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characterize expansions. The modelling framework ensures robustness to tail events, allows for
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tail) forecasts, improving upon standard benchmarks.
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1 Introduction

The Global Financial Crisis and the subsequent recession left policymakers with several new challenges.

In a world of persistently sluggish growth, subject to infrequent but deep recessions, the idea of central

bankers as ‘risk managers’ gained renewed popularity (see, e.g., Cecchetti, 2008). In this environment,

policy makers pursuing a ‘plan for the worst, hope for the best ’ approach, rely on downside risk measures to

assess the distribution of risk around modal forecasts. Recently, the sharp contraction, and the subsequent

recovery in 2020 provided a sound reminder of the importance of accounting for tail events when assessing

macroeconomic risk. Yet, assessing the degree of asymmetry of business cycle fluctuations remains a

challenging task, and even more so it is to reliably gauge the time variation of downside risk. In addition,

sound economic policy should consider the evolution of secular macroeconomic trends in pursuing the long-

run goals of price stability and sustainable economic growth. Failure to account for permanent shifts in the

properties of GDP growth can, in turn, lead to ineffective policy (see, e.g., Edge et al., 2007). In this paper,

we introduce a generalised, comprehensive framework fit to provide policy guidance on the developments of

downside risks, tracking permanent and transitory changes in the conditional distribution of GDP growth.

We provide novel evidence in support of time-varying conditional asymmetry of GDP growth’s distribu-

tion. Despite unconditional asymmetry remains unsupported by the data, conditional skewness, and thus

downside risk to economic growth, exhibits significant variation over time. Motivated by this evidence, we

introduce a novel, flexible methodology that allows us to track and predict time-varying skewed Student-t

(Skew-t) conditional densities. The time variation of the location, scale and asymmetry parameters is

driven by the score of the predictive likelihood function (Creal et al., 2013; Harvey, 2013), as well as by a

set of observed predictors. The latter allow us to explore to what extent downside risk to economic growth

reflects imbalances arising in financial markets (Giglio et al., 2016; Adrian et al., 2019).

Our framework accommodates permanent and transitory components in the moments of GDP growth

predictive densities. This allows us to provide novel evidence on the evolution of downside macroeconomic

risk. Over the last 30 years, skewness has decreased steadily, implying a higher exposure to downside

risk, which partially accounts for the slowdown in long-run growth observed since the early 2000s (see, e.g.,

Antolin-Diaz et al., 2017). In a similar fashion, we document that the fall in macroeconomic volatility since

the mid-1980s, the so called Great Moderation (McConnell and Perez-Quiros, 2000; Stock and Watson,

2002), reflects a significant reduction of upside volatility, with downside volatility remaining stable over

the same period. Over the short-term, conditional skewness varies procyclically around a declining trend-

skewness, so that at the onset of downturns, business cycle swings exhibit significant negative skewness,

while expansions are characterized by positively skewed distributions. Therefore, the well-documented

counter-cyclicality of GDP growth’s volatility (see Jurado et al., 2015, among others) largely reflects in-

creasing downside volatility during recessions.

Within our framework, the extreme realizations of the pandemic quarters are captured through move-

2



ments in volatility and skewness, allowing the model to remain remarkably stable, and suggesting that

such outcomes were, to some extent, tail events. When assessed based on its out-of-sample performance,

our model delivers well calibrated predictive densities, improving upon competitive benchmarks in terms

of point, density and tail forecasts, as well as leading to timely predictions of the odds of forthcoming

recessions.

Several measures of financial distress have been identified as relevant indicators for predicting economic

downturns.1 We show that the four subcomponents of the National Financial Condition Index (NFCI,

Brave and Butters, 2012), capturing risk, credit, leverage and nonfinancial leverage developments, help

predicting different features of the distribution of GDP growth. The slow building up of leverage emerges

as a key determinant of the scale of distribution, whereas skewness relates to all the subindices. We

document that financial deepening during the expansionary phase of the cycle is associated with positive

GDP growth’s skewness, whereas tightening of financial conditions, especially the build-up of household

debt, consistently predicts downside risk episodes. Similarly, financial conditions significantly improve the

out-of-sample forecasting accuracy of our model, in particular during recessions.

Although aggregate measures succeed in summarizing a large amount of data, concerns that information

relevant for assessing risk can remain undetected persist (see, e.g., Galvão and Owyang, 2018; Carriero

et al., 2020b). We address this question by investigating whether different patterns of sparsity can arise

in predicting different features of the conditional distribution of GDP growth. To this end, we follow

the ‘shrink-then-sparsify ’ approach of Hahn and Carvalho (2015), where sparsity is achieved by means of

the Signal Adaptive Variable Selector (SAVS) of Ray and Bhattacharya (2018).2 Indicators pertaining

to the build up of leverage of financial institutions and households, as well as credit conditions, receive

the least shrinkage over the full sample. During the latest financial crisis, the model selects indicators

relating to developments in the shadow banking sector, credit spreads and mortgage-backed securities

issuance. This highlights that information in the balance sheet of the intermediary sector (Adrian and

Shin, 2008), and the growing imbalances in the housing market (see, e.g., Gertler and Gilchrist, 2018)

provided considerable information about rising vulnerabilities in the economy, and thus about increasing

downside risks ahead and during the financial crisis. We find that processing the signal from a large panel

of financial predictors leads to substantial improvements in short-term predictions, and especially during

the most recent pandemic quarters.

Our results highlight the importance of accounting for asymmetric business cycle fluctuations. These

can emerge through nonlinearities in the transmission of Gaussian shocks (see, e.g., Fernández-Villaverde

and Guerrón-Quintana, 2020a), or alternatively reflect conditionally skewed shocks hitting the economy (as

in Bekaert and Engstrom, 2017; Salgado et al., 2019). The procyclical skewness we document is found to be

1Among others, traditional spread measures (see, e.g., Rudebusch and Williams, 2009), credit and leverage growth
(Drehmann et al., 2010; Jordà et al., 2013), as well as the leverage position of financial intermediaries (Adrian and
Shin, 2008) received particular attention.

2Giannone et al. (2021) warn that sparsity can arise as an artefact of strong a priori beliefs. We approach sparsity
within the purely data-driven framework which is robust to this concern, as also argued in Huber et al. (2021).
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associated with a dynamic correlation between the first and second moments, being positive in expansions,

and turning negative in recessions. This further reinforces the necessity of distinguishing between “good”

and “bad” uncertainty, which can potentially impact economic activity in opposite directions (Segal et al.,

2015). Our findings also emphasise the need to account for the nonlinear relationship between financial

conditions and credit availability, and the distribution of GDP growth (see, e.g., Fernández-Villaverde

et al., 2019) for policy monitoring and stabilization policy design (Gadea Rivas et al., 2020). Lastly, the

fall in trend-skewness of economic fluctuations and the associated increase of downside risk over the last

three decades emerges as a salient feature of the data which needs to be accounted for by theoretical

macroeconomic models (see, e.g., Jensen et al., 2020).

Related literature: This paper builds on the growing literature exploring the asymmetry characteriz-

ing business cycle fluctuations, and the relationship between real economic activity and financial conditions.

Giglio et al. (2016) and Adrian et al. (2019) uncover a significant negative correlation between financial

conditions and the lower quantiles of the conditional distribution of future economic growth by means of

quantile regressions. We introduce a novel approach based on the modeling of the parameters of a Skew-t

distribution. Our approach is based on a rich, yet parsimonious structure, and avoids the burdensome ne-

cessity to fit the estimated quantiles to a distribution. In particular, our model features persistence in the

skewness of the distribution of GDP growth, in line with the term structure of the growth-at-risk displaying

stronger asymmetry for the short- than for the medium-run (Adrian et al., 2022), and consistent with the

pronounced skewness displayed by the Survey of Professional Forecasters’ short-term predictions (Ganics

et al., 2020). Differently to other contributions (see, e.g., Plagborg-Møller et al., 2020), we model both

permanent and transitory changes of the distribution of GDP growth. This is essential in order to recover

well-known stylized facts, such as the Great Moderation period (McConnell and Perez-Quiros, 2000; Stock

and Watson, 2002) and the fall in long-run GDP growth (Antolin-Diaz et al., 2017; Doz et al., 2020; Eo

and Morley, 2022), as well as to uncover an increasingly negatively skewed business cycle in the last part

of the sample.

A number of recent contributions have called into question the presence of asymmetry in business cycle

fluctuations, and have suggested alternative ways of capturing time variation in downside risk (see, e.g.,

Carriero et al., 2020a). Our approach allows for, but does not impose, skewness in GDP growth. Yet, we

document significant variation in the asymmetry of the conditional distribution of GDP growth, which is

associated with substantial gains in out-of-sample forecasts and downside risk predictions over standard

volatility models whose competitiveness has recently been highlighted by Brownlees and Souza (2021).

Existing models for conditional skewness rely on ad hoc law of motion for the time-varying parameters,

and the asymmetry is updated as a function of higher-order powers of the residuals (Hansen, 1994; Harvey

and Siddique, 1999). We, instead, rely on the score-driven framework put forward by Creal et al. (2013) and

Harvey (2013), which has proven to be particularly suitable for accommodating parameters’ time variation
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under different distributional assumptions (Koopman et al., 2016). Within our setting, parameters update

according to (highly) nonlinear functions of past prediction errors, depending, among other, on the shape

of the conditional distribution at the time of the update. Thus, not only the updating mechanism adapts

to the local properties of the data, but it is also robust to the presence of extreme realizations, contrary

to updates based on higher-order powers of the residuals. Within the score-driven setting, to the best of

our knowledge, we are the first to rely on Bayesian estimation methods. This allows us to jointly tackle

parameters’ proliferation and incorporate estimation uncertainty when assessing the predictions of the

model.

Structure: The remainder of the paper is organized as follows. Section 2 provides evidence of time-

varying business cycle asymmetry. Section 3 presents the model, the estimation methodology and the

forecasting procedure. Section 4 illustrates the characteristics of the conditional distribution of GDP

growth, and how these relate to financial predictors. Section 5 reports the out-of-sample forecast and

downside risk prediction evaluation. In Section 6 we investigate the predictive ability of the large set of

financial indicators. Section 7 concludes.

2 Motivating evidence

Assessing the degree of skewness of GDP growth is notoriously challenging. When measured over the

1973-2020 (1973-2019) sample, we obtain a negative sample skewness of -2.58 (-0.42). Yet, due to the low

precision of this estimate over the full sample, we cannot reject the null of symmetry using the Bai and Ng

(2005) test. However, the absence of skewness in the unconditional distribution does not necessarily imply

the conditional distribution being symmetric as well (Carriero et al., 2020a). The difficulty in obtaining

significant skewness estimates can potentially reflect the dynamic nature of the asymmetry of economic

fluctuations.3

Harvey (2013, Section 2.5) highlights that the Lagrange multiplier principle can be employed to con-

struct appropriate test statistics for the time variation of parameters (see Appendix A for further details).

Starting from the assumption that GDP growth follows an AR(2) process with Skew-t innovations, with a

shape parameter pinning down the degree of asymmetry, we test for the time variation of this parameter

considering both the case of constant volatility and the more realistic case of time-varying volatility. Ta-

ble 1 reports the statistics for the Portmanteau (Q), Ljung-Box (Q∗) and Nyblom (1989) (N) tests. The

null hypothesis of a constant shape parameter is strongly rejected, against the alternative of time variation.

Moreover, the rejection of the Nyblom test, which under the alternative hypothesis assumes the parameter

to follow a martingale process, suggests that the shape parameter is likely to be highly persistent.

3Using the Bai and Ng (2005) test over different rolling windows of 4 to 6 years, the test often rejects the null
of symmetry, with periods of significant negative and positive skewness detected over the sample. See Figure A.1 in
Appendix A, for a summary of these results.
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Table 1: Score-based tests for time variation

time-varying time-varying
location location & scale

Q Q∗ N Q Q∗ N

Scale2 7.187∗∗∗ 7.296∗∗∗ 0.979∗∗∗
Shape 8.497∗∗∗ 8.626∗∗∗ 0.603∗∗ 22.608∗∗∗ 22.951∗∗∗ 1.053∗∗∗

Note: Q is the portmanteau test, Q∗ is the Ljung-Box extension and N corresponds to the Nyblom test. The lag
length for the Portmanteau and Ljung-Box tests are selected following Escanciano and Lobato (2009). The first
two tests are distributed as a χ2 distribution with 1 degree of freedom, and the Nyblom test statistics is instead
distributed as a Cramer von-Mises distribution with 1 degree of freedom. ∗ p < 10%, ∗∗ p < 5%, ∗∗∗ p < 1%.

Starting from this novel evidence, in the next Section we introduce a modeling framework that allows

us to track the time-varying asymmetry in the conditional distribution of GDP growth.

3 A time-varying Skew-t model for GDP growth

Let yt denote the annualized quarter-on-quarter GDP growth at time t. We assume its conditional

distribution can be characterized by a Skew-t (Arellano-Valle et al., 2005; Gómez et al., 2007), with time-

varying location µt, scale σt, and shape %t parameters, and constant degrees of freedom ν:

yt = µt + εt, εt ∼ Sktν(0, σt, %t), t = 1, ..., T, (1)

with ν > 3, σt > 0, and %t ∈ [−1, 1]. The shape parameter fully characterizes the asymmetry of the

distribution, with 1−%t
1+%t

defining the ratio of the probability mass on the right, over the probability mass

on the left of the mode, µt. Therefore, positive (negative) values of %t imply negatively (positively) skewed

distributions. The conditional log-likelihood function of the observation at time t is:

`t = log p(yt|θ,F t−1) = log C(η)− 1

2
log σ2

t −
1 + η

2η
log

[
1 +

ηε2
t

(1− sgn(εt)%t)2σ2
t

]
, (2)

with η = 1
ν being the inverse of the degrees of freedom, C(η) =

Γ

(
1+η
2η

)
√
π
η Γ
(

1
2η

) , Γ(·) is the Gamma function,

and sgn(·) is the sign function. The vector θ collects all the static parameters of the model, and F t−1

is the information set up to time t − 1. For %t = 0 we have the symmetric Student-t distribution, for

η → 0 we retrieve the epsilon-Skew-Gaussian distribution of Mudholkar and Hutson (2000), whereas the

distribution collapses to a Gaussian density when both conditions hold.4 Thus, we allow for, but do not

impose, skewness in the conditional distribution of GDP growth.

We model the time-variation of the parameters within the score driven framework of Creal et al. (2013)

4As opposed to the Skew-t distribution of Azzalini and Capitanio (2003), the one of Gómez et al. (2007) retrieve
an information matrix which is always non-singular, and can thus be inverted, provided that |%t| < 1.
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and Harvey (2013). In order to ensure the scale σt to be positive and the shape %t to lie within the unit

circle, we model γt = log(σt) and δt = arctanh(%t). Therefore, the vector of time-varying parameters is

ft = [µt, γt, δt]
′, and the updating mechanism is given by the following process:5

ft+1 = Ast +Bft + CXt, t = 1, ..., T, (3)

where A collects the smoothing parameters adjusting the speed of the updating, driven by an appropriate

function of the prediction error, st, B contains autoregressive parameters governing the persistence of the

updating, and C collects loadings on a potential set of covariates Xt. Specifically, st = Ṡt∇̇t is the scaled

score, with ∇̇t = ∂`t
∂ft

= J ′t∇t, where ∇t =
[
∂`t
∂µt

, ∂`t
∂σ2
t
, ∂`t∂%t

]′
is the gradient of the log-likelihood function with

respect to the location, squared scale and shape parameter, and Jt is the Jacobian matrix associated to the

nonlinear transformation of the time-varying parameters. Regarding the scaling matrix, Ṡt, we consider a

smoothed version of the diagonal of the Information matrix: Ṡt = (1− χ)Ṡt−1 + χ(J ′tdiag(It)Jt)−
1
2 , where

It = E[∇t∇′t], and the smoothing parameter 0 < χ < 1 is estimated together with the static parameters θ.

As a consequence, each element of the score vector has (approximately) unit variance. Considering only

the diagonal elements of the information matrix ensures that the update of each parameter is proportional

to the respective gradient.6 Smoothing the scaling matrix makes it less sensitive to a single observation,

avoids possible instabilities when |%t| → 1, and renders the filtering process more robust (see, e.g., Creal

et al., 2013).

Hence, the direction and magnitude of the updating are dictated by the steepness and curvature of

the likelihood function, to improve the local fit of the model. The resulting model (1)-(3) belongs to the

class of observation-driven models, for which the trajectories of the time-varying parameters are perfectly

predictable one-step-ahead, given past information, and the log-likelihood function is available in closed

form (Cox, 1981). The following Proposition provides the closed form expressions for the gradient and

the associated information matrix that are the key ingredients to compute the scaled score driving the

parameter variation.

Proposition 1. Given the model specification in Equation (1) and the likelihood in Equation (2), the

elements of the gradient ∇t, with respect to location, squared scale and shape parameters, are:

∇µ,t = 1
σt
wtζt, ∇σ2,t = 1

2σ2
t
(wtζ

2
t − 1), ∇%,t = − sgn(εt)

(1−sgn(εt)%t)
wtζ

2
t , (4)

where wt = (1+η)
(1−sgn(εt)%t)2+ηζ2t

and ζt = εt
σt

denotes the standardized prediction error. The gradient vector

5In Section 3.1 we allow the time-varying parameters to feature a permanent and a transitory component.
6Scaling the gradient by the diagonal of the information matrix ensures that negative (positive) prediction errors

translate into negative (positive) updates of mode, skewness, and hence the mean, of the conditional distribution.
This desirable property is not always guaranteed if one considers the full information matrix.
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has zero mean, E[∇t] = 0, and the associated information matrix is:

It = E[∇t∇′t] =


(1+η)

σ2
t (1−%2t )(1+3η)

0 − 4C(1+η)
σt(1−%2t )(1+3η)

0 1
2(1+3η)σ4

t
0

− 4C(1+η)
σt(1−%2t )(1+3η)

0 3(1+η)
(1−%2t )(1+3η)

 . (5)

Defining ft = [µt, γt, δt]
′, where γt = log(σt) and δt = arctanh(%t), the Jacobian matrix, Jt =

∂[µt,σ2
t ,%t]

∂[µt,γt,δt]′
, is

a diagonal matrix with elements
[
1, 2σ2

t , 1− %2
t

]
.

Proof. See Appendix B. �

Proposition 1 highlights the central role of re-weighting the standardized prediction error (and its square

values) for the updating of the time-varying parameters. Weights, wt, penalize extreme standardized inno-

vations depending on the thickness of the tails, as well as volatility and asymmetry estimated conditional

on time t− 1. The top left panel of Figure 1 displays the weights associated with the prediction error, for

alternative model parametrizations. In a Gaussian setting (black line) weights are constant and equal to

unity, implying no discounting. On the other hand, when the asymmetry parameter is zero (red line), the

weights display the classic outlier-discounting typical of the Student-t distributions (see, e.g. Delle Monache

and Petrella, 2017). When the distribution is positively (negatively) skewed, i.e., for %t < 0 (%t > 0), neg-

ative (positive) prediction errors are less likely in expectation, and as such command a larger update of

the parameters. This asymmetric treatment of the signal of the prediction error is more pronounced as the

skewness of the distribution grows larger (i.e., |%t| → 1).

To illustrate how the information in the standardized prediction error translates into updates for the

time-varying parameters, Figure 1 plots the scaled scores for χ = 1 (i.e., no smoothing):


sµ,t

sγ,t

sδ,t

 =


√

(1+3η)(1−%2t )
(1+η) wtζt√

(1+3η)
2 (wtζ

2
t − 1)

−sgn(εt)
√

(1+sgn(εt)%t)(1+3η)
3(1−sgn(εt)%t)(1+η)wtζ

2
t

 , (6)

against the standardized innovations.7 The location updates in the direction of the prediction error, and

when the distribution is Gaussian the update is directly proportional to the prediction error as in traditional

state-space models. The presence of heavy tails introduces an outlier discounting that gives rise to the

typical S-shaped influence function (see, e.g. Harvey and Luati, 2014), which in our case adapts to the

asymmetry of the conditional distribution. The shape updates in the opposite direction of the prediction

error, such that for negative prediction errors (i.e. ζt < 0) the conditional distribution becomes more left

skewed. On the contrary, updates of the scale do not depend on the sign of the innovations, but on their

magnitude: the parameter increases for wtζ2
t > 1 and decreases otherwise. Notice that while the (scaled)

7Figure 1 is akin to the news impact curves popularized by Engle and Ng (1993) in the context of GARCH
models.

8



Weights Location

-5 -4 -3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

Scale Shape

Figure 1: Prediction error and parameters’ updating
Note: The figures plot the weighting scheme implied by wt, and the scaled scores, for different values of the
standardized prediction error ζt = εt

σt
. We consider three values of the asymmetry parameter: -0.5 (blue), 0 (red)

and 0.7 (green). The Gaussian case is reported in black; for the Student-t cases we set the degrees of freedom to 5.

scores for the location and shape parameters are negatively correlated (Corr(sµ,t, sδ,t) = − 4C√
3
), updates

of the scale are (unconditionally) uncorrelated with revisions of the other parameters, as suggested by the

Information matrix in Equation (5). Yet, updates of the scale and shape parameters positively comove

at the onset of recession: business cycle turning points are typically marked by large, negative prediction

errors, such that the conditional distribution of GDP growth features negative shifts in the location,

increasing dispersion and deepening negative skewness.

The updating mechanism associated with the score function in Equation (6) depends on the estimated

parameters at time t, and thus varies over time. For a given prediction error, the magnitude of the updates

is smaller when large errors are expected, i.e. when the conditional distribution features a large scale.

Most importantly, the asymmetry of the distribution plays a key role in the translation of the standardized

prediction error into a signal for the updates. When the distribution is left skewed (i.e. %t > 0) a positive

(negative) prediction error leads to a more (less) pronounced update for the parameters, while the opposite

is true in the case of a positively skew distribution. This property of the updating function is a direct

consequence of the stark asymmetry in the weights. Hence, the model is faster to update the size and sign

of the asymmetry of the distribution whenever there is evidence for a change of sign, like the occurrence
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of a large, negative prediction error. In our application, this allows the model to promptly detect shifts in

the skewness of GDP growth around business cycle turning points. In addition, the updating mechanism is

robust to the presence of outliers. For extreme values of the (scaled) prediction errors, parameters’ updates

become inelastic to the standardized innovations (see Appendix B.6). As a consequence, our model remains

well-behaved even in the face of extremely large realizations of the prediction error, as observed in the first

quarters of 2020.

Existing models that account for time-varying conditional skewness and asymmetric t innovations are

based on ad hoc updating mechanisms based on third-order powers of the prediction errors (see, e.g.,

Hansen, 1994; Harvey and Siddique, 1999). This type of updating presents two main drawbacks. First,

the implied mapping between prediction errors and time-varying parameters does not depend on current

estimates of the conditional distribution and remains constant over time. For instance, this framework does

not account for the higher probability of a negative prediction error when the conditional distribution of

the data is negatively skewed. Instead, it updates the parameters regardless of the local properties of the

distribution. Second, the introduction of higher-order powers of the innovations makes the time-varying

parameters inherently sensitive to large prediction errors, thus becoming unstable in the presence of outliers.

On the contrary, the score driven framework provides outlier robust and information theoretic optimal

updates. In fact, Blasques et al. (2015) show that score-driven updates reduce the local Kullback-Leibler

divergence between the true and the model-implied conditional density, even under severe misspecification.

