraints. How-

ever, a key difference between our approach and those in the existing literature is that we explicitly model

the tails of the climate sensitivity uncertainty distributions. The AR5 synthesis generally regards the 5–95%
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ranges of variables in the CMIP5 models as representing the “likely” range (central at least 66% probable

range) due to structural uncertainty. Previous studies based on CMIP5 results (e.g., Joos et al. (2013); Ricke

and Caldeira (2014)) and those using the CMIP5 5–95% range of TCR and ECS as 5-95% input ranges to

their models (e.g., Millar et al. (2017)) thus show results that characterize only the central 66% of possi-

bilities. Here we explicitly model the tails of the input and output distributions by generating TCR and

ECS distributions with likely ranges as specified by the AR5 report. To preserve the expected correlation

between TCR and ECS, rather than sampling ECS directly, we follow Millar et al. (2015) and instead sam-

ple the realized warming fraction (RWF, the ratio of TCR/ECS), which is nearly independent of TCR. We

subsequently filter the parameter sets to ensure consistency with expectations regarding the initial pulse ad-

justment timescale (the time it takes the climate system to reach a warming peak following a pulse emission

of CO2).

Below we outline the sources used to construct the distributions of each parameter.

TCR: Collins, Knutti et al. (2013) conclude that “TCR is likely in the range 1◦C to 2.5◦C... is positive

and extremely unlikely greater than 3◦C” (p. 1112). In IPCC terminology (Mastrandrea et al., 2010), likely

refers to a probability of at least 66%, very likely to a probability of at least 90%, and extremely likely to

a probability of at least 95%. Thus we construct a log-normal distribution for TCR with the 17th to 83rd

range of 1.0-2.5 ◦C.

RWF: As noted by the National Academies of Sciences, Engineering, and Medicine (2017), a RWF likely

range of 0.45 to 0.75 is approximately consistent with the ECS likely range of 1.5 – 4.5◦C (Collins, Knutti

et al., 2013). We construct a normal distribution for RWF following this central 66% likelihood range, and

sample this distribution, along with TCR, to construct the ECS distribution as TCR/RWF .

ECS: Collins, Knutti et al. (2013) conclude that “ECS is positive, extremely unlikely less than 1◦C (high

confidence), and very unlikely greater than 6◦C (medium confidence)” (p. 1111) and likely between 1.5

and 4.5◦C. To construct our sampling distribution, we randomly draw samples from the TCR and RWF

distributions, and obtain ECS samples by calculating TCR/RWF . The constructed ECS samples follow a

log-normal distribution with the 17th-83rd range of 1.60-4.65 ◦C.

d2:d2:d2: The AR5 does not assess the range of d2. Following Millar et al. (2017), we construct our distribution

of d2 as a log-normal distribution with a 5-95th percentile range of 1.6-8.4 years.

τ3:τ3:τ3: Joos et al. (2013) summarized τ3 in three comprehensive Earth System Models (HADGEM2-ES, MPI-

ESM, NCARCSM1.4), seven Earth System Models of Intermediate Complexity (EMICs), and four box-type

models (ACC2, Bern-SAR, MAGICC, TOTEM). Using the mean (4.03) and standard deviation (1.79) of

these values, we construct a normal distribution for τ3.

After defining these distributions, we generate a 100,000-member ensemble of parameter sets via Monte

Carlo sampling. As τ3 should be larger than 0, we sample from a truncated normal distribution, and discard

parameter sets in which τ3 < 0 or > 2 × 4.03 to keep the mean of τ3 in parameter sets consistent with

the multi-model mean in Joos et al. (2013). About 2.4% of parameter sets are filtered by this constraint.

Similarly, RWF must be less than 1. We therefore truncate its distribution at 1, which is the 99.4th percentile,

and truncate at the 0.06th percentile to keep symmetry (which also removes unrealistic RWF values near

and less than 0 that cause unrealistic, large and/or negative ECS values). About 1.2% of parameter sets are
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filtered by this constraint. After applying the τ3 and RWF filters, which have a small overlap, we are left

with 96,408 parameter samples. Using these remaining parameter samples, we evaluate model performance

according to several criteria.

Our criteria for evaluating model performance are described in detail below, and summarized in Table

G1 and Figure G2.

Initial pulse-adjustment timescale (IPT): The National Academies of Sciences, Engineering, and

Medicine (2017) report highlights the IPT as a measure that is important for SCC computations, yet does

not provide a clear, consistent definition. It “measures the initial adjustment timescale of the temperature

response to a pulse emission of CO2” and is “the time over which temperatures converge to their peak value

in response to the pulse.” (National Academies of Sciences, Engineering, and Medicine, 2017, p.88). This

could either be the time to an initial peak, or the ultimate maximum temperature change over the duration

of a simulation, which also depends on simulation length. Here we catalogue multiple versions of a potential

IPT metric, comparing with previous literature where appropriate.

To assess the IPT, we set CO2 concentrations to 2010 levels (389 ppm) and hold them constant throughout

the simulation. To provide an emissions baseline to which a pulse will be added, we numerically solve the

CO2 emissions pathway in FAIR to meet the CO2 concentration pathway for each parameter sample. We

then construct a pulse experiment, in which 100 GtC of CO2 is injected instantaneously in the year 2015.

The difference in temperature between the pulse and control run measures the temperature response to a

CO2 pulse. To quantify the time to initial peak, we define the IPT as the time at which the time derivative

of the temperature response first becomes negative (noting that, in many simulations, feedbacks between

temperature and the carbon cycle mean that the temperature rises again after the initial peak and decline,

and reaches the maximum temperature later. Therefore, the time to initial peak is not necessarily the

same as the time to maximum temperature). The resulting IPT has a median of 9.0 years, with a central

90% probability range of 0–24.0 years. We drop parameter sets that lead to simulations in which the first

negative time derivative of temperature occurs after 100 years post-pulse, indicative of temperatures that

only increase throughout the experiment (in contrast to the simulations with an initial post-pulse decrease

in temperature that begins increasing again after a time). This results in a filtering out of 112 additional

parameter samples on top of the τ3 and RWF filters, yielding a total number of post-filtering simulations of

96,306 for examination in the remaining discussion.

