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We present a simple continuous-time model of clearing in financial networks. Financial firms

are represented as “tanks” filled with fluid (money), flowing in and out. Once the “pipes”

connecting the “tanks” are open, the system reaches the clearing payment vector in finite time.

This approach provides a simple recursive solution to a classical static model of financial clearing

in bankruptcy, and suggests a practical payment mechanism. With sufficient resources, a system

of mutual obligations can be restructured into an equivalent system that has a cascade structure:

there is a group of banks that paid off their debts, another group that owes money only to banks

in the first group, and so on. We demonstrate how the machinery of Markov chains can be used

to analyze evolution of a deterministic dynamical system.
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1 Introduction

Modern financial systems are richly interconnected networks of various institutions, which

depend on each other. With most of the assets of one firm being liabilities of other

financial institutions, such a system is naturally prone to “systemic risk” of contagions,

in which a default of one firm might lead to defaults of many others (Allen and Gale,

2000; Glasserman and Young, 2016). Optimal regulation of such networks is a subject of

intensive debate (e.g., Yellen, 2013).

In a seminal contribution, Eisenberg and Noe (2001) introduced a static framework

for the study of interlinked financial systems in distress (see also Suzuki, 2002). They

considered an environment in which all participants (hereinafter, “banks”) default within a

single clearing mechanism, and demonstrated that there always exists a “clearing payment

vector” that satisfies some natural requirements. The Eisenberg-Noe approach has been

successfully extended to incorporate liquidity spillovers (Cifuentes, Ferrucci and Shin,

2005; Shin, 2008), outside liabilities (Elsinger, 2009; Glasserman and Young, 2015), costs

of default (Rogers and Veraart, 2013), liabilities of different seniority (Kusnetsov and

Veraart, 2019), mandatory disclosures (Alvarez and Barlevy, 2015), and other financial

instruments, and has become a cornerstone in the analysis of systemic risk (see Hurd,

2016; Feinstein et al., 2018; Kabanov, Mokbel and El Bitar, 2018, for recent surveys).

In this paper, we develop a continuous-time model of financial clearing. We think of

interconnected firms as tanks filled with money, which flows in and out through pipes

connecting the tanks. In the case of default, the pipes open and, given the assumptions

about the intensity of the flows consistent with the assumptions of Eisenberg and Noe

(2001), the resulting distribution of liquidity in tanks corresponds to the clearing payment

vector. Our first set of results is a full characterization of the evolution of the dynamical

system, which in turns gives us a finite algorithm to calculate the payment schedule.

Second, evolution of the continuous-time model provides an intuitive explanation for

the possible multiplicity of clearing payment vectors. At each moment, we interpret the

banking network as a finite Markov chain — despite the fact that our model is determin-

istic — and study its evolution using the stochastic matrix of current relative liabilities.

Groups of banks without any cash that may be involved in mutual reduction of debts,
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which we call “swamps”, correspond to ergodic subclasses of the invariant distribution

of the Markov chain.1 These “swamps” are responsible for non-uniquenesses of payment

schedules.

Third, our approach provides a simple but intuitive method to reduce many networks

of mutual liabilities to an equivalent cascade network in which there is a group of banks

that do not have any obligations, the second group of banks that owe money to banks

of the first group only, and so on. In these circumstances, there always exists a bank

that will repay its obligations in full, even if all banks start with a negative amount of

cash on hand (outside liabilities). Restructuring that reduces the amount of obligations

is practically important, as growing complexity of financial networks creates a significant

hurdle for regulators (Yellen, 2013; Bernard, Capponi and Stiglitz, 2017).2

Our continuous-time approach to a static problem plays the role of high-speed photog-

raphy in engineering. It allows us to unpack the process by which the banks that do not

have any cash end up repaying all their obligations. At each moment t, banks are divided

into three groups: those that repaid their debts, those that keep paying because they have

a positive cash position, and those that keep paying despite having zero cash. Each bank

in the latter group pays at the rate equal to the rate at which it receives money from

its debtors. In a real crisis, these banks are exactly those that might end up in default,

yet would have survived if the problems of sequencing of payments had been resolved as

miraculously as in a theoretical model.

The model demonstrates that the clearing mechanism does not require sophisticated

planning and hands-on management on behalf of the regulators. Allowing financially con-

strained firms to repay their debts at the maximum-available speed without any liquidity

injections will result in the clearing payment vector. While the existing clearing mech-

anisms address a number of important practical issues, our results show that, at least

theoretically, there is no need in payment-by-payment control in a situation of financial

distress. This is especially important given the growing recognition of challenges that

1Though “swamps” might look like a mathematical abstraction, they do appear in the real world.
For example, the infamous Enron company created special purpose entities that conducted circular
transactions, inflating the company’s revenues and hiding the costs (Healy and Palepu, 2003).

2Glasserman and Young (2016) cite the FCIC report: “There was no way to know who would be owed
how much and when payments would have to be made—information that would be critically important
to analyze the possible impact of a Lehman bankruptcy on derivatives counterparties and the financial
markets.”
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regulators face dealing with extensive and complicated networks of mutual liabilities.

Finally, our results demonstrate the power of the continuous-time approach to static

maximization problems. Our continuous-time model generates a discrete dynamical sys-

tem with the following recursive structure: at each moment, there is a linear system of

equations that determines the parameters of the next state of the system and the mo-

ment when the system switches to this new state. In a finite number of steps, the system

reaches its ultimate state. Thus, the continuous-time model allows us for easy calculation

of the payment schedule.

An important advantage of the dynamical model is that it allows us to study different

aspects of possible interaction between banks. The model can be extended to deal with

financial obligations of multiple maturities in real time, and to be used to take into account

stochastic shocks. It might be a convenient tool to study the optimal strategy of a central

agency to minimize the potential contagion effect triggered by failure of some banks. In

particular, it is straightforward to calculate the minimum amount of cash to be injected

into interconnected system to have all banks fully paid off.

Allen and Gale (2000) and Freixas, Parigi and Rochet (2000) pioneered studies of the

role of interconnectedness in the stability of financial networks. Rogers and Veraart (2013)

extended Eisenberg and Noe (2001) by introducing the possibility of a partial default, and

described an algorithm that results in the largest clearing vector for any environment (see

also Amini, Filipović and Minca, 2016). Battiston et al. (2012) demonstrated that a higher

diversification of each individual network member might lead to an increase, rather than

a decrease, of the systemic risk. Liu and Staum (2010) provided a formula for sensitivity

analysis of Eisenberg and Noe’s one-period model of contagion via direct bilateral links.

Feinstein et al. (2018) quantified the Eisenberg–Noe clearing vector’s sensitivity.

In an empirical study, Azizpour, Giesecke and Schwenkler (2018) demonstrated that

contagions, through which the defaulting firms have a direct impact on the financial health

of their counterparts, is a significant source of default clustering. Banerjee, Bernstein

and Feinstein (2020) generalized the model to allow for continuous-time dynamics of

the interbank liabilities using stochastic differential equations, proved the existence of a

solution for this generalized model, and analyzed the properties of this solution. Csóka

and Herings (2018) used the Eisenberg-Noe approach to analyze decentralized clearing.
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Capponi, Corell and Stiglitz (2020) applied it to study the optimal policy in the case of

a sovereign default.

There is substantial literature that focuses on the specific forms of networks con-

necting financial firms. Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) demonstrated the

non-monotonic effect of the magnitude of negative shocks on network stability. The net-

work density contributes to stability when the shocks are relatively small, but propagate

contagion at a certain magnitude. Castiglionesi and Eboli (2018) show that the star-

shaped network is most resilient to systemic risks. In this paper, we take the network as

given, and our results apply to all networks. Our model highlights that a restructuring of

a system of mutual obligations might lead to another, simpler system, which is equivalent

in terms of the ultimate clearing vector.

Eboli (2013, 2019) analyze the impact of shock to a financial system using the notion

of the flow network.3 The analysis in Eboli (2013, 2019) is confined to complete, star,

and ring networks: for these networks, there exists a unique function that associates

the financial losses transmitted by defaulting debtors to their creditors to the links of a

network. Our approach works for any finite network; in fact, we do not have any references

to the network structure in our results.

Veraart (2020) uses a network model to describe how contagions, including distress

contagions, which precede, rather than follow, bankruptcy, spread through the system.

Elliott, Golub and Jackson (2014) analyze the role of integration and diversification in

the prevention of cascade failures. Amini, Cont and Minca (2016) study the resilience

of a large financial network to defaults using contagion in random graphs. Feinstein

(2017) generalized Amini, Filipović and Minca (2016) by allowing for differing liquidation

strategies, and provided sufficient conditions for the existence of an equilibrium liquidation

strategy with a corresponding unique clearing vector. Cifuentes, Ferrucci and Shin (2005)

note that the full connectedness of the financial network is a sufficient condition for the

uniqueness of the clearing vector (see also Shin, 2010). Our approach allows to refine this

observation: it is the presence of ergodic subclasses among banks that have zero cash at

the initial moment that generates multiplicity. (Eboli 2019, and Roukny, Battiston and

Stiglitz 2018, identify these sources of multiplicity using very different approaches.)

3Though Eboli (2013) is a working paper version of Eboli (2019), the two papers use somewhat
different refinement technique and are of independent interest.
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The rest of the paper is organized as follows. In Section 2, we use the original Eisenberg

and Noe (2001) model to discuss the main questions that our continuous-time model

addresses. Section 3 introduces the continuous-time setup. In Section 4, we prove the

existence theorem and characterize the dynamic process that leads to the clearing vector.

In Section 5, we use Markov chains to characterize the sources of multiplicity of clearing

vectors. In Section 6, we focus on models that can be restructured into the cascade form.

Section 7 discusses extensions. Section 8 concludes. Appendix contains technical details.

2 Eisenberg and Noe Framework

In this section, we outline the original Eisenberg and Noe (2001) model, use it to dis-

cuss the main questions that our continuous-time model seeks to answer, and describe

informally the answers our model provides.

