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Abstract

Rapidly expanding research on COVID19 in Economics typically
posits an economy subject to a model of epidemiological dynamics,
which is at the core of the analysis. We place this model on the foun-
dations of an epidemiological analysis of the SARS-CoV-2 virus trans-
mission timescales.

The contribution is twofold. First, we formulate a full model with
epidemiologically-based and clinically-based parameterization. The
model features two blocks: an infection transmission block, described
by the SEIR-Erlang model, and a clinical block, characterizing the de-
velopment of symptoms, hospitalization, ICU admission, and recov-
ery or death. The latter is important for the analysis of dynamics of
the public health system.

Second, we show that there is often serious mis-specification of the
model, erroneously characterizing a relatively slow-moving disease,
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We also discuss misguided modelling of lockdown policies.
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Caveats for Economists:
Epidemiology-Based Modelling of COVID 19 and Model

Misspecifications

1 Introduction

Since March 2020 there has been a rapidly expanding research effort ded-
icated to COVID19 analysis across disciplines, inter alia, in Economics. A
typical analysis posits an economy, which is subject to a model of epidemio-
logical dynamics describing COVID19 disease dynamics. One type of eco-
nomic analysis describes a planner problem that seeks to derive optimal
policy. This trades off the costs of public health outcomes, such as breach
of ICU capacity and death, with the economic costs of suppression policy,
including declines in production, consumption, and investment. It leads
to the modelling of the well-known concept of “flattening the curve” pol-
icy. Another strand of papers models the decentralized economy and the
optimal decisions of agents, emphasizing individual epidemic-related be-
havior as well as externalities. In both cases the dynamics of the disease, as
well as its features, like the fatality rate, are at the core of the analysis.

This paper makes two contributions: one is to place this analysis on
the foundations of an epidemiological analysis of the SARS-CoV-2 virus
properties. In particular, the timescales of disease transmission are exam-
ined. The main elements of the ensuing model are two blocks: an infection
transmission block, where the number of new cases is determined, and is
described by the SEIR-Erlang model; and a clinical block, which charac-
terizes the development of symptoms, hospitalization, ICU admission and
recovery or death. The former block derives from the epidemiologically-
grounded analysis and defines epidemiological dynamics; the latter block
is important in order to deal with the dynamics in the public health sys-
tem. It offers a complete model of these two different dynamics, including
epidemiologically-based and clinically-based parameterizations.

The second contribution is to show that there is often serious misspec-
ification of the model, due to errors in the set-up and in the parameteri-
zation, at odds with the epidemiological evidence. These errors have im-
portant consequences for optimal economic planning and for policymak-
ing relating to COVID19. In particular, they are manifested in erroneously
characterizing a relatively slow-moving disease, thereby distorting the pol-
icymaker decisions towards less severe, delayed intervention, such as de-
layed lockdown. Moreover, the scale of the disease is under-estimated. The
underlying cause for the misspecification is the failure to make the distinc-
tion between the epidemiological and clinical blocks. Wrong values are
assigned to key parameters of disease dynamics, while other important pa-
rameters are omitted.
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Finally, we revisit some prevalent approaches to modelling lockdown
policies, highlighting problems in their main assumptions, and propose
alternatives. In particular, the quadratic matching properties, flagged by
economists, holds true only in highly unrealistic and implausible lockdown
situations.

The analysis points economic researchers at the correct way to model
the dynamics of the disease. This could serve well both types of analy-
sis which were mentioned above. The analysis may also be useful for other
epidemics beyond COVID19, as much of the discussion is pertinent to other
forms of infectious diseases. Note, in this context, that the set of epidemics
since 1980 is quite large and includes, inter alia, HIV/AIDS, SARS, H5N1,
Ebola, H7N9, H1N1, Dengue fever, and Zika. We see the analysis here as
complementary to the work of Ellison (2020), who focuses on the impor-
tance of the correct modelling of population heterogeneity in the context of
COVID19.

The paper proceeds as follows: Section 2 presents key papers in the
Economics literature which are relevant for the current discussion. Section
3 presents the epidemiological analysis of the SARS-CoV-2 virus transmis-
sion timescales. Section 4 discusses the epidemiological model which en-
sues from the latter analysis, and the parameterization that is appropriate
to use. Section 5 presents the misspecified model used in part of the Eco-
nomics literature, its parameterization, and its relation to the epidemiology-
based model. Section 6 discusses the repercussions of using the wrong
model. Section 7 briefly discusses the modelling of lockdowns. Section
8 concludes.

2 Literature

There has been an explosion of research in Economics on COVID19. Avery
et al (2020) provide an early review and Baqaee, Farhi, Mina, and Stock
(2020) offer a more recent discussion. Two kinds of papers have been mak-
ing use of epidemiological models in ways that are relevant for the current
analysis.

One is work using the concept of an optimizing planner. The point
here is to examine in economic terms the losses due to the pandemic (e.g.
deaths, breach of ICU constraints) and the economic consequences of pub-
lic health policy (such as disease suppression measures, prominently lock-
downs). In this framework an objective function is defined, with values
taking into account economic losses and the value of statistical life. Thus,
tradeoffs are measured and alternative policies can be evaluated. The plan-
ner constraints include, inter alia, the disease dynamics typically examined
within the SIR epidemiological model. Prominent contributions include
Acemoglu, Chernozhukov, Werning, and Whinston (2020), Akbarpour et
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al (2020), Alvarez, Argente, and Lippi (2020), Chari, Kirpalani, and Phe-
lan (2020), Farboodi, Jarosch, and Shimer (2020), and Jones, Philippon, and
Venkateswaran (2020).

The second kind of work includes papers which tie macroeconomic dy-
namics to the epidemiological dynamics of the SIR model. These models
posit that economic behavior has two-way connections with disease trans-
mission. Notable contributions include Eichenbaum, Rebelo, and Trabandt
(2020), and Krueger, Uhlig, and Xie (2020). Within the latter strand, the sec-
torial model of Kaplan, Moll, and Violante (2020) is notable for its careful
analysis.

Depending on the exact formulation, we show below how erroneous
use – which has been the case in some, but not all of the papers – might
lead to work with misspecified models. This has substantial consequences
for policy. Two key properties of disease dynamics, its scale and speed, are
at the center of misspecification.

