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“The issue is that everything is so close together here. One house next to the other; one
on top of the other. What looks like only a small one is actually five or six in the same
space. A lot of people here work outside of Paraisopolis. If the virus spreads here, it will
spread all over Sao Paulo.” Hebert Douglas, resident of Paraisopolis, one of the largest
slums in Brazil (Folha de Sdo Paulo 2020)

1 Introduction

Disease outbreaks can affect vulnerable people disproportionately, contributing
to the increase in health and economic disparities. Since its onset, the Covid-
19 pandemic has affected places where most social interactions occur, as the
new coronavirus spreads mainly through close contact among people. Con-
sequently, health authorities recommend people to avoid crowded areas and
practice social distancing. Such measures can be challenging to put in practice
in densely populated areas, such as overcrowded slums in developing coun-
tries.! Residents of these neighborhoods are also poorer individuals whose in-
comes are likely to be more adversely affected by lockdowns. Slums are preva-
lent in the majority of cities in developing countries and over one billion people
in the world live in them (United Nations (2020)). Despite their importance,
to the best of our knowledge, no paper in the growing literature on the eco-
nomics of epidemics has addressed the role of slums in shaping the economic
and health dynamics of pandemics. This paper fills this gap and makes three
contributions.

Our first contribution is empirical. We use daily geo-localized data from mil-
lions of mobile phones in Sao Paulo and Rio de Janeiro, the two largest cities in
Brazil, one of the countries most affected by the Covid-19 pandemic.? Through
an event-study analysis, we show that social distancing increased significantly

The definition of slums varies by country, but is always associated with deprivation-related
characteristics such as low-quality housing, lack of public services, overcrowding, and lack of
tenure security.

2The data on social distancing was shared by Inloco (https://inloco.com.br/), a
Brazilian technology company. See Section 2 for details.



less in areas with slums after the adoption of nonpharmaceutical interventions
(NPIs) in both of these cities. We also find that areas with slums are associated

with more hospitalizations and fatalities.

The second contribution is theoretical. We build a model with heterogeneous
housing tenure and behavioral choices to address how the prevalence of slums
contributes to the spread of infectious diseases. Agents live in two different
localities: poorer agents live in high-density places (slums) compared to richer
agents. Slum residents are also less likely to have access to intensive care units
(ICUs) in hospitals. People leave their houses to work or enjoy leisure outside
and this can lead to infections. Individuals from different locations interact
when they leave their home. The model allows for both negative and positive
externalities regarding social distancing. The risks that one group takes might
spill over onto others through increased transmission (negative externality) but

the point of herd immunity may be reached more quickly (positive externality).

The paper’s third contribution is quantitative. We parameterize the model to be
consistent with Covid-19 transmission and with key empirical moments of the
city of Rio de Janeiro, one of the epicenters of the pandemic in Brazil. The model
reproduces our empirical finding that, after the outbreak of the pandemic, low-
income slum residents engage in less social distancing relative to individuals
who live in other neighborhoods. As they are poorer, they work relatively more
hours even though they need to spend more time in crowded areas. This leads
to worse health outcomes for this group. Although slum dwellers correspond
to 22% of Rio de Janeiro’s population, they account for more than one third
of the Covid-19 deaths in the city. This group thus contributes more towards
reaching herd immunity in society. In a counterfactual world without slums,
residents in other neighborhoods end up catching the virus more and die in

higher numbers, which illustrates important distributional effects.

We use the model to simulate a variety of policy experiments: the realloca-
tion of existing medical resources, shelter-at-home policies, and cash-transfer
schemes. In developing countries, most poor individuals do not have private

health insurance and must rely on publicly-provided health care that is often at



capacity. We investigate the pooling of all intensive care units in Rio de Janeiro
into one group that is offered to anyone who needs it, regardless of insurance.
This alleviates the capacity constraints and decreases the death burden of the
disease among both groups of the population. The total death rate is reduced
by 23% relative to an environment with no policies. In our simulations, this

redistributive policy positively impacts aggregate welfare and output.

Shelter-at-home policies act to delay the dynamics of the disease substantially.
In our model, though these policies buy time, the long-run death rate does not
change much. Interestingly, lighter policies can be more effective as they slowly
increase the number of infected, and this smooths the burden on hospital re-
sources and saves lives. On the other hand, very strict lockdowns contain the
disease so much that, when lifted, the health dynamics is quite similar to a no-
policy scenario, only delayed—if no improvement in health infrastructure takes
place or a treatment becomes available. In addition, strict lockdowns promote
a deep economic downturn in the short run. Confinement policies that shelter
one particular group lead to a redistribution of deaths from the sheltered group
to the other. This actually leads the welfare of both groups to decrease: one

faces more deaths and the other a restriction on their movement.

Cash transfers are particularly important for the poorer individuals that live in
slums. When we implement a policy that hands over cash to the population,
slum dwellers can afford to become relatively more cautious. This decreases the
number of infections among this group and consequently increases this statistic
among those living in other neighborhoods. Once again, the resulting outcome
highlights important heterogeneous effects across groups.

This paper relates to the economics literature that add behavioral choices to epi-
demiological models in the tradition of Kermack and McKendrick (1927). This
effort has been mostly theoretical; e.g. Kremer (1996) and Quercioli and Smith
(2006). There exists some quantitative articles in the context of HIV /AIDS, such
as Greenwood et al. (2017, 2019) and Chan, Hamilton, and Papageorge (2016).
Our paper shares the principle of modeling infectious diseases with a special

attention to behavioral choices. We contribute to this literature by studying



individual choices in slums, which are an important feature in cities in the ma-

jority of developing countries.

There has recently been a great incursion of the economics literature into the
study of the Covid-19 pandemic. Some papers have looked at optimal confine-
ment policies that force stricter levels of social distancing beyond what indi-
viduals endogenously choose, e.g. Farboodi, Jarosch, and Shimer (2020) and
Eichenbaum, Rebelo, and Trabandt (2020). A few papers have added choices
made by heterogeneous groups, like different sectors (Kaplan, Moll, and Vi-
olante (2020)) or age groups (Brotherhood et al. (2020) and Favero, Ichino, and
Rustichini (2020)). Our work is mostly related to Brotherhood et al. (2020) and
Alon et al. (2020). We expand the framework developed by Brotherhood et al.
(2020) by adding different locations (slums and other neighborhoods), poorer
and richer agents, and differential access to health care. Few quantitative pa-
pers focus on studying the Covid-19 pandemic in developing countries. One
notable exception is Alon et al. (2020), but they do not model slums and the

impact of high-density environments as we do.

We are also related to two strands of the urban economics literature. First, we
connect to the papers on agglomeration economies aiming to understand the
advantages and disadvantages of density in cities (Duranton and Puga (2004),
Ahlfeldt et al. (2015)). Most of the papers in this field focus on the advantages
of density and increased physical proximity (e.g., sharing ideas, fostering inno-
vation, or faster technology adoption). We add to some recent papers studying
the costs of agglomeration (e.g., Combes, Duranton, and Gobillon (2019)) by
explicitly taking into account externalities of physical proximity in the context
of a pandemic. Second, we add to the strand modeling the causes and conse-
quences of slums (e.g., Brueckner and Selod (2009), Monge-Naranjo, Ferreira,
and Pereira (2018), Cavalcanti, Da Mata, and Santos (2019), Henderson et al.
(2020)) by taking into account the role of slums during disease outbreaks.

This paper is organized as follows. The next section presents an empirical anal-
ysis regarding how the Covid-19 pandemic evolved differently in slums and
other areas in Brazil. Section 3 describes the model environment and Section 4



discusses its calibration. Section 5 discusses our baseline results and Section 6

provides results for policy experiments. Section 7 concludes.

2 Empirical Motivation

Slums are densely populated areas with narrow alleys and small houses. Some
informal settlements lack adequate sanitation and piped water supply. Poverty
is widespread. According to the 2010 Brazilian Population Census, the popu-
lation density in slums in the cities of Rio de Janeiro and Sao Paulo is approx-
imately five times larger than in other neighborhoods. In addition, per capita
income of households living in slums in these two cities is roughly three times
lower than for those living in other areas. These features of slums imply that
movement restrictions are in general more costly for individuals living in slums

compared to those living in other neighborhoods.

In order to investigate how social distancing changed during the pandemic in
areas with and without slums, we use a social distancing index created and de-
veloped by Inloco (https://inloco.com.br/), a Brazilian technology com-
pany. The company collects anonymized location data from millions of mobile
phones in Brazil, tracking (with a 3-meter precision) the devices’ location and
movements to different places, but ensuring user privacy.> The company di-
vides cities into non-overlapping “hexagons” and measures the percentage of
devices in a given hexagon that remained within a radius of 450 meters of the
location identified as home. The index is computed daily and ranges from zero
to one. We obtained the social distancing index for each hexagon from February
1 to May 30, 2020 (120 days) for two cities: Rio de Janeiro and Sao Paulo. There
are 841 hexagons in Rio de Janeiro and 1,301 hexagons in Sao Paulo (see Figures
Al and A2 in Appendix A for more details on the non-overlapping hexagons).

We define slums as housing units in “subnormal agglomerations”. According

3See Peixoto et al. (2020) for more details on the Inloco data. Ajzenman, Cavalcanti, and
Da Mata (2020) compare Inloco’s and Google’s social distancing indexes for Brazil and show a
high correlation between the two measures.



Figure 1: Social distancing index
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Notes. The figure shows the evolution of the social distancing index for the cities of Rio de
Janeiro and Sao Paulo between February 1 and May 18. The first Non-Pharmaceutical Inter-
vention in Rio de Janeiro was put in place on March 11 and in Sao Paulo on March 13.

to the Population Census, a subnormal agglomeration satisfies three conditions:
(i) it consists of a group of at least 50 housing units, (ii) where land is occupied
illegally, and (iii) is urbanized in a disordered pattern and/or lacks basic public
services such as sewage or electricity. Notice that there is a connection between
housing units in “subnormal agglomeration” and the notion of a “slum”. See
online Appendix A for more detail on data sources and definitions.