Eisenberg and Noe (2001). There is a financial system composed of n banks (firms,

financial institutions, agents, etc.) owing money to each other, which is described by the

matrix of mutual liabilities B = {bij}. Vector c = (c1, c2, ..., cn) describes the initial cash

positions ci ≥ 0 for all i. The matrix of mutual liabilities B uniquely determines the debt

vector b = (b1, b2, ..., bn) and the stochastic matrix of relative liabilities Q = {qij}, so that

bij = biqij for every i, j. Vice versa, matrix Q and vector b uniquely determine the matrix

of liabilities B. In our continuous-time model, they will be functions of time.

The clearing vector p = (p1, p2, ..., pn), where pi is the total amount paid by bank i to

all other banks, should satisfy the following two conditions (Eisenberg and Noe, 2001):

(A) Priority and proportionality of debt claims. With total payment pi, the bank i pays

to j the fraction piqij in such a way that either its total debts are paid or all of its resources

are exhausted.

(B) Limited liability. The total payment of any bank should never exceed the cash flow

available to the bank, i.e., the initial cash plus the money received from other banks.

Conditions (A) and (B), taken together, imply that the clearing vector p satisfies

p = min(c +QTp,b). (1)
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In all equations, p, c, and b are column n-dimensional vectors, the minimum is taken

component-wise, T is the transposition symbol, and thus (QTp)i equals the total amount

received by bank i from other banks. The existence of such a vector p follows, e.g.,

from the Knaster–Tarski lattice version of the fixed-point theorem, but in our model its

existence will follow almost immediately from the structure of our model. If pi < bi, bank

i cannot repay its obligations.

Our Theorem 1 shows that if the system starts with the debt and cash vectors as in

Eisenberg and Noe (2001), then, with “pipes” open and money flowing between “tanks”,

the outcome is exactly the clearing vector. It also gives a full characterization of a discrete

dynamical system that can be solved via a straightforward algorithm.

If all banks start the procedure with some cash on hand, the solution path is unique.

Otherwise, there might be complications. Note that condition (A) is a strong requirement:

it implies that if, e.g., bij = 1 and bji = 2, then these banks cannot “cancel” these liabilities

by replacing them with bij = 0 and bji = 1, since the proportionality of debt claims will

be violated. Another observation is that even if all ci = 0, there may exist nontrivial

solutions of equation (1), and we will show that this is exactly the cause of potential

multiplicity of solutions.

The Transactions Problem. The main focus of the original Eisenberg and Noe (2001)

was on the existence of the clearing vector p, a solution to the fundamental clearing

equation (1). Yet even when the clearing vector p is known, how will the banks pay

their liabilities? How could they do this simultaneously? How should the banks that

are ultimately solvent pay their debts before they receive money from their counterparts?

What is the optimal sequence of payments between banks that results in the clearing

vector p?

To address these questions, let us introduce a few definitions. Given a model M =

(b, Q, c), we will have, in addition to the clearing vector p∗, i.e., final payments, the vector

of amounts received r∗ = QTp∗, the final cash positions c∗ = c+ r∗−p∗, the unpaid debts

b∗ = b− p∗, and the losses l∗ = QT (b− p∗).
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We also have the following balance conditions:

∑
i

ci =
∑
i

c∗i ,∑
i

bi =
∑
i

(QT b)i,∑
i

p∗i =
∑
i

(QTp∗)i, (2)∑
i

l∗i =
∑
i

(bi − p∗i ).

The first three equations hold since the model is self-contained. The last equality follows

from the previous equations.

In contrast with Eisenberg and Noe (2001), we allow the vector of initial cash positions

c = (c1, ..., cn) to have negative entries. Thus, it makes sense to introduce the vector of

minimum cash positions cm(b, Q), the minimum vector such that all banks should be able

to pay their debts. If this happens, p∗ = b, c∗ = (0, ..., 0), and the two terms on the right

side of the clearing equation (1) must coincide, i.e., b = c +QTp∗.

Using the clearing equation, we immediately obtain simple but useful results about

the vector of minimum cash positions cm.

First, this vector satisfies

cm = (I −QT )b, (3)

Second,
n∑

i=1

cmi = 0. (4)

Third, if the initial cash vector c satisfies c � cm, i.e., the former vector is larger

(component-wise) than the latter, then c∗ = c − cm and the clearing vector satisfies

p∗ = b. Otherwise, at least one bank will be unable to repay its debts.

In the case when the clearing vector p∗ = b, we say that the model is sufficient,

otherwise, it is deficient. Obviously, vector cm is the minimum vector that makes the

model sufficient. Thus, with the same parameters Q and b, the model will be sufficient

or deficient depending on the cash vector c. The difference between the two cases is
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substantial: in the former case, the pairwise mutual obligations can be cancelled; in the

latter they cannot. To answer whether vector c is sufficient or deficient, there is no need

to solve the clearing equation: we only need to compare this vector with vector cm, which

can be calculated using (3).

Example 1. Let n = 3 and matrix Q be given by q12 = q13 = 1
2
, q21 = 1

3
, q23 = 2

3
, q31 = 1

4
,

and q32 = 3
4

:

Q =


0 1/2 1/2

1/3 0 2/3

1/4 3/4 0

 (5)

With this matrix, consider the debt vector b = (12, 21, 20). For b, using formula (3), we

obtain cm (Q,b) = (0, 0, 0). That is, to pay all the debts, it suffices that no bank has

negative cash at the initial moment.

If the cash vector is sufficient, i.e., c � cm, then the clearing (payment) vector p∗

coincides with the debt vector b. In the case of b = (12, 21, 20) in Example 1, no trans-

actions are necessary. The job of a clearing house in this case is just to inform the banks

that their obligations cancel each other. The natural question is as follows: given matrix

Q, for which debt vector b is the minimum cash vector cm = (0, 0, 0)? As we will see, the

necessary and sufficient condition is that the debt vector b is proportional to the invariant

distribution π of the corresponding ergodic Markov chain with matrix Q. In Example 1,

π = 1
53

(12, 21, 20). The general result is given in Theorem 2.

Cascade Structure of Liabilities. The minimum initial cash vector cm that satisfies

(3) answers the following question. What is the smallest initial cash vector c such that all

banks ultimately pay their debts? Now, given matrix Q and vector b, what is the smallest

vector c such that at least one bank will pay its debt? The answer to this question might

seem surprising: a bank that fully repays its debt exists for almost any initial cash vector

c = (c1, ..., cn), even if most of ci < 0. Indeed, (4) implies that if cmi > 0 for at least one

bank, then for at least one other bank cmj < 0, i.e., this bank j will ultimately be a net

recipient and can start with a negative cash position. If cm = (0, ..., 0), then the mutual

obligations of all banks cancel each other, and thus no real transactions are necessary.
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Let us go through the actual payment mechanism in the next example.

Example 2. Consider the same matrix Q given by (5), but a different debt vector,

b = (13, 22, 20) (see also Figure 1(a)). Using formula (3), we obtain the minimum cash

vector cm (Q,b) =
(
2
3
, 1
2
,−7

6

)
: as we will see, even with a negative initial cash position,

bank 3 will be able to pay its debts in full. First, let us demonstrate that the debt

vector b = (13, 22, 20) is equivalent to the debt vector (1, 1, 0). Suppose bank 1 prepares

payments of 6 to banks 2 and 3, bank 2 prepares a payment of 7 to bank 1 and a payment

of 14 to bank 3, and bank 3 prepares a payment of 5 to bank 1 and a payment of 15 to

bank 2. These potential payments satisfy the proportionality assumption (A) but formally

violate assumption (B). Yet these potential payments partially cancel each other: e.g., 6

from bank 1 to bank 2, and 7 from bank 2 to bank 1 result in just 1 owed by bank 2 to

bank 1. These potential cancellations plus a cancellation of a circular debt of 1 result in

the remaining debt vector (1, 1, 0). Now, given matrix Q, bank 3 has no debt, bank 1

owes 1
2

to bank 3 and 1
2

to bank 2, and bank 2 owes 1
3

to bank 1 and 2
3

to bank 3. If the

initial cash vector is the minimum vector cm =
(
2
3
, 1
2
,−7

6

)
, then at step 1, bank 1, having

2
3

as its initial holding, sends 1
2

to bank 3 and 1
6

to bank 2; at step 2, bank 2, having 1
2

from its initial holding and 1
6

obtained from bank 1 at step 1, sends 1
3

to bank 3. All debts

are paid, and the final cash position is c∗ = (0, 0, 0).

We call a structure of obligations and corresponding payments a cascade structure, or

simply the model a cascade, if set J can be partitioned into sets (J1, J2, ..., Jm) such that

the structure of obligations has the following form: there is a group of banks J1 without

any debts, there is a group of banks J2 that owe money only to banks in J1, etc., and,

finally, there is a group of banks Jm, m ≤ n, to which no bank owes money, and these

banks may have debts to all other banks. To simplify presentation in all examples, we

consider the situation when each set Jk has only one bank, and then m = n. Figures

1(b) and 1(c) show the order of transfers in two cascades described in Example 2, where

the cascade 1(b) (J1, J2, J3) is (3, 2, 1). Note that the payment steps go in inverse order:

banks 1 pays to banks 2 and 3, then bank 2 pays to 3. The reason for the order of sets

in the cascade follows from the algorithm of cascade construction that first finds set J1,

then J2, and so on.

Surprisingly, even in this very simple example, the transaction sequence is not unique
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Figure 1: (a) The matrix of relative liabilities and the initial cash vector from Example
2. (b) Transfers in cascade 1 result in full repayment. (c) Transfers in alternative cascade
2 result in full repayment as well.