3 Epidemiological Analysis of the SARS-CoV-2 Virus
Transmission Timescales

At the core of many mathematical frameworks for modeling the spread of
infectious diseases such as COVID19, lie key timescales which character-
ize the transmission of the disease between individuals, as well as its pro-
gression within an infected individual. These concepts lie at the founda-
tion of the renewal equation approach, advanced by Lotka (1907), and the
compartmental model approach, proposed by Kermack and McKendrick
(1927). In what follows we present these approaches briefly. For a descrip-
tion of the evolution of the literature and a mathematical treatment of the
equivalence of the two approaches, see Champredon, Dushoff, and Earn
(2018).

3.1 The Generation Interval and the Renewal Equation

The most basic relevant timescale used in this context is known as the gen-
eration interval, which is defined for an infector-infectee pair. The genera-
tion interval is the time between the infection of the infector and the infec-
tion of the infectee. This duration of the generation interval is hard to quan-
tify directly, as it is hard to pinpoint the exact time in which transmission
occurred. The more commonly observed quantity is known as the serial
interval, which measures the time between symptom onset in the infector
and symptom onset in the infectee. To infer the generation interval from the
observed serial interval, a third timescale is needed. This timescale, known
as the incubation period, is defined as the time from infection with the virus
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until symptom onset. It is clear that these three timescales could vary sig-
nificantly between individuals, and thus they are better represented at the
population level as probability density functions. References to key studies
and details on these timescales are provided in Bar-On, Sender, Flamholz,
Phillips, and Milo (2020).

Once the distribution of generation intervals is inferred, it can be used
in the context of a common mathematical framework for modeling the dis-
ease – the so called Lotka-Euler renewal equation.1 In its simplest form, the
renewal equation posits that:

I(t) =
∫ ∞

0
I(t− τ) · β(τ)dτ (1)

where I(t) is the number of infected people at time t, and β(τ) is the trans-
mission rate of people in day τ after their infection (in units of days−1). The
function β(τ) is also known as the infectiousness profile, and is defined to
be the same as the probability distribution function of the generation in-
terval, scaled by the basic reproduction number R0, which is the average
number of people an infected person infects over the course of their infec-
tion:

β(τ) = R0 · g(τ) (2)

where g(τ) is the generation interval distribution.

3.2 The Compartmental Approach

An equivalent modeling approach attempts to discretize the infectiousness
profile by splitting up the infectiousness profile of an infected individual
into distinct compartments – the Exposed (E), Infectious (I), and Resolved
(R) compartments. This discretization is at the heart of the Susceptible-
Exposed-Infectious-Resolved (SEIR) model. In both the E and R compart-
ments, infectiousness is zero, whereas in the I compartment, the transmis-
sion rate is β. An infected individual spends a certain amount of time in
each compartment, before moving to the next compartment. The time spent
in the E and I compartments are known as the latent2 and infectious peri-
ods, respectively. The overall infectiousness across the entire disease pro-
gression for an infected individual, which is the reproduction number R0,
is a constant β times the infectious period. The SEIR model can be defined
in terms of differential equations in the following manner:

1The renewal equation was introduced by Leonhard Euler in 1767 in work on population
dynamics. It was reformulated in a more general continuous version by Alfred Lotka, father
of the field of mathematical demography (see Lotka (1907)).

2Not to be confused with the incubation period, which is the time it takes from infection
to symptoms appearance.
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.
S(t) = −β · I(t) · S(t) (3)
.
E(t) = β · I(t) · S(t)− σE(t) (4)
.
I(t) = σE(t)− γI(t) (5)
.
R(t) = γI(t) (6)

where S, E, I and R are the fractions of the population in the respective
compartments, β is the transmission rate during the infectious period,3 σ is
the rate at which a person moves from the E to the I compartment and γ is
the rate at which a person moves from the I to the R compartment. Because
σ and γ are constant, this implies that the time spent in either the E and I
compartments is exponentially distributed with a mean of 1/σ and 1/γ.
As the time spent in the E and I compartments are the latent and infectious
periods, this implies the shape of these periods is distributed according to
the following formulae:

TL(t) = σ exp(−σt); TI(t) = γ exp(−γt) (7)

where TL(t) and TI(t) are the probability density functions of the latent and
infectious periods, respectively.

Exponentially distributed latent and infectious periods imply that most
people spend zero amount of time being either in their latent period or in
their infectious period, which is not accurate biologically. Therefore, to pro-
duce more accurate distributions for the exposed and infectious periods,
with a mode near the mean, one models the E and I compartments as split
into two (or more) each, with double the rate of transfer between them. We
present the ensuing differential equations in the next section. Now, the la-
tent and infectious periods are the sum of the time spent in the E1 and E2 or
I1 and I2 sub-compartments, respectively, and their distribution is thus the
same as that of a sum of exponentially distributed random variables. The
distribution of the sum of m exponentially distributed random variables is
known as the Erlang distribution, which is a special case of the Gamma dis-
tribution with an integer as the shape parameter of the distribution. This
type of augmented model is known as the SEIR-Erlang model, and the cor-
responding probability density distributions for the latent and infectious
periods are now described by the following formulae:

TL(t) = (2σ)2t exp(−2σt); TI(t) = (2γ)2t exp(−2γt) (8)

3To avoid clutter we leave out time indices for β and R, since their time-variability is
not at the focus of the paper and our results and intuition are invariant to the assumptions
on R dynamics. However we do use a specification with a regime-dependent R when we
discuss the optimal planner problem below.
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The means of these distributions are still 1/σ and 1/γ, but now the
modes of the distribution are also near 1/σ and 1/γ.

4 A Model Based on the Epidemiological Evidence

We analyze the evolution of the disease in two complementary blocks –
infection transmission and clinical progression. The infection transmis-
sion block is the one where the number of new cases is determined, and
is described by the SEIR-Erlang model. The clinical block characterizes
the development of symptoms, hospitalization, ICU admission and recov-
ery/death. The former block derives from the afore-going epidemiological-
grounded analysis and defines the epidemiological dynamics; the latter
block is important in order to deal with the dynamics in the public health
system.

4.1 The SEIR-Erlang Block

Following the analysis of Karin et al (2020), we shall use the SEIR–Erlang
model with two sub-compartments.4 Graphically, this model is represented
in panel a of Figure 1.