Fact 1: Social distancing increased after Non-Pharmaceutical Interventions
(NPIs)

Figure 1 contains the daily average social distancing index for the cities of Rio
de Janeiro (Figure 1(a)) and Sao Paulo (Figure 1(b)). It shows that social dis-
tancing increased in both cities after NPIs were implemented. The first NPI
affecting the city of Rio de Janeiro was announced on March 11. One can ob-
serve a sharp increase in the social distancing index just a few days after this
measure was implemented. A similar pattern is observed for Sao Paulo, where

the first NPI was announced on March 13.
Fact 2: In slums, social distancing increased less after the adoption of NPIs

We now present reduced-form evidence showing an association between social
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distancing and slums. The unit of investigation is the hexagon provided by In-
loco. We built a dataset of socioeconomic characteristics for each hexagon based
on the census tracts of 2010 Population Census conducted by the country’s sta-
tistical office (Instituto Brasileiro de Geografia e Estatistica, IBGE)—see Appendix
A for more details—and combine this dataset with our social distancing index.
We then calculate the number of housing units in slums in each hexagon. We
create a dummy variable that equals one if the hexagon has any slum within
its boundaries and zero otherwise. There are 510 hexagons with slums in Rio
de Janeiro, and 598 in Sao Paulo (see Figure A3 in online Appendix A for the
location of those hexagons). The “treated group” is composed of hexagons with

slums, while the comparison group is composed of hexagons without slums.

In order to investigate how social distancing evolved in slums compared to the
other areas after the implementation of NPIs, we use the following event-study

specification:

_92 L
Yie=| > BIlti—t"=7)+> BIti—t"=7) +wp+ & +em. (1)
=K

7=0

where Y}, is the social distancing index for hexagon h on day ¢. The hexagon
fixed effect w; accounts for unobserved time-invariant determinants of social
distancing, while the inclusion of time fixed effects , adjusts for shocks that are
common to all hexagons at a specific moment in time. The indicator variable
I(t; — t* = 1) captures the relative change in the social distancing index in
hexagons with slums to the day of the first NPI, t*. We set the coefficient on
B-1 equal to zero to use the day before the first NPI as the base date—March 10
in Rio de Janeiro and March 12 in Sao Paulo.* As the social distancing index is
bounded between 0 and 1, each coefficient 3 should be interpreted as a change
in percentage points. We cluster the standard errors at the hexagon level and
weight the observations by the hexagon population in 2010.°> The identifying

“Since we have data for 120 days starting from Feb 1, there are 39 and 41 pre-treatment
periods in Rio de Janeiro and Sao Paulo, respectively.

>Figure B4 in Appendix B shows that results are qualitatively similar when we do not use
population weights, but the point regression coefficients are less precisely estimated.



Figure 2: Event-Study Analysis: effect of NPIs on social distancing in areas
with slums relative to those without slums
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Notes. The figure shows the results for coefficients estimated from Equation (1). Coefficients
should be interpreted as a change in percentage points. The treated dummy equals one for
hexagons with at least one housing unit in a slum. We use 841 hexagons in Rio de Janeiro and
1,301 hexagons in Sao Paulo. Data are provided at the hexagon-day level. The base period
corresponds to the day before each NPI. The dependent variable is the social distancing index
for hexagon h on day d. Standard Errors clustered at the hexagon level. Confidence intervals:
95%.

assumption is that in the period of analysis hexagons with slums would have
had similar trends in social distancing (compared to hexagons without slums)
in the absence of NPIs.

Figure 2 shows the results of the event-study analysis. Hexagons with and
without slums evolved similarly during the period before the NPIs in both
cities. This suggests the absence of different pre-trends in social distancing
and yields support for the main identifying assumption. After the first NPI,
there is a sharp decline in social distancing (of about 4-5 percentage points) in
hexagons with slums, compared to those without slums.® Indeed, the results
of a difference-in-difference strategy in Table Bl in online Appendix B show
a (statistically significant) average reduction of the social distancing index of

3.9 and 4.3 percentage points in slum areas in Rio de Janeiro and Sao Paulo,

SFigure B5 in Appendix B shows the results when we change the treatment dummy for the
share of slums in each hexagon. The qualitative implications are the same.



respectively.”

The adherence of individuals to social distancing measures is quite different in
areas with and without slums. Interestingly, the magnitude of the treatment
effect is similar in both Rio de Janeiro and Sao Paulo, but the coefficients are

more precisely estimated for the latter.
Fact 3: More Covid-19 deaths in areas with slums than areas without slums.

The risk of Covid-19 transmission is higher in overcrowded areas that lack ac-
cess to basic sanitation and running water. Those are precisely some of the
characteristics of urban slums. In addition, one might expect that health facil-
ities would be more congested in areas near slums. People in slums should
have less access to private health providers.® Therefore, we should expect more

Covid-related deaths in areas with slums than in other neighborhoods.

Figure 3 provides descriptive evidence suggesting that places in Rio de Janeiro
and in Sao Paulo with more slums experienced more Covid-19 deaths.” For the
city of Sao Paulo, there are geo-referenced data on hospitalizations and deaths
caused by Covid-19 and other acute respiratory diseases (see Appendix A).
We matched the geo-referenced data into hexagons to check the correlation be-
tween slums and hospitalizations/deaths. Due to constraints on the availability
of data, we cannot conduct this analysis using the event-study specification. We
then use the following cross-sectional specification:

YhIOé+T[h+€d,

where V), is the outcome variable (hospitalizations or deaths) for each hexagon
h and I}, equals to one for hexagons with slums and zero otherwise. The results
reveal statistically significant and positive correlations: hexagons with slums

7In column (III) of Table B1 in Appendix B, we perform a “triple-difference” strategy and
show that the reduction in social distancing index was 0.43 percentage points lower in Rio de
Janeiro compared to Sao Paulo (but statistically not significant).

8 Approximately 15% and 22% of the overall population have access to private health insur-
ance in Rio de Janeiro and Sao Paulo, respectively.

Figure 3 uses Covid-19 death data at the neighborhood level (which is a group of hexagons)
as this is the most disaggregated level officially reported by both cities.



Figure 3: Slums and Covid-19 deaths
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Notes. The figure shows Covid-19 deaths for the cities of Rio de Janeiro on June 14 and Sao
Paulo on May 25. The percentage of slums in each area is from the 2010 Population Census.

have 11% more hospitalizations and 10% more deaths by Covid-19—and 36%
hospitalizations and 7% more deaths by other respiratory diseases (see Table B2

in Appendix B)."

3 Model

In this section, we present the model to study the role of slums in shaping the
economic and health dynamics of the Covid-19 pandemics. Assume a model
economy that evolves in discrete time.!! Suppose there are two different group
of agents in this economy: those who live in slums (or favelas), g = f, and others
who do not, g = 0. Agents work, enjoy leisure outside their home and home
hours. Home hours can also be seen as a proxy for home production. In the
presence of the new coronavirus, denote the agent’s status by j. A healthy agent

9Serological tests in Brazilian slums support the claim that Covid-19 infections are higher in
slums and exceed official data (Prefeitura Rio de Janeiro (2020)).
Our model builds on the framework developed by Brotherhood et al. (2020).
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is denoted by j = h. By spending time outside the house, the agent may catch
Covid-19. If the agent becomes infected, he is denoted by j = i. Conditional on
being infected, the agent may either recover (with probability ¢(0)) or develop
more serious symptoms (with probability «). Denote an agent with serious
symptoms with ;7 = s. Someone with serious symptoms may either recover
(with probability ¢(1)) or die (with probability ¢,(g)). The death probability is
time-varying as it may depend on the usage of scarce hospital resources. Such
resources may also be different across the two groups. If an individual recovers
(j = r), he is assumed to be immune to the disease forever. Agents discount the
future with factor 5 € (0,1).

An individual is endowed with one unit of time per period that may be used
for work n, leisure outside the house ¢ and hours at home d ("domestic” hours).

The time constraint thus reads:

n+l+d=1. )

An individual derives utility from consumption ¢, a composite leisure good
when he leaves home a, and domestic hours d. The good a is produced us-
ing hours ¢ and buying “intermediate” goods = according to the function a =
a(z, ). We normalize the utility after death to zero and capture the bliss from

being alive through a parameter b. The utility function is given by:
u(¢c,a,d; j,9,p) = Inctvylna+Aa+ A7)+ A, 9)] In(d) +b.

The term A(j) expresses an additional preference for staying at home when be-
ing infected, and is supposed to capture some partial altruism. This variable
can take two different levels: A(s) = A(i) = A\, and \(r) = A(h) = 0, so that
individuals who can transmit the virus are partially altruistic and the others
have no need for that. \,(j, g) has a similar role, but from the point of view of
the government.'? This captures simple policies that confine all groups to stay-

ing at home (\,(j,g9) = A,) but can also capture group-specific confinements

12The subscript p denotes that A, (7, ¢) is a policy instrument.
p P policy

11



(M (,9) = A(9)), and could even condition on infection status.