— not only in the timing of the payments, but also in the order of the states in the

cascade. Let us obtain a second cascade using another mechanism of debt restructuring

for the same model and the sufficient cash vector (see Figure 1(c)). For a sufficient model,

the pairwise obligations can be reduced to unilateral ones: bank 1 owes 3
2

= 13× 1
2
−20× 1

4

to bank 3, bank 2 owes 5
6

= 22× 1
3
−13× 1

2
to bank 1, and bank 3 owes 1

3
= 20× 3

4
−22× 2

3

to bank 2. Since these obligations form a closed circuit, the amount 1
3

can be subtracted

and now the obligations are: bank 3, as in the first cascade, has no debts, bank 1 owes 7
6

to bank 3, and bank 2 owes 1
2

to bank 1. Then the second cascade 1(c) is (3, 1, 2), i.e.,

at step 1, bank 2, having 1
2
, sends 1

2
to 1; at step 2, bank 1, having 2

3
, adds 1

2
obtained

at step 1 and sends 7
6

to bank 3. Again, all debts are paid, and the final cash position is

c∗ = (0, 0, 0).

Theorem 3 in Section 6 establishes that any sufficient system could be modified, via a

string of admissible payments, to an equivalent system that has a cascade structure. In

Subsection 6.2, we describe a recursive algorithm to construct the cascade of type 1(b).

3 Setup

In our model, the information is summarized by the triplet M = (b, Q, c), where

b = (b1, ..., bn) is the debt vector, the stochastic matrix Q = {qij} describes the relative

liabilities, and the vector of initial cash positions c = (c1, ..., cn) has the same meaning as

in the original Eisenberg and Noe model, with one important distinction: we allow ci ≤ 0
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for some or even all i.4 The matrix of liabilities B = {bij} uniquely determines matrix

Q = {qij} and the debt vector b, and vice versa: bij = biqij for any i, j. By convention,

if for some bank bi = 0, yet there is k with qki > 0, then we define qii = 1 and qij = 0 for

all j 6= i.

Since the initial cash positions might be negative, we will appropriately modify equa-

tion (1): we require p to satisfy

p = max{min(c +QTp,b), 0}. (6)

We assume that the conditions (A) and (B) are always satisfied.

In our model, the parameters that describe each bank i, i.e., bi, ci, and pi, depend

on time that runs on a finite interval starting with t = 0. The initial position of bank

i is xi(0) = (bi, ci). The position of bank i at time t is described by the vector xi(t) =

(bi(t), ci(t)), representing its remaining debt and its current cash position, and the system

as a whole is described by a 2n-dimensional vector x(t) = (xi(t), i = 1, ..., n). The amount

that bank i has paid by moment t, pi(t) = bi−bi(t), will be later represented as an integral

of a function ui(s), the rate at which bank i pays its debt at moment s. This rate, which

we call the out-rate, will be the main control parameter in our model.

One can visualize the continuous-time model as follows. Each bank i is a tank filled

with a fluid (money) with initial level ci = ci(0), which might be positive, zero, or negative.

Each tank is connected to all other tanks by inlet and outlet pipes. The maximum possible

rate of the flow through each pipe (i, j), which is an outlet for i and an inlet for j, is its

capacity qij. Since matrix Q is stochastic, the total capacity of all outlets from tank i is

1. Bank i pays its debts at the out-rate of ui(t), the intensity with which money flows

from tank i to other tanks. Thus, at any point in time, bank i pays to bank j at the rate

of qijui(t), proportional to its total debt under assumption (A).

To fully specify the continuous-time model, we add assumptions (C1) and (C2) to

assumptions (A) and (B).

(C1) At any moment t, all out-rates must satisfy 0 ≤ ui(t) ≤ 1.

The out-rates ui(t) completely specify the in-rates ni(t) =
∑

j∈J uj(t)qji, which allows

4Sometimes vector c is interpreted as a vector of outside assets; a negative entry corresponds to
outside liabilities (Elsinger, 2009; Glasserman and Young, 2016).
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us to focus on the former. Note that since the in-rates ni are defined by the columns of

the stochastic matrix Q, they can potentially be less or greater than one.

To formulate assumption (C2) about in-rates ui(t) for different banks, we need to

introduce two other interrelated notions, which will play a key role in our analysis. Define

a partition of the set of all banks J into three groups, P (t) = (J+(t), J0(t), J∗(t)). A

partition is a function of time t; that is, a bank belongs to one of the three groups at

each moment t ≥ 0. The first group of banks J+(t) is called positive and consists of

those banks that, at time t, still have outstanding debt and a positive cash position. The

out-rates in this group can have any values ui(t), 0 ≤ ui(t) ≤ 1. The next group J0(t),

called zero, are those banks that have positive debt and a zero or even a negative cash

position. They might be still paying their debts with money flowing to them from other

banks. The out-rates in this group must coincide with the in-rates, ui(t) = ni(t), at any

moment in time. The last group, J∗(t), called paid-up, includes those banks that have

paid out all of their debts and are still possibly receiving money from other banks. For

them, the out-rates are equal to zero, ui(t) = 0.

Summing up, at each moment t, we have a partition of all banks into three groups:

J+(t) = {i : bi(t) > 0, ci(t) > 0};

J0(t) = {i : bi(t) > 0, ci(t) ≤ 0}; (7)

J∗(t) = {i : bi(t) = 0}.

Being in one of these groups determines the bank’s status at moment t.

Assumption (C2) specifies out-rates ui(t) for all banks at all times t ≥ 0:

(C2) If i ∈ J+(t), then ui(t) = ai, 0 < ai ≤ 1;

If i ∈ J∗(t), then ui(t) = 0.

If i ∈ J0(t), then ui(t) = ni(t) =
∑

j∈J+(t)

aiqji +
∑

j∈J0(t)

uj(t)qji. (8)

We prove the existence of functions ui(t) in Theorem 1, and give necessary and

sufficient conditions for uniqueness of the solution in Theorem 2. We denote di(t) =

ni(t) − ui(t), the balance rate, since this coefficient defines whether cash position ci(t)
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will grow, decline, or remain constant. For the zero group, the out-rates must be equal

to the in-rates, so di(t) = 0. We call banks with a positive or a zero status, i.e., banks

continuing to pay their debts, active, and other banks nonactive. We say that bank j is

a sponsor of bank i at moment t if it pays its debt to i, i.e., if uj(t)qji > 0.

For any subset B ⊆ J of the set of all banks J = {1, 2, ..., n}, QB will denote the

matrix obtained from the stochastic matrix Q by deleting all rows and columns not in

B; IB[= I] denotes the identity matrix of a corresponding dimension. Vector vB, derived

from the n-dimensional vector v, is defined similarly.

The choice of positive constants ai is a matter of convenience. For the selection of ai

for the positive group of banks we will use only two options. If set J0(0) is empty, we

assume that all ai = 1. We call this a regular case and refer to this flow as the basic flow.

For example, if ci = ci(0) > 0 for every bank i, we are dealing with a regular case.

The only other values of constants ai that we are going to use are ai = πi > 0 for

i ∈ B ⊆ J , where πi are given by the invariant distribution of the corresponding Markov

chain if matrix QB is ergodic. We call them the invariant rates. These are the only rates

for positive banks when their in-rates coincide with the out-rates, and therefore their cash

positions are constant.

If there exists a bank i such that ci = ci(0) ≤ 0, the solution to (6) is not necessarily

unique. We deal with this case in Section 5. Theorem 2 characterizes the parameters for

which there is a multiplicity of solutions. In addition, there is also a possibility that for

some banks with ci(0) = 0, the in-rates at the initial moment may exceed 1, and thus

some of these banks should be “instantly” reclassified as positive, since they will have

ci(t) > 0 on some nonzero interval (0, δ). We will discuss the so-called Big Bang effect in

Subsection A2.5

4 The Regular Case

In this section, we start with stating formally our Theorem 1 that focuses on the case

when all banks have a positive amount of cash at the initial moment: ci > 0 for all i,

i.e., the set of zero banks J0(0) = ∅ and the basic out-rates ui = 1 are used for the

5For a similar reason, the Big Bang cosmology assumes that the life of the Universe starts after the
“Planck epoch,” a minimum period of time, has passed.
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positive group. We then describe how the evolution of the continuous-time model results

in an Eisenberg-Noe clearing vector in finite time and characterize the discrete dynamical

system that describes the evolution, completing the proof.

4.1 The Existence Theorem

What happens when all pipes are open at time 0? The assumptions (A), (B), (C1), and

(C2) jointly determine the following dynamics:

pi(t) =

∫ t

0

ui(s)ds,

bi(t) = bi − pi(t), (9)

ci(t) = ci +
∑
j

pj(t)qji − pi(t) = ci +

∫ t

0

di(s)ds,

where di(s) = ni(s) − ui(s) is the balance rate and ni(s) =
∑

j uj(s)qji is the in-rate for

bank i at moment s.

The money will flow while there is at least one bank with a positive status, i.e., having

an outstanding debt and a positive cash reserve. Before that moment, the total amount of

debt in the system is monotonically decreasing at least at the unit rate, and thus, since the

total amount of debt is finite, the process ends at a finite time T∗ = min {t : J+(t) = ∅}.
Theorem 1 describes the main characteristics of this process for a regular initial vector c.

Theorem 1. (a) For any regular initial vector c, there exists a finite time T∗ =

min {t : J+(t, c) = ∅} at which all out-rates ui(T∗) = 0 for every bank i. The time inter-

val [0, T∗) consists of a finite number k∗ of half-intervals ∆k = [Tk, Tk+1), k = 1, 2, ..., k∗,

T1 = 0, Tk+1 = T∗. The out-rates ui(t) are constant on these intervals; functions pi(t),

bi(t), ci(t), 0 ≤ t ≤ T∗, satisfying equations (9), are correspondingly linear on each inter-

val ∆k. The moments Tk > 0 are the moments when at least one bank changes its status,

i.e., one of the functions bi(t), ci(t) hits zero from above. Vector p(T∗) solves equation

(6), i.e., it is the clearing payment vector in both the Eisenberg-Noe and continuous-time

models.

(b) The following Monotonicity Property holds: in-rates ni(t) are nonincreasing in k

for all i ∈ J , i.e., ni (Tk) ≥ ni (Tk+1) , k = 1, 2, ..., k∗ − 1. This implies a similar property

14



for out-rates ui(t).