3.1 Permanent and transitory variation of GDP growth’s distribution

When modelling the conditional distribution of GDP growth, it is important to allow for both permanent

and transitory movements of the central moments. Several papers have documented that, over the sample

under analysis, GDP growth has experienced significant changes in the long run mean (see, e.g., Antolin-

Diaz et al., 2017; Doz et al., 2020; Eo and Morley, 2022), as well as shifts in the volatility (McConnell

and Perez-Quiros, 2000; Stock and Watson, 2002), and skewness of the distribution (Jensen et al., 2020)

since the late 1980s. At the same time, Jurado et al. (2015) show that the volatility of GDP growth is

countercyclical, while Giglio et al. (2016) and Adrian et al. (2019) argue that the skewness of the cycle

falls sharply during recessions. To account for these features, we postulate a two-component specification

for the time-varying parameters, in the spirit of Engle and Lee (1999). We posit a random walk updating

for the permanent components, where these are able to track both smooth variations and sudden breaks

in the level of the parameters. Moreover, we allow a set of predictors, Xt, to have a transitory impact on

the parameters of the distribution. Introducing a permanent and transitory decomposition of the time-

varying parameters implies a linear transformation of the original parameters, hence leaving the scaled

score unchanged.
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The location parameter µt is a linear combination of a permanent and transitory component:

µt+1 = µ̄t+1 + µ̃t+1, (7)

µ̄t+1 = µ̄t + ςµsµt, (8)

µ̃t+1 = φµ,1µ̃t + φµ,2µ̃t−1 + β′µXt + κµsµt, (9)

where the AR(2) specification for the transitory component is able to recover the characteristic hump shaped

impulse response of the data (see, e.g. Chauvet and Potter, 2013). Following Engle and Rangel (2008),

we assume a multiplicative specification for the scale parameter σt, therefore the log-scale γt = log(σt) is

modelled as

γt+1 = γ̄t+1 + γ̃t+1, (10)

γ̄t+1 = γ̄t + ςγsγt, (11)

γ̃t+1 = φγ γ̃t + β′γXt + κγsγt. (12)

Similarly, we posit an additive specification for the transformed shape parameter, δt = arctanh(%t):

δt+1 = δ̄t+1 + δ̃t+1, (13)

δ̄t+1 = δ̄t + ςδsδt, (14)

δ̃t+1 = φδ δ̃t + β′δXt + κδsδt. (15)

Therefore, the resulting vector of time-varying parameters becomes ft = (µ̄t, µ̃t, γ̄t, γ̃t, δ̄t, δ̃t)
′ and its law of

motion is described by a restricted specification of Equation (3), as we show in Appendix B.

Plagborg-Møller et al. (2020) consider a time-varying Skew-t specification for GDP growth and specify

the time-varying parameters (location, log-scale and shape) as linear functions of a set of predictors. In

this case - which remains nested within our setting - the sole source of parameters’ variation stems from

the dynamics of the predictors. This modelling choice generates substantial variability in the underlying

parameters, and thus uncertainty around the estimates. In contrast, our specification allows for both

secular and transitory shifts in the parameters, where the autoregressive structure of the transitory com-

ponents makes them functions of discounted values of all past predictors and scores (where these latter are

themselves nonlinear functions of past data). Specifically,

µt+1 = µ̄t+1 +

t−1∑
j=0

ψµ,j
(
β′µXt−j + κµsµt−j

)
, (16)

γt+1 = γ̄t+1 +
t−1∑
j=0

φjγ
(
β′γXt−j + κγsγt−j

)
, (17)
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δt+1 = δ̄t+1 +

t−1∑
j=0

φjδ
(
β′δXt−j + κδsδt−j

)
, (18)

where ψµ,j is a convolution of the autoregressive parameters φµ,1 and φµ,2, which decays to zero for j →∞,

and the permanent components are proportional to the cumulative sum of past scores. As a result, the

time-varying parameters we estimate are smoother and less affected by the noise in the data.8

3.2 Estimation

A feature of observation-driven models is the straightforward computation of the likelihood function

(see, e.g., Creal et al., 2013; Harvey, 2013). However, the optimization and computation of confidence

intervals remain challenging, in particular when these models feature a rich parametrization. In this

context, Bayesian estimators, which rely on Markov Chain Monte Carlo (MCMC) methods, represent

a tractable and theoretically attractive alternative to the extremum-based estimation and inference.9 In

fact, under appropriate regularity conditions, asymptotic results guarantee that simulations from a Markov

chain provide, after some burn-in period and sufficient iterations, samples from the posterior distribution

of interest (for details, see Smith and Roberts, 1993; Besag et al., 1995).10 In addition, relying on MCMC

provides a simple approach to compute any posterior summary of interest as a function of parameters, e.g.

credible intervals for the time-varying moments of the distribution. Lastly, within a Bayesian setting we

can easily incorporate parameter uncertainty when producing forecasts, which turns out to be critical for

enhancing the reliability of the density forecasts, in particular if one focuses on downside risk predictions.

Taking a Bayesian perspective allows us to impose realistic priors on the static parameters, π(θ). Our

choices encode the view that the transitory components of the time-varying parameters are smooth and

stationary, while the permanent components capture slow-moving trends. We set Minnesota-type Normal

priors for the AR coefficients (φ) of the transitory components, centered around high persistence values. For

the location’s AR parameters, we also introduce a prior on the sum of coefficients, in line with Doan et al.

(1984). The prior distribution of the score loadings is inverse gamma, as we expect these parameters to be

positive. Moreover, we expect the smoothing parameters of the transitory components (κ) to be larger than

those of the permanent components (ς), such that on impact the former react more to innovations with

respect to the latter. This prior is reflected into a tighter scale for the inverse gamma prior of the smoothing

coefficient of the permanent components.11 We assume Normal priors for the loadings associated to the

8In addition, our framework allows for non-linearities through the (non-linear) mapping of the predictors into the
scores, further down-weighting extreme fluctuations in the data. In Appendix C we highlight that these additional
features turn out to be important to recover salient features of the distribution of GDP growth.

9See also Vrontos et al. (2000) for a discussion of the advantages of using a Bayesian approach in the estimation
of observation driven models for time-varying volatility.

10Importantly, Bayesian estimators are not affected by local discontinuities, multiple local minima and flat areas
of the likelihood, and they are often much easier to compute, particularly in the high-dimensional setting (see, e.g.,
Tian et al., 2007; Belloni and Chernozhukov, 2009).

11Introducing priors for the smoothing coefficients effectively circumvents the ‘pile-up’ problem, which often arises
where the variation of time-varying parameters is small (see, e.g., Stock and Watson, 1998). At the same time these
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explanatory variables (β). These coefficients are centered around zero, with tight scales in order to avoid

overfitting of the parameters, in the fashion of L2 (Ridge) regularization. We assume an inverse gamma

prior for η. Lastly, we also estimate the initial values of the permanent components assuming independent

Gaussian priors centered around historical average values for the three parameters, and with reasonably

small variance.

Draws from the posteriors are generated using an Adaptive Random-Walk Metropolis-Hastings (AR-

WMH) algorithm (Haario et al., 1999), with the chain initialized at the Maximum likelihood estimates.

For each draw θj , using equations (1)-(5) we compute the time-varying parameters {f1, ..., fT |θj} and the

log-likelihood `(y|θj) =
∑T

t=1 `t. We accept the current draw with probability p = min{1, exp(π(θj |y) −

π(θ′|y))}, where π(θj |y) ∝ π(θj)`(y|θj) is the posterior distribution of θj ; when accepted, we set θ′ = θj .

Credible sets for both static and time-varying parameters are obtained from the empirical distribution func-

tions arising from the resampling. Appendix D provides an extensive description of the sampling algorithm,

as well as the details on the exact prior specification for the parameters and convergence diagnostics.

Monte Carlo exercise Appendix E investigates the small sample properties of the model through a

Monte Carlo analysis. The model successfully tracks parameters’ time variation for a variety of different

data generating processes. When the distribution is symmetric throughout the entire sample, the model

quickly estimates a null shape parameter, with limited variability over time. In particular, the model does

not confound any correlation between the time variation of the location and the scale (known to generate

unconditional skewness) for the presence of conditional asymmetry. We also simulate a model with a one-

time break in the shape parameter: the model correctly captures the break in the asymmetry, and the

two-component specification properly disentangles long- and short-lived fluctuations, so that the break is

tracked by the permanent component whereas the transitory component features low variability.

3.3 Forecasts

For any draw of the model parameters, θ, the last step of the the observation driven filter in Equation (3)

provides the optimal one-step-ahead prediction of the parameters of interest (Cox, 1981). These values can

then be used to retrieve the one-step-ahead prediction density for GDP growth, p(yT+1|θ) = sktν(fT+1(θ)),

which allows us to draw the forecast of interest as p(yT+1) =
∫
p(yT+1|θ)dθ.

For multiple-steps forecasts additional complications arise from the necessity to sample the score, and

the dependence of the forecasts on the predicted values of the conditioning variables. In Section 5, due to

the high persistence of the predictors, we produce forecasts keeping these fixed to their last observations,

akin to assuming a random walk specification for their law of motion.12 As for the score vector, we follow

Koopman et al. (2018) and adopt a “bootcasting” algorithm to sample multiple h − 1 dimensional vectors

priors are quite conservative, implying that any evidence in favour of the time variation of permanent components
reflects strong evidence in the data.

12As an alternative, one could feed predictions for the explanatory variables into the model. The latter approach
produces results very similar to the ones reported here.
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of scores from the (scaled) score vector obtained in the estimation, thus avoiding any assumption on the

distribution of the score. Therefore, for a given (bootstraped) draw of the score, and assuming XT+h = XT ,

the score filter (3) can be used to obtain fT+h, and thus compute p(yT+h|θ,XT+h = XT ). The h-step ahead

forecast reads p(yT+h) =
∫
p(yT+h|θ,XT+h = XT )dθ.

3.4 Data and alternative model specifications

We use US quarterly data over the period 1973Q1 to 2020Q4 on economic activity and financial con-

ditions. For the latter we consider the broad NFCI and its four subindices, tracking developments in

the credit, risk, leverage and non-financial leverage markets (Brave and Butters, 2012). We will consider

alternative models with either the NFCI or the disaggregated components. While the risk and credit com-

ponents closely track the dynamics of the NFCI, the leverage indicators, in particular the nonfinancial

leverage, are often regarded as an “early warning” signal for economic downturns (Mian and Sufi, 2010).13

The modeling framework we propose can accommodate several features of the conditional distribution

of economic growth. Specifically, our framework encompasses a wide spectrum of specifications: from a

simpler Gaussian AR(2) with time-varying volatility, to the full-blown two-component specification outlined

above. In Appendix G we report the Deviance Information Criterion (Spiegelhalter et al., 2002) and the

log Marginal Likelihood for different model specifications. According to these measures: i) modelling

non-Gaussian features improves upon a Normal benchmark, ii) allowing for an additional low-frequency

variation in the parameters (two-component specification) better fits the data compared to a version of

the model that only allows for transitory variation of the parameters (one-component specification) , and

iii) including financial variables improves the model fit. Therefore, we set as our baseline specification a

Skew-t model with a permanent and transitory component for the time-varying parameters and with (two

lags of) the four subcomponent of the NFCI as exogenous predictors (Skt -4DFI ).

4 Time variation in the distribution of GDP growth

Our model allows us to study the characteristics of the conditional distribution of GDP growth. Figure 2

reports the time-varying first and second moments of the distribution of GDP growth. The mean moves

along the business cycle and displays sharp contractions during recessions. Volatility features a marked

countercyclical behaviour, with peaks occurring during recessions. Focusing on the last year of the sample,

the model features a sharp increase in volatility and a quickly rebounding mean. Yet, these movements are

not as sharp as the ones observed over the Great Recession, suggesting that through the lenses of the model

Covid-quarters are, at least partially, characterized as tail events. On the same charts, we also report in red

the low-frequency components. That is, the moments of the distribution that would prevail in the absence

of any transitory variation of the parameters. The model neatly captures a fall in long-run growth, with

13See Appendix F for a detailed discussion on the data.
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Expected Value Standard Deviation

Figure 2: Time-varying mean and variance
Note: The plots illustrate the estimated time-varying mean and standard deviation (blue), along with the respective
long-run components, in red, and 90% credible intervals. Shaded bands represent NBER recessions.

Skewness Upside and Downside volatility

Figure 3: Time-varying asymmetry
Note: The left panel illustrates the estimated time-varying skewness (blue), along with its long-run component (red).
The right panel reports the upside and downside volatilities, in blue and red, respectively. Shadings correspond to
90% credible intervals. Shaded bands represent NBER recessions.

the expected value falling from roughly 4% in the 1970s, to roughly 2.3% at the end of the sample, in line

with the evidence in Antolin-Diaz et al. (2017).14 The Great Moderation is reflected in a visible reduction

in GDP growth’s volatility: starting in the mid-1980s, transitory fluctuations in volatility dampen down

as the impact of the consecutive recessions of the 1970s and 1980s fades away, and the long-run volatility

is revised downward by roughly 30%.

Time-varying skewness is reported in the left panel of Figure 3. This evolves in a distinctively procyclical

pattern, such that substantially negative skewness characterizes recessions, whereas expansions are marked

14Similarly, Doz et al. (2020) and Eo and Morley (2022) document a downwarding trend in US economic growth
starting in the early 2000s.
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by positively skewed distributions. Interestingly, skewness tends to decrease in anticipation of recessions,

a feature which we show to be related to the information contained in the financial indicators, suggesting

that downside risk dominates ahead of, and during downturns. Over the long-run, skewness displays a

downward trend starting in the late 1980s, and falling markedly in the post-2000 sample. As a result,

business cycle fluctuations are characterized by decreasing, but positive, trend-skewness until the onset of

the financial crisis in 2007. In the aftermath of the subsequent recession, this long-term trend turns to

negative values, implying negatively skewed long-run conditional distributions. This signals the build-up

of vulnerabilities, resulting in the economy being increasingly exposed to downside risk episodes.

Upside and downside volatility Arellano-Valle et al. (2005) highlight that the Skew-t distribution

can be easily rewritten as a two-piece density by reweighting the scale by a function of the asymmetry

parameter (see Appendix B). In line with the “good” and “bad” volatility decomposition proposed by

Bekaert and Engstrom (2017), one can define “upside” (V ol+ =
√

Var(yt|yt ≥ µt)) and “downside” (V ol− =√
Var(yt|yt < µt)) volatility as:

V ol+ =
1− %t

2

√
Var(yt|θ,F t−1), V ol− =

1 + %t
2

√
Var(yt|θ,F t−1). (19)

These two volatility components are reported in the right panel of Figure 3. Downside volatility spikes

during recessions, whereas upside volatility displays only modest (pro-)cyclicality. Therefore, the marked

countercyclicality of aggregate volatility (see, e.g., Jurado et al., 2015) is largely a reflection of counter-

cyclical downside risk. Whereas the financial crisis of 2007-2008 appears as an episode of purely downside

volatility, the more recent Covid-recession is characterized by a spike in downside volatility in the first

half of 2020 quickly receding in favor of upside volatility in the second half. Over the long-run, upside

volatility features a steep decline starting in the mid-1980s with small cyclical variations. On the other

hand, downside volatility has remained stable at around the same values observed in the aftermath of

mid-1970s recession, with sudden spikes occurring during recessions.

Expected value and variance decomposition The estimated model suggests that conditional

skewness fluctuations are a prominent feature of the predictive distribution of GDP growth, playing an

important role in determining the dynamics of the first and second moments.15 To see that, it is worth

noting that in our model:

E[yt|θ,F t−1] = µt − g(η)σt%t, g(η) =
4C(η)

1− η
, (20)

Var(yt|θ,F t−1) = σ2
t

(
1

1− 2η
+ h(η)%2

t

)
, h(η) =

3

1− 2η
− g(η)2. (21)

15Although an expression for the skewness is not available in closed form, a Taylor expansion of the skewness
function attributes almost all of the variation to movements of the shape parameter, while remaining relatively
insensitive to location and scale.
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Expected value Variance

Figure 4: Expected value and variance decomposition
Note: The plot shows the decomposition of the expected value and variance of GDP growth. We report in red the
contribution of the moment estimator (e.g. location and scale), whereas the blue area identifies the contribution
of higher order moments. Central moments (black lines) are computed as in Equation (20)-(21). Shaded bands
represent NBER recessions.

Thus, the (time-varying) expected value and variance are equal to the mean and variance of a standard

Student-t distribution, plus a component which is a function of the shape parameter. The latter is magnified

by larger values of σt, while it disappears from both moments when %t is equal to 0.

Figure 4 isolates the contribution of the asymmetry for both the first and second moments. The ex-

pected value decomposition highlights how the location parameter (red line) is remarkably stable over the

sample, while most of the fluctuations reflect shifts in the shape of the distribution (blue line), with expan-

sions characterized by positive skewness and contractions associated with negative skewness. Interestingly,

the contribution of the asymmetry for positive expected values becomes more muted during the Great

Moderation, whereas the negative drag from the asymmetry remains of substantial importance during re-

cessions. In contrast, the effect of the shape parameter on the second moment is less pervasive, despite

deepening skewness during recessions accounts for a non-trivial share of the increase in variance.

Equations (20) and (21) also highlight that procyclical variations of skewness are reflected into a

time-varying correlation between the mean and the volatility of GDP growth. While the mean is always

negatively affected by shifts of the shape parameter (i.e. ∂E(yt|θ,Ft−1)
∂%t

< 0,∀%t), an increase of the latter is

associated with an increase in the variance when the distribution is negatively skewed, and a decrease in

the variance when the distribution is positively skewed, in that ∂ Var(yt|θ,Ft−1)
∂%t

= 2h(η)σ2
t %t. Since h(η) > 0

for ν > 3, changes of the asymmetry are associated with changes of the variance of the same sign as that

of the shape parameter (and thus of opposite sign to that of conditional skewness). The procyclicality

of skewness reduces volatility during expansions, whereas dispersion increases as skewness plummets to

negative values. This is reflected into a procyclicality in the correlation between mean and variance, which

is in line with findings in Carriero et al. (2020a). These nonlinearities in the interaction between uncertainty
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Expected value Variance

Figure 5: Long-run GDP growth and volatility
Note: The plot shows the decomposition of the long-run expected value (black lines), akin to taking limh→∞ E[yt+h].
We report in red the contribution of the long-run location component µ̄t, whereas the blue area identifies the
contribution of higher order moments. σ̄t and %̄t refers to the secular components of scale and shape, respectively.
Shaded bands represent NBER recessions.

and aggregate economic activity are consistent with findings in Segal et al. (2015), which highlight how

“positive uncertainty” (i.e. volatility in the procyclical phases of the business cycle) tends to be associated

with positive expected growth, whereas this correlation turns negative during contractions.16

Accounting for the slowdown in long-run growth and the Great Moderation. Making

use of the expected value decomposition in Equation (20), we can assess to what extent shifts in long-run

growth that we observe over the sample reflect a reassessment of (long-run) risk in GDP growth. Starting

in the late 1980s, the distribution of GDP growth featured decreasing positive skewness. This increase in

downside risk maps into a decline of the long-run growth, as shown in Figure 5, so that roughly two thirds

of the slowdown reflect a reassessment of risk. The downward trend in long-run growth is temporarily

reversed in correspondence of the IT productivity boom of the mid-1990s, when long-run growth is revised

upward by roughly 0.5%. Interestingly, we find that this upward revision reflects, to a large extent, a

shift in the risk of the upside, rather than the central tendency, of GDP growth’s distributions. Over the

post-2000 sample, the slowdown in long-run growth accelerates, and it is associated with a rebalancing of

risks towards the downside. In the aftermath of the Great Recession, the long-run component displays a

pronounced left tail, thus becoming a negative drag to long-term growth.

Similarly, we decompose long-run variance into the contributions of long-run upside (blue) and downside

(red) variance in the right panel of Figure 5. Upside variance decreases quite markedly over the Great

Moderation period, and by the end of the sample upside variance is half the level estimated for the 70s.

On the contrary, the downside component of the long-run variance has remained quite stable throughout

16Fernández-Villaverde and Guerrón-Quintana (2020b) discuss a possible rationale for the presence of an expan-
sionary impact of increases in in uncertainty.
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1973-2020 

1973-2019 

Figure 6: Unconditional skewness
Note: The figure reports the distribution of unconditional skewness, along with its sample value, in red, and the
sample value excluding the last year of data, in blue

the sample. This evidence supports the findings in Jensen et al. (2020) and highlights that the Great

Moderation reflects a reduction of the upside risk not matched by an equal fall in downside risk.

Conditional vs. Unconditional skewness Figure 3 highlights that the skewness of the conditional

distribution displays a marked procyclicality: expansions are characterized by right-skewed distributions,

whereas contractions are associated with deepening asymmetry, leading to negatively-skewed conditional

distributions during recessions. What does this mean for the unconditional distribution of GDP growth?

To answer this question, we use the estimated model to draw inference on the unconditional (a)symmetry

of the data. Specifically, we simulate 10000 alternative paths of GDP growth from the model, and for each

of them we compute the associated (unconditional) skewness. The results of this exercise are summarized

in Figure 6. Negative skewness estimates of the unconditional distribution turn out to be 20% more likely

than positive estimates, despite conditional distributions displaying positive skewness for a large part of

the sample. As shown in the left panel of Figure 3, during expansions upside volatility is, on average,

15% higher than downside volatility, while downside volatility is almost double the upside volatility during

recessions. Thus, despite expansions being typically characterized by right-skewed conditional distributions,

the occurrence of tail events is impaired by lower dispersion. On the contrary, recessions are characterized

by more downside uncertainty, resulting in large negative observations being more likely. Excluding the

last year of observations, the sample skewness value of -0.42 lies close to the expected value of the empirical

distribution. However, the sample skewness of -2.58 due to the Pandemic-recession still lies well within the

95% interval.17 Performing the Bai and Ng (2005) test for unconditional skewness on simulated data fails

to find evidence of any degree of asymmetry, not rejecting the null of symmetry about 90% of the times.

Therefore, despite conditional skewness largely varying over the sample, this does not prevent the model

17Repeating the same exercise leaving out the post 2019 sample would leave the distribution of the unconditional
skewness unchanged.

19



Scale Shape

Figure 7: Predictive financial conditions
Note: The figures plot the decomposition of the “untransformed” transitory component of the time-varying param-
eters (in black) into a “Score-driven” (yellow) and a “Predictor-driven” component, for which we highlight all the
subcomponents. Shaded bands represent NBER recessions.

from generating unconditional symmetry in the sample distribution of GDP growth, consistent with what

we find in the data.

The contribution of financial predictors To gauge the contribution of financial indicators to the

overall variation of the parameters, we exploit the moving average representation of the transitory compo-

nents in Equations (17) and (18). In Figure 7, we decompose γ̃t and δ̃t into a “score-driven” component,

κγ
∑t−1

j=0 φ
j
γsγt−j and κδ

∑t−1
j=0 φ

j
δsδt−j , respectively, and a component reflecting the share of variation driven

by the predictors β′γ
∑t−1

j=0 φ
j
γXt−j and β′δ

∑t−1
j=0 φ

j
δXt−j . These latter components are further decomposed

so as to highlight the contribution of each financial index, separately. Leverage is the largest contributor

to the variation of the scale parameter. Increases in leverage during expansions are associated with a

reduction of the overall dispersion of the conditional distribution of GDP growth, whereas deleveraging

during recessions maps into higher uncertainty. Leverage is also an important determinant of the dynamics

of the shape parameter, and thus of the skewness of the conditional distribution. However, in this case it

is nonfinancial leverage that drives most of asymmetry’s variation. Consistent with the leverage-cycle nar-

rative of Mian and Sufi (2010) and Jordà et al. (2013), the build-up of the household leverage is identified

as the main contributor to the increase in downside risk in the first half of the 2000s, and the deleveraging

associated with a substantial fall in downside risk. In contrast, indicators of credit spread and credit risk

mainly seem to be good indicators of the sharp increase in downside risk at the height of major recessions.

Lower credit spreads before the crash impaired a sharp increase of the asymmetry parameter, while as

the crisis unfolded their higher values pushed the parameter towards further positive values, as argued by

Krishnamurthy and Muir (2017), thereby contributing to determining the amount of asymmetry recessions

are characterized by. The contribution of financial indicators is muted during the dot-com recession, in line
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with the weak link between that recession and financial predictors, as highlighted by Stock and Watson

(2003).