An individual’s income consists of two terms. The first is their labor income
w(g)n. Note that the wage per unit of time can vary by group. The second term
corresponds to government transfers and can be time-dependent. Denote it by

w,(g). The budget constraint of the agent is given by:

c+x = wpy(g) +w(g)n. (3)

A healthy individual (5 = h) may become infected when he strays from home.
The longer one spends outside, the more likely it is that an infection takes place.
For each hour spent outside the house, the transmission risk is given by II;(g).
Note that this is time-varying as it depends on two aggregate variables: (i) the
fraction of infected people in the economy; and (ii) the time infected people
spend outside their houses. It can also be group-specific as individuals from
different groups may be more exposed to one group versus the other, due to
differences in the density in their neighborhood for instance. This will be elab-
orated on later. The probability of catching the virus in a given period ¢ is given
by:

m(n+ ¢, 11(g)) = (n + O)IL(g). 4)

Turn now to decision making. The problem of a healthy individual is described

by the following maximization problem:

Vi(h,g) = max u(c,a(z,l),d;h,g,p)+ (5)

Cvxznnfvd

B = m(n + £,11(9)Vira(h, g) + 7(n + £,11(9))Vira (4, 9) }
subject to (2) and (3).

The first line in the above problem corresponds to the instantaneous utility from
consumption and leisure. The second line spells out the continuation value.
The first term in curly brackets represents the situation in which the individual
does not get infected this period and continues life as a healthy person in the
next period. The second term denotes the case in which the agent gets infected

12



today and continues life as an infected individual in the next period.

The value function for an infected person who has not developed severe symp-
toms of the disease is given by:

Vill.g) = max u(e,a(w,0),d:i g.p) + B6(0) Vi (1, 9)+ ©)
B(1 = ¢(0))[aViyi(s,g) + (1 — @) Vi (4, )]
subject to (2) and (3).

The first line captures the instantaneous utility from consumption and leisure
and the situation in which the agent recovers from the disease. The second line
is the continuation value in which the agent either develops serious symptoms
(first term in square brackets) or continues life as an infected person (second

term).

Set the flow utility for an individual with serious symptoms (j = s) to the same
as death (i.e. zero). These individuals may still recover and enjoy utility from
consumption, leisure and bliss of life later. These agents do not work, but we
assume they interact with people in the hospital and may thus infect others.
Set an exogenous amount of time they interact with their carers to ¢ = /,. Their

value function thus reads:

Vi(s,9) = Blo(1)Viga(r,9) + (1 — o(1))(1 = 6:(9)) Vit (s, 9)] 7)

The value function above consists of two scenarios: the first term corresponds
to the patient recovering from his symptoms and the second term represents the
case in which he continues life in the hospital. With the remaining probability,
he dies and his utility is normalized to zero.

Finally, an agent who has already recovered and is resistant to the virus enjoys

13



utility:
V;f(n g) = Inax U(C, CL(I, g)? da T, gupt) + ﬁ‘/tJrl(r? g) (8)

c,x,n,lh

subject to (2) and (3).

It is important to keep track of the number of agents who find themselves in
each of the situations described above. Denote the measure of agents of each
type j of group g in period t by M,(j,g). Let M, be the set of these for all js
and gs. Moreover, let n,(j, g) and ¢,(j, g) denote the policy function for hours
worked and outside leisure, respectively, for each agent. Let the equilibrium
time allocations in period ¢ across all j and g be summarized in N;. The law of

motion from one period to the next is represented by the mapping 7™

M1 = T(My, Niy 1 (0) I (). ©)

The law of motion for healthy people of a group g reads:

Mt+1(h7g) = Mt(h’g> [1 - ﬂ—(nt<hag) + gt(hug)v Ht(g))] : (10)

That is, the measure of healthy people next period consists of those who are
healthy today and did not catch the virus. The right-hand-side of (10) thus
describes the mapping T}, for healthy individuals. The corresponding equations
for the other groups are provided in Appendix C. The aggregate mapping in (9)
is given by the collection of all 7j.

Aggregate output in this economy is given by all the work supplied by agents
of the different groups and infection statuses multiplied by their wages:

Qi = Zw(g)nt(ja 9)M(5,9). (11)

2.9

Turn now to the calculation of the probability of getting infected per unit of time

spent outside. First, let Il represent an exogenous transmission rate from in-
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tfected to susceptible. Now, assume that, when outside their homes, both groups
(those who live or not in favelas) spend a fraction 1 —( of their time in a common
space shared by everyone. The remaining ( fraction of their time is spent only
among members of the same group (f or o). These group-specific activities are
undertaken within separate areas for each group. Denote by ¢, the fraction of
the space that is assigned to group g. This is supposed to represent the fact that
slums have a much higher density than the rest of a city. Slum dwellers thus
have to interact in much more confined spaces and this contributes to a faster

spread of the virus. We then have:

M(g) = 1=OUo Y (m(,d)+ 6, 9) Mi(5, §) (12)
g.j€{i.s}
M 3 = (uli.g) +607:9) Ml )
jefi,sy 7

Note that, when { = 0, the expression above reduces to a pure random-mixing

situation.

The parameter 1, is usually calibrated to match a basic reproduction number
(Ro) at the outbreak of the epidemic. This number can be high enough such that
it drives equation (12) above 1. This is due to the fact that we do not control for
the possibility of multiple infections in a given period. In order to avoid this,

we take a continuous-time approximation that yields:
My(g) =1 — e . (13)

If IT,(g) is small, then IT,(g) ~ IL;(g).

We will now define the probability that an agent with serious symptoms (j = s)
dies, 6,(g). This is time-varying as it depends on the supply of scarce hospital
resources (e.g. ICU beds) and the demand by sick patients. Suppose there are
two networks of medical services: a public one to which everyone has access
to and a private one. Only individuals with health insurance can access the
private network. Let Z,,,, and Z,,;, be the number of beds in the public and pri-

vate hospitals, respectively. Assume also that no slum dweller (f) has access to
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health insurance and therefore to private hospitals. For the others (0), a fraction
1 has health insurance.

Let U, and U,,;, be the number of users in the public and private networks,
respectively. These are given by:

Upup = My(s, ) + (1 — ) M(s, 0), (14)
Upriv = ¢Mt<87 0)7

where M,(s, g) is the number of type-g agents who have serious symptoms.

Assume that an individual with serious symptoms who has access to a hospital
bed dies with probability &,. Those without access to a hospital bed dies with
probability ;. The death probability for individuals living in slums or not are

given by the following two equations:

50—, min{Zpub’ 1} 5, max {Mo} (15)
Upub UPUb
o) — [51 min{zpm’ 1} 4 5, max {MOH (1= )8(f).
Upriv UP”"”

The first line spells out the probability of death for a slum dweller with serious
symptoms. This only depends on the excess demand of hospital beds in the
public network. The second line is the same for other agents. Now, with proba-
bility v, they have access to the private network through their health insurance.
With complementary probability, they face the same likelihood of death as slum

dwellers as both use the public hospital network.

A rational-expectations equilibrium in this economy with initial number of agents
Mjy(7, g) consists of a sequence of infection and death rates {I1;(g), 6;(g) }72, and
equilibrium time allocations {n.(j, g), ¢:(4, g) } ;2 such that these time allocations
are part of the solutions to the individual optimization problems (5) to (8), and
the resulting law of motion (9) and their aggregation in (13) and (15) indeed
give rise to the sequence {I1;(g), 0:(9) }20-
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4 Fitting the Model to the Data

In order to analyze the role of slums in the Covid-19 pandemic, we must assign
values to the model parameters. There are 21 parameters to be set. Some (15
parameters) are externally calibrated and others (6 parameters) are chosen such
that certain model moments match their empirical counterparts. We focus our
analysis on the city of Rio de Janeiro. Given that this a framework to understand
the social behavior during a pandemic, we set the model period to one week.

City parameters: According to the 2010 Brazilian census, 22% of Rio de Janeiro’s
population lived in slums (or favelas). We normalize the area of the model city
to one. Then, given the share of the population living in slums (22%) and the
population density in areas with slums relative to those without slums (4.05),

we have that the fraction of space assigned to slums is &; = 0.065.3

The proportion of time individuals spend with members of their same group
is given by (. We set ¢ = 0.334. This corresponds to the fraction of time spent
outside that is not work related. The implicit assumption is that work-related

activities take place across all groups whereas leisure outside is separate.

We normalize the wage rate of individuals who do not live in slums to one, i.e.,
w(o) = 1. We then set the wage rate of agents who live in slums to w(f) = 0.277.
Therefore, the relative hourly wage per capita of individuals who live in slums
to those who do not is 27.7%, which is the number observed in the 2010 Census

data for Rio de Janeiro.

Panel A of Table 1 reports the values of the parameters related to Rio de Janeiro.
The third column (“Interpretation”) contains a comment on how each parame-

ter was set.

Disease transmission and development: We now turn to parameters that con-
trol the transmission and disease development of Covid-19. In order to disci-
pline how infectious the disease is, we target the basic reproduction number,

13The population density in areas with and without slums in the city of Rio de Janeiro are
from the 2010 Census data. Population density in Rio de Janeiro’s slums is about 25,701.18 in-
dividuals per square kilometer and in areas without slums it is 6,344.46. A factor of 4 difference.
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Table 1: Calibration and estimation of model parameters: City of Rio de Janeiro

Parameter  Value Interpretation
Panel A: City parameters (6 parameters)
> Mo(j, f) 0222 Fraction of people living in slums (calibrated)

w(o) 1 Wage rate of non-slum agents (calibrated)
w(f) 0.277  Wage rate of slum agents (calibrated)

&r 0.065  Frac. of space assigned to slums (calibrated)

& 0.934  Frac. of space assigned to areas wo slums (calibrated)

¢ 0.334  Prop. of time spent within group (calibrated)

Panel B: Disease parameters (8 parameters)

11, 11.43  Infectiousness of Covid-19 (internatlly estimated)

Q@ 1 Prob(serious symptoms | no recovery from mild) (calibrated)
#(0) 0.963  Prob. of recovery from mild Covid-19 (calibrated)
o(1) 0.284  Prob. of recovery from serious Covid-19 (calibrated)

‘ 0.158 Infections through the health care system (calibrated)

5 0.1 WKkly death rate; critically ill with ICU (calibrated)

5y 1.0 WKkly death rate; critically ill wo ICU (calibrated)

) 0.152  Prop. non-slum agents with priv. insurance (calibrated)
Zpub 8.12e-5 Measure of beds in public system (calibrated)
Zpriv 49e-4 Measure of beds in private system (calibrated)

Panel C: Preference parameters (7 parameters)

P -1.72  Elast. of subst. bw leisure time and goods (calibrated)

0 0.108  Production of leisure goods (internally estimated)

y 1.089  Rel. utility weight - leisure goods (internally estimated)

Ad 2.453  Rel. utility weight - leisure at home (internally estimated)

A 1.995 Rel. utility weight - leisure at home; infected (calibrated)
B 0.96'/°2  Discount factor (calibrated)
b 7.85  Value of being alive (internally estimated)

IS}

Ry. Appendix D.1 describes how we can compute this statistic in the model.
The parameter I, determines the per-period transmission rate in the model
and is intimately related to R,. We thus pick II, to target a value of 2.5 for the
basic reproduction number. This lies within the range used by Atkeson (2020).
Ferguson et al. (2020) uses Ry = 2.4 while Zhang et al. (2020) estimates it to be
2.28. Remuzzi and Remuzzi (2020) reports values between 2.76 and 3.25. This
yields I1y = 11.43.

