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1 Introduction

1.1 Motivation and Results

Models of demand function competition (or equivalently, supply function competition) are a

cornerstone of the analysis of markets in industrial organization and finance. Economic agents

submit demand functions and an auctioneer chooses a price that clears the market. Demand

function competition is an accurate description of many important economic markets, such as

treasury auctions or electricity markets. In addition, it can be seen as a stylized representation

of many other markets in which there may not be an actual auctioneer, but agents can condition

their bids on market prices and markets clear at equilibrium prices.

Under complete information, there is a well-known multiplicity of equilibria under demand

function competition (see Grossman (1981), Klemperer and Meyer (1989)). In particular, under

demand function competition, the degree of market power —which measures the distortion of

the allocation as a result of strategic withholding of demand —is indeterminate. This indeter-

minacy arises because, under complete information, an agent is indifferent about what demand

to submit at prices that do not arise in equilibrium. Making the realistic assumption that

there is incomplete information removes this indeterminacy because every price can arise with

positive probability in equilibrium. We therefore analyze demand function competition under

incomplete information (Vives (2011)). We consider a setting where a finite number of agents

have linear-quadratic preferences over their holdings of a divisible good, and the marginal utility

of an agent is determined by a payoff shock; we restrict attention to symmetric environments (in

terms of payoff shocks and information structures) and symmetric linear Nash equilibria.

The outcome of demand function competition under incomplete information will depend not

only on the fundamentals of the economic environment - the number of agents and the distribution

of payoff shocks - but also on which information structure is assumed. However, it will rarely
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be clear what would be reasonable assumptions to make about the information structure. We

therefore examine whether it is possible to make predictions about outcomes under demand

function competition in a given economic environment that are robust to the exact modeling of

the information structure.

Our first main result establishes the impossibility of robust predictions about market power.

We show that any degree of market power can arise in the unique equilibrium under an informa-

tion structure that is arbitrarily close to complete information. In particular, regardless of the

number of agents and the correlation of payoff shocks, market power may be arbitrarily close to

zero (so we obtain the competitive outcome) or arbitrarily large (so there is no trade in equilib-

rium). The reason is that under incomplete information prices convey information to agents.

The slope of the demand function that an agent submits will then depend on what information

is being revealed, and this will pin down market power in equilibrium.

Given the sharp indeterminacy in the level of market power induced by the information

structure, it is natural to ask what predictions– if any– hold across all information structures.

Our second main result shows that — for any level of market power — price volatility is

always (that is, regardless of the information structure) less than the price volatility that is

achieved by an equilibrium under complete information. A direct corollary of our result is that

price volatility is lower than the variance of the average shock across agents independent of the

information structure. Hence, we show that it is possible to provide sharp bounds on some

equilibrium statistics, which hold across all information structures.

We can always decompose agents’payoff shocks into idiosyncratic and common components.

If the common component were common knowledge, but agents observed noisy signals of their

idiosyncratic components, there would be a unique equilibrium and we can identify the market

power as noise goes to zero. If instead the idiosyncratic components were common knowledge,

but each agent observed a different noisy signal of the common component, there will be a

different unique equilibrium and a different market power in the limit as the noise goes to zero.
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In the latter case, unlike in the former case, higher prices will reveal positive information about

the value of the good to agents, and as a result, agents will submit less price-elastic demand

functions, and there will be high market power. More generally, if agents have distinct noisy

but accurate signals of the idiosyncratic and common components of payoff shocks, then market

power will be determined by the relative accuracy of the signals, even when all signals are very

accurate.

The information structures giving rise to extremal outcomes are special because they are

constructed to simplify the Bayesian updating when solving for the Nash equilibrium, so they

do not necessarily have an immediate interpretation. Thus, one could have expected that it

is possible to sharpen the predictions about market power and price volatility if one restricts

attention to some class of parametrized information structures. To address this conjecture, we

study three classes of information structures that are natural in the sense that each signal an agent

observes is only about one payoff shock, and the noise terms are independently distributed. We

do find tighter bounds on market power in these classes: in particular, market power is bounded

below by the market power arising in Klemperer and Meyer (1989) and bounded above by one.

However, we also show that market power can take any value in this reduced range for any degree

of interdependence in the payoff environment (that is, the correlation of the payoff shocks), even

with arbitrarily small amounts of asymmetric information.

We interpret our first main result as establishing that the indeterminacy of market power is not

an artifact of particular modeling choices, such as complete information, but rather an intrinsic

feature of the game. If economic agents interact in a market where demands can be conditioned

on prices, then there can be extreme sensitivity to the inferences that market participants draw

from prices, meaning that it will not be possible to make ex ante predictions about market power.

Even restricting attention to information structures close to complete information does not allow

us to provide sharper predictions about market, unless one is able to make additional restrictive

assumptions regarding the nature of the incomplete information. By contrast, it is possible to
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provide sharp predictions regarding price volatility with demand function competition.

On the other hand, we interpret our second main result as showing that the same economic

feature that gives rise to the indeterminacy of market power —conditioning demand on market

prices —imposes tight bounds on price volatility that do not hold in other economic environments.

The tight bounds on price volatility and indeterminacy of market power are important features

of demand function competition. Our methodology allows us to make an exact comparison

of outcomes under demand function competition (under any information structure) with what

could have arisen under alternative trading mechanisms. We illustrate this by showing that

under Cournot competition, our qualitative results are reversed: market power is now completely

determined by the number of firms (and independent of the information structure), while the

bounds on price volatility are now very weak.

1.2 Related Literature

The multiplicity of equilibria in demand function competition under complete information was

identified by Wilson (1979), Grossman (1981) and Hart (1985) — see also Vives (1999) for a

more detailed account. Klemperer and Meyer (1989) emphasized that the multiplicity under

complete information was driven by the fact that agents’demand at non-equilibrium prices was

indeterminate. They showed that introducing noise that pinned down best responses led to a

unique equilibrium and thus determinate market power. They also showed that the equilibrium

selected was independent of the shape of the noise, as the noise became small. They were thus

able to offer a compelling prediction about market power. Our results show that their results

rely on maintaining the private value assumption, which implies that agents do not learn from

prices. We replicate the Klemperer and Meyer (1989) finding that small perturbations select a

unique equilibrium but —by allowing for the possibility of a common value component of values

—we can say nothing about market power in the perturbed equilibria.
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Vives (2011) pioneered the study of asymmetric information under demand function com-

petition, and we work in his setting of linear-quadratic payoffs and interdependent values. He

studied a particular class of information structures where each trader observes a one-dimensional

normal noisy signal of his own payoff type. The noise is represented by an idiosyncratic error

term around his payoff type. We study what happens for all multidimensional normal informa-

tion structures. In particular, we allow each trader to observe signals about the other traders’

payoff types. Moreover, each multivariate signal can be either noise-free or noisy, and the noise

term can have idiosyncratic or common components.

We show that the impact of asymmetric information on the equilibrium market power can

even be larger than those derived from the one-dimensional signals studied in Vives (2011). Our

results reverse some of the comparative statics and bounds that are found when using the specific

class of one-dimensional signal structures. In particular, in this paper but not in Vives (2011)

market power can be large even when the amount of asymmetric information is small; this holds

regardless of the number of players, or the correlation of the payoff shocks. Rostek and Weretka

(2012) and Rostek and Weretka (2015) relaxed the symmetry in the correlation of payoff shocks

across agents, while maintaining the one-dimensional signal model of Vives (2011). This allows

for a rich structure in the induced correlation of signals and large variation in market power.

In our setting, the variation in market power arises through multidimensional signals despite

maintaining symmetry in the correlation of payoff shocks across agents.

Our result demonstrating the extreme sensitivity of market power to the information structure

has the same flavor as abstract game theory results establishing that fine details of the infor-

mation structure can be chosen to select among multiple rationalizable or equilibrium outcomes

of complete information games (Rubinstein (1989) and Weinstein and Yildiz (2007)). However

this work relies on extremal information structures and, in particular, a “richness”assumption

in Weinstein and Yildiz (2007), which in our context would require the strong assumption that
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there exist “types”with a dominant strategy to submit particular demand functions.1 Our re-

sults do not require richness and do exploit the structure of the demand function competition

game. Moreover, we show that although it is impossible to make sharp predictions about market

power, the complete information equilibria generate the maximum price volatility, thus allowing

sharp predictions for the second moment.

