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1 Introduction1

Income inequalities have returned to the center of many debates in economics, as rekindled by

the work of Piketty (2013) and his co-authors on the sharp increase in top incomes over the

last 50 years in most countries, although the data on labor income inequalities at the national

level, in developed countries (Atkinson and Morelli, 2014) or at the global level (Milanovic,

2016) is slightly more contrasted. Among economic factors, the evolution of wage rates over the

life cycle within a generation is at the heart of changes in inequalities of opportunity (Lagakos,

Moll, Porzio, Qian and Shoellman, 2018, for a international comparison). Namely, wages are

determined by the labor market conditions offered to each cohort (Jeong, Kim and Manovskii,

2015) and by individual abilities to earn and learn, while household labor income is ultimately

derived from a sequence of decisions like marriage, labor market participation and labor supply

which depend on wages and preferences (Chiappori, Dias and Meghir, 2018).

There are many competing theories that explain the shape of wage profiles over the life cycle.

Investments in human capital, learning by doing, or job search are the most popular (Rubinstein

andWeiss, 2006). However, it is diffi cult to test them apart, especially when empirical researchers

allow the parameters governing these models to be specific to each individual. These theories

are nonetheless useful for disciplining the specification of wage profiles and the interpretation

of empirical results when estimating models of wage profiles and, therefore, the formation of

inequalities over the life cycle.

In this article, we specify the wage profiles derived from a tractable model of investment

in human capital à la Ben Porath (1967). We estimate it from French administrative data

on the wages of a large cohort of around 7,500 men, who entered the labor market in 1977,

and are followed until 2007. France is one of the countries in which earnings inequalities have

remained stable over these years (Atkinson and Morelli, 2014) notwithstanding more unequal

top incomes. Public policies have been found to be responsible for the decoupling between

the evolution of wages and labor costs, the latter being unsurprisingly the same as in other

industrialized countries such as the United States (Bozio, Bréda and Guillot, 2020). We focus

on analyzing the wage profiles of a single cohort, first to focus on pure life cycle issues and

then for the instrumental reason that it allows us to follow this cohort for thirty years since the

1We thank Christian Belzil, Richard Blundell, Laurent Gobillon, Jim Heckman, Nicolas Pistolesi and Bernard
Salanié for helpful comments as well as participants in numerous seminars where we presented earlier versions
of this research This research has received financial support from the European Research Council under the
European Community’s Seventh Framework Program FP7/2007-2013 grant agreement N◦295298 and funding
from ANR under grant ANR-17-EURE-0010 (Investissements d’Avenir program). All errors remain ours.

2



entry into the labor market and model initial conditions in detail. We checked that the studied

labor cohort had no specificities compared to the surrounding cohorts and we used wage data

on other older cohorts to estimate the prices of human capital using a "flat spot" approach

(Heckman, Lochner and Taber, 1998, Bowlus and Robinson, 2012) which allows us to focus on

human capital investment profiles.

Our theoretical set-up, as developed in Magnac, Pistolesi and Roux (2018), leads to an

empirical factor model in which an individual wage profile is described by three individual-

specific parameters, a level, a slope and a curvature. The slope is expected to be positive, and the

curvature negative, since profiles are generally increasing and concave. In this linear framework,

pervasive heterogeneity is simpler to deal with than in non-linear ones (e.g. Browning, Ejrnaes

and Alvarez, 2012, Polachek, Das and Thamma-Apiroam, 2015). For the residual individual-

and-time shocks, we fit a general ARMA specification. We do not take a stand on how this

would be decomposed into persistent and transitory components since consumption data are not

available so that the decomposition cannot be identified (Ejrnæs & Browning, 2014).

The empirical contributions that we review next are obtained using a sequential estimation

method by random effects, first, and fixed effects, second. There are good econometric reasons

for estimating by random effect methods the global characteristics of wage profiles (Alvarez &

Arellano, 2004) and this might explain why estimates using covariance matrices of log wages and

minimum distance might yield different results (Hryshko, 2012). A random effect method deals

with (i) issues of initial conditions, quite out of the stationary path in the case of wages, delivers

(ii) an estimate of serial correlation at the population level and provides (iii) an estimate of

the covariance of individual effects. As a consequence of these three arguments, random effects

discipline the estimation of fixed effects. Random effects however do not deliver other moments

than the variance of the distribution of individual effects, while fixed effects do at the price of a

1/T bias which can be bias-corrected (Arellano and Bonhomme, 2012).

Our empirical contributions are the following.

First, letting wage profiles to be concave deeply changes the correlation structure between

level and slope coeffi cients. Absent curvature, the level and slope individual effects are negatively

correlated as in most of the literature (Guvenen, 2007), while if a curvature term is included, this

correlation turns positive. This result on unobservables is more in line with the uncontroversial

result that the higher observed skills are, the larger the wage growth (Lagakos et al., 2018).

Furthermore, returns, or marginal wage growth, are correlated negatively with the initial wage

level, as in Gladden and Taber (2009) or Sorensen and Vejlin (2014) but this result is not uniform
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over the life cycle. This correlation is negative over the 20 first years of the life cycle and turns

positive afterwards. As forcefully argued by Lillard and Reville (1999), modelling the curvature

effect in the wage profiles is important and we show that it is key in those predictions about

stochastic wage processes.

Another contribution is to decompose wage profiles in aggregate effects due to groups of

skills (age at entry and initial skill occupation) and unobserved individual effects due to specific

human capital investments. In contrast with the US (Heckman, Lochner and Taber, 1998), we

find that between and within group covariances of level, slope and curvature parameters are very

similar. Decomposing inequalities provides a further set of empirical contributions.

First, we find that the variance of the long-run value of a wage profile, as accounted by

discounted sums of log-wages over the (observed) life cycle, is smaller than the cross-section

variance of log wages after 5 years (.138/.113) but greater by around 60% (.207/.113) after 30

years. This is in line with estimates of Bonke, Cormeo and Lutken (2014) using German data

in which they find that the former is about 2/3 of the latter.

Second, we find that heterogeneity explains 70% of the variance at the beginning of the life

cycle and 90% after 30 years which is in line with Keane and Wolpin (1997) but larger than what

is obtained by Huggett, Ventura and Yaron (2011) or Bagger, Fontaine, Postel-Vinay and Robin

(2014) in admittedly less heterogeneous —observed and unobserved —set-ups. Specifically, we find

that the relative explanatory power of observed skills and unobserved individual heterogeneity

changes over the life cycle, from half and half after five years in the labor market, to a 30-

70% decomposition after 30 years. The persistence of observed heterogeneity is more noticeable

though in the long run since observed heterogeneity account for more than 50 percent of the

long run inequality within this cohort.

Finally, a single dimension heterogeneity term does not describe well the variance of log

wages in cross sections. The fixed individual effect in level explains well the variance at the

beginning of the life cycle but less at the end. In contrast, the individual slope and curvature

of profiles explain well the variance at the end of the life cycle but not at the beginning. This

is why inequality in the long run cannot be explained by a single heterogeneity component but

the three (levels, slope and curvature) are needed and in particular, for the high skill group.

Literature review It is useful to start with a brief comparison with the extensive empirical

literature on earnings dynamics (see Meghir and Pistaferri, 2010, for a review). An important
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part of this literature aims at fitting the empirical covariance structure of (log) earnings over the

life cycle using competing specifications like the one described as heterogeneous income profiles

(HIP) or restricted income profiles (RIP). Up to now, there is no consensus in the literature

about which specification fits the data best (see e.g. Baker, 1997, Guvenen, 2007, Hryshko, 2012

and Hoffmann, 2019). Our linear factor structure embeds both models since the permanent

component includes individual specific levels and growth rates of earnings as HIP does and

the stochastic component can be any mixture of permanent and transitory shocks like in RIP.

Nonetheless, our three factor structure invalidates the key identifying assumption about the

correlations between first differences of within shocks (for instance Blundell, 2014) because of

the presence of the curvature term. This type of structure is also used by Cho, Phillips and Seo

(2019) to model conditional means, in a functional data set up

Our paper also touches the estimation of the traditional homogeneous wage equation (Mincer,

1974). The state-of-the-art study is Lagakos et al. (2018) which studies an impressive set of

countries and shows that experience-wage profiles are twice as steep in rich countries as in poor

countries. Furthermore, more educated workers have steeper profiles. What we observe in our

administrative data is similar although other studies (Engbom, 2017, using EHCP survey data)

finds that wage growth in France over the life cycle is relatively small among 12 OECD countries,

the same as in Germany but less than in the US and the UK.

Non-linear alternatives have been proposed in the recent literature such as Browning et al.

(2012), Hospido (2012), Song, Price, Guvenen, Bloom, and Von Wachter (2018) or Bonhomme

and Robin (2009) as well as Pora and Wilner (2017) using French data. There are also semipara-

metric analyses such as Lochner and Shin (2014) and Arellano, Blundell and Bonhomme (2018)

using US data. It is generally diffi cult to compare these alternatives with ours because our linear

model is designed to capture means and covariances, while using pervasive heterogeneity. The

bridge between those methods could be made by extending our procedures to the estimation of

quantiles.

In a different vein, a more economically oriented literature tries to contrast predictions derived

from theories of wage growth, namely, human capital, job search or learning by doing. Rubinstein

and Weiss (2006) takes stock of the literature before the 2000, and distinguishes job search and

human capital theories by some of their predictions. Job search models predict a negative

correlation between wage and subsequent wage growth over the life cycle, while human capital

models predicts that it is negative at the beginning of the life cycle but turns positive afterwards.

The latter is what we find in our empirical analysis. Some recent literature explicitly models job
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search, in contrast with this paper in which we treat job search as a transient residual cause.

Bowlus & Liu (2013) decomposes earnings growth into human capital (50%), job search (20%),

the rest being their interaction. In contrast, Bagger et al. (2014) finds that job search, or "job-

shopping", significantly contributes to wage growth but seems to be mostly occurring over the

first ten years of the working life. Furthermore, Burdett, Carrillo-Tudela and Coles (2016) finds

that most of the effect of experience on wages is due to passive learning-by-doing.

Contrasting human capital investments and learning by doing is the objective of fewer papers.

Heckman, Lochner and Cossa (2003) show that distinguishing job training and learning by doing

might use that wage subsidies, such as EITC, provide additional incentives to work, enhance

learning by doing and decrease investments in human capital. Belley (2017) contends that

learning by doing does not seem prevalent since it does not predict the trade-off between current

and future earnings, observed in the data and as predicted by human capital models. Blandin

(2018) also points out that learning by doing does not predict a decrease in investments at the

end of the working life.

Furthermore, within the human capital paradigm, Sanders and Taber (2011) reviews models

with multidimensional human capital. Sorensen and Vejlin (2014) estimates the correlation

between initial wages and later wage growth using Danish data over 20 years. They, as well as

Gladden and Taber (2009), find that this correlation is negative. We find the same negative

correlation over the first 20 years but it turns positive afterwards. Our approach differs from

theirs in two aspects. First, we have a 3-factor linear model in which the curvature effect is

key. Second, these authors use the observed initial wage, which is transient at this age, while we

try to filter out these transient initial conditions. We use the reconstructed non-transient initial

log-wage by using a combination of random and fixed effects.

Finally, we only touch upon lightly the issue that returns to observable components increased

dramatically, for instance in the US (Autor, Katz and Kearney, 2008) since it affects the cost

of labor but not wages in France (Bozio et al., 2020). Fernandez-Val, Peracchi, van Vuuren and

Vella (2018) use repeated cross-sections (US-CPS) and decompose the evolution of quantiles, for

males and females, into selection, structural and compositional changes. One of their conclusions

is that selection effects seem small, as assumed here notwithstanding a different panel data

context. Our analysis also abstracts from compositional effects because of the single cohort and

flat spot approach, and our analysis focuses on the structural effects affecting life cycle wage

profiles.
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Section 2 briefly describes the evolution of earnings inequality in France and the data we

use. Section 3 details our empirical strategy and Section 4 the econometric methods. Section

5 reports estimation results and Section 6 gathers the results of various decompositions of life

cycle inequalities.

2 A Brief Description of the Data

We briefly summarize the evolution of wage inequality in France over the last 40 years and

present stylized facts about means, variances and autocorrelations of log wages in our sample,

after reporting how we constructed this sample from administrative sources.

2.1 Earnings and Wage Inequality in France

The sharp increase in earnings inequality in the UK and in the US over the last thirty years

is a well known empirical fact (see for example Autor, Katz and Kearney, 2008, or Moffi tt and

Gottschalk, 2011, for the US and Blundell & Etheridge, 2010, for the UK). Yet, the picture is

more balanced in other OECD countries and while some European countries have experienced

an increasing dispersion in earnings, others have not been affected by this trend and have had

stable or decreasing dispersion. Atkinson and Morelli (2014) compute international earnings

inequality comparisons over the second half, or so, of the twentieth century for 25 countries. As

regards European economies, they conclude that earnings inequality has increased in Germany,

Italy, Portugal, Sweden, Switzerland while in Finland, France, the Netherlands, Norway, and

Spain earnings dispersion has stayed constant or decreased over this period.

In France, earnings inequality in 2010 is broadly comparable to its level in the nineteen sixties

and if anything has decreased. Atkinson and Morelli (2014) report an unchanged Gini coeffi cient

for earnings over the period. Using Labour Force Surveys (LFS), they also compute yearly

measures of inequality and show a very stable inequality level. Using two different datasets,

the DADS, used here, and the French LFS, Verdugo (2014) concludes that the two data sets

provide strikingly similar figures of constant or decreasing earnings dispersion between 1964

and 2005. Verdugo (2014) decomposes the total earnings dispersion into upper and lower-tail

earnings inequality. The dispersion at the top of the distribution remained constant, since the

P90/P50 index in earnings fluctuates around 2, while the dispersion at the bottom measured

by the P50/P10 index decreased from 1.9 to 1.5. Charnoz, Coudin and Gaini (2011) also use

the DADS data to reach the same conclusion that earnings inequality in France has been rather
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stable from 1976 to 1992 and has been slightly decreasing from 1995 to 2004. This stability has

been attributed, at least partly, to a strong policy driven increase in education at the end of

the 1980s and labor market policy regulations at the end of the 1990s (Charnoz, Coudin and

Gaini, 2014). Bozio, Breda and Guillot (2020) neatly demonstrate that inequality increases in

labor costs have been the same as in the US and other major developed countries although

French policy changes in payroll taxation, and in particular for low-skills, have counteracted

these changes in terms of wage inequalities.

The same note of caution as was already made is in order. While these studies consider

changes in the cross-sectional earnings distributions, changes in the structure of the population

and cohort effects that play an important role in the previous studies (e.g. Jeong, Kim and

Manovskii, 2015) are neutralized here. We follow a single cohort of individuals entering the

labor market in 1977 to focus on inequalities unraveling over the life cycle.