5 Out-of-sample evaluation

In this Section we explore the out-of-sample forecasting performance of the model. We re-estimate

the model every quarter over the period 1980Q1-2020Q4, and produce one-quarter and one-year horizon

forecasts. For the one-year ahead predictions, results are reported as cumulated output growth over the

next four quarters. Forecasts are obtained from real-time GDP vintages and evaluated using the latest

available release. We compare the performance of the models for the entire out-of-sample period, as well

as for the post-2000s, and for the recessive periods in the forecasting sample.18

We assess the point forecast accuracy via the mean square forecast error (MSFE). Density fore-

cast accuracy is evaluated via the predictive log-score and quantile scores. The latter, put forward by

Gneiting and Ranjan (2011), reads as wQSt+h =
∫ 1

0 QS(α)ω(α)dα, where α represents the quantiles,

QS(α) = 2(I(yt+h < F−1(α)) − α)(F−1(α) − yt+h), with F−1(α) being the empirical quantile function

of the density forecast, and ω(α) is a weighting function. We consider two versions of this measure: i)

the Continuously Ranked Probability Score (CRPS, Gneiting and Raftery, 2007), which assigns equal

weight to each quantile of the empirical distribution function (i.e. ω(α) = 1) and ii) a scoring rule with

ω(α) = (1 − α)2 that assigns higher weights to the lower quantiles of the distribution function, thus em-

phasising the accuracy in predicting the left tail of the distribution. The latter assesses the ability of the

model to correctly characterize downside risk predictions. Similarly, when we evaluate the calibration of

the predictive densities by means of the probability integral transforms (PITs) (Diebold et al., 1998), we

explicitly consider the calibration of the left side of the distribution. Lastly, we investigate the use of the

model in producing measures of downside risk and predicting recessions.

5.1 Point, density and downside risk forecasts

Asymmetry and the value of financial predictors. As a first step into our analysis, we aim

at evaluating the importance of accounting for the skewness of the distribution of GDP growth, as well

as assessing whether conditioning on financial predictors leads to forecast improvements. We consider a

Gaussian autoregressive model with GARCH innovations as a benchmark, which has been shown to deliver

competitive out-of-sample forecasts for GDP growth (Clark and Ravazzolo, 2015) and GDP growth-at-

risk (Brownlees and Souza, 2021). Table 2 reports the predictive performance of alternative Skew-t models

against the Gaussian benchmark, for one-quarter and one-year ahead predictions. In particular, we produce

forecasts from (a) a Skew-t model without any financial predictors, (b) a Skew-t model that includes as

18We do not include the pandemic-quarters within the recession sample to avoid predictive statistics being domi-
nated by a single event.
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Table 2: Forecasting performance

Skt Skt Skt Skt Skt Skt
NFCI 4DFI NFCI 4DFI

One-quarter ahead

MSFE logS
Full 0.842

(0.000)
0.817
(0.000)

0.812
(0.000)

0.122
(0.000)

0.140
(0.000)

0.060
(0.084)

Post ’00 0.809
(0.000)

0.804
(0.000)

0.793
(0.000)

0.181
(0.000)

0.211
(0.000)

0.167
(0.001)

Rec. 0.831
(0.000)

0.807
(0.000)

0.795
(0.000)

0.227
(0.034)

0.265
(0.056)

0.148
(0.269)

CRPS wQS
Full 0.964

(0.047)
0.941
(0.005)

0.952
(0.025)

0.960
(0.064)

0.926
(0.006)

0.926
(0.009)

Post ’00 0.934
(0.000)

0.912
(0.000)

0.918
(0.000)

0.919
(0.000)

0.894
(0.000)

0.891
(0.002)

Rec. 0.961
(0.191)

0.945
(0.135)

0.938
(0.112)

0.925
(0.030)

0.907
(0.030)

0.868
(0.019)

One-year ahead

MSFE logS
Full 0.720

(0.000)
0.716
(0.002)

0.694
(0.003)

0.486
(0.000)

0.585
(0.000)

0.518
(0.001)

Post ’00 0.720
(0.000)

0.696
(0.000)

0.718
(0.002)

0.849
(0.000)

0.978
(0.000)

0.970
(0.000)

Rec. 0.743
(0.063)

0.764
(0.163)

0.656
(0.044)

1.071
(0.004)

1.209
(0.007)

1.238
(0.015)

CRPS wQS
Full 0.912

(0.003)
0.902
(0.002)

0.883
(0.003)

0.778
(0.001)

0.747
(0.001)

0.766
(0.005)

Post ’00 0.843
(0.000)

0.826
(0.000)

0.820
(0.000)

0.725
(0.000)

0.703
(0.000)

0.711
(0.000)

Rec. 0.942
(0.193)

0.957
(0.316)

0.890
(0.099)

0.725
(0.008)

0.737
(0.028)

0.668
(0.016)

Note: The table reports the average forecast metrics relative to the Gaussian model. We use ratios for the MSFE,
CRSP and wQS, and differences for the logS. Ratios smaller than 1, and positive values of the log-score differences
indicate that the column-specific model performs better than the Gaussian benchmark. The p-values for Diebold
and Mariano (1995) tests, augmented with the small sample correction of Harvey et al. (1997), are in parentheses.
Values in bold are significant at the 10% level; gray shaded cells highlight the best score.

predictor only the NFCI and (c) our baseline Skew-t model, including the four disaggregate financial indices

(4DFI ). For all measures, we report ratios with respect to the Gaussian benchmark, except for the log-

score (logS) for which we report differences. Values in parentheses report the p-values of the Diebold and

Mariano (1995) test for equal predictive accuracy with the small sample correction proposed by Harvey

et al. (1997). Simply introducing fat tails and time-varying asymmetry improves the forecast accuracy

of the model with respect to the benchmark Gaussian specification, under all loss functions. Further

predictive accuracy is gained when conditioning on financial information. Using the four subcomponents

leads to additional gains, in particular during recessions. This is true for both the one-quarter and one-year

ahead forecasts, for which the improvements are generally larger. The gains over the benchmark Gaussian

model are substantial: the baseline Skt -4DFI model produces roughly 20% (30%) improvement in MSFE,

and 5% (12%) and 10% (25%) improvements in the CRPS and wQS, respectively, for the one-quarter

(one-year) ahead forecasts. Gains become generally even larger if one focuses on the post-2000s sample, or

only considers recessions.
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Table 3: Forecast performance with respect to Adrian et al. (2019)

One-quarter ahead One-year ahead

MSFE logS CRPS wQS MSFE logS CRPS wQS

Full 0.890
(0.000)

2.473
(0.000)

0.983
(0.221)

1.006
(0.599)

1.014
(0.562)

0.571
(0.000)

0.989
(0.425)

1.026
(0.672)

Post ’00 0.837
(0.000)

4.499
(0.000)

0.920
(0.000)

0.941
(0.006)

0.894
(0.098)

0.436
(0.000)

0.902
(0.046)

0.944
(0.224)

Rec. 0.877
(0.000)

8.567
(0.000)

0.962
(0.111)

0.966
(0.197)

1.073
(0.649)

1.407
(0.015)

0.948
(0.332)

0.975
(0.425)

Note: The table reports the average forecast metrics from the Skt -4DFI model relative to Adrian et al. (2019). We
use ratios for the MSFE, CRSP and wQS, and differences for the logS. Ratios smaller than 1, and positive values of
the log-score differences indicate that the Skt 4DFI model performs better than Adrian et al. (2019). The p-values
for Diebold and Mariano (1995) tests, augmented with the small sample correction of Harvey et al. (1997), are in
parentheses. Values in bold are significant at the 10% level.

Comparison with Adrian et al. (2019) In Table 3 we report the comparison of the baseline

specification against the model of Adrian et al. (2019).19 Our baseline model specification is associated

with better point and density forecasts, and with significant improvements arising especially in the post-

2000s sample. In particular, it is worth noticing that the forecast gains that we document during recessions

stem from the adaptiveness of the score filter. This, as explained in Section 3, is due to the shape parameter

reacting promptly to turning points, thus implying timely and marked movements of the skewness of the

predictive distributions. As a consequence, forecast densities are characterized by longer left tails during

recessions as compared to those implied by the Skew-t model of Adrian et al. (2019).20

Density calibration Table 4 evaluates the calibration of the density forecasts looking at the properties

of the PITs.21 Berkowitz (2001) highlights that if the PITs are uniformly distributed (0,1), then the normal

transform of the PITs should be a standard normal random variable, and at the one-step ahead the series

should also be independent. The upper part of Table 4 reports the estimate of the mean and variance of the

normal transforms of the PITs, their autocorrelation coefficient for the one-quarter ahead, and the p-values

associated with the relevant null hypotheses. Both the Gaussian specification and the model of Adrian

et al. (2019) deliver densities that are too wide on the right side of the distribution, corresponding to a

strongly negative unconditional mean of the normalized forecast errors for the one-quarter ahead forecast,

therefore overestimating, on average, upside risk. The same models also produce overly disperse densities,

hence overpredicting both upside and downside risk for the one-year ahead forecasts. The baseline model,

on the other hand, does not display any sign of miscalibration. The remainder of Table 4 reports test

statistics for the correct calibration of the forecast densities of Rossi and Sekhposyan (2019). Since the

correct specification of the left part of the density is fundamental to any assessment of downside risk, we also

19For comparability, we follow exactly the procedure of Adrian et al. (2019), but re-estimating the model using
real-time vintages of GDP growth.

20Compared to the model of Adrian et al. (2019), the Skt -4DFI specification appears to be faster and more precise
in capturing increases (decreases) in downside (upside) risk ahead of recessions, and it adapts to the subsequent
rebounds in GDP growth in a more timely manner. See Figure H1 in Appendix H.

21A plot of the PITs is available in Appendix H.2.
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Table 4: Density calibration tests

Skt Skt
AR(2) ABG 4DFI AR(2) ABG 4DFI

One-quarter ahead One-year ahead
Mean −0.352

(0.000)
−0.238

(0.028)
0.030
(0.755)

−0.941
(0.000)

−0.225
(0.248)

0.011
(0.951)

Var 0.963
(0.801)

0.983
(0.904)

1.041
(0.745)

2.009
(0.007)

2.071
(0.001)

1.290
(0.125)

AR(1) −0.026
(0.742)

0.171
(0.028)

0.120
(0.126)

RS test:
Full 2.102 1.925 0.883 4.865 2.306 1.162

Left-half 1.798 1.415 0.805 4.865 2.306 1.162

Left tail 1.074 1.166 0.501 4.757 2.306 1.162

Note: The table reports the properties of the normal transform of the PITs (upper panel), as well as the Kolmogorov-
Smirnov statistics for the Rossi and Sekhposyan (2019) tests of correct specification of the density forecast (RS test,
lower panel). For each model we report the mean and variance of Φ−1(zt), where zt denotes the PIT of the one-
quarter and one-year ahead forecast error, with Φ−1(.) being the inverse of the standard normal distribution function;
for the one-quarter ahead forecasts we also report the estimated coefficient of an AR(1) model on Φ−1(zt). We test
the null hypotheses of unbiasedness and unit variance of the normalized forecast error; for the one-step ahead we
also test the null of no persistence. The p-values, computed with HAC variance, are reported in parentheses. For
the calibration tests we consider the full density support (Full), the left-half, defined over the [0 0.5] support, and
the left-tail, computed over the support [0, 0.25]. Values in bold indicate the rejection of the null hypothesis at the
10% confidence level. Critical values for the tests are obtained by 1000 bootstrap simulations.

report the test statistics for the correct calibration of the left-half and the left tail of the density. The test

rejects the null hypothesis of correct specification of the density forecast at the 10% critical value for both

the Gaussian benchmark and for the model of Adrian et al. (2019), for the one-quarter and one-year ahead

forecasts. In contrast, for our baseline model the test fails to reject the null of well calibrated forecasts

for the entire density, as well as for the left part of the predictive distributions capturing movements in

downside risk.

5.2 Tail risk predictions

We now turn to the assessment of tail risk predictions, placing particular focus on the ability of the

model to anticipate the build up in downside risk ahead of the 2008 financial crisis, and its reduction during

the subsequent recovery. Measures such as Value at Risk (VaR), as well as the Expected Shortfall (ES), are

readily obtained within our framework. ESαt+h = α−1
∫ α

0 V aRat+h|tda describes the expected growth level

for yt+h < V aRαt+h, corresponding to the (100α)th percentile of the h-step ahead predictive distribution,

whereas the Expected Longrise (EL1−α
t+h = α−1

∫ 1
1−α V aR

a
t+h|tda) is the upper counterpart of the ES. In

order to highlight the different risk assessments associated to the models, the left hand panel of Figure 8

contrasts the 5% expected shortfall and the 95% expected longrise for the Gaussian model, the Skew-t

model without financial predictors and our baseline model, considering 10 years around the financial crisis.

The Gaussian model fails to capture the building-up of risk ahead of the Great Recession, predicting

an expected shortfall around zero as the economy enters the recession. In addition, assuming a symmetric

distribution implies that a fall in the ES is often associated with peaks in the EL. Precisely, the minimum
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Expected longrise and shortfall Probability of recession

Figure 8: Expected Shortfall and Expected Longrise
Note: We report the ES and EL for α = 0.05. Probabilities of recessions are computed as the probability of observing
two consecutive negative growth forecasts over the next four quarters. Shaded bands represent NBER recessions.

ES corresponds to the maximum EL in 2009Q2. Allowing for Skew-t innovations alleviates both problems,

delivering more conservative risk measures with less erratic longrise figures, and anticipating the build-up

of downside risk ahead of the recession. Conditioning the forecasts on the available subindices of financial

conditions increases the timeliness of the prediction of risk, due to the prompt discounting of financial

overheating. The prediction of the ES falls to roughly −5% in the first quarter of the recessions, and

decreases consistently until the first quarter of recovery, when it is sharply revised upwards. Moreover,

during the recession, the model delivers a downwarding longrise, predicting modest gains even for the most

optimistic scenario. The longrise is sharply revised upward already for the first post-trough quarter. These

results are mainly due to the fast updating of the asymmetry parameter, especially when the economy hits

a turning point. This induces a reduction in the mean and an increase in downside risk.22

Brownlees and Souza (2021) argue that a GARCH model provides competitive out-of-sample forecasts

for the lower quantiles of the GDP growth distribution. Evaluating the accuracy of the VaR and ES

for α = 0.05 using the metric proposed by Fissler et al. (2016) highlights that allowing for time-varying

skewness produces large and significant gains with respect to the Gaussian model. During recession the

baseline model produces improvements of 35% at the one-quarter ahead horizon, and up to 70% at the

one-year ahead. In Table 5 we document similar gains in tail risk prediction using different scores, such

as the Asymmetric Laplace Score of Taylor (2019), or the tick loss function for the VaR, proposed by

Giacomini and Komunjer (2005).

Last, we investigate the ability of the model to predict recessions. The NBER Business Cycle Dating

Committee (BCDC) defines a recession as “[...] a significant decline in activity spread across the economy,

22In Q1 of 2009, the Skt -4DFI model predicts a negative mean and substantial downside risk, whereas the Gaussian
model only predicts a slightly negative growth, with a roughly symmetric assessment of the risk surrounding this
prediction; see Figure J2, in Appendix J.
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Table 5: Tail risk scores

Skt Skt Skt Skt Skt Skt
no-X 4DFI no-X 4DFI no-X 4DFI

FZG ALS TLF

One-quarter ahead
Full 0.831

(0.040)
0.819
(0.028)

0.959
(0.111)

0.948
(0.028)

0.978
(0.246)

0.900
(0.003)

Post ’00 0.693
(0.002)

0.720
(0.003)

0.912
(0.012)

0.926
(0.038)

0.943
(0.066)

0.915
(0.040)

Rec. 0.741
(0.014)

0.651
(0.013)

0.880
(0.030)

0.850
(0.044)

0.925
(0.072)

0.821
(0.012)

One-year ahead
Full 0.241

(0.000)
0.310
(0.001)

0.397
(0.000)

0.424
(0.000)

0.692
(0.002)

0.622
(0.002)

Post ’00 0.246
(0.001)

0.371
(0.003)

0.361
(0.000)

0.398
(0.001)

0.727
(0.003)

0.600
(0.003)

Rec. 0.192
(0.000)

0.300
(0.000)

0.263
(0.000)

0.308
(0.000)

0.551
(0.000)

0.495
(0.003)

Note: The table reports the average downside tail risk scores, expressed as ratios relative to the Gaussian model.
Ratios smaller than 1 indicate that the column-specific model performs better than the benchmark. The p-values for
Diebold and Mariano (1995) tests, augmented with the small sample correction of Harvey et al. (1997), are reported
in parentheses. Values in bold are significant at the 10% level; gray shaded cells highlight the best score. FZG:
Fissler et al. (2016) loss function; ALS: Taylor (2019) loss function; TLF: Giacomini and Komunjer (2005) tick loss
function.

lasting more than a few months [...]”. Therefore, we define the one-year-ahead probability of recession as the

probability of observing any two consecutive negative forecasts in the next four quarters. The right panel of

Figure 8 highlights that combining the information on financial conditions and allowing for asymmetry in

the forecast densities produces a realistic assessment of recession risk. The implied probability of recession

starts picking up earlier compared to the other measures, warning against an imminent output contraction.

Moreover, the probability of observing a recession within the forthcoming year recedes sharply when the

recession ends and is already below 5% just a quarter after the end of the recession, as dated by the BCDC.

In contrast, the Gaussian model, as well as the Skew-t model without conditioning information, produces

a reasonable probability of recession only toward the end of the recession period, and they continue to

perceive a substantial treat of recession many quarters after the formal end of it. We evaluate the ability

of the model to time recessions over the sample 1980-2020, using the Brier score. Deviating from the

Gaussian assumption provides gains of around 10%, and an additional 20% gain can be directly ascribed

to the inclusion of financial predictors.

Overall, these results underline the importance of allowing for time variation in the skewness of the

conditional distribution of GDP growth for predicting downside risk, both in terms of magnitude and

timing.

5.3 Robustness

In this Section, we provide a summary of additional analysis regarding the forecasting performances of

the model. Detailed results are provided in Appendix H.
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Lagged GDP growth as additional predictor Comparing the forecast performance of the

baseline model with the same version of the model augmented with past lags of GDP growth as predictors,

we find a generally weaker predictive ability in terms of point and density forecasts (see Table H1). These

results confirm that parameter updates driven by the scaled score appropriately summarizes the necessary

information provided by past realizations of the dependent variable, making the explicit use of lagged GDP

growth redundant.

How important is parameters’ uncertainty? To answer this question we produce forecasts

from our baseline model fixing the parameters to the (recursively re-estimated) modal estimates, and we

compare their performance with the baseline model’s (which integrate parameter uncertainty). Explicitly

accounting for parameter uncertainty leads to significant gains in terms of both point and density forecast,

while, forecasts produced with the modal estimates are found to understate downside risk (see Tables H2

and H3).

Excluding 2020 from the forecast evaluation sample We evaluate the forecasting perfor-

mances of the specifications taking out the last year of data and find that the results are generally in line

with those presented above. This highlights that i) gains in forecasting performance are associated with

the time variation of conditional asymmetry, and ii) the information of financial indicators are not specific

to the events in 2020 (see Tables H4–H6).

Conditional vs. unconditional skewness We compare the predictive ability of our models

with respect to an AR(2) model with time-varying volatility and Skew-t innovations with constant skew-

ness (i.e., with a constant asymmetry parameter re-estimated every time we produce a new forecast). This

model performs similarly with the Gaussian benchmark, reflecting the weak evidence in favour of uncon-

ditional skewness over the sample. This underlines that the substantial gains in forecast accuracy are to

be attributed to the time variation in the conditional skewness (see Tables H7 and H8).

Predicting GDP vintage releases GDP growth undergoes substantial revisions, in particular

over the first releases, and even more so around turning points (see, e.g, Croushore, 2011). In the previous

section we have assessed the ability of different models to forecast the latest release.23 In a real-time setting,

it is common to target the first or the second releases of GDP. Tables H9 and H10 show that time-varying

skewness is key to increase the predictive accuracy of the model, at both horizons, also when targeting

earlier releases of the data.

NFCI: last vintage vs. real time data The pseudo-out-of-sample forecasting exercise presented

above relies on the latest vintages of the NFCI and its subcomponents. Real time vintages of these financial

indicators are only available from 2013, and have historically only experienced few, limited revisions. To

23This choice implies that the forecast error produced by our models also accounts for a ‘measurement error’
component, induced by possible GDP measurement redefinitions, that took place over the considered forecast sample
(for further discussion, see Croushore, 2011).
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evaluate whether the latest vintages provide an unfair advantage to the models, we compare our baseline

forecasting performances to those from a pure real-time out-of-sample exercise, starting in 2013. Results

point at some marginal improvements associated to the use of real time vintages, suggesting that the

evaluation based on the latest releases does not advantage our model (see Table H11).

6 Dissecting the Financial Condition Index

In the previous Section we have documented that the predictive accuracy of a simple Skt model could

be improved by considering financial condition indices as predictors of the time-varying parameters. Here

we investigate whether the predictive power of the model can be further improved by considering the whole

set of data that feeds into the NFCI, and allowing for different patterns of sparsity for each time-varying

parameter.

We consider the full set of 105 (smoothed) indicators of financial activity that constitute the NFCI. We

start our forecasting exercise at the beginning of the 2000s, and at each point in time, we only consider

indicators for which at least four years of data are available. Hence, the first forecast we produced relies

on about 70% of the total available indicators, and we reach approximately 85% about the 2007-2009

recession.24

6.1 Variables selection: “shrink-then-sparsify”

A potential concern of this exercise lies in the steep increase in the number of parameters our model

needs to accommodate. We tackle this dimensionality problem through a “shrink-then-sparsify” strategy

(see, e.g., Hahn and Carvalho, 2015).25 Shrinkage is achieved by means of Horseshoe (HS) priors (Carvalho

et al., 2010): bi ∼ N (0, λiτ), where the hyperparameters λi and τ control the local and the global shrinkage

of the predictor loadings, respectively. Specifically, λi ∼ HC+(0, 1) and τ ∼ HC+(0, 1), where HC+(0, 1)

denotes the standard Half-Cauchy distribution. Unlike other common shrinkage priors (e.g. Ridge, Lasso),

HS priors are free of exogenous inputs, implying a fully adaptive shrinkage procedure. We then apply

the Signal Adaptive Variable Selector (SAVS) algorithm of Ray and Bhattacharya (2018) in order to

reduce the estimation uncertainty associated with the near-zero shrinkage coefficients. This data-driven

procedure specifies the sparsification tuning parameter as mi = |b̂i|−2 such that each predictor i receives

a penalization “ranked in inverse-squared order of magnitude of the corresponding coefficient” (Ray and

24As these data are not available in real-time, we assume that at time t the set of predictors corresponds to the
quarterly average of the financial indicators from the third week of the previous quarter to the second week of the
current quarter. This approach mimics the information set available to the econometrician in real-time, and avoids
dealing with overlapping quarters. Once a new indicator enters the model, missing observations are set to 0, while
the Euclidean norm required for the sparsification step is computed only on the part of data available (scaled by the
a factor

√
T/T ∗ where T ∗ represent the lenght of the available sample).

25Further details on this approach are provided in Appendix D.2.
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Table 6: Sparse forecast performance

One-quarter ahead One-year ahead

MSFE logS CRPS wQS MSFE logS CRPS wQS

Full 0.900
(0.000)

0.327
(0.000)

0.896
(0.000)

0.883
(0.000)

1.003
(0.214)

0.239
(0.075)

0.954
(0.160)

0.943
(0.310)

Pre-2020 0.899
(0.012)

0.100
(0.001)

0.915
(0.003)

0.907
(0.010)

0.940
(0.518)

0.082
(0.355)

0.964
(0.348)

0.965
(0.648)

Rec. 0.906
(0.000)

0.716
(0.000)

0.897
(0.000)

0.890
(0.002)

0.935
(0.968)

0.312
(0.807)

1.011
(0.896)

1.005
(0.972)

Note: The table reports the average forecast metrics from the sparse model relative to Skt 4DFI. We use ratios for
the MSFE, CRSP and wQS, and differences for the logS. Ratios smaller than 1, and positive values of the log-score
differences indicate that the big data model performs better than Skt 4DFI. The p-values for Diebold and Mariano
(1995) tests, augmented with the small sample correction of Harvey et al. (1997), are in parentheses. Values in bold
are significant at the 10% level.