We set o = 1. This implies that an individual who is infected with Covid-19
either spends one week with mild symptoms and then either recovers or be-
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comes critically ill. In order to determine the probabilities of recovery, we turn
to medical data. CDC (2020) reports age-specific transition rates between infec-
tion and ICU care, and from ICU to death. We aggregate these using the Brazil-
ian population pyramid available from the country’s statistical office (Instituto
Brasileiro de Geografia e Estatistica, IBGE). This yields a 3.6% chance that some-
one who is infected ends up with serious symptoms. Moreover, the probability
of death conditional on being critically ill is 20.2%. We turn these probabilities
into weekly rates to conform with our chosen model period.'* Moreover, Verity
et al. (2020) report that a critically-ill patient is discharged from the ICU after
around 24.7 days, or 3.52 weeks. This yields a weekly probability of recovery
from mild symptoms of ¢(0) = 0.964, a weekly probability of recovering from
the ICU of ¢(1) = 0.284 and a weekly death probability conditional of being in
the ICU of §; = 0.1. We assume the death probability of a patient with serious
symptoms that does not have access to an ICU bed to be 4, = 1.

Note that we assumed that a patient that is being treated in the ICU does not
work or enjoy leisure but still interacts with others and may infect them. The
amount of time in the model during which this interaction takes place is given
by /. Butler et al. (2018) estimate ICU patients interact with doctors, nurses and
other people around 7.6 hours a day. Since this is a controlled environment, we

use half this number to determine infections. This yields ¢ = 0.158.

Panel B of Table 1 summarizes the calibrated values of the parameters related

to the Covid-19 pandemic.

Preference parameters: We assume that the composite leisure good a is pro-
duced according to the following function: a = [#2* + (1 — §)¢¢]'/?. Following
Kopecky (2011), we set p = —1.72. This yields an elasticity of substitution be-
tween leisure and goods of 0.368, which means they are complements.

We set the preference parameters ¢, v and )\, to target three data moments re-
lated to time use and expenditures in Brazil. First, we target the fraction of

income spent on goods consumed outside the home.!> According to the Brazil-

4See Appendix D.2.
15As Brotherhood et al. (2020), we classify the following items of the consumption basket as
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ian expenditure survey (POF), individuals in Rio de Janeiro spent on average
27.82% of their income in goods outside the home.'® Second, we target the av-
erage weekly hours at work. According to the 2019 national household survey
(PNAD-C), Rio de Janeiro residents spend 34.2 hours per week at work.!” As-
suming an endowment of 112 non-sleeping weekly hours, this yields a fraction
0.306 of their time is spent at work. Third, we target the leisure time outside.
In Brazil, the average person spends around 17.2 hours a week outside, which
corresponds to a fraction 0.154 of their endowment of non-sleeping hours.®

The parameter \, denotes the increase in the marginal utility of staying at home
for agents that are infected with Covid. This parameter is related to the extra
amount of time an individual spends at home without any influence from the gov-
ernment. In order to identify this parameter, we turn to how agents behave
when they contract influenza. Akazawa, Sindelar, and Paltiel (2003) report that
the average American worker takes 1.3 days of sick leave when infected with
influenza. Given a 40-hour work week, this implies an average of 10.4 hours.
We assume that the same would happen with Covid. As the disease lasts an
average of one week (absent development of serious symptoms), this implies a
decline in 26% of work time. We assume the same number for Brazilian work-
ers. Suppose that leisure outside declines by the same amount. We then choose
A, to match an increase in time spent at home by 26% compared to a world
without Covid-19.

For the preference discount factor, we assume that agents discount the future at
roughly 4% per year and set 3 = 0.96'/%2. The average real interest rate in Brazil
is approximately 4.9% from 2005.1 to 2020.5 and 3.5% from 2009.1 to 2020.5."

goods consumed outside: food away from home, public transportation, medical services and
entertainment.

16The expenditure survey POF is the Pesquisa de Orgamento Familiar for 2008-09.

7The national household survey PNAD-C is the Pesquisa Nacional por Amostra de Domicilios
Continua. We get the average hours worked per week and multiply by the share of people who
have a job or are self-employed.

8The total hours of leisure outside are computed adding time spent commuting (Pereira
and Schwanen 2013) and activies related to socializing, cultural and sport activities. This data
comes from the 2009 PNAD-C and the test pilot time use survey.

9This is the monthly Over/Selic interest rate (Brazilian Central Bank rate) minus the inflation
rate measured by the IGP-DI (General price index from Vargas Foundation). We annualized the
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Table 2: Moments — Model vs. Data

Moment Model Data (ranges)
Share of individuals living in slums 22% 22%
Pop. density in slums/Pop. density in non-slum areas 4.5 4.5
Relative hourly labor income of individuals in slums ~ 27.7% 27.7%

Ry, Covid-19 25 1.6-4

% of infected in critical care 3.6 3.6
Weeks in critical care 3.5 3-6

% in critical care who die 20.24 10.6-31.8
Hours/day interacting while in ICU 3.8 7.6 (controlled)
Hours of work per week 34.2 34.2
Hours of outside activities per week 17.2 17.2

% of income on goods outside 27.28 27.28

% 1 in time @ home - mild symptoms 26 26 (Influenza)
% 1 in time @ home - outset of Covid-19 15.7 15.7

% of non-slum agents with priv. insurance 15.21 15.21

Finally, we must set a value for b, the per-period value of being alive. Note that
a higher value for this parameter implies that an individual will engage in more
cautious behavior to avoid death. We thus pick b to generate an increase in time
at home as the one observed at the outbreak of the Covid-19 pandemic. The
issue is that most countries adopted lockdowns at the same time. We thus look
at Sweden, a country that did not implement severe restrictions. Brotherhood
et al. (2020) report an increase of 15.7% in time at home in Sweden in week 8
of the epidemic. As slums are not an important factor in Sweden, we use this
15.7% hike as the target of a version of our model without slums. This yields a
value of b = 7.85.

Panel C of Table 1 contains the calibrated preference parameters. Table 2 sum-
marizes some targeted moments of the model and their data counterpart. The

model matches the moments of Rio de Janeiro quite well.

monthly average real interest rate and inflation. These two variables can be downloaded from
http://www.ipeadata.gov.br.
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5 Baseline Results

This section presents our baseline results. Our main focus is to understand the
role of slums in the pandemic. We first describe the path of our baseline econ-
omy when there is an outbreak of Covid-19 and there is no policy intervention.

Different policies are investigated in the next section.

Figure 4 shows the masses of individuals in different health states: healthy, in-
fected, with serious symptoms, recovered and deceased. The blue lines describe
the dynamics of individuals who live in slums while the orange lines represent
those who are not slum dwellers.? The solid lines display our economic model
with equilibrium social distancing, and the dashed lines show, for comparison,
the counterfactual epidemiological model, in which behavior is unchanged rel-
ative to a world without the pandemic. The last graph in this figure displays
aggregate output. Along with this figure, Table 3 summarizes key moments of
the pandemic in our baseline model (first column) and in a typical epidemio-
logical model (second column), where behavior is kept constant by assumption.

2In our calibration 22% of individuals live in slums. So any change in the figure is relative
to this initial mass. Non-slum dwellers thus correspond to 78% of all individuals.
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Table 3: Baseline results

Homog.  Homog.
Benchmark Epidem. Noslum densities wage rates

Wks to peak srsly ill (slum) 10.00 9.00 - 15.00 10.00
Wks to peak srsly ill (other) 11.00 10.00 14.00 14.00 11.00
Srsly ill p/ 1,000 @ peak (slum) 3.31 8.66 - 1.14 1.60
Srsly ill p/ 1,000 @ peak (other) 0.96 7.46 0.81 0.84 0.89
Dead p/ 1,000 lyear (slum) 17.99 23.80 - 1147 14.78
Dead p/ 1,000 lyear (other) 8.14 19.42 8.83 8.87 8.88
Dead p/ 1,000 lyear (all) 10.32 20.39 8.83 9.45 10.19
Dead p/ 1,000 LR (slum) 18.16 23.80 - 11.97 15.60
Dead p/ 1,000 LR (other) 8.42 19.42 9.64 9.47 9.53
Dead p/ 1,000 LR (all) 10.57 20.39 9.64 10.02 10.87
Immune in LR (slum), % 74.28 90.66 - 51.99 68.03
Immune in LR (other), % 39.51 77.38 46.19 44.77 44.71
Immune in LR (all), % 47.21 80.32 46.19 46.37 49.87
GDP at peak - rel to BM 1.00 1.84 1.49 1.24 1.33
GDP 1lyear - rel to BM 1.00 1.14 1.17 1.00 1.15
Hrs @ home (slum) - peak 80.25 60.48 - 68.75 88.22
Hrs @ home (other) - peak 86.77 60.48 78.05 80.21 80.75
Hrs @ home (slum) - 6m 65.52 60.48 - 65.10 78.24
Hrs @ home (other) - 6m 69.31 60.48 72.48 72.93 71.03
Value - healthy (slum) 1045.20  1040.20 - 1053.00 3365.70
Value - healthy (other) 339320 3359.80 3390.50  3390.60 3390.40
Value - healthy (all) 2873.10 2846.00 3390.50  2872.80 3384.90

The total duration of the unchecked epidemic is about a year (when herd immu-
nity becomes strong enough to essentially prevent further contagion) and the
peak in terms of seriously ill individuals is reached in about 11 weeks. As the
virus spreads, social distancing endogenously rises as evidenced by the hike
in hours at home by both groups. The number of infected people is thus re-
duced relative to the typical epidemiological model. This also translates in a
lower death toll in the benchmark. Notice that GDP at the peak is substantially
higher in the epidemiological model relative to the baseline. With the rising
risk of getting infected and possibly dying, agents cut time spent outside their

home and hours worked are sharply reduced.