2.2 Our Working Sample

Our panel dataset on wages is extracted from a French administrative source named Déclarations

Annuelles de Données Sociales (DADS) which has been used for employee-employer studies as

Abowd, Kramarz and Margolis (1999).2 DADS data is collected through a mandatory data

requirement for social security and tax verification purposes. All employers must send to the

social security and tax administrations the list of all persons who have been employed in their

establishments during the year. Firms report the full earnings they have paid to every employee

and payments exclude other labor costs borne by the firm. Each person is identified by a unique

individual social security number which facilitates the follow-up of individuals through time

although we cannot reconstruct taxes they pay. The tax system is household-based in France

and the linking of this dataset with fiscal records is not authorized yet.

The French National Statistical Institute (INSEE) has been drawing, since 1976, a sample

from this dataset at a sampling rate of around 4% by retaining all individuals who were born in

October of even years. Using administrative data is an important advantage since these data are

less subject to attrition or measurement errors. Unlike survey data, the collection of information

does not rely on individual response behavior and individuals are better followed over time.

Moreover, the large sample size enables us to use a single large cohort of individuals who entered

2These data are accessible through securitized access (CASD). Other contributions in the earnings literature
that use administrative data is Hoffmann (2019) and Daly, Hryshko and Manovskii (2016) (German and Danish
data).
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the labor market in the same year.

This dataset is restricted to individuals employed in the private sector or in publicly-owned

companies and we consider only males to lessen selection issues. Observations can yet be missing

for different reasons. Data were not collected in three years (1981, 1983 and 1990) for reasons

specific to INSEE. It is also quite frequent that employees exit the panel and a significant fraction

of those reenter it after a few years (see Table S.i in the Supplementary Appendix). Those

absences might stand for spells in the public sector, as self-employed, or out-of-employment. We

also code as missing part-time employment in any given year.

We restrict our analysis to labor market entrants in 1977, a set that we call "cohort" in the

following, even if their age is heterogenous. Entrants are defined as those who started working

full time for more than 6 months in 1977, and are still employed the following year, possibly in a

different firm. To make sure that these employees have a permanent attachment to the private

sector and to mitigate the issue of missing years in 1981 and 1983, we keep only those who also

work in 1982 and 1984 and who were aged between 16 and 30 in 1977. The distribution functions

of unobserved factor loadings, or idiosyncratic components, that we estimate in the following

refer to this subpopulation. Moreover, lacking a credible identification strategy to correct for

selection, we shall assume that missingness is at random.

We define wages as the sum of all earnings during a year, divided by the number of days

worked. This allows employees to have within-year periods out of the private sector. Short-

comings of administrative data are that other components of income, including other sources

of earnings, are missing and that few observable characteristics are available, apart from age at

labor market entry and the skill level of the first job.

First, it is likely that workers delaying entry have a higher education level than the ones

who entered earlier. Second, initial skills are grouped into three categories based on a two-digit

codification: high-skill (managers, professionals), medium-skill (blue-collar or white-collar skilled

workers) and low-skill jobs. Our 20 resulting "education" groups are defined by the interaction

between these two variables when groups are not too small (see e.g. Table 2 for the definition

and size of each group). Since education is defined according to characteristics recorded at labor

market entry, individuals are attached to the same education group during their whole working

life.

Other details completing this description can be found in Data Appendix A.
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2.3 Wage dynamics over the life cycle

Table 1 reports descriptive statistics on the composition of the sample over time. The sample

size is 7446 observations in 1977 and 4670 in 2007. Human capital groups defined above are

of unequal size, the groups with an early age of entry being the largest ones, and with a late

age of entry, the smallest. Attrition follows a somewhat irregular pattern due in part to the

original data and to our sampling design (see Supplementary Appendix, Table S.i). There are

also more surprising features for instance in 1994 (or 2003 at a lesser degree) a year in which

many observations are missing. This is due to the way INSEE reconstructed the data from the

information in the original files.

We report in Figure 1, the evolution of average log-wages over the life cycle, in 2007-euros,

for three age of entry groups (< 20, ≥ 20 and ≤ 24 and > 24) and these profiles display the

familiar increasing and concave shape.

By taking deviations of (log) wages with respect to their means in the groups defined by age

of entry, skills and years, we compute log-wage residuals. The left panel of Figure 2 plots the

change in the cross-sectional variance of those (log) wage residuals for the full sample, while the

right panel graphs the variance by age of entry groups. Choosing the variance as a description of

the process is adapted to the random effect specification that we estimate. Using other inequality

measures (Gini , Theil or Atkinson) does not change the qualitative features of our descriptions.

The first few years witness a strong variability of wages. Until the sixth year of observation,

1982 (respectively the fourth, 1980), the variance of log wages drops for the low skill groups

(resp. for the other groups) whereas it increases gradually over the rest of the sample period

till around 1995. The variance profile is flat afterwards in contrast to the US where it continues

to grow (e.g. Rubinstein and Weiss, 2006, using PSID). From the right panel one can notice

that late entrants in the labor market experience higher levels and larger rates of growth for the

variance of log-wages over the life cycle as in most countries (Lagakos et al, 2018).

The covariance matrix of log-wage residuals is reported in the Supplementary Appendix Table

S.ii although this is easier to use graphs to describe the main features of wage autocorrelations.

Figure 3 displays the autocorrelation of residuals of log wages in year t with residuals in an early

(resp. late) year, 1986 (resp. 2007). This Figure reveals an asymmetric pattern over time which

is quite robust to the choice of these specific years (1986 and 2007). The correlation between

wages in year t and in 1986 is swiftly increasing when t is before 1986 and this is also true for

2007 albeit at a lesser degree. In contrast, the correlation between wages in 1986 and in year t is
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only slowly decaying in t, if time t postdates 1986. Figure 4 takes a different view that confirms

the previous diagnostic by plotting the autocorrelations of order 1 and 6. Note that their shape

are very similar and increase uniformly over time although at different levels. The closer to the

end of the working life, the larger the autocorrelation coeffi cients are.3 This provides strong

evidence that wages are becoming more stable as employees progress in their life cycle.

3 Empirical strategy

We specify a linear factor model of wage dynamics. Our starting point is the model of human

capital investments after leaving school that is developed in Magnac et al. (2018) and that

provides exact theoretical foundations à la Ben Porath (1967), for a Mincer (1974) reduced form

wage equation at the individual level. This specification is more tractable to estimate, than

alternatives when heterogeneity is pervasive (Browning, Ejrnæs and Alvarez, 2012, Polachek et

al., 2015). Magnac et al. (2018) spell out the conditions under which the (log) wage equation

can be written as a linear factor model where the three observed factors are ft =
(
1, t, β−t

)
:

lnwit = ηi1 + ηi2t+ ηi3β
−t + vit, (1)

in which β < 1 is the assumed homogenous discount factor. This reduced form delivers the

familiar increasing and concave shape when ηi2 > 0 and ηi3 < 0.

When wages are appropriately discounted, as in the flat spot approach that we describe

below, the first three terms measure the logarithm of the current human capital stock (net of

current investments) while vit can be interpreted as the logarithm of the individual-specific price

of human capital, net of accumulated depreciations. Implicitly, the influence of job search, the

job ladder, or dismissals, are hidden in the latter component.

Factor loadings or individual specific effects ηi1, ηi2 and ηi3 have a structural interpretation.

The first two ones are related respectively to the initial level of human capital i.e. the ability

to earn and to the rate of return to investments i.e. the ability to learn (see Browning et al.,

1999). Furthermore, the ratio between ηi3 and ηi2, i.e. the ratio of the "curvature" relative to

the growth of log wages, can be structurally interpreted as the value given to human capital at

an arbitrary terminal period. The longer the horizon of investment, the smaller the curvature

(Lillard and Reville, 1999). Note that this model nests the Heterogenous Income Profile (HIP)

3In the Supplementary Appendix, graph S.ii dispalys that this cohort has nothing specific when compared to
younger cohorts entering later into the labor market
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and the Restricted Income Profile (RIP) as in Guvenen (2007, 2009) since vit can be any time-

series process.

Estimating this very heterogenous reduced form leads to the decomposition of the wage

profile heterogeneity in each of its structural components. Deriving the relative importance

of each component is the object of Section 6 which extends to an heterogeneous setting, the

calibration exercise of Huggett et al. (2011) using US data.

Before that, the first step of our empirical strategy decomposes the net log price of human

capital, vit, into aggregate and individual specific components. Aggregate components are con-

structed using the subsamples defined by the education groups that we constructed before, from

skill and age at labor market entry. They can be interpreted as market (log) prices net of de-

preciation for education "types" when we adopt the framework of Heckman et al. (1998), in

which human capital stocks of different education groups are imperfect substitutes in the aggreg-

ate production function. In contrast, perfect substitution holds within groups, and individual

specific shocks, vit, are interpreted as frictions.

The mechanisms that underlie the specific dynamics of aggregate and individual specific

components are allowed to differ, and are left unrelated. In consequence, we handle education

group and individual specific effects separately and recompose them afterwards to recover the

full effects.

3.1 Aggregate components

Equation (1) can be linearly aggregated, in each education group, as:

ln ygt = ηg1 + ηg2t+ ηg3β
−t + v̄gt, (2)

in which g denotes a group defined by skill and age of entry and ηgk = E(ηik | i ∈ g) for k = 1, 2

or 3, v̄gt = E(vit | i ∈ g). The term v̄gt stands for the market log-prices of human capital of

group g at time t.

Aggregate log prices are given by :

E(v̄gt | ft =
(
1, t, β−t

)
) = ϕgt, (3)

in which ϕgt is an unknown series of human capital prices. Condition (3) requires that the net log

price dynamics is driven by factors orthogonal to the ones which govern average human capital

accumulation and is the key restriction that separates quantities from prices. To identify ϕgt

(up to a constant term), Heckman et al. (1998) and Bowlus and Robinson (2012) use a "flat
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spot" condition by which (2) is satisfied with ηg2t+ηg3β
−t ' 0 for a restricted window of periods

close to the end of the working life (around 50). This means that investments and depreciation

shocks exactly balance each other at those ages. This is also a structural way of solving the well

known impossibility of separately identifying age, cohort and time effects in a linear setting. The

stability of the between and within group wage inequality in France over this period supports

the credibility of this procedure.

We apply this flat spot technique to estimate ϕgt using data on other cohorts and from now

on, we will consider that log wages, ln ygt, are net of these estimates ϕ̂gt so that OLS estimation

of equation (2) is unbiased.

3.2 Individual specific components

Turning to within group variation, define centered individual effects as their deviations with

respect to their means, ηcik = ηik − ηgk, for k = 1, 2, or 3 and vcit = vit − v̄g(i)t. Centering the log
wage equation (1) yields log-wage residuals:

uit = ln yit − ln yg(i)t = ηci1 + ηci2t+ ηci3β
−t + vcit, (4)

in which uit is the deviation of individual log-wages with respect to their group averages. In-

dividual specific deviations, vcit, stand for frictions in a model of search and mobility (see e.g.

Postel-Vinay and Turon, 2010). The dynamics of the wage process is indeed partly bounded

from below and from above by two processes which are individual productivity in the current

match and outside offers that the agent receives while on the job. At times, bounds are binding

and wages are: Either equal to the productivity process because adverse shocks on that process

make employee and employer renegociate the wage contract. Or equal to the outside offer in

the case the employee can either renegociate with his employer or take the outside offer if the

productivity is lower that the outside option.

These frictions are here described by a stochastic process which is mean independent of

factors and factor loadings:4

E(vcit | ft =
(
1, t, β−t

)
, ηci) = 0. (5)

Note that it lets other moments of vcit depend freely on factors and individual effects η
c
i . The

mean independence of frictions, vcit, with respect to factors, ft, and individual effects, η
c
i , is the

main assumption underpinning the identification of individual-specific structural parameters.
4In the empirical application below, we slightly relax the assumption of mean independence of frictions with

respect to individual effects by authorizing general initial conditions in the random effect model.
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The issue of missing data is potentially important in our empirical application since we

observe wages if and only if individuals are employed by the private sector. Missingness could

be due to periods spent in the public sector, as self-employed or as non employed. Absent

credible instruments or structural assumptions, we assume in the following that missingness is

at random. The existence of missing data becomes unconsequential for consistently estimating

aggregate effects while we show below that the random effect likelihood approach we adopt,

deals with missing data easily.

4 Econometric method

In this section we summarize our econometric estimation method, step by step. Most of the

technical details are relegated to appendices. Our main objective is to recover estimates of

individual effects (ηi1, ηi2, ηi3) in the linear factor structure (1) by using identifying restrictions

presented in Section 3.

Stacking log wages ln yit, net of ϕgt defined in equation (3), and the stochastic component

vit into T × 1-vectors ln yi and vi as well as ηik into a 3× 1-vector ηi, equation (1) writes:

ln yi = M (β) ηi + vi (6)

in whichM (β) is a T ×3 matrix in which a constant, a linear and a geometric term are stacked.

As explained above, we split the estimation in two stages. First, we estimate aggregate

equation (2) group by group. At this aggregate level, we have 28 observations per group and

those have their own aggregate dynamics. This is why we estimate parameters in each group by

simple OLS as justified by condition (3). This provides consistent estimates of ηg, say η̂g, and

standard errors are computed using a Newey West procedure.

Second, within-group residuals, ui, can be expressed as a function of centered individual

specific parameters, ηci as:

ui = M (β) ηci + vci . (7)

in which vci = vi − vg(i). Because some data are missing, inference might be poor if we estimate
this last equation individual by individual since there are at most 28 observations in our data.

Let Ti ≤ T denote the number of observations for individual i, estimates of parameters ηi for

every individual profile are consistent when Ti →∞ but, in small samples, the bias is of the order

1/Ti (e.g. Arellano and Bonhomme, 2012). To overcome this diffi culty, ηci are estimated using

a two-step strategy which consists first in estimating a flexible random effect model using the
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whole sample and second, in estimating equation (7) by FGLS, individual by individual. In the

second step fixed effect procedure, the FGLS weight is the inverse of the population covariance

matrix of vci over time estimated in the first random effect step.

Arguments underlying such an estimation strategy are based on trading off the consistency

properties of random effect methods when the time dimension is small and the flexibility of

the fixed effect methods. On the one hand, estimating serial correlation by random effects in a

first step, allows general serial correlation to be controlled for, in the fixed effect estimation, so

that the latter is presumably more precise. Gaining precision is also likely even if the random

effect specification is only an approximation of a more complicated data generating process.

Furthermore, random effect estimation provides a benchmark against which we can assess the

amount of bias in the fixed effect estimation due to the finite length of the observation period for

each profile. On the other hand, random effects methods only provides estimates of means and

covariances. Fixed effect estimates bring about richer information on the underlying distribution

of individual specific parameters.

Combining aggregate and individual specific estimates yields fixed effect estimates of the

original factor loadings:

η̂i = η̂g + η̂ci .

We now present random and fixed effect methods in more detail.