2 Model

2.1 Payoff Environment

There are N agents who have demand for a divisible good. The utility of agent i ∈ {1, ..., N}

who buys qi ∈ R units of the good at price p ∈ R is given by:

ui(θi, qi, p) , θiqi − pqi −
1

2
q2
i ,

where θi ∈ R is the payoffshock of agent i. The payoffshock θi describes the marginal willingness

to pay of agent i for the good at qi = 0. The payoff shocks are symmetrically and normally

distributed across the agents, and for any i, j: θi

θj

 ∼ N

 µθ

µθ

 ,

 σ2
θ ρθθσ

2
θ

ρθθσ
2
θ σ2

θ


 ,

where ρθθ is the correlation coeffi cient between the payoff shocks θi and θj.

The realized average payoff shock among all the agents is denoted by:

θ , 1

N

∑
i∈N

θi,

1Weinstein and Yildiz (2011) provide a similar result without requiring a richness condition. However, their

results apply only for games with one-dimensional strategies and continuous and concave payoffs.
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and the corresponding joint distribution of θi and θ is given by θi

θ

 ∼ N

 µθ

µθ

 ,

 σ2
θ

1+(N−1)ρθθ
N

σ2
θ

1+(N−1)ρθθ
N

σ2
θ

1+(N−1)ρθθ
N

σ2
θ


 .

The supply of the good is given by an exogenous supply function S(p) as represented by a

linear inverse supply function with α, β ∈ R+:

p(q) = α + βq.

For notational simplicity, we normalize the intercept α of the affi ne supply function to zero.2

2.2 Information Structure

Each agent i observes a multidimensional signal si ∈ RJ about the payoff shocks:

si , (si1, ..., sij, ..., siJ).

The joint distribution of signals and payoff shocks (s1, ..., sN , θ1, ..., θN) is symmetrically and

normally distributed. We discuss specific examples of information structures in the following

sections.

2.3 Demand Function Competition

The agents compete via demand functions. Each agent i submits a demand function xi :

R× RJ → R that specifies the demanded quantity as a function of the market price p ∈ R

and the private signal si ∈ RJ , denoted by xi (p, si). The Walrasian auctioneer sets a price p∗

such that the market clears for every realization of signal profiles s:

p∗ = β
∑
i∈N

xi(p
∗, si). (1)

2The general affi ne case with α 6= 0 is equivalent to a market with a different mean payoff shock µθ. Specifically,

considering α 6= 0 is mathematically equivalent to considering a model in which α̃ = 0 and θ̃i = θi − α.
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If a market clearing price satisfying (1) does not exist, then we assume that there is a market shut-

down; thus, q1 = · · · = qN = 0. We note that in the class of linear equilibria we study, a market

clearing price will always exist, so the aforementioned rule is mentioned only for completeness.

We study the Nash equilibrium of the demand function competition game. The strategy

profile (x∗1, ..., x
∗
N) forms a Nash equilibrium if:

x∗i ∈ arg max
{xi:RJ+1→R}

E
[
θixi(p

∗, si)− p∗xi(p∗, si)−
xi(p

∗, si)
2

2

]
, (2)

where

p∗ = β(xi(p
∗, si) +

∑
j 6=i

x∗j(p
∗, s

j
)).

We say that a Nash equilibrium (x∗1, ..., x
∗
N) is linear and symmetric if there exists a vector of

coeffi cients (c0, ..., cJ ,m) ∈ RJ+2 such that for all i ∈ N :

xi (p, si) = c0 +
∑
j∈J

cjsij −mp.

Thus, the private information si of agent i determines the intercept of the demand curve, whereas

the slopem of the demand curve—determined in equilibrium—is invariant with respect to the signal

si. Throughout the paper we focus on symmetric linear Nash equilibria and so hereafter we drop

the qualifications “symmetric” and “linear”. When we say that an equilibrium is unique, we

refer to uniqueness within this class of equilibria.

2.4 Equilibrium Statistics: Market Power and Price Volatility

We analyze the set of equilibrium outcomes in demand function competition under incomplete

information. We frequently describe the equilibrium outcome through two central statistics of

the equilibrium: market power and price volatility.

The marginal utility of agent i from consuming the qi-th unit of the good is θi−qi. We define

the market power of agent i as the agent’s gross marginal utility minus the price divided by the
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equilibrium price:

li ,
θi − qi − p

p
.

This is the natural demand-side analogue of the supply-side price markup defined by Lerner

(1934), commonly referred to as the “Lerner index.”We define the (expected) equilibrium market

power by:

l , E
[

1

N

∑
i∈N

li

]
=

1

N
E
[∑

i∈N (θi − qi − p)
p

]
. (3)

The market power l is defined as the expected average of the Lerner index across all agents. If

the agents were price takers, then the marginal utility would be equal to the equilibrium price,

θi − qi = p, and the market power would be l = 0.

A second equilibrium statistic of interest is price volatility, the variance of the equilibrium

price:

σ2
p , var(p).

Price volatility measures the ex ante uncertainty about the equilibrium price.

These two statistics of the equilibrium outcome, market power and price volatility, will com-

pletely describe the first and second moments of aggregate market outcomes. In more detail,

the equilibrium market power l will determine the expected equilibrium price and the expected

aggregate demand. Similarly, the variance of the equilibrium price σ2
p will determine the vari-

ance of the aggregate demand. Thus, within the linear-quadratic normal environment, these two

statistics completely describe the aggregate equilibrium outcomes.

While most of our paper focuses on price volatility and market power, we will explain how

our results extend to other statistics of an equilibrium outcome, such as the mean and variance

of individual demand.
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3 The Case of Complete Information

As previously discussed, the existence of multiple equilibria in demand function competition has

long been established. Here, we focus on the implications that such multiplicity has for the

induced market power and price volatility. With complete information every agent i observes

the entire vector of payoff shocks θ = (θ1, ..., θN) before submitting his demand xi (p, θ). We use

a brief review of the complete information setting to introduce some key ideas.

The residual supply faced by agent i, denoted by ri(p, θ), is determined by the demand

functions of all the agents other than i:

ri(p, θ) , S(p)−
∑
j 6=i

xj(p, θ).

Agent i is a monopsonist over his residual supply. That is, if agent i submits demand xi(p, θ),

then the equilibrium price p∗ satisfies xi(p∗, θ) = ri(p
∗, θ) for every i. Hence, agent i only needs

to determine the optimal point along the curve ri(p, θ); this will determine the quantity that

agent i purchases and the equilibrium price.

To compute the first-order condition for agent i’s demand, we define the price impact λi of

agent i as the reciprocal of the residual demand derivative:

1

λi
, ∂ri(p, θ)

∂p
. (4)

This parameter is frequently referred to as “Kyle’s lambda”following the seminal contribution

of Kyle (1985). The price impact determines the rate at which the price increases when the

quantity bought by agent i increases:

λi =
∂p

∂ri(p, θ)
.

The first-order condition of agent i determines the equilibrium demand of agent i:

xi(p
∗) =

θi − p∗
1 + λi

.
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Thus λi determines how much demand agent i withholds to decrease the price at which he

purchases the good. For example, if λi = 0, then agent i behaves as a price taker. As λi

increases, agent i withholds more demand to decrease the equilibrium price. Hence, λi determines

the propensity of agent i to withhold demand to decrease the price. The following proposition

establishes what the equilibrium outcomes with complete information in the linear-quadratic

setting.

Proposition 1 (Equilibrium Statistics with Complete Information)

Market power and price volatility are induced by some complete information Nash equilibrium if

and only if
(
l, σ2

p

)
satisfy:

l ≥ − 1

2βN
and σ2

p =
(βN)2

(1 + βN + βNl)2
σ2
θ
. (5)

Proposition 1 can be established using the general arguments provided in Theorem 1 and the

proof is relegated to the Appendix. In the complete information equilibrium, market clearing

implies that market power l and price impact λ are related as follows:

l =
λ

βN
. (6)

In the special case, when there is only one agent, then the market power is equal to 1 as the

price impact is then given by the supply function itself, and λ = β. In this case, the agent fully

internalizes the impact of increasing his demand on the total expenditure. The lower bound on

market power in Proposition 1 indicates that a small amount of negative market power can occur.