Figure 1

Analytically the following equations describe this block. Throughout,
all stock variables are expressed as a fraction of the population.

.
S(t) = −β · (I1(t) + I2(t)) · S(t) (9)
.

E1(t) = β · (I1(t) + I2(t)) · S(t)− 2σE1(t) (10)
.

E2(t) = 2σE1(t)− 2σE2(t) (11)
.
I1(t) = 2σE2(t)− 2γI1(t) (12)
.
I2(t) = 2γI1(t)− 2γI2(t) (13)
.
R(t) = 2γI2(t) (14)

4Karin et al (2020) simulated the cases of two sub-compratments and examined them
relative to the cases of one, or more than two, sub-compartments, and found two sub-
compartments to be a reasonable formulation.
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4.2 The Clinical Block

The SEIR-Erlang block does not describe the clinical progression of the dis-
ease. Hence, it does not provide information on the timing and the shares
of people developing symptoms, being hospitalized and admitted to ICU.
The clinical block does that, describing how new cases progress through
the public health system. Concurrently with the progression of an infected
person through the infectiousness compartments described above, over the
course of the disease the same person progresses through the public health
system. This latter process depends on the development of symptoms and
on the severity of those. In more serious cases a person gets hospitalized
and in some cases has to be moved to an intensive care unit (ICU). It is very
important to note that the onset of symptoms and the subsequent clinical
developments follow a separate time-scale that is different from the latent
and infectious periods described above. The same applies to the timing of
transition into an ICU. Since the progression of an infected person through
the public health system follows a separate track from one’s progression
through the infectiousness stages, in what follows we suggest to separate
these two tracks in the model as well. Adequate modelling of the clinical
progression is important for the derivation of optimal policy that takes into
account the burden on the public health system.

We thus postulate the following. Once infected, a person enters a state
P during which there are still no symptoms and it is not known whether
the symptoms will eventually appear. This period – the incubation period
– lasts for 1/θP on average and at its end, a person either remains asymp-
tomatic (O) or develops symptoms (M). Denote the share of cases that re-
main asymptomatic by η. Asymptomatic people do not crowd hospitals,
they go to work, and at some point, recover. Symptomatic cases (share
1− η of cases) might develop serious symptoms and get hospitalized (H).
This happens with probability ξ. Once in a hospital, a given share π of pa-
tients develop conditions requiring transition to ICU (denoted X). Once in
ICU, a fraction δ(·) dies. We specify the latter probability of death, once in
ICU, as:

δ(X(t), X) = δ1 + δ2 ·
I(X(t) > X) ·

(
X(t)− X

)
X(t)

(15)

where X denotes ICU capacity and I is the indicator function.
Finally, at any stage, a person may recover (C). The clinical block is

represented graphically in panel b of Figure 1.
We now present the analytical description of the model. Note that we

describe here only the evolution of the symptomatic branch of the scheme,
and do not describe the evolution of the pool of the recovered (C). This is
so because for the economic analysis, discussed below, one only needs to
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predict the number of people who are not able to work, and the number of
people who develop conditions requiring intensive care.5

.
P(t) = β · (I1(t) + I2(t)) · S(t)− θP · P(t) (16)
·

M(t) = (1− η) · θP · P(t)− θM ·M(t) (17)

.
H(t) = ξ · θM ·M(t)− θH · H(t) (18)
.

X(t) = π · θH · H(t)− θX · X(t) (19)
.

D(t) = δ(X(t)) · θX · X(t) (20)

The parameters θM, θH, and θX denote the average time that passes
between symptoms onset and hospitalization, hospitalization and ICU ad-
mission, and ICU admission and death, respectively.

4.3 Connection to Economic Analysis

The connection to economic analysis can be made by positing that the num-
ber of people who can work daily N(t) is given by:

N(t) = l · ρ · (1− D(t)− X(t)− H(t)− φM(t)) (21)

where 0 < l < 1 is the employment fraction out of the total population
(subject to standard labor supply arguments), 0 < ρ ≤ 1 is the fraction able
to work given any policy restrictions during the pandemic, and 0 ≤ φ ≤ 1
is the fraction of people with symptoms who do not work. If φ = 1, it
means that anyone who develops symptoms self-isolates immediately and
does not work.

4.4 Parameterization

It should be clear from the preceding discussion that the parameterization
of this model needs to be epidemiologically-based and clinically-based. In
Table 1 we present the relevant values for the two blocks, where we rely
on the analysis in Bar-On, Sender, Flamholz, Phillips, and Milo (2020) and
sources in the epidemiological and medical literatures, as elaborated in the
table notes.

Table 1
5Note that in the equation for

.
P(t), presented here, we use −

.
S(t)− θP · P(t) on the RHS

and insert
.
S(t) = −β · (I1(t) + I2(t)) · S(t).
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Two elements are noteworthy:
(i) The transmission rate β= γ ·R depends on the regime – in lockdown

it is denoted γ · RL, and out of lockdown (work) it is denoted γ · RW .
(ii) The Infection Fatality Rate (IFR) is 0.8%,6consistent with the esti-

mates of the Imperial College COVID-19 Response Team (2020).
Additionally, we parameterize the rate the probability δ as follows, not-

ing that δ(X(t), X) = δ1 + δ2 ·
I(X(t)>X)·(X(t)−X)

X(t) . Based on Bar-On, Sender,
Flamholz, Phillips, and Milo (2020) we set δ1 = 0.5. In the U.S. economy,
ICU capacity is X = 58,094

329.529∗106 = 1. 8× 10−4. This is based on an estimate of
58, 094 ICU beds by the Harvard Global Health Institute.7 Finally, follow-
ing Kaplan, Moll, and Violante (2020) we set δ2 = 0.5.

5 Alternative Specifications

The overwhelming majority of Economics papers on COVID19 model clin-
ical outcomes and infections dynamics within a single block. In many cases
the calibration of this single framework has been guided by two basic num-
bers that pertain to two conceptually different processes – the spread of the
disease and its clinical progression:

a. The basic reproduction number R0. This is often calibrated at 2.50,
following various sources, for example CDC estimates.8

b. Duration till death. It takes on average 18-19 days to die from COVID19,
once one gets infected (Imperial College COVID-19 Response Team (2020)).