We also evaluate other potential metrics: the time to maximum temperature considering the full 500

year simulation, the time to maximum temperature considering just the 100 years post-pulse, and the time

to maximum temperature considering 100 years post-pulse but excluding simulations reaching max at year

100. We find central 90% probable ranges of 4.0–485 (median 19.0), 4.0–100 (median 12.0), and 3.0–23.0

(median 9.0), respectively. The results of Joos et al. (2013) and subsequent analysis by Ricke and Caldeira

(2014) indicate that a peak in warming in response to a pulse emission occurs within about a decade after

emission. In particular, Ricke and Caldeira (2014) estimate a central 90% range for time to peak warming

of 6.6–30.7 years, with a median of 10.1 years, and 2% of simulations reaching maximum at the end of their

100-year simulations. Ricke and Caldeira (2014), however, do not sample from continuous distributions of

ECS and TCR, but rather use narrower discrete distributions of parameters based on individual CMIP5
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GCMs; thus, we expect their range to be narrower than that in our analysis. Considering the first 100-years

of simulation, our median time to peak warming is comparable to Ricke and Caldeira (2014), but spans a

wider range of outcomes, as expected, with 24% of simulations reaching their peak at 100 years post-pulse

(44% reach peak warming at simulation’s end in year 2500).

Transient climate response to emissions (TCRE): The TCRE measures the ratio of transient

warming to cumulative carbon emissions at the time of CO2 doubling in a simulation with a 1% /year

increase (year 70). Collins, Knutti et al. (2013) concluded that TCRE is between 0.8 and 2.5◦C per 1000 GtC

with at least 66% probability. To assess TCRE, we set up an experiment that increases CO2 concentrations

at 1%/year until CO2 concentrations double in year 70. Again, for each parameter sample, we numerically

solve the CO2 emissions pathway in FAIR to meet the CO2 concentration pathway. The resulting TCRE

exhibits a likely range of 0.88–2.34◦C per 1000 GtC, which is consistent with the central 66% probable range

assessed by AR5.

Longevity of pulse warming: The coupled climate-carbon cycle experiments of Joos et al. (2013)

indicate that a majority (about 70% in the multimodel mean) of peak warming persists 500 years after

emissions. In our IPT experiments, the central 66% probable range is 72.9 – 137.6 percent of initial peak

warming persists after 500 years.

Representative Concentration Pathway (RCP) experiments: We assess the warming in the RCP

experiments relative to those in the CMIP5 multi-model ensemble, noting that we compare the central 66%

probability ranges from our ensemble to those of the CMIP5 5th–95th percentile range (Table G1).

The final reduced sample set constitutes 96,306 samples as noted above, and the diagnostic metrics are

essentially unchanged from the pre-filtering distributions (see Table G1). Based on this post-filtering eval-

uation, we conclude that the resulting distribution is adequately consistent with our target constraints and

the recommendations of the National Academies of Sciences, Engineering, and Medicine (2017). We apply

the retained parameter sets to FAIR to produce climate projections that represent climactic uncertainties

and are further used in calculating the SCC uncertainty, as described in the next section. The interquartile

range of the final SCC values across the entire distribution of parameter sets are shown in Table 3 in the

main text.

Finally, we assess the reasonableness of the “handoff” between the SMME models, on which the damage

function is estimated, and FAIR, with which future damages due to a pulse of CO2 are calculated using

the difference in temperature between the pulse and control runs. A comparison of climate sensitivity

uncertainty across these two climate projections is important, as the climate sensitivity uncertainty captured

in the empirically-based projections of mortality damages derives from the SMME, while the uncertainty we

proliferate through to the SCC relies on the simple climate model FAIR. Figure G3 shows the distribution of

GMST changes relative to 2001-2010 (∆GMST) over time, according to the SMME (top row) and the simple

climate model FAIR (bottom two rows). To ensure comparability, here and in damage function estimation

we use smoothed values of the ∆GMST realizations from each SMME model, where smoothing is done using

a 20-year centered moving average. SMME data are available until the year 2100; thus, the top two rows

show a direct comparison between FAIR and the SMME models for these years, showing a strong amount of

overlap in both RCP4.5 and RPC8.5 distributions of warming and indicating the handoff is reasonable (as
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Figure G2: Distributions of key FAIR parameters for climate sensitivity uncertainty both
before (red curve) and after (blue shading) applying constraints. Each panel indicates the dis-
tribution of a key parameter in the FAIR simple climate model, both before (in red) and after (in blue)
the imposition of constraints described in the text. Distributions shown are: A transient climate response
(TCR); B realized warming fraction (RWF) used to define ECS (=TCR / RWF); C equilibrium climate
sensitivity (ECS) shown only after applying constraints due to unrealistic values in the initial distribution
occurring as RWF→ 0; D short thermal adjustment time (d2); E time scale of rapid carbon uptake by the
ocean mixed layer (τ3).

would be expected based on the construction of the SMME).
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Parameter Distribution from literature Pre-IPT distribution Post-IPT distribution Distribution Source

TCR (C) [1.00, 2.50] [1.00, 2.49] [1.00, 2.50] Lognormal AR5
RWF [0.45, 0.75] [0.45, 0.75] N/A Normal NAS (2017)
ECS (C) [1.5, 4.5] [1.60, 4.65] [1.61, 4.61] Lognormal AR5
d2 (years) (1.6, 8.4) (1.6, 8.4) (1.6, 8.3) Lognormal Millar et al. (2017)
τ3 (years) Joos et al. (2013) 4.04 (1.07, 6.96) 4.04 (1.25, 6.79) Normal Joos et al. (2013)

point estimates

Key metrics
TCRE (C/TtC) [0.8, 2.5] N/A [0.88, 2.34] Normal AR5
Time to Tmax (years) (6.6, 30.7) (4.0, 100.0)∗ (4.0, 100.0)∗ N/A Ricke and Caldeira (2014)

RCP 4.5 GMST

2046− 2065 1.4 [0.9, 2.0] N/A 1.38 [0.73, 1.98] (0.51, 2.88) Normal AR5
2081− 2100 1.8 [1.1, 2.6] N/A 1.81 [0.93, 2.60] (0.65, 3.88) Normal AR5
2181− 2200 2.3 [1.4, 3.1] N/A 2.37 [1.13, 3.46] (0.78, 5.41) Normal AR5
2281− 2300 2.5 [1.5, 3.5] N/A 2.73 [1.24, 4.01] (0.85, 6.45) Normal AR5

RCP 8.5 GMST

2046− 2065 2.0 [1.4, 2.6] N/A 2.05 [1.09, 2.90] (0.77, 4.20) Normal AR5
2081− 2100 3.7 [2.6, 4.8] N/A 3.71 [1.96, 5.31] (1.39, 7.73) Normal AR5
2181− 2200 6.5 [3.3, 9.8] N/A 7.34 [3.82, 10.60] (2.69, 15.35) Normal AR5
2281− 2300 7.8 [3.0, 12.6] N/A 8.86 [4.48, 12.84] (3.11, 18.84) Normal AR5

