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Abstract

We show that when the locations of analysts covering a firm are geographically more diverse, the
individual forecasts of the analysts for that firm are less correlated. More geographical diversity of
co-analyst locations leads to more accurate individual analyst forecasts. This suggests that
analysts assign weights to co-analysts’ forecasts when making their own forecasts, and the
individual forecasts become more accurate due to a diversification effect. Moreover, in line with
efficient weighted average forecasting, our results indicate that the weights assigned to peer
forecasts vary with measures of the precision of the analyst’s signal and those of the peers.
Overall, our evidence suggests observational learning in the analyst setting. Our empirical design
avoids typical pitfalls of outcome-on-outcome peer effects (Angrist, 2014) by showing that an
analyst’s expected absolute forecast error (proportional to standard deviation) is affected by the
covariance of co-analyst’s forecast errors (as captured by their locational diversity).
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Security analysts are important intermediaries in financial markets, and one of their major roles 

is to generate earnings forecasts for the companies they follow. The finance industry, media, 

and market participants pay considerable attention to the “consensus” forecast of earnings, and 

hence the informativeness of the forecasts matters for the functioning of financial markets. 

However, how informative the earnings forecasts are has been questioned. It has been 

suggested, for example, that because analyst forecasts are in the public domain, analysts’ career 

concerns (Scharfstein and Stein, 1990; Trueman, 1994) and the possibility of free-riding 

(Hirshleifer and Teoh, 2003) create incentives for uninformed herding. Because such 

uninformed herding potentially reduces the idiosyncratic information that analyst forecasts can 

provide, the informativeness of the “consensus” estimate could be adversely affected. For 

example, Huang, Krishnan, Shon, and Zhou (2017) estimate that 63 percent of analysts exhibit 

uninformed herding behaviour, which they define as taking “… actions to drift toward the 

prevailing consensus, regardless of the information contained in the consensus”, and that 16 

percent exhibit anti-herding.1 

On the other hand, since analysts can observe each other’s forecasts, they could 

potentially learn from other analysts’ forecasts, leading to better aggregation of information. In 

other contexts, such behaviour has been identified and is termed informational or rational 

herding, and occurs because of observational learning in a setting where individuals form 

posterior beliefs based on their own private signals and the actions of others (Banerjee, 1992; 

Bikhchandani, Hirshleifer, and Welch, 1992).2 To the best of our knowledge, little evidence 

                                                           
1 A large body of empirical evidence finds support for the career-concern related uninformed herding view. In an 

influential paper, Hong, Kubik, and Solomon (2000) find that inexperienced analysts are less likely to provide 

“bold” forecasts than experienced analysts, and are also more likely to lose their jobs after providing inaccurate 

or bold forecasts. Clement and Tse (2005) examine other analyst characteristics that could be related to career 

concern, such as prior forecast accuracy, brokerage size, forecast frequency, and the number of 

companies/industries that the analyst follows, and find similar evidence. 
2 For example, Zhang (2010) finds that patients waiting for transplant kidneys are more likely to turn down a 

kidney after observing other patients’ rejection decisions. Zhang and Liu (2012) find evidence of observational 

learning among lenders in Prosper.com – the largest and oldest microloan market in the U.S. In crowdfunding 
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exists that observational learning occurs in the important setting of security analysts’ earnings 

forecasts.3 Given the bulk of evidence on uninformed herding, this may suggest that career 

concerns or similar incentives are so pervasive that they largely negate incentives for learning 

and information production by most analysts. If so, this is a serious concern for market 

efficiency.  

Our paper makes two main contributions to the literature. First, we provide novel 

evidence that when making their own forecasts, analysts (1) incorporate idiosyncratic 

information from the other analysts’ prior forecasts, and (2) assign weights to the prior forecast 

of other analysts that are systematically related to the potential informativeness of these 

forecasts. Overall, these results provide strong evidence of observational learning.  