In subsection 5.1 we present an oft-used model together with its cali-
bration, based on the targets above. In subsection 5.2 we present a modifi-
cation of the latter model and its parameterization so that it becomes closer
to the benchmark of the preceding section.

5.1 The Widely-Used SIR Model

Economists modelling the dynamics of COVID19 have mostly been using
versions of a SIR model, which is a special case of the model discussed
above and the problematics of which are going to be analyzed below. It has
the following structure.

.
S(t) = −β · I(t) · S(t) (22)
.
I(t) = β · I(t) · S(t)− γI(t) (23)
.
R(t) = γI(t) (24)

6The IFR here is given by (1− η) · ξ · π · δ1 = 0.5 · 0.08 · 0.4 · 0.5 = 0.008
7See https://globalepidemics.org/our-data/hospital-capacity/
8https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html#table-1
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Whenever numbers of deceased and recovered are needed the follow-
ing equations are also used:

.
D(t) = η

.
R(t) (25)

.
C(t) = (1− η

.
)R(t) (26)

where D is deceased and C is recovered.
The resulting prevalent calibration is the following:

1/γ = 18 =⇒ γ = 1/18

β = R0 · γ = 2.50 · 1/18 = 0.139

Thus:
a. The duration of the disease till death is exactly the duration of the

Infected stage, and it is 1/γ.
b. The infection transmission rate β is pinned down by the basic repro-

duction rate R0 and the parameter governing the length of the infectious
stage. In this simple SIR model, the infectious period coincides with the
infected stage I and is therefore defined by γ.

5.2 The SIRD Model

Note that the widely-used SIR model and its parameterization presented
above imply that an infected person becomes infectious immediately upon
catching the disease and remains infectious throughout the entire disease
duration. Therefore, the framework contradicts the two following facts es-
tablished in the epidemiological analysis of COVID19:

a. People who get infected are not immediately infectious as there is a
latent period at the beginning of the disease. We have denoted this stage
by E, standing for “exposed.” The existing evidence, used in Table 1, is that
this period lasts on average around 3 days.

b. People are infectious during a relatively short period of time. After
one stops being infectious, the disease continues, and some time should
pass till one recovers or dies,. During this time one does not transmit the
disease anymore. The evidence (see Table 1) is that the period of infectious-
ness lasts only around 4 days on average.

These two facts are fully reflected in the SEIR model and its epidemiology-
grounded parameterization, on which we have expounded in Section 4.
However, it is possible to introduce a modification of the SIR model, which
has also been sometimes used by economists, that makes it more relevant
in light of the two points above. Thus we modify the SIR model above,
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given by equations (22)-(24), so as to take into account the correct timing of
the disease until resolution. Hence we replace equation (24) by:

.
R(t) = γI(t)− θ · R(t) (27)

The parameter θ governs the duration of the resolving stage R. Note that
now, replacing equations (25)-(26), one gets:

.
D(t) = η · θ · R(t) (28)
.
C(t) = (1− η) · θ · R(t) (29)

This model is often called the SIRD model. Based on the afore-cited epi-
demiological properties and the same targets discussed for the SIR model,
one may parameterize the SIRD model as follows:

γ = 1/7

θ = 1/11

β = R0 · γ = 2.5 · 1/7 = 0.357

5.3 Relations Between the Specifications

In what follows we shall consider four different model specifications:
a. models (i) + (ii) – the full SEIR-Erlang model, discussed above in Sec-

tion 4; we look at our preferred specification of two compartments (model i,
denoted SEIR-2, see sub-section 4.1) as well as at one compartment (model
ii, denoted SEIR, see equations (3)-(6) in sub-section 3.2);

b. model (iii) – the simple, widely-used SIR model parameterization
discussed in sub-section 5.1;

c. model (iv) – the SIRD model of sub-section 5.2.
Note a number of notational differences across the specifications:
a. The overall scale of the epidemics is measured by I in SIR and SIRD,

by E+ I in SEIR, and by E1 + E2 + I1 + I2 in SEIR− 2.
b. In the SIRD model, the state R is interpreted as Resolving and has

duration governed by θ. This is in contrast to the removed/resolved state
R in the other models.

Figure 2 illustrates these different specifications and presents the values
given to the key parameters.

Figure 2
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The key difference between the models lies in the implied infection
transmission rate β as seen in the fourth row of the table in Figure 2. The im-
plied β follows immediately once the length of the infectious period 1/γ is
set. The specifications that assume a long infectious period, for example the
SIR model, have to posit a low transmission rate β in order to match a par-
ticular value of R0. The specifications that assume an epidemiologically-
grounded short infectious period (for example, the SEIR and SEIR− 2, or,
to a lesser extent, the SIRD model), can only match R0 if the transmis-
sion rate per unit of time β is relatively high. The separation of the infec-
tions generation block from the clinical block lies at the heart of the differ-
ences between the widely-used SIR parameterization and the benchmark
SEIR − 2 model (see Section 4 above) or its simplified counterpart SEIR.
Mixing the two distinct timescales in a one-block parameterization is be-
hind the calibration of SIR, the problematics of which we discuss below.
The modification of SIR, called SIRD, presented in sub-section 5.2, makes
this problem somewhat less acute by adding a parameter θ that governs
the duration of the resolving stage, while still targeting R0 and duration-
till-death in a single block. In the next section, we consider the implications
of these misspecifications for disease dynamics, the burden on the public
health system, and planner optimization.

6 The Implications of Misspecification

We turn now to explore the implications of the different dynamics inherent
in the models shown in Figure 2. To do so we start with an exploration
of the speed of the disease across models (sub-section 6.1), then study the
dynamics in terms of the reproductive number, R (in 6.2), and end by dis-
cussing the implications for optimal policy (6.3).

6.1 The Speed of the Disease

The length of the infectious period, governed by γ, has important effects
on the implied epidemic dynamics. At the start of the epidemic S(0) ' 1,
so the SIR model of sub-section 5.1 has the following approximate solution
for I using the dynamic equation (23):

I (t) = I (0) eλt (30)

where λ = γ(R0 − 1).
As seen in Figure 2, the different models imply very different growth

rates of the disease. In particular, while all models, except for the widely-
used SIR imply disease daily growth rates of 17%− 21%, the SIR model
itself implies 8%; the disease doubles in 3.2− 4.2 days under the three mod-
els but takes 8.3 days to double in the widely-used SIR model. This is a
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first-order effect, with the mis-calibrated SIR model implying much slower
disease dynamics.