(c) Partition Pk = P (Tk) = (J+,k, J0,k, J∗,k), and vectors bk = (bi(Tk)) and ck =

(ci(Tk)) contain all the information about the system at moment Tk and uniquely define

the out-rates ui,k (and thus all other functions) on the next interval ∆k.

Because the evolution of the system is interesting in itself, we will prove parts (a) and

(c) of Theorem 1 in the next subsection, and delegate a more technical proof of part (b)

to the Appendix.

4.2 Evolution in Continuous Time

When the process ends at T∗ = min {t : J+(t) = ∅} , we have the following picture. As

the first of the balance conditions (2) shows, the sum of all cash positions is constant at

all times. Thus, at the final moment T∗, we have

∑
i

ci =
∑
i

ci(T∗) =
∑

i∈J∗(T∗)

ci(T∗).

The last equality holds because J+(T∗) = ∅ and ci(T∗) = 0 for all i ∈ J0(T∗). These

equalities immediately imply that the set J∗(T∗) is always non-empty even if all ci � bi,

and the sum
∑

i ci is positive.

What happens before this final moment? According to Assumption (C2), all out-rates,

and hence the in-rates as well, are constant on any interval where the statuses are not

changed, and therefore all cash positions, debts, and payments are linear functions on

these intervals. Thus, in the regular case, when all ci(0) > 0, all banks have positive

status until some moment T1 when either one debt or cash level hits zero. This holds

because all debts decrease at a unit rate. Without loss of generality, perturbing slightly,

if necessary, the initial conditions, we can assume that at the moments of status change

only one bank changes its status.

At any moment t, a status change can occur only when some positive bank pays up its

debt, or its cash position hits zero, or some zero bank pays up its debt. In the first case,

the zero group remains the same, and the in-rates for all banks, including the solution

of (8) for the zero group, do not increase. The equality ci(t) = ci holds for each bank in

the zero group. In the second case, when one positive bank changes its status to zero,
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this is possible only when the balance rate di of this bank is negative, i.e., the in-rate ni

was less than the out-rate ui = 1. This bank is added then to the zero group, and the

out-rate of this bank drops from ui = 1 to the new value ni < 1, defined by the new

solution of (8). The in-rates for other banks in the zero group also decrease, since the

total contribution to this group from the positive sponsors decreases. In the third case,

the situation is similar.

Thus, the in-rates are always non-increasing for all banks. The formal proof that the

in-rates in the zero group, and in all groups, no matter if the zero group is expanding or

contacting, are non-increasing, i.e., point (b) of Theorem 1, is given in the Appendix.

Assuming that point (b) of Theorem 1 holds, the interval [0, T∗) consists of a finite

number k∗ of half-intervals ∆k = [Tk, Tk+1), k = 1, 2, ..., k∗, T0 = 0, where the times Tk > 0

are the only times when one bank changes its status, i.e., one of the functions bi(t), ci(t)

hits zero, having been positive before. Plus, (b) yields an important irreversibility property

for a status change after the initial moment: The only possible status change for all t > 0

is: from the positive group to the paid-up group, or to the zero group, and from the zero

group to the paid-up group.

Because of the irreversibility, the number of moments Tk is no greater than 2n. For

the sake of brevity, we call the intervals ∆k status intervals. Note that in the general

situation when at moment t = 0 there are banks with ci ≤ 0, an instant status change is

possible. This is due only to possible reclassification of some zero banks to positive (see

the Bang Bang effect in Subsection A2).

To complete the proof of (a) in Theorem 1, we will need the following slightly less

straightforward result.

Lemma 4.1. The amounts paid by each bank at moment T∗, i.e., pi = pi(T∗), i ∈ J , give

a solution to the clearing equation (6).

Proof. The status of each bank i at moment T∗ is either zero or paid-up. If it is paid-up,

then the total payment of this bank coincides with its debt, i.e., pi(T∗) = bi. If bank i

at T∗ has a zero status, i.e., ci(T∗) = 0, the debt bi is not fully paid, pi(T∗) < bi. Since

the rate of payment of each bank j to bank i at each time t is proportional to capacity

qji, the total payment obtained by bank i from bank j is pj(T∗)qji. Using the equality

ci(T∗) = 0 and the second of the balance equalities (2), we obtain that the total payment
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of bank i is equal to the sum of the initial cash ci and the money obtained from other

banks, i.e., pi(T∗) = ci +
∑

j pj(T∗)qji < bi. Thus, in both cases the amount paid by each

bank satisfies the clearing equation.

4.3 The Discrete Dynamical System

Our next goal is to describe all information needed to compute the end time of each status

interval ∆k and complete the proof of part (c) of Theorem 1.

According to our definitions and part (a) of Theorem 1, we have continuous flow X(t)

defined on the interval [0, T∗) by vector X(t) = (t, P(t), bi(t), ci(t), i ∈ J). On each status

interval, all out-rates are constant and define a simple linear dynamics for all parameters

of the model. As a result, we can utilize one of the main computational advantages of our

model: its dynamics is fully characterized by a homogeneous discrete dynamical system

(Xk), where time moments k = 1, ..., k∗+ 1 correspond to moments Tk in the continuous-

time model, and vector Xk contains all information about the system at this moment.

This vector is Xk = (Tk, Pk, bi,k = bi(Tk), ci,k = ci(Tk), i ∈ J), where Pk = P (Tk) is a

partition of the system at the beginning of the next interval ∆k = [Tk, Tk+1).

When it is clear which interval ∆k is considered, to simplify notation, we suppress

further indices k, denoting ∆k = ∆, Tk = T , Tk+1 = T ′, the out-rates ui,k = ui, etc. The

values of the out-rates for the basic flow are selected at moment Tk for the next interval

∆k according to (C2), and partition Pk = P (Tk) = (J+, J0, J∗), i.e.: ui = 1 if i ∈ J+,

ui = 0 if i ∈ J∗, and if i ∈ J0, then ui = vi, where vector v = (vi) is obtained as a solution

of a linear non-homogeneous system of equations (8). Thus, we have

bi(t) = bi(Tk)− uit,

ci(t) = ci(Tk) + (ni − ui)t. (10)

The time of the next status change T ′ = Tk+1 is the first time when one of those quantities

bi(t), ci(t), which were positive at moment T = Tk, will reach zero for the first time.

Assuming that the out-rates on interval (T, T + t) are equal to ui, we denote the potential

moment T + si when bank i will repay its debt, and the potential moment T + ti when
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bank i reaches the zero cash position. Equations (10) immediately imply that

si =

bi(T )/ui, if bi(T ) > 0, and ui > 0;

+∞ if ui = 0.

ti =

−ci(T )/di, if ci > 0, and di < 0;

+∞ if ci ≤ 0 or di ≥ 0.

Finally,

T ′ = T + min
i

(si, ti). (11)

Note that for i ∈ J0, we have ci(t) ≡ ci(T ) ≤ 0 for all t ∈ (T, T ′), so for them ti = +∞.

Thus, state Xk with the out-rates specified by (C2), (8), and a simple system of linear

equations uniquely determine the moment of the next status change Tk+1, and therefore

all the values Xk+1. Thus, we proved point (c) of Theorem 1. We call this transformation

of Xk into Xk+1 mapping G. Note that this mapping does not depend on k, which makes

it easily programmable.

The following example illustrates the dynamic evolution of the system.

Example 3. Let n = 3, matrix Q be given by (5), and the same debt vector b =

(13, 22, 20) as in Example 2, but with cash vector c =
(
1
2
, 1
2
, 0
)
. For this vector b, formula

(3) yields that cm =
(
2
3
, 1
2
,−7

6

)
, i.e., c ≺ cm, so this cash vector makes the model deficient.

Formally, this is not a regular case, since J0(0) = {3}, but this is an example of the Big

Bang effect that can be easily fixed because n3 = 1
2

+ 1
3
> 1, and thus bank 3 should be

instantly reclassified as positive.

Thus, on the first interval ∆1 = [T1, T2), T1 = 0, we have all ui = 1. Then d =(
− 5

12
, 1
4
, 1
6

)
. Each moment of status change Ti+1 = Ti + ti, i = 1, 2, .., is the moment

when either some debt is paid up or some cash position hits zero from above. The

moment t1 = T2 is defined by condition c1(t) = c1 + d1t = 0, which yields t1 = 6
5
. Then

c(T2) =
(
0, 4

5
, 1
5

)
and b(T2) = (bi − uit1) =

(
114

5
, 204

5
, 184

5

)
.

On the second interval ∆2 = [T2, T3), we have J+ = {2, 3} and J0 = {1}; thus,

u2 = u3 = 1 and u1 = n1 = 7
12

. Then d =
(
0, 1

24
,− 1

24

)
. Moment t2 is defined by condition

c3(t) = 1
5

+ d3t = 0, and then t2 = 44
5
, T3 = t1 + t2. Then c(T3) =

(
0, 4

5
+ d2t2 = 1, 0

)
and
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b(T3) = (bi(T2)− uit2) = (9, 16, 14).

On the third interval, ∆3 = [T3, T4), we have J+ = {2} and J0 = {1, 2}, which yields

u2 = 1, and since c1(T2) = c3(T2) = 0, we need to solve the equilibrium system (8) with

two equations u1 = 1
3

+ 1
4
u3, u3 = 2

3
+ 1

2
u1 to find u1 = n1 and u3 = n3. This system

has a solution u1 = 4
7
, u3 = 20

21
. Then n2 = 4

7
× 1

2
+ 20

21
× 3

4
= 1 and d = (0, 0, 0). Thus,

c(t) = c(T3) = (0, 1, 0) for t ≥ T3 and moment t3 is defined by the moment when one

of the debts
(
9− 4

7
t3, 16− t3, 14− 20

21
t3
)

hits zero. Then t3 = 14 7
10

with b3(T4) = 0. At

moment T4 = t1 + t2 + t3, we have b(T4) =
(
3
5
, 1 3

10
, 0
)

and c(T4) = (0, 1, 0).