4.1 Random Effects

Equation (7) and mean independence restrictions (5) lead to:5

E(ui | ηci) = M(β)ηci ,

V (ui | ηci) = V (vci | ηci) ≡ Ω(ηci),

and:

V (ui) = V (E(ui | ηci)) + E(V (ui | ηci)) = M(β)V (ηci)M(β)′ + E(Ω(ηci)). (8)

Our parameter of interest in this equation is the covariance matrix of the individual effects,

V (ηci) standing for the covariances between level, slope and curvature parameters. Identifying

this covariance matrix requires restrictions on the average variance of the idiosyncratic errors,

5Appendix B presents the full specification of the process for vcit in which we also deal with initial conditions
in the most general way used in the dynamic panel data literature. The covariance matrix of initial conditions is
free as well as the covariance between those initial conditions and the individual specific parameters ηci . Further
details are given in the supplementary Appendix S.II.
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E(Ω(ηci)). An ARMA specification is common in the earnings dynamic literature and generally

low orders are used (see Guvenen, 2009, or Hryshko, 2012) whereas an alternative is a compos-

ition of permanent and transitory shocks with specific structures (Blundell, 2014, Bonhomme

and Robin, 2009, Lochner and Shin, 2014). We refrain from decomposing vci into its persist-

ent and transitory components since those are not identified absent additional restrictions and

consumption data (Ejrnæs and Browning, 2014).

Arellano and Bonhomme (2012) show that a finite lag ARMA specification is suffi cient to

identify V (ηci). We use this result and proceed by specifying that the processes v
c
it belong in the

family of time-heteroskedactic ARMA processes although we limit the orders of the AR and MA

to vary between 1 and 3. This allows the robustness of the estimated covariance of individual

effects, V (ηci), to the orders of the ARMA process to be assessed. Moreover, we allow for

time heteroskedasticity of the innovations whose importance is argued by Alvarez and Arellano

(2004). What the decomposition (8) shows in addition, is that a restricted form of individual

heterogeneity, possibly dependent on parameters, ηi, could be allowed in the ARMA process,

provided that the expected value, E(Ω(ηci)), remains in the ARMA family that we consider.

The most commonly used minimum distance method for estimating equation (8) is severely

small-sample biased since the range of moments involved when the time dimension becomes

large makes first order asymptotics a poor guide in empirical research. Okui (2009) derives the

small sample biases not only in the mean but also in the variance of GMM estimates due to the

presence of too many moments and he suggests some moment selection mechanism. This is why

some researchers proposed to return to an OLS set up adding a bias correction step (Fernandez-

Val and Weidner, 2018) or to maximum or pseudo-maximum likelihood methods that reduce the

number of moments available (Alvarez and Arellano, 2004).

Specifically, the estimation method proposed by Alvarez and Arellano (2004) seems to dom-

inate in Monte Carlo experiments other fixed T consistent estimators such as the maximum

likelihood estimator using differenced data, and the corrected within group estimator. This

method is particularly well adapted to the case in which there are missing data in wage dy-

namics. For any missing data configuration, it consists in deleting the rows and columns of the

covariance matrix corresponding to missing data and write the likelihood function accordingly.

Under a normality assumption, the implicit moment selection underlying this estimation method

is optimal, and though the method loses optimality in the non-normal cases, it is still useful for

moment selection and for small-sample bias reduction (Okui, 2009).
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4.2 Fixed effects

Random effect estimates can now be exploited to construct individual specific estimates of para-

meters ηci . First, if the ARMA model that we retained above is the correct specification of every

stochastic individual profile, fixed effect estimates are linear combinations of residuals uit and

those FGLS estimates are optimally weighted to account for serial dependence. Supplementary

Appendix S.III indeed proves that the individual effect estimates are given by:

η̂ci = B̂ui, (9)

in which matrix B is a function of random effect parameters, such as those governing serial

correlation of transient errors and the covariance between the individual parameters and the

initial conditions. Its estimate, B̂, is obtained by plugging-in the expression of B, their respective

random effect estimates.

Second, even if the ARMA model is incorrect, those estimates are still consistent when

Ti → ∞ because what matters is the mean independence of individual effects with respect to

factors stated in equation (5), and not the specific form of serial dependence. Their standard

errors should, however, be corrected. We use Newey-West robust standard errors in the empirical

section. Nonetheless, FGLS relying on serial dependence as estimated by random effects, exploits

the information that we have about "aggregate" serial dependence, as opposed to a simple OLS

or non-linear least square estimation (Polachek et al, 2015). It enhances the quality of the

estimates if the term Ω (ηci) in equation (8), is not too heterogeneous and this will be checked

after estimation.

Consistency properties could, however, be misleading since Ti varies in our sample between

4 and 28. To assess the magnitude of the bias, we shall compare the estimates of the covariance

matrix of ηci that we obtained by random effect and by fixed effect methods by grouping individual

profiles according to the length of the observation periods.

Abstracting first from estimating errors, an unfeasible estimate of individual effects is defined

as:

η̃ci = Bui = ηci +Bξi,

in which random vector ξi has mean zero conditionally on η
c
i and covariance matrix, Ωξ. This

new notation, ξi, is introduced since it differs from vci in equation (7) because of the correlation

of initial conditions with ηci . These objects and this expression are defined and derived in the
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supplementary appendix S.III. We have:

V (η̃ci) = EV (η̃ci | ηci) + V E(η̃ci | ηci)

=⇒ V (η̃ci) = BΩξB
′ + V (ηci), (10)

a biased estimate of V (ηci). The bias term is BΩξB
′ and it is easy to show that the dominating

term is of order 1/Ti.

Our feasible estimate has an additional bias given by the measurement equation,

η̂ci = B̂ui = η̃ci + (B̂ −B)ξi,

although this term is in 1/
√
N and thus dominated, in large N and moderate Ti samples, by

the bias in 1/Ti.

We estimate the bias in equation (10) by replacing, in the expression, BΩξB
′, the unknowns

by their corresponding random effect estimates and derive a bias-corrected estimate of the true

variance of fixed effects, V (ηci) (e.g. Arellano and Bonhomme, 2012, and Jochmans and Weidner,

2018).

5 Results

We first describe the estimated parameters of the aggregate equation (2) in Section 5.1 and

turn to the estimation results of the within group wage equation by random effect methods in

Section 5.2. In Section 5.3 we comment on the estimates of fixed individual effects. We wind up

the section with comparisons between these results and predictions, with others in the literature.

Complementary results including robustness checks and goodness-of-fit diagnostics are presented

in Appendix C.

5.1 Average effects estimation

For estimating series ϕgt in equation (3), we use a flat spot approach proposed by Heckman, et

al. (1998) and developed by Bowlus and Robinson (2012). Details of the estimation of human

capital prices are presented at the end of the Data Appendix A. In a nutshell, human capital

prices are estimated using a population of older males whose potential experience ranges from

25 to 40 (e.g. whose age stands between 43 and 58, see Appendix A, for more details) as in

Bowlus and Robinson (2012). These data are taken from other cohorts that the one which is

constituting our working sample and those prices are used to deflate real wages.
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Table 2 presents for each of the 20 groups the estimated aggregate group parameters from

equation (2). They exhibit expected patterns. The first factor loading average η̄g1 ranges from

2.4 for the lowest skill groups to 3.4 for the highest skill groups — a 100% difference. The

estimated average slope , η̄g2 ranges from 0.017 to 0.07 in the range of Mincer’s estimates (e.g.

Lagakos et al., 2018). As the previous average, it is larger for the high-skilled groups than for

the low-skilled ones although the evidence is weaker. The geometric factor loading average η̄g3

is mostly negative as expected, or non significantly different from zero.

5.2 Random effect estimates

Random effect estimates when disturbances, vcit, are ARMA(p, q) in which p and q vary between

1 and 3 are reported in the Supplementary Appendix in Tables S.iv and S.v. Those results

and the Akaike criterion reported in Table S.iii made us choose an ARMA(3, 1) as our preferred

specification.6 We comment below ARMA(3, 1) results as well as other parameters that can be

constructed from those.

We start by reviewing results on the correlations between factor loadings and will contrast

them to what appears in the literature in a further subsection.

The estimated covariance matrix of the centered individual effects, ηci is stable across the

different specifications of ARMA processes as shown in Table 3. Their standard deviations

are very precisely estimated at around .30 for the "level" factor loading, ηci1, and .25 for the

curvature one, ηci3, and at around .04 for the slope, η
c
i2. The correlation between the slope and

curvature factor loadings is very strongly negative and equal to −.95 consistently across ARMA

specifications. The magnitude of this correlation and its sign are consistent with the structural

model that ties in parameters ηi2 and ηi3: the larger the slope, the more curved the wage profile.

The retraction force due to the horizon is stronger for high wage growth employees.

The correlation coeffi cient between the curvature, ηci3, and the level, η
c
i1, factor loadings is

also significantly negative —around -0.6 —and confirms that the retraction force at the end of

the life cycle is also stronger for highly skilled workers. The correlation between the level and

slope factor loadings, ηci1 and η
c
i2, is positive and around .5.

Interestingly this pattern of correlations of centered factor loadings is very close to the cor-

relation pattern of the average aggregate estimates across education groups reviewed in the

previous subsection. The coeffi cient of correlation between η̄g1 and η̄g2 (i.e. obtained by varying

6Increasing the order of the MA decreases the AIC criterion very moderately and some of the parameters are
very imprecisely estimated (see Table S.iv).

19



g and weighting by group size) is equal to 0.66 and close to the random effect estimate of the

correlation between ηci1 and η
c
i2, which is equal to 0.5. The estimated correlation between η̄g1

and η̄g3 is negative, −0.64 and very close to the random effect estimate, −0.636. The estim-

ated correlation between η̄g2 and η̄g3 of −0.96, is also very close to the random effect estimate,

−0.95. This result evinces that human capital investment patterns between and within groups

are similar in France in contrast to what was found in the US (Heckman et al., 1998). We may

attribute this difference to the stability of relative human capital prices across groups over this

period in France (Bozio et al., 2020).

Appendix C completes this empirical analysis by describing the correlation patterns with

initial conditions, which is an important aspect of the random effect estimation method, as

well as comments on goodness-of-fit diagnostics for variances and autocorrelations which are

displayed in Figures 2, 3 and 4.

5.3 Fixed effect estimation

We now turn to the estimation results by FGLS of the three individual factor loadings from

individual wage profiles. Technical details are given in Section 4.2 and completed in the Sup-

plementary Appendix S.III. Estimated group averages are added to within group estimates to

reconstruct the final estimates of individual effects, η̂i.

Table 4 reports estimates of the bias-corrected covariance matrix of centered individual ef-

fects, obtained by fixed effect methods, and compare them to the random effect benchmark.

Standard errors for any function of fixed effects are computed using sampling variability to

which is added the effects of parameter uncertainty due to random effect estimation. We use

Monte Carlo simulations to compute the latter by sampling 1,000 times in the asymptotic dis-

tribution of random effects estimates.

Our working sample to be used from now on, gathers individuals observed over more than 21

periods only, because small-Ti bias issues seem to be lingering for observations Ti ≤ 20. Tables

S.vi and S.vii in the Supplementary Appendix report raw and bias-corrected estimates in the

full sample and justify such a selection, to which we return in the robustness section below.

Even though random and fixed effects do not strictly refer to the same population because of

this selection, discrepancies seem very moderate between random and fixed effect estimates —as

Figure 5, reporting variance estimates, confirms.

Table 4 also reports these estimates by subsamples indexed by a varying number of periods

of observation from 21 to 28. It clearly appears that the longer the observation period, the less
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variable individual effects. It might be due to subsisting small-T bias that we imperfectly control.

It might also indicate that subpopulations, with exits or/and reentries, are more heterogenous

that the subpopulation of those who remains in the private sector all along. Random effect

estimates would reflect the mixture of these subpopulations.

In Appendix C, we present the test of various departures from our baseline estimates to check

that our results are robust.

5.4 Predictions

We start by comparing our results to those published in the literature. We can assess whether

predictions of human capital models conform with these estimates. We look at the Mincer dip,

the prediction about the covariance between wage and wage growth and the correlation between

wage growth and initial wage level.

Literature estimates Table 5 completes Table 4 in Guvenen (2007) with his, Huggett et al.,

(2011) and our results, on the estimation method, the AR(1) coeffi cient and the covariance matrix

of unobserved heterogeneity in level and slope. The results in all these papers are qualitatively

similar except, as expected, that the variance of the level heterogeneity is much larger when the

residual process is not decomposed into a random walk and a transitory term (rows 1 and 4). To

make our results comparable to others, we projected out the curvature profile onto a level and

a trend and restricted our model to having heterogeneity in level and slope only. Our restricted

results on the variance terms are smaller than results in Baker (1997), Haider (2001) or Huggett

et al. (2011), and in particular, the variance of the slope is divided by two in the French data.

The covariance of factor loadings of level and slope is negative except in the pionnering work

of Lillard and Weiss (1979), and more surprisingly, in Huggett et al. (2011). Correlations, in

absolute value, have the same order of magnitude although slightly larger in the US.

It is only when we allow for the horizon or curvature effect (i.e. our full results) that the

covariance between the level and slope factor loadings, ηci1 and η
c
i2, is positive. This corresponds

to a correlation of around .5 (Table 3) and squares better with the result in the literature (e.g.

Lagakos et al, 2018, Engbom, 2018) that wage growth is significantly higher for more educated

individuals. Allowing for a curvature effect is key in those results.

Mincer dip First, our estimates generate a neat Mincer dip at the beginning of the life cycle

after 4 to 8 years —a little longer than expected (Mincer, 1974). This is shown by plotting, in
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Figure 5, the profile of predicted variances of wages along the life cycle computed using random

and, raw and bias-corrected, fixed effect estimates. We display, in this graph, the life cycle profile

of variances of the permanent effects, given by the combination of factors and factor loadings

(V (M(β)ηci)) in which matrix M(β) is composed of a constant, trend and geometric terms, see

equation (6). Stochastic transitory earnings, vci , and initial conditions obscure the comparison

between estimates and are excluded. The graph shows that the Mincer dip is not dependent

upon noisy estimates at the beginning of the life cycle and support the structural interpretation

by Mincer. Wage profiles using raw and bias-corrected fixed effect estimates reproduce the

random effect variance profile at a slightly higher level during the first years of working life in

Figure 5. Discrepancies with random effect estimates seem however second order in particular

at later periods in the life cycle and this also validates the use of this selected sample in the

decomposition of inequalities and counterfactual variations in Section 6.

Correlation between wage and subsequent wage growth Second, as developed in Rubin-

stein and Weiss (2006), a human capital model predicts that the covariance between wage levels

and subsequent wage growth should be negative when the person enters the labour market, and

should turn positive after some time, in contrast to a job search model in which the correlation

remains negative. This is what Table 6 neatly confirms. In the working sample, covariances are

negative in years 1977 and 1982 and turn positive and significant from 1987 onwards, although

the increase over time is not monotonic. This is slightly more pronounced for the high-skilled

group. Rubinstein and Weiss (2006) use data on residual wages, smoothed over three years and

show that this covariance increases over time although it remains negative (their Figures 8a-8e

in Section 4.2). Our focus on the permanent effects that filter out transitory components allows

to go a step further and produces a prediction in contradiction with a pure job-search rationale

at least after ten years in the labour market.