Bhattacharya, 2018). Therefore,

b∗i = sgn(b̂i)||Xj ||−2 max
{
|b̂i| · ||Xj ||2 −mi, 0

}
, (22)

where || · || represents the Euclidean norm of the vector Xj . Note that by applying the sparsification step

at each draw of the MCMC algorithm, the approach fully accounts for model uncertainty, akin to the idea

of Bayesian model averaging (Huber et al., 2021).

6.2 On the importance of financial indicators

Table 6 reports the forecasting performance of the sparse model, based on the b∗j coefficients, against

our baseline specification (Skt -4DFI ), over three different samples: the full sample (2000-2020), the same

sample excluding the quarters of 2020, and the 2000, 2007-2009 and 2020 recessions.

Over the full sample, the sparse model realizes gains of up to 10% (12%) in point (density) forecast

accuracy, at the one-quarter-ahead; these translate into gains up to 25% (20%) with respect to the Gaussian

benchmark. Interestingly, these performances are only slightly affected by 2020, suggesting the model is

well suited to cope with such extraordinary realizations. Looking at the cumulative sums of the relative

forecast scores it emerges that the sparse model gains advantage over the Skt -4DFI throughout the entire

sample and, especially, during the second quarter of 2020, where the model is able to timely capture the fall

in GDP and the surrounding uncertainty (see Appendix I). Largest improvements in density forecasting

are documented during the main recession periods, indicating that closely monitoring signals of distress in

financial markets can drastically affect the assessment of macroeconomic (downside) risk ahead and during

times of crisis, in line with the insights of Alessi et al. (2014).

We further investigate the importance of sparsity when relying on a large number of predictors. Specif-

ically, we compare the sparse model to a “dense” specification, where the SAVS step is omitted. The sparse

model is associated with large gains in forecasting performance under any loss function and over all the

forecasting samples we consider, pointing at the importance of reducing estimation uncertainty relative to
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Asymmetry
A2P2

BAA<-------------------
CARSPREAD

CBCAR<-------------------
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Figure 9: Sparsity
Note: The top panel reports the evolution of the financial predictors selected for the asymmetry parameter; the
bottom panel reports those for the scale parameter. Names in red indicate the 10 predictors with the highers
posterior probability (pip) of inclusion; names in bold indicates predictors with the highest pip around the Global
Financial Crisis.

the predictors’ loadings in a large data setting.26

To highlight the different predictor designs arising from the sparse specification, in Figure 9 we il-

lustrate the evolution of sparsity in the financial information set over time, for the asymmetry and scale

parameters. Financial information appears to be more informative for capturing the time variation of the

asymmetry parameter, rather than the scale, and for both we observe a decreasing pattern in sparsity.

On average, about 7.5% of the predictors feed into the prediction of the asymmetry parameter, while only

about 2% contribute to the scale; towards the end of the sample, more than 10% of the indicators inform

the asymmetry parameter, while only 5% relate to the scale. Moreover, during the financial crisis we doc-

ument a decease in the sparsity of the asymmetry parameter, highlighting the importance of monitoring

developments in financial markets to gauge the severity of the Great Recession.

By ranking predictors by their average posterior probability of inclusion, it emerges that indicators

pertaining to leverage markets provide most of the information relevant to predict the evolution of the

asymmetry parameter, along with credit conditions indicators and household debt. Credit spreads, instead,

appear most informative for the scale parameter. If we focus on the Global Financial Crisis, the size of the

shadow-banking sector (as highlighted by Adrian and Shin, 2008), as well as the issuance of commercial

mortgage-backed securities, provide useful signals to gauge the increasing downside risk associated with

the crisis outburst.
26See Table I1 in Appendix I.
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7 Conclusions

The severity of the latest financial crisis and the ensuing recession has spurred the interest of both aca-

demics and practitioners in developing models that allow us to better understand and predict downside risk

to economic growth. In this paper, we introduce a framework to capture permanent and transitory varia-

tion in the conditional distribution of GDP growth. Procyclical asymmetry is a strong feature of the data,

with business cycle fluctuations characterized by positive skewness in expansions and negative skewness in

recessions. As a result, the correlation between the mean and the variance of the conditional distribution

varies over business cycle phases, turning negative during recessions. These features become even more

prominent after we allow measures of financial conditions to drive time variation in the parameters. When

financial markets are overheating, future economic growth becomes more uncertain, and downside risk

arises, reflecting the negative skewness of the predictive distributions of GDP growth. Leverage and credit

are important signals when assessing downside risk in GDP growth. In particular, non financial leverage

measures anticipate a fall in economic growth, driving the rising negative asymmetry of the 2007-2009

recession. Overall, our results point to the paramount importance of nonlinearities and non-Gaussianity

in capturing the dynamics of downside risk to economic growth, and for improving prediction accuracy.

Conditioning on large financial information sets further improves forecasts, accurately characterizing the

left tail of the predictive distribution, both at short- and medium-term projections.

Our model highlights how the statistical properties of GDP growth have dramatically changed over the

last 50 years. The fall in volatility observed since the mid-1980s is reflected into a substantial fall in upside

volatility, with downside volatility remaining relatively stable over the entire sample. The slowdown in

long-run growth observed over the last two decades largely reflects a reassessment of risk, pointing to an

increase in downside risk in the conditional distribution. We document that, since the Great Recession,

the long-run predictions of the distribution of GDP growth display a marked negative skewness. This

suggests that in the last 10 years, the slow economic recovery took place in an environment characterized

by increasing downside risk to economic activity, well before the COVID-19 crisis.
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A Testing for time-varying asymmetry

Testing for the presence of time-varying asymmetry of economic growth has always been a daunting

task. One way to obtain a preliminary gauge of this time variation is to estimate skewness recursively over

smaller windows of data. In Figure A.1 we report the time series of Bai and Ng (2005) test statistics over

different rolling windows of 4 to 6 years. The null of symmetry is often rejected, with periods of significant

Figure A.1: Bai and Ng (2005) test for skewness
Note: We report the Bai and Ng (2005) test for skewness’ test statistic π̂3, for different rolling windows sizes of 4,
5 and 6 years. The gray lines represent 90% (dotted) critical values. Shaded bands represent NBER recessions.

negative and positive skewness detected over the sample.

Score driven models provide a framework for testing for time-varying asymmetry. As highlighted by

Harvey (2013, Section 2.5), the score incorporates information about the level of time variation of the

respective parameter. Specifically, the dynamics of any generic time-varying parameter of interest, ft+1,

can be approximated by ft+1 = f̄ +
∑∞

i=0 ψist−i, where st is the associated conditional score. Therefore,

by looking at the autocorrelation properties of the score, the Lagrange Multiplier (LM) principle can be

employed to formally test for the time variation of the parameter of interest (see also, Calvori et al., 2017).

Assume the conditional distribution of GDP growth being the Skew-t of Gómez et al. (2007) with fixed

scale and shape parameters, yt|θ,F t−1 ∼ Sktν(µt, σ, %), with log-likelihood given in Equation (2).1 The

1Horswell and Looney (1993) show that, when testing for skewness, omitting the presence of kurtosis might
deliver misleading results. Repeating the tests with Skew-Normal innovations delivers similar evidence.

2



gradient associated with γ = log σ and δ = arctanh % reads as:2[
∇γ,t
∇δ,t

]
=

[
(wtζ

2
t − 1)

− sgn(εt)(1−%2)
(1−sgn(εt)%) wtζ

2
t

]
, (A.1)

where wt = (1+η)
(1−sgn(εt))%+ηζ2t

, ζt = εt
σ , and εt = yt − µt. Alternatively, assuming time-varying location and

scale, and fixed shape parameters, that is yt|θ,F t−1 ∼ Sktν(µt, σt, %), the gradient associated with the

transformed shape parameter reads as

∇δ,t = −sgn(εt)(1− %2)

(1− sgn(εt)%)
wtζ

2
t , (A.2)

with ζt = εt
σt
. Tests for the time variation of these parameters can then be carried out using the score’s

autocorrelation function, rs(τ). The Portmanteau, Q, and the Ljung-Box, Q∗, test for the null hypothesis

of no time variation of the parameter of interest can be computed as:

Q(P ) = T
P∑
τ=1

rs(τ)2, (A.3)

and

Q(P )∗ = T (T + 2)
P∑
τ=1

(T − τ)−1rs(τ)2. (A.4)

For both tests, the optimal lag-length, P , is selected following the methodology of Escanciano and Lobato

(2009). As highlighted by Harvey and Thiele (2016) following this model selection procedure should select

an increasing number of lags as the (first) partial autocorrelation of the score goes to unity. Therefore,

under the null hypothesis, in large samples only the first lag is selected with probability one, and the

asymptotic distribution of the test is χ2
1.

Nyblom (1989) introduces a general test for constant parameters against a random walk alternative

based on the LM principle. In our case, the test statistics reads:

N = σ−2
∇ T−2

T∑
j=1

 T∑
k=j

∇i,k

2

(A.5)

where ∇i,k, for i = {γ, δ} denotes the score of the distribution at time k. Under the null hypothesis of

no time variation, the statistic follows a Cramer-von Mises distribution with a 5% critical value of 0.462.

Although the Nyblom test is usually regarded as a test against a random walk alternative, it can also be

interpreted as a test against a very persistent, but stationary, alternative, as in Harvey and Streibel (1998).

We apply the testing procedure to three different specifications for the dynamics of the location of the

conditional distribution of GDP growth, µt:

S1: µt = 0 and yt ∼ AR(2) with sktν(0, σ, %) innovations (see Section 2).

S2: µt ∼ GAS(1, 1) with a unit root (RW);

S3: µt ∼ RW +GAS(1, 2) with stationary roots;

2Following Harvey (2013), we only use the gradient to construct the tests. Results are robust to using scores
scaled by the square root of the diagonal elements of the Information matrix.
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Table A.1: Score-based tests for time variation

time-varying time-varying
location location & scale

Q Q∗ N Q Q∗ N

S2
Scale2 33.221∗∗∗ 33.724∗∗∗ 1.189∗∗∗
Shape 24.238∗∗∗ 24.606∗∗∗ 0.803∗∗∗ 11.565∗∗∗ 11.740∗∗∗ 1.468∗∗∗

S3
Scale2 48.028∗∗∗ 48.755∗∗∗ 0.982∗∗∗
Shape 38.668∗∗∗ 39.254∗∗∗ 1.009∗∗∗ 22.761∗∗∗ 23.106∗∗∗ 1.529∗∗∗

Note: Q is the portmanteau test, Q∗ is the Ljung-Box extension and N corresponds to the Nyblom test. The lag
length for the Portmanteau and Ljung-Box tests are selected following Escanciano and Lobato (2009). The first two
tests are distributed as a χ2 distribution with 1 degree of freedom, and the Nyblom test statistics is distributed as
a Cramer von-Mises distribution with 1 degree of freedom. ∗ p < 10%, ∗∗ p < 5%, ∗∗∗ p < 1%.

Table A.2: Score-based tests for time variation, 1973-2019 sample

time-varying time-varying
location location & scale

Q Q∗ N Q Q∗ N

S1
Scale2 3.432∗∗∗ 3.485∗∗∗ 1.489
Shape 5.199∗∗ 5.280∗∗ 0.559∗∗ 31.705∗∗∗ 32.196∗∗∗ 0.800∗∗∗

S2
Scale2 37.416∗∗∗ 37.995∗∗∗ 1.796∗∗∗
Shape 31.987∗∗∗ 32.482∗∗∗ 0.827∗∗∗ 33.737∗∗∗ 34.258∗∗∗ 1.642∗∗∗

S3
Scale2 48.937∗∗∗ 49.694∗∗∗ 1.536∗∗∗
Shape 52.172∗∗∗ 52.979∗∗∗ 0.727∗∗ 32.743∗∗∗ 33.249∗∗∗ 1.458∗∗∗

Note: Q is the portmanteau test, Q∗ is the Ljung-Box extension and N corresponds to the Nyblom test. The lag
length for the Portmanteau and Ljung-Box tests are selected following Escanciano and Lobato (2009). The first two
tests are distributed as a χ2 distribution with 1 degree of freedom, and the Nyblom test statistics is distributed as
a Cramer von-Mises distribution with 1 degree of freedom. ∗ p < 10%, ∗∗ p < 5%, ∗∗∗ p < 1%.

For each case, we consider a specification with constant γ = log σ, and another with time-varying γt =

log σt, following a GAS(1, 1) process. Tests’ results, using data on GDP growth from 1973 to 2020, are

reported in Table 1 (Section 2) for S1, while Table A.1 reports the results for S2 and S3. For all cases

and specifications we reject the null hypothesis of constant shape at the 1% confidence level.

To make sure that statistical significance is not induced by the Covid-related observations, we also

report the same test over the 1973-2019 sample. Table A.2 confirms that the evidence in favor of the shape

parameter being time-varying is robust to the inclusion of outliers.
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B Skew-t score derivations

In this Appendix we provide details on the Skew-t model introduced in Section 3. We derive the score

vector in Appendix B.1. In Appendix B.2 we propose a general treatment of the Skew-t distribution and

we introduce several tools necessary for the proof of the unbiasedness of the score vector (Appendix B.3)

and the derivation of the information matrix (Appendix B.4). We discuss the impact of the nonlinear

transformation of the scale and shape parameters on the score in Appendix B.5. We highlight how the model

deals with extreme outliers (Appendix B.6). Lastly, in Appendix B.7 we provide a matrix representation

of the model put forward in Section 3.1.

B.1 Score vector

Let yt be distributed as a Skew-t with location µt, scale σt, shape %t, and degrees of freedom ν,

yt|θ,F t−1 ∼ Sktν(µt, σt, %t), as in Gómez et al. (2007). The log-likelihood function in Equation (2) of

Section 3 can be expressed as:

`t = log p(yt|θ,F t−1) = log C(η)− 1

2
log σ2

t −
1 + η

2η
log g(µt, σt, %t),

where η = 1
ν , g(µt, σt, %t) =

(
1 +

ηζ2t
h2t

)
, ζt = εt

σt
, εt = (yt − µt), ht = (1 − sgn(εt)%t), sgn(·) is the sign

function, log C(η) = log Γ
(
η+1
2η

)
− log Γ

(
1
2η

)
− 1

2 log
(

1
η

)
− 1

2 log π, and Γ(·) is the Gamma function. The

time-varying parameters, µt, σt and %t, are non-stochastic conditional on the static parameters, θ, and

past information, F t−1, and the sole source of randomness comes from the prediction error εt. Let us also

define wt = (1+η)
(1−sgn(εt)%t)2+ηζ2t

= 1+η
h2t+ηζ

2
t
, a set of weights, common to all the gradients, that downplay the

effect of outliers.

Location The gradient with respect to the location parameter reads:

∇µ,t =
1

σt
wtζt.

Proof.

∇µ,t =
∂`t
∂µt

= −
(

1 + η

2η

)
1

g(µt, σt, %t)

∂g(µt, σt, %t)

∂µt

=

(
1 + η

2η

)
h2
t

h2
t + ηζ2

t

2ηζt
h2
tσt

=
1

σt
wtζt.

�

Squared scale The gradient with respect to the squared scale parameter reads:

∇σ2,t =
1

2σ2
t

(wtζ
2
t − 1).

Proof.

∇σ2,t =
∂`t
∂σ2

t

= − 1

2σ2
t

−
(

1 + η

2η

)
1

g(µt, σ2
t , %t)

∂g(µt, σ
2
t , %t)

∂σ2
t
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= − 1

2σ2
t

+

(
1 + η

2η

)
h2
t

h2
t + ηζ2

t

ηζ2
t

h2
tσ

2
t

=
1

2σ2
t

[
(1 + η)ζ2

t

h2
t + ηζ2

t

− 1

]
=

1

2σ2
t

(wtζ
2
t − 1)

�

Shape The gradient with respect to the shape parameter reads:

∇%,t = − sgn(εt)

(1− sgn(εt)%t)
wtζ

2
t

Proof.

∇%,t =
∂`t
∂%t

= −
(

1 + η

2η

)
1

g(µt, σt, %t)

∂g(µt, σt, %t)

∂%t

= −
(

1 + η

2η

)
h2
t

h2
t + ηζ2

t

2ηζ2
t sgn(εt)

h3
t

= − (1 + η)

h2
t + ηζ2

t

sgn(εt)

ht
ζ2
t

= − sgn(εt)

(1− sgn(εt)%t)
wtζ

2
t

�

B.2 The Skew-t distribution

In order to prove the unbiasedness of the score vector and to derive the associated information matrix,

we will exploit (i) the two-piece representation of the Skew-t distribution of Gómez et al. (2007), and (ii)

the relationship that links the t and the Beta distributions. To simplify the notation, from this point

onward we drop the time subscript from all parameters.

B.2.1 Two-piece representation

Let us denote with tν a symmetric Student-t density with ν degrees of freedom (Johnson et al., 1995),

y ∼ Sktν(µ, σ, %) is a Skew-t random variable with density function of the form:

p(y|µ, σ, %, ν) =
2

σ(a(%) + b(%))

[
tν

(
y − µ
σa(%)

)
I{y ≥ µ}+ tν

(
y − µ
σb(%)

)
I{y < µ}

]
, (B.1)

with location parameter µ, scale σ, and % being the parameter regulating the asymmetry of the distribution

with respect to the mode (Arellano-Valle et al., 2005). When a(%) = 1− % and b(%) = 1 + %, we obtain the

Skew-t distribution proposed by Gómez et al. (2007) which is the distribution we adopt throughout the

paper:

p(y|µ, σ, %, ν) =
C
σ

[
1 +

1

ν

(
y − µ

σ(1− sgn(y − µ)%)

)2
]− 1+ν

2

, (B.2)

where C =
Γ( ν+1

2 )
√
νπΓ( ν2 )

.
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Since any symmetric density on R can be uniquely determined from a density on R+, the Skt distri-

bution can be defined in terms of strictly positive densities (Arellano-Valle et al., 2005), and it is often

convenient to express this as a two-piece distribution (Fernández and Steel, 1998). Specifically, we can

re-parametrize the density in Equation (B.2) as:

p(y|µ, σ, %, ν) =


C
σ

[
1 + 1

ν

(
y−µ
σ+

)2
]− 1+ν

2

, y ≥ µ

C
σ

[
1 + 1

ν

(
y−µ
σ−

)2
]− 1+ν

2

, y < µ

(B.3)

where σ+ = (1− %)σ and σ− = (1 + %)σ are the scale parameters of the two Half-t densities on each side,

and

P (y ≥ µ) =
σ+

σ+ + σ−
=

1− %
2

, P (y < µ) =
σ−

σ+ + σ−
=

1 + %

2
. (B.4)

Taking the log of Equation (B.3) one obtains the log-likelihood function in Equation (2) of Section 3.

Recalling that ε = y−µ, we denote the positive (negative) prediction error as ε+ (ε−), and the corresponding

positive (negative) standardized version as ζ+ = ε+
σ+

(ζ− = ε−
σ−

). Moreover, h = (1 − sgn(ε)%), with

h+ = (1− %) and h− = (1 + %), thus h+ζ+ = ε+
σ , and h−ζ− = ε−

σ .

The two-piece formulation allows us to consider separately the two halves of the distribution when

taking expectations: for y = µ + σζ, where ζ ∼ Sktν(0, 1, %), the moments of y are weighted averages of

the moments of |ζ|, where |ζ| ∼ Htν , is an Half-t distribution (see, e.g., Gómez et al., 2007).3 Specifically:

E[ζr] = µr =
1

2

[
(1− %)r+1 + (−1)r(1 + %)r+1

]
dr(ν),

where dr(ν) =
∫∞
−∞ |ζ|

rp(ζ)dζ <∞ is the rth moment of the Half-t distribution (Johnson et al., 1995).

B.2.2 Useful relationships between the t and the Beta distribution

In the following sections of this Appendix we will extensively use the following results:

Corollary 1. Given a beta distributed variable, b ∼ B (α, β), then

E[bh(1− b)k] =
B (α+ h, β + k)

B (α, β)
,

where B(α, β) is the beta function (Harvey, 2013, pag. 23).

Corollary 2. Let T ∼ t1/η be a t-distributed random variable with 1
η degrees of freedom. We can define

b =
ηT 2

1 + ηT 2
∼ B

(
1

2
,

1

2η

)
,

and
1− b =

1

1 + ηT 2
∼ B

(
1

2η
,
1

2

)
,

(Harvey, 2013, pag. 25).

Corollary 3. Let T ∼ t1/η be a t-distributed random variable with 1
η degrees of freedom. Then,

√
ηT

1 + ηT 2
=

√
ηT√

1 + ηT 2

1√
1 + ηT 2

= b
1
2 (1− b)

1
2 .

3Notice that the Half-t distribution is a special case of the folded-t distribution (Psarakis and Panaretoes, 1990).
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Notable results Following the result in Corollary 1, we can compute some notable expectations of the

form E[bh(1− b)k], where b is defined as in Corollary 2:

E[b] =
B
(

3
2 ,

1
2η

)
B
(

1
2 ,

1
2η

) =

1
2Γ
(

1
2

)
Γ
(

1
2η

)
Γ
(

1+3η
2η

) Γ
(

1+η
2η

)
Γ
(

1
2

)
Γ
(

1
2η

) =
η

1 + η
, (B.5)

E[b2] =
B
(

5
2 ,

1
2η

)
B
(

1
2 ,

1
2η

) =

3
4Γ
(

1
2

)
Γ
(

1
2η

)
Γ
(

1+5η
2η

) Γ
(

1+η
2η

)
Γ
(

1
2

)
Γ
(

1
2η

) =
3η2

(1 + 3η)(1 + η)
, (B.6)

E[b
1
2 (1− b)

1
2 ] =

B
(

1, 1+η
2η

)
B
(

1
2 ,

1
2η

) =
Γ (1) Γ

(
1+η
2η

)
Γ
(

1+η
2η + 1

) Γ
(

1+η
2η

)
Γ
(

1
2

)
Γ
(

1
2η

) =
2η

1 + η

Γ
(

1+η
2η

)
√
πΓ
(

1
2η

) =
2
√
η

1 + η
C, (B.7)

E[b(1− b)] =
B
(

3
2 ,

1+2η
2η

)
B
(

1
2 ,

1
2η

) =

1
2Γ
(

1
2

)
1
2ηΓ

(
1
2η

)
Γ
(

1+5η
2η

) Γ
(

1+η
2η

)
Γ
(

1
2

)
Γ
(

1
2η

) =
η

(1 + 3η)(1 + η)
, (B.8)

E[b
3
2 (1− b)

1
2 ] =

B
(

2, 1+η
2η

)
B
(

1
2 ,

1
2η

) =
Γ
(

1+η
2η

)
Γ
(

1+5η
2η

) Γ
(

1+η
2η

)
Γ
(

1
2

)
Γ
(

1
2η

) =
4C√ηη

(1 + 3η)(1 + η)
, (B.9)

recognizing thatB(a, b) = Γ(a)Γ(b)
Γ(a+b) , and Γ

(
1+3η

2η

)
= (1+η)

2η Γ
(

1+η
2η

)
, Γ
(

1+5η
2η

)
= 1+3η

2η Γ
(

1+3η
2η

)
= (1+3η)(1+η)

4η2
Γ
(

1+η
2η

)
,

Γ(2) = Γ(1) = 1, and Γ
(

1
2

)
=
√
π. We will extensively use these results in the following derivations.

B.3 Unbiasedness of the scores

Following Equation (B.3), we can rewrite the gradient as the sum of the semi-gradients computed over

the positive and negative semi-support, ∇+ and ∇− respectively (see also, Harvey, 2013, Sec. 3.11.2):

∇ = ∇+I(y ≥ µ) +∇−I(y < µ), (B.10)

where I(·) is the indicator function. It follows that the expectation of the gradient can be computed as:

E[∇] = E[∇+]P (y ≥ µ) + E[∇−]P (y < µ),

where the probabilities are defined in Equation (B.4). In addition, recall that the (time-varying) parame-

ters, µ, σ and % are conditionally non-stochastic, and thus the sole source of randomness comes from the

prediction errors.