More generally, panels a and b in Figure 3 illustrate the development
of the disease, as measured by the stock of infectious and exposed people9

(panel a) and hospitalized in ICU (panel b), under the different models
depicted in Figure 2.

Figure 3

The length of the infectious period, governed by γ, has important effects
on the implied epidemic dynamics.

a. Slow disease in the widely-used SIR. From Figure 3 and Table 1 one sees
that a specification with a very long infectious period – the SIR model with
γ = 1/18 – implies a much lower transmission rate β and therefore the
disease progresses much more slowly; the epidemic is spread out in time,
and the maximal number of infected at a given point in time reaches 24%
of the population on day 120. It takes almost 330 days for the epidemic to
die out.

b. Faster dynamics in SEIR and SIRD. By contrast, specifications with a
relatively short infectious period, the SEIR models and the SIRD model,
imply much faster dynamics. The epidemic starts aggressively and cases
rise very fast, reaching the peak on days 59 (for SEIR), 56 (for SEIR−2),
and 49 (for SIRD). The epidemic also dies off quickly; there are hardly any
people in I after day 120, and the entire episode ends twice as fast as under
the SIR model calibration.

Note that these numbers pertain to an unmitigated disease and thus do
not correspond to real world data.

c. Effects on ICU utilization. Panel b of Figure 3 shows that with a slow
moving disease, implied by a long infectious period, ICU capacity is breached
on day 82, and peak demand exceeds capacity by a factor of 7, whereas in
the epidemiological-grounded model it is breached much earlier, on day
41, and peak demand exceeds capacity by a factor of 14.

d. Role of the latent period. Ignoring the short latent period (E), as in SIR
and SIRD, has moderate effects on epidemic dynamics. In SIRD, relative
to the two SEIR models, the epidemic develops a bit faster at the beginning,
because there is no delay between the moment a person becomes infected
and the moment he or she starts spreading the disease.

e. The role of sub-compartments. Dividing I and E into sub-compartments
and the number of sub-compartments have some effects on both the speed
and the scale of the disease. Using only one compartment for I and E im-
plies a model of the dynamics such that most of the people exposed become
infectious immediately and most of the infected recover immediately. This
is counter-factual. When the economy is in the phase of a rising disease,

9In the case of SIR – infectious only.

15



each compartment and sub-compartment is more populated that the com-
partment following it. Every day there are more people who are exposed
than there are people who are infectious, and more people are infected to-
day than yesterday, in line with exponential growth.

From Figure 3 one can see that with different numbers of sub-compartments,
disease dynamics change. The underlying dynamics (not shown) are that
in the SEIR model, the disease slows down with the number of E sub-
compartments and rises faster in the number of I sub-compartments; when
both E and I sub-compartments are increased, the combined effect depends
on model parameters. Specifically, in COVID19 where γ < σ , the disease
speed is faster when increasing the number of both sub-compartments in E
and I.

Moreover, in the SEIR − 2 model with two sub-compartments, more
people are infected before the entire population reaches herd immunity,
and a higher level of disease is reached. At the peak, the number of infec-
tious/exposed people reaches 27% of the population (a difference of 3.5%
relative to the other models, or 11.6 million people in the case of the U.S).
This can be seen in the higher peak of the red lines in I and in X in Figure
3 and in the numbers presented in panel c of Table 2.

f. Implications for initial conditions. Under equal initial conditions, it
takes much more time for the epidemic to gain pace under the widely-used
SIR model than under SEIR. One can try to ‘circumvent’ this problem by
assuming a higher initial seed of the infection. Panel c of Figure 3 compares
the SEIR model with initial seed of 10−4 and the widely-used SIR model
with initial seed of 10−2. It shows that assuming a higher initial seed does
place SIR on the same timescale as SEIR in terms of the length of the entire
episode and timing of the peak. However, two problems remain.

First, at peak, the implied number of infectious individuals is still way
lower under SIR, which distorts the problem of a policymaker constrained
by a number of hospital/ICU beds.

Second, assuming a seed of 1% of the population implies, in terms of the
U.S. economy, that the epidemic has started when over 3.3 million people
got infected. This is a highly implausible assumption, given the actual data
on the time path of known cases and on deaths.

These properties, relating to the speed and scale of the disease, are cru-
cial in any framework where a planner or a policymaker wants to manage
the disease optimally, and faces an ICU capacity constraint. We illustrate
this in sub-section 6.3 below.

6.2 Initial Disease Dynamics and the Reproduction Number

As mentioned, the Lotka–Euler equation is a basic equation in demography,
used for the study of age-structured population growth. It is similarly used
in epidemiology to study disease growth. One possibility is to retrieve the
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reproduction number, R0, from the growth rates of the disease. Following
Wallinga and Lipsitch (2007), the characteristic equation of Lotka-Euler is
given by:

1 =
∫ ∞

0
e−λτ · β(τ)dτ (31)

Using equations (1), (2), and (31) they get:

1
R0

=
∫ ∞

0
e−λτg(τ)dτ (32)

The term on the right-hand side of equation (32) is the Laplace trans-
form of the function g(τ). It is also the moment generating function M(λ)
of the distribution g(τ).

Thus:

M(λ) =
∫ ∞

0
eλτg(τ)dτ (33)

and so:

R0 =
1

M(−λ)
(34)

Wallinga and Lipsitch (2007) go on to show the explicit expression for
R0 using different formulations of g(τ) and hence M(λ).

For the case of the SIR model (σ = 0) this is given by:

R0 = 1+
λ

γ
(35)

In the SEIR model with one compartment it is given by:

R0 =

(
1+

λ

γ

)(
1+

λ

σ

)
(36)

In the compartmental SEIR model with m, n compartments it is given
by (using equation 4 in Wearing et al (2005)):10

R0 =
λ( λ

σm+1)
m

γ

(
1−

(
λ

γn + 1
)−n

) (37)

The above formulae (35)-(37) are presented in Figure 2; once the value
of λ is known, the figure provides numerical values for all other parameters
needed to computeR0.