This happens when an agent faces a downward-sloping residual supply. However, the slope of

the residual supply cannot be too inelastic because otherwise the agent would be able to achieve

infinite utility by buying an arbitrarily large quantity at an arbitrarily low price. The relation

between price volatility and market power is intuitive. As market power increases, every agent

withholds more demand to lower the price. This leads to a smaller response to the payoff shocks

and consequently, lower price volatility.
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Figure 1: Set of equilibrium pairs
(
l, σ2

p

)
of market power and price volatility with complete

information (β = 3, N = 3).

The reason for multiple equilibria has been thoroughly investigated in the literature (see

Grossman (1981), Klemperer and Meyer (1989)). The key source of equilibrium multiplicity is

that each agent has multiple best responses. In particular, there are multiple affi ne demand

functions that agent i can submit that would intercept his residual supply at the same point

(hence, inducing the same equilibrium price and quantities). Thus, agent i is indifferent between

the multiple demand functions that intercept with his residual supply at the same point. Impor-

tantly, the slope of the demand function of agent i determines the slope of the residual supply

of agent j.

In Figure 1 the bold red curve plots all feasible equilibrium pairs of market power and price

volatility that can be attained under complete information. The point labeled A depicts the equi-

librium outcome that would be attained under complete information if we selected the outcome

using the equilibrium selection proposed by Klemperer and Meyer (1989).

The results in the next section will establish that the set of all possible pairs of market power
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and price volatility is the set of pairs under this red curve established by the complete information

equilibria, thus the area in light red under the boundary curve in bold red.

4 RobustPrediction ofMarketPower andPriceVolatility

With incomplete information, market power and price volatility will be uniquely pinned down

given a specific information structure. What robust predictions can then be made that do not

depend on the fine details of the information structure? We will show that we cannot make

any robust predictions about market power: any positive level of market power can arise as the

unique equilibrium even when we restrict attention to arbitrarily small amounts of incomplete

information. However, we can offer a sharp prediction about price volatility regardless of the

amount of incomplete information, price volatility cannot be higher than that under complete

information.

We say that an information structure is ε−close to complete information if the conditional

variance of the estimate of each payoff shock θj is small given the signal si received by agent i:

∀i, j ∈ N, var(θj|si) < ε. (7)

In an information structure that is ε-close to complete information an agent can observe his own

payoff shock and the payoff shock of the other agents with a residual uncertainty of at most ε. If

an information structure is ε−close to complete information for a suffi ciently small ε, then the

information structure will effectively be a perturbation of complete information. We now show

that any equilibrium under complete information can be selected as the unique equilibrium in a

perturbation of complete information.

We prove the result by decomposing the payoff shock θi into two independent payoff shocks:

θi , ηi + φi, (8)
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where the sets of payoff shocks {ηi}i∈N are independent of the shocks {φi}i∈N . The shocks are

jointly normally distributed:

µη = µφ = µθ/2 and corr(ηi, ηj) = corr(φi, φj) = corr(θi, θj), (9)

and the variance of the shocks are:

var(φi) = ε and var(ηi) = σ2
θ − ε. (10)

It follows from (9) and (10) that:

var(φi + ηi) = σ2
θ and cov(φi + ηi, φj + ηj) = cov(θi, θj).

Thus, the joint distribution of the random variables {ηi+φi}i∈N is equal to the joint distribution

of the original payoff shocks {θi}i∈N .

With respect to the information structure, we assume that every agent observes the realization

of all shocks {ηi}i∈N . Additionally, agent i observes a signal ti that is equal to a weighted

difference between his shock φi and the average of the shocks {φj}j∈N :

ti = φi − (1− γ)
1

N

∑
j∈N

φj. (11)

Thus, the weight γ ∈ R\{0} serves to confound the payoff shocks φi with φj for all j 6= i. The

signal vector si that is observed by agent i is then given by:

si = (ti, η1, ..., ηN). (12)

We remark that under this information structure:

∀i, j ∈ N, var(θi|η1, ..., ηN , sj) = var(φi|sj) ≤ var(φi) = ε.

It follows that under this information structure, (7) is satisfied. We refer to the information

structure given by (12) as noise-free signals because the signals represent the payoff shocks (in a

linear combination) without adding any extraneous noise.We discuss the role of the confounding

parameter γ following the statement of our first main result.
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Theorem 1 (Equilibrium Selection)

For every ε > 0 and every complete information equilibrium market power and price volatility

(l, σ2
p), there exists an information structure that is ε−close to complete information and induces

(l, σ2
p) as the unique equilibrium.

Proof. We now construct a symmetric linear Nash equilibrium using a “guess-and-verify”

method. A linear demand function x∗ is a symmetric Nash equilibrium if and only if it solves

(1) and (2) for all i. In a linear Nash equilibrium x∗(p∗, si) is linear in p∗, and so the first-order

condition of (2) is given by:

x∗(p∗, si) =
E[θi|p∗, si]− p∗

1 + λ
, (13)

where λ is the derivative of the inverse residual supply defined above in (4). We now write λ

explicitly:

λ ,
(
∂ri(p, si)

∂p

)−1

=
β

1 + βm(N − 1)
. (14)

The objective function of (2) is a quadratic function of x(p∗, si) and the coeffi cient on the

quadratic component is equal to −(λ + 1/2). Thus, the second-order condition is satisfied if

and only if λ ≥ −1/2. It is clear that if λ < −1/2, then the objective function is strictly convex

and hence (2) does not have a solution. Therefore, there is no equilibrium satisfying λ < −1/2.

We first establish the argument for l ∈ R\{0, 1}; we address the special cases of l = 0 and

l = 1 at the end of the proof. In any linear Nash equilibrium, the equilibrium price must be a

linear function of the shocks {ηi}i∈N and the signals {ti}i∈N . The symmetry of the conjectured

equilibrium implies that there exist constants ĉ0, ĉ1, ĉ2 such that the equilibrium price satisfies:

p∗ = ĉ0 + ĉ1φ̄+ ĉ2η̄.
3

Regardless of the values of ĉ0, ĉ1, ĉ2, as long as ĉ1 6= 0, the following equation is satisfied:

E[θi|{ηi}i∈N , ti, p∗] = θi. (15)

3Recall that according to the notation already introduced η̄ =
∑
i∈N ηi/N and φ̄ =

∑
i∈N φi/N .
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That is, agent i can perfectly infer θi using the realization of the shocks {ηi}i∈N , the signal ti

and the equilibrium price. This is because agent i can infer φ̄ from p∗, which in addition to ti,

allows agent i to perfectly infer φi (note that η̄ is common knowledge). We now verify that there

is no equilibrium in which ĉ1 = 0. If ĉ1 = 0, then E[θi|{ηi}i∈N , ti, p∗] = ηi + E[φi|ti], and so each

agent will submit a demand function:

x∗(p∗, si) =
ηi + E[φi|ti]− p∗

1 + λ
,

for some λ. Therefore, market clearing implies that:

β
∑
i∈N

ηi + E[φi|ti]− p∗
1 + λ

= p∗.

Thus,

p∗ =
1

1 + βN + λ
β
∑
i∈N

ηi + E[φi|ti].

However,
∑

i∈N E[φi|ti] ∝ φ̄ (recall that γ 6= 0, so
∑

i∈N ti 6= 0). Thus, the market clearing price

p∗ must depend on φ̄, which contradicts ĉ1 = 0.

Using (13) and (15), we conclude that, in equilibrium, agent i buys a quantity equal to:

x∗(p∗, si) = q∗i =
θi − p∗
1 + λ

, (16)

for some λ ≥ −1/2. The market clearing condition implies that p∗ = β
∑
q∗i , and so the equilib-

rium price is given by:

p∗ =
βNθ̄

1 + λ+ βN
, (17)

for some λ ≥ −1/2.

Given the expression for the equilibrium price in (17), we note that:

E[θi|p∗, ti, {ηi}i∈N ] = ti + ηi + (1− γ)

(
p∗

βN
(1 + λ+ βN)− η̄

)
= θi.