Table G1: Comparisons of the distributions of key FAIR parameter values. This table compares the distributions of key FAIR parameter
values that pass the initial pulse-adjustment timescale (IPT) constraint against the relevant distributions from the literature (included in the IPT
constraint is filtering of τ3 and RWF as specified in the text). Distributions shown are: transient climate response (TCR); realized warming fraction
(RWF); equilibrium climate sensitivity (ECS); short thermal adjustment time (d2); time scale of rapid carbon uptake by the ocean mixed layer (τ3);
transient climate response to emissions (TCRE); and the change in global mean surface temperature (GMST) from the reference period 1986-2005
at various points in the projections. Note that RWF is only used to create our ECS distribution, and so the post-IPT distribution of RWF is not
reported. Distributions reported are determined by the reference values from the literature, so that different parameters have different descriptions of
their associated distributions: 5 to 95% ranges are given in ( ), 17 to 83% ranges (likely ranges for AR5) are given in [ ], and means are given without
( ) or [ ].
∗ We only consider the first 100 years post-pulse to be consistent with the length of the simulations in Ricke and Caldeira (2014).
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G.3 Converting temperature scenarios to mortality partial SCC

We convert the temperature scenarios developed in the climate module into estimates of mortality-related

damages using the global damage functions described in Section 7. These damage functions characterize

valued mortality damages as a function of ∆GMST (changes in GMST relative to 2001-2010). Figure G4

shows these functions in 5-year time steps for each combination of valuation assumptions using the US

EPA VSL (see Sections 5.5 and 7 for discussion of valuation of mortality-related costs of climate change).

This figure contains the same information as Figure 8 in the main text, while additionally demonstrating

substantial heterogeneity across distinct valuation scenarios (our primary valuation method uses an age-

varying VSL in which impact region-specific VSLs are constructed using an income elasticity of one; this

valuation is shown in the bottom row and second column of Figure G4) .
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Figure G4: Temporal evolution of empirically derived damage functions (trillion USD) as a
function of global mean surface temperature anomaly. Each panel shows estimates of quadratic
damage functions estimated independently for each 5-year period from 2015 to 2100 under various valuation
assumptions regarding the valuation of lives lost or saved.

The coefficients on these quadratic damage functions are constructed for each year from 2020 to 2300, as

described in the main text. We then generate annual estimates of temperature-related mortality damages

by applying the ∆GMST values from both the control FAIR scenarios (RCP4.5 and RCP8.5), as well as

pulse scenarios, to the empirically derived damage functions. After computing mortality damages associated

with each scenario, we subtract each pulse scenario from the corresponding control scenario and divide by

the pulse amount to estimate the marginal effect of the pulse. This time series is then discounted using

2.0%, 2.5%, 3% and 5% discount rates, and summed through time to create a net present value, following

Equation 13 in Section 7. This final value is the net present value of the full mortality risks caused of a

marginal emission of CO2. An alternative estimate would make use of Ramsey-like discounting, accounting

for the relationship between consumption growth and the discount rate, but we leave this for future study.

Figure G5 replicates the SCC calculation graphically shown in Figure 9 for RCP 4.5.
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Figure G5: Change in emissions, concentrations, temperature, and damages due to a marginal
emissions pulse in 2020 under RCP4.5. Panel A shows a 1GtC emissions pulse (equivalent to 3.66Gt CO2) in
2020 for emissions scenario RCP 4.5. Panel B displays the effect of this pulse on atmospheric CO2 concentrations, relative to
the baseline. In panel C, the impact of the pulse of CO2 on temperature is shown where the levels are anomalies in global
mean surface temperature (GMST) in Celsius. In panels A-C, shaded areas indicate the inter-quartile range due to climate
sensitivity uncertainty, while solid lines are median estimates. Panel D shows the change in discounted damages over time due
to a 1 Gt pulse of CO2 in 2020, as estimated by our empirically-derived damage functions, using a 2% annual discount rate
and the age-varying U.S. EPA VSL with an income elasticity of one applied to all impact regions. The shaded area indicates
the inter-quartile range due to climate sensitivity and damage function uncertainty, while the solid line is the median estimate.

In the main text, we report uncertainty in the mortality partial SCC in three ways: accounting for

climate sensitivity uncertainty only, damage function uncertainty only, and full uncertainty (both climate

and economic). Here we briefly describe how these values are generated.

Mortality partial SCC estimates accounting for both climate sensitivity and damage func-

tion uncertainty: Using our Monte Carlo projections of damages, for each year from 2015 to 2100 we pool

all Monte Carlo results for the associated 5-year window. We then run quantile regressions to fit quantile-

specific damage functions for 19 quantiles (i.e., every 5th percentile from the 5th to 95th). As in the mean

damage function estimation, extrapolation past the year 2100 is accomplished using a time interaction model

(see Section 7). In this extrapolation, we allow each quantile of the Monte Carlo distribution to evolve over

time heterogeneously, based on the observed changes over time that we estimate at the end of the 21st

century.

We run each quantile-specific damage function through each of the 96,306 sets of FAIR parameters

and up-weight runs in order to reflect probability mass in the damage function uncertainty space. This

process reflects a joint sampling from the full space of damage function uncertainty and climate sensitivity

uncertainty. The relevant SCC interquartile range (IQR) is resolved from the resulting distribution of

mortality partial SCCs.

Mortality partial SCC estimates accounting for climate sensitivity uncertainty only: To

isolate uncertainty in the mortality partial SCC that derives from climate sensitivity uncertainty, we run

the central estimate of our damage function through each of the 96,306 sets of FAIR parameters. The

corresponding SCC IQR is resolved from the resulting distribution of mortality partial SCCs.

Mortality partial SCC estimates accounting for damage function uncertainty only: To isolate

uncertainty in the mortality partial SCC that derives from uncertainty in the damage function, we run the
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set of quantile-year damage functions through FAIR with each climate parameter fixed at its median value

(as is done in the central mortality partial SCC estimates). The corresponding SCC IQR is resolved from

the resulting distribution of mortality partial SCCs.
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H Sensitivity of the mortality partial social cost of carbon

The mortality partial social cost of carbon (SCC) estimates shown in the main text depend upon a set

of valuation and functional form assumptions and are reported for a particular socioeconomic scenario

(SSP3). In this appendix, we detail our valuation approach and provide a wide range of additional mortality

partial SCC estimates under alternative valuation approaches, alternative functional forms and extrapolation

approaches for the damage function, and under multiple different socioeconomic scenarios. In all cases, we

show multiple discount rates and emissions trajectories.