10The original publication of Wearing et al (2005) contained an error. This equation is
the corrected version; see 2005 Correction: Appropriate models for the management of
infectious diseases. PLoS Med 2(8): e320.
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We can now see that incorrect parameterization of the length of the in-
fectious period 1/γ, as shown in Figure 2 for the case of SIR model, dis-
torts the true properties of disease dynamics. Suppose, for example, that
one were to use the expression (35) above to recover the basic reproduc-
tion number R0, rather than just taking it to be of a particular value. The
transmission rate β would then be:

β = R0·γ = γ+ λ (38)

Equation (38) shows that even when we do not fix R0 in advance, but
recover it from the data on the infections growth rate λ, assuming, erro-
neously, a low γ will result in a low transmission rate β, implying much
less aggressive epidemics dynamics.

6.3 Implications for an Optimizing Planner Problem

To illustrate the consequences of the wrong parameterization of γ for the
outcomes, in particular for the number of deaths and breach of ICUs, we
use an optimizing planner model developed in Alon et al (2020). The plan-
ner minimizes the following loss function:

min
∞∫

t=0

e−rt
(

Y (t)
N (t)

(Nss − N (t)) + χḊ (t)
)

dt (39)

The loss function is minimized in PDV terms (r is the discount rate)
over infinite horizon, where at finite point TV (set at 540 days) the vaccine
is found and the pool of susceptibles drops to zero, so that the disease stops
growing. It includes lost output ( Y(t)

N(t) (N
ss − N (t)), the average output per

worker multiplied by the decline in employment relative to steady state)
and the value of lost life (χḊ (t)). The latter argument is affected, inter alia,
by the breach of ICU (which affects Ḋ (t)) as modelled in equation (15)
above. The planner thus faces the tradeoff whereby a prolonged lockdown
leads to economic costs, while a breach of ICU, as lockdowns are stopped,
leads to increased costs of life. Note two elements that affect these dy-
namics – “herd immunity,” where the disease reaches a point in time from
which it declines (

.
I(t) < 0), and the arrival of a vaccine (TV).

To work within a realistic set-up, we let the planner decide on when to
start and when to stop lockdown. In Alon et al (2020) we allow for alterna-
tive lockdown strategies and for more choices of timing. Here we simplify
and allow one choice, of the start and end of a full lockdown (allowing,
though, for essential workers and remote work, throughout). We use the
parameter values of Figure 3 and the following time path for R. We start
off from a value of 2.50 consistent with the findings of Jones and Villaverde
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(2020) inferring R0 from empirical data. Subsequently, following the re-
view of the literature in Karin et al (2020) and their estimates of R in work
and lockdown periods, we use RW = 1.50 for work periods that follow
a lockdown period and RL = 0.80 for the lockdown period itself. Refer-
ring to the U.S. economy, we use ρ = 0.7 for the value of the fraction able
to work in a lockdown, following evidence cited in Alon et al (2020), and
χ = 85.7 for the value of lost life following Hall, Jones, and Klenow (2020)
and Greenstone and Nigam (2020).11

We undertake the following exercise. We take this planner problem, and
solve it for the optimal timing of lockdown (the start and end dates) under
the afore-cited SIR model plugged into the infection transmission block.
This features the implausibly low value of γ = 1/18. We subsequently
compare deaths and the share of people in ICU across the following two
scenarios: (i) the planner implements the policy above and the true model
is indeed SIR with γ = 1/18, in accordance with what was assumed when
devising the policy (to be denoted ‘planned’ in the figure below), and (ii)
the planner implements the same policy but the true model is SEIR − 2
with σ = 1/3, γ = 1/4 (denoted ‘realized’ in the figure below). Compar-
ing these two scenarios gives a sense of the cost of the errors made when
using the wrong model and parameter values. Figure 4 illustrates, with
the shaded areas denoting the period of lockdown chosen by the planner
who is using SIR with γ = 1/18.

Figure 4

In the first scenario, where the planner is correct in the perception of
disease dynamics, lockdown begins on day 75 (start of the shaded area).
Following the blue lines, one can see that the economy then experiences a
small breach of ICU capacity; in panel b of Figure 4, X attains 2.4 ∗ 10−4

while X = 1.8 ∗ 10−4. This is followed by a decline in infections, as seen in
panels a and b. After lockdown is released, on day 147 (end of the shaded
area) there is a smaller second wave of the disease, which does not breach
ICU capacity. The disease declines to below 0.5% on day 454 and the cu-
mulative death rate is 0.43%. In U.S. terms this is 1.43 million people. The

11We follow the analysis in Hall, Jones, and Klenow (2020), who state that estimates of
the Value of Statistical Life per year in the U.S. range from $100,000 to $400,000, and that
COVID deceased have an expected average of 14 years of life remaining. Taking the upper
end figure, following Greenstone and Nigam (2020), and U.S. GDP per capita at $65,351 this
yields:

χ =
expected years remaining ·VSLY

Y
POP

=
14 ∗ 400, 000

65, 351
= 85.7
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attained values of the loss function (loss of annual GDP in PDV terms) is
0.42 in total loss, out of which 0.06 is loss of output, and 0.36 is loss of life.

What is the planner doing? Using lockdown to suppress the disease for
540 days (until the vaccine is found) is not a viable option as it is too ex-
pensive. Therefore the planner tries to minimize death under these circum-
stances. The two ways to minimize death are to avoid breaching the ICU
limit and to avoid overshooting the herd immunity threshold (which, for
RW = 1.50, is at S∗ = 0.67). The planner’s choice is to time the lockdown
so as to get two waves. The first one breaches the ICU limit only slightly
(death of 75 people per million); the second one does not breach the ICU
limit. However, there is still significant overshooting of the herd immunity
threshold, by 18 percentage points, with S(TV) = 0.48 vs. S∗ = 0.67. The
planner prefers the latter over breaching the ICU limit that might double
the death rate.