Recall that in equilibrium, agent i submits demand function (13), so the slope of the demand

submitted by agent i is given by:

m = −∂xi(p)
∂p

=
−1

1 + λ
(
∂E[θi|p∗, ti, {ηi}i∈N ]

∂p∗
− 1) =

1− (1− γ) 1
βN

(1 + λ+ βN)

1 + λ
.
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This gives a relation between agent i’s price impact (i.e., λ) and the slope of the demand function

submitted by agent i (i.e., m). Using these equations and (14), we find λ in terms of the

confounding parameter γ:

λ =
1

2

(
− 1−Nβγ(N − 1)− 1

γ(N − 1) + 1
±

√(
Nβ

γ(N − 1)− 1

γ(N − 1) + 1

)2

+ 2Nβ + 1

)
. (18)

Only the positive root is a valid solution because the negative root yields λ less than −1/2.

Hence, for every γ, there is a unique linear Nash equilibrium. In this equilibrium, the price

impact is equal to the positive root of (18), and each agent i submits a demand function:

x(p, si) =
1

1 + λ

(
ti + ηi + (1− γ)

(
p

βN
(1 + λ+ βN)− η̄

)
− p
)
.

We note that this demand function is equal to (13), so the demand of every agent satisfies

the first-order condition by construction and λ ≥ −1/2, so the second-order condition is also

satisfied. This shows that this is a Nash equilibrium.

We note that for all λ ≥ −1/2, there exists γ that satisfies (18) (as a positive root). To verify

this, note that (18) is continuous as a function of γ except at γ = −1/(N − 1). Moreover, at

γ = −1/(N − 1), the right limit is +∞ while the left limit is −1/2. Since (18) is equal to 0 in

the limits γ → ±∞, we have that every λ ∈ [−1/2,∞) is achieved by some γ.

From (17), it follows directly that in equilibrium, the price volatility is:

σ2
p =

(
βN

1 + λ+ βN

)2

σ2
θ̄.

Using the definition of market power (3), the expression for price (17) and the expression for qi

(16) we obtain that:

l =
1

N
E


∑

i∈N

(
θi −

θi− βNθ̄
1+λ+βN

1+λ
− βNθ̄

1+λ+βN

)
βNθ̄

1+λ+βN

 = E


(
θ̄ − θ̄− βNθ̄

1+λ+βN

1+λ
− βNθ̄

1+λ+βN

)
βNθ̄

1+λ+βN

 .
Simplifying terms, we obtain the following:

l =
λ

βN
. (19)
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Thus, we have that l ≥ −1/(2βN) and price volatility can be written as a function of market

power. Recall that we have in fact constructed a linear Nash equilibrium in which every agent i

submits a demand function given by (13), which by construction satisfied the agent’s first-order

condition, and we have also shown that the second-order condition is satisfied.

Finally, we address the cases of l = 0 and l = 1, which correspond to the cases in which the

confounding parameter is either γ =∞ or γ = 0, respectively. An equilibrium with market power

l = 1 and price volatility given by (5) can be attained by the following information structure.

Every agent observes {ηi}i∈N and {(θi−φ̄)}i∈N , and additionally agent i privately observes signal

ti = φ̄+εi, where εi is an error term normally distributed with variance one and correlation across

agents equal to −1/(N − 1). Since the errors are perfectly negatively correlated, this implies

that
∑

i∈N εi = 0. Note that agent i knows ηi and (φi − φ̄), so by virtue of observing only his

own signals, he does not know φ̄.4 We also note the following:

E[φ̄ | ti] =
1

N

∑
j∈N

tj, ∀ti,∀i ∈ N. (20)

That is, φ̄ can be inferred perfectly by averaging over signals {tj}j∈N .

An equilibrium with l = 0 and price volatility given by (5) is attained by considering the

following information structure. Every agent knows {ηi}i∈N and φ̄, and additionally agent i

privately observes a signal ti = φi − φ̄ + ε, where ε is a common error term that is normally

distributed with variance one. Note that agent i knows ηi and φ̄, so by virtue of observing only

his own signals, he cannot know φi − φ̄. We also note the following:

E[φi − φ̄ | ti] = ti −
1

N

∑
j∈N

tj, ∀ti,∀i ∈ N. (21)

That is, φi− φ̄ can be inferred perfectly by subtracting from i the average of the signals {ti}i∈N .

Using the two aforementioned information structures, one can construct a unique linear equi-

librium in which l = 1 and l = 0. The equilibrium construction is the same as before, so we will
4Agent i cannot infer φ̄ by observing {(φi − φ̄)}i∈N , as by construction the sum of all signals {(φi − φ̄)}i∈N is

equal to zero. Thus, knowing {(φi − φ̄)}i∈N is equivalent to knowing only (φi − φ̄).
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not repeat the steps. However, we note that for the noise-free signals we constructed in (11), we

have that:

E[φi | {ti}i∈N ] = ti +
1− γ
γ

1

N

∑
j∈N

tj. (22)

The two special cases of γ = 0 and γ = ∞ correspond intuitively to the cases in which the

expectations are given by (20) and (21), respectively.5

Theorem 1 shows that all combinations of market power and price volatility that can be

achieved as an equilibrium under complete information can also be achieved as a unique equi-

librium in an information structure that is close to complete information. In fact, the result

is stronger: every equilibrium outcome under complete information is the unique equilibrium

outcome of an information structure that is close to complete information.

To provide intuition for Theorem 1 it is useful to consider a one-dimensional version of the

noise-free signals described above in (12). Consider a situation in which every agent i observes

a one-dimensional signal:

si = θi − (1− γ)
1

N

∑
j∈N

θj. (23)

This one-dimensional information structure is a particular instance of the earlier information

structure (12). Now, we remove the restriction on the variance of φi, which we required to

satisfy var(φi) ≤ ε. In fact, the one-dimensional signal (23) sets φi = θi, and so var(φi) = σ2
θ

and var(ηi) = 0. While this one-dimensional information structure clearly cannot approximate

complete information, we now establish that it can attain the complete information equilibrium

outcome.

Corollary 1 (Equilibrium Selection with One-Dimensional Signals)

For every complete information equilibrium market power and price volatility (l, σ2
p) there exists

a one-dimensional information structure as in (23) that induces (l, σ2
p) as the unique equilibrium.

5The right-hand side of (22) diverges in the limit as γ → 0. However, what is relevant for the analysis is that

in this limit E[φi | {ti}i∈N ] ∝ 1
N

∑
j∈N tj , which is satisfied in (20).
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By changing the weight γ that signal si places on an agent’s own payoff shock θi relative to

the other agents’payoff shocks, one can affect the (perceived) degree of payoff interdependence

between the agents. To see this, note that the expected payoffof agent i conditional on all signals

{si}i∈N is given by:

E[θi | {si}i∈N ] = si +
1− γ
γ

1

N

∑
j∈N

sj. (24)

The conditional expectation of θi now places weights on both the signal si observed by agent i

and the signals observed by other agents, {sj}j 6=i. By changing γ, the relative weight that the

conditional expectation places on agent’s i signal relative to the signals of others changes.