Turn now to the role of slums in shaping health and economic dynamics. Ta-
ble 3 shows that the benchmark economy features a much higher death toll in
slums relative to other areas. The total death rate is approximately 11 per 1,000
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individuals, but in slums it is roughly 18 per 1,000 residents. This can be ex-
plained by the higher density in slums and therefore more contagion, as well as
more congestion of intensive care units—more on these issues below—but also

by differences in the individual choices of slum and non-slum residents.

Figure 5 displays the time spent at home, at work and with leisure outside.
Social distancing (the increase in time at home relative to an epidemiological
model with no behavioral change) is lower for slum dwellers than for other in-
dividuals. Since they are poorer, slum residents decrease the number of hours
worked by less than non-slum individuals despite the fact they have a higher
chance of catching the virus. Figure 6 shows the difference in social distanc-
ing between the two groups at the outbreak of the pandemic. At the peak of
the disease, social distancing is about 12 percentage points lower for slum resi-
dents compared to others. This is qualitatively consistent with our event-study
analysis using mobile phones in Rio de Janeiro, displayed in Figure 2. Quan-
titatively, the unchecked epidemic generates a larger effect on the difference in
social distancing between slum and non-slum individuals.?! Recall that in our
model this is an unchecked epidemic, while in the data there are NPIs. We will
discuss the effects of NPIs in our model in the next section.

In order to further assess the role of slums in the pandemic we run a counter-

Z'We should interpret the comparison of our theoretical social distancing measure with the
empirical index based on mobile phones with caution. The theoretical measure is an intensive
margin proxy for social distancing while the index constructed by Inloco is an extensive margin
measure. If we interpret in the model the home time as the fraction of households who stay at
home, then the model and the empirical counterpart would be equivalent.
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Figure 6: Difference in protection behavior between slum and non-slum agents

Time at home (pct. change) Time at home (diff. btw. groups, pct. point change)
50 0

Slum
——— Other

30 5r

40

20

factual in which we set the measure of slum individuals to zero and keep all
other parameters at their baseline values. See the third column of Table 3. The
total death rate is only 9% below its baseline counterpart. For the non-slum
residents (the only ones in this hypothetical world), however, it is now higher
than the baseline: 9.64 per 1,000 in the counterfactual versus 8.42 in the bench-
mark. There are two reasons for this. First, in the baseline, close to 75% of slum
residents are immune in the long run. That is, they contribute a lot to reach
herd immunity. In the benchmark, only 39% of non-slum individuals are in-
tected throughout the pandemic. Without slums, this number rises to 46%. The
second reason is that, with a safer environment in the non-slum world, other
individuals are less cautious. For instance, at the peak, they spend about nine
fewer hours at home. In the end, residents from other areas end up with a lower

welfare in this scenario without slums.

In our model environment, slum dwellers are different in three important char-
acteristics: they live in denser areas, their wage rate is lower and it is harder
for them to be admitted to an ICU. We now investigate the role of the first two
factors in shaping the dynamics of the pandemic. Easier access to ICU beds will

be assessed in our policy section.

The fourth column of Table 3 contains statistics for a counterfactual in which
&y = 0.22, which implies that the population density in slums is the same as
what is observed in other areas. All other parameters are kept at their base-
line values. The pandemic lasts longer now since the spread of the virus is

reduced and it takes more time to reach herd immunity. Relative to the base-
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line, the death rate of slum dwellers is reduced from 18.16 to 11.97 per 1,000
individuals—a 34% reduction. The death rate of other individuals rise from
8.42 to 9.47—a rise of about 12%. That is, the health outcomes of the two dif-
ferent groups become much more similar. With less contagion due to a lower
population density in slums, individuals expose themselves more by spend-
ing less time at home, offsetting in part the direct effect of a lower population

density in slums.

In the last column of Table 3, we increase the wage of slum dwellers and equate
it to the wage of other agents; i.e. w; = 1. All other parameters remain at
their baseline values. Relative to the benchmark, since they are now richer,
individuals who live in slums spend more time at home. As these agents are
now more cautious, their death rate is reduced from 18.16 to 15.60, a reduction
of 14%. Given that a lower number of slum dwellers are infected now, the
economy can only reach herd immunity with a higher fraction of non-slum
residents being infected. This also translates into a higher death toll among the
latter group; an increase from 8.42 to 9.53 per 1,000.

In sum, in our unchecked pandemic calibrated to Rio de Janeiro, slums have
a non-trivial role in shaping the effects of Covid-19. First of all, the death rate
in slums is higher than in other areas. Slum dwellers’ share in total deaths is
much higher than their fraction in the overall population of the city. In ad-
dition, the very high population density in slums compared to other parts of
the city seems to be a key feature in explaining the high death rate observed
in slums. Interestingly, the presence of slums decreases significantly the time
to reach herd immunity and protects individuals who live in other neighbor-
hoods, generating important distributional effects. Policies that aim to curb the
Covid-19 pandemic in societies with a high fraction of their population living
in slums must then take this fact into account. The next section explores the

effects of a variety of such policies.
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6 Policy Experiments

In this section we assess the impact of NPIs to control the health and economic
impact of the pandemic in our model economy. We evaluate three different
policies: the government requisition of private hospital intensive care units to
increase capacity in order to meet the demand for Covid-19 related treatment;
lockdown interventions to increase social distancing (shelter-at-home orders);
and financial aid policies to help people to stay at home.

6.1 Public Hospital Beds

In Rio de Janeiro approximately 15% of the individuals have private health in-
surance and therefore access to private hospital beds. There are 510 and 3,079
beds in intensive care units in public and private hospitals, respectively (in a

city of about 6.3 million people).

In our calibration we assume that slum dwellers have no health insurance and
approximately 19% of the individuals who do not live in slums have private in-
surance. We should expect that congestion of health services is therefore greater
in slum areas. In this policy intervention, we investigate the impact of a coun-
terfactual experiment in which the ICUs in private hospitals could be used to

treat all individuals in the need for critical care.??

Table 4 shows that the total death rate is reduced by approximately 23 percent
with this policy. Although slum dwellers are the ones who benefit the most
from this policy, individuals who live in non-slum areas are also positively af-
fected since only a small fraction of them have private health insurance. Ob-
serve that most of the agents decrease social distancing with this intervention
as time at home decreases. But the difference is not quantitatively so different
from the unchecked epidemic. The decrease in the death rate is mainly ex-
plained by the direct effect of reducing congestion in access to public hospital
care units rather than by indirect effects of changing behavior. In the long run,

22We abstract from any financial and political economy barrier to implement such a policy.
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Table 4: All hospital beds used by the public system

All beds
Benchmark  public

Wks to peak srsly ill (slum) 10.00 10.00
Wks to peak srsly ill (other) 11.00 11.00
Srsly ill p/ 1,000 @ peak (slum) 3.31 4.35
Srsly ill p/ 1,000 @ peak (other) 0.96 1.16
Dead p/ 1,000 lyear (slum) 17.99 13.98
Dead p/ 1,000 lyear (other) 8.14 6.46
Dead p/ 1,000 lyear (all) 10.32 8.12
Dead p/ 1,000 LR (slum) 18.16 14.02
Dead p/ 1,000 LR (other) 8.42 6.53
Dead p/ 1,000 LR (all) 10.57 8.19
Immune in LR (slum), % 74.28 76.77
Immune in LR (other), % 39.51 43.02
Immune in LR (all), % 47.21 50.50
GDP at peak - rel to BM 1.00 1.01
GDP lyear - rel to BM 1.00 1.03
Hrs @ home (slum) - peak 80.25 79.59
Hrs @ home (other) - peak 86.77 85.92
Hrs @ home (slum) - 6m 65.52 63.10
Hrs @ home (other) - 6m 69.31 65.61
Value - healthy (slum) 1045.20 1049.70
Value - healthy (other) 3393.20  3400.30
Value - healthy (all) 2873.10  2879.60

more individuals of both groups survive and become immune to the disease.
Note also that this policy increases the welfare for both groups.

6.2 Shelter-at-home Policies

We now investigate stay-at-home orders that can be implemented with the clos-
ing of non-essential businesses and schools, among other interventions. Results
for different lockdown restrictions are displayed in Table 5.