Location. The gradient with respect to the location is:

∇µ =
1

σ
wζ.

Taking advantage of the two-piece representation in Equation (B.10) and given the definition in (B.4):

E[∇µ] = P (y ≥ µ)E[∇µ,+] + P (y < µ)E[∇µ,−]

=
1

σ
(P (y ≥ µ)E[(wζ)+] + P (y < µ)E[(wζ)−])

=
1

σ
E[wζ].
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Notice that:

wζ =
1 + η
√
η

√
ηζ

h2 + ηζ2
=

1 + η
√
η

√
ησε

σ2h2 + ηε2
,

and evaluating over the positive (negative) semi-support we have:

(wζ)+ =
1

1− %
1 + η
√
η

√
ηζ+

1 + ηζ2
+

, (wζ)− = − 1

1 + %

1 + η
√
η

√
η|ζ−|

1 + ηζ2
−
,

for ζ− = −|ζ−| and |ζ−|2 = ζ2
−. Using Corollaries 1 and 3 and Equation (B.7) we have that:

E[(wζ)+] =
1

1− %
1 + η
√
η

E[b
1
2 (1− b)

1
2 ] =

2C
1− %

,

E[(wζ)−] = − 1

1 + %

1 + η
√
η

E[b
1
2 (1− b)

1
2 ] = − 2C

1 + %
,

and thus,

E[∇µ] =
1

σ
E[wζ] = 0. (B.11)

�

Squared scale. The score with respect to the squared scale is:

∇σ2 =
1

2σ2
(wζ2 − 1).

Taking advantage of the two-piece representation and given the definition in (B.4):

E[∇σ2 ] = P (y ≥ µ)E[∇σ2,+] + P (y < µ)E[∇σ2,−]

=
1

2σ2

(
P (y ≥ µ)E[(wζ2)+] + P (y < µ)E[(wζ2)−]− 1

)
=

1

2σ2

(
E[(wζ2)]− 1

)
.

Notice that:

wζ2 =
1 + η

η

ηζ2

h2 + ηζ2
=

1 + η

η

ηε2

σ2h2 + ηε2
,

and evaluating over the positive (negative) support we have:

(wζ2)+ =
1 + η

η

ηζ2
+

1 + ηζ2
+

, (wζ2)− =
1 + η

η

ηζ2
−

1 + ηζ2
−
.

Using Corollaries 1 and 2 and Equation (B.5):

E
[
(wζ2)+

]
= E

[
(wζ2)−

]
=

1 + η

η
E[b] = 1, (B.12)

thus E
[
(wζ2)

]
= 1 and

E[∇σ2 ] = 0.

�

Shape. The score with respect to the shape is:

∇% = −sgn(ε)

h
wζ2.
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Taking advantage of the two-piece representation, given the definition in (B.4) and Equation (B.12):

E[∇%] = P (y ≥ µ)E[∇%,+] + P (y < µ)E[∇%,−]

= −P (y ≥ µ)

1− %
E[(wζ2)+] +

P (y < µ)

1 + %
E[(wζ2)−] = 0.

�

B.4 Fisher information matrix

Provided E[∇] = 0, we can compute the information matrix as the outer product of the gradients,

I = E[∇∇′]. In what follows, we will show that the information matrix is equal to:4

I =


Iµ,µ Iµ,σ2 Iµ,%
Iσ2,µ Iσ2,σ2 Iσ2,%

I%,µ I%,σ2 I%,%

 =


(1+η)

σ2(1+3η)(1−%2)
0 − 4C(1+η)

σ(1+3η)(1−%2)

0 1
2σ4(1+3η)

0

− 4C(1+η)
σ(1+3η)(1−%2)

0 3(1+η)
(1+3η)(1−%2)

 .
In the same fashion as above, we can take advantage of the two-piece representation, and write:

E[∇∇′] = P (y ≥ µ)E[∇+∇′+] + P (y < µ)E[∇−∇′−]. (B.13)

where (B.4) defines P (y ≥ µ) and P (y < µ).

Iµ,µ.

Iµ,µ = E[∇µ∇′µ] =
1

σ2
E
[
w2ζ2

]
,

taking advantage of Equation (B.13) we get:

Iµ,µ = P (y ≥ µ)E [∇µ,+∇µ,+] + P (y < µ)E [∇µ,−∇µ,−]

=
1

σ2

(
P (y ≥ µ)E[(w2ζ2)+] + P (y < µ)E[(w2ζ2)−]

)
=

1

σ2
E[w2ζ2].

Notice that:

w2ζ2 =
(1 + η)2

η

ηζ2

h2 + ηζ2

1

h2 + ηζ2
=

(1 + η)2σ2

η

ηε2

σ2h2 + ηε2

1

σ2h2 + ηε2
;

evaluating over the positive (negative) semi-support:

(w2ζ2)+ =
(1 + η)2

η(1− %)2

ηζ2
+

1 + ηζ2
+

1

1 + ηζ2
+

, (w2ζ2)− =
(1 + η)2

η(1 + %)2

ηζ2
−

1 + ηζ2
−

1

1 + ηζ2
−
.

Using Corollaries 1 and 2 and Equation (B.8) we have:

E[(w2ζ2)+] =
(1 + η)

(1 + 3η)(1− %)2
, E[(w2ζ2)−] =

(1 + η)

(1 + 3η)(1 + %)2
,

and thus,

Iµ,µ =
(1 + η)

σ2(1 + 3η)

(
P (y ≥ µ)

(1− %)2
+
P (y < µ)

(1 + %)2

)
4Notice that Gómez et al. (2007) derive the same expression using the expectation of the negative Hessian matrix.
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=
(1 + η)

σ2(1 + 3η)(1− %2)
.

�

Iσ2,σ2.

Iσ2,σ2 = E[∇σ2∇′σ2 ] =
1

4σ4
E
[
(wζ2 − 1)2

]
=

1

4σ4
E
[
1− 2wζ2 + w2ζ4

]
=

1

4σ4

(
E
[
w2ζ4

]
− 1
)
,

as per Equation (B.12). Using the two-piece representation:

Iσ2,σ2 = P (y ≥ µ)E
[
∇σ2,+∇′σ2,+

]
+ P (y < µ)E

[
∇σ2,−∇′σ2,−

]
=

1

4σ4

(
P (y ≥ µ)E[(w2ζ4)+] + P (y < µ)E[(w2ζ4)−]− 1

)
.

Notice that:

w2ζ4 =
(1 + η)2

η2

(
ηζ2

h2 + ηζ2

)2

=
(1 + η)2

η2

(
ηε2

σ2h2 + ηε2

)2

,

and evaluating over the positive (negative) semi-support:

(w2ζ4)+ =
(1 + η)2

η2

(
ηζ2

+

1 + ηζ2
+

)2

, (w2ζ4)− =
(1 + η)2

η2

(
ηζ2
−

1 + ηζ2
−

)2

.

Using Corollaries 1 and 2 and Equation (B.6) we have:

E[(w2ζ4)+] = E[(w2ζ4)−] =
(1 + η)2

η2
E
[
b2
]

=
3(1 + η)

(1 + 3η)
(B.14)

Thus,

Iσ2,σ2 =
1

4σ2

(
3(1 + η)

(1 + 3η)
− 1

)
=

1

2σ4(1 + 3η)

�

I%,%.

I%,% = E[∇%∇′%] =
1

h2
E
[
w2ζ4

]
.

Using the two-piece representation and Equation (B.14) we can write:

I%,% = P (y ≥ µ)E [∇%,+∇%,+] + P (y < µ)E [∇%,−∇%,−]

=
P (y ≥ µ)

(1− %)2
E
[
(w2ζ4)+

]
+
P (y < µ)

(1 + %)2
E
[
(w2ζ4)−

]
=

3(1 + η)

(1 + 3η)(1− %2)
.

�
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Iµ,%.

Iµ,% = E[∇µ∇′%] = −sgn(ε)

hσ
E
[
w2ζ3

]
Using the two-piece representation we have:

I%,µ = P (y ≥ µ)E [∇%,+∇µ,+] + P (y < µ)E [∇%,−∇µ,−]

= −P (y ≥ µ)

(1− %)σ
E
[
(w2ζ3)+

]
+
P (y < µ)

(1 + %)σ
E
[
(w2ζ3)−

]
= − 1

2σ

(
E
[
(w2ζ3)+

]
− E

[
(w2ζ3)−

])
.

Notice that:

w2ζ3 =
(1 + η)2

η
√
η

ηζ2

h2 + ηζ2

√
ηζ

h2 + ηζ2
=

(1 + η)2

η
√
η

ηε2

σ2h2 + ηε2

√
ησε

σ2h2 + ηε2

and evaluating over the positive (negative) semi-support:

(w2ζ3)+ =
1

(1− %)

(1 + η)2

η
√
η

ηζ2
+

1 + ηζ2
+

√
ηζ+

1 + ηζ2
+

, (w2ζ3)− = − 1

(1 + %)

(1 + η)2

η
√
η

ηζ2
−

1 + ηζ2
−

√
η|ζ−|

1 + ηζ2
−
,

for ζ− = −|ζ−|. Using Corollaries 1 and 2 and Equation (B.9) we get:

E[(w2ζ3)+] =
4C(1 + η)

(1− %)(1 + 3η)
, E[(w2ζ3)−] = − 4C(1 + η)

(1 + %)(1 + 3η)
; (B.15)

therefore,

I%,µ = − 4C(1 + η)

σ(1 + 3η)(1− %2)

�

Iµ,σ2.

Iµ,σ2 = E [∇µ∇σ2 ] =
1

2σ3
{E[w2ζ3]− E[wζ]}

=
1

2σ3
E[w2ζ3],

as per equation Equation (B.11). Using the two-piece representation and Equation (B.15) we obtain:

Iµ,σ2 = P (y ≥ µ)E[∇µ,+∇σ2,+] + P (y < µ)E[∇µ,+∇σ2,−]

=
1

2σ3

(
P (y ≥ µ)E

[
(w2ζ3)+

]
+ P (y < µ)E

[
(w2ζ3)−

])
= 0.

�

I%,σ2.

I%,σ2 = E [∇%∇σ2 ] = −sgn(ε)

2hσ2

(
E[w2ζ4]− E[wζ2]

)
.

Using the two-piece representation we get:

I%,σ2 = P (y ≥ µ)E
[
∇%,+∇σ2,+

]
+ P (y < µ)E

[
∇%,−∇σ2,−

]
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= − 1

4σ2

(
E
[
(w2ζ4)+

]
− E

[
(w2ζ4)−

])
+

1

4σ2

(
E
[
(wζ2)+

]
− E

[
(wζ2)−

])
= 0,

after using Equation (B.12) and Equation (B.14). �

B.5 Nonlinear transformation of the parameters

In order to ensure the scale σt to be positive and the shape %t to lie within the unit circle, we model

γt = log σt and δt = arctanh %t. From a straightforward application of the chain rule for differentiation we

have:

∂`t
∂γt

=
∂`t
∂σ2

t

∂σ2
t

∂γt
,

∂`t
∂δt

=
∂`t
∂%t

∂%t
∂δt

,

where ∂σ2
t

∂γt
= 2σ2

t , and
∂%t
∂δt

= (1− %2
t ). Defining the vector of parameters of interest as ft = [µt, γt, δt]

′, we

have that ∂`t
∂ft

= J ′t∇t, where ∇t = [∇µ,t,∇σ2,t,∇%,t]′, and the associated Jacobian matrix reads:

Jt =


1 0 0

0 2σ2
t 0

0 0 1− %2
t

 .
As for the scaling matrix, we use a smoothed version of the information matrix:

Ṡt = (1− χ)Ṡt−1 + χ(J ′tdiag(It)Jt)−
1
2 ,

where the smoothing parameter 0 < χ < 1 is estimated together with the other parameters of the model.5

Note that without smoothing (for χ = 1), the scaled score st = (J ′tdiag(It)Jt)−
1
2J ′t∇t = diag(It)−

1
2∇t,

which leads to: 
sµ,t

sγ,t

sδ,t

 =


√

(1+3η)(1−%2t )
(1+η) wtζt√

1+3η
2 (wtζ

2
t − 1)

−sgn(εt)
√

(1+3η)
3(1+η)

(1+sgn(εt)%t)
(1−sgn(εt)%t)

wtζ
2
t

 ,
where sδ,t follows noting that (1 + sgn(ε)%)(1− sgn(ε)%) = (1− %2).

B.6 Robustness to outliers

Here we consider the limiting behaviour of the Skt scaled scores. We show that for (standardized)

forecast errors approaching positive (negative) infinity, the scaled scores either converge to zero, implying

a trimming of the outliers, or converge to a positive (negative) constant, akin to Winsorizing extreme

observations (see, e.g., Caivano and Harvey, 2014). Specifically,

lim
ζ→±∞

sµ,t = 0,

lim
ζ→±∞

sγ,t =
1 + η

η

√
1 + 3η

2
,

5It is possible to show that the element of Ṡt relative to γt always converges to
√

2
1+3η . Therefore, the smoothing

the scaling matrix has an impact on µt and δt only.
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lim
ζ→±∞

sδ,t = ∓1 + η

η

√
(1 + 3η)(1± %t)
3(1 + η)(1∓ %t)

.

In line with results for the t distribution, the scaled score for the location trims outliers, preventing any

update of the parameter (Maronna et al., 2019). The limits of the scaled scores for the scale and shape

parameter, on the other hand, converge to constant factors. These are functions of the degrees of freedom

parameter, as well as of the conditional asymmetry parameter at time t for the shape.

B.7 Matrix representation

Given the vector of time-varying parameters, ft, we can express the score-driven law of motion of

Equation (3) in matrix form.



µ̄t+1

µ̃t+1

µ̃t

γ̄t+1

γ̃t+1

δ̄t+1

δ̃t+1


︸ ︷︷ ︸
ft+1

=



ςµ 0 0

κµ 0 0

0 0 0

0 ςγ 0

0 κγ 0

0 0 ςδ

0 0 κδ


︸ ︷︷ ︸

A



sµt

sγt

sδt


︸ ︷︷ ︸
st

+



1 0 0 0 0 0 0

0 φµ,1 φµ,2 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 φγ 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 φδ


︸ ︷︷ ︸

B



µ̄t

µ̃t

µ̃t−1

γ̄t

γ̃t

δ̄t

δ̃t


︸ ︷︷ ︸
ft

+



0 0 . . . 0

β1
µ β2

µ . . . β
k
µ

0 0 . . . 0

0 0 . . . 0

β1
γ β2

γ . . . β
k
γ

0 0 . . . 0

β1
δ β2

δ . . . β
k
δ


︸ ︷︷ ︸

C

Xt,

with Xt being a k-dimensional vector of predictors, at time t.

C On the importance of dynamic conditional moments

In this Section, we consider a restricted specification of the model in line with the work of Plagborg-

Møller et al. (2020). As noted in Section 3, when the autoregressive feature of the model is dropped out,

and the information content of past prediction errors (condensed into the score) is omitted, our framework

collapses to a parametric model for the distribution of GDP growth akin to the one in Plagborg-Møller

et al. (2020).6 Specifically, setting ςµ = φµ,1 = φµ,2 = κµ = ςγ = φγ = κγ = ςδ = φδ = κδ = 0, we obtain:

µt+1 = µ̄+ β′µXt, (C.1)

γt+1 = γ̄ + β′γXt, (C.2)

δt+1 = δ̄ + β′δXt, (C.3)

so that the parameters’ laws of motion become linear functions of predictors only.

We estimate the model above using as predictors the 4 disaggregated components of the NFCI, as well

as the factors used in Plagborg-Møller et al. (2020) (including in both cases lagged values of GDP growth).7

Table C.1 reports the Deviance Information Criterion, the complexity subcomponent, and the log Marginal

Likelihood associated to these two specifications. Our baseline model outperforms the two restricted

6Note that Plagborg-Møller et al. (2020) consider the Skew-t of Azzalini and Capitanio (2003).
7For comparability purposes, we restrict the estimation sample to the 1973-2018 periods, as in Plagborg-Møller

et al. (2020).
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Table C.1: Deviance Information Criterion

Model DIC pD ML

Skt 4DFI 799.351
(13.488)

9.443
(3.458)

−399.048
(8.458)

Plagborg-Møller et al. (2020) with 4DFI 828.937
(0.526)

7.853
(0.262)

−412.925
(0.962)

Plagborg-Møller et al. (2020) Financial Factor 813.586
(0.536)

8.668
(0.279)

−406.127
(1.178)

Note: The table reports the Deviance Information Criterion (DIC) of Spiegelhalter et al. (2002), along with the
relative model complexity measure (pD), and the log Marginal Likelihood (logML) for the Skt -4DFI specification,
and the nested version of Plagborg-Møller et al. (2020), with the four disaggregated financial indices and with the
global and financial factors.

specifications over all criteria. Specifically, it is worth noting that, despite an increase in complexity of

about 1% associate with our model, the DIC value is about 5% smaller.

Figure C.1 reports the estimated volatility and skewness from the baseline model (in blue) and the

restricted specification (in red). For comparability purposes, both models are estimated using the disag-

gregated components of the NFCI as predictors.8 The results of the restricted specification are broadly

in line with those reported by Plagborg-Møller et al. (2020). The estimated skewness from their model

is cyclical but displays large uncertainty, so that the 90% credible intervals only rarely excludes the zero.

Moreover, the simplified specification of the time-varying model does not display the well-known reduction

of the volatility occurred during the Great Moderation period.

Overall, comparing the restricted model to the baseline specification highlights the benefits associated

with a richer framework, including the score of the predictive likelihood, long-run components, and persis-

tent transitory variations. In terms of volatility estimates, the presence of long-run components, as well as

the addition of the score (which for the volatility is a function of the squared prediction errors) as signal for

the updating, turn out to be of key importance to track the well-established stylized fact of a substantial

decline in volatility from the mid-1980s (McConnell and Perez-Quiros, 2000; Stock and Watson, 2002).

The transitory components, on the other hand, allow the model to recover significant variations of the

skewness coefficients. This is not surprising, as the unrestricted model implies that the time variation in

the parameters reflects current and past discounted variation of the predictors (as well as the information

in the scaled score). This implies that high frequency noisy variations of the predictors are averaged out

when incorporated into the time-varying dynamics. Moreover, while the skewness from both models set on

similar levels at the beginning of the sample and during the 1990s, the asymmetry implied by the restricted

specification becomes lower over the mid 1980s, while attaining higher values after the Global Financial

Crisis. This pattern supports the addition of secular components, able to track the declining trend of

business cycle skewness, as documented by Jensen et al. (2020).

Furthermore, we investigate to what extent our results are affected by the different choice of financial

predictors. Re-estimating our baseline model using the two factors employed by Plagborg-Møller et al.

(2020), we recover very similar time-varying second and third moments to the ones reported for our baseline

specification. Volatility displays a clear countercyclical dynamics, as well as a sharp fall in the mid-

1980s. Skewness exhibits pronounced cyclical variation, with recessions characterized by negatively skewed

8The mean GDP growth extracted from the two models displays less noticeable differences.
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Figure C.1: Time-varying moments: Skt 4DFI vs. Plagborg-Møller et al. (2020)
Note: The plots illustrate the estimated time-varying volatility (left panel) and skewness (right panel) with 90%
credible intervals. Results for the Skt -4DFI are reported in blue, while red lines report results for the nested version
of Plagborg-Møller et al. (2020)’s model. Shaded bands represent NBER recessions.

conditional distributions, and expansions associated with positively skewed distributions. Again, one should

not be surprised by these broad similarities. The inclusion of the scaled score as a driver of the time-varying

parameters introduces a self-correction mechanism to the model, which allows the parameters to closely

track the most pronounced features of the data, regardless of the predictors included in the model. In

terms of DIC, the baseline specification with the disaggregated components of the NFCI continues to be

preferred with respect to the alternative factors included by Plagborg-Møller et al. (2020).

D Bayesian estimation

In this Section we outline the Bayesian approach for the estimation of the models. We estimate

the vector of static parameters θ, and the time-varying parameters ft, via an Adaptive Random-Walk

Metropolis-Hastings (ARWMH), consisting of the following steps:

( i ) Estimate θ∗ via Maximum Likelihood to initialize the sampling algorithm;

( ii ) Sample θj from a random walk candidate density;

(iii) Compute {f1, ..., fT |θj}, the log-likelihood `(y|θj), and the posterior π(θj |y);

( iv) Accept or reject θj according to the MH rule and update the sampling variance;

( v ) Compute the statistics of interest as the percentiles of the empirical distribution function.

In the following subsections, we provide details on the prior specification, including the shrinkage priors

and the sparsity step, and we illustrate the steps of the algorithm along with convergence diagnostics.

D.1 Prior specification

Consider Equations (8), (9), (11), (12), (14) and (15), let φ be a generic first-lag partial autocor-

relation, while ς and κ being generic score loadings of the permanent and transitory components, re-

spectively. β is a generic predictor loading, η is the inverse of the Skew-t degrees of freedom, and
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χ is the smoothing parameter of the scaling matrix, St. The initial values of the permanent com-

ponents are collected in the vector f̄0 = [µ̄0, δ̄0, γ̄0]. Prior specifications for these parameters read:

φ ∼ NID(µφ, σφ) · I(φ∈Φ); (D1) β ∼ NID(µβ, σβ); (D2)

ς, κ ∼ G−1(aj , bj), j = ς, κ; (D3) η ∼ G−1(aη, bη) · I(η∈H); (D4)

χ ∼ U
(
0, 1

2

)
; (D5) f̄0 ∼ N (m0, s0). (D6)

Prior specification D1 sets the prior distribution for the first autroregressive parameters: we target high

persistence, with µφ . 1, with a standard tightness of σµ = 0.2, in line with Bayesian Vector Autoregressive

models (see, e.g., Doan et al., 1984; Sims and Zha, 1998). We restrict the prior distribution to only span

the stationary region, Φ, by truncating the support, which gives rise to an improper prior distribution

as in Cogley and Sargent (2005).9 We also target the stationarity of the transitory component of the

location through a prior on the sum of the autoregressive coefficients (Sims and Zha, 1998). Let φS be the

sum of two generic autoregressive coefficients, φS = φ1 + φ2, we assume φS ∼ N (µφS , σφS ) · I(φ∈Φ) with

µφ2 . 1 and and σsφ = 0.2. Predictor loadings (D2) are drawn from a Normal distribution with µβ = 0,

and standard deviations σβ are set to small values of 0.05, 0.2 and 0.1 for the location, scale and shape

parameters, respectively. These priors aim at preventing model overfitting, applying an L2 regularization,

akin to the shrinkage induced by a Ridge-type regression. In D3, we set inverse gamma priors for the score

loadings, such that they reflect the a priori expectation of small, but positive coefficients, in line with the

properties of the score-driven filters (for further discussion, see Blasques et al., 2014). We set aς = aκ = 4,

and bς = 1
10 and bκ = 1

3 , to reflect the properties of the permanent and transitory components. We use an

inverse gamma prior for η, the inverse of the degrees of freedom parameter, with aη = 2 and bη = 10 (D4).

In line with Juárez and Steel (2010), these values allow the distribution to explore a wide range of feasible

values for ν, with a mean of 20 and a median of 10. In order to ensure the existence of, at least, the first

three moments, we restrict the support to the H = [0, 0.33] set. The prior for the smoothing parameter of

the Information matrix is Uniform within the [0, 0.5] interval (D5). As per D6, the initial values for the

permanent component of time-varying parameters are drawn from a multivariate Gaussian distribution,

with mean vector m0, and s0 = 0.5I3. The mean vector m0 is obtained by matching the moments of the

first six years of data.