On the last interval ∆4 = [T4, T5), J0 = {1}, J+ = {2}, and J∗ = {3}, and thus u1 =

n1 = 1
3
, u2 = 1, and u3 = 0. Then d =

(
0,−5

6
, 5
6

)
. Moment t4 is defined on this interval by

condition c2(t) = 1+d2t = 0, and then t4 = 11
5
. At moment T5 = T∗ = t1 + t2 + t3 + t4, the

flow stops because bank 2 was the last positive bank. Then cash vector c(T∗) = (0, 0, 1)

and b(T∗) = (bi(T4) − uit4) = (3
5
− 1

3
× 6

5
, 13
10
− 6

5
, 0) =

(
1
5
, 1
10
, 0
)
, with banks 1 and 2 in

default.

5 “Swamps” and Multiplicity of Solutions

In the regular case (all ci > 0 and ui = 1 for the positive group), there is a unique solution

to the dynamical system, as described in Theorem 1. In this section, we will formulate

the results for the general case when there are banks with an initial cash position of zero

or even negative. If banks from the positive group have some liabilities to these banks,

then after a possible reclassification, all remaining banks in the zero group have positive

in-rates, obtained as a solution of system (8), less than one, and therefore they can be

treated as zero group in the regular case, and nothing new happens. The new interesting

case is when there are banks in the zero group such that banks with positive cash have

no obligations, direct on indirect, to them. This case might look exceptional, yet it is

critical to the understanding of potential multiplicity of clearing vectors. As we will see,

the main reason for multiplicity is that some debts can be settled between banks that do

not have any money.

Informally, a swamp is a set where all its members at t = 0 have no positive cash, no

direct or indirect inflow from the positive group, and have debts but only within this set.
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As a result, they do not participate in the basic flow, but they can “run money in a circle”,

partially paying their debts while at the same time keeping constant their nonpositive cash

positions. Such transactions can be considered to be partial debts restructuring, i.e., a

transformation of the initial debt vector into a new one. We will give a formal definition

of a swamp in Subsection 5.3.

5.1 The Multiplicity Theorem

We start by using the matrix of initial obligations Q = Q(0) to divide all banks that are

not in the paid-up group J∗(0) into two disjoint sets. Denote A+ the set of all banks that at

moment t = 0 are either positive, have sponsors from the positive group, or have sponsors

from the previous group, etc., i.e., have positive direct or indirect sponsors. Formally,

A+ = J+(0) ∪ J+,1 ∪ J+,2..., where J+,1 is a set of zero banks that have sponsors from

J+(0), J+,2 is a set of zero banks that have sponsors from J+,1, etc. We denote all other

banks that are not in the paid-up group as A0. These are banks that have no positive

cash and no positive input from the outside at the initial moment and hence forever.

They may have liabilities to banks in A+ and J∗(0) but not vice versa. The dynamics of

a flow in set A+, aside from the possible reclassification of some zero banks at t = 0 due

to the “Big Bang” effect, which we discuss in Subsection A2, is unique and is described

in Theorem 1. The evolution of group A0 is the main subject of Theorem 2.

Importantly, swamps may exist at the initial moment but they cannot appear later

(Lemma 5.3). In a model where the assumption of “no debt seniority” might be modified,

swamps could appear in later stages as well. Of course, they do appear in reality, as we

mentioned in the Introduction — for example, in the case of Enron and in the more recent

debacle with Wirecard in Germany.

Now we can formulate Theorem 2, which extends the results of Theorem 1 to general

flows. Let us represent set A0 as a union of disjoint sets A0 = U0 +S0, where U0 is the set

of all transient banks in A0 and S0 is the union of all ergodic subclasses in A0. Formal

definitions are given in the next Subsection 5.2; for now, it is sufficient to say that banks

from S0 will be the ones that can pay each other without any cash on hand.

Theorem 2. (a) For any initial cash vector c, there exists a basic flow solution of (6),

p∗, with pi = 0 for i ∈ A0.
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(b) If set S0 in the decomposition of A0 is empty, then the basic flow solution is a

unique solution of (6), and all banks in A0 are nonactive.

(c) If set S0 6= ∅, i.e., if there is at least one swamp, then there are multiple solutions

p
′∗ of the form p

′∗ = p∗ +
∑

k skp∗k, where p is the basic flow solution, 0 ≤ sk ≤ 1, and

each vector p∗k is obtained through an invariant distribution π∗k for the corresponding

ergodic subclass.

The existence of swamps makes it possible that the flow in the swamp(s) will last

longer that T∗, which is defined as the moment when the last positive bank repays its

debt. Note that our basic flow solution corresponds to the smallest, and the solution with

all sk = 1 in Theorem 2 to the greatest, clearing payment vector in Eisenberg and Noe

(2001) and Kabanov, Mokbel and El Bitar (2018). They coincide if there are no swamps.

5.2 Markov Chains, Basic Flow Evolution, and Invariant Rates

The analysis of “swamps” and the proof of Theorem 2 require introduction of new ma-

chinery in the studies of financial clearing, that of Markov chains.

So far, we have not used any stochastic interpretations in the analysis of our deter-

ministic model. Still, it is well known that many statements in probability theory have

their deterministic analogs and vice versa. The invariant distribution for a Markov chain

was in fact introduced by Gustav Kirchhoff for electrical networks long before the concept

of a Markov chain was even formulated.

Kemeny and Snell (1976) is a classic treatise on finite Markov chains; we refer to

Shiryaev (2019) as an up-to-date introduction to the subject. If Markov chain Z = (Z(n))

has a state space S and a transition (stochastic) matrix Q, and mk = (mk(i), i ∈ S) is a

vector of the probability distribution of Z at some moment k, then mk+1 = QTmk is the

distribution vector at the next moment. Given any stochastic matrix Q, all states can be

divided into transient states and ergodic states. Each ergodic state is a member of some

ergodic subclass. All transient states form a transient set. A Markov chain eventually

leaves transient states moving to one of these subclasses to stay there forever. If subset

B is such an ergodic subclass, the Markov chain can go from any state to any other

state (not necessarily in one move). Some textbooks call such subsets irreducible, and call

them ergodic if they are also aperiodic. In both cases, there is an invariant distribution π
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that satisfies the equality π = QT
Bπ. In the latter case, this distribution is also the limit

distribution, and in particular Qn
B → A, where A is a stochastic matrix with identical

rows equal to π.

The evolution of the stochastic matrix Q(t) that starts with matrix Q at moment t = 0

reflects the evolution of the partition P (t) as follows. If bank i is paid-up, we consider i to

be an absorbing state, i.e., qii(t) = 1. For our purposes, it is more convenient to distinguish

between the absorbing and ergodic states, assuming that every ergodic subclass has at

least two states.

Obviously, matrices Q(t) are constants on the status intervals and change only at

moments Tk. The set of absorbing states at moment t is just J∗(t), but banks in the

transient set and in the ergodic subclasses may have a positive or zero status. Thus, each

bank at each moment has a dual classification: by status and by state.

We need to formulate a few facts about transient sets and ergodic subclasses. Suppose

that B ⊆ J and the states in B are transient. Then QB is a substochastic matrix,

i.e., the sum of coefficients in some rows is less than one, and the Markov chain leaves

set B at some moment with probability 1 or, equivalently, matrix Qn
B tends to zero

when n approaches infinity. Thus, the matrix NB = (I − QB)−1 is well-defined. Matrix

NB is called the fundamental matrix for substochastic matrix QB, and has a natural

probabilistic interpretation. Namely, nB(x, y) equals the expected number of visits to

state y for a Markov chain with the initial point in x before the exit out of set B. We

also have NB =
∑∞

n=0Q
n
B and NT

B = (I −QT
B)−1.

Let B = J0(t) for some time t, and QB be the corresponding (sub)stochastic matrix.

Let us introduce vector eB, the “input vector” from “sponsors” of the positive group

with their out-rates ui = 1 to zero group B. The coordinates of eB are defined by ei,B =∑
j∈J+ qji, i ∈ B. The out-rates for the zero group B, which are equal to their in-rates,

are denoted by vB ≡ v. According to (C2), these rates, defined by formula (8), satisfy

the equation

vB = eB +QT
BvB. (12)

The question is, when does this equation have a solution? The answer is given by the

following lemma.

Lemma 5.1. (a) If QB is a substochastic matrix, then the solution of (12) is given by
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formula

vB = (I −QT
B)−1eB ≡ NT

BeB. (13)

(b) If QB is a stochastic matrix and eB 6= 0, then equation (12) has no solution; if

eB = 0, then all solutions of (12) are proportional to the solution given by the invariant

distribution for the corresponding Markov chain, π = QT
Bπ.

(c) The solutions v and v′ of the equations v = e + QT
Bv and v′ = e′ + QT

Bv′ satisfy

v ≤ v′ if e ≤ e′.

The proof of points (a) and (b) of Lemma 5.1 follows from simple facts from linear

algebra. Point (c) follows immediately from point (a), since the elements of matrix NT
B

are nonnegative.

Before we proceed to the next step, we need to describe how invariant out-rates can

be used. Suppose that a subset of banks B, say at moment 0, forms an ergodic subclass

with an invariant distribution π. Recall that all banks are partitioned into sets A+ and A0

(see Subsection 5.1). If set B ⊆ A+, then it may have positive and zero group members;

if set B ⊆ A0, then it has only zero group banks. In both cases we can use the invariant

probabilities π as out-rates ui. By the definition of π, this guarantees that the out-rates

are equal to the in-rates for each bank in B. This implies that all ci(t) remain equal to the

initial values ci until the moment when these out-rates are no longer in effect. At the same

time, each bi(t) = bi − tui decreases at a positive rate ui. Let ti = maxt{t : bi(t) > 0},
T = mini ti, and i1 be the bank where this minimum is achieved. As usual, we assume

that there is only one such bank, say j. It means that bj(T ) = 0, this bank has no liability

to any bank in B, and since B is a closed subset, no liability to any bank in J , i.e., its

status becomes paid-off. For all other banks in B, bi(T ) = bi − Tui = b
(1)
i > 0. Thus, we

restructured the debts and our model without changing the cash positions of any bank in

B.