To contrast those results with the ones of the literature, we projected out the curvature

profile onto a level and a trend, as above, to have heterogeneity in level and slope only. In this

case, the correlation between wage levels and wage growth is unambiguously negative (-0.349

s.e. 0.053). It is is thus only when a curvature effect is present that the prediction of Rubinstein

and Weiss holds.

Initial wage levels and returns to experience Initial skills and skills acquired during the

education stage, are shown to be complementary (see Heckman, Humphries and Veramendi,
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2017). It is interesting to measure dynamic complementarities over the life cycle by computing

the correlation between the initial log wage and the returns at each point of the life cycle as in

Gladden and Taber (2009). By filtering out the transitory components at the beginning of the

life cycle, we are able to look more precisely at the complementarity between estimated initial

wage levels —by equation (1), computed as the estimate of ηi1 + ηi3 —and returns.

Returns to experience are computed as the marginal effects of potential experience, t, on the

permanent component —i.e. ηi2− log(β)β−tηi3. These returns are decreasing because log(β) < 0

and estimated ηi3 are mostly negative. As shown in Table 7, while the correlation is significant

and negative at the beginning of the life cycle (the first twenty years) as in Gladden and Taber

(2009) and Sorensen and Vejlin (2014), it turns positive and significant afterwards. This result

is true in the working sample and in various skill subsamples. Yet, the correlation between the

long-run log wage and the corresponding returns remain negative and significant.

The negative correlation at the beginning of the life cycle is due to the negative correlation

between the initial log wage, ηi1 + ηi3, and the growth effect, ηi2. The positive correlation

between the second curvature term—− log(β)β−tηi3 —and the initial log wage kicks in after 20

years to reverse this foregoing negative correlation. Individuals with high initial log wages tend

to have higher returns later in the life cycle. It again emphasizes the importance of considering

horizon effects (Lillard and Reville, 1998) in the analysis of wage profiles.

6 Wage inequalities: decompositions and counterfactual
impacts

We now exploit those estimates to study the impact of heterogeneity on life cycle wages and

decompose wage inequalities at a point in time and over the life cycle. When we use fixed effect

bias-corrected estimates, we only use information on the most stable trajectories (Ti ≥ 21) for

which we compute various counterfactuals of interest.

6.1 Counterfactual impacts on means

The log wage equation (6) writes:

log yi = M(β)(η̄g(i) + ηci) + vci ,

and we assess the effect on average log wages of increasing each component of ηi = η̄g(i)+η
c
i by one

tenth of its standard deviation. Those experiments can be easily expressed as a transformation
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of ηci into φ(ηci) and we have that:

∆ log yi = log yi(φ(ηci))− log yi,

= M(β)(φ(ηci)− ηci).

We report mean impacts, every five years, starting in 1977 — their year of entry into the

labor market —and finishing the last year of observation in 2007. We refrain from extrapolating

to periods after the observation window. We also consider a longer-run measure of wages over

the observed life cycle, an appropriately discounted aggregate of log wages —that happens to

correspond to intertemporal utility over the observed profile of wages, normalized in such a way

that it can be compared with the annual values (see Magnac et al., 2018):

log y
(LR)
i =

1− β
β(1− βT )

T∑
t=1

βt log yit. (11)

Those impacts are reported in Table 8. Unsurprisingly because only levels of log wages are

affected, the impact of increasing the level, ηi1, by one tenth of its standard deviation has a

constant short-run and long-run impact around 0.03 —i.e. 3% on the wage level —except in the

first year because initial conditions blur the impact. This is somewhat below the average slope

of profiles (Table 2) and thus, somewhat below the effect of an additional year of experience at

the beginning of the life cycle. In contrast, the impacts of increases of one tenth of a standard

deviation in ηi2 (returns) and ηi3 (horizon) increase from 1977 to 2007 as they accumulate over the

life cycle. At the end of the period of observation, they have sizeable magnitudes slightly above

0.15 on the log wage in the terminal year 2017. Effects on the long-run value are less important

and around .06 (returns) or .07 (horizon). Overall, these results mean that heterogeneities in

level, slope and curvature that we consider are all economically significant.

We now address two questions related to the decomposition of the variance of log wages into

its different components.

6.2 Short-run and long-run inequality decompositions

Table 9 provides decompositions of within-cohort inequalities and long-run inequality into ob-

served heterogeneity, unobserved permanent heterogeneity and transitory components. Using

random effect estimates, decompositions are derived from writing the log wage equation as:

log yi = M(β)η̄g(i) +Dηci + ξi,
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in which the three components ηg(i), η
c
i and ξi are orthogonal between each other and are inter-

preted as observed heterogeneity, unobserved permanent heterogeneity and individual-and-time

specific frictions. This expression deals with the absence of orthogonality between permanent

and transitory components because of initial conditions. Initial conditions are negatively cor-

related with ηi1 and ηi3, and these effects play an important role during the first years of the

working life (Table S.iv of the Supplementary appendix). To make them orthogonal, initial con-

ditions are first projected onto individual effects ηci and this projection is aggregated with the

impact of individual effects ηci in the term, Dη
c
i , and the residuals with the transitory ones in

the term ξi. Supplementary appendix S.III gives more details.

We report results obtained by random effects in the first panel of Table 9 and by fixed effects

in the second panel. Results obtained using random or fixed effect estimates are very close to

each other and we will comment the latter only. The last column of these Tables reports the

predicted variance of log-wages V (log yit) every five years from 1977 to 2007 as well as the long-

run value defined in equation (11). These results conform with the inverted U-shape of variances

as in Figure 1. The variance of long-run log wages is lower since transitory components over

the life cycle are partly averaged out. The ratio of short-run inequalities to the long run ones is

varying between 1.22 in 1982 and 1.82 in 2007, well in line with Bonke et al. (2014).

The first three columns respectively report the share of the variance due to observed het-

erogeneity, V (M(β)η̄g(i)), the share of the variance attributable to unobserved permanent het-

erogeneity, V (Dηci), and the share of the variance generated by transitory components, V (ξi).
7

On average, 68% of the variance is due to the combination of the observed and unobserved

heterogeneity factors in 1977 and 1982. This share displays an increase over the life cycle from

68% to 91% thirty years later. As a mirror image, the share of the variance explained by trans-

itory components decreases sharply from 32% in 1982 to 8.5% in 2007 as well as the share due

to the observed heterogeneity component, albeit at a lesser degree from 35% to 25%. This is

the consequence of an increase in the importance of unobserved individual heterogeneity, which

doubles its contribution to the variance of log wages from 35% to 67%. As expected, these

effects are weighted differently when the long-run value of log wages (i.e. equation (11)) is com-

puted. The transitory effect is smaller (less than 6%) and observed and unobserved heterogeneity

7The decomposition in 1977 seems to be quite different from the one in other years because of the eventful
process at the beginning of a working life. The weight in percentage terms of the transitory component is
similar to other years but the variance of unobserved heterogeneity is almost absent. This is partly due to the
orthogonalisation procedure that we have just discussed above, whereby negative correlations between initial
conditions and fixed effects lower the contribution of permanent unobserved heterogenity to the variance of log
wages.
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components have roughly equal contributions (45 and 49%).

These decompositions compare well with those of Guvenen (2009) given that, in that paper,

observed heterogeneity is excluded from the decomposition. For the same reason, the sum of the

observed and unobserved heterogeneity contributions is larger than the ones found by Huggett,

Ventura and Yaron (2011), who find that the initial endowments related to human capital (initial

human capital and learning ability as well as initial wealth) account for 60% of the variance of

lifetime wage. Their framework however allows for less pervasive unobserved heterogeneity, than

we do here, so that we capture more unobserved heterogeneity than they do. This is very much

in line with the importance of unobserved heterogeneity in explaining variances of wages (90%)

found in Keane and Wolpin (1997, p508).

We now turn to decompositions involving each specific factor loading.

6.3 Heterogeneity components

We can further decompose observed and unobserved heterogeneity into its constituent parts:

level, ηi1, slope, ηi2, and curvature, ηi3. Denote the permanent heterogeneity variable, as defined

in equation (6):

pi = M(β)[1−p,T ]ηi. (12)

If observed heterogeneity only is present (i.e. ηi = η̄g(i)), the variance of pi is the variance of an

homogenous Mincer equation. If there is as much heterogeneity as is estimated, this delivers the

estimated V (pi) as might be computed from previous Table 9. Between these two benchmarks,

we can compute hypothetical variances of the permanent effect by shutting down each of its

components. For instance, in experiment 2 below, we consider that ηi1 is equal to the estimated

value while ηi2 (respectively ηi3) is set to the sum of the observable components, η̄g(i)2 (resp.

η̄g(i)3), and the predictable components of ηi2 (resp. ηi3) given ηi1. In other words we restrict

heterogeneity to a single component, the level, in order to assess its impact.

More comprehensively, we consider the following five experiments:

1. Observable benchmark: heterogeneity in level, slope and curvature restricted to ob-

servables —ηi1 = η̄g(i)1, ηi2 = η̄g(i)2 and ηi3 = η̄g(i)3.

2. Heterogeneity in level: heterogeneity in slope and curvature restricted to observables.

Analytically, ηi1 = η̄g(i)1+ η̂i1,the estimated value and ηi2 = η̄g(i)2+ω21η̂
c
i1 and ηi3 = η̄g(i)3+

ω31η̂
c
i1, the weights ω21 and ω31 being derived from covariances between the components

of ηci .
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3. Heterogeneity in slope: heterogeneity in level and curvature restricted to observables —

ηi2 = estimated value, ηi1 and ηi3 equal to the sum of group values and predictions given

η̂i2 using the correlations between the components of η
c
i .

4. Heterogeneity in curvature: heterogeneity in level and slope restricted to observables

—ηi3 = estimated value, ηi1 and ηi2 equal to the sum of group values and predictions given

η̂i3 using the correlations between the components of η
c
i .

5. Heterogeneity in slope and curvature: heterogeneity in level restricted to observables

— ηi2 and ηi3 = estimated values, ηi1 equal to the sum of group values and predictions

given η̂i2 and η̂i3 using the correlations between the components of η
c
i .

Table 10 reports variances of the counterfactual permanent variable, pi, defined in equation

(12) and by such a sequence of experiments as they can be constructed from fixed effect estimates

in the working sample. Rows report them every five years from 1977 to 2007 as well as the long-

run variance. The last column reports the estimated variance of pi. The first to the fifth columns

report variances for every experiment 1 to 5 described above.

First, as shown in the previous section, observables explain most of the permanent heterogen-

eity in 1977, which is hardly surprising, since observables are age at entry and observed skills in

the first job. This explanatory power declines afterwards down to less that 30% in 2007 (column

1, Table 10). Second, the heterogeneity in level (column 2) explains most of the remaining vari-

ance of the permanent component in 1982 but this contribution remains almost constant over

the years while the variance of the permanent component increases (column 6). This shows the

limit of panel data analyses in which a single unobserved heterogeneity component in levels is

considered. Third, the heterogeneity in slope or in curvature contributes less to the variance

of the permanent component at the beginning of the life cycle but their contributions increase

until a single heterogeneity dimension in the growth or the curvature almost perfectly predict

the variance of the permanent component in 2007.

Explaining heterogeneity in the long run variance requires the presence of the three factor

loadings even if the level effect is predominant. The long-run variance combines elements at

the beginning of the life cycle which are well explained by the level while the second and third

components are associated with what happens later in the life cycle.

The same Table for the low and medium skill group is displayed in the Supplemental Ap-

pendix S.viii and they exhibit the same patterns. Table 11 reports the same exercise for the high
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skill group.8 In this group, the variance of the permanent components seem less predictable by

only one or two heterogeneous components and the three factor loadings seem necessary. We

also experimented with two reductions of the heterogeneous components: the first one replaces

the curvature profile by its prediction as a linear trend and the second one uses the restriction

that the horizon is finite and equal to 40. Although it affects estimates as seen in Table 7, it

does not affect much these decompositions. There are clearly two main directions for the het-

erogeneity components which are the level and the group formed by the factor loadings of trend

and curvature.

7 Conclusion

In this paper, we analyze wage profiles by using an observable microfounded factor model, based

on human capital investments, and ARMA individual-and-time errors. Three factor loadings

— level, slope and curvature — describe wage profiles. We propose an estimation method of

the factor loadings based on a sequence of intertwined random and fixed effect methods. We

show the importance of considering pervasive heterogeneity to model wage profiles and offer a

set of decompositions of wage inequalities in terms of observed and unobserved heterogeneity

as well as in terms of level, slope and curvature of the individual wage profiles. In particular,

heterogeneous curvature, or horizon effects, which are not considered in the literature, are shown

to be important in changing predictions, at least after 20 years of experience. The absence of a

curvature term strongly biases estimates of the individual specific wage growth effect.

Much remains of be done at the methodological level. The issue of missing data seems at the

top of the agenda since the selection of balanced panels, or the missing at random assumption,

might bias our view of inequalities since we select more stable subpopulations. Other ways of

modelling transitory components might be in order and in particular, more attention might be

paid to what can be anticipated by agents as in Cunha, Heckman and Navarro (2005). We leave

these issues for further research.
8For this group, the importance of observables is lower since the skill in the first job is less well described.
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APPENDICES

A Data Appendix

As in Le Minez and Roux (2002), we consider individuals right from their entry into the labor

market and onwards. Labor market entry is defined as being employed for more than 6 months

and being still employed the following year, possibly in different firms. For the entry cohort

of interest which starts in 1977, this leads us to select from the administrative data 36, 883

individuals who were employed more than 6 months in 1977 and at least one day in 1978.

Among them, 53% have worked but not permanently before. Conversely, individuals who have

worked in 1977 are not considered as entrants if their jobs are not permanent enough. They

may however enter with a subsequent cohort.

In addition, we aim at keeping employees with a permanent full-time attachment to the

private sector only. Firstly, we consider workers employed full time only and we censor inform-

ation about part-time jobs. In addition to the condition which requires workers to work in the

private sector during the year of entry and the following one, we further restrict the sample to

men also working in 1982 and 1984. This is because we want to avoid dealing with non particip-

ation issues for females and with too many exits from the sample since the bulk of entries into

public service occurs at the beginning of the working life. These restrictions lead us to retain in

the 1977 entry cohort 16, 091 men who entered the labor market in 1977 in a full-time position

for more than 6 months and who were also full-time employed in 1978. Adding the condition

on the presence in a full-time position in 1982 and 1984 further restricts the sample to 8, 288

individuals. Finally, we keep only workers who were aged between 16 and 30 at their entry in

the labor market and this restricts the sample to 7, 446 workers.