H.1 Methodology for constructing value of life-years lost from value of a sta-

tistical life (VSL)

As described in Section 7, panel A of Table 3 utilizes a valuation approach that adjusts the VSL by the total

value of expected life-years lost. We provide this metric in order to accommodate the large heterogeneity in

mortality-temperature relationships that we uncover across age groups. To adjust VSL values accordingly

(see Table H1 for a set of commonly used VSLs), we first calculate the value of lost life-years by dividing

the U.S. EPA VSL by the remaining life expectancy of the median-aged American. This recovers an implied

value per life-year. We then apply an income elasticity of one108 to convert this life-year valuation into a

per life-year VSL for each impact region in each year. To calculate life-years lost for a given temperature-

induced change in the mortality rate, we use the SSP projected population values, which are provided in

5-year age bins, to compute the implied conditional life expectancy for people in each age bin. We take the

population-weighted average of remaining life expectancy across all the 5-year age bins in our broader age

categories of <5, 5-64, and >64. This allows us to calculate total expected life-years lost, which we multiply

by the impact-region specific VSL per life-year to calculate total damages.

Table H1: Value of statistical life estimates. VSL values are converted to 2019 USD using the Federal
Reserve’s US GDP Deflator.

VSL (Millions USD)

Unadjusted 2019 Dollars

EPA ($2011) $9.90 $10.95

Ashenfelter and Greenstone ($1997) $1.54 $2.39

OECD (OECD Countries; $2005)

Base $3.00 $3.82

Range $1.50 - $4.50 $1.91 - $5.73

OECD (EU27 Countries; $2005)

Base $3.60 $4.58

Range $1.80 - $5.40 $2.29 - $6.88

108As noted in the main text, the EPA recommends VSL income elasticities of 0.7 and 1.1 (U.S. Environmental Protection
Agency, 2016), while a review by Viscusi (2015) estimates an income-elasticity of the VSL of 1.1.
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This procedure assumes that our estimated climate change driven deaths occur with uniform probability

for all people within an age category. Without historical data containing information on age-specific mortality

rates at higher resolution than our three age categories, or information on other chronic health conditions that

may lower the life expectancy of individuals in each age group, we cannot empirically parameterize a more

detailed life expectancy calculation. However, it is plausible that older individuals within an age category

and those with chronic conditions are more likely to die due to extreme temperatures, which would imply

that our mortality risk values, when computed using a value of life-years lost approach, are overstated. While

we do not have the data sufficient to test this hypothesis, prior evidence from pollution-related mortality in

the United States suggests this bias may be substantial (Deryugina et al., 2019).

The above methodology also values each life-year lost identically. In an alternative set of calculations

(see results in Appendix H.2), we adjust the life-year values based on the age-specific value of remaining life

derived by Murphy and Topel (2006). Murphy and Topel (2006) provide estimates of the value of remaining

life for each age group. The authors do not estimate the level of the VSL, but instead provide age-specific

values relative to a given population-wide VSL. We use these relative values of remaining life by age to adjust

the U.S. EPA VSL, such that life-years lost are heterogeneously valued for each impact region in each year,

by age. The resulting SCC calculations are shown in Tables H2 and H3.

H.2 Mortality partial social cost of carbon under alternative valuation ap-

proaches and socioeconomic scenarios

In the main text, mortality partial SCC values are shown using a combination of the US EPA VSL, an income

elasticity of one, and valuation methods that value deaths using both an age-varying and an age-invariant

value of a statistical life calculation (see Appendix H.1). This appendix shows a range of mortality partial

SCC estimates under alternative VSL values, alternative assumptions about the role of income in valuation,

with a life-years adjustment to the VSL that allows for age-specific values of remaining life, as derived by

Murphy and Topel (2006), and under alternative socioeconomic scenarios.

Table H2 provides mortality partial SCC estimates across these distinct valuation approaches under

the method shown in the main text Table 3, in which an income elasticity of one is used to adjust VSLs

across the globe and over time. Table H3 provides mortality partial SCC estimates across distinct valuation

approaches under a globally uniform valuation method in which a globally homogeneous VSL is used in

each year, which evolves over time based on global income growth. Under this alternative, the lives of

contemporaries are valued equally, regardless of their relative incomes. The method shown in the main text

is most consistent with the revealed preference approach we use to estimate costs of adaptation, given that we

observe how individuals make private tradeoffs between their own mortality risk and their own consumption

(recall Equation 7). However, the latter approach might be preferred by policymakers interested in valuing

reductions in mortality risk equally for all people globally, regardless of how individuals value their own

mortality risk.
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Table H2: Globally varying valuation: Estimates of a mortality partial Social Cost of Carbon (SCC) under different valuation
assumptions. An income elasticity of one is used to scale either the U.S. EPA VSL, or the VSL estimate from (Ashenfelter and Greenstone, 2004).
All SCC values are for the year 2020, measured in PPP-adjusted 2019 USD, and are calculated from damage functions estimated from results using
the socioeconomic scenario SSP3. All regions have heterogeneous valuation, based on local income. Value of life years estimates (panel A) adjust
death valuation by expected life-years lost. Value of statistical life estimates (panel B) use age-invariant death valuation. Murphy-Topel life years
adjusted estimates (panel C) add an age-specific adjustment that allows the value of a life-year to vary with age, based on Murphy and Topel (2006)
and described in Appendix H.1. The first row of every valuation shows our estimated mortality partial SCC using the median values for the four key
input parameters of the simple climate model FAIR and a conditional mean estimate of the damage function. The uncertainty ranges are interquartile
ranges [IQRs] showing the influence of climate sensitivity and damage function uncertainty (see Appendix G for details).