D.2 Horseshoe priors and SAVS

Consider the regression model:

yt = b′Xt + et, et ∼ iid(0, σ2
eIp) (D7)

the Horseshoe (HS) priors of (Carvalho et al., 2010) posit Ridge-type priors for the coefficients: bi ∼
N (0, λiτ), where the hyperparameters λi and τ control the local (coefficient specific) and the global shrink-

9As an alternative to the use of rejection sampling, one can draw the partial autocorrelations to be restricted
between 0 and 1 (see, e.g., Delle Monache and Petrella, 2017). Otherwise, Planas et al. (2008) discuss how to
reparametrize the model so as to impose priors on the periodicity and amplitude of an AR(2) cycle with complex
roots.
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age, respectively. We follow the original paper in setting the hyperpriors as:10

λi ∼ HC+(0, 1), τ ∼ HC+(0, 1), (D8)

where HC+(0, 1) denotes the standard Half-Cauchy distributions with density function

p(z) =
2

π(1 + z2)
, z ∈ R+. (D9)

Unlike other common shrinkage priors (e.g. Ridge, Lasso), the HS priors is free of exogenous inputs,

implying a fully adaptive shrinkage procedure.

Known pitfalls of shrinkage operators account for parameters not being exactly set to zero (e.g. Ridge),

thus increasing parameter uncertainty, or weak selection performances when predictors are correlated (e.g.

Lasso). A common remedy to the first pathology is the sparsification of the near-zero elements. Let p be

the number of possible predictors, the sparsification problem can be cast as:

b∗ = argmin
b

[
1

2
||Xb̂−Xb||22 +

p∑
j=1

mi|bi|
]
, (D10)

where the sparse coefficients b∗ are obtained minimizing the Euclidean distance between Xb and the model

fit obtained from the shrinkage operator. Additional penalty for the non-zero parameters is controlled by

mi, which represents a variable specific tuning parameter, generally chosen on the basis of computationally

expensive methods (e.g. cross-validation). In their recent contribution, Ray and Bhattacharya (2018)

introduce a purely data-driven, and less burdensome solution to the choice of the parameter mi, proven to

be robust to correlated designs. They suggest to specify the tuning parameter as mi = |b̂i|−2 such that the

jth variable receives a penalization “ranked in inverse-squared order of the magnitude of the corresponding

coefficient” (Ray and Bhattacharya, 2018), an approach similar to the Adaptive Lasso of Zou (2006). The

Signal Adaptive Variable Selector (SAVS) algorithm can then be expressed as:

b∗i = sgn(b̂i)||Xi||−2 max
{
|b̂i| · ||Xi||2 −mi, 0

}
, (D11)

where || · || represents the Euclidean norm of the vector Xi.

D.3 Adaptive Metropolis-Hastings

Posterior estimates of the parameters are obtained via simulation by means of the Adaptive Metropolis-

Hastings algorithm proposed by Haario et al. (1999). Given that estimated parameters lie in bounded

regions of the parameter space, we augment the algorithm with a rejection step to prevent numerical

instability due to invalid parameter draws. The algorithm works as follows: given the (d × 1) vector of

static parameters θ = (ς ′, κ′, φ′, f̄ ′0, χ, η)′, we define θj as the draw of the parameters at the jth iteration of

the sampler, generated from the random walk kernel:

θj = θ′ + σj,sε ε ∼ N (0,Σ′H), (D12)

10Makalic and Schmidt (2015) exploit the scale mixture of Inverse Gamma distributions to approximate the Half-
Cauchy distributions to propose a tractable framework for posterior simulation via Gibbs sampling. However, this
hierarchy features twice as may parameters (auxiliary variables) compared to the original specification.
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where σj,s is a scale parameter that contributes to the stability of the adaptive algorithm. Σ′H is the

covariance matrix of the last H draws, that is, the covariance matrix updated to reflect the variability of

the last H iterations. Given these two elements, we postulate the following adaptive scheme: we compute

the local acceptance rate α̃s each s iterations; if the acceptance rate is significantly greater (smaller) than

the 25-35% target rate, we adjust the scale parameter according to a rescaling function r(α̃s)

r(α̃s) =


tanh(4α̃s + 0.24), α̃s < 0.25

1, 0.25 ≤ α̃s ≤ 0.35

0.88 + α̃s2, α̃s > 0.35

(D13)

such that σj+1,s = r(α̃s)σj,s. Figure D1 plots the shape of the rescaling function against the admissible

range of values for α̃s. Due to the asymmetry of the intervals before and after the 25-35% acceptance
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Figure D1: r(α̃s) rescaling function
Note: The figure plots the rescaling function we apply to the variance of the candidate distribution to target an
acceptance rate between 25% and 35%.

region, the two branches of the reshaping function feature different slopes and curvatures.

In addition, every U ≤ H iterations, we use the last H draws to recalibrate the covariance matrix of the

proposal distribution: Σ′H = K̃√
H−1

, where K̃ is the (H × d) centered matrix of the last H draws, obtained

as K − E[K]; in this process we also reinitialize the scale parameter at the value of 2.38√
d
, as suggested

by Gelman et al. (1996). According to the Metropolis-Hasting procedure, we accept θj with probability

p = min
{

1, exp(π(θj |y)− π(θ′|y))
}
, where π(θj |y) ∝ π(θj)`(y|θj) is the posterior distribution conditional

on draw j. Discarded draws are replaced by the latest accepted draw. In order to prevent failures of the

algorithm, we discard draws that do not lie in the bounded region of the parameter space, replacing them as

specified. We set the number of iterations to 20000, of which we keep the last 40%. We reduce dependence

between consecutive draws by “thinning” each 2 realizations. Posterior distributions are eventually obtained
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from a sample of 4000 iterations. We adjust the scale parameter each hundred iterations (s = 100), while

the adaptive step takes place every U = 1500 iterations, considering H = 2500 past iterations.11 The

algorithm is rather efficient, and a complete chain from the baseline model in Section 4 can be obtained

in less than 3 minutes, whereas for the large data model, a complete chain can be obtained in about 7

minutes.

Algorithm 1: Adaptive Random-Walk Metropolis-Hastings

for j=1,2,...,N do

Generate: θj ∼ N (θ′, σ2
j,sΣ

′
H) ;

if θj ∈ Θ then
Filtering step

Compute: {f1, ..., fT |θj};
Evaluate: `(y|θj) and π(θj |y) ∝ π(θj)`(y|θj) ;

Evaluate: p = min
{

1, exp(π(θj |y)− π(θ′|y))
}
;

MH step

Draw: u ∼ U [0, 1] ;

if u < p then

θ′ = θj , αj = 1;

end

end

Adaptive step

if j( mod s) = 0 then
σj+1,s = σj,s ∗ r(α̃s)

end

if j( mod U) = 0 then
Σ′H = Cov({θi}Hi=j−H), σj,s = 2.38√

d

end

end

Note: the notation “a( mod b)” represents the modulo operation, while “−s” indicates the previous s draws.

D.4 MCMC Convergence Diagnostics

Under general, appropriate regularity condition, the (Adaptive) Random-Walk Metropolis-Hastings

algorithm is ensured to converge, such that parameters are drawn from their true posterior distribution.

Robert and Casella (2004) show that Metropolis-Hastings Markov chains are required to be irreducible

(the probability of jumping from a state to another is always positive) and aperiodic (there is a non-zero

probability that the chain will not jump) over the parameter space. The aforementioned conditions are

weak, and generally hold in practice. Several tools are available to determine the convergence of Markov

chains to their ergodic distributions (see, e.g., Gelman et al., 1995; Cowles and Carlin, 1996; Robert and

11The adaptive process starts when j ≥ H, while the scale updating takes place from the 100th iteration
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Figure D2: Cumulative averages
Note: The panels show the cumulative averages of the post burn-in sample. φs are the autoregressive parameters,
κs and ςs are the smoothing parameters for the transitory and permanent components, respectively, µ̄0, γ̄0 and δ̄0
are the initial values of the permanent components, χ is the smoothing parameter of the scaling matrix and η is the
inverse of the degrees of freedom. βs are the loadings on the subcomponents of the NFCI: Leverage (L), Nonfinancial
Leverage (N), Credit (C) and Risk (R).

Casella, 2004). Here, we consider three types of diagnostics: the graphical inspection of cumulative means,

the analysis of variance of several chains, and a test on the ergodic averages. In these exercises we check

the convergence of the post burn-in sample, Θ∗, for our preferred model specification. We draw N = 20000

replications and we keep the last n∗ = 4000 replications, after thinning each two posterior draws to reduce

the autocorrelation of the chains.

As a first step, we inspect the cumulative averages of the retained draws. A smooth and stable plot

suggests that the chain has converged to the expected value of its invariant distribution. The cumulative

averages plotted in Figure D2 appear all smooth and converging to the single value E[Θ∗], suggesting that

the chains have reached convergence.

Next, we turn to analysis of variance techniques, as advocated by Gelman and Rubin (1992). Due to

the efficiency of our algorithm, we consider m = 100 parallel chains to compare the dispersion between, B,
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Figure D3: R statistic
Note: The plot reports Gelman and Rubin (1992) R statistic for each parameter of the model. The statistics are
computed for J=39 parameters and m=100 chains.
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Figure D4: p-values for the ergodic averages test
Note: The plot reports the p-values for Geweke (1992) test on ergodic averages.

and within, W , chains, and test that the former is greater than the latter. Specifically,

B =
n∗

m− 1

m∑
i=1

(θ
∗
i − θ

∗
)2 and W =

1

m(n∗ − 1)

m∑
i=1

J∑
j=1

(θ∗i,j − θ
∗
i )

2,

where θ∗i = 1
n∗
∑n∗

n=1 θ
∗
n and θ∗ =

∑m
i=1 θ

∗
i . These statistics are used to consistently estimate the marginal

posterior variance of θ∗ as the weighted average of W and B as:

σ̂2
θ∗ =

n− 1

n
W +

1

n
B.

Convergence can thus be monitored by means of R̂ =
√
σ̂2
θ∗W

−1 ≥ 1; Gelman (1995) suggest that R < 1.2

can be used as an indication to accept the convergence of the MCMC. We report the R statistics in

Figure D3, which make a strong case for the convergence of the chains.
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At last, we follow Geweke (1992) and test the ergodic averages of the time series of draws. We split

the n∗ draws into a subsample B of n∗b = 0.1n∗ and another one A of n∗a = 0.5n∗, and compute

θ
∗
b =

1

n∗b

n∗b∑
j=1

θ∗j and θ
∗
a =

1

n∗a

n∗∑
j=n∗a

θ∗j .

As we only consider the post burn-in sample, θ∗b and θ∗a are the ergodic averages at the beginning and at

the end of the convergence sample, and should therefore behave similarly. This can be tested by means of

a simple t-test on the standardized difference between θ∗b and θ∗a

zG =
θ
∗
a − θ

∗
b√

V̂ (θ
∗
a) + V̂ (θ

∗
b)
∼ N(0, 1).

We report the p-values for the tests in Figure D4. We do not reject the null hypothesis for any of the

parameters.

D.5 Sensitivity to priors

In Section 3.2 we have emphasized the role played by the priors choice when estimating a highly

parametrized model on a relatively small sample of data. A relevant question to ask at this point is to

what extent our results, in particular those regarding the cyclical and low frequency variations of the

conditional distribution of GDP growth, are affected by our choice for the priors. To answer this question,

in Figure D5 we report the location, log-scale and shape parameters that one would retrieve by sampling

the static parameters, θ, directly from their prior distribution, π(θ). The priors encode some feature of the

model parameters which one would expect ‘a priori’ to hold in the model estimates. Specifically, we target

a relatively small time variation of the permanent components, and larger and persistent variation of the

transitory components of the parameters. These priors are reflected into smaller ‘a priori’ credible intervals

for the permanent components of the time-varying parameters, as opposed to the transitory components’.

Yet, these priors do not translate directly into any particular pattern for the time variation of the location,

(log-) scale and shape of the distribution. In fact, the green plots in Figure D5 highlight that our priors

remain quite agnostic about the values of the time varying parameters and their dynamics over time. We

overlay in the panels the posterior median and credible intervals for the same parameters; the latter show

distinct patterns in terms of cyclicality and trends, which reflect the information content of the data. As

a second check, we ask ourselves to what extent the results are sensitive to the exact specification of the

prior we chose. In this respect, there is a multitude of exercises one could perform. Here we focus mainly

on the sensitivity of the results with respect to the prior of the smoothing coefficients (ςi and κi, where

i = {µ, γ, δ}), due to the importance of these parameters for the estimated time variation of the parameters

(of any observation-driven model). Figure D6 reports the posterior estimates of the time-varying parameters

for alternative prior choices: we vary the scale of the inverse gamma priors for the smoothing coefficients

scaling them by a factor c = {0.5, 1.5, 1.75}, but preserving their relative proportions. In each panel we

confront the posterior estimates obtained with the alternative priors against the baseline one.12 Small

variation of the priors do not meaningfully affect the estimates of the time-varying parameters.

12We have repeated the same exercise also varying the tightness of the priors of the autoregressive coefficients of
the model. The results of this exercise are virtually identical to the one reported in Figure D6.
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E Monte Carlo Exercise

In this Section we outline a Monte Carlo exercise with the aim of illustrating the small-sample properties

of the Skew-t model described in Section 3. We are interested in the reliability of the estimates of the

asymmetry parameter and, in particular, whether the model is able to correctly disentangle the movements

in the asymmetry parameter from the movements in the location and scale parameters.

We simulate T=250 observations for the parameters of location, µt, scale, σt, and asymmetry, %t,

for every period t from the Sktν(µt, σt, %t) to obtain the series {yt}Tt=1, then used to estimate the model

discussed in Section 3 (excluding explanatory variables). Therefore, regardless of the DGP considered we

always estimate a two component specification for all the three time-varying parameters. This approach

mimics the true estimation process carried out on real data, to approximate the conditional distribution of

the underlying GDP growth. We first consider ad-hoc specifications for the location and scale parameters

(AR(2) and AR(1), respectively). Then, we turn to DGPs that replicate closely the dynamic properties of

the time-varying parameters we estimate from the data (and in particular replicate the correlation between

the location and scale parameter that we observe in the data). For the shape parameter, we consider a

number of different DGPs, including no asymmetry, constant asymmetry, a single break in the asymmetry,

and cyclical asymmetry.

In the first DGP, data are simulated from a specification featuring symmetric distributions, with inde-

pendent, time-varying location and volatility, therefore aiming at checking that the model does not pick

up any asymmetry when this is not a feature of the data. The second DGP considers the case in which the

asymmetry parameter experiences a jump, from 0 to 0.5 after 100 observations, hence implying negatively

skewed distributions in the second part of the sample. This case sheds light on the adaptiveness of the

model, and provides a clear framework for illustrating the distinctive role played by the secular and transi-

tory components. The third and fourth DGPs consider a specification for the location and scale parameter

that replicate the basic features of the estimated location and scale parameters, e.g. a mildly negative

correlation, whereas the shape parameter is constant, either at zero or at a positive value.13 In the last

DGP, the asymmetry parameter varies over time, with cyclical fluctuations. To ensure that we replicate the

transitory variation in the parameters, we simulate the three parameters from a VAR(1), with the system

parameters estimated on the time-varying parameters obtained from the Skt -4DFI specification. For each

DGP we perform N=500 replications and we estimate the parameters of the two-component model using

the estimation approach introduced in the main text, and detailed in Appendix D.

We simulate µt, γt = log(σt), and δt = arctanh(%t) from the following processes:

DGP1: (No asymmetry)

µt = 0.125 + 1.2µt−1 − 0.25µt−2 + εt, εt ∼ N(0, 0.05);

γt = 0.95γt−1 + εt, εt ∼ N(0, 0.025);

δt = 0.

13Specifically, we fit a VAR(1) to the location and log-scale parameters estimated from the data, and use these
estimates for the DGPs.
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DGP2: (Single break)

µt = 0.125 + 1.2µt−1 − 0.25µt−2 + εt, εt ∼ N(0, 0.05);

γt = 0.95γt−1 + εt, εt ∼ N(0, 0.025);

δt =

0, t ≤ 100

0.5, t > 100
.

DGP3: (Correlated location, scale and no asymmetry)[
µt

γt

]
=

[
0.29

−0.12

]
+

[
0.89 0.01

0.06 0.94

][
µt−1

γt−1

]
+ εt, εt ∼ N(0,Ω),

where

Ω =

[
0.008 −0.001

−0.001 0.015

]
and δt = 0, ∀t.

DGP4: (Correlated location, scale and constant asymmetry)[
µt

γt

]
=

[
0.29

−0.12

]
+

[
0.89 0.01

0.06 0.94

][
µt−1

γt−1

]
+ εt, εt ∼ N(0,Ω),

where

Ω =

[
0.008 −0.001

−0.001 0.015

]
and δt = 0.5, ∀t.

DGP5: (Cyclical asymmetry)
µt

γt

δt

 =


0.40

−0.38

−0.33

+


0.85 0.03 −0.06

0.17 0.88 0.13

0.14 −0.09 0.95



µt−1

γt−1

δt−1

+ εt, εt ∼ N(0,Ω),

where

Ω =


0.008 −0.001 −0.007

−0.001 0.015 0.008

−0.007 0.008 0.025


For all the DGPs, the model correctly picks up the time variation in the location and scale with great

precision, and the degrees of freedom are estimated without bias. These results are not reported in the

interest of brevity, but are available upon request. Hence, in what follows we comment on the ability of

the model to track the underlying asymmetry of the distribution. For the first four DGPs, we report the

true asymmetry parameter and the 99, 95, 90 and 75 confidence bands for the estimated counterpart. For

the fifth DGP we consider the median difference between the estimated and the simulated parameters.

Figures E1 and E4 show that when the distribution is symmetric, the estimated median parameter, and

the associated confidence bands, remain close to zero with small variability. Therefore, the model clearly
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captures the symmetry of the underlying data generating process, and correctly disentangles the time

variations of the volatility from changes in the asymmetry of the distribution in simple settings (DGP1),

as well as when location and scale are correlated (DGP3). The filter is also able to detect the case with

constant negative skewness (DGP4), in spite of the dynamic correlation between location and scale. The

model does not confound variations of the first two moments of the data with variation of the asymmetry

(Figure E5). Interestingly, for all the cases where the asymmetry parameter is fixed at a positive value, the

transitory components are always estimated to be approximately zero, suggesting that no variation at all

is captured. Whereas, the secular components show minimal variation, always fluctuating around the true

value.14 For this case we also investigate what happens when the initialization of the filter is away from

the true parameter. The filter neatly discovers the true level of asymmetry relatively quickly (i.e. after

roughly 20 observations), and the parameter sets around the true value.

In Figure E2 we report the results for the case of a single break in the asymmetry parameter. Until

the jump takes place, the estimated asymmetry remains centered around zero, while it timely reacts to

the jump occurring on the 100th observation. Furthermore, due to the presence of a slow-moving trend

component, the model fully captures the extent of the asymmetry in the second part of the sample in

just 50 observations. Within this case, we also investigate to what extent the model is able to recognize

the persistent nature of the shift in the asymmetry. Figure E3 reports the estimated permanent and

transitory components, respectively. The permanent component picks up the jump in a timely manner,

and contributes to most of the variability of the estimated parameter. In addition, the first few observations

after the jump are partly captured by the model as short-lived movements, reverting to zero soon after.

Lastly, we report in Figure E6 the difference, and the associate confidence set, between the simulated

and the estimated parameters. Despite co-movements in the location, scale and asymmetry parameters,

the model clearly captures the transitory variations of the latter, reported in red. The estimated parameter

converges to the correct values after few observations, with small deviations, as suggested by the narrow

bounds. Key for the identification of parameters’ variation is that, as discussed in Section 4, shifts in the

shape parameter map into a time-varying correlation between the first and second moments of the data.

Therefore, in spite of the (dynamic) interaction between the key parameters of the distribution, the model

correctly identifies, in a timely manner, movements in the asymmetry of the distribution.

14These results are not reported but available upon request.
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Figure E1: DGP1 - No asymmetry.
Note: The median simulated parameter is reported in red, while shades of blue represent the 99th, 95th, 90th, 75th,
25th, 10th, 5th and 1st percentiles of the empirical distribution of the estimated parameter.
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Figure E2: DGP2 - Single break in asymmetry.
Note: The median simulated parameter is reported in red, while shades of blue represent the 99th, 95th, 90th, 75th,
25th, 10th, 5th and 1st percentiles of the empirical distribution of the estimated parameter.

29



Permanent Component Transitory Component
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Figure E3: Permanent and transitory components for the DGP2 case.
Note: The median simulated parameter is reported in red, while shades of blue represent the 99th, 95th, 90th, 75th,
25th, 10th, 5th and 1st percentiles of the empirical distribution of the estimated parameter.
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Figure E4: DGP3 - Correlated location, scale and no asymmetry.
Note: The median simulated parameter is reported in red, while shades of blue represent the 99th, 95th, 90th, 75th,
25th, 10th, 5th and 1st percentiles of the empirical distribution of the estimated parameter.
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Figure E5: DGP4 - Correlated location, scale and constant negative skewness.
Note: The original parameter is reported in red, while shades of blue represent the 99th, 95th, 90th, 75th, 25th, 10th,
5th and 1st percentiles of the empirical distribution of the estimated parameter. The initial point for the estimation
is set to 0.75.
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Figure E6: DGP5 - Cyclical asymmetry.
Note: The plot reports the dispersion round the difference between the simulated and estimated skewness. The red
dashed line represents the perfect match while shades of blue represent the 99th, 95th, 90th, 75th, 25th, 10th, 5th and
1st percentiles of the empirical distribution of such difference.
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F Data

In this Appendix we provide additional details on the data sources. We focus on (real) GDP growth in

the US, and we measure financial conditions using the Chicago FED National Financial Condition Index

(NFCI), and its subcomponents (Brave and Butters, 2011). The NFCI is a weekly index tracking the

status of money markets, debt and equity markets, and the banking sector (comprehensive of the “shadow”

banking sector). The contribution of these sectors maps into three subindices, each of which gauges financial

conditions in terms of risk, leverage, and credit (refer to Brave and Butters, 2012, for further details). We

use quarterly data on economic activity and financial conditions over the period 1973Q1 to 2018Q4, where

the starting date for the analysis is dictated by the availability of the NFCI.

As new information is available, these indices are standardized. Thus, when an index takes a value

of 1 (-1), it signals that the financial conditions are one standard deviation tighter (looser) than their

historical average. Consistently with the concept of financial tightening, the measure relating to the risk

subcomponent positively contributes to the NFCI, reflecting increasing risk premia. In contrast, measures

of leverage and credit receive negative weights in response to lower asset values and declining liquidity in the

financial sector. The top panel of Figure F1 plots the NFCI against GDP growth, whereas the bottom panels

report the NFCI subcomponents. The NFCI (and its three subcomponents) spikes during recessions, as

indicated by the gray-shaded bands, and displays a clear negative correlation with GDP growth, suggesting

that periods of financial overheating coincide with severe economic troughs, as documented by Adrian et al.

(2019). The NFCI closely tracks the risk subcomponent, due to high weights being attached to some of

the risk variables, such as the VIX index. This is consistent with the observation that volatility of the

stock market is an accurate predictor of financial instability (see, e.g. Bekaert and Hoerova, 2014). The

leverage component shows strong procyclicality, and tends to pick up on high values before other indices,

consistently with the findings of Adrian and Shin (2010) and Jordà et al. (2013). Lastly, measures of credit

spread and credit risk are contained in the risk and credit components (Krishnamurthy and Muir, 2017).

Alongside these subindices, the Chicago FED also produces the nonfinancial leverage (NFL) index

(bottom right panel of Figure F1). This series tracks developments in the nonfinancial credit market

using data on household and nonfinancial business leverage. Household data receive weights roughly 1.5

times higher than the latter. Mian and Sufi (2010) argue that the build up of financial instability leading

to the Great Recession was mainly due to an “over-leveraged” household sector. Similarly, Jensen et al.