Of course, agent i only observes his own private signal si and not the private signals of

other agents. However, the equilibrium price allows agent i to deduce the average of the signals

observed by the other agents. Hence, each agent uses the equilibrium price as a signal about his

own payoff shock. With a change in the confounding parameter γ, the weight that agent i places

on the price to predict his own payoff shock changes, which in turn changes the equilibrium

degree of market power. We illustrate the relation between γ and the equilibrium degree of

market power in Figure 2.6

Our construction uses an (N +1)-dimensional signal. Given that there are N different shocks

in our model, in any information structure that is close to complete information, agents must

observe at leastN different signals. Therefore, any information structure that is close to complete

information must consist of at least N signals.7

When agents observe one-dimensional signals as in (23), agents will not be close to complete

information. However, an agent’s private information plus the information that can be deduced
6The idea that confounding informational shocks can strongly influence equilibrium behavior goes back at least

to Lucas (1972). In a seminal contribution, he shows how monetary shocks can have a real effect in the economy,

even when under complete information monetary shocks would have no real effect.
7The information structure that we use to prove Theorem 1 generates an N + 1-dimensional signal. However,

it is possible to prove this theorem using an N -dimensional signal. Consider an information structure in which

agent i observes a signal as in (23) and, additionally, N − 1 signals given by sij = θj + εij , for every j 6= i, where
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Figure 2: Set of equilibrium market power l with noise-free signal parametrized by γ.

from knowing the equilibrium price is suffi cient to deduce this agent’s payoff shock and the

average payoff shock across all agents. Hence, despite the fact that agents have non-negligible

uncertainty about their own payoff shock and the average payoff shock, every agent perfectly

knows his own payoff shock and the average shock of all agents ex post (i.e., after learning the

equilibrium price).

all noise terms are independently normally distributed. First, note the following:

s̃i ,
1

1− (γ − 1)/N
si −

(γ − 1)/N

(1− (γ − 1)/N)

∑
j 6=i

sij = θi +
(γ − 1)/N

(1− (γ − 1)/N)

∑
j 6=i

εij .

Agent i can infer s̃i by taking a linear combination of the N signals he observes. Therefore, if the noise terms

{εij}j 6=i are small enough, each agent will be ε-close to complete information. With this N -dimensional signal,

there is an equilibrium that is equivalent to that in which agents observe only signal (23); that is, there is an

equilibrium in which the N − 1 additional signals are ignored. Therefore, this N -dimensional signal supports

every market power and price volatility (l, σ2
p) satisfying (5). Additionally, since this is an ex post equilibrium in

which each agent can perfectly infer θi ex post, the results in Heumann (2018) imply that this will be the unique

equilibrium. Hence, this N−dimensional signal would suffi ce to prove Theorem 1.
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Theorem 1 shows that (i) all equilibrium outcomes under complete information can turn

into unique equilibrium outcomes under incomplete information, and (ii) restricting attention

to information structures close to complete information does not allow us to provide sharper

predictions about market power and price volatility. The large indeterminacy in the set of

possible outcomes suggests that it is diffi cult to offer robust predictions of market power under

demand function competition. By contrast, it is possible to provide sharp predictions regarding

price volatility with demand function competition.

We consider the earlier decomposition of the payoff shocks as given by (8) and (9). By

contrast to the earlier construction, we now allow the variance of the decomposed payoff shocks

φi and ηi to vary. In particular, the variance var(φi) is no longer restricted anymore to be less

than ε:

var(φi) = σ2
p

N

ρθθ(N − 1) + 1

(1 + βN(1 + l))2

(βN)2
and var(ηi) = σ2

θ − var(φi). (25)

We assume that each agent receives no information about the realization of the shocks {ηi}i∈N

and that each agent simply observes the following one-dimensional signal about the payoffshocks

{φi}i∈N :

ti = φi − (1− (lβN + 1)(βN − lβN)

βNl(N − 1)(βN + lβN + 1)
)

1

N

∑
j∈N

φj.

Note that the signal ti here has the same structure as the signal ti that we used in the proof of

Theorem 1, and we simply replace the weight γ with the fraction; thus:

γ =
(lβN + 1)(βN − lβN)

λ(N − 1)(βN + lβN + 1)
.
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Theorem 2 (Equilibria Under All Information Structures)

There exists an information structure that induces a pair of market power and price volatility

(l, σ2
p) if and only if:

l ≥ −1

2

1

βN
and σ2

p ≤
(βN)2

(1 + βN(1 + l))2
σ2
θ
. (26)

Moreover, all feasible pairs (l, σ2
p) are induced by a unique equilibrium for some information

structure.

Proof. We prove necessity and suffi ciency separately and start with necessity.

We established in Theorem 1 that in any linear Nash equilibrium, an agent’s demand is given

by (13). Adding (13) over all agents and multiplying by β, we obtain:

β
∑
i∈N

x∗(si, p
∗) = β

∑
i∈N

E[θi|si, p∗]− p∗
1 + λ

.

Market clearing implies that β
∑

i∈N x
∗(si, p

∗) = p∗. It follows that

p∗ = β
∑
i∈N

E[θi|si, p∗]− p∗
1 + λ

.

Rearranging terms, we obtain:

p∗ =
βN

1 + λ+ βN

1

N

∑
i∈N

E[θi|si, p∗]. (27)

Taking the expectation of the previous equation conditional on p∗ (i.e., taking the expectation

E[·|p∗]) and using the law of iterated expectations, we obtain:

p∗ =
βN

1 + λ+ βN

1

N

∑
i∈N

E[θi|p∗] =
βN

1 + λ+ βN
E[

1

N

∑
i∈N

θi|p∗].

It follows that:

σ2
p =

(
βN

1 + λ+ βN

)
cov(p, θ) =

(
βN

1 + λ+ βN

)
ρpθ̄σpσθ̄.

Thus, we have that:

σ2
p =

(
βN

1 + λ+ βN

)2

ρ2
pθ̄σ

2
θ̄. (28)
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We now prove that λ = lβN in every linear equilibrium. We write market power (3) as

follows:

l =
1

N
E

[
1

p
E

[∑
i∈N

(θi − qi − p) | p
]]

, (29)

where we used the fact that the law of iterated expectations implies that E[·] = E[E[· | p]]. The

first-order condition (13) implies that:

qi =
E[θi|p, si]− p

1 + λ
.

Substituting qi back into equation (29) for market power, we obtain:

l =
1

N
E

[
1

p
E

[∑
i∈N

(
θi −

E[θi|p, si]− p
1 + λ

− p
)
| p
]]

.

Using the law of iterated expectations, we obtain that E[E[θi|p, si] | p] = E[θi|p]. Simplifying

terms, we obtain:

l =
1

N
E

[
1

p

∑
i∈N

λ

1 + λ
(E [θi | p]− p)

]
. (30)

Using (27), we obtain the following:

Np
1 + λ+ βN

βN
= E[

∑
i∈N

θi|p].

Substituting the conditional expectation of the payoff shock back into (30), we have that:

l = E
[

1

p

λ

1 + λ

(
1 + λ+ βN

βN
p− p

)]
.

Here, p cancels out, so we can omit the expectation on the right-hand side of this equation.

Simplifying terms, we obtain that λ = lβN .

Since ρ2
pθ̄
≤ 1, we have that (28) implies that:

σ2
p ≤

(βN)2

(1 + βN(1 + l))2
σ2
θ
.

Moreover, in the proof of Theorem 1, we also established that in any linear Nash equilibrium

λ ≥ −1/2 and thus that l ≥ −1/(2βN).
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Suffi ciency. Let (l, σ2
p) be such that (26) is satisfied. We show that there exists an information

structure that induces this market power and price volatility as a unique equilibrium. We can

now construct a linear equilibrium in the same way as in the proof of Theorem 1, so we obtain

that the price volatility is:

(βN)2

(1 + βN + βNl)2
var(

1

N

∑
i∈N

φi) =
(βN)2

(1 + βN + βNl)2

ρφφ(N − 1) + 1

N
var(φi).

Since var(φi) is defined as in (25) and ρφφ = ρθθ, the previous equation implies that the price

volatility is given by σ2
p. Moreover, market power is l. Thus, (l, σ2

p) is induced as an equilibrium

outcome, and it is the unique equilibrium, as we already established in Theorem 1.

Theorem 2 provides a sharp bound on all possible equilibrium outcomes. It shows that the

equilibrium outcome is bounded by the outcomes that are achieved under complete information.

Thus, the outcomes that arise under complete information can be seen as the “upper boundary”

of the set of outcomes that can arise under all information structures, as illustrated above in

Figure 1.

The “if”part of the statement closely resembles the proof of Theorem 1. In particular, the

set of market power and price volatility that satisfy (26) would be achieved under complete

information if one could reduce the variance of the aggregate shocks (i.e., by making var
(
θ
)

smaller). By decomposing the payoff shocks into an observable and an unobservable component,

we can effectively achieve the same outcomes as if there were complete information but the

variance of the shocks were smaller. We note that var(ηi) (as defined in (25)) is always positive

because Theorem 2 states that:

σ2
p ≤

(βN)2

(1 + βN(1 + l))2
σ2
θ
,

and so var(φi) (as defined in (25)) is less than or equal to var(θi).