In the second scenario, the planner is mistaking the speed of the dis-
ease and thus the severity of the situation. The disease is much faster than
planned, and most of the outbreak happens before the lockdown is im-
posed. The reproduction parameterR is reduced to 1.50 when the peak has
already passed, rendering the lockdown timing even more irrelevant. The
epidemics rages basically unmitigated and declines to below 0.5% on day
81. Eventually the overshooting of the herd immunity threshold is huge,
with S(TV) = 0.11 rather than S∗ = 0.67. Following the red lines, one can
see that there is an enormous breach of ICU capacity; X attains 24 ∗ 10−4 i.e.,
ten times as much as expected by the planner (recall that X = 1.8 ∗ 10−4).
The number of deaths increases to D = 12, 962 per million, out of which
5, 859 per million are due to the breaching of ICU capacity, and the cumu-
lative death rate is 1.29%, which in U.S. terms is 4.28 million people. Loss
of annual GDP in PDV terms is 1.18 for total loss, out of which 0.08 is loss
of output, and 1.1 is loss of life (GDP per annum, in PDV terms). There is a
tremendous cost in terms of loss of life generated by misperception of the
dynamics of the disease.

Three remarks are in place as to the numbers of deceased in this analy-
sis. One is that in Alon et al (2020) we show that much more favorable out-
comes, with much lower death numbers, can be attained when allowing the
planner more choices of lockdown strategies. The cost of mis-specification,
though, remains high. The second, and related to the first, is that in the real
world, U.S. death numbers are currently almost 150, 000, or 0.04% , an order
of magnitude lower than even the relatively ‘benign’ first scenario above.
This is so because U.S. policymakers have imposed longer lockdowns than
the planner above, as they have access to wider policy choices. Third, most
papers, which model the SIR-based planner, actually present even higher
numbers of deaths, in the order of magnitude of the second scenario above
or worse.
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7 Modelling Lockdowns - Lock-and-Hold vs Lock-
and-Reshuffle

In this subsection we focus on the assumptions underlying another mod-
elling choice pertinent to the optimal planner problem – the description
of lockdowns in the model. Lockdown is one of the most prevalent non-
pharmaceutical interventions (NPIs) used worldwide to control the spread
of the disease. They are mandatory or advisory action instituted by the
government, imposing social distancing restrictions. In particular, they re-
strict work and consumption activities, which involve social interactions.
We use the afore-going models to offer a brief discussion of the modelling
of these lockdown policies.

In what follows, all variables are expressed in stocks, rather than frac-
tions of the population, with the latter stock denoted by POP. The essential
disease dynamics as discussed above are governed by

Ṡ = −βS
I

POP
(40)

i.e., the product of the pool of the susceptible population S, the relative
prevalence of infected people in the population I

POP , and the rate at which
susceptible people are exposed to the disease β, expressing the intensity of
the social interactions and the chance to catch the disease upon an interac-
tion with an infector.

Assume that when the policymaker locks down a share of (1− α) of the
population, the latter are completely isolated from the rest of the popula-
tion and from each other. Then at a given point in time, no new cases arise
in the locked part, and part of the existing cases are resolved. Over time,
however, the dynamics depends on the way the lockdown is modelled. We
discuss two such ways, which serve to highlight the problematics involved
in modelling lockdowns.

7.1 Lock-and-Hold

Consider a lockdown imposed at time t0 which is general and where we do
not know the epidemiological state of each person. Therefore the part of
the population that is locked down is selected without knowledge of their
state and chosen at random and these same people are held locked down
throughout the entire duration of the intervention; we shall use the term
“lock-and-hold” for this type of lockdown.

At time t0−, just before lockdown, the following dynamic system holds
true:
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Ṡ (t) = −βS (t)
I (t)
POP

(41)

Ė (t) = βS (t)
I (t)
POP

− σE (t) (42)

İ (t) = σE (t)− γI (t) (43)
Ṙ (t) = γI (t) (44)

S (t0−) = S0, E (t0−) = E0, I (t0−) = I0, (45)
R (t0−) = R0, L (t0−) = 0,

S+ E+ I + R+ L = POP

where all variables are defined as above and L denotes the pool of people
under lockdown.

After lockdown, at time t0+, note that the same set of dynamic equa-
tions (41)-(44) holds true. This is so because the number of contacts a
susceptible person engages with declines as public spaces, public trans-
portation, and other human gatherings are restricted, and since workplaces
are occupied only by the fraction of the population which is not locked,
implying an effective transmission rate of α · β. At the same time, the
chance to meet an infector is also computed out of the active population,
which is α · POP. Therefore, the dynamics of new cases is governed by
Ṡ (t) = −α · βS (t) I(t)

α·POP which reduces to equation (41). However, the ini-
tial conditions are altered to reflect the lockdown:12

S (t0+) = αS0, E (t0+) = αE0, I (t0+) = αI0, (46)
R (t0+) = αR0, L (t0+) = (1− α) POP,

S+ E+ I + R+ L = POP

The same dynamics govern the spread of the disease but with differ-
ent initial conditions. By reducing the size of the interacting population
we put the system on a new epidemiological track for the duration of the
lockdown, with the same law of motion but starting from different initial
conditions.

The implications are dramatic. The effective reproduction number is
defined by Re(t) = R0 · S(t). By slashing the size of the susceptible popu-
lation, the lockdown can thus control the spread of the disease, and a suffi-
ciently severe lockdown can even drive the effective reproduction number
below 1, in which case the disease will be declining as long as the lock-
down is in place. Summing up, as long as we are willing to pay the price

12For simplicity, we do not separate people within the locked pool L (t0+) into the various
epidemiological states - the disease in the locked part will just die out gradually.
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of forgone output, which is a function of the share of the population that
is locked down, this type of lockdown, being intuitive and clear, allows to
suppress or control the disease while waiting for cures and vaccines.