Valuation EPA A & G

Discount rate δ = 2% δ = 2.5% δ = 3% δ = 5% δ = 2% δ = 2.5% δ = 3% δ = 5%

Globally varying valuation of mortality risk (2019 US Dollars)
Panel A: Value of life years

RCP 4.5 17.1 11.2 7.9 2.9 7.9 5.2 3.7 1.3
Climate sensitivity uncertainty [8.3, 39.3] [5.9, 24.1] [4.4, 15.8] [2.0, 4.3] [3.9, 18.3] [2.8, 11.2] [2.1, 7.4] [0.9, 2.0]
Damage function uncertainty [-21.9, 50.8] [-19.2, 32.1] [-12.1, 26.6] [-6.3, 12.0] [-10.2, 23.7] [-9.0, 15.0] [-5.6, 12.4] [-2.9, 5.6]
Full uncertainty [-24.7, 53.6] [-18.9, 36.0] [-15.2, 26.3] [-8.5, 11.5] [-11.5, 25.0] [-8.8, 16.8] [-7.1, 12.2] [-3.9, 5.3]

RCP 8.5 36.6 22.0 14.2 3.7 17.0 10.2 6.6 1.7
Climate sensitivity uncertainty [18.8, 76.6] [11.6, 45.2] [7.7, 28.3] [2.4, 6.2] [8.7, 35.7] [5.4, 21.0] [3.6, 13.2] [1.1, 2.9]
Damage function uncertainty [-8.4, 74.2] [-8.7, 48.2] [-6.4, 35.6] [-7.3, 14.1] [-3.9, 34.6] [-4.0, 22.4] [-3.0, 16.6] [-3.4, 6.6]
Full uncertainty [-7.8, 73.0] [-10.6, 46.8] [-11.4, 32.9] [-8.9, 13.0] [-3.6, 34.0] [-5.0, 21.8] [-5.3, 15.3] [-4.1, 6.1]

Panel B: Value of statistical life
RCP 4.5 14.9 9.8 6.7 1.7 7.0 4.6 3.1 0.8

Climate sensitivity uncertainty [2.4, 52.9] [2.7, 30.4] [2.5, 18.3] [1.0, 2.1] [1.1, 24.6] [1.2, 14.2] [1.2, 8.5] [0.5, 1.0]
Damage function uncertainty [-12.8, 44.1] [-11.8, 33.1] [-11.1, 25.6] [-6.8, 12.6] [-6.0, 20.5] [-5.5, 15.4] [-5.2, 11.9] [-3.2, 5.9]
Full uncertainty [-21.2, 63.5] [-17.9, 43.5] [-15.7, 32.1] [-11.8, 14.7] [-9.9, 29.6] [-8.3, 20.3] [-7.3, 15.0] [-5.5, 6.9]

RCP 8.5 65.1 36.9 22.1 3.5 30.3 17.2 10.3 1.6
Climate sensitivity uncertainty [30.0, 147.0] [17.5, 82.3] [10.8, 48.3] [2.2, 5.6] [14.0, 68.5] [8.1, 38.3] [5.0, 22.5] [1.0, 2.6]
Damage function uncertainty [18.4, 98.2] [8.3, 63.1] [2.3, 43.7] [-7.0, 14.5] [8.6, 45.7] [3.9, 29.4] [1.1, 20.3] [-3.3, 6.7]
Full uncertainty [3.0, 139.0] [-2.4, 83.1] [-5.6, 53.4] [-9.3, 16.0] [1.4, 64.7] [-1.1, 38.7] [-2.6, 24.9] [-4.3, 7.5]

Panel C: Murphy-Topel life years adjusted
RCP 4.5 17.5 11.6 8.3 3.1 8.1 5.4 3.9 1.5

Climate sensitivity uncertainty [8.8, 39.6] [6.3, 24.5] [4.7, 16.3] [2.1, 4.8] [4.1, 18.4] [2.9, 11.4] [2.2, 7.6] [1.0, 2.2]
Damage function uncertainty [-16.4, 56.2] [-16.6, 35.8] [-12.2, 27.4] [-6.0, 12.4] [-7.7, 26.2] [-7.7, 16.7] [-5.7, 12.8] [-2.8, 5.8]
Full uncertainty [-25.3, 56.6] [-19.3, 37.9] [-15.6, 27.7] [-8.6, 12.2] [-11.8, 26.4] [-9.0, 17.7] [-7.3, 12.9] [-4.0, 5.7]

RCP 8.5 36.3 22.0 14.3 4.0 16.9 10.3 6.7 1.9
Climate sensitivity uncertainty [18.8, 75.5] [11.7, 44.8] [7.9, 28.3] [2.6, 6.6] [8.7, 35.2] [5.5, 20.9] [3.7, 13.2] [1.2, 3.1]
Damage function uncertainty [-8.2, 67.4] [-7.5, 46.8] [-8.3, 33.3] [-5.5, 14.0] [-3.8, 31.4] [-3.5, 21.8] [-3.9, 15.5] [-2.6, 6.5]
Full uncertainty [-8.0, 70.9] [-11.0, 46.4] [-11.6, 33.0] [-8.8, 13.6] [-3.7, 33.0] [-5.1, 21.6] [-5.4, 15.4] [-4.1, 6.3]
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Table H3: Globally uniform valuation: Estimates of a mortality partial Social Cost of Carbon (SCC) under different valuation
assumptions. An income elasticity of one is used to scale either the U.S. EPA VSL, or the VSL estimate from (Ashenfelter and Greenstone, 2004).
All SCC values are for the year 2020, measured in PPP-adjusted 2019 USD, and are calculated from damage functions estimated from results using
the socioeconomic scenario SSP3. All regions are given the global median VSL, after scaling using income. Value of life years estimates (panel A)
adjust death valuation by expected life-years lost. Value of statistical life estimates (panel B) use age-invariant death valuation. Murphy-Topel life
years adjusted estimates (panel C) add an age-specific adjustment that allows the value of a life-year to vary with age, based on Murphy and Topel
(2006) and described in Appendix H.1. The first row of every valuation shows our estimated mortality partial SCC using the median values for the
four key input parameters of the simple climate model FAIR and a conditional mean estimate of the damage function. The uncertainty ranges are
interquartile ranges [IQRs] showing the influence of climate sensitivity and damage function uncertainty (see Appendix G for details).

Valuation EPA A & G

Discount rate δ = 2% δ = 2.5% δ = 3% δ = 5% δ = 2% δ = 2.5% δ = 3% δ = 5%

Globally uniform valuation of mortality risk (2019 US Dollars)
Panel A: Value of life years

RCP 4.5 37.5 26.4 19.9 9.0 17.5 12.3 9.3 4.2
Climate sensitivity uncertainty [19.4, 82.2] [14.5, 54.4] [11.4, 38.7] [5.8, 15.1] [9.0, 38.3] [6.8, 25.3] [5.3, 18.0] [2.7, 7.1]
Damage function uncertainty [-15.7, 87.9] [-10.9, 63.1] [-11.4, 44.2] [-2.4, 23.1] [-7.3, 40.9] [-5.1, 29.4] [-5.3, 20.6] [-1.1, 10.7]
Full uncertainty [-13.3, 101.7] [-10.2, 68.7] [-8.4, 50.0] [-5.0, 21.7] [-6.2, 47.4] [-4.8, 32.0] [-3.9, 23.3] [-2.3, 10.1]