Note that at moment T all banks in B \ j become transient, because some of them

definitely have obligations to bank j, and because before this moment, by definition of

an ergodic set, they were connected to bank j. Therefore, they will remain transient or

become absorbing. We denote the corresponding payment vector obtained in this process

as p∗B. Note that we can change the out-rates ui = πi to some proportional sπi with some

coefficient s > 0. Since maxi πi = q < 1, we can select any 0 < s < 1/q without a violation
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of our assumption (C1) that guarantees that out-rates cannot exceed 1. Then the time

of restructuring T will be also changed proportionally to sT, but the payment vector will

be the same because the rate of payment will be increased (decreased) in proportion to

the decreased (increased) period of payment; see equations (10). Of course, if payments

are stopped before one of the debts hits zero, the clearing vector will be smaller.

The important point about this construction is that the cash position of each bank in

set B was not changed, so it is possible that some of these banks did not have cash at all

or even had negative positions. In particular, we obtained the following result.

Lemma 5.2. Let set B be an ergodic subclass, and all ci ≤ 0, i ∈ B. All nontrivial

solutions of the clearing equation (6) that are limited to this set can be obtained using only

invariant out-rates. All these solutions are proportional to vector p∗B, with the coefficient

of proportionality not exceeding 1.

We illustrate this construction by a simple example.

Example 4. Let n = 3, b = (2, 3, 4), ci ≤ 0, i = 1, 2, 3, and matrix Q be given by (5).

It is easy to check that the invariant distribution for the corresponding Markov chain is

π = 1
53

(12, 21, 20). Let us select these fractions as the out-rates ui for these three banks.

By definition of π, we have ui = ni, i = 1, 2, 3, and therefore ci(t) = ci, i = 1, 2, 3 on some

interval ∆ = [0, t). On this interval we have bi(t) = bi − uit, i = 1, 2, 3. Then at moment

T = 53
7
, we obtain that b2(T ) = b2−u2T = 3− 21

53
× 53

7
= 0, and b1(T ) = b1−u1T = 2− 12

53
×

53
7

= 2
7
> 0, b3(T ) = b3−u3T = 4− 20

53
× 53

7
= 8

7
> 0. We have J∗(T ) = {2}, J)(T ) = {1, 3}

and since ci ≤ 0 for i = 1, 3 we obtained that T = T∗, the vector of unpaid debts is(
2
7
, 0, 8

7

)
, and the clearing vector p∗ = p(T ) = b − b(T) =

(
12
7
, 3, 20

7

)
. The remaining

debts of banks 1 and 3 to bank 2, 1
7

and 6
7
, respectively, are not repayable, but their

mutual remaining debts (1
7

and 2
7
, respectively) can be cancelled only if we allow violating

the proportionality assumption (A). Then, bank 2 owes nothing to bank 3, and bank 3

owes 1
7

to bank 2. The model cannot be restructured any further.

5.3 Swamps

The situation when all banks in ergodic set B have zero or negative cash gives rise to an

important notion of swamps that in the general case lead to non-uniqueness of the solution
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of the clearing equation. Formally, we say that swamp B is an ergodic subclass of banks

that have zero or negative cash at t = 0. The next Lemma 5.3 describes the evolution

of the banks from the point of view of their positions as states of Markov chains. The

irreversibility of a status change is accompanied by the irreversibility of a state change.

(As above, we assume that only one bank at a time may change its status.) Part (c)

establishes formally that swamps might exist at the initial moment but cannot appear

later. Recall that A+ are the banks that participate in basic flow (regular case), and A0

are the banks that have no positive cash and no positive input from the outside at the

initial moment and hence forever. They may have liabilities to banks in A+ and J∗(0),

but not vice versa.

Lemma 5.3. The only possible evolution of banks as states of the Markov chain is the

following.

(a) Paid-up banks are always absorbing, and transition to this state is irreversible;

(b) Positive banks, as well as zero banks in A+, may be ergodic or transient; as ergodic,

they can become transient or absorbing, and as transient, they can only become absorbing;

(c) Zero banks in A0 may be transient or ergodic; if transient, they are always transient

and inactive, i.e., for them, ui(t) ≡ 0 for all t; if there is an ergodic subclass, then its

members can be active only under invariant out-rates until the moment when one of them

becomes absorbing, and then all other members become transient and inactive. Thus,

swamps can exist from the beginning but cannot appear later.

Proof. Part (a) is straightforward. Positive banks may be ergodic or transient. With a

status of an ergodic or a transient bank changed to paid-up, its state becomes absorbing.

All other states in the ergodic subset become transient because now they are connected

to an absorbing state. If a zero bank in A+ is transient, its out-rate is positive and hence

it may become an absorbing state or remain transient until the end, and it means that

this bank ends up in default. This proves (b).

If B is the set of all transient banks from A0, then the input vector eB = 0 for all

moments t, and by part (a) of Lemma 5.1, the only solution for the equilibrium rates is

zero, so they remain nonactive forever.

If B is an ergodic subclass in A0, then the only possible out-rates ai, i ∈ B, by

Lemma 5.2, must be proportional to the invariant out-rates πi, where πi is the invariant
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distribution for QB. Only these out-rates can keep ci(t) ≡ ci on some interval. When the

invariant out-rates πi are applied, then on some interval [0, T ), all debts will be decreased

to the level bi−πiT ≥ 0 with exactly one bank j with bj(T ) = 0, and all other banks with

bi(T ) > 0. At moment T, bank j changes its status to paid-up, and its state becomes

absorbing. Then all other banks in B become transient and become nonactive. Thus, all

transient banks in A0 will never be able to repay their debts, but the banks in each of the

ergodic subclasses will be able to restructure and reduce their debts to each other. This

proves (c).

Now we have everything to complete the proof of Theorem 2.

Proof of Theorem 2. Part (a) follows from Theorem 1 and the fact that pi = 0 for

i ∈ A0 obviously satisfies the clearing equation (6).

Part (b) follows from part (a) of Lemma 5.3.

Part (c) follows from Lemmas 5.3 and 5.2, and the fact that if the number k of the

irreducible subclasses is greater than one, they have an empty intersection, and therefore

any linear combination of these solutions with coefficients 0 ≤ sk ≤ 1 is also a solution of

(6) with coordinates p∗i ≤ bi for i ∈ B and p∗i = 0 for i /∈ B.

6 The Cascade Theorem and the Cascade Algorithm

In introducing our model, we asked the following question: What is the smallest initial

cash vector c such that all banks ultimately pay their debts? The answer was vector cm

satisfying (3). The next natural question is as follows. Given matrix Q and vector b,

what is the smallest vector c such that at least one bank will pay its debt? The answer

to this question might seem surprising: a bank that fully repays its debt exists for any

initial cash vector c = (c1, ..., cn) if at least one ci > 0.

In this section, we will show that any sufficient model M = (b, Q, c) can be restruc-

tured into an equivalent cascade model in which there is a group of banks that can pay

off their debts even with negative cash positions, a group of banks that need to pay only

to the banks in the first group, and so on.
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6.1 The Cascade Theorem

Given any model M = (b, Q, c), we say that payments p = (p1, ..., pn) are admissible if

they do not exceed the obligations of the banks and are proportional to their obligations.

We say that model M ′ = (b′, Q′, c′) is obtained from model M = (b, Q, c) by restructuring

if the second model is obtained from the first via admissible payments.

Note that we do not assume that these proportions are equal. Under admissible

payments, one bank can pay 10% of its debt, and the other 20%. Also, observe that the

clearing vector p∗ in the initial model is in fact the maximum possible vector of admissible

payments, i.e., p∗ � p for any admissible p.

This definition implies in particular that bij ≥ b′ij for all i, j. We also say that M is

reduced to M ′, and denote M → M ′. It is easy to see that if (p∗)′ is the clearing vector

in this new model, then the clearing vector in the initial model p∗ = p + (p∗)′. We also

may consider a sequence of restructured models M → M1 → M2.... → MN to obtain a

schedule of payments.

We say that a model has a cascade structure, or simply that a model is a cascade, if

set J can be partitioned into sets (J1, J2, ..., Jm) such that the structure of obligations has

the following form: there is a group of banks J1 without any debts, there is a group of

banks J2 that owe money only to banks in J1, etc., and, finally, there is a group of banks

Jm,m ≤ n, to which no bank owes money, and these banks may have debts to any of the

other banks.

The structure of a cascade shows which banks are the main sources of debt, and where

the weakest point is in this chain of payments. The assumption that the initial model is

sufficient is important. Otherwise, the process of mutual cancellations of debts inside of

some subgroup of banks, that lead to a restructuring into a cascade, is impossible because

of the strong assumption (A). Still, even in a deficient case, the cascade can be used to find

where the infusion of cash can alleviate the burden of obligations (see more in Farthing

and Sonin, 2021). We provide a fully worked-out example of a cascade restructuring in

Subsection 6.2, using equations (10) and (11) that determine the discrete timing of status

changes.

Theorem 3. (a) Given any model (b, Q, c), there is at least one bank j that is able to

pay its debt without any money, i.e., having pj = bj, even with cj ≤ 0;
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(b) Given any sufficient model (b, Q, c), it can be restructured into an equivalent cas-

cade model (b′, Q, c′).

The proof of Theorem 3 is given by the Cascade Algorithm, based on the explicit

construction presented in the next subsection.

6.2 The Cascade Algorithm

We provide a formal description of the algorithm in the proof of Theorem 3. Example 5

demonstrates the basic logic of the proof.

Proof of Theorem 3. If at time 0 there is at least one paid-off bank, (a) is trivially true.

Otherwise, there is an ergodic subclass B with an invariant distribution πi > 0, i ∈ B.