7.2 Lock-and-Reshuffle

The quadratic nature of equation (40) above, is reminiscent of the match-
ing process in search models. Some papers in Economics have proposed to
use it so as exploit this dynamic property. Note, however, that the implicit
assumption here is that we not only lock (1− α) of the population, but
that we then release this part, reshuffle with the rest of population, sam-
ple randomly again, and lock again. We call this type of lockdown “lock-
and-reshuffle.” An immediate implication is that an individual’s history of
lockdowns does not influence the chances of being locked. The re-shuffling
should be done continuously, or every period in a discrete time model, in
order for the quadratic reduction in cases to occur; one needs to make sure
that at each instant, exactly a share α of all susceptibles is active, as well
as exactly a share α of all infected. Under these assumptions the essential
dynamics of the disease are changed and operate as follows:

·
S(t) = −αβαS (t)

αI(t)
αPOP

= −βα2S (t)
I(t)
POP

(47)

In this case, for a linear economic cost of lockdown, one gains a quadratic
reduction in the spread of the disease. The reason for this result is that the
reshuffling and resampling in each period enables the lockdown of more
people who are exposed and infectious and therefore puts us in a better
position. Though it is a nice feature of the model, such policy is highly
unrealistic and impractical. First, we need to assume all workers are inter-
changeable or that they could be organized in homogenous groups for sam-
pling. Second, the fact that personal history does not influence the chances
of getting out of lockdown is unacceptable to people and contradicts ba-
sic principles such as fairness, stability, and predictability. People want to
know ahead of time whether they will work or not, want to know how
long they are expected to stay at home, and want to share the burden of
lockdown equally with their peers and not only the expectancy of burden.
Furthermore, such mechanisms cannot respect the differentiation between
essential and nonessential workers and between workers who can work
remotely and those who cannot. We believe that lock and reshuffle is not
a plausible policy alternative and that lockdowns should be modelled in
more traditional ways. One of the options is the “lock-and-hold” model
presented above.

23



8 Conclusions

The paper has shown how epidemiological dynamics should be modelled
and parameterized based on epidemiological analysis. The duration of the
infectious stage is crucial for the implied disease dynamics. The widely-
used SIR model calibration makes a grave mistake by ignoring the resolved
stage, distorting the decisions of the policymaker towards less severe and
delayed interventions. Additionally, it makes another, smaller omission by
ignoring the latent stage and not considering sub-compartments. Tweaking
the initial seed in the baseline SIR model to help the model reach peak
infections faster is implausible and is misleading in terms of the predicted
burden on the constrained public health system.

We use this model in companion work (see Alon et al (2020)) to explore
an optimal planner model optimizing over two dimensions: the degree of
lockdown policies and its timing. Both dimensions exploit temporal varia-
tion, and rely heavily on the dynamics of the SEIR-Erlang model, including
the rate of growth of the disease. The lockdown strategy in this planning
problem follows the epidemiological analysis in Karin et al (2020) with the
economic planning problem along the lines of equation (39). The emerg-
ing optimal policy is quite different from the one proposed thus far in the
Economics literature.
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9 Exhibits

Figure 1: The Model

a. The SEIR-Erlang block
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b. The Clinical Block
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Table 1 : Epidemiologically-grounded and Clinically-based
Parameterization

a. The SEIR-Erlang Block
Interpretation Value (source) Preferred value Number used

σ latent period duration 3− 4 (Compendium) 3 1/3
γ infectious period duration 4− 5 (Compendium) 4 1/4
β transmission rate γ · R

b. The Clinical Block

Interpretation Value (source)
Preferred

value
Number used

θP incubation period 5− 6 (Compendium) 5 1/5

θM
days from symptoms

till hospitalization
7 (S1, S2) 7 1/7

θH days in hospital till ICU 2 (S3) 2 1/2
θX days in ICU before death 5.5 (S3, S4) 5.5 1/5.5

η Prob. to be 20%− 50% (Compendium) 50% 0.5
asymptomatic

ξ
Prob. to get
hospitalized

when symptomatic

#Hospitalized
#In f ected

= [2%− 4%]
(Compendium)

4%
0.04

1−0.5
= 0.08

π Prob. of ICU admission 10%− 40% (Compendium) 40% 0.4

Notes:
1. Values in third and fourth columns are in days.

2. #Hospitalized
#In f ected = #Hospitalized

#Symptomatic ·
#Symptomatic

#In f ected = ξ · (1− η) =⇒ ξ =
#Hospitalized

#In f ected
1−η

3. Sources:
a. Compendium: Bar-On, Sender, Flamholz, Phillips, and Milo (2020).
b. S1: CDC
https://www.cdc.gov/mmwr/volumes/69/wr/mm6915e3.htm
c. S2: The Lancet
https://www.thelancet.com/action/showPdf?pii=S0140-6736%2820%2930183-

5
d. S3: Science
https://science.sciencemag.org/content/early/2020/05/12/science.abc3517/tab-

pdf
e. S4: JAMA
https://jamanetwork.com/journals/jama/fullarticle/2765184
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Figure 2: Alternative Specifications of the Epidemiological Model
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(
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2-block specifications 1-block specifications
SEIR SEIR− 2 SIR SIRD

Panel A: Parameterization
σ 1/3 1/3 − −
γ 1/4 1/4 1/18 1/7
θ n.a(a) n.a(a) − 1/11
β R0 · 1/4 = 0.625 R0 · 1/4 = 0.625 R0 · 1/18 = 0.139 R0 · 1/7 = 0.357

Scale(b) E+ I E1 + E2 + I1 + I2 I I
Panel B: Implied exponential growth rate and doubling time

λ(c) 0.17 0.18 0.08 0.21
t(d) 4.16 3.91 8.32 3.23

Panel C: Herd immunity and disease scale at peak
S∗ 0.4 0.39 0.4 0.4

Scale∗ 0.23 0.27 0.23 0.23

Notes:
1. We assume throughoutR0 = 2.50.
2. Notation:
(a) - n.a there is no duration for R in these models and we use the clinical

block to provide duration for the clinical progression of the disease.
(b) - scale of the disease - the number of people who are either infectious

or are exposed and will become infectious.
(c) - exponential growth rate
(d) - doubling time
3. S∗: Herd immunity - the fraction of susceptibles such that the disease

scale reaches its peak. S∗ = 1/R0 for the models with no sub-compartments.
In SEIR-2 there is no closed-form expression but S∗ < 1/R0

4. Scale∗ : Scale of the disease at the peak. For the models with no
sub-compartments it is 1− 1+ln(R0)

R0
. In SEIR-2 there is no closed-form ex-

pression but Scale∗ > 1− 1+ln(R0)
R0

.
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Figure 3: Disease Dynamics

a. Stock of Infectious and Exposed Across the Four Models

b. X, ICU Utilization Across the Four Models
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c. Comparing SEIR-2 with seed 10−4 and SIR with seed 10−2
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Figure 4: Planner Errors

a. Dynamics of I

b. Dynamics of X
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c. Dynamics of D

Note:
Shaded area indicates lockdown period.
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