The “only if” part of the statement is economically more interesting because it uses the

restrictions that arise from the agents’first-order condition. By aggregating the agents’demands
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and using the market clearing condition, we can establish that the equilibrium price satisfies:

p∗ =
β

1 + βN(1 + l)

∑
i∈N

E[θi|si, p∗]. (31)

That is, the equilibrium price is proportional to the average of the agents’ expected payoff

shocks. Note that the expectation includes the information that can be deduced from observing

the equilibrium price. Hence, the price reflects the agents’valuation, and the price is consistent in

the sense that the expectations also include the information that can be deduced from observing

the equilibrium price.

Taking expectations of (31) conditional on p∗ and using the law of iterated expectations, we

can write the equilibrium price as follows:

p∗ =
βN

1 + βN(1 + l)
E[θ̄|p∗]. (32)

Since (32) relates p∗ to the expectation of θ̄ conditional on p∗, it follows that the variance of p∗

is directly related to the variance of θ̄ and the correlation between p∗ and θ̄.8

It is crucial for the argument that the expected payoffshock of agent i is computed conditional

on the equilibrium price – this is an implication of the fact that agents compete on demand

functions and hence agent i can condition the quantity he buys on the equilibrium price. The

fact that an agent can condition on the equilibrium price disciplines beliefs, which ultimately

allows us to bound price volatility. This allows us to relate p∗ to the average payoff shock θ̄ (as

in (32)), instead of p∗ being related only to the average of the agents’expected payoff shocks (as

in (31)).

An interesting conclusion that one can derive from the proof of Theorem 2 is that the expected

price is uniquely determined by the equilibrium degree of market power. Specifically, (27) implies

that:

µp =
βN

1 + λ+ βN
µθ.

8For any two random variables (y, z), if y = E[z|y], then σy = ρyzσz.
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Thus, the equilibrium degree of market power l and the price volatility describe the first and

second moments of the equilibrium price. By extension, they also describe the first and second

moment of aggregate demand. This in turn allows us to describe other statistics of the equilibrium

outcome. For example, the expected revenue is given by:

E[p
∑
i∈N

qi] = E[
p2

β
] =

1

β
(µ2

p + σ2
p).

Here, we used the fact that
∑

i∈N qi = p/β by the market clearing condition. Since Theorem 2

provides bounds on price volatility and market power and market power determines the mean

price, Theorem 2 also provides bounds on the equilibrium revenue of the seller.

5 Parametrized Information Structures

We now study parametrized classes of information structures. We first consider two different

forms of one-dimensional signals about the payoff shock. These information structures impose

tighter lower and upper bounds on market power and lead to qualitatively very different relation-

ships between market power and volatility. We then consider a class of information structures

with multidimensional signals and show that while it maintains the tighter restriction on market

power, it also replicates in a parameterized class the feature that we can approximate extremal

complete information market power and price volatility pairs with arbitrarily small incomplete

information and thus hints that our main results do not rely on outlandish information structures.

One-Dimensional Signal of PayoffShock The first information structure consists of a one-

dimensional signal about the payoff shock θi, which was the case studied by Vives (2011). For

completeness, we show how the model fits into our framework. Each agent i observes his payoff

shock with conditionally independent noise; thus, the noisy one-dimensional signal is:

si = θi + εi, (33)
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where the noise terms {εi}i∈N are independent normal with variance σ2
ε. This class of information

structure is therefore parametrized by the variance σ2
εω of the noise term εiω.

The equilibrium strategies can be computed using a guess-and-verify approach (as we did in

the proof of Theorem 1), and for every σε, there is a unique equilibrium. Given the equilibrium

strategies, we can then compute equilibrium market power and price volatility as in Theorem 1.

To gain some intuition for how the noise term changes market power, we consider the condi-

tional expectation of θi given the realization of all signals:

E[θi | {si}i∈N ] =
(1− ρθθ)σ2

θ

(1− ρθθ)σ2
θ + σ2

ε

(
si +

1− γ
γ

1

N

∑
j∈N

sj

)
, (34)

where

γ =
(1− ρθθ)σ2

θ

(ρθθN + (1− ρθθ))σ2
θ

(ρθθN + (1− ρθθ))σ2
θ + σ2

ε

(1− ρθθ)σ2
θ + σ2

ε

. (35)

We obtain an expression that is identical to (24), except that the expectation is multiplied by

a constant. While agent i only observes si, the conditional expectation (34) represents the

equilibrium inference of agent i because he can deduce the average signal of other agents from

observing the equilibrium price.

We can then compute the equilibrium market power using the calculations developed in the

proof of Theorem 1:

l̂(γ) , 1

2βN

−Nβ (N − 1)γ − 1

(N − 1)γ + 1
− 1 +

√(
Nβ

(N − 1)γ − 1

(N − 1)γ + 1

)2

+ 2βN + 1

 . (36)

We note that when agents observe signals about payoff shocks (23), then the equilibrium market

power is given by l = l̂(γ) (this can be deduced from (18) and (19)). We obtain an expression

for price volatility similar to (28) but in which we replace λ = βNl :

σ2
p =

(
βN

1 + βN(1 + l̂(γ))

)2

ρ2
pθ̄σ

2
θ̄. (37)

Here, ρ2
pθ̄
is the correlation between the equilibrium price and the average payoff shock:

ρ2
pθ̄ =

(ρθθN + (1− ρθθ))σ2
θ

(ρθθN + (1− ρθθ))σ2
θ + σ2

ε

. (38)
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We can summarize our discussion in the following corollary, which establishes a tighter range of

possible market power levels.

Corollary 2 (One-Dimensional Signal About Payoff Shock)

There exists an information structure σ2
ε that induces market power and price volatility (l, σ2

p)

as a unique equilibrium if and only if market power l is given by (34)-(36) and price volatility is

given by (37)-(38). In particular, market power l ∈
(
l̂(1), 1

)
⊂ (0, 1).

The noise-free signals and the class of noisy one-dimensional signals (33) have the common

feature that in equilibrium prices are privately revealing. This means that the information

contained in the price plus the private signals observed by agent i are a suffi cient statistic for all

the signals observed by every agent to predict θi.

In Figure 3, we illustrate how market power and price volatility change with the variance σ2
ε

of the noise term. We present the equilibrium behavior for different correlation coeffi cients ρθθ

of the payoff shocks θi and θj.

Point A corresponds to the outcome when σ2
ε = 0: every agent knows his own payoff shock

but remains uncertain about the payoff shocks of other agents. Market power is increasing in σ2
ε

and price volatility is decreasing in σ2
ε. Price volatility decreases at a faster rate (as a function of

market power) than under complete information. Therefore, the relation between market power

and price volatility is different from the one that arises under complete information.

As the payoff shocks become more correlated (i.e., as ρθθ increases), market power increases.

One easy way to verify this is to note that the weight γ given by (35) is decreasing in ρθθ. In the

limit in which the payoff shocks are perfectly correlated γ converges to zero, and consequently

market power converges to 1. This is the maximum market power that can be attained with a

one-dimensional noisy signal about payoff shocks.
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Figure 3: Set of equilibrium pairs
(
l, σ2

p

)
of market power and price volatility under signals

about payoff shocks.

One-Dimensional Signal About Common Payoff Shock Our next example highlights

that different one-dimensional signals will give rise to different implications for market power

and price volatility.

We allowed the individual payoff shocks θi and θj to be positively correlated. One plausible

reason for this is that the individual payoff shocks reflect common and idiosyncratic components.

This suggests that we decompose the individual payoffshocks into a common and an idiosyncratic

component, ω and τ i, respectively:

θi = ω + τ i,

where ω and {τ i}i∈N are normally distributed and independent of each other.9 It is now natural
9Given that θi are normally distributed with mean 0, standard deviation σθ and correlation ρθθ, the decompo-

sition leads ω and τ i to be independently normally distributed with mean 0 and standard deviations σ2
ω = ρθθσ

2
θ

and σ2
τ = (1− ρθθ)σ2

θ, respectively. Observe that the variance of the realized average payoff shock θ can now be

written as σ2
θ̄

= var(ω + 1
N

∑
τ i) = σ2

ω + σ2
τ/N .
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to allow information to reflect common and idiosyncratic components in different ways.