Then by Lemma 5.2, applying invariant rates ui = πi to this subclass, we guarantee that

all ci(t) remain equal to the initial values ci. We also have that all bi(t) = bi − tui are

strictly decreasing. Let ti = maxs{s : bi(s) > 0}, T1 = mini ti, and i1 be the bank where

this minimum is achieved. For simplicity, we assume that there is only one bank with this

property; otherwise, bank i1 will be replaced by subset J1. It means that bi1(T1) = 0, and

this bank has no liabilities to any of the banks in B, and therefore to any of the banks in

J . All other banks in B have debts bi(T1) = bi − T1ui = b1i > 0 to banks in B only.

Let us denote the set of remaining banks B \ i1 = S1 and represent n− 1 dimensional

vector of the remaining debts of these banks, b(1) = b(T1), as a sum of two vectors

b(1) = f (1) + e(1), where each component f
(1)
i is the remaining debt of bank i to bank i1,

i.e., f
(1)
i = bi(T1)qii1 , i ∈ S1. Then vector e(1) is an (n − 1)-dimensional vector of the

remaining liabilities of banks in S1 to each other. Let us obtain an (n − 1)-dimensional

stochastic matrix Q(1) = {q(1)ij }, i, j ∈ S1 by removing in Q row and column i1, i.e., all

entries qi1i and qii1 , i 6= i1, and normalizing the new rows, i.e., q
(1)
ij = qij/

∑
j 6=i1

qij. If

there is bank i or a few banks in S1 such that qii1 = 1, they should be excluded from set

S1 and will be included later in set J2. After such a modification of set S1, all remaining

banks form an ergodic subclass. Indeed, all banks left have a connection with some bank

in this group.

The next step is to obtain the invariant distribution (π1
i ), i ∈ S1 for matrix Q(1). Then

by Lemma 5.2, applying invariant rates for this subclass, at some moment T2 we obtain
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bank i2 that paid its debts without changing its cash position. In other words, we apply

the same step to the set of banks S1 with matrix Q(1) and the debt vector e(1) as we

applied initially to set J with matrix Q and the debt vector b. If at each moment Ti only

one bank pays its debt, then obviously in n− 1 steps we obtain a cascade with one bank

at each level. Otherwise, in a smaller number of steps we obtain the sets mentioned in

Theorem 3. The sequence of payments is given by vectors f (1), f (2), ..., f (n−1).

Example 5. Let n = 4 and matrix Q be given by q12 = q13 = q14 = 1
3
, q21 = 1

4
, q23 = 1

2
,

q24 = 1
4
, q31 = 1

6
, q32 = 1

2
, q34 = 1

3
, q41 = 1

6
, q42 = 1

2
, and q43 = 1

3
. The invariant distribution

for the Markov chain defined by Q is π = 1
508

(84, 160, 147, 117). Consider the debt vector

b =
(
3367

78
, 56 80

117
, 55 5

39
, 20
)
. Using formula (3), we obtain cm =

(
71
6
, 75

6
, 85

6
,−235

6

)
.

Q =


0 1/3 1/3 1/3

1/4 0 1/2 1/4

1/6 1/2 0 1/3

1/6 1/2 1/3 0

 (14)

Suppose that cash vector c � cm, so our model is sufficient. Our goal is to get to an

equivalent cascade model. As in Example 3 and Lemma 5.2, on the first interval we are

going to use ui = πi, i = 1, ..., 4. Then on this interval ci(t) = ci for all t, and hence

the moment T1 = t1 is the first time when one of bi(t) hits zero. It is easy to check that

this is bank i = 4 and t1 = 20/π4. For i = 1, 2, 3, we have bi(t1) = bi − 20 × πi/π4 :

b1(t1) = b1 − 20 × 84
117

= 191
2
, b2(t1) = b2 − 20 × 160

117
= 291

3
, b3(t1) = b3 − 20 × 147

117
= 30,

b4(t1) = b4 − 20 = 0.

Let us represent the vector of the remaining debts of all banks at time t1 as the sum

of two vectors, b(t1) = f (1) + e(1), where vector f (1) represents the vector of the remaining

debts of banks 1, 2, 3 to bank 4, and vector e(1) represents the vector of the remaining debts

of banks 1, 2, 3 to each other. We find these vectors using matrix Q. Thus, f
(1)
i = bi(t1)qi4,

and e
(1)
i = bi(t1) − f (1)

i . We obtain f (1) = (191
2
× 1

3
= 13

22
, 291

3
× 1

4
= 22

3
, 30 × 1

3
= 10) =(

61
2
, 22

3
, 10
)

and e(1) = (13, 22, 20). This is the debt vector from Example 2. So, we

may consider a sub-model with only three banks, 1, 2, and 3, and transition matrix Q(1)

obtained from Q by removing row 4 and column 4, and re-normalizing the new rows.
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Figure 2: (a) The initial matrix of relative liabilities with the minimum cash vector as
the initial cash vector c. (b) The cascade of payments in three steps.

(Matrix Q(1) was analyzed in Example 2.)

The situation with debt vector b = e(1) = (13, 22, 20) was analyzed in Example 2.

Using vector e(1) = (13
2
, 22

3
, 10) and cascade 1(b) from Example 2, we obtain the following

cascade. At step 1, bank 1, having minimum cash of 71
6
, sends a check for 61

2
to bank 4,

for 1
6

to bank 2, and for 1
2

to bank 3. Note that 71
6
− (61

2
+ 1

6
+ 1

2
) = 0 because c∗1 = 0. At

step 2, bank 2, having minimum cash of 75
6
, and 1

6
received from bank 1, sends a check

for 2
3

to bank 3, and 71
3

to bank 4. Here we have 75
6

+ 1
6
− (2

3
+ 71

3
) = 0. At step 3, bank

3, having minimum cash of 85
6
, with 1

2
received from bank 1, and 2

3
received from bank

2, sends a check for 10 to bank 4. Here we have 85
6

+ 1
2

+ 2
3
− 10 = 0. Bank 4, having

minimum cash of −235
6
, received in total 61

2
+ 72

6
+ 10 = 235

6
. Figure 2(b) depicts the

payments in this cascade. As always the case with a sufficient model, the payments can

be uniquely identified using the cascade and vectors f (1), f (2), ..., f (n−1). All banks paid

their debts and their final cash positions are 0’s if c = cm. If c � cm, then it might be

possible to settle all debts in less than three steps.

7 Extensions

While our setup uses the initial setting of Eisenberg and Noe (2001) as the starting point,

our model can be naturally generalized to work with many extensions. For example, a

modification of our algorithm can work with liabilities or shares of different seniorities or
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liabilities with multiple maturities. In this section we briefly discuss possible extensions.

7.1 Debt Seniority

First, we can assume that matrix Q is not obtained by the equalities qij = bij/bi, and just

represents the priority of payments. We will need the following modifications. Now all out-

pipes from tank i are not closed simultaneously, but one by one, when the corresponding

debt is paid, i.e., (i, j) pipe is closed when debt bij is paid. The corresponding equations

and the times of status change can be easily modified. If we assume that some debts

should be paid not just faster but before other payments, then at the initial moment not

all (i, j) pipes are open but only for j in the senior (for i) class. When these debts are

paid, the other group of (i, j) pipes is open, etc.

Similarly, while we assumed that all “positive” banks have the same total out-

capacities equal to one, the analysis is easily extended to heterogeneous rates (if the

regulator considers it important to prioritize some payments). Note that although the dy-

namics of the continuous-time model will be changed, the clearing vector will be the same

if the proportionality of all payments is the same. Of course, if the requirement of propor-

tionality of payments is changed, then not only will the dynamics of the continuous-time

model be changed but the clearing vector as well. Because of the irreversibility property,

not all banks can leave group J+(0) before T∗; we can have a raw estimate T∗ ≤ maxi bi.

Let us briefly discuss the following potential question: how much extra money should

be injected in the system to avoid default of a certain group of banks? It is possible that

the sum of extra money is substantially smaller than the total amount of unpaid debts.

As we demonstrated, to avoid any defaults, each bank should have ci ≥ cmi . The answer

for a group of banks is more nuanced. Without going into much detail, we state that

the answer depends on the final debt vector b∗ = b(T∗) and the final transient matrix

Q∗ = Q(T∗).

7.2 Multiple Maturities

A recent paper, Kusnetsov and Veraart (2019), analyzes the case of multiple maturities.

Our model allows a straightforward extension to incorporate this possibility. Suppose that

there is a scale of time [0,+∞), and each bank may have obligations with possibly different
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due dates, i.e., all liabilities have extra maturity time (stamp) bij(tk), k = 1, 2, ..., ni. As in

Kusnetsov and Veraart (2019), we start with two due dates for all banks, short and long,

t1 < t2. We can modify our model as follows. All parameters of the system of banks are

“doubled”, and have an extra index 1 or 2, such as bi(s) =
∑

j bij(s), s = 1, 2. All banks

have two types of tanks, basic (1) and dormant (2), two cash positions ci(s), s = 1, 2,

and two types of outgoing and incoming pipes, also marked as short (1) and long (2).

The dormant tank of bank i represents an account that can be used only starting after

the short moment, and which accumulates money from other banks that have short-term

liabilities to i. All “short” pipes are directed to short tanks, and all “long” pipes are

directed to long tanks.

To modify the capacities, we will have to introduce two new axioms. The first, similar

to Kusnetsov and Veraart (2019), stems from the requirements of the UK insolvency rules:

all liabilities with different maturities are treated with the same priority within the same

seniority class. It might be reasonable to introduce a second assumption, different from

Kusnetsov and Veraart (2019), where “a bank that is liquidated under the insolvency

rules ceases to exist and cannot recover even if the liquidators recover sufficient assets

to fully compensate all creditors”. Specifically, one can require that all banks that are

in “short default” must borrow money at a fixed interest from outside banks to meet

their short-term obligations if their long-term receivables from other banks will allow

them to avoid insolvency in the long run. This would allow to extend our analysis to the

environment with multiple maturities. The extension of our model into a system with

multiple maturities will, in turn, allow to introduce stochastic factors. The most natural

way is to allow cash positions and partly debt structure to be changed randomly following

a Markov chain at moments of due dates.