(2020) observe that increasing households and firms leverage anticipates a deepening of business cycle

skewness. A closer examination of the panel suggests that the massive deleveraging started in the early

2008 coincides with the beginning of the recession in the same year. This measure can thus be intended

as an “early-warning” signal for economic downturns. In addition, this index is a clear leading indicator of

the HP-filtered credit-to-GDP ratio measure, frequently considered as a leading signal of financial distress

(Drehmann et al., 2010; Jordà et al., 2017).15

Real-time data. In Sections 5 and 6 we evaluate the performance of our models, and compare them

to a number of alternatives, considering both an in- and out-of-sample forecasting exercise. For these

exercises, we use real time data on GDP, provided by the Philadelphia FED’s Real Time Data Research

15Hasenzagl et al. (2020) extensively investigate the relation between the Nonfinancial leverage index and the
Credit-to-GDP ratio index for forecasting purposes.
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Figure F1: National Financial Condition Index and subcomponents
Note: The top panel illustrates the evolution of the NFCI and of GDP growth. Lower panels plot the risk, leverage,
credit and nonfinancial leverage subcomponents, respectively. Shaded bands represent NBER recessions.

Center. This dataset contains GDP observations available at a particular vintage date, that is, GDP values

available in the second week of the middle month of each quarter, as described in Croushore and Stark

(2001). GDP growth undergoes substantial revisions, in particular over the first releases, and even more

so around turning points (see, e.g. Croushore, 2011). Despite there is no consensus on what releases to use

as “actual” data for forecast evaluation (Croushore, 2006), we evaluate models using the latest release.16

While real time data are available for GDP, the same is not true for the NFCI and its subcomponents.

These are common factors in a broad panel of financial indicators, extracted using state-space methods.

As such, these indicators are always revised at any point in time, when new information arrives. To this

extent, we can only use a pseudo real-time dataset for the NFCI and its subcomponents. In Section 6,

we use the disaggregated contributions of all financial indicators which form the basis of the NFCI, as

illustrated in Brave and Butters (2012).17 As GDP data are released about 45 days after the end of the

reference quarter, we assume that it is at that point in time that the forecaster estimates the model and

produces the forecasts. The weekly nature of these data allows us to include all the available information,

by averaging all the weeks within the reference quarter, meaning that we can use all the information made

available within the reference quarter. Despite not being real-time, this method comes the closest to mimic

the available information set at the time of the forecasts.
16This choice implies that the forecast error produced by our models also accounts for a “measurement error”

component, induced by possible GDP measurement redefinitions, that took place over the considered forecast sample
(for further discussion, see Stark and Croushore, 2002). The results of our forecast exercise would be qualitatively
similar to the ones reported if we were to target the ‘advanced’ (i.e. third) revision of GDP growth.

17We are grateful to the authors and the Chicago FED for making the full panel of weighted contribution of the
financial indicators available for this work.
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F.1 Main data sources and mnemonics

Data on quarterly real economic activity come from the Federal Reserve Bank of St. Louis FRED

dataset (mnemonic; GDPC1). The NFCI and the relative risk, leverage, nonfinancial leverage and credit

subcomponents are downloaded from the same source (mnemonic: NFCI, NFCIRISK, NFCILEVERAGE,

NFCINONFINLEVERAGE and NFCICREDIT). These latter are available at the weekly frequency, and

they are converted into quarterly figures by taking the quarterly average. Overlapping weeks are accounted

for in the averaging process: weekly values are computed in only one of the quarterly variables.18

F.2 Additional details on the disaggregated financial indicators

We are grateful to Scot Brave and the Federal Reserve Bank of Chicago for sharing the weighted

individual contribution to the NFCI. The dataset contains weekly time series of financial indicators that

feed into the factor model generating both the NFCI and its subcomponens, as illustrated by Brave and

Butters (2012). In Tables F1–F4 we report all the indicators, their mnemonic, and the date they become

available for the index. Figure F2 provides a graphical illustration of the time schedule of the availability

of the predictors. The y-axis reports the years considered in our work in an ascending order (e.g. most

recent times are closer to the origins).

18See https://fredhelp.stlouisfed.org/fred/data/understanding-the-data/
how-are-data-aggregated-when-periods-overlap/
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Table F1: Risk subindex components

Mnemonic Financial Indicator Starting date

ABCP 1-mo. Asset-backed/Financial commercial paper spread 05/01/2001
ABSSPREAD BofAML Home Equity ABS/MBS yield spread 05/07/1991
CBILL 3-mo. Financial commercial paper/Treasury bill spread 08/01/1971
CG Commercial Paper Outstanding 10/11/1995
CMBS BofAML 3-5 yr AAA CMBS OAS spread 02/01/1998
CPR Counterparty Risk Index (formerly maintained by Credit Derivatives Research) 13/09/2002
CTABS FTSE Russell US Global Markets ABS/5-yr Treasury yield spread 01/02/1991
CTERM 3-mo./1-wk AA Financial commercial paper spread 10/01/1997
CTF FTSE Russell US Global Markets Financial/Corporate Credit bond spread 31/01/1997
CTMBS FTSE Russell US Global Markets MBS/10-year Treasury yield spread 27/01/1989
FAILS Treasury Repo Delivery Fails Rate 07/10/1994
FAILSA Agency Repo Delivery Failures Rate 07/10/1994
FAILSC Corporate Securities Repo Delivery Failures Rate 05/10/2001
FAILSMBS Agency MBS Repo Delivery Failures Rate 07/10/1994
GVL FDIC Volatile Bank Liabilities 01/07/1994
LIBID 3-mo. Eurodollar spread (LIBID-Treasury) 08/01/1971
MLIQ10 On-the-run vs. Off-the-run 10-yr Treasury liquidity premium 04/01/1985
MMF Total Money Market Mutual Fund Assets/Total Long-term Fund Assets 28/12/1984
REPO Fed Funds/Overnight Treasury Repo rate spread 24/05/1991
REPOA Fed Funds/Overnight Agency Repo rate spread 24/05/1991
REPOGR Repo Market Volume (Repurchases+Reverse Repurchases of primary dealers) 07/10/1994
REPOMORT Fed Funds/Overnight MBS Repo rate spread 24/05/1991
RTERM 3-mo./1-wk Treasury Repo spread 24/05/1991
SPR210 10-yr/2-yr Treasury yield spread 20/08/1971
SPR23M 2-yr/3-mo. Treasury yield spread 08/01/1971
SWAP10 10-yr Interest Rate Swap/Treasury yield spread 03/04/1987
SWAP2 2-yr Interest Rate Swap/Treasury yield spread 03/04/1987
SWAP3M 3-mo. Overnight Indexed Swap (OIS)/Treasury yield spread 19/09/2003
TED 3-mo. TED spread (LIBOR-Treasury) 06/06/1980
TERM 1-yr/1-mo. LIBOR spread 10/01/1986
USD Advanced Foreign Economies Trade-weighted US Dollar Value Index 12/01/1973
VIX CBOE Market Volatility Index VIX 05/01/1990
VOL1 1-mo. BofAML Option Volatility Estimate Index 08/04/1988
VOL3 3-mo. BofAML Swaption Volatility Estimate Index 06/12/1996
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Table F2: Leverage subindex components

Mnemonic Financial Indicator Starting date

ABSI Nonmortgage ABS Issuance (Relative to 12-mo. MA) 29/12/2000
BDG Broker-dealer Debit Balances in Margin Accounts 29/01/1971
BONDGR New US Corporate Debt Issuance (Relative to 12-mo. MA) 01/01/1988
CITA Commercial Bank C&I Loans/Total Assets 02/03/1973
CMBSI CMBS Issuance (Relative to 12-mo. MA) 28/12/1990
COMMODLIQ COMEX Gold/NYMEX WTI Futures Market Depth 04/01/2008
CONTA Commercial Bank Consumer Loans/Total Assets 02/03/1973
CPH FRB Commercial Property Price Index 02/04/1971
D10 10-yr Constant Maturity Treasury yield 08/01/1971
DCOMM Commercial Bank Total Unused C&I Loan Commitments/Total Assets 29/06/1990
DNET Net Notional Value of Credit Derivatives 07/11/2008
EQUITYLIQ CME E-mini S&P Futures Market Depth 04/01/2008
FC Total Assets of Finance Companies/GDP 02/04/1971
FCORP Total Assets of Funding Corporations/GDP 02/04/1971
FINS S&P 500 Financials/S&P 500 Price Index (Relative to 2-yr MA) 06/09/1991
GSE Total Agency and GSE Assets/GDP 30/12/1983
INS Total Assets of Insurance Companies/GDP 02/04/1971
ITA Fed funds and Reverse Repurchase Agreements/Total Assets of Commercial Banks 30/03/1973
LPH CoreLogic National House Price Index 02/04/1976
MBONDGR New State & Local Government Debt Issues (Relative to 12-mo.h MA) 27/02/2004
MBSI Total MBS Issuance (Relative to 12-mo. MA) 29/12/2000
MCAP S&P 500, NASDAQ, and NYSE Market Capitalization/GDP 28/06/1985
OEQ S&P 500, S&P 500 mini, NASDAQ 100, NASDAQ mini Open Interest 24/09/1999
OINT 3-mo. Eurodollar, 10-yr/3-mo. swap, 2-yr and 10-yr Treasury Open Interest 23/06/1995
PENS Total Assets of Pension Funds/GDP 02/04/1971
RATELIQ CME Eurodollar/CBOT T-Note Futures Market Depth 01/02/2008
REIT Total REIT Assets/GDP 02/04/1971
RTA Commercial Bank Real Estate Loans/Total Assets 02/03/1973
SBD Total Assets of Broker-dealers/GDP 02/04/1971
STA Commercial Bank Securities in Bank Credit/Total Assets 02/03/1973
STKGR New US Corporate Equity Issuance (Relative to 12-mo. MA) 01/01/1988
STLOC Federal, state, and local debt outstanding/GDP 02/04/1971
TABS Total Assets of ABS issuers/GDP 30/12/1983
W500 Wilshire 5000 Stock Price Index 29/01/1971

Table F3: Nonfinancial Leverage subindex components

Mnemonic Financial Indicator Starting date

HH Household debt outstanding/PCE Durables and Residential Investment 02/04/1971
NFC Nonfinancial business debt outstanding/GDP 02/04/1971
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Table F4: Credit subindex components

Mnemonic Financial Indicator Starting date

A2P2 1-mo. Nonfinancial commercial paper A2P2/AA credit spread 10/01/1997
BAA Moody’s Baa corporate bond/10-yr Treasury yield spread 03/01/1986
CARSPREAD UM Household Survey: Auto Credit Conditions Good/Bad spread 24/02/1978
CBCAR Commercial Bank 48-mo. New Car Loan/2-yr Treasury yield spread 05/05/1972
CBPER Commercial Bank 24-mo. Personal Loan/2-yr Treasury yield spread 05/05/1972
CCDQ S&P US Bankcard Credit Card: 3-mo. Delinquency Rate 28/02/1992
CCG Consumer Credit Outstanding 29/01/1971
CCINC S&P US Bankcard Credit Card: Excess Rate Spread 31/01/1992
CILARGE FRB Senior Loan Officer Survey: Tightening Standards on Large C&I Loans 13/07/1990
CISMALL FRB Senior Loan Officer Survey: Tightening Standards on Small C&I Loans 13/07/1990
CRE FRB Senior Loan Officer Survey: Tightening Standards on CRE Loans 12/10/1990
CRG S&P US Bankcard Credit Card: Receivables Outstanding 28/02/1992
CWILL FRB Senior Loan Officer Survey: Willingness to Lend to Consumers 15/01/1971
DBC ABA Value of Delinquent Bank Card Credit Loans/Total Loans 26/02/1999
DCLOSE ABA Value of Delinquent Consumer Loans/Total Loans 26/02/1999
DHE ABA Value of Delinquent Home Equity Loans/Total Loans 26/02/1999
DOTH ABA Value of Delinquent Noncard Revolving Credit Loans/Total Loans 26/02/1999
DURSPREAD UM Household Survey: Durable Goods Credit Conditions Good/Bad spread 27/01/1978
FG Finance Company Owned & Managed Receivables 29/01/1971
HOUSSPREAD UM Household Survey: Mortgage Credit Conditions Good/Bad spread 24/02/1978
HY BofAML High Yield/Moody’s Baa corporate bond yield spread 07/11/1986
JINC 30-yr Jumbo/Conforming fixed rate mortgage spread 12/06/1998
LHY Markit High Yield (HY) 5-yr Senior CDS Index 07/01/2005
LIG Markit Investment Grade (IG) 5-yr Senior CDS Index 01/10/2004
MBOND 20-yr Treasury/State & Local Government 20-yr GO bond spread 08/01/1971
MDQ MBA Serious Delinquencies 30/06/1972
MG Money Stock: MZM 01/03/1974
MINC 30-yr Conforming Mortgage/10-yr Treasury yield spread 02/04/1971
MSWAP Bond Market Association Municipal Swap/20-yr Treasury yield spread 07/07/1989
NACMM NACM Survey of Credit Managers: Credit Manager’s Index 15/02/2002
NCL Commercial Bank Noncurrent/Total Loans 28/06/1985
RRE FRB Senior Loan Officer Survey: Tightening Standards on RRE Loans 12/10/1990
SMALL NFIB Survey: Credit Harder to Get 02/11/1973
SPCILARGE FRB Senior Loan Officer Survey: Increasing spreads on Large C&I Loans 13/07/1990
SPCISMALL FRB Senior Loan Officer Survey: Increasing spreads on Small C&I Loans 13/07/1990
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G Model fit diagnostics

In this Appendix we detail the computation methodology for different measures of model fit, and we

report some selected, additional results about the model specification.

G.1 Deviance Information Criterion and Marginal Likelihood

We compare different models by means of the Deviance Information Criterion (DIC, Spiegelhalter

et al., 2002), and the log Marginal Likelihood (logML), both discussed in detail by Chan and Grant

(2016a,b).

Deviance Information Criterion Model fit can be summarized by the deviance measure, defined

as

D(θ) = −2 log p(y|θ) + 2 log h(y),

where h(y) is a standardizing term, function of the sole data; for practical purposes we set h(y) = 1. A

measure of model complexity can then be defined:

pD = D(θ)−D(θ̃),

where D(θ) is the posterior mean deviance, defined as D(θ) = −2Eθ[log p(y|θ)], and D(θ̃) is the deviance

computed at the mean estimate of θ. The DIC is then a measure trading-off the fit of the model against

the complexity:

DIC =D(θ) + pD

=− 4Eθ[log p(y|θ)] + 2 log p(y|θ̃),

being the sum of a Bayesian measure of adequacy and the effective number of parameters.

Marginal Likelihood Another measure commonly used in Bayesian statistics to compare models is

the Marginal Likelihood (π(yt)), that is the normalizing constant from the Bayes theorem:

π(θj |y) =
π(θj) log p(y|θj)

π(y)
.

Amongst the several ways available to compute this measure (see, e.g., Gamerman and Lopes, 2006), we

opt for the harmonic mean estimator of Newton and Raftery (1994):

π(y) =

[
1

n∗

n∗∑
j=1

1

log p(y|θj)

]−1

,

that is a special case of the importance sampling estimator in which the importance density g(θ) = π(θ).

G.2 Model fit diagnostics

Table G1 investigates the goodness of fit of alternative models. In this comparison, we consider three

main specifications: AR(2) models with Gaussian and Skt innovations, one-component Skt models, featur-

ing a constant, unconditional drift for each parameter (e.g. ς = 0, ∀f), and two-component Skt specifica-
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Table G1: Model fit

DIC pD logML

Gaussian AR(2) + GARCH(1,1) 908.976
(0.008)

3.548
(0.004)

−456.952
(0.013)

Skew-t AR(2) + GAS(1,1) with % fixed 883.939
(0.017)

4.503
(0.015)

−444.821
(0.016)

One-Component Skew-t 895.974
(0.005)

6.162
(0.002)

−448.013
(0.010)

One-Component Skew-t with NFCI 932.717
(2.789)

3.110
(1.355)

−475.868
(1.310)

One-Component Skew-t with 4DFI 937.180
(0.106)

7.185
(0.042)

−471.049
(0.055)

Two-Component Skew-t 898.415
(0.006)

5.067
(0.003)

−449.190
(0.006)

Two-Component Skew-t with NFCI 882.963
(0.009)

6.558
(0.004)

−442.051
(0.013)

Two-Component Skew-t with 4DFI 882.364
(0.021)

8.830
(0.007)

−440.780
(0.018)

Note: The table reports the Deviance Information Criterion (DIC) of Spiegelhalter et al. (2002) along with the
relative model complexity measure (pD), and the log Marginal Likelihood (logML) for different model specifications.
Numerical standard errors are reported in parentheses. We consider two AR(2) specifications, one with Gaussian
GARCH(1,1) volatility and one with Skew-t GAS(1,1) volatility with constant asymmetry. Next, we consider three
specifications of the one-component and the two-component models: no predictors, lags of the NFCI and lags of the
four disaggregated financial indices. In the one-component models the long-run components are kept fixed over time;
in the two-component models the long-run components are modelled as unit root processes, as described in Section 3.
Appendix D provides additional information about the computation of the DIC and the logML quantities.

tions, that allow for a permanent and transitory component for each time-varying parameter as described

in Section 3. Table G1 reports the DIC, the model complexity component (pD) of the DIC, and the

logML with numerical standard errors in parentheses.

A simple Gaussian AR(2) model with time-varying volatility underperforms with respect to models

featuring unconditional skewness and fat tails, despite a slight increase in complexity, highlighting the im-

portance of modeling the non-Gaussian features of GDP growth. Inducing time-variation in the asymmetry

component leads to different results: when secular trends are omitted DIC and logML increase compared

to the model with unconditional skewness, due to the increasing complexity of the specifications. Adding

two lags of financial variables further deteriorates the performance. Differently, modeling the time variation

of secular trends improves model fit by lowering DIC and logML, despite the higher level of complexity.

In this case, adding financial predictors delivers additional benefits. Therefore, the best specification is the

two-component Skt model including two lags of the subcomponents of the NFCI. We label this specification

as Skt -4DFI, and we treat it as the baseline specification throughout Section 4.
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H Additional forecast results

In this Appendix we report a number of additional results related to the forecast exercise we described

in Section 5.

H.1 Comparison with Adrian et al. (2019)

Figure H1: Predictive densities
Note: The figure shows the predictive densities from the Skt -4DFI specification and the model of Adrian et al.
(2019). The plots report the 5th, 50th and 95th quantities of the predictive densities. Shaded bands represent NBER
recessions.
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H.2 Additional details on density forecast calibration

Figure H2: Probability density function of PITs
Note: The plots report the density functions of the normalized PITs for the AR(2), ABG and Skt -4DFI specifi-
cations, for 1-quarter and 1-year-ahead. The dashed lines represent 95% confidence levels, obtained as in Diebold
et al. (1998)

H.3 Lagged GDP growth as additional predictor

In this Section we show that adding past lags of the observable to the Skt specifications does not lead

to any substantial gains in the forecasting accuracy of the models.

Table H1: Forecast performance with respect to 4DFI,Y

One-quarter ahead One-year ahead

MSFE logS CRPS wQS MSFE logS CRPS wQS

Full 0.957
(0.004)

−0.018
(0.784)

0.971
(0.032)

0.987
(0.243)

0.740
(0.000)

0.104
(0.010)

0.988
(0.265)

0.938
(0.048)

Post ’00 0.959
(0.000)

−0.008
(0.617)

0.972
(0.006)

0.983
(0.097)

0.918
(0.009)

0.010
(0.412)

0.984
(0.178)

0.999
(0.480)

Rec. 0.969
(0.039)

−0.004
(0.524)

0.967
(0.085)

0.969
(0.180)

0.680
(0.006)

0.052
(0.301)

0.992
(0.429)

0.912
(0.147)

Note: The table reports the average forecast metrics from the Skt -4DFI model relative to Skt -4DFI,Y . We use
ratios for the MSFE, CRSP and wQS, and differences for the logS. Ratios smaller than 1, and positive values of the
log-score differences indicate that the Skt 4DFI model performs better than Skt -4DFI,Y . The p-values for Diebold
and Mariano (1995) tests, augmented with the small sample correction of Harvey et al. (1997), are in parentheses.
Values in bold are significant at the 10% level; gray shaded cells highlight the best score.
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H.4 How important is parameters’ uncertainty?

In the following Tables we compare forecasts generated with and without taking into account parameter

uncertainty.

Table H2: Forecast performance - Parameter uncertainty

One-quarter ahead One-year ahead

MSFE logS MSFE logS
Full 0.965

(0.000)
−0.001

(0.510)
0.845
(0.000)

0.105
(0.017)

Post ’00. 0.850
(0.004)

0.011
(0.445)

0.680
(0.006)

0.314
(0.052)

Rec. 0.959
(0.000)

0.046
(0.058)

0.770
(0.000)

0.073
(0.079)

CRPS wQS CRSP wQS
Full 0.983

(0.039)
0.986
(0.095)

1.010
(0.753)

1.023
(0.859)

Post ’00. 0.942
(0.048)

0.931
(0.064)

1.005
(0.552)

0.941
(0.109)

Rec. 0.964
(0.000)

0.955
(0.000)

1.005
(0.599)

0.950
(0.014)

Note: In this table we compare the forecast metrics of the baseline model, Skt 4FDI, against a version of the same
model that does not account for parameter uncertainty (w/o P.U.). The table reports the average forecast metrics
relative to the w/o P.U. model. We use ratios for the MSFE, CRSP and wQS, and differences for the logS. Ratios
smaller than 1, and positive values of the log-score differences indicate that the baseline model (which allows for
uncertainty) performs better than the model without parameters uncertainty. The p-values for Diebold and Mariano
(1995) tests, augmented with the small sample correction of Harvey et al. (1997), are in parentheses.

Table H3: Density calibration tests - Parameter uncertainty

w/ PU w/o PU w/ PU w/o PU
One-quarter ahead One-year ahead

Dist. 0.883 0.763 1.162 1.217
Left tail 0.501 0.615 1.162 1.217

Note: The table reports the test statistics for the Rossi and Sekhposyan (2019) tests, based on the Cramér-von
Mises type tests. The left tail score is computed over the support [0, 0.25]. Values in bold indicate the rejection of
the null hypothesis of correct specification of the density forecast, at the 10% confidence level. Critical values are
obtained by 1000 bootstrap simulations. Gray shaded cells indicate lowest value of the statistic.

H.5 Excluding 2020 from the forecast evaluation sample

In Sections 5.1 and 5.2, we excluded the 2020 quarters from the forecast evaluation of the recession

subsample. In this Appendix we report the results for the full and the post-2000s samples excluding the

pandemic period.
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Table H4: Forecasting performance

Skt Skt Skt Skt Skt Skt
NFCI 4DFI NFCI 4DFI

One-quarter ahead

MSFE logS
Full 0.951

(0.120)
0.847
(0.002)

0.862
(0.004)

0.123
(0.000)

0.148
(0.000)

0.074
(0.032)

Post ’00 0.881
(0.000)

0.795
(0.000)

0.795
(0.000)

0.186
(0.000)

0.231
(0.000)

0.200
(0.000)

CRPS wQS
Full 0.964

(0.088)
0.934
(0.009)

0.952
(0.043)

0.984
(0.290)

0.936
(0.016)

0.941
(0.028)

Post ’00 0.913
(0.001)

0.875
(0.000)

0.890
(0.001)

0.935
(0.037)

0.888
(0.001)

0.894
(0.006)

One-year ahead

MSFE logS
Full 0.720

(0.000)
0.716
(0.002)

0.693
(0.004)

0.463
(0.000)

0.561
(0.000)

0.502
(0.002)

Post ’00 0.719
(0.000)

0.694
(0.000)

0.718
(0.003)

0.807
(0.000)

0.937
(0.000)

0.942
(0.000)

CRPS wQS
Full 0.913

(0.003)
0.902
(0.002)

0.883
(0.003)

0.779
(0.001)

0.746
(0.001)

0.765
(0.006)

Post ’00 0.841
(0.000)

0.824
(0.000)

0.817
(0.000)

0.722
(0.000)

0.698
(0.000)

0.707
(0.001)

Note: The table reports the average forecast metrics relative to the Gaussian model over the 1973-2019 sample. We
use ratios for the MSFE, CRSP and wQS, and differences for the logS. Ratios smaller than 1, and positive values of
the log-score differences indicate that the column-specific model performs better than the Gaussian benchmark. The
p-values for Diebold and Mariano (1995) tests, augmented with the small sample correction of Harvey et al. (1997),
are in parentheses. Values in bold are significant at the 10% level; gray shaded cells highlight the best score.