The first column in Table 5 reports moments related to the baseline unchecked
pandemic for comparison. The second column shows the same statistics for a
scenario in which there is a shelter-at-home policy that covers 26 weeks from
the start of the health crisis. During the duration of this policy, individuals
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Table 5: Shelter-at-home policies

6-week late
Immediate lockdown lockdown
25%,all  25%, slums 25%, non-slum 75%, all 25%, all
Benchmark 26 weeks 26 weeks 26 weeks 35 weeks 26 weeks

Wks to peak srsly ill (slum) 10.00 15.00 13.00 11.00 66.00 11.00
Wks to peak srsly ill (other) 11.00 16.00 14.00 12.00 67.00 12.00
Srsly ill p/ 1,000 @ peak (slum) 3.31 1.84 1.94 3.27 3.32 1.91
Srsly ill p/ 1,000 @ peak (other) 0.96 0.60 0.88 0.71 0.96 0.60
Dead p/ 1,000 1lyear (slum) 17.99 16.65 16.43 17.99 0.00 15.75
Dead p/ 1,000 lyear (other) 8.14 7.55 8.90 6.80 0.00 6.80
Dead p/ 1,000 1year (all) 10.32 9.57 10.57 9.28 0.00 8.78
Dead p/ 1,000 LR (slum) 18.16 17.30 16.81 18.44 18.14 17.03
Dead p/ 1,000 LR (other) 8.42 8.41 9.29 7.68 8.41 8.28
Dead p/ 1,000 LR (all) 10.57 10.38 10.95 10.06 10.57 10.22
Immune in LR (slum), % 74.28 73.34 70.71 76.50 74.31 73.03
Immune in LR (other), % 39.51 40.24 42.75 38.18 39.48 40.50
Immune in LR (all), % 47.21 47.58 48.94 46.67 47.20 47.70
GDP at peak - rel to BM 1.00 0.97 1.12 0.86 0.99 0.96
GDP 1lyear - rel to BM 1.00 0.87 0.98 0.89 0.47 0.87
Hrs @ home (slum) - peak 80.25 82.78 83.88 78.99 79.62 83.30
Hrs @ home (other) - peak 86.77 86.18 82.21 89.91 86.57 86.51
Hrs @ home (slum) - 6m 65.52 78.15 78.94 63.46 105.84 77.17
Hrs @ home (other) - 6m 69.31 79.80 70.80 78.29 105.84 78.39
Value - healthy (slum) 1045.20 1041.20 1041.20 1045.10 940.27 1041.10
Value - healthy (other) 3393.20  3388.30 3390.90 3390.20  3288.80 3388.50
Value - healthy (all) 2873.10  2868.40 2870.40 2870.80  2768.60 2868.60

are required to increase their time at home by 25% relative to an environment
without the pandemic.”?® As we can also see in Figure 7, the lockdown (solid
lines) flattens out the infected and critically-ill curves relative to the unchecked
pandemic (dashed lines). The total death rate decreases, mainly among slum
dwellers. There is less congestion of public beds with the lockdown, which is a
more binding issue for individuals living in slums. The total death rate among
slum dwellers decreases by approximately 5% while the overall death rate is
reduced by 2%. The long-run death rate of the agents who do not live in slums

is almost unchanged.

ZWe implement this by increasing A, (j, g) to the necessary value to induce agents to follow
the lockdown policy. Appendix D.3 reports the calibrated values for all counterfactuals in this
section.
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Figure 7: Aggregate variables (lockdown, 25% increase in time at home, all
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Notice that GDP during the first year of the pandemic decreases by 13% relative

to the no-policy baseline. The strong impact on the economy comes from a

reduction in the time spent at work. Figure 8 reports the choice of the agents

with a 26 weeks shelter-at-home policy (solid lines), as well as the benchmark

(dashed lines). Individuals stay longer at home with this lockdown policy than

in the baseline, reducing the peak of infection but delaying the duration of the

health crisis.

Figure 8: Choices of healthy agents (lockdown, 25% increase in time at home,
all groups, 26 weeks)
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Figure 9: Difference in protection behavior between slum and non-slum agents
(lockdown, 25% increase in time at home, all groups, 26 weeks)
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Notice that the time spent at home increases by about 20 percentage points rel-
ative to the baseline before the outset of the disease (left panel of Figure 8). This
is approximately the average percentage point change in the social distancing
index observed in the city of Rio de Janeiro (recall Figure 1 in Section 2). In
addition, the model implies a difference in social distancing between slum and
non-slum dwellers of around five percentage points (Figure 9). This is similar
to those reported in our event-study analysis in Figure 2 of Section 2.

In order to understand the role of slums in shaping the dynamics of the pan-
demic under a lockdown, we also investigate the effects of targeted shelter-at-
home orders: a policy of increased social distancing applied only to individuals
living in slums (third column of Table 5) and one applied only to those who live
in other areas (fourth column of Table 5). Interestingly, the shelter-at-home pol-
icy in slums only increases the long-run death rate for non-slum individuals.
This is due to the fact that the fraction of non-slum dwellers necessary to reach
herd immunity would need to rise to compensate for the lower transmission
in slums. As the non-slum group is larger, this translates into a higher overall
death rate. This policy ends up lowering the welfare of both groups: slum resi-
dents are worse off because they are sheltered (even though deaths among this
group decrease) and the others suffer a worse health shock.

We also implement a more extreme lockdown policy (fifth column of Table 5)
in which we target a rise in 75% in the time spent at home relative to the base-
line. This policy lasts for 35 weeks or approximately 8 months. There are al-
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most no deaths in the first year of the pandemic, which now lasts much longer.
Therefore, a stricter lockdown is an effective strategy to delay the peak and to
control temporarily the number of infected individuals and deaths. This might
be an important policy while waiting to build public infrastructure (e.g. hos-
pital beds) and/or define a future plan of action to control the virus, including
waiting for a possible treatment or vaccine. Without improvements in infras-
tructure, treatment or a vaccine, however, the total number of deaths with or
without an extreme lockdown are roughly the same. The reason is that, when
the extreme lockdown is relaxed, the numbers of infections and seriously ill
patients rise sharply leading to similar deaths compared to the case without
the policy. The extreme shelter-at-home policy clearly causes a deep economic

downturn.

Our shelter-at-home policies so far were implemented in the beginning of the
pandemic, when congestion of public goods is not necessarily binding. In the
last column of Table 5 we implement a lockdown policy similar to the one in
column two, but that is imposed in week 6 of the pandemic, instead of week
1. This later lockdown is more effective in saving lives. The total death rate is
reduced by 3.5% instead of 2%, as in the lockdown that is implemented in week
1. The economic effects of both shelter-at-home policies are similar.

6.3 Financial Aid

We now turn to study the effects of an emergency measure designed to com-
pensate individuals for income losses due to a rise in social distancing. Table
6 contains such counterfactual experiments. Again for comparison, the first
column of this table contains the moments of the unchecked pandemic. The
second column displays the same statistics for the case in which the govern-
ment transfers 300 reais per month for all individuals in the first 26 weeks of
the pandemic.** This corresponds to 44% and 12% of the monthly income of
slum and non-slum dwellers, respectively.

24This amount is approximately 60 US dollars in July, 2020.
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Table 6: Financial aid policies

Only financial aid

Aid and 25% lockdown for all

300R$, all 300R$, slums 600R$, slums 300R%, all 300R$, slums 600R$, slums
Benchmark 26 weeks 26 weeks 26 weeks 26 weeks 26 weeks 26 weeks

Wks to peak srsly ill (slum) 10.00 15.00 14.00 32.00 32.00 32.00 32.00
Wks to peak srsly ill (other) 11.00 16.00 15.00 19.00 33.00 33.00 33.00
Srsly ill p/ 1,000 @ peak (slum) 3.31 1.32 1.40 1.98 2.61 2.10 2.81
Srsly ill p/ 1,000 @ peak (other) 0.96 0.62 0.78 0.64 0.83 0.70 0.78
Dead p/ 1,000 lyear (slum) 17.99 16.27 16.14 15.94 16.35 16.25 16.36
Dead p/ 1,000 lyear (other) 8.14 8.27 8.95 8.89 7.11 7.76 7.62
Dead p/ 1,000 lyear (all) 10.32 10.04 10.54 10.45 9.16 9.64 9.56
Dead p/ 1,000 LR (slum) 18.16 16.88 16.63 16.62 17.35 17.08 17.31
Dead p/ 1,000 LR (other) 8.42 8.93 9.41 9.48 8.37 8.70 8.65
Dead p/ 1,000 LR (all) 10.57 10.69 11.01 11.06 10.36 10.56 10.57
Immune in LR (slum), % 74.28 71.68 70.43 70.11 73.45 72.28 72.14
Immune in LR (other), % 39.51 41.77 43.19 43.68 40.18 41.19 41.32
Immune in LR (all), % 47.21 48.39 49.22 49.54 47.55 48.08 48.14
GDP at peak - rel to BM 1.00 1.16 1.24 1.31 1.11 1.21 1.13
GDP 1lyear - rel to BM 1.00 0.94 0.98 0.98 0.84 0.89 0.91
Hrs @ home (slum) - peak 80.25 78.27 80.02 76.80 77.99 77.22 79.69
Hrs @ home (other) - peak 86.77 78.18 78.36 80.67 84.19 82.32 84.97
Hrs @ home (slum) - 6m 65.52 73.70 74.41 80.01 82.35 83.58 87.05
Hrs @ home (other) - 6m 69.31 72.04 70.92 70.22 77.83 77.68 73.03
Value - healthy (slum) 1045.20 1062.30 1062.40 1075.50 1059.10 1059.30 1073.60
Value - healthy (other) 3393.20 3397.60 3391.20 3391.10 3396.20 3390.50 3392.20
Value - healthy (all) 2873.10 2880.30 2875.40 2878.20 2878.50 2874.20 2878.60