We impose these restrictions in order to concentrate on a relatively homogeneous sample of

workers with a long term attachment to the private firms’labor market. Admittedly, it does not

represent the full working population. Because of the lack of a credible identification strategy

to correct for selection, we shall assume that selection is at random or can be conditioned

on individual-specific effects only. The distribution functions of unobserved factor loadings or

idiosyncratic components that we estimate in the following refer to this subpopulation.

The empirical analysis uses "annualized" earnings which are thus better called wages. It

is defined as the sum of all earnings during the year divided by the number of days worked

and remultiplied by 360 (total number of days during the year in the administrative data).

Accounting only for total yearly earnings would miss other earnings from employment in the

public sector, self-employment income or unemployment benefits that are not observed in the

data. Considering annualized earnings instead limits this problem, although it may lead to

overestimating yearly income. In order to weaken the possible impact of measurement error,

we coded as missing the first and last percentiles of the earnings distribution in every period.
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Inflation, as measured by consumer prices, leads to subtracting a factor equal to 1.17 to current

log-wages over the whole period. This can be roughly subdivided into two sub-periods between

1977 and 1986 in which this factor is equal to .77 and between 1986 and 2007 during which

inflation levelled off and this factor is equal to .40.

Age at labor market entry (in 1977) can only take odd integer values from 17 to 29, i.e

seven different values because of the specific sampling of the dataset. As groups formed by age

at entry and skills are defined according to characteristics recorded at the entry on the labor

market, individuals are attached to the same group during their whole working life.

Estimation of human capital prices by a flat spot condition and robustness checks
We follow Bowlus and Robinson (2012). From the DADS, average log daily real wages by age

and year can be computed on full-time males employees in the Private Sector from 1976 to 2010.

To identify the “flat spot”region where human capital remains stable, we run regressions of the

average log daily real wage on potential experience (difference between current age and 16), an

exponential term reflecting the curvature of the wage profile with respect to potential experience,

and year dummies. We have run different regression changing the contributing individuals with

respect to their potential experience and selected the population with the broader range of

potential experience for which the coeffi cients an potential experience and the exponential term

were statistically non significant. This leads us to select individuals who are aged between 43

and 58 whose average log-wage profile did not exhibit any slope or curvature. The results of the

regressions and the human capital prices values are available upon request.

We then repeat the procedures that lead to the estimates of Table 2.

B Random effect specification

Redefining the time index accordingly, we shall assume that initial conditions of the process

(ui(1−p), ., ui0) are observed. The dynamic process is thus a function of the random variables

zi = (vi(1−p), ., vi0, ζ i(1−q), ., ζ iT ) which collect initial conditions of the autoregressive process

(vi(1−p), ., vi0), initial conditions of the moving average process (ζ i(1−q), ., ζ i0) and the idiosyncratic

shocks affecting random shocks between 1 and T . We write the quasi-likelihood of the sample

using a multivariate normal distribution

zi  N(0,Ωz)

We define vit as

vit = α1vi(t−1) + ...+ αpvi(t−p) + σtwit,

where wit is MA(q):

wit = ζ it − ψ1ζ it−1 − ...− ψqζ it−q.
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The construction of the structure of Ωz is detailed in the Supplementary Appendix S.II (Magnac

et al, 2014) although it can be summarized easily. The correlations between initial conditions

and individual effects are not constrained, while innovations ζ it are assumed orthogonal to any

previous terms including initial conditions. However, the initial conditions (vi(1−p), ., vi0) can be

correlated with previous shocks as ζ i0, ., ζ i(1−q).

As for the individual effects (ηci1, η
c
i2, η

c
i3) we assume that they are independent of the idio-

syncratic shocks ζ i(1−q), ., ζ iT while they can be correlated with the initial conditions of the

autoregressive process (vi(1−p), ., vi0) in an unrestricted way. From these restrictions it is possible

to build the covariance matrix of the observed variables

V ui = (ui(1−p), ., ui0, ui1, ., uiT ) ≡ Ωu.

This covariance matrix, Ωu, is a function of the parameters of the model that are the autoregress-

ive parameters {αk}k=1,...,p, the moving average parameters {ψk}k=1,...,q, the covariance matrix
(conditional on groups) of ηc, Ση, the heteroskedastic components {σt}t=1,...,T and the covariance
of fixed effects and initial conditions, Γ0η (see Supplementary Appendix S.II).

A pseudo likelihood interpretation can always be given to this specification. As in Alvarez

and Arellano (2004), the estimates remain consistent under the much weaker assumption that:

E(ζ it | ηi, ut−1i ) = 0,

although optimality properties of such an estimation method are derived under the normality

assumptions only.

C Further empirical results

Initial conditions Irrespective of the order of the ARMA process, the initial conditions are

negatively correlated with the level factor loadings, ηci1, positively with the slope effect, η
c
i2, and

negatively with the curvature one, ηci3.
9 These initial conditions account for the strong transitory

conditions that seem to affect the wage process at the beginning of the working life (as well as

the impact of our data selection process).10 Even if the (log) wage process is asymptotically

stationary, initial conditions are definitely not set on the stationary path that corresponds to

this process. Moreover, in all ARMA specifications, the standard deviation of individual and

time specific transitory shocks is decreasing over time. Individual specific frictions decrease over

time and this result is found across different countries (e.g. Bagger et al., 2014, Bowlus et Liu,

2012).

9Estimates of the covariances between the factor loadings and the initial conditions are reported in Table S.iv
in the Supplementary Appendix.
10The strong decrease of the variance observed during the first years might partly be due to the very stringent

selection made in the 1977 entry cohort. The very flexible initial conditions, as they are accounted for in the
random effect estimation, also control for this selection.
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Goodness of fit Goodness-of-fit is examined in different graphs. In Figure 2, we report how

the estimated variances as well as the observed variances evolve over time. They fit very nicely

in the first part of the sample (until 1994) but this breaks down after 1994 after which the shape

of the evolution of variances is similar, albeit at a level which is higher than the observed level.

It confirms that 1994 is an abnormal year even if the goodness-of-fit for autocorrelations is good

as reproduced in Figures 3 and 4.

We tried different mechanisms in order to understand better the discrepancy between ob-

served and predicted variance profiles. One possibility is to allow for an additional measurement

error term in 1994 for instance, like in Guvenen (2009) or to drop this year altogether. These

attempts did not affect goodness-of-fit. A more disturbing explanation for those discrepancies is

that it reflects a failure in the missing at random hypothesis. When one represents the evolution

of the variance of wages over the life cycle using fixed effect estimates (see below), it clearly

appears that the level of these profiles negatively depends on the number of periods in which we

observe each individual. Variances are larger for individuals who have shorter spells in the panel.

Nevertheless, correcting for non random attrition seems out of the scope of this paper and we

leave it for further research. Furthermore, the conditions for consistency of fixed effect estimates

described below are less stringent since the missing at random assumption can be weakened and

taken as conditional on individual effects.

Robustness and other diagnostics We tested various departures from our baseline es-

timates to check that our results are robust. We also comment on additional goodness-of-fit

diagnostics.

The first issue is the estimation of the series by a flat spot approach that underpins the

identifying restriction (3). The dynamics of human capital accumulation depends on whether

the average wage or productivity profile is attributed to human capital only or to other factors

(physical capital for instance). To control for this issue, we also repeated our procedures by

deflating real wage by a series of average labor productivity. Results change only marginally

with respect to the results that were presented above.

As serial correlation affects inference, we also vary the number of lags in the Newey West

procedures without much impact overall.

Another issue is related to the quality of the correction of the bias in the fixed effect estimates

that we reported. In Tables S.vi and S.vii in the Supplementary Appendix which report raw and

bias-corrected estimates, the magnitude of all covariance estimates decreases with the number of

period of observations, as expected by the computations of Section 4.2. Bias-correction flattens

these estimates by factors of 2 to 3 when the number of periods is small but it decreases to

10-20% when the number of periods is 20. There is a clear break in these Tables between the

estimates below and above 20 and this is why we chose to work with the 21+ sample. As

expected the bias correction becomes negligible when Ti = 28. The counterfactual analyses that
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we present below are robust to a change in this threshold.

The comparison between random effect and fixed effect estimates implicitly relies on an

homogeneity assumption of the residuals, v̂ci as a function of ηi. When plotting the variance

profiles of these residuals in groups defined either by skills or by age of entry, we find very little

differences between those groups (see Figure S.iii in the Supplementary appendix). The three-

factor structure seems to be suffi cient to describe the individual permanent heterogeneity in our

data and this partly justifies ex-post the homogeneity assumption of the covariance matrix of

transitory terms in the random effect specification as well as the homogeneity assumption of the

discount factor which is used to measure the curvature or horizon effect.
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Tables and Figures

37



Table 1: Sample size

Age of Entry in 1977
Below 20 Between 20 and 23 Above 23 All

1977 4460 2112 874 7446
1978 4460 2112 874 7446
1979 3855 1923 787 6565
1980 3748 1930 785 6463
1982 4460 2112 874 7446
1984 4460 2112 874 7446
1985 3792 1808 724 6324
1986 3683 1800 726 6209
1987 3569 1741 678 5988
1988 3402 1654 637 5693
1989 3486 1657 644 5787
1991 3319 1598 613 5530
1992 3299 1581 603 5483
1993 3330 1620 627 5577
1994 2508 1316 503 4327
1995 3256 1566 578 5400
1996 3236 1557 579 5372
1997 3202 1529 556 5287
1998 3208 1521 543 5272
1999 3218 1503 547 5268
2000 3180 1506 536 5222
2001 3117 1480 517 5114
2002 3018 1463 511 4992
2003 2800 1323 467 4590
2004 2844 1387 463 4694
2005 2851 1399 467 4717
2006 2896 1382 442 4720
2007 2864 1377 429 4670
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Table 2: Group averages of individual factor loadings ηg

Skill group Age group Nb Obs ηg1 ηg2 ηg3
2 17 1268 2.4 0.04 -0.15

(0.032) (0.0067) (0.051)
3 17 1224 2.4 0.039 -0.15

(0.039) (0.0056) (0.04)
1 19 41 2.7 0.07 -0.33

(0.038) (0.0057) (0.042)
2 19 934 2.6 0.044 -0.17

(0.035) (0.0046) (0.034)
3 19 994 2.5 0.042 -0.17

(0.04) (0.007) (0.051)
1 21 117 2.9 0.052 -0.22

(0.086) (0.0085) (0.068)
2 21 710 2.7 0.047 -0.2

(0.014) (0.0024) (0.018)
3 21 512 2.6 0.041 -0.19

(0.015) (0.0026) (0.019)
1 23 171 3.1 0.055 -0.24

(0.018) (0.0036) (0.027)
2 23 348 2.7 0.05 -0.21

(0.026) (0.0037) (0.028)
3 23 254 2.7 0.051 -0.25

(0.046) (0.0053) (0.04)
1 25 191 3.3 0.061 -0.29

(0.056) (0.0066) (0.05)
2 25 146 2.8 0.038 -0.14

(0.059) (0.0065) (0.046)
3 25 93 2.6 0.033 -0.09

(0.018) (0.0031) (0.024)
1 27 114 3.4 0.047 -0.21

(0.019) (0.0045) (0.034)
2 27 87 3 0.061 -0.32

(0.02) (0.0034) (0.025)
3 27 63 2.7 0.03 -0.079

(0.036) (0.005) (0.039)
1 29 58 3.2 0.041 -0.14

(0.052) (0.0058) (0.041)
2 29 67 2.8 0.038 -0.2

(0.084) (0.013) (0.11)
3 29 55 2.6 0.017 0.0061

(0.048) (0.0074) (0.059)
Note: Estimation of equation (2). A flat spot deflator is used. Newey West standard errors in parentheses (5 lags).
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Table 3: Estimated standard errors and correlations of individual effects ηci : Random effect esti-
mation

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
ση1 .302 .302 .301 .310 .306 .304 .306 .300 .298

( .001) ( .003) ( .003) ( .003) ( .003) ( .003) (.003) ( .003) ( .004)
ση2 .038 .039 .039 .038 .039 .036 .038 .037 .037

( .005) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
ση3 .255 .259 .256 .263 .260 .248 .258 .247 .242

( .005) ( .006) ( .006) ( .004) ( .005) ( .005) (.005) ( .006) ( .007)
ρη1,η2 .473 .413 .454 .571 .486 .610 .505 .485 .365

( .016) ( .021) .021 ( .013) ( .017) ( .013) ( .017) ( .020) ( .030)
ρη1,η3 - .604 - .548 - .586 - .694 - .618 - .729 - .636 - .620 - .509

( .003) ( .020) .019 ( .011) ( .015) ( .012) ( .016) ( .019) ( .029)
ρη2,η3 - .946 - .948 - .947 - .945 - .946 - .941 - .946 - .943 - .944

( .023) ( .003) .003 ( .002) ( .002) ( .003) ( .002) ( .003) ( .004)

Note: The first line corresponds to the ARMA specification (AR-MA) used for the random effect estimation.

Standard errors in parentheses.

Table 4: Bias corrected covariance matrix of individual effects: fixed and random effect estimation

Sample periods V ar(η1) Cov(η1, η2) Cov(η1, η3) V ar(η2) Cov(η2, η3) V ar(η3)
21 0.18 0.012 -0.13 0.0034 -0.026 0.22

(0.029) (0.0032) (0.03) (0.00061) (0.0049) (0.043)
22 0.15 0.015 -0.13 0.0035 -0.027 0.22

(0.019) (0.0031) (0.026) (0.00067) (0.0053) (0.042)
23 0.16 0.012 -0.11 0.0035 -0.024 0.19

(0.017) (0.0024) (0.02) (5e-04) (0.0038) (0.03)
24 0.14 0.014 -0.12 0.0041 -0.03 0.23

(0.017) (0.0027) (0.022) (0.00061) (0.0047) (0.037)
25 0.13 0.01 -0.089 0.0028 -0.02 0.16

(0.014) (0.0023) (0.019) (0.00041) (0.0033) (0.027)
26 0.097 0.0066 -0.059 0.0025 -0.017 0.12

(0.0072) (0.00093) (0.0072) (0.00023) (0.0016) (0.012)
27 0.077 0.0046 -0.04 0.0017 -0.011 0.079

(0.0046) (0.00064) (0.0047) (0.00015) (0.001) (0.0074)
28 0.067 0.0036 -0.031 0.0015 -0.0097 0.067

(0.0049) (0.00067) (0.0047) (0.00016) (0.0011) (0.0074)
21+ sample 0.11 0.0078 -0.07 0.0025 -0.017 0.13

(0.0073) (0.00095) (0.0092) (0.00018) (0.0015) (0.013)
Random effects 0.093 0.0059 -0.05 0.0015 -0.0093 0.066

(0.0036) (0.00051) (0.004) (0.00011) (0.00079) (0.0059)
Notes: The first lines are obtained using fixed effect estimates. Sample periods = number of observed periods.