RCP 8.5 72.3 46.3 32.0 11.5 33.6 21.6 14.9 5.3
Climate sensitivity uncertainty [37.8, 149.0] [24.9, 93.4] [17.7, 62.8] [7.0, 20.1] [17.6, 69.4] [11.6, 43.5] [8.2, 29.2] [3.2, 9.4]
Damage function uncertainty [7.2, 127.1] [4.3, 86.3] [-1.9, 59.0] [-4.8, 24.8] [3.4, 59.2] [2.0, 40.2] [-0.9, 27.5] [-2.2, 11.5]
Full uncertainty [4.6, 141.1] [-0.5, 92.1] [-2.9, 64.6] [-4.6, 24.9] [2.2, 65.7] [-0.2, 42.9] [-1.4, 30.1] [-2.1, 11.6]

Panel B: Value of statistical life
RCP 4.5 46.2 33.7 25.9 11.9 21.5 15.7 12.1 5.5

Climate sensitivity uncertainty [15.3, 134.1] [14.0, 86.6] [12.3, 60.2] [7.2, 21.4] [7.1, 62.4] [6.5, 40.3] [5.7, 28.0] [3.4, 10.0]
Damage function uncertainty [14.3, 102.0] [12.9, 75.4] [3.5, 56.9] [-0.7, 26.9] [6.6, 47.5] [6.0, 35.1] [1.6, 26.5] [-0.3, 12.5]
Full uncertainty [2.8, 148.2] [-1.8, 98.6] [-4.1, 71.0] [-4.2, 30.2] [1.3, 69.0] [-0.8, 45.9] [-1.9, 33.1] [-2.0, 14.1]

RCP 8.5 143.9 87.5 57.5 17.6 67.0 40.8 26.8 8.2
Climate sensitivity uncertainty [68.8, 317.6] [43.1, 189.7] [29.2, 121.7] [10.1, 32.9] [32.0, 147.9] [20.1, 88.3] [13.6, 56.7] [4.7, 15.3]
Damage function uncertainty [59.5, 197.8] [38.1, 130.2] [23.8, 94.9] [3.1, 33.2] [27.7, 92.1] [17.7, 60.6] [11.1, 44.2] [1.5, 15.4]
Full uncertainty [39.0, 287.0] [21.8, 176.9] [11.9, 117.4] [-2.0, 37.9] [18.2, 133.7] [10.1, 82.4] [5.5, 54.7] [-1.0, 17.6]

Panel C: Murphy-Topel life years adjusted
RCP 4.5 35.8 25.3 19.0 8.6 16.7 11.8 8.8 4.0

Climate sensitivity uncertainty [18.4, 79.1] [13.8, 52.1] [10.9, 37.0] [5.5, 14.4] [8.6, 36.8] [6.4, 24.3] [5.1, 17.2] [2.6, 6.7]
Damage function uncertainty [-15.1, 90.6] [-8.0, 61.1] [-4.9, 46.8] [-4.1, 21.5] [-7.0, 42.2] [-3.7, 28.4] [-2.3, 21.8] [-1.9, 10.0]
Full uncertainty [-14.2, 99.9] [-10.8, 67.2] [-9.0, 48.8] [-5.7, 21.3] [-6.6, 46.5] [-5.0, 31.3] [-4.2, 22.7] [-2.7, 9.9]

RCP 8.5 70.1 44.6 30.7 10.9 32.6 20.8 14.3 5.1
Climate sensitivity uncertainty [36.6, 144.7] [24.0, 90.0] [17.0, 60.2] [6.6, 19.1] [17.1, 67.4] [11.2, 41.9] [7.9, 28.0] [3.1, 8.9]
Damage function uncertainty [7.0, 123.2] [0.0, 79.4] [-0.8, 59.5] [-4.4, 22.5] [3.3, 57.4] [0.0, 37.0] [-0.4, 27.7] [-2.0, 10.5]
Full uncertainty [3.7, 134.5] [-0.8, 87.9] [-2.7, 61.7] [-5.2, 24.0] [1.7, 62.7] [-0.4, 40.9] [-1.3, 28.7] [-2.4, 11.2]
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Table H4 shows mortality partial SCC estimates using a 1.5% discount rate, which more accurately

reflects recent global capital markets than the discount rates shown in the main text (the average 10-year

Treasury Inflation-Indexed Security value from 2003 to present is just 1.01% (Board of Governors of the US

Federal Reserve System, 2020)).

Table H4: Estimates of a partial Social Cost of Carbon (SCC) for excess mortality risk in-
corporating the costs and benefits of adaptation, 1.5% discount rate. In both panels, an income
elasticity of one is used to scale the U.S. EPA VSL value. All regions thus have heterogeneous valuation,
based on local income. All SCC values are for the year 2020, measured in PPP-adjusted 2019 USD, and are
calculated from damage functions estimated from projected results under the socioeconomic scenario SSP3.
In panel A, SCC estimates use an age adjustment that values deaths by the expected number of life-years
lost, using an equal value per life-year (see Appendix H.1 for details). In panel B, SCC calculations use value
of a statistical life estimates that do not vary with age. Point estimates rely on the median values of the four
key input parameters into the climate model FAIR and a conditional mean estimate of the damage function.
The uncertainty ranges are interquartile ranges [IQRs] including both climate sensitivity uncertainty and
damage function uncertainty (see Appendix G for details).

Annual discount rate
δ = 1.5%

Panel A: Age-adjusted globally varying value of a statistical life (2019 US Dollars)

Moderate emissions scenario (RCP 4.5) 28.5
Full uncertainty IQR [-35.6, 88.5]

High emissions scenario (RCP 8.5) 66.4
Full uncertainty IQR [-2.8, 126.5]

Panel B: Globally varying value of a statistical life (2019 US Dollars)

Moderate emissions scenario (RCP 4.5) 24.6
Full uncertainty IQR [-25.5, 102.9]

High emissions scenario (RCP 8.5) 123.9
Full uncertainty IQR [13.7, 253.6]

Table H5 shows mortality partial SCC estimates under various socioeconomic projections (SSP3 is used

throughout the main text; see Appendix B.3.2 for a discussion of this choice). We note that under SSP4

and a moderate emissions scenario (RCP4.5), the central estimate of the partial SCC is negative under all

discount rates shown. While SSP4 shows global average increases in the full mortality risk of climate change

by 2100 under both emissions scenarios (see Figure F5), the negative SCC is driven by different income and

demographic changes projected under SSP4 relative to the other SSPs, both of which influence the valuation

of lives lost. In particular, SSP4 projects that today’s wealthy and relatively cold locations will experience

dramatically higher future incomes, with much older populations, when compared to SSP2 or SSP3. This

increase in income and rapid aging of the population leads to many lives saves in cold regions of the world as

the climate warms, and each life is valued highly due to income growth raising the VSL (recall that we use

an income elasticity of one for the VSL throughout the text). In contrast, SSP4 projects very low income

growth in today’s hot and poor locations, such that lives lost due to warming in these regions receive little

value in this scenario. Note that with sufficiently high emissions (RCP8.5), heat-related deaths outweigh
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cold-related lives saved even in today’s wealthy and relatively cold regions of the world, such that the partial

SCC for SSP4 is no longer negative.