Figure 10 shows that this policy flattens out the infection curves. This effect
is more pronounced in slums. The income effect is stronger for slum dwellers
than for those individuals who live in other areas (time at home at the peak is
essentially the same across the two groups). This implies that individuals liv-
ing in slums increase social distancing much more than in the benchmark. The
total death rate among individuals living in slums is reduced by 7% relative
to the baseline. Given that the threshold for herd immunity rises for non-slum
dwellers, this ends up increasing their total death rate by 6% during the pan-
demic. The overall death rate rises since the measure of individuals not living in
slums is large. Notice that this composition effect on death rates becomes more
pronounced when only slum dwellers receive the financial aid—third column
of Table 6—or when the financial aid is more generous (600 reais for 26 weeks
instead of 300 reais)—fourth column of Table 6.
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Figure 10: Aggregate variables (300R$ financial aid for 26 weeks, all groups)
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We now combine cash transfers lasting 26 weeks with stay-at-home orders that
cover the same period (we target a rise in 25% in the time spent at home relative
to the baseline by rising \,, see Appendix D.3). Such combination of policies
was implemented in several countries including in Brazil.* Start with a trans-
tfer of 300 reais. The combined policy extends the duration of the pandemic;
much longer than when each of the policies is implemented separately. When
the policy is relaxed infections rise rapidly and the overall death rate is only 2%
below the baseline. Notice, however, that the death rate among slum dwellers
is higher than in the case of only cash transfers or only the lockdown. Wel-
fare with transfers and lockdown is of course higher than in the case with only
lockdown. Targeting the transfer to slum dwellers exacerbates the differences
across groups, as it decreases infections and deaths in slums and increases these
statistics in other areas.

PBrazilian informal workers received 600 reais per month for three months during the pan-
demic as a compensation for their confinement. There were several issues related to the timing
of the policy and to the bureaucracy to receive this cash transfer.
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7 Conclusions

Over one billion people in the world live in slums. These are usually crowded
neighborhoods where social distancing is hard to be followed. Infectious dis-
eases can thus spread rapidly in such areas. This paper studies the role of slums
in shaping the health and economic dynamics of pandemics. Using rich data
gathered from millions of mobile phones in Brazil, we show that social distanc-
ing increased less in slums at the outset of the Covid-19 pandemic.

We build and calibrate a model where poor agents live in high-density slums
and richer individuals live in other areas. The former have a harder time ac-
cessing health care due to capacity constraints in public hospitals. This all adds
up to a disproportionately high number of deaths among slum residents. In a
counterfactual scenario without slums, a higher fraction of residents from other
areas catch the disease as the burden to achieve herd immunity falls only on this
group, illustrating important distributional effects.

Using the model to explore a variety of policy experiments highlights the im-
portance of taking this heterogeneity into account. Reallocating private ICUs
into a single pool helps all groups, decreasing the death toll significantly. Very
stringent shelter-at-home orders buy time but only delay deaths if no other pol-
icy is put in place. If lockdowns shelter a particular group, the other suffers
worse health outcomes, and the welfare of both groups declines. Cash transfers
have a disproportional impact on slum residents and, as they can now afford to
cut their labor supply, infections fall more heavily on the other group. In sum,
policies can have contrasting effects across different groups in society.

Though our framework has considerable heterogeneity that allows for an array
of policy experiments, we have abstracted from potentially important margins.
For instance, individuals in our model are assigned a place of residence and
cannot move. Perhaps long-lasting pandemics may lead them to relocate and
health considerations may then affect the very structure of the city. Addition-
ally, temporary cuts in labor supply may have enduring effects on job prospects.
Being more likely to have informal jobs, slum dwellers may suffer more from
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such displacements. These and other issues are left for future research.
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Online Appendix

A Data Sources and Definitions

In this appendix, we detail the data used in the empirical motivation (Section
2) and in the model calibration (Section 4).

Population Census. We use data from the 2010 Brazilian Population Census
carried out by IBGE (Brazilian Bureau of Statistics) to obtain information on
households and people living inside and outside slums. In the paper, we define
slums as housing units in “subnormal agglomeration”. According to the 2010
Population Census, a subnormal agglomeration satisfies three conditions: (i)
it consists of a group of at least 50 housing units, (ii) where land is occupied
illegally, and (iii) is urbanized in a disordered pattern and/or lacks basic public

services such as sewage or electricity.

The 2010 Population Census interviews all households in the country (“uni-
verse questionnaire”) and also executes more detailed interviews on a 5% ran-
dom sample of households (“sample questionnaire”). We use data from both

the universe and sample questionnaires, as detailed below.

From the universe questionnaire, we obtained information on the characteris-
tics of people and households at the census tract level (Setor censitdrio). Apart
from obtaining information on the total number of people and households in
each census sector, we are able to identify whether sectors are slums (“subnor-
mal agglomeration”) or not. Using this information, we constructed the follow-
ing variables for the cities of Rio de Janeiro and Sao Paulo:

e Total population
e Total number of households
e Number of people living in slum

e Number of households that are in slums



e Average population density of each census tract, where the density is
number of inhabitants divided by the area of the tract in Km?

Average population density of slums

Average number of people in households

e Average number of people in households located in slums

From the sample questionnaire, we collected data on the average labor income
per capita as well as the average age of the population. However, notice that,
differently from the results of the universe of the Brazilian census, the sample
dataset does not identify whether the household lives in slums. Hence, we
constructed a proxy to identify whether each household lived in a slum. More
precisely, a household is considered to live in a slum if any of the following
conditions are met: It does not have a toilet; It has a lack of essential public
services and utilities (sewage, electricity, garbage collection, or piped water);
There are more than four people per bedroom. After classifying housing units
as slums, we tabulated the aforementioned income and demographic variables.

Covid RADAR - Jun/2020 - (https://www.covidradar.org.br): Covid Radar is a
collective of more than 40 companies and organizations that coordinate efforts
to build a reliable dataset on Covid-19 in Brazil. We use this website to collect

municipality (city) level data on the number of private and public intensive care
units (ICU) in Brazil.

ANS - Agéncia Nacional de Satidde Complementar - Mar/2020: From the ANS
(National Supplementary Health Agency)—which provides legal and admin-
istrative regulation of the private health insurance market—we obtained mu-
nicipality (city) level data on the number of people covered by private health
insurance in Brazil.

Expenditures: IBGE’s Brazilian Consumer Expenditure Survey (2008-2009) pro-
vides data on expenditure on goods. To calculate the fraction of income spent
on goods consumed outside the home, we use the following items of the con-
sumption basket: food away from home, public transportation, medical ser-

vices, and entertainment.
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Social distancing: Inloco(https://inloco.com.br), a Brazilian technology
company, collects anonymized location data from 60 million mobile phones in
Brazil. By tracking with a 3-meter precision the device’s location and move-
ments to different places (while ensuring user privacy), the company calculates
the social distancing index for cities (municipalities) in Brazil, including the
municipalities of Rio de Janeiro and Sao Paulo. For each municipality, the in-
dex calculates the percentage of devices that remained within a radius of 450
meters of the location identified as home. The index is computed daily and

ranges from zero to one.

The company also measures the social distancing index for nonoverlapping ar-
eas within the municipalities of Rio de Janeiro and Sao Paulo, called “hexagons”.
Each hexagon in Rio de Janeiro measures between 756,000 square meters and
760,000 square meters. In Sao Paulo, hexagons have between 738,000 square
meters and 745,000 square meters. There are 841 hexagons in Rio de Janeiro
and 1,301 hexagons in Sao Paulo. The methodology to calculate the index for
hexagons is similar: the percentage of devices in each hexagon that remained

within a radius of 450 meters of the location identified as home.

Census Tracts to Hexagons: The spatial unit of analysis in Section 2 (styl-
ized fact 2) is the hexagon provided by Inloco. To compute the number of
slum dwellers and the number of housing units in slums for each hexagon, we
needed then to match those hexagons’ boundaries to the boundaries of the cen-
sus tracts. Notice that are more census tracks than hexagons in each city—9,853
and 17,990 census tracts in Rio de Janeiro and Sao Paulo, respectively. When
aggregating census tracts into hexagons, we consider that the population and
households are uniformly distributed within each census tract. Hence, we cal-
culate the characteristic of the hexagon as the weighted average of the census
tracks’” characteristics that intersect the hexagon, weighted by the fraction of
the census track’s area that intersects the hexagon area. See Figures A1 and A2
for the location of census tracks and hexagons in Rio de Janeiro and Sao Paulo,
respectively. Figure A3 shows location of the 510 hexagons with slums in Rio
de Janeiro, and the 598 with slums in Sao Paulo.
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Figure Al: Rio de Janeiro: Census Tracts and Hexagons

(a) 9,853 Census Tracts in Rio de Janeiro

Notes. The figure shows the census tracts and the hexagons for the city of Rio de Janeiro.

Covid-19 data at the neighborhood level: We obtained the neighborhood-level
number of Covid-19 cases and deaths from the following websites:

e http://www.data.rio/
e https://www.prefeitura.sp.gov.br/cidade/secretarias/upload/
saude/COVID19_Relatorio_SItuacional_SMS_20200529.pdf
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Figure A2: Sao Paulo: Census Tracts and Hexagons
(a) 17,990 Census Tracts in Sdo Paulo

Notes. The figure shows the census tracts and the hexagons for the city of Sao Paulo.
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Figure A3: Rio de Janeiro and Sao Paulo: Hexagons with slums (in red)

(a) Rio de Janeiro: Hexagons with slums (in red)

(b) Sao Paulo: : Hexagons with slums (in red)

Notes. The figures show the location of the hexagons (in red) with slums. There are 510
hexagons with slums in Rio de Janeiro, and the 598 with slums in Sao Paulo.
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B Additional Tables and Figures

Figure B4: Event-Study Analysis (results without weights): Rio de Janeiro
and Sao Paulo

(a) Rio de Janeiro (b) Sao Paulo
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Notes. The figure shows the results for coefficients estimated from Equation (1) without weight-
ing for population. Coefficients should be interpreted as a change in percentage points. The
treated dummy equals one for hexagons with at least one housing unit in a slum. We use 841
hexagons in Rio and 1,301 hexagons in Sao Paulo. Data are provided at the hexagon-day level.
The base period corresponds to the day before each NPIL. The dependent variable: social dis-

tancing index for hexagon % on day d. Standard Errors clustered at hexagon level. Confidence
intervals: 95%.