Standard errors (heteroskedastic-consistent sampling and parameter uncertainty, 1000 MC simulations) between

brackets. The working sample (21+) has 4873 observations
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Table 5: Covariance matrix of individual effects, literature estimates

Source ρ σ2
η1

σ2
η2

ση1,η2
Stochastic

process

Time
varying

variances
Lillard and
Weiss (1979)

0.707
(0.073)

0.0305
(0.0015)

0.00018
(0.00004)

0.00076
(0.0001)

AR(1)
+iid

No

Baker (1997)
0.674

(0.050)
0.139

(0.069)
0.00039

(0.00013)
−0.004
(0.003)

ARMA(1,2) Yes

Haider (2001)
0.639

(0.077)
0.295

(0.137)
0.00041

(0.00012)
−0.0083
(0.0036)

ARMA(1,1) Yes

Guvenen (2007)
0.821

(0.020)
0.022

(0.074)
0.00038

(0.00008)
−0.0020
(0.0032)

AR(1)
+id

Yes

Huggett, Ventura
and Yaron (2011)

0.860
(0.010)

0.264
(0.024)

0.00006
(0.00006)

0.003
(0.001)

AR(1)
+id

No

This paper: FE
(restricted)

0.702
(0.005)

0.12
(0.017)

0.00021
(8e− 6)

−0.0017
(0.0002)

ARMA(3,1) Yes

This paper: FE
(complete)

Idem
0.11

(0.0073)
0.0025

(0.00018)
0.0078

(0.0009)
Idem Yes

Note: ρ is the AR(1) coefficient and the second to fourth column report the variances of η1, η2 and their covariance.

Results in the first three rows are taken from Table 4, in Guvenen (2007). The fourth row is from Table 1 in Guvenen

(2007) and the fifth row from Huggett, Ventura and Yaron (2011). The seventh row reports bias corrected fixed

effect results taken from Table 4 in this paper. The sixth row projects out the last factor (β−t) onto an intercept

and a time trend and estimate a two-factor model whose results are comparable to rows (1)-(5). The value of ρ in

row 6 is taken from the comparable ARMA(1,1) estimate in Table S.iv in the Supplementary Appendix.
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Table 6: Covariances of wage level and subsequent growth

Years All Low skilled Medium skilled High skilled
1977 -0.00594 -0.00573 -0.00665 -0.00688

(0.000639) (0.000564) (0.000885) (0.00214)
1982 -0.000972 -0.00137 -0.00102 1.04e-05

(0.000388) (0.000303) (0.00052) (0.00149)
1987 0.00178 0.00113 0.00219 0.00336

(0.000271) (0.000198) (0.000402) (0.00119)
1992 0.00233 0.0018 0.00299 0.00334

(0.000207) (0.000162) (0.000357) (0.00089)
1997 0.00135 0.00115 0.00204 0.00133

(0.000174) (0.000139) (0.000324) (0.000637)
2002 0.000812 0.000838 0.00141 0.00108

(0.000269) (0.000229) (0.00042) (0.00108)
2007 0.00524 0.00459 0.00583 0.0109

(0.000666) (0.000593) (0.00114) (0.00304)
Observations 4873 2942 1433 498
Notes: The coefficient is the covariance between ηi1+ηi2t+ηi3β

−t and ηi2+β−t(1/β−1)ηi3.
Standard errors (heteroskedastic-consistent sampling and parameter uncertainty, 1000 MC
simulations) between brackets. The working sample (21+) has 4873 observations

42



Table 7: Time varying correlation of initial levels and returns

Year All Low Med High
1977 -0.498 -0.674 -0.561 -0.379

(0.0521) (0.0425) (0.0682) (0.13)
1982 -0.505 -0.683 -0.564 -0.38

(0.0529) (0.043) (0.0705) (0.134)
1987 -0.509 -0.687 -0.561 -0.375

(0.0539) (0.0436) (0.0742) (0.139)
1992 -0.47 -0.635 -0.507 -0.31

(0.0527) (0.0436) (0.0776) (0.136)
1997 -0.186 -0.265 -0.201 0.000268

(0.0385) (0.042) (0.0664) (0.0796)
2002 0.156 0.207 0.186 0.212

(0.0346) (0.0392) (0.0458) (0.0765)
2007 0.286 0.389 0.338 0.276

(0.0387) (0.0387) (0.0444) (0.0888)
Long-run value -0.373 -0.507 -0.411 -0.247

(0.0407) (0.0335) (0.0596) (0.0997)
Note: The correlation is ρ = Corr(ηi1 + ηi3, ηi2 − log(β)β−tηi3) Only obser-
vations with more than 21 periods. 4873 observations. First column reports
results for centered individual effects while the other columns include aggregate
effects. The last three columns for low, medium and high skills.
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Table 8: Impacts of unobserved heterogeneity on mean log wages

Impact of {σj}j=1,.,3 on:
Level

η1 → η1 + σ1

Slope
η2 → η2 + σ2

Curvature
η3 → η3 + σ3

Log-wage 1977 0.0112 0.0116 0.0199
(0.000203) (0.000336) (0.00062)

Log-wage 1982 0.0303 0.0263 0.0448
(0.000549) (0.000765) (0.0014)

Log-wage 1987 0.0325 0.0499 0.0601
(0.000587) (0.00145) (0.00187)

Log-wage 1992 0.0326 0.0747 0.0778
(0.00059) (0.00217) (0.00242)

Log-wage 1997 0.0326 0.0996 0.101
(0.00059) (0.0029) (0.00313)

Log-wage 2002 0.0326 0.124 0.13
(0.00059) (0.00362) (0.00405)

Log-wage 2007 0.0326 0.149 0.168
(0.00059) (0.00435) (0.00523)

Long-run value 0.0287 0.0573 0.0672
(0.00052) (0.00167) (0.00209)

Note: Average impact on log wages of an increase of a tenth of the standard deviation of: 2nd column,
unobserved heterogeneity in the initial human capital; third column, wage growth or returns; fourth column,
curvature or horizon.
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Table 9: Variance decomposition: random and fixed effects

Random Effects Obs. het. % Unobs. het. % Transitory % Total var.
Log-wage 1977 65.2 1.18 33.6 0.481
Log-wage 1982 34.8 33.1 32.1 0.133
Log-wage 1987 32.8 42 25.3 0.153
Log-wage 1992 29.7 49.9 20.4 0.179
Log-wage 1997 27.2 56 16.8 0.201
Log-wage 2002 26.2 60.8 13 0.206
Log-wage 2007 25.1 66.4 8.47 0.202
Long-run value 50.2 44.5 5.31 0.118
(1977-2007)

Note: The variance (5th column) of each variable (1st column) is decomposed into its component
shares which are reported in percentages in column 2 (observed heterogeneity), column 3 (unob-
served heterogeneity) and column 4 (transitory component). The share of variance of log 1982
wage (0.133) explained by observed heterogeneity is 34.8

Fixed Effects Obs. het. % Unobs. het. % Transitory % Total var.
Log-wage 1977 65 1.45 33.5 0.483
Log-wage 1982 33.5 35.7 30.9 0.138
Log-wage 1987 33.7 40.4 25.9 0.149
Log-wage 1992 31.2 47.3 21.5 0.17
Log-wage 1997 29 53 17.9 0.189
Log-wage 2002 28 58 14 0.193
Log-wage 2007 24.5 67.2 8.25 0.207
Long-run value 52.2 42.3 5.51 0.113

Note: See Table above. Bias corrected statistics. Only observations with more than 21 periods.
4873 observations.
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Table 10: Counterfactual variances of log wages

Years
η1 = η̄1g
η2 = η̄2g
η3 = η̄3g

Heterogeneity
in: Levels Growth Curvature

Growth
and

Curvature
All

1977 0.306 0.312 0.307 0.308 0.311 0.313
(0.0169) (0.0169) (0.0169) (0.0169) (0.017) (0.017)

1982 0.0449 0.0924 0.0489 0.0547 0.0679 0.094
(0.0181) (0.0181) (0.0181) (0.0181) (0.0181) (0.0182)

1987 0.0491 0.103 0.0636 0.0667 0.0673 0.109
(0.0197) (0.0197) (0.0197) (0.0197) (0.0198) (0.0198)

1992 0.0523 0.107 0.0849 0.0818 0.085 0.133
(0.0221) (0.0221) (0.0221) (0.0221) (0.0221) (0.0222)

1997 0.0539 0.109 0.112 0.103 0.113 0.154
(0.0257) (0.0257) (0.0257) (0.0257) (0.0257) (0.0258)

2002 0.0533 0.108 0.144 0.136 0.144 0.165
(0.0313) (0.0313) (0.0313) (0.0313) (0.0313) (0.0313)

2007 0.05 0.105 0.18 0.188 0.188 0.189
(0.0402) (0.0402) (0.0402) (0.0402) (0.0402) (0.0402)

Long-run 0.0579 0.1 0.0771 0.0799 0.0801 0.106
(0.02) (0.02) (0.02) (0.02) (0.02) (0.0201)

Note: Only observations with more than 21 periods. 4873 observations. The counterfactuals are described
in the text and measure the influence of each component of heterogeneity, in levels, growth and curvature.
Reading: In 1977, the variance of the permanent component is 0.313 (last column). Absent any unob-
served heterogeneity, the variance is equal to 0.306 (first column). The other columns report the predicted
variance in experiments 2 to 5 in the text
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Table 11: Counterfactual variances of log wages: High skills

Years
η1 = η̄1g
η2 = η̄2g
η3 = η̄3g

Heterogeneity
in: Levels Growth Curvature

Growth
and

Curvature
All

1977 0.049 0.0636 0.0501 0.0522 0.0582 0.0642
(0.0677) (0.0677) (0.0677) (0.0677) (0.0678) (0.0681)

1982 0.0643 0.171 0.0698 0.0802 0.11 0.172
(0.074) (0.074) (0.074) (0.074) (0.0741) (0.0743)

1987 0.0767 0.199 0.0966 0.105 0.112 0.209
(0.0814) (0.0814) (0.0814) (0.0814) (0.0815) (0.0818)

1992 0.0871 0.211 0.132 0.135 0.135 0.248
(0.0901) (0.0901) (0.0901) (0.0901) (0.0902) (0.0904)

1997 0.0929 0.216 0.172 0.173 0.174 0.276
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1)

2002 0.092 0.216 0.216 0.226 0.226 0.287
(0.112) (0.112) (0.112) (0.112) (0.112) (0.112)

2007 0.0837 0.207 0.262 0.307 0.322 0.333
(0.126) (0.126) (0.126) (0.126) (0.126) (0.127)

Long-run 0.0725 0.168 0.0988 0.108 0.114 0.177
(0.0814) (0.0815) (0.0814) (0.0814) (0.0816) (0.0818)

Note: High skills. Only observations with more than 21 periods. 498 observations. The counterfactuals
are described in the text and measure the influence of each component of heterogeneity, in levels, growth
and curvature.
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Figure 1: Mean log earnings by age at entry: 1977-2007
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Figure 2: Cross-sectional variance of log wage residuals: 1977-2007
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Figure 3: Autocorrelations with 1986 and 2007
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Figure 4: Forward autocorrelations of order 1 and of order 6
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Figure 5: Variance of the permanent components
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Note: The permanent component is M (β) η defined in equation (6). The sample is restricted
to long history profiles (more than 21 periods). ”Random effects” are using estimates derived
from random effect estimation. ”Fixed effects” are using estimates derived from raw fixed effect
estimation and ”Bias corrected f.e.” are the bias corrected version of them.
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Supplementary Appendices
Only for Web publication

S.I Notation

S.I.1 The model

• t: time elapsed since the entry in the labor market.

• i: index for individuals.

• β: homogenous discount rate

• T : Arbitrary date at which we examine whether individuals goes on investing in human capital,
last date of observation in the empirical application.

• ηi1: individual-specific fixed level of log-wages.

• ηi2: individual-specific growth rate of log-wages.

• ηi3: individual-specific degree of curvature of log-wages.

• vit: (log) price of human capital net of cumulative depreciation.

• g: group of workers, defined by their age at entry and their skills

• ln ygt: average of ln yit over the group g

• ηgk: average of ηik over g, for k = 1, 2, 3

• vgt: average of vit over g

• ηcik: centered individual effect of ηik, for k = 1, 2, 3

• uit: centered wages, with respect to group g

• vcit: individual-specific variations of human capital prices

S.I.2 Econometric Modeling

• M (β): T, 3 matrix of factors.

• Ω (ηci ): covariance matrix of centered individual fixed effects.

• η̂ci : estimate of the centered individual fixed effect.

• B: matrix 3, T establishing the relationship between the centered individual fixed effects and the

wages residuals.
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• B̂: estimate of B

• η̃ci : unfeasible estimator of ηci using B

• ξi: T -vector of residuals, orthogonal to ηci

• Ωξ: covariance matrix of ξi

• Ti: number of actual observations for the individual i.

S.II The random effect model : Model Specification and
Likelihood function

The main difference with standard specifications lies in the introduction of three individual

heterogeneity factors that interact in a specific way with factors depending on time. Equation

(7) writes

u
[1,T ]
i = M (β)[1,T ] ηci + v

c[1,T ]
i

where u[1,T ]i = (ui1, ..., uiT )′, vc[1,T ]i = (vci1, ..., v
c
iT )′, ηci = (ηci1, η

c
i2, η

c
i3) are the centered versions of

the ηs and:

M (β)[1,T ] =

 1 1 1/β
...
...

...
1 T 1/βT

 ,
is a [T, 3] matrix. The system is further completed by initial conditions, the number of which

depends on the order of the autoregressive process. Denote p this order and write the initial

conditions as:

u
[1−p,0]
i = v

c[1−p,0]
i

since unrestricted dependence between v[1,T ]i , ηci and those initial conditions will be allowed for.

We can rewrite the whole system as:

u
[1−p,T ]
i = M (β)[1−p,T ] ηci + v

c[1−p,T ]
i

in which the matrix M (β)[1−p,T ] is completed by p rows equal to zero, M (β)[1−p,0] = 0.

We now go further and specify the correlation structure. A comment is in order. Usually,

the autoregressive structure directly applies to wage shocks uit and in the absence of covariates,

this is equivalent to specifying it through the residual part vcit because there is a single individual

effect. This equivalence still holds when another heterogeneity factor interacted with a linear

trend is present. Nevertheless, our specification includes a third factor interacted with a geomet-

ric term and this breaks the equivalence. To circumvent this problem, we posit that vcit is a (time

heteroskedastic) ARMA process whose innovations are independent of the individual heterogen-

eity terms, ηci . As a consequence, our variable of interest, uit, is the sum of two processes, the
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first one being related to fixed individual heterogeneity and the second one to the pure dynamic

process. These processes are assumed to be independent between them after period 1 although

they are both correlated with initial conditions, u[1−p,0]i .