Table H5: Estimates of a mortality partial Social Cost of Carbon (SCC) under various socioe-
conomic projections. In both panels, an income elasticity of one is used to scale the U.S. EPA VSL value.
All SCC values are for the year 2020, measured in PPP-adjusted 2019 USD. In panel A, SCC estimates use
an age adjustment that values deaths by the expected number of life-years lost, using an equal value per
life-year (see Appendix H.1 for details). In panel B, SCC calculations use value of a statistical life estimates
that do not vary with age. Each row shows, for a different SSP scenario, our estimated SCC using the
median values for the four key input parameters of the simple climate model FAIR and a conditional mean
estimate of the damage function.

Annual discount rate
δ = 2% δ = 2.5% δ = 3% δ = 5%

Panel A: Age-adjusted globally varying value of a statistical life (2019 USD)

RCP 4.5
SSP2 25.7 15.8 10.4 2.9
SSP3 17.1 11.2 7.9 2.9
SSP4 -14.5 -10.0 -7.5 -3.7

RCP 8.5
SSP2 33.3 18.7 11.0 1.2
SSP3 36.6 22.0 14.2 3.7
SSP4 22.5 13.0 7.9 1.2

Panel B: Globally varying value of a statistical life (2019 USD)

RCP 4.5
SSP2 2.0 0.3 -0.9 -3.3
SSP3 14.9 9.8 6.7 1.7
SSP4 -64.3 -46.6 -36.1 -18.5

RCP 8.5
SSP2 43.9 22.0 10.7 -2.5
SSP3 65.1 36.9 22.1 3.5
SSP4 23.1 8.6 1.2 -6.4

Finally, Table H6 shows mortality partial SCC estimates under both SSP2 (repeating values in Table

H5) and a “hybrid” SSP designed to approximate a scenario in which climate change impacts on economic

growth are endogenized. Throughout our main analysis, we treat income as exogenously given by the Shared

Socioeconomic Pathways (SSPs). However, a growing literature indicates that the level and/or growth

rate of income is influenced by temperature (e.g., Burke, Hsiang, and Miguel, 2015; Kalkuhl and Wenz,

2020). Following this literature and allowing income to respond to emissions could influence our mortality

partial SCC estimates both by changing location-specific VSLs, and by changing income-driven adaptation in

location-specific mortality-temperature relationships. While a full treatment of this topic is beyond the scope

of this analysis, here we create a hybrid SSP that is constructed to approximate the impact of endogenous

economic growth on the mortality partial SCC. Our analysis involves two steps.

First, we choose two scenarios from the three SSPs included in the main analysis (SSP2, SSP3, and SSP4)
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for which differences in income across SSPs for each quintile of the global income distribution approximately

match the impacts of climate change from Burke, Hsiang, and Miguel (2015). To see this visually, Panel

A of Figure H1 shows the estimated impacts of climate change on GDP per capita from Burke, Hsiang,

and Miguel (2015), where impacts are shown for each quintile of the 2010 country-level income distribution.

The level of these curves indicate the difference between incomes under climate change following RCP8.5

versus without climate change. Panel B of Figure H1 shows the difference between incomes under SSP2

versus under a hybrid SSP in which SSP2 projected income is replaced by SSP3 projected income only for

the poorest 60% of countries in 2010. As can be seen by comparing across panels, the difference between

SSP2 and our hybrid scenario closely approximates the estimated GDP per capita climate change impacts

in Burke, Hsiang, and Miguel (2015).
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Figure H1: Constructing a hybrid Shared Socioeconomic Scenario (SSP) to approximate an
income trajectory that is endogenous to climate change, following Burke, Hsiang, and Miguel
(2015). Panel A is reproduced from Burke, Hsiang, and Miguel (2015) and shows mean impacts of climate
change by 2010 income quantile for the authors’ benchmark empirical model. The right panel shows the
mean difference in income between SSP2 and a hybrid socioeconomic scenario in which SSP2 projected
income is replaced by SSP3 projected income only for the poorest 60% of countries in 2010.

Second, we compute the mortality partial SCC under SSP2 as well as under our hybrid scenario, and

compare SCC estimates. The difference in SCCs across these two scenarios approximates the effect of

endogenizing income growth to climate change (as estimated by Burke, Hsiang, and Miguel (2015)) on the

mortality partial SCC. Table H6 shows this comparison. Despite the extraordinary income differences shown

in Figure H1, under our central valuation approach (δ=2%) and RCP8.5 emissions, the SCC rises by just

6% when using the hybrid socioeconomic scenario, relative to SSP2. Note that we do not report SCCs in

Table H6 under RCP4.5, as the hybrid scenario was calibrated to match estimates from Burke, Hsiang, and

Miguel (2015) for RCP8.5.
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Table H6: Estimates of a partial Social Cost of Carbon (SCC) for excess mortality risk under
a hybrid socioeconomic scenario designed to approximate an endogenous growth trajectory.
Partial mortality SCC estimates are shown for a reference socioeconomic scenario (SSP2, “Reference”), as
well as a hybrid scenario (“Hybrid”) in which SSP2 projected income is replaced by SSP3 projected income
only for the poorest 60% of countries in 2010. An income elasticity of one is used to scale the U.S. EPA VSL
value and all estimates correspond to RCP8.5 emissions. All SCC values are for the year 2020, measured in
PPP-adjusted 2019 USD, and use an age adjustment that values deaths by the expected number of life-years
lost, using an equal value per life-year. See text for details on the hybrid socioeconomic scenario.

Annual discount rate
δ = 2% δ = 2.5% δ = 3% δ = 5%

SSP2 (Reference) 33.3 18.7 11.0 2.5
Hybrid SSP 35.3 20.6 12.7 1.2

H.3 Alternative approach to estimating post-2100 damages

As discussed in Section 7, we rely on an extrapolation of estimated damage functions to capture mortality

impacts of climate change after the year 2100, due to data limitations. In this appendix, we explore the

importance of this extrapolation by using an alternative approach to estimating post-2100 damage functions.