Table H5: Forecast performance with respect to Adrian et al. (2019)

One-quarter ahead One-year ahead

MSFE logS CRPS wQS MSFE logS CRPS wQS

Full 1.073
(0.944)

0.212
(0.000)

1.021
(0.766)

1.043
(0.940)

1.024
(0.604)

0.560
(0.000)

0.994
(0.456)

1.032
(0.697)

Post ’00 0.905
(0.004)

0.078
(0.027)

0.951
(0.065)

0.962
(0.095)

0.903
(0.123)

0.414
(0.001)

0.906
(0.060)

0.948
(0.257)

Note: The table reports the average forecast metrics from the Skt -4DFI model relative to Adrian et al. (2019) over
the 1973-2019 sample. We use ratios for the MSFE, CRSP and wQS, and differences for the logS. Ratios smaller
than 1, and positive values of the log-score differences indicate that the Skt 4DFI model performs better than Adrian
et al. (2019). The p-values for Diebold and Mariano (1995) tests, augmented with the small sample correction of
Harvey et al. (1997), are in parentheses. Values in bold are significant at the 10% level; gray shaded cells highlight
the best score.

Table H6: Forecast performance with respect to 4DFI,Y

One-quarter ahead One-year ahead

MSFE logS CRPS wQS MSFE logS CRPS wQS

Full 0.958
(0.104)

0.002
(0.467)

0.974
(0.085)

0.991
(0.319)

0.737
(0.000)

0.124
(0.004)

0.985
(0.235)

0.931
(0.035)

Post ’00 0.977
(0.202)

0.032
(0.085)

0.979
(0.093)

0.989
(0.271)

0.922
(0.016)

0.049
(0.154)

0.979
(0.121)

0.987
(0.326)

Note: The table reports the average forecast metrics from the Skt -4DFI model relative to Skt -4DFI,Y over the
1973-2019 sample. We use ratios for the MSFE, CRSP and wQS, and differences for the logS. Ratios smaller than 1,
and positive values of the log-score differences indicate that the Skt 4DFI model performs better than Skt -4DFI,Y
. The p-values for Diebold and Mariano (1995) tests, augmented with the small sample correction of Harvey et al.
(1997), are in parentheses. Values in bold are significant at the 10% level; gray shaded cells highlight the best
score.
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H.6 Conditional vs. unconditional skewness

In this Section we assess the impact of accounting for unconditional skewness in the benchmark model.

Specifically, we assume an AR(2) model for GDP growth with Skt ν innovations with fixed shape parameter.

Table H7: Forecasting performance against Skt -fix

N Skt Skt Skt N Skt Skt Skt
AR NFCI 4DFI AR NFCI 4DFI

One-quarter ahead

MSFE logS
Full 0.958

(0.000)
0.807
(0.000)

0.783
(0.000)

0.778
(0.000)

−0.119
(1.000)

0.002
(0.464)

0.021
(0.230)

−0.059
(0.937)

Post ’00 0.951
(0.000)

0.770
(0.000)

0.764
(0.000)

0.754
(0.000)

−0.125
(1.000)

0.056
(0.054)

0.087
(0.004)

0.042
(0.155)

Rec. 0.952
(0.004)

0.791
(0.000)

0.769
(0.000)

0.757
(0.000)

−0.226
(0.948)

0.001
(0.492)

0.038
(0.241)

−0.078
(0.805)

CRPS wQS
Full 0.982

(0.032)
0.947
(0.001)

0.924
(0.000)

0.935
(0.001)

1.010
(0.820)

0.969
(0.052)

0.935
(0.000)

0.935
(0.002)

Post ’00 0.977
(0.002)

0.913
(0.000)

0.891
(0.000)

0.897
(0.000)

1.034
(0.999)

0.951
(0.001)

0.925
(0.000)

0.921
(0.002)

Rec. 0.957
(0.042)

0.920
(0.004)

0.904
(0.005)

0.898
(0.008)

1.028
(0.913)

0.950
(0.064)

0.932
(0.035)

0.892
(0.019)

One-year ahead

MSFE logS
Full 1.095

(0.999)
0.789
(0.003)

0.785
(0.012)

0.760
(0.009)

−0.232
(1.000)

0.254
(0.005)

0.352
(0.000)

0.286
(0.009)

Post ’00 1.022
(0.974)

0.736
(0.000)

0.711
(0.000)

0.734
(0.005)

−0.323
(1.000)

0.526
(0.000)

0.656
(0.000)

0.647
(0.000)

Rec. 1.119
(0.864)

0.832
(0.130)

0.855
(0.218)

0.734
(0.051)

−0.704
(0.996)

0.367
(0.033)

0.505
(0.035)

0.533
(0.065)

CRPS wQS
Full 1.016

(0.853)
0.927
(0.003)

0.917
(0.001)

0.897
(0.003)

1.080
(1.000)

0.841
(0.008)

0.807
(0.002)

0.828
(0.014)

Post ’00 1.046
(1.000)

0.882
(0.000)

0.864
(0.000)

0.857
(0.000)

1.072
(1.000)

0.777
(0.000)

0.754
(0.000)

0.762
(0.004)

Rec. 0.985
(0.384)

0.928
(0.035)

0.943
(0.176)

0.877
(0.043)

1.099
(0.983)

0.797
(0.022)

0.810
(0.055)

0.734
(0.036)

Note: The table reports the average forecast metrics relative to the Gaussian model. We use ratios for the MSFE,
CRSP and wQS, and differences for the logS. Ratios smaller than 1, and positive values of the log-score differences
indicate that the column-specific model performs better than the Gaussian benchmark. The p-values for Diebold
and Mariano (1995) tests, augmented with the small sample correction of Harvey et al. (1997), are in parentheses.
Values in bold are significant at the 10% level; gray shaded cells highlight the best score.
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Table H8: Downside risk scores against Skt -fix

Skt Skt Skt Skt Skt Skt
no-X 4DFI no-X 4DFI no-X 4DFI

FZG ALS TLF

One-quarter ahead
Full 0.831

(1.000)
0.819
(0.913)

0.959
(0.000)

0.948
(0.002)

0.978
(0.702)

0.900
(0.001)

Post ’00 0.693
(0.994)

0.720
(0.934)

0.912
(0.000)

0.926
(0.001)

0.943
(0.508)

0.915
(0.164)

Rec. 0.741
(0.265)

0.651
(0.018)

0.880
(0.000)

0.850
(0.001)

0.925
(0.200)

0.821
(0.008)

One-year ahead
Full 0.241

(0.001)
0.310
(0.002)

0.397
(0.000)

0.424
(0.002)

0.692
(0.010)

0.622
(0.010)

Post ’00 0.246
(0.002)

0.371
(0.010)

0.361
(0.000)

0.398
(0.008)

0.727
(0.018)

0.600
(0.010)

Rec. 0.192
(0.000)

0.300
(0.002)

0.263
(0.000)

0.308
(0.003)

0.551
(0.000)

0.495
(0.006)

Note: The table reports the average downside risk test scores, expressed as ratios relative to the Skt -fix model.
Ratios smaller than 1 indicate that the column-specific model performs better than the benchmark. The p-values for
Diebold and Mariano (1995) tests, augmented with the small sample correction of Harvey et al. (1997), are reported
in parentheses. Values in bold are significant at the 10% level; gray shaded cells highlight the best score. FZG:
Fissler et al. (2016) loss function; ALS: Taylor (2019) loss function; TLF: Giacomini and Komunjer (2005) tick loss
function.

H.7 Predicting GDP vintage releases

In this Section we show that adding past lags of the observable to the Skt specifications does not lead

to any substantial gains in the forecasting accuracy of the models.
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Table H9: Forecasting performance - first vintage

Skt Skt Skt Skt Skt Skt
NFCI 4DFI NFCI 4DFI

One-quarter ahead

MSFE logS
Full 0.787

(0.000)
0.760
(0.000)

0.758
(0.000)

0.117
(0.000)

0.136
(0.000)

0.117
(0.000)

Post ’00 0.779
(0.000)

0.774
(0.000)

0.767
(0.000)

0.091
(0.006)

0.117
(0.000)

0.098
(0.004)

Rec. 0.795
(0.000)

0.767
(0.000)

0.759
(0.000)

0.079
(0.150)

0.141
(0.066)

0.068
(0.311)

CRPS wQS
Full 0.922

(0.000)
0.896
(0.000)

0.903
(0.000)

0.934
(0.004)

0.897
(0.000)

0.896
(0.000)

Post ’00 0.940
(0.002)

0.910
(0.000)

0.927
(0.001)

0.933
(0.001)

0.897
(0.000)

0.903
(0.001)

Rec. 0.960
(0.162)

0.930
(0.071)

0.928
(0.085)

0.920
(0.037)

0.896
(0.022)

0.871
(0.026)

One-year ahead

MSFE logS
Full 0.408

(0.000)
0.486
(0.000)

0.464
(0.000)

2.994
(0.000)

2.584
(0.000)

2.583
(0.000)

Post ’00 0.599
(0.000)

0.642
(0.000)

0.688
(0.000)

3.384
(0.000)

3.055
(0.000)

2.977
(0.000)

Rec. 0.518
(0.000)

0.555
(0.001)

0.483
(0.000)

4.019
(0.000)

3.735
(0.000)

4.208
(0.000)

CRPS wQS
Full 0.724

(0.000)
0.752
(0.000)

0.739
(0.000)

0.451
(0.000)

0.571
(0.000)

0.553
(0.000)

Post ’00 0.779
(0.000)

0.793
(0.000)

0.817
(0.000)

0.556
(0.000)

0.618
(0.000)

0.655
(0.000)

Rec. 0.814
(0.000)

0.832
(0.000)

0.743
(0.000)

0.583
(0.000)

0.670
(0.000)

0.559
(0.000)

Note: The table reports the average forecast metrics relative to the Gaussian model. The target variable is the first
vintage of GDP growth. We use ratios for the MSFE, CRSP and wQS, and differences for the logS. Ratios smaller
than 1, and positive values of the log-score differences indicate that the column-specific model performs better than
the Gaussian benchmark. The p-values for Diebold and Mariano (1995) tests, augmented with the small sample
correction of Harvey et al. (1997), are in parentheses. Values in bold are significant at the 10% level; gray shaded
cells highlight the best score.
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Table H10: Forecasting performance - second vintage

Skt Skt Skt Skt Skt Skt
NFCI 4DFI NFCI 4DFI

One-quarter ahead

MSFE logS
Full 0.789

(0.000)
0.765
(0.000)

0.763
(0.000)

0.117
(0.000)

0.117
(0.000)

0.069
(0.032)

Post ’00 0.778
(0.000)

0.773
(0.000)

0.768
(0.000)

0.100
(0.005)

0.102
(0.006)

0.066
(0.084)

Rec. 0.791
(0.000)

0.765
(0.000)

0.757
(0.000)

0.135
(0.099)

0.110
(0.136)

−0.001
(0.505)

CRPS wQS
Full 0.933

(0.000)
0.912
(0.000)

0.918
(0.001)

0.936
(0.008)

0.906
(0.001)

0.904
(0.000)

Post ’00 0.953
(0.008)

0.927
(0.000)

0.944
(0.003)

0.940
(0.001)

0.910
(0.001)

0.916
(0.006)

Rec. 0.960
(0.161)

0.935
(0.115)

0.932
(0.118)

0.918
(0.034)

0.897
(0.025)

0.868
(0.025)

One-year ahead

MSFE logS
Full 0.409

(0.000)
0.487
(0.000)

0.464
(0.000)

2.984
(0.000)

2.572
(0.000)

2.562
(0.000)

Post ’00 0.598
(0.000)

0.641
(0.000)

0.684
(0.000)

3.456
(0.000)

3.096
(0.000)

2.984
(0.000)

Rec. 0.521
(0.000)

0.557
(0.001)

0.485
(0.000)

4.134
(0.000)

3.746
(0.000)

4.216
(0.000)

CRPS wQS
Full 0.725

(0.000)
0.754
(0.000)

0.740
(0.000)

0.454
(0.000)

0.572
(0.000)

0.553
(0.000)

Post ’00 0.780
(0.000)

0.792
(0.000)

0.815
(0.000)

0.555
(0.000)

0.616
(0.000)

0.652
(0.000)

Rec. 0.817
(0.000)

0.836
(0.001)

0.746
(0.000)

0.588
(0.000)

0.673
(0.000)

0.561
(0.000)

Note: The table reports the average forecast metrics relative to the Gaussian model. The target variable is the
second vintage of GDP growth. We use ratios for the MSFE, CRSP and wQS, and differences for the logS. Ratios
smaller than 1, and positive values of the log-score differences indicate that the column-specific model performs
better than the Gaussian benchmark. The p-values for Diebold and Mariano (1995) tests, augmented with the
small sample correction of Harvey et al. (1997), are in parentheses. Values in bold are significant at the 10% level;
gray shaded cells highlight the best score.

48



H.8 NFCI: last vintage vs. real time data

Here, we evaluate the difference in forecasting performance associated with the availability of real-time

vintages of the NFCI and its four subcomponents.

Table H11: Forecast comparison with real-time NFCI

Skt Skt Skt Skt Skt Skt Skt Skt
NFCI 4DFI NFCI 4DFI NFCI 4DFI NFCI 4DFI

One-quarter ahead One-year ahead

MSFE logS MSFE logS
2013-
2020

1.010
(0.019)

0.984
(0.000)

0.005
(0.945)

−0.085
(0.241)

0.942
(0.032)

1.030
(0.000)

0.056
(0.336)

−0.058
(0.250)

2013-
2019

0.900
(0.365)

0.985
(0.664)

0.067
(0.165)

−0.006
(0.782)

0.956
(0.025)

1.034
(0.000)

0.059
(0.378)

−0.041
(0.458)

CRPS wQS CRPS wQS
2013-
2020

0.979
(0.149)

0.986
(0.014)

0.968
(0.023)

0.976
(0.000)

0.949
(0.056)

1.012
(0.327)

0.937
(0.013)

1.011
(0.260)

2013-
2019

0.921
(0.182)

0.991
(0.557)

0.962
(0.327)

0.973
(0.146)

0.960
(0.112)

1.015
(0.256)

0.943
(0.069)

1.017
(0.232)

Note: The table compares forecast produced with real time vintages of the NFCI and its subindices. Average
forecast metrics are reported relative to the forecasts using the last release of the NFCI. The sample spans the
period from 2013Q1 to 2020Q4 to match the availability of real-time observations. We evaluate forecasts for the full
sample (’13-’20) and for a subsample excluding the pandemic (’13-’19). We use ratios for the MSFE, CRSP and
wQS, and differences for the logS. Ratios smaller than 1, and positive values of the log-score differences indicate
that using real-time NFCI observations improves forecasts’ accuracy. The p-values for Diebold and Mariano (1995)
tests, augmented with the small sample correction of Harvey et al. (1997), are in parentheses. Values in bold are
significant at the 10% level.

I Additional results on the Sparse model

In this Appendix we report additional results concerning the sparse model introduced in Section 6.

Mean Standard Deviation Skewness

Figure I1: Time-varying moments
Note: The panels show the time-varying mean, volatility and skewness (in blue), along with the respective long-run
components (in red), produced by the sparse model. shadings correspond to 90% credible intervals. Shaded bands
represent NBER recessions.

Figure I1 reports the (in-sample) estimates of the mean, volatility and skewness of the conditional

distribution of GDP growth, along with the relative long-run components. Overall, the model reproduces
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Figure I2: Time-varying densities for baseline and sparse models
Note: The plots report the time series of the 5th, 50th and 95th quantiles of the one-quarter-ahead predictive densities
for our baseline model Skt -4DFI (blue) and the sparse mode Skt -sparse (red).

the same features discussed in Section 4. In particular, the skewness presents an evident downward trend

and displays strong procyclicality. The long-run component of the volatility displays a reduction in the

second since the mid 80s, whereas the overall volatility is markedly countercyclical. Compared to the

estimates from the baseline Skt -4DFI model, reported in Figure 2, the estimated moments from the

sparse model are smoother and sharper. These differences reflect the fact that the sparsification step

drastically reduces the number of predictors used for the estimation, whereas the Horseshoe prior severely

shrink the coefficients of the variables kept into the model. Noticeably, the sparse model estimates a

pronounced long-run downside risk to US economic growth in the aftermath of the Global Financial Crisis.

Figure I2 compares the out-of-sample predictions of the competing models. As for the in-sample results,

the (one-quarter ahead) conditional predictive distributions of the Skt -4DFI and the sparse models do

not show major differences, and the sparse model produces smoother variations in the predictive densities.

Interestingly, around the GFC, the baseline model is more timely in picking up an increase in downside

risk with respect to the sparse model. On the other hand, the baseline model fails to timely capture the

large fall in GDP in 2020Q2, whereas the sparse model is quick to pick up the increase in downside risk at

the beginning of the sample and the quick turnaround in the last quarter of the sample.

Figure I3 reports the cumulative differences in the forecast loss for the four predictive accuracy measures,

focusing on the one-quarter ahead forecast. We compute the relative measures as the difference between

the sparse metrics and Skt -4DFI ’s; therefore, downward (upward) trends in the MSFE, CRPS and wQS

(logScore) imply a superior performance of the sparse over the Skt -4DFI model. The sparse model almost

always improve upon our baseline model. Major improvements occur during recessive periods, with the
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Figure I3: Forecast scoring functions
Note: The plots report the cumulative sum of the relative forecast loss functions, computed as the difference between
the sparse model and baseline model, Skt -4DFI.

exception of the of first quarters of the 2007 recession where the delay in picking up an increase in downside

risk of the sparse model is associated with larger losses. Noticeably, the ability of the sparse model to pick

up the turn in the events in 2020 is associated with massive gains in the forecast performance (based on

all metrics considered).

Last, we evaluate the importance of allowing for a sparse specification when using a large number of

predictions. Table I1 compares a sparse model and a dense specification, where the sparsity step is omitted.

The results highlight the importance of the sparsity: the sparse model is associated with very large (and

always significant) gains in forecasting, for all the metrics considered, for one-quarter and one-year ahead

forecasts.

Table I1: Sparse against dense forecast performance

One-quarter ahead One-year ahead

MSFE logS CRPS wQS MSFE logS CRPS wQS

Full 1.376
(0.000)

−1.070
(0.000)

1.544
(0.000)

1.574
(0.000)

2.088
(0.000)

−1.911
(0.000)

1.838
(0.000)

2.251
(0.000)

Pre-2020 2.797
(0.000)

−1.094
(0.000)

1.880
(0.000)

1.925
(0.000)

5.838
(0.000)

−1.952
(0.000)

2.071
(0.000)

2.764
(0.000)

Rec. 1.287
(0.000)

−1.576
(0.000)

1.428
(0.000)

1.512
(0.000)

3.687
(0.000)

−1.386
(0.010)

1.342
(0.001)

1.536
(0.001)

Note: The table reports the average forecast metrics from the dense model relative to the sparse specification. We
use ratios for the MSFE, CRSP and wQS, and differences for the logS. Ratios smaller than 1, and positive values of
the log-score differences indicate that the dense model performs better than the sparse one. The p-values for Diebold
and Mariano (1995) tests, augmented with the small sample correction of Harvey et al., 1997, are in parentheses.
Values in bold are significant at the 10% level.

51



J Additional material

J.1 Additional tables

Table J1: Static parameters

µy µσ φy,1 φy,2 φµ,1 φµ,2 φγ̃ φδ̃

AR(2) 2.150
[2.024,2.282]

0.015
[0.013,0.017]

0.386
[0.330,0.440]

0.066
[0.019,0.120]

0.977
[0.971,0.983]

Skt -No-X 1.027
[0.914,1.155]

−0.227
[−0.366,−0.096]

0.728
[0.641,0.811]

0.770
[0.689,0.834]

Skt -NFCI 0.960
[0.846,1.085]

−0.127
[−0.257,0.001]

0.662
[0.571,0.744]

0.719
[0.612,0.806]

Skt -4DFI 0.885
[0.840,0.927]

−0.032
[−0.079,0.011]

0.588
[0.521,0.654]

0.621
[0.565,0.684]

ςµ κµ ςγ κγ ςδ κδ χ η

AR(2) 0.108
[0.099,0.121]

0.267
[0.166,0.362]

Skt -No-X 0.025
[0.019,0.034]

0.081
[0.058,0.111]

0.027
[0.020,0.039]

0.148
[0.110,0.198]

0.027
[0.021,0.037]

0.091
[0.072,0.118]

0.283
[0.147,0.395]

0.301
[0.273,0.321]

Skt -NFCI 0.025
[0.018,0.035]

0.089
[0.063,0.131]

0.028
[0.020,0.040]

0.117
[0.084,0.158]

0.026
[0.020,0.032]

0.064
[0.051,0.080]

0.229
[0.109,0.372]

0.300
[0.269,0.321]

Skt -4DFI 0.032
[0.021,0.046]

0.083
[0.063,0.111]

0.019
[0.015,0.024]

0.110
[0.086,0.136]

0.029
[0.023,0.036]

0.070
[0.055,0.091]

0.031
[0.014,0.064]

0.312
[0.294,0.327]

Note: The table reports the estimates of the static parameters for all the models: the Gaussian AR(2), the Skt no-X
without predictors, with lags of the NFCI (Skt NFCI) and with lags of the subcomponents of the index (Skt 4DFI).
Credible intervals at the 68% level are in brackets.

Table J2: Predictor loadings

Skt Skt
NFCI 4DFI

NFCI Leverage NF Leverage Risk Credit

µt 0.001
[−0.006,0.007]

−0.001
[−0.008,0.005]

−0.000
[−0.006,0.005]

0.000
[−0.005,0.006]

0.003
[−0.005,0.010]

t σ2
t 0.118

[0.041,0.178]
0.051

[−0.001,0.098]
0.013

[−0.047,0.074]
−0.002

[−0.060,0.068]
0.126

[0.074,0.178]

%t 0.260
[0.198,0.324]

0.079
[0.037,0.125]

0.141
[0.087,0.195]

0.040
[−0.016,0.100]

0.206
[0.163,0.249]

µt 0.003
[−0.004,0.010]

−0.002
[−0.008,0.003]

0.002
[−0.003,0.007]

−0.000
[−0.006,0.005]

0.002
[−0.005,0.008]

t− 1 σ2
t −0.028

[−0.103,0.043]
−0.040

[−0.088,0.003]
−0.024

[−0.088,0.033]
0.106

[0.050,0.160]
−0.116

[−0.163,−0.068]

%t −0.209
[−0.278,−0.137]

−0.035
[−0.090,0.021]

−0.081
[−0.147,−0.028]

−0.054
[−0.110,0.006]

−0.163
[−0.206,−0.114]

Note: 90% credible intervals are reported in brackets.
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J.2 Additional plots

Skt Skt -NFCI Skt -4DFI

Figure J1: Time-varying parameters
Note: The plots illustrate the estimated time-varying parameters (black) for the three model specifications. Perma-
nent components are reported in red (right scale). Shaded bands represent NBER recessions.
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Figure J2: Predictive densities around the GFC
Note: The panels show the predictive densities for 2008Q3 (blue), 2008Q4 (red) and 2009Q1 (green) from the
Gaussian AR(2) model (top panels) and from the Skt -4DFI specification (bottom panel). In-sample densities are
in the right panels, out-of-sample densities are in the left ones. Realizations of economic growth are denoted by
diamonds, dot-dashed lines report expected values.
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Full sample GFC

Figure J3: Top 10 predictors
Note: The bar plots report the top 10 predictors for the location, scale and shape parameters, over the forecasting
sample and during the quarters of the Great Recession of 2008. The x-axis reports average posterior probability of
inclusion, expressed in percentage terms.
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