In the second class of information structure, each agent i now receives a noisy one-dimensional

signal about the common component ω:

siω = ω + εiω,

where the noise terms are again independent normal with variance σ2
εiω
. By contrast, the idio-

syncratic components {τ i}i∈N are assumed to be public information. This class of information

structure is therefore parametrized by the variance σ2
εiω
of the noise term εiω.

The expectation of agent i’s payoff shock conditional on all the signals is given by:

E[θi | {(τ j, sjω)}j∈N ] = τ i +
σ2
ω

σ2
ω +

σ2
εiω

N

1

N

∑
j∈N

sjω.

We can see that agent i places the same weight on all private signals {sjω}j∈N . Since the shocks

{τ j}j∈N are public information, we can construct a linear equilibrium in the same way as we

constructed an equilibrium for noise-free signals in the proof of Theorem 1.

When σ2
εiω

= 0, we have the same market power as with noise-free signals when the con-

founding parameter is equal to zero. To see why this is true, note that when the confounding

parameter is zero, an agent places the same weight on his own private signal as on the private

signals of other agents. For this reason, market power l is equal to 1. As an agent increases the

quantity he demands, in the symmetric equilibrium all agents increase the quantity demanded by

the same amount. Hence, while each agent only spends a fraction 1/N of the total expenditure,

increasing the quantity demanded leads to N times higher price increase (since all other firms

follow suit). Hence, when agents only observe signals about a common shock, in equilibrium

there is complete internalization of the impact that demand has on the equilibrium price. On

the other hand, to compute the price volatility, we can use (37) and compute the correlation

between the price and the aggregate payoff shock. It is easy to verify that the correlation is
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bounded from below by:

ρ2
pθ̄ ≥

σ2
τ

N
σ2
τ

N
+ σ2

ω

.

The lower bound is attained when σ2
εiω

= ∞. We summarize these findings in the following

corollary.

Corollary 3 (One-Dimensional Signal About Common Payoff Shock)

There exists an information structure σ2
εiω
that induces market power and price volatility (l, σ2

p)

as a unique equilibrium if and only if market power l is equal to 1 and price volatility σ2
p is in

the interval: [(
βN

1 + 2βN

)2
σ2
τ

N
,

(
βN

1 + 2βN

)2

(
σ2
τ

N
+ σ2

ω)

]
.

When the only source of uncertainty is the common-valued shock, market power is always

equal to 1. In this case, the noise term in the signal changes the price volatility because it changes

how much the price co-moves with the shocks. We illustrate the set of market power and price

volatility that is attained by signals about common component in Figure 4.

Multidimensional Signals Our final information structure consists of multidimensional

signals. We enrich the preceding information structure by relaxing the assumption that there is

common knowledge of the idiosyncratic components. Instead, each agent observes a noisy signal

of the idiosyncratic component of the other agents’idiosyncratic payoff shocks. Thus, each agent

i observes N + 1 private signals:

sii = τ i, sij = τ j + εij, siω = ω + εiω, ∀i ∈ N,∀j 6= i ∈ N ;

where all noise terms are again independent normal. Thus, each agent knows his own idiosyn-

cratic component. In addition, each agent has noisy signals of the idiosyncratic components

of the others, which are very accurate (i.e., 0 < σεij � 1). The multidimensional signals are

parametrized by the standard deviation of noise on the common component σεiω ∈ [0,∞).
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common component.

Computing the equilibrium strategies is analytically much more intricate than in the previous

cases, and explicit solutions are only available in special cases.10 Formally, we can state the

following result for information structures near complete information.

Corollary 4 (Multidimensional Signals near Complete Information)

There exists a multidimensional signal that induces a pair of market power and price volatility

(l, σ2
p) in the limit as σ

2
εij
, σσεiω → 0 if and only if l ∈ [l̂(1), 1] and price volatility σ2

p satisfies (5).

The detailed analysis is in the Appendix. In Figure 5, we plot the set of market power and

price volatility that is achieved by multidimensional signals for all σεiω ∈ R+ (the red dashed

curve is the set of outcomes under complete information). As before, point A corresponds to

the outcome when σεiω = 0: an agent knows his own payoff shock but remains uncertain about

the payoff shocks of the other agents. Initially, as σεiω increases, market power increases. The

10Heumann (2018) shows that computing the coeffi cients of a linear equilibrium amounts to finding the roots

of a polynomial of degree 2× (number of signals)− 1.
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of market power and price volatility under noisy mul-

tidimensional signals.

intuition is similar to the case of a one-dimensional signal about the payoff shocks. Because

the payoff shocks θi of the agents are correlated, every agent wants to increase the correlation

between the quantity he buys and the quantity bought by the other agents. Figure 5 illustrates

the equilibrium outcomes as we vary the correlation ρθθ in the payoff shocks. As σεiω → ∞ the

signals about the common shock become irrelevant, and so we are back to the case in which all the

relevant sources of uncertainty are idiosyncratic shocks. Therefore, as σεiω →∞, market power is

reduced back to the same level as σεiω = 0, but price volatility is lower because the price does not

reflect the common component. Market power and price volatility under multidimensional signals

track very closely the set of outcomes under complete information. The agents are effectively

close to complete information as each agent i observes precise signals about {τ j}j∈N and ω. We

conclude that a wide range of outcomes that are close to the complete information outcomes can

be attained by parametrized information structures that have a natural statistical decomposition

into idiosyncratic and common shocks.
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Thus, when each agent observes noisy one-dimensional signals about his payoffshocks, market

power always increases with the amount of incomplete information, and high market power can

only be supported by a large amount of incomplete information. If each agent observes a noisy

signal about the common payoffshock, then market power is always equal to 1 and price volatility

is determined by the variance of the noise term. For the noisy multidimensional signals, the

equilibrium outcomes closely track – within some range– the set of outcomes under complete

information. Although a small amount of incomplete information can support high market power,

in our parametrized classes of information structure market power is never above 1. However,

Theorem 1 establishes that there is no upper bound on market power across all information

structures.

6 Comparing Market Mechanisms

Our paper focuses on characterizing the set of possible pairs of market power and price volatility

that can be attained by a Nash equilibrium of a particular mechanism, the demand function

competition game. A methodological contribution of the paper is that we provide a charac-

terization of key statistics of the equilibrium outcome independent of the specific equilibrium

strategies that generate these outcomes. This approach has the advantage that it permits an

easy and insightful comparison of different mechanisms or game forms.

We now illustrate this by means of Cournot competition. Thus, we consider the outcome of

the economic environment as described in Section 2 in terms of payoff functions and payoffshocks

but where agents now compete by submitting quantities (i.e., Cournot competition) instead of

submitting demand schedules. Bergemann, Heumann, and Morris (2015) characterizes all the

equilibrium outcomes of the quantity competition game. We can use their results (and the results

we have given here) to compare the two forms of market competition.11

11The explicit calculations and comparison can be found in an earlier version of this paper (see Bergemann,
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We first characterize market power and price volatility in quantity competition, which is

analogous to Theorem 2.

Corollary 5 (Cournot Equilibria Under All Information Structures)

There exists an information structure that induces a pair of market power and price volatility,

(l, σ2
p), under quantity competition if and only if:

l =
1

N
and σ2

p ≤
1

4

√1 + βσθ̄ +
√

(β + βN + 1)σ2
θ + βNσ2

θ̄√
1 + β(β + βN + 1)

2

.

The restrictions that quantity competition imposes on market power and price volatility are

strikingly different from those imposed under demand function competition. We illustrate the

possible market power and price volatility values that can be attained by some information

structure under the two forms of market competition in Figure 6; this figure illustrates the

discussion that we present next.

Under quantity competition, market power is constant instead of being (almost) completely

indeterminate. The expression for price volatility is slightly more cumbersome, but there is

one important feature that is worth highlighting. Even if the aggregate shock is close to zero

(i.e., σ2
θ̄
≈ 0), there may be non-negligible price volatility. In contrast, under demand function

competition, price volatility is always negligible if the variance of the aggregate shock is negligible

(see Theorem 2). The difference between quantity competition and demand function competition

is explained as follows.