7.3 Clearing Equation as the Bellman Optimality Equation

In our continuous-time model, we used the mathematical technique of Markov chains to

analyze the multiplicity of solutions in a deterministic dynamical system. In fact, there is

a deeper relationship between the Eisenberg and Noe problem and some classic problems

in the theory of Markov chains. The clearing equation (1) has strong resemblance to the
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nonlinear equation

v = max(c +Qv,b), (15)

used in many applications that use Bellman optimization. Most linear models, e.g., the

Leontief closed and open models with extra constraints, will satisfy (15).

Consider the classic problem of optimal stopping of a Markov chain with transition

matrix Q, where a decision maker observing the chain has, at each moment in time, two

options, either to continue or to stop (Puterman, 2014). In such a setting, the Bellman

(optimality) principle takes the form of equation (15), where vector v = (vi) is the value

function, i.e., vi is the maximum possible expected reward over all possible stopping times

if the Markov chain starts at state i, c = (c1, ..., cn) is a vector that consists of current

rewards ci in state i, and b = (b1, ..., bn) is a vector of terminal rewards, where bi is the

terminal reward if the Markov chain stops at state i. Note that in the Bellman equation,

the maximum is taken instead of the minimum, and the straight matrix Q is used instead

of the transposed one.

A simple recursive algorithm, the State Elimination Algorithm, to solve the Bellman

equation (15) was developed in Sonin (1999, 2006) and was modified to calculate the classic

and generalized Gittins indices in Sonin (2008). The relationship between the Eisenberg

and Noe basic equation (1) and the optimal stopping problem defined by (15), and the

use of the State Elimination Algorithm to solve it, is discussed in Kabanov, Mokbel and

El Bitar (2018). Presman (2011) modifies the algorithm to consider the optimal stopping

problem with an arbitrary state space and continuous time.

8 Conclusion

In this paper, we develop a continuous-time model of clearing in financial networks. This

approach provides an intuitive and simple recursive solution to a classical static model

of financial clearing introduced by Eisenberg and Noe (2001). The same approach pro-

vides a useful tool to solve nonlinear equations involving a linear system and max min

operations similar to the Bellman equation for the optimal stopping of Markov chains

and other optimization problems. Allowing financially constrained banks to repay their

debts at the maximum-available speed without any liquidity injections or guarantees will
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result in a clearing payment vector. Our results show that, at least theoretically, there

is no need in detailed regulation in a situation of financial distress if the mechanism of

resolving simultaneous payments is set right. On the other hand, our model provides a

convenient tool to study the optimal strategy for a central regulatory agency to minimize

the potential contagion effect triggered by failure of some banks. Finally, because our

continuous-time model is equivalent to a discrete dynamical system with easily calculated

and programmable standard steps, it can be transformed into a real-time scheduling pro-

gram with multiple maturity dates that takes into account stochastic factors. The idea

of transforming the initial network into a more transparent cascade structure may help

to alleviate the transparency versus complexity trade-off.
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Appendix

A1 Proof of Theorem 1(b)

In this subsection, we prove the monotonicity property of rates, which is equivalent to

part (b) of Theorem 1. We prove by induction on k, where k is the index of the interval

∆k = [Tk, Tk+1), k = 1, 2, .... We know that generally group J0(t) changes in time: it can

increase, decrease, become an empty set, and reappear again. When k = 1, ui = 1 for all

i and, as we explained in Subsection 4.2, at the moment of the first appearance of group

J0 = {j}, the value of the out-rate for member j of this group is vj = uj < 1. Suppose

this statement is true on the status interval ∆k, k > 0. As before, we skip subindex k,

denoting ui,k = ui,∆k = ∆, Tk = T , Tk+1 = T ′. We denote other vectors, coordinates,

elements of partition, and matrices before the status change, i.e., on the interval ∆k, as

J0 = J0,k, and the values after the change as J ′0 = J0,k+1, etc. We denote the solution

of the equilibrium equation on the interval ∆k as (vi), and on the interval ∆k+1 as (wi).

Thus, our induction statement is 0 < vi < 1, i ∈ J0, and our goal is to prove that vi ≥ wi

for all i ∈ J ′0.
The status change at moment Tk = T occurs when br(T ) = 0 or cr(T ) = 0, where

r ∈ J+ ∪ J0. If br(T ) = 0 for r ∈ J+, this means that the zero group is unchanged but

the previous input vector (ei) can decrease if bank r was a sponsor of a zero group. Then

according to point (c) of Lemma 5.1, the new solution of the equilibrium equation can

only strictly decrease. More difficult are cases when cr(T ) = 0 for r ∈ J+ and when

br(T ) = 0 for r ∈ J0. In the first case, J ′0 = J0 ∪ r, and if |J0| = m, the new system has

m + 1 variables, with value ur = 1 changed to a new unknown value wr. In the second

case, the new equilibrium system has only m− 1 variables. We prove only the first case;

the second case can be treated in a similar way. We consider a slightly more general

statement for the following situation that includes our first case: suppose we have two

partitions, an initial P = (J+, J0, J∗), such that the positive banks have a subset L with

ni < 1, i ∈ L, and a new partition P ′ = (J ′+ = J+ \ L, J ′0 = J0 ∪ L, J∗).

Lemma A1.1. Under the assumptions above, let vi = ni be the solution of the equilibrium

system for partition P , and wi = n′i be the solution of the equilibrium system for partition
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P ′. Then vi ≥ wi for all i ∈ J ′0, and ni ≥ n′i for all i.

A heuristic proof is as follows. When the banks in L are classified as positive, their

out-rates are equal to one, i.e., the maximum possible; when they are included as members

of the zero group, the input vector into the zero group decrease, and since all obligations

are the same, as a result, the in-rates (out-rates) in the new zero group become lower.

Then all the new in-rates are lower. The technical difficulty in a rigorous proof is that we

have to compare the solutions of two equilibrium systems of different size. It is sufficient

to consider only the case when |L| = 1. Let L = {r}, nr < 1.

Proof. The equilibrium system (8) for wi, i ∈ J ′0 = J0 ∪ r, is

wi = e′i +
∑
j∈J0

wjqji + wrqri, i ∈ J0,

wr = e′r +
∑
j∈J0

wjqjr, (A1)

where e′i =
∑

j∈(J+\r) qji =
∑

j∈J+ qji − qri = ei − qri and e′r =
∑

j∈J+ qjr = er.

The system for vi, i ∈ J0, is vi = ei +
∑

j∈J0 vjqji. We can rewrite this system to make

it similar to (A1), using the artificial variable vr = 1 and the equalities e′i = ei − qri and

er = e′r, as

vi = e′i +
∑
j∈J0

vjqji + vrqri, i ∈ J0; 1 = vr = e′r + ar +
∑
j∈J0

vjqjr, (A2)

where ar = 1 − (e′r +
∑

j∈J0 vjqjr). We know that this system has a solution vi < 1, i ∈
J0, vr = 1. Now we want to compare the solutions of systems (A1) and (A2), which have

the same size, to show that vi ≥ wi, i ∈ (J0 ∪ r) and wr < 1. To use part (c) of Lemma

5.1, we need to show only that ar ≡ 1− (
∑

j∈J+ qjr +
∑

j∈J0 vjqjr) > 0. We assumed that

nr = nr(T−) < 1. But nr(T−) =
∑

j∈J+ qjr +
∑

j∈J0 vjqjr = 1 − ar < 1, and therefore

ar > 0. Then, using part (c) of Lemma 5.1, we obtain that vi ≥ wi for all i ∈ J0 and that

1 > wr, i.e., wi < 1 for all i ∈ J ′0. Since the out-rates in the positive group remain the

same, and the out-rates in the new zero group, including the new member r, are lower,

then all in-rates are lower.

The second case, when br(T ) = 0, r ∈ J0, and the new equilibrium system has only
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smaller number of variables, can be proved similarly. Thus, we proved part (b) of Theorem

1, or, equivalently, the monotonicity property for in-rates and out-rates.

A2 The Big Bang Effect

The initial moment of time, t = 0, is exceptional if at this moment set J0(0) is not empty.

The reason for that is as follows. If at time t = 0 all banks have a positive amount of

cash, then ui(t) = 1 for all banks on some interval [0, T1), where moment T1 is the first

moment when one of the banks either pays off its debt or its cash position hits zero level.

After that, we can apply the monotonicity property, i.e., part (b) of Theorem 1. However,

if at time zero there are some zero banks, then, informally, there is a Catch-22 situation.

Some zero banks at moment t = 0 should be classified as positive if the input rates

for them exceed one. This means that at the “next moment after zero” they instantly

become positive. Equivalently, for these banks, the balance rate di(0) > 0, or equivalently

c′i(t)t=0 > 0. But to find the input rates for all banks by solving equation (8), we need to

know which banks are positive and which ones are in the zero group. In some cases, like

in our Example 1, where only one bank had the initial cash position of zero and an in-rate

greater than one, it was easy to reclassify this bank as positive. If there are two or more

zero banks, then such reclassification cannot be done so easily. One way to circumvent

this problem is as follows.

Assume that all zero banks received a small positive amount ε prior to the zero moment

and then, during the small “probe” time interval ∆0 = [0, tm), having a length of order

ε, we have a regular case analyzed in Subsection 4. Then during this interval, each of

the initially zero banks will “reveal” its real status: the cash positions of the “real-zero”

banks, having negative balance rates di(t), very soon hit zero level during a series of

close moments t1, ..., tm, with m potentially equal zero. “Real-positive” banks will remain

positive on the small interval (0, tm) and will remain positive at least until a more distant

moment T1. This means that on a very short interval, we may have moments t1, t2, ..., tm

of fast status changes, and at tm all the real statuses are revealed.
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