We now derive the covariance matrix of u[1−p,T ]i as a function of the parameters of these

processes in two steps . We first describe the ARMA process and then include the individual

heterogeneity factors.

S.II.1 Time heteroskedastic ARMA specification

Following Alvarez and Arellano (2004) or Guvenen (2009), we specify

vcit = α1v
c
it−1 + ...+ αpv

c
it−p + σtwit

where wit is MA(q):

wit = ζ it − ψ1ζ it−1 − ...− ψqζ it−q.

Let α = (α1, ., αp) and MT (α) a matrix of size [T, T + p] where p = dim(α):

MT (α) =


−αp ... −α1 1 0 ... 0

0 −αp ... −α1 1
. . .

...
...

. . . . . .
...

. . . . . . 0
0 ... 0 −αp ... −α1 1

 .

If vc[1−p,T ]i =
(
vci1−p, ..., v

c
iT

)
, we have:( (

Ip 0
)

MT (α)

)
v
[1−p,T ]
i =

(
v
[1−p,0]
i

σtw
[1,T ]
i

)
Since wit is MA (q), we have

w
[1,T ]
i = MT (ψ).ζ

[1−q,T ]
i

where ζ [1−q,T ]i = (ζ i1−q, ..., ζ iT ).

Denote Λ a diagonal matrix whose diagonal is (σ1, ., σT ) to get the following description of

the stochastic process as a function of initial conditions and idiosyncratic errors:(
Ip 0
MT (α)

)
.v
c[1−p,T ]
i =

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
v
c[1−p,0]
i

ζ
[1−q,T ]
i

)
. (S.II.1)

To compute the covariance of vc[1−p,T ]i , we derive the covariance matrix of
(
v
c[1−p,0]
i ζ

[1−q,T ]
i

)
.

Since ζ [1−q,T ]i are i.i.d and are of variance 1, the South-East corner of the matrix is the identity

matrix of size (1 + q + T ). The North West corner is assumed to be an unrestricted covariance

matrix V u[1−p,0]i = Γ00. Assuming as usual that E(uiτζ it) = 0 for any τ < t, we have that

E(v
c[1−p,0]
i .(ζ

[1,T ]
i )′) = 0. Only E(u

[1−p,0]
i .(ζ

[1−q,0]
i )′) remains to be defined:

E(v
c[1−p,0]
i .(ζ

[1−q,0]
i )′) = Ω = [ωrs]
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where r ∈ [1− p, 0] and s ∈ [1− q, 0] and where:

r < s : ωrs = 0
r ≥ s : ωrs is not constrained

because the innovation ζ is is drawn after r and is assumed to be not correlated with y
r
i .

Hence the covariance matrix of zi =

(
v
c[1−p,0]
i

ζ
[1−q,T ]
i

)
writes :

Ωz = V

(
v
c[1−p,0]
i

ζ
[1−q,T ]
i

)
= V

 v
c[1−p,0]
i

ζ
[1−q,0]
i

ζ
[1,T ]
i

 =

 Γ00 Ω 0
Ω′ Iq 0
0 0 IT

 .

S.II.2 Individual heterogeneity

The covariance matrix of the individual heterogeneity factors is denoted Ση. as said above,

we assume that the fixed heterogeneity terms are independent of the whole innovation process

ζ
[1−q,T ]
i . As for the covariance structure between initial conditions and those factors, we assume

that:

E
(
v
c[1−p,0]
i ηc′i

)
= Γ0η

Consider the covariance matrix of initial conditions Σ :

Σ = V

 v
c[1−p,0]
i

ηci
ζ
[1−q,0]
i

 =

 Γ00 Γ0η Ω
Γ′0η Ση 0
Ω 0 Iq

 .

and define,

RT (α) =

( (
Ip 0

)
MT (α)

)−1
ST,p(ψ,Λ) =

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)
Write the covariance matrix of vector u[1−p,T ]i :

Ωu = V
(
u
[1−p,T ]
i

)
= V

(
v
c[1−p,T ]
i +M (β)[1−p,T ] ηci

)
= V

[M (β)[1−p,T ] , RT (α).ST,p(ψ,Λ)
] ηci

v
c[1−p,0]
i

ζ
[1−q,T ]
i



Since vc[1−p,T ]i = RT (α).ST,p(ψ,Λ)

(
v
c[1−p,0]
i

ζ
[1−q,T ]
i

)
, the matrix

V
(
v
c[1−p,T ]
i

)
= RT (α).ST,p(ψ,Λ).Ωz.ST,p(ψ,Λ)′RT (α)′
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and

E
(
v
c[1−p,T ]
i η′i

)
M (β)[1−p,T ]′ = RT (α).ST,p(ψ,Λ)E

(
v
c[1−p,0]
i (ηci)

′

ζ
[1−q,T ]
i (ηci)

′

)
M (β)[1−p,T ]′

= RT (α).ST,p(ψ,Λ)

(
Γ0η

0T+q,3

)
M (β)[1−p,T ]′

= RT (α).

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
Γ0η

0T+q,3

)(
03,p,M (β)[1,T ]′

)
= RT (α).

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
0p,p Γ0ηM (β)[1,T ]′

0T+q,p 0T+q,T

)
= RT (α).

(
0p,p Γ0ηM (β)[1,T ]′

0T,p 0T,T

)
Hence,

Ωu = RT (α).ST,p(ψ,Λ).Ωz.ST,p(ψ,Λ)′RT (α)′ +M (β)[1−p,T ] ΣηM (β)[1−p,T ]′

+RT (α).

(
0p,p Γ0ηM (β)[1,T ]′

0T,p 0T,T

)
+

(
0p,p 0p,T

M (β)[1,T ] Γ′0η 0T,T

)
RT (α)′

The two first terms correspond to variances of the dynamic process and the individual hetero-

geneity factors, the other terms correspond to the correlation between the two processes induced

by initial conditions. Note that the parameters of the MA process don’t appear in the correla-

tion between the two processes since innovations are assumed to be independent with individual

heterogeneity factors. Initial conditions are given by ζ [1−q,0]i , ηc and vc[1−p,0]i .

The Choleski decomposition of matrix Σ can be parametrized expressing the following matrix

into a polar coordinate basis.

1 0 ... ... 0

0
. . .

. . .
. . .

.

.

.

.

.

. 0 1 0
. . .

... 0 1 0 0
. . .

ω12η 1 0

0 ω13η ω23η 1 0

.

.

. θ
(1)
1−q,1−p θη1,1−p θη2,1−p θη3,1−p 1

0

.

.

.
.
.
.

.

.

. θ2−p,2−p
. . . 1

θ
(1)
0,0 θη1,0 θη21,0 θη3,0 ...

. . . θ0,0 1



where θ(1)1−q,1−p = 0 if p > q and, more generally, θ(1)l,m = 0 if l > m.

S.III Fixed Effect Estimation

The main equation is:

u
[1−p,T ]
i = M(β)[1−p,T ]ηci + v

c[1−p,T ]
i ,

where ηci and v
c[1−p,T ]
i are centered by construction and where a row of M(β) is defined as

M(β)[t] = (1, t, 1/βt) as in Appendix S.II (with some 0s between 1− p and 0).

S.v



Later on, we shall reintroduce the estimated averages, ηg, of the individual effects that we

estimate by OLS using the sub-groups defined by age of entry and skill level (21 groups). Define

the average in each group as ȳ[1−p,T ]g and define:

̂̄ηg = (M(β)[1−p,T ]′M(β)[1−p,T ])−1M(β)[1−p,T ]′ȳ[1−p,T ]g .

We now present the fixed effect estimation of ηci . We consider first the case with no missing

values and extend it to the case with missing values.

Assume first that there are no missing values. To deal with the correlation between ηci and

vi, we can always write:

v
c[1−p,T ]
i = Cηci + ξ

[1−p,T ]
i ,

where E((ηci)
′ξ
[1−p,T ]
i ) = 0 so that we get:

C = E(v
c[1−p,T ]
i (ηci)

′)(E(ηci(η
c
i)
′))−1,

and:

Ωξ = E(v
c[1−p,T ]
i v

c[1−p,T ]′
i )− E(v

c[1−p,T ]
i (ηci)

′)(E(ηci(η
c
i)
′))−1E(ηciv

c[1−p,T ]′
i ).

This yields the estimating equation for ηci :

u
[1−p,T ]
i = Dηci + ξ

[1−p,T ]
i where D = M(β)[1−p,T ] + C,

that we can estimate by GLS methods since D can be estimated using random effect methods.

This yields:

η̃ci = Bu
[1−p,T ]
i ,

in which:

B = (D′Ω−1ξ D)−1D′Ω−1ξ .

Furthermore:

η̃ci = B(Dηci + ξ
[1−p,T ]
i ) = ηci +Bξ

[1−p,T ]
i ,

is such that:

V (η̃ci) = EV (η̃ci | ηci) + V E(η̃ci | ηci)
=⇒ V (η̃ci) = BΩξB

′ + V ηci .

The term BΩξB
′ goes to zero at least at the rate 1/T since matrix D is determined by different

factors which are going to zero at least as fast as T−1.

The feasible estimator is now given by:

η̂ci = B̂u
[1−p,T ]
i ,
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and by reinclusion of the estimated averages for each group, η̄g3i = η̄g, we have:

η̂i = η̄g + η̂ci = η̄g + B̂u
[1−p,T ]
i ,

Finally, the case with missing values is as follows. Suppose that u[1−p,T ]i is not observable,

only Siu
[1−p,T ]
i is where Si is the matrix of dimension (Ti, T + p+ 1) selecting non missing values

and where Ti is the number of such non missing values. Consequently,

η̃ci = BSiu
[1−p,T ]
i ,

and by analogy to results above, we have

η̂ci = B̂iu
[1−p,T ]
i ,

in which B̂i is a plug-in estimate of:

Bi = (D′S ′i(SiΩξS
′
i)
−1SiD)−1D′S ′i(SiΩξS

′
i)
−1.
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Table S.iii: AIC criterion

ARMA(p,q) q=1 q=2 q=3
p=1 -344885 -344899 -344906

(43) (45) (47)

p=2 -345301 -345447 -345733
(47) (50) (53)

p=3 -345839 -346133 -346293
(51) (54) (58)

AIC criterion computed as -2log(L)+2K, with L the like-
lihood and K the number of parameters. Number of pa-
rameters in brackets.

S.x



Table S.iv: Estimated parameters of the Random Effects Model

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
α1 .702 .729 .711 .263 .186 .220 .200 .203 .194

( .005) ( .006) ( .007) ( .011) ( .011) ( .011) (.012) ( .011) ( .011)
α2 .145 .324 .143 .191 .143 .161

( .004) ( .008) ( .009) ( .005) ( .009) (.009)
α3 .022 .087 .187

( .003) ( .004) ( .008)
ψ1 .369 .391 .373 - .091 - .172 - .135 - .164 - .166 - .189

( .005) ( .005) ( .007) ( .011) ( .011) ( .012) (.012) ( .011) ( .011)
ψ2 .020 .017 .170 - .028 - .046 - .046

( .003) ( .003) ( .006) ( .008) ( .008) (.008)
ψ3 - .012 - .080 .114

( .004) ( .004) ( .007)
ση1 .302 .302 .301 .310 .306 .304 .306 .300 .298

( .001) ( .003) ( .003) ( .003) ( .003) ( .003) (.003) ( .003) ( .004)
ση2 .038 .039 .039 .038 .039 .036 .038 .037 .037

( .005) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
ση3 .255 .259 .256 .263 .260 .248 .258 .247 .242

( .005) ( .006) ( .006) ( .004) ( .005) ( .005) (.005) ( .006) ( .007)
ρη1,η2 .473 .413 .454 .571 .486 .610 .505 .485 .365

( .016) ( .021) .021 ( .013) ( .017) ( .013) ( .017) ( .020) ( .030)
ρη1,η3 - .604 - .548 - .586 - .694 - .618 - .729 - .636 - .620 - .509

( .003) ( .020) .019 ( .011) ( .015) ( .012) ( .016) ( .019) ( .029)
ρη2,η3 - .946 - .948 - .947 - .945 - .946 - .941 - .946 - .943 - .944

( .023) ( .003) .003 ( .002) ( .002) ( .003) ( .002) ( .003) ( .004)
σy0 .491 .506 .496 .448 .479 .429 .442 .455 .494

( .000) ( .007) ( .007) ( .004) ( .005) ( .004) (.004) ( .005) ( .008)
σy−1 .381 .424 .359 .387 .386 .428

( .004) ( .005) ( .004) ( .004) ( .005) (.008)
σy−2 .264 .270 .299

( .004) ( .006) ( .008)
cov(η1, y0) - .227 - .257 - .237 - .156 - .214 - .149 -.186 - .201 - .282

( .019) ( .017) .017 ( .015) ( .016) ( .016) ( .016) ( .017) ( .019)
cov(η1, y−1) - .127 - .183 - .113 - .153 - .168 - .253

( .016) ( .017) ( .017) ( .017) ( .018) (.020)
cov(η1, y−2) - .169 - .185 - .267

( .018) ( .019) ( .022)
cov(η2, y0) .358 .402 .374 .232 .335 .155 .219 .253 .361

( .022) ( .020) .021 ( .017) ( .019) ( .021) ( .020) ( .022) ( .026)
cov(η2, y−1) .218 .331 .119 .242 .235 .352

( .019) ( .021) ( .024) ( .022) ( .025) (.029)
cov(η2, y−2) .239 .253 .351

( .024) ( .027) ( .032)
cov(η3, y0) - .290 - .333 - .305 - .179 - .270 - .107 - .163 - .195 - .291

( .018) ( .023) .023 ( .020) ( .022) ( .023) ( .023) ( .024) ( .029)
cov(η3, y−1) - .169 - .272 - .077 - .190 - .181 - .287

( .021) ( .023) ( .025) ( .023) ( .027) (.032)
cov(η3, y−2) - .181 - .194 - .282

( .026) ( .029) ( .035)
cov(y0, ζ0) .809 .036 - .024 - .823 .826 - .931 .841 - .795 .812

( .023) (8.525) 26.529 ( .269) ( .059) ( .207) (.061) ( .416) ( .096)
cov(y0, ζ−1) .779 - .012 .408 - .352 - .208 .361

( .438) 1.245 ( .102) (17.542) (152.666) (31.114)
cov(y−1, ζ−1) .798 .722 - .066 .830 .234

(.813) ( .062) ( .148) (41.955) (17.858)
cov(y0, ζ−2) - .805 - .719

(3.931) (76.705)
cov(y−1, ζ−2) - .382 - .202

(11.249) (44.061)
cov(y−2, ζ−2) .752

( .094)
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Table S.v: Yearly standard deviation of earnings

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
1978 .311 .312 .312

( .001) ( .002) ( .002)
1979 .254 .257 .255 .222 .232 .219

( .001) ( .001) ( .001) ( .001) ( .001) ( .001)
1980 .223 .223 .223 .222 .227 .221 .224 .224 .230