Under quantity competition, an agent’s price impact is equal to the slope of the exogenous

supply; this explains why market power is constant across all information structures. In contrast,

when agents submit price-contingent demands, an increase in the demand of an agent affects the

price, which in turn affects the demand of other agents. Thus, an agent’s price impact is not

determined solely by the exogenous supply.

Heumann, and Morris (2018)), and the analysis of Cournot competition with a continuum of firms appears in

Bergemann and Morris (2013).
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Figure 6: Comparison of the first and second equilibrium moments under demand function

competition and Cournot competition.

For price volatility, the intuition is as follows. In quantity competition the equilibrium quanti-

ties may be correlated because signals are correlated, which may lead to aggregate volatility even

in the absence of aggregate shocks. In contrast, when agents submit price-contingent demands,

their beliefs are disciplined by the equilibrium price. Specifically, because agents choose their

demand contingent on the price, the price serves as a public signal about the average quantity

purchased by all agents. This additional signal disciplines beliefs in such a way that the quan-

tities they purchase cannot be correlated more than the correlation of the payoff shocks, which

ultimately disciplines price volatility.

7 Discussion

In this paper, we study demand function competition. Our findings provide positive and negative

results regarding our ability to make predictions in this empirically important market microstruc-
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ture. We showed that any market power is possible– from −1/(2βN) to infinity. Considering

small amounts of incomplete information does not allow us to provide any sharper predictions,

unless one is able to make additional restrictive assumptions regarding the nature of the in-

complete information. However, we showed that we can provide many substantive predictions

regarding demand function competition that are robust to weak informational assumptions.

While our analysis focused on studying market power and price volatility, the conclusions

can be extended to other equilibrium statistics. For example, an analyst may be interested in

the variance of the quantities bought by each agent, that is, var (qi). In an earlier version of this

paper (see Bergemann, Heumann, and Morris (2018)), we explored more broadly how informa-

tion may determine any given equilibrium statistic. Our conclusions there extend the current

results in the sense that the equilibria under complete information are “extremal”equilibria. For

example, the variance of the quantities is bounded by the variance attained under a complete

information equilibrium. Thus, while it is diffi cult to rule out any of the equilibria that arise

under complete information, these equilibria can be used to provide bounds of what can happen

across all information structures.

Our analysis relies on several simplifying assumptions, most notably the symmetry of agents

and the normality of signals. The symmetry assumption facilitates the analysis by allowing us

to describe the equilibrium outcome using a smaller set of equilibrium variables. If agents were

heterogeneous, then describing an equilibrium outcome would amount to describing each agent’s

market power, the price volatility, and the variance of each agent’s demand. We believe that this

would be an algebraically more cumbersome exercise, but the tools and ideas we have developed

could be applied to such a problem. The most important role that the normality assumption

plays in our analysis is that it leads to constant market power (meaning that it does not depend

on the realization of signals). If market power is not constant, then we may have an additional

source of price volatility that does not come from the realization of the average payoff shock, but

from market power volatility. Hence, we may attain higher price volatility than when we focus on
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Gaussian signals. Overall, we believe that allowing for richer settings in terms of heterogeneous

agents and non-Gaussian signals would not overturn the main message of Theorem 1: that is,

it is diffi cult to offer predictions even when close to complete information. On the other hand,

allowing for non-Gaussian signals may lead to higher price volatility, and hence, the bounds on

price volatility that would allow us to extend Theorem 2 may show more slackness.
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8 Appendix

Proof of Proposition 1. Using the equilibrium construction in the proof of Theorem 1, in

particular (13) we find that in any symmetric Nash equilibrium x∗:

x∗(si, p) =
θi − p
1 + λ

, (39)

where λ is the reciprocal of the derivative of an agent’s residual supply. This equation is the com-

plete information counterpart to (13). The market clearing condition implies that the equilibrium

price is given by:

p∗ =
βNθ̄

1 + λ+ βN
. (40)

The arguments established in the proof of Theorem 1 imply that market power satisfies l = λ/βN

and that the second-order condition of an agent’s maximization problem implies that λ ≥ −1/2.

Thus, (40) implies that the equilibrium relation between price volatility and market power is as

in (5).

To check that the conditions are suffi cient, we consider the following family of demand func-

tions parametrized by γ ∈ R:

xi(p) =
1

1 + λ

(
θi − (1− γ)θ̄

)
− 1

N − 1
(
1

λ
− 1

β
)p, (41)

where λ is determined as a function of γ by the positive root of (18). We first observe that this

is the same demand function as the one that the agents submit in the Nash equilibrium when

they observe the information structure constructed in Theorem 1 (there γ parametrizes the one-

dimensional signal (11)). Thus, if (41) constitutes a Nash equilibrium, then the equilibrium

market power and price volatility are given by:

l = λ/βN and σ2
p =

(βN)2

(1 + βN + λ)2
σ2
θ
,

where λ ∈ [−1/2,∞) is the positive root of (18). To check that (41) is an equilibrium, we note
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that when λ is determined by the positive root of (18) we have that:

xi(p) =
1

1 + λ

(
θi − (1− γ)θ̄

)
− 1

N − 1
(
1

λ
− 1

β
)p =

θi − p
1 + λ

.

Thus, demand satisfies the first-order condition (39), and it also satisfies the second-order condi-

tion because λ ≥ −1/2. Therefore, (41) satisfies the optimality conditions and thus constitutes

a symmetric Nash equilibrium.

Proof of Corollary 4. We recall that the first-order condition is given by (13). In the

limit σ2
εij
, σ2

εiω
→ 0 we have that:12

E[θi|p∗, si]→ θi.

This limit is satisfied regardless of the rate at which we take the limits. Following the same steps

as in the proof of Theorem 1 we conclude that the equilibrium price converges to:

p→ βNθ̄

1 + βN(1 + l)
. (42)

This immediately implies that price volatility converges to the formula in (5). We are thus left

with proving that, by taking the limits σ2
εij
, σ2

εiω
→ 0 at the appropriate rate, every market power

l ∈ [l̂(1), 1] can be attained in the limit.

We now use the fact that the price converges to (42), and we recall that θ̄ = ω + τ̄ . We first

note that, if σ2
εij
, σ2

εiω
→ 0 and σ2

εij
/σ2

εiω
→∞, then:

E[θi | p, si]→ sii + siω.

In other words, if σ2
εiω
converges to zero at a faster rate than σεij , then siw becomes arbitrarily

more informative (about ω) than p. Hence, to predict ω, agents simply use their private signals

siw. Following the same steps as in the proof of Theorem 1 to find the equilibrium market power,

we conclude that the equilibrium market power will be l̂(1).

12All convergences of expectations are convergences in probability.
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We now note that if σ2
εij
, σ2

εiω
→ 0 and σ2

εij
/σ2

εiω
→ 0, then:

E[θi | p, si]→ sii + (
1 +Nβ(1 + l)

βN
p− 1

N

∑
j∈N

sij).

In other words, if σ2
εij
converges to zero at a faster rate than σεiω , then agents can subtract τ̄ from

the equilibrium price, which allows them to deduce
∑

j∈N sjw/N by observing the equilibrium

price. Hence, to predict ω, agents simply use the equilibrium price. Following the same steps as

in the proof of Theorem 1 to find the equilibrium market power, we conclude that the equilibrium

market power will be 1.

We now observe that for every κ ∈ [0, 1] we can take the limits σ2
εij
, σ2

εiω
→ 0 at an appropriate

rate such that:

E[θi | p, si]→ sii + κ(
1 +Nβ(1 + l)

βN
p− 1

N

∑
j∈N

sij) + (1− κ)siω.

Therefore, changing the rate at which σ2
εij
and σ2

εiω
converge to zero changes κ, which has the

same effect on the equilibrium market power as changing γ under noise-free signals (23). The set

of equilibrium market power values that can be attained by the set κ ∈ [0, 1] corresponds to the

set of market power values that can be attained by noise-free signals with parameter γ ∈ [0, 1].

Hence, every market power in l ∈ [l̂(1), 0] can be attained.
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