Figure B5: Event-Study Analysis (share of slums as the treatment dummy):
Rio de Janeiro and Sao Paulo

(a) Rio de Janeiro (b) Sao Paulo
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Notes. The figure shows the results for coefficients estimated from Equation (1). The treatment is
the share of slums in each hexagon. Coefficients should be interpreted as a change in percentage
points. The treated dummy equals one for hexagons with at least one housing unit in a slum.
Analysis at the hexagon-day level (841 hexagons in Rio and 1,301 hexagons in Sao Paulo). The
base period corresponds to the day before each NPI. The dependent variable: social distancing

index for hexagon h on day d. Standard Errors clustered at hexagon level. Confidence intervals:
95%.



Table B1: Difference-In-Differences: Average Impact of NPIs on Social Distanc-
ing

Dependent variable: social distancing index

(i) (ii) (iif)
Post x Slum Dummy -0.0386*** -0.0429*** -0.0429***
(0.0050) (0.0021) (0.0021)
Post x Slum Dummy X Rio Dummy 0.0043
(0.0054)
Control group mean 0.2989 0.2820 0.2903
Hexagon FE Yes Yes Yes
Time FE Yes Yes Yes
Time FE x Rio Dummy - - Yes
Observations 97,684 151,504 249,188
Number of Hexagons 841 1,301 2,142
City Rio de Janeiro Sao Paulo Rio de Janeiro
& Sao Paulo

Notes. Each column displays the results from a separate regression. This table presents
results from the estimation of the following difference-in-difference specification: Y, =
B Post x Slum Dummy + wy, + §; + €xt, where Y}, is the social distancing index for hexagon h
on day d, wy, is the hexagon fixed effect, and 0, is the time fixed effects. The unit of observation is
a hexagon-day. The “treated group” is composed of hexagons with slums, while the comparison
group is composed of hexagons without slums. The treated dummy “Post x Slum Dummy” equals
one for hexagons with at least one housing unit in a slum for the days after implementation of the
first NP1, and is zero otherwise. There are 841 hexagons in Rio de Janeiro and 1,301 hexagons in Sao
Paulo. Robust standard errors (in parentheses) are clustered at the hexagon level. Observations are
weighted by the hexagon population in 2010. The value for the control group mean is for the day
before the implementation of the first NPI for each city. The regressions are for 120 days (from Feb
1 to May 30, 2020). Coefficients should be interpreted as a change in percentage points. Column (I)
shows the results for the hexagons of Rio de Janeiro, while column (II) presents the results for Sao
Paulo. Column (III) shows the results of a triple difference specification with all the hexagons of
Rio de Janeiro and Sao Paulo (2,142 in total), where Rio Dummy equals one if the hexagon belongs
to the city of Rio de Janeiro. The “Post x Slum Dummy x Rio Dummy” equals one for hexagons
in Rio de Janeiro with at least one housing unit in a slum for the days after the implementation of
the first NPL

*** p<0.01, ** p<0.05, * p<0.1



Table B2: Cross-Section Analysis: Correlation between slums and hospitaliza-
tions/deaths

Dependent variable: Covid-19 Acute Respiratory Disease
in logs Hospitalization =~ Death =~ Hospitalization =~ Death
(i) (i) (iii) (iv)
Slum Dummy 0.1115* 0.1010*** 0.3588*** 0.0731**
(0.0463) (0.0378) (0.0435) (0.0339)
Observations 1,301 1,301 1,301 1,301
Number of Hexagons 1,301 1,301 1,301 1,301
City Sao Paulo Sao Paulo Sao Paulo Sao Paulo

Notes. Each column displays the results from a separate cross-section regression. This table
presents results from the estimation of the following specification: Y;, = a + 71}, + ¢4, where Y}, is
the outcome variable (hospitalizations and deaths) for each hexagon h and the “Slum Dummy”
Ij, equals one for hexagons with slums and zero otherwise. The unit of observation is a hexagon.
There are 1,301 hexagons in Sao Paulo. Robust standard errors (in parentheses). The regressions
for the accumulate number of hospitalizations until May 18, 2020.

#% 5<0.01, ** p<0.05, * p<0.1

C Laws of Motion

In the main body (9) describes the overall laws of motion, and (10) describes the
sub-part that determines the transitions for the healthy agents. The following
contains the transitions for all other types.

To account for infected people one counts those who started last period healthy
and get infected this period, but also those who started last period infected who
neither develop severe symptoms nor recover:

Mt-‘rl(iag) - Mt<hvg)7r(nt(hag) + gt(ha g)a Ht(g)) (16)
+ My(i,9)(1 = ¢(0))(1 — )

People with severe symptoms comprise those who entered last period infected
and do not recover but instead develop more severe symptoms, as well as

severely symptomatic individuals from the previous period who neither die
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nor recover:

Mt+1<57g) = Mt(z7g)(1 o ¢(O))O& (17)
+ Mi(s, 9)(1 = d:(9))(1 = (1))

Recovered and therefore resistant individuals comprise those who were in-
tfected and recover, those with severe symptoms who do not die but recover,

and resistant individuals from the previous period:

Mt+1<7n7 g) = Mt@? a)¢<0) + Mt(sa g)¢(1) + Mt(rv g) (18)

The right hand sides of equations (16) to (18) gives the map 7} for states j =

1,8,7.

For accounting purposes, the measure of deceased agents as a result of Covid-

19 is given by new Covid deaths and those who died of it in previous periods:
My (deceased, g) = Miy(deceased, g) + (1 — 6(1))d () Mi(s, g),

while the number of newly infected people is given by healthy agents who get
infected

Niyi(i,g) = Mqi(h, g)m(ni(h, g) + Li(h, ), Ti(g)).

D Details on Calibration

D.1 Basic Reproduction Number - R,
The probability that an infected agent leaves such state is: ¢(0) + (1 — ¢(0))a.

This is the probability of recovery and the probability that the agent switches

to the serious symptoms case. Hence, the expected amount of time one stays in
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state 7 is:
1

Sy

The probability that an agent with serious symptoms leaves such state is: ¢(1)+
(1 — ¢(1))d. This is the probability of recovery and the death-because-of-Covid
probability. Hence, the expected amount of time one stays in state s is:

1

L= a ey

Now, the probability that one moves from the i state to the s state is given by:

(1= ¢(0)a
= (1= ()1 —a)

P

Note that the expressions above should be functions of one’s group g, but we

have supressed this for notational convenience.

Let n(g) denote the amount of time an infected person of group g spends out-
side. Let / be the interaction time for people with serious symptoms. Finally,
let 7 be the average (across groups) amount of time people spend outside. At
the outset of the disease, a measure 1 of the population is healthy.

Then, Ry(g) (i-e. for an infected person of group ¢) is given by:

Ro(g) = [(9)Ti(g) + (P.(g)Ts(g)] nllp.

This is the average number of people someone infects (for a person of a given
group). The economy’s R, will be the weighted average across groups:

Ry = w(g)Ro(9),

a

where w(g) is the weight of group g in the population.
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D.2 Computing Weekly Rates

Consider an agent that is infected with Covid-19. He may recover with proba-
bility ¢(0) or develop serious symptoms with probability «. The following table
gives what happens to a measure 1 of agents that are infected right now over

the course of the next few weeks.

Week Frac recovered Frac still infected Frac w/ symptoms

1 ¢(0) (1=0(0)1 - a) (1—¢(0))e
2 (1= 0(0)(L—a)p(0)  [(1=e(0))(L—a) (L—(0)(L~a)(l—e(0)a
3 [(1=00)A—a)(0) [(1—=(0)(L—a)® [(1—-¢(0)(L—a)(1—¢(0)a

Thus, the fraction of people that will develop symptoms Fj is given by

Fy = (1= ¢(0))a+ (1 = ¢(0)(1 = a)(1 = (0)a+ [(1 = $(0))(1 = )]* (1 = $(0))ex + ...
= (1= ¢(0)a [L+ (1 = ¢(0))(1 —a) +[(1 = ¢(0) (L = )" + ..

1
= (=) —goa—a)

Solving out for a gives
__ Bo)
1= B(1-¢(0))’

where B = F, /(1 — ¢(0)). With ¢(0) given by the average time for recovery, one

can use the formula above to get a.

We can do something similar for agents with symptoms to figure out at what
rate they die. Here is the table:
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Week Frac recovered Frac still w symptoms Frac dead

1 ¢(1) (1= o(1)(1 =9) (1—o(1))d

2 1=eM)A=0)s(1)  [(1-0(NA =0  (1=6(1)(1-8)(1-¢1))0
30 [(1—eM)A-a)e1) [L—oM)L -8 [1—aW)(L -3 (1-¢(1)d
4

Using the same steps above and denoting the fraction that die by Fj;, we get:

Ay
T A(T— o))’

J

where A = F;/(1 — ¢(1)).

D.3 Implementing Lockdowns in the Model

In Section 6.2, we implement a variety of shelter-at-home policies. We achieve
the desired lockdown by setting the policy parameter A(j, g) to the value nec-
essary to induce the agent to comply with the policy. The next table reports the
calibrated values of A(j, g) for each policy.

Lockdown Ap
intensity  Non-infected Infected
25% 1.88 0
50% 6.45 4.46
75% 33.4 31.45
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