Here, we calculate mortality partial SCC estimates using a set of damage functions in which the estimated

2100 damage function is applied to all years from 2100-2300. Effectively, this freezes the damage function

at its 2100 level for all later years. Values shown are for SSP3, RCP8.5, with a discount rate of 2% and an

age-varying VSL. Table H7 shows that this alternative approach to post-2100 damage estimation causes our

central estimate of the SCC to fall by 21%.

Table H7: The influence of damage function extrapolation in years after 2100 on estimates of
a mortality partial Social Cost of Carbon (SCC). In this table, an income elasticity of one is used to
scale the U.S. EPA VSL value, and all SCC values are for the year 2020 under RCP8.5 emissions, measured in
PPP-adjusted 2019 USD, and are calculated from damage functions estimated from projected results under
the socioeconomic scenario SSP3. The VSL is age-varying, so that these values are directly comparable to
panel A in Table 3 in the main text. For the first column, damage functions continue to evolve over time
in the years after 2100, according to the method described in Section 7. In the second column, the damage
function estimated for the year 2100 is used for all years after 2100. All mortality partial SCC estimates use
the median values for the four key input parameters of the simple climate model FAIR and a conditional
mean estimate of the damage function.

Extrapolating post-2100 damage
function

Holding post-2100 damage function
fixed

Pre-2100 damages $12.8 $12.8
Post-2100 damages $23.8 $16.0
Total damages $36.6 $28.8
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H.4 Robustness of the mortality partial SCC to an alternative functional form

of the damage function

Throughout the main text, we report mortality partial SCC estimates that rely on a quadratic damage

function estimated through all damage projections from all Monte Carlo simulation runs (see Section 7 for

details). In Table H8, we show mortality partial SCC estimates for our central valuation approach using a

cubic polynomial damage function in place of a quadratic. Across emissions scenarios and discount rates,

we find that this alternative functional form has a minimal impact on mortality partial SCC estimates.

Table H8: Estimates of a mortality partial Social Cost of Carbon (SCC) using a cubic polyno-
mial damage function In this table, an income elasticity of one is used to scale the U.S. EPA VSL value.
All SCC values are for the year 2020, measured in PPP-adjusted 2019 USD, and are calculated from damage
functions estimated from projected results under the socioeconomic scenario SSP3. Damage functions are
estimated as a cubic polynomial, instead of a quadratic (as in the main text). In panel A, SCC estimates
use an age adjustment that values deaths by the expected number of life-years lost, using an equal value per
life-year (see Appendix H.1 for details). In panel B, SCC calculations use value of a statistical life estimates
that do not vary with age. Estimates rely on the median values of the four key input parameters into the
simple climate model FAIR and a conditional mean estimate of the damage function.

Annual discount rate
δ = 2% δ = 2.5% δ = 3% δ = 5%

Panel A: Age-adjusted globally varying value of a statistical life (2019 USD)

RCP 4.5 9.4 6.5 4.9 2.4
RCP 8.5 44.5 25.7 16.1 4.0

Panel B: Globally varying value of a statistical life (2019 USD)

RCP 4.5 18.7 12.5 9.1 3.8
RCP 8.5 68.4 37.6 21.9 2.8

A96



Appendix references

Ashenfelter, Orley and Michael Greenstone. 2004. “Using mandated speed limits to measure the value of a
statistical life.” Journal of Political Economy 112 (S1):S226–S267.

Auffhammer, Maximilian and Anin Aroonruengsawat. 2011. “Simulating the impacts of climate change,
prices and population on California’s residential electricity consumption.” Climatic Change 109 (1):191–
210. URL http://dx.doi.org/10.1007/s10584-011-0299-y.

Auffhammer, Maximilian, Solomon M Hsiang, Wolfram Schlenker, and Adam Sobel. 2013. “Using weather
data and climate model output in economic analyses of climate change.” Review of Environmental Eco-
nomics and Policy 7 (2):181–198.

Barreca, Alan, Karen Clay, Olivier Deschenes, Michael Greenstone, and Joseph S. Shapiro. 2016. “Adapting
to climate change: The remarkable decline in the US temperature-mortality relationship over the twentieth
century.” Journal of Political Economy 124 (1):105–159. URL http://dx.doi.org/10.1086/684582.

Becker, Gary S. 2007. “Health as human capital: synthesis and extensions.” Oxford Economic Papers
59 (3):379–410.

Board of Governors of the US Federal Reserve System. 2020. “10-Year Treasury Inflation-Indexed Security,
Constant Maturity [DFII10].” Tech. rep., FRED, Federal Reserve Bank of St. Louis. URL https://fred.

stlouisfed.org/series/DFII10.

Bright, E. A., P. R. Coleman, A. N. Rose, and M. L. Urban. 2012. “LandScan 2011.” Digital dataset:
web.ornl.gov/sci/landscan/index.shtml.

Burgess, Robin, Olivier Deschenes, Dave Donaldson, and Michael Greenstone. 2017. “The unequal effects of
weather and climate change: Evidence from mortality in India.” NBER Working paper .

Burke, Marshall, Solomon M Hsiang, and Edward Miguel. 2015. “Global non-linear effect of temperature on
economic production.” Nature 527 (7577):235–239.

Center for Systemic Peace. 2020. “Polity5: Political Regime Characteristics and Transitions 1800-2018.”
URL http://www.systemicpeace.org/inscrdata.html.

Chen, Yuyu, Avraham Ebenstein, Michael Greenstone, and Hongbin Li. 2013. “Evidence on the impact of
sustained exposure to air pollution on life expectancy from China’s Huai River policy.” Proceedings of the
National Academy of Sciences 110 (32):12936–12941.

Collins, Matthew, Reto Knutti et al. 2013. Long-term Climate Change: Projections, Commitments and
Irreversibility, chap. 12. Intergovernmental Panel on Climate Change, 1029–1136. URL http://www.

ipcc.ch/report/ar5/wg1/.

Curriero, Frank C, Karlyn S Heiner, Jonathan M Samet, Scott L Zeger, Lisa Strug, and Jonathan A Patz.
2002. “Temperature and mortality in 11 cities of the eastern United States.” American Journal of
Epidemiology 155 (1):80–87.

Davis, Lucas W and Paul J Gertler. 2015. “Contribution of air conditioning adoption to future energy use
under global warming.” Proceedings of the National Academy of Sciences 112 (19):5962–5967.

Dellink, Rob, Jean Chateau, Elisa Lanzi, and Bertrand Magné. 2015. “Long-term economic growth projec-
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