( .005) ( .001) ( .001) ( .001) ( .001) ( .001) (.002) ( .002) ( .002)
1981 .264 .260 .263 .000 .103 .002 .004 .006 .001

( .005) ( .005) ( .005) ( .096) ( .040) ( .066) (.082) ( .076) ( .060)
1982 .152 .150 .150 .194 .193 .197 .193 .195 .198

( .005) ( .005) ( .005) ( .002) ( .002) ( .002) (.002) ( .002) ( .002)
1983 .244 .243 .247 .040 .175 .096 .023 .039 .193

( .004) ( .005) ( .005) ( .063) ( .017) ( .037) (.048) ( .049) ( .021)
1984 .154 .149 .149 .189 .184 .187 .188 .188 .182

( .001) ( .004) ( .004) ( .002) ( .001) ( .002) (.001) ( .001) ( .002)
1985 .182 .182 .182 .181 .183 .183 .181 .183 .183

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1986 .187 .187 .187 .189 .189 .190 .190 .190 .192

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1987 .181 .182 .181 .176 .176 .177 .176 .177 .177

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1988 .180 .180 .181 .181 .181 .181 .181 .182 .183

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1989 .171 .172 .172 .168 .170 .169 .169 .170 .171

( .008) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1990 .012 .021 .005 .358 .303 .375 .349 .395 .363

( .002) ( .007) ( .008) ( .012) ( .008) ( .015) (.012) ( .016) ( .013)
1991 .182 .184 .180 .153 .167 .156 .161 .157 .163

( .001) ( .002) ( .002) ( .002) ( .001) ( .002) (.001) ( .002) ( .001)
1992 .162 .162 .162 .159 .155 .159 .157 .160 .161

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1993 .207 .207 .207 .209 .209 .209 .210 .209 .211

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1994 .237 .236 .237 .250 .250 .251 .252 .253 .254

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1995 .193 .195 .194 .177 .179 .177 .177 .178 .180

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1996 .177 .177 .177 .176 .178 .177 .177 .177 .178

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1997 .167 .167 .167 .162 .162 .162 .162 .162 .164

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1998 .137 .138 .138 .134 .137 .135 .135 .136 .138

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1999 .152 .152 .152 .155 .157 .157 .156 .157 .158

( .001) ( .001) ( .001) ( .000) ( .000) ( .000) (.000) ( .000) ( .001)
2000 .159 .159 .159 .159 .159 .159 .159 .159 .160

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2001 .158 .158 .158 .159 .159 .160 .159 .160 .161

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2002 .153 .153 .153 .146 .146 .146 .146 .147 .149

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2003 .168 .167 .168 .178 .178 .179 .179 .180 .181

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2004 .147 .148 .148 .133 .133 .134 .133 .134 .135

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2005 .128 .128 .128 .130 .132 .130 .131 .131 .133

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2006 .123 .124 .123 .124 .124 .124 .125 .125 .127

( .001) ( .001) ( .001) ( .000) ( .000) ( .000) (.000) ( .000) ( .000)
2007 .117 .117 .117 .115 .116 .116 .115 .117 .118

( .003) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
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Table S.vi: Raw covariance matrix by number of non-missing periods

Sample periods V ar(η1) Cov(η1, η2) Cov(η1, η3) V ar(η2) Cov(η2, η3) V ar(η3)
4 4.7 0.41 -5.5 0.16 -1.1 9.4

(889) (68) (956) (5.3) (74) (1029)
5 23 0.8 -20 0.1 -1.1 19

(101) (7.6) (108) (0.59) (8.2) (115)
6 21 1.5 -22 0.15 -1.8 24

(45) (3.3) (48) (0.25) (3.6) (51)
7 18 1.3 -18 0.13 -1.5 20

(36) (2.8) (39) (0.21) (3) (42)
8 20 1.6 -21 0.15 -1.8 24

(27) (2.3) (30) (0.19) (2.5) (33)
9 16 1.3 -17 0.12 -1.5 19

(14) (1.2) (16) (0.11) (1.4) (18)
10 15 1.4 -17 0.14 -1.6 20

(9.8) (0.88) (11) (0.081) (1) (13)
11 9.4 0.86 -11 0.087 -1 12

(5.1) (0.47) (5.9) (0.044) (0.54) (6.8)
12 5.6 0.52 -6.3 0.055 -0.63 7.4

(2.6) (0.25) (3) (0.025) (0.29) (3.5)
13 3.9 0.37 -4.4 0.039 -0.44 5.1

(1.3) (0.13) (1.5) (0.013) (0.15) (1.8)
14 2.9 0.33 -3.6 0.041 -0.43 4.5

(0.86) (0.1) (1.1) (0.012) (0.13) (1.4)
15 2.4 0.25 -2.8 0.03 -0.32 3.4

(0.72) (0.075) (0.86) (0.0081) (0.091) (1)
16 0.93 0.1 -1.1 0.016 -0.15 1.5

(0.24) (0.026) (0.29) (0.0032) (0.033) (0.36)
17 1.1 0.12 -1.3 0.019 -0.18 1.7

(0.26) (0.032) (0.33) (0.0043) (0.043) (0.44)
18 0.75 0.089 -0.9 0.014 -0.13 1.2

(0.17) (0.021) (0.22) (0.0029) (0.029) (0.3)
19 0.53 0.064 -0.61 0.012 -0.1 0.91

(0.085) (0.012) (0.11) (0.0018) (0.017) (0.16)
20 0.33 0.04 -0.37 0.0084 -0.069 0.59

(0.04) (0.0056) (0.052) (0.001) (0.0088) (0.077)
21 0.22 0.017 -0.17 0.0051 -0.039 0.32

(0.029) (0.0032) (0.03) (0.00062) (0.005) (0.044)
22 0.17 0.018 -0.16 0.0048 -0.037 0.3

(0.019) (0.0031) (0.026) (0.00068) (0.0053) (0.042)
23 0.18 0.014 -0.13 0.0047 -0.033 0.25

(0.017) (0.0024) (0.019) (0.00051) (0.0038) (0.03)
24 0.16 0.015 -0.13 0.0049 -0.036 0.28

(0.017) (0.0027) (0.022) (0.00061) (0.0047) (0.037)
25 0.14 0.011 -0.098 0.0035 -0.025 0.19

(0.014) (0.0023) (0.019) (0.00042) (0.0033) (0.027)
26 0.1 0.0071 -0.064 0.003 -0.02 0.15

(0.0072) (0.00093) (0.0071) (0.00023) (0.0016) (0.012)
27 0.082 0.0048 -0.043 0.0021 -0.014 0.099

(0.0046) (0.00063) (0.0047) (0.00015) (0.001) (0.0072)
28 0.071 0.0037 -0.033 0.0018 -0.012 0.081

(0.0049) (0.00067) (0.0047) (0.00016) (0.0011) (0.0073)
Complete sample 2.6 0.22 -2.8 0.024 -0.27 3.3

(3.4) (0.27) (3.7) (0.022) (0.29) (4)

Note: Heteroskedastic consistent standard errors in parentheses.
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Table S.vii: Bias corrected covariance matrix by number of sampling periods

Sample periods V ar(η1) Cov(η1, η2) Cov(η1, η3) V ar(η2) Cov(η2, η3) V ar(η3)
4 -22 -1.7 23 -0.0065 1.2 -22

(744) (56) (796) (4.3) (60) (852)
5 5.9 -0.54 -1.5 -0.0091 0.42 -0.98

(69) (5.2) (73) (0.4) (5.6) (78)
6 6.6 0.48 -6.9 0.064 -0.62 7.7

(23) (1.7) (24) (0.13) (1.8) (26)
7 3.9 0.14 -3.3 0.029 -0.23 3.3

(23) (1.7) (24) (0.13) (1.8) (26)
8 4.4 0.29 -4.4 0.034 -0.36 4.8

(16) (1.3) (18) (0.11) (1.5) (19)
9 4.1 0.29 -4.3 0.027 -0.33 4.6

(8) (0.69) (8.9) (0.061) (0.77) (9.9)
10 6.2 0.54 -6.9 0.054 -0.64 8

(6.4) (0.57) (7.3) (0.052) (0.65) (8.2)
11 4.2 0.35 -4.5 0.035 -0.41 5.2

(3.7) (0.33) (4.2) (0.03) (0.38) (4.7)
12 3.3 0.28 -3.6 0.027 -0.32 4

(2.3) (0.21) (2.6) (0.02) (0.24) (3)
13 1.6 0.11 -1.5 0.0089 -0.11 1.5

(1.5) (0.15) (1.8) (0.016) (0.18) (2.1)
14 1.7 0.18 -2 0.023 -0.24 2.5

(0.76) (0.088) (0.95) (0.011) (0.11) (1.2)
15 1.7 0.16 -1.9 0.019 -0.2 2.3

(0.65) (0.065) (0.76) (0.0068) (0.077) (0.89)
16 0.73 0.076 -0.81 0.011 -0.11 1.1

(0.25) (0.026) (0.29) (0.0031) (0.033) (0.35)
17 0.89 0.1 -1 0.015 -0.14 1.4

(0.26) (0.032) (0.33) (0.0042) (0.042) (0.43)
18 0.62 0.071 -0.72 0.01 -0.097 0.96

(0.17) (0.021) (0.22) (0.0028) (0.028) (0.29)
19 0.45 0.052 -0.49 0.0089 -0.077 0.7

(0.085) (0.012) (0.11) (0.0018) (0.017) (0.16)
20 0.27 0.032 -0.29 0.0062 -0.051 0.43

(0.04) (0.0057) (0.052) (0.001) (0.0087) (0.077)
21 0.18 0.012 -0.13 0.0034 -0.026 0.22

(0.029) (0.0032) (0.03) (0.00061) (0.0049) (0.043)
22 0.15 0.015 -0.13 0.0035 -0.027 0.22

(0.019) (0.0031) (0.026) (0.00067) (0.0053) (0.042)
23 0.16 0.012 -0.11 0.0035 -0.024 0.19

(0.017) (0.0024) (0.02) (5e-04) (0.0038) (0.03)
24 0.14 0.014 -0.12 0.0041 -0.03 0.23

(0.017) (0.0027) (0.022) (0.00061) (0.0047) (0.037)
25 0.13 0.01 -0.089 0.0028 -0.02 0.16

(0.014) (0.0023) (0.019) (0.00041) (0.0033) (0.027)
26 0.097 0.0066 -0.059 0.0025 -0.017 0.12

(0.0072) (0.00093) (0.0072) (0.00023) (0.0016) (0.012)
27 0.077 0.0046 -0.04 0.0017 -0.011 0.079

(0.0046) (0.00064) (0.0047) (0.00015) (0.001) (0.0074)
28 0.067 0.0036 -0.031 0.0015 -0.0097 0.067

(0.0049) (0.00067) (0.0047) (0.00016) (0.0011) (0.0074)
Complete sample 0.96 0.07 -0.95 0.0096 -0.094 1.1

(2) (0.16) (2.1) (0.013) (0.17) (2.3)
Random effects 0.093 0.0059 -0.05 0.0015 -0.0093 0.066

(0.0036) (0.00051) (0.004) (0.00011) (0.00079) (0.0059)

Note: Heteroskedastic consistent standard errors in parentheses.
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Table S.viii: Counterfactual variances by skills

Years
η1 = η̄1g

η2 = η̄2g

η3 = η̄3g

Heterogeneity
in: Levels Growth Curvature

Growth
and

Curvature
All

Log-wage 1977 0.279 0.284 0.28 0.281 0.283 0.284
(0.00691) (0.00691) (0.00691) (0.00691) (0.00703) (0.00714)

Log-wage 1982 0.00486 0.0373 0.00809 0.0124 0.0227 0.0394
(0.00771) (0.00771) (0.00771) (0.00771) (0.00781) (0.00791)

Log-wage 1987 0.00569 0.0428 0.0173 0.0192 0.0195 0.0468
(0.00945) (0.00945) (0.00945) (0.00945) (0.00953) (0.00961)

Log-wage 1992 0.00641 0.0439 0.0324 0.029 0.0328 0.0639
(0.0127) (0.0127) (0.0127) (0.0127) (0.0128) (0.0128)

Log-wage 1997 0.00685 0.0444 0.0531 0.0446 0.0555 0.0808
(0.0181) (0.0181) (0.0181) (0.0181) (0.0181) (0.0182)

Log-wage 2002 0.00684 0.0444 0.0791 0.07 0.08 0.091
(0.0263) (0.0263) (0.0263) (0.0263) (0.0264) (0.0264)

Log-wage 2007 0.00627 0.0438 0.11 0.112 0.113 0.113
(0.0389) (0.0389) (0.0389) (0.0389) (0.0389) (0.039)

Long-run 0.013 0.0421 0.0283 0.0299 0.0299 0.0458
(0.0102) (0.0102) (0.0102) (0.0102) (0.0103) (0.0104)

Note: Low skills. Only observations with more than 21 periods. 2942 observations.

Years
η1 = η̄1g

η2 = η̄2g

η3 = η̄3g

Heterogeneity
in: Levels Growth Curvature

Growth
and

Curvature
All

Log-wage 1977 0.00935 0.0172 0.0103 0.0116 0.0144 0.0176
(0.0161) (0.0161) (0.0161) (0.0161) (0.0162) (0.0164)

Log-wage 1982 0.014 0.0716 0.0189 0.0256 0.0391 0.0728
(0.0178) (0.0178) (0.0178) (0.0178) (0.0179) (0.0181)

Log-wage 1987 0.0173 0.0832 0.0349 0.0381 0.0384 0.0913
(0.0198) (0.0198) (0.0198) (0.0198) (0.0199) (0.0201)

Log-wage 1992 0.0207 0.0872 0.0601 0.0555 0.0602 0.121
(0.0222) (0.0222) (0.0222) (0.0222) (0.0223) (0.0224)

Log-wage 1997 0.0239 0.0905 0.0939 0.0821 0.0959 0.149
(0.0249) (0.0249) (0.0249) (0.0249) (0.025) (0.0251)

Log-wage 2002 0.0268 0.0933 0.136 0.124 0.137 0.167
(0.0282) (0.0282) (0.0282) (0.0282) (0.0282) (0.0284)

Log-wage 2007 0.029 0.0956 0.187 0.191 0.193 0.197
(0.0322) (0.0323) (0.0322) (0.0322) (0.0323) (0.0324)

Long-run value 0.017 0.0686 0.0403 0.043 0.043 0.0766
(0.02) (0.02) (0.02) (0.02) (0.0201) (0.0203)

Note: Medium skills. Only observations with more than 21 periods. 1433 observations.
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Figure S.i: Change over time in mean and variance of log earnings for cohorts 1977-2000
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Figure S.ii: First order autocorrelation relative to potential experience for 1977, 1987 and 1997
entry cohorts
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Figure S.iii: Unconstrained estimates: variance of residuals vit by age and skill group
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