To evaluate whether analysts are influenced by the prior forecasts of other analysts, we 

rely heavily on the concept of analysts’ locational diversity and how this affects the accuracy 

of both the consensus and individual analyst forecasts. Information advantage of local analysts 

(e.g., Malloy, 2005; Bae, Stulz, and Tan, 2008; O’Brien and Tan, 2015) suggests that analysts 

collect substantial amount of information from local sources in addition to corporate 

disclosures. However, local information sources also contain noise, and we hypothesize that 

this noise component is likely to be less correlated when the analysts are not based in the same 

region (i.e., analysts are geographically more diversely located). Thus, the more diversely 

located the analysts are, the more likely that the idiosyncratic noise components will be 

cancelled out (similar to a portfolio diversification effect) when the individual forecasts are 

aggregated in the consensus estimate. We elaborate below how we build on this idea to test for 

observational learning by individual analysts.  

                                                           
platforms, it has been widely documented that early contributions from individuals with information advantage 

on project quality attract subsequent contributions (see, for example, Kuppuswamy and Bayus, 2018).  
3 Kumar, Rantala, and Xu (2021) and Phua, Tham, and Wei (2021) are two contemporaneous papers that also 

examine analyst peer effects. We discuss these papers below. 
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The key insight is that, for an individual analyst, if the other analysts are based in more 

diverse locations, their forecast noises will be less correlated; however, this can improve the 

forecast accuracy of that individual analyst only if he assigns a positive weight to the mean 

forecast of the other analysts (or, more generally, uses a weighted average of these forecasts 

and his own signal, for his own forecast). Importantly, common shocks to future earnings that 

all analysts incorporate in their forecasts do not play any role here, since common components 

will not get diversified away even when the other analysts are geographically more diverse.  

We validate this intuition in a model of analyst learning outlined in Section 3 of the 

paper. In this model, we show that when an analyst optimally assigns a positive weight to the 

prior forecasts of the other analysts, the analyst’s mean (absolute) forecast deviation or forecast 

error (henceforth denoted IEER) is positively related to the covariance of the idiosyncratic 

noise in the forecasts of co-analysts (i.e., other analysts covering the same firm who have 

already generated their forecasts). The model also generates implications regarding how the 

strength of the association between the individual analyst’s IEER and the covariance depends 

on the information content of the signals of the co-analysts and that of the analyst in question.  

Our empirical constructs heavily exploit the idea that the geographical location of 

analysts is a major determinant of the precision of their informative signals as well the diversity 

of these signals. Our research thus contributes to the literature on how analysts’ geographical 

location matters for their forecasting activity (Malloy, 2005; Bae, Stulz, and Tan, 2008; 

O’Brien and Tan, 2015; Jennings, Lee, and Matsumoto, 2017; Chen, Mayew, and Yan, 2018; 

Gerken and Painter, 2020), and how diversity in analysts’ characteristics affect the accuracy of 

the consensus forecast (Merkley, Michaely, and Pacelli, 2020). 

For our empirical setting, we measure analysts’ locational diversity in terms of a 

Hirschman-Herfindahl Index (HHI) of analyst locations, which is an inverse measure of 
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locational diversity. Consistent with the idea that more locational diversity implies less 

correlated noise in the analyst forecasts, we find that as the HHI decreases, (i) the average 

covariance between the noise components in forecasts of all analysts following a firm in a given 

year, and (ii) the absolute forecast error of the consensus forecast, both decrease. We then show 

that an individual analyst’s IEER is positively related to the inverse diversity of the co-analysts 

following the same firm in the same year whose forecasts for the fiscal year are available to 

the analyst prior to his last forecast. For brevity, we refer to such analysts as co-analysts from 

now on. For this purpose, we construct an HHI based on the locations of these co-analysts, 

OHHI (which captures the covariance of the idiosyncratic signal noises of the other analysts). 

We then test our hypothesis regarding how the strength of the association between the IEER 

and the OHHI (the OHHI-sensitivity of IEER) is affected by various proxies for signal 

informativeness, as implied by the model of observational learning. 

The problems of identifying observational learning from actions of peers are well 

recognized (Manski, 1993; Angrist, 2014). Our approach avoids the typical problems 

associated with outcome-on-outcome peer effects by relating our main dependent variable, a 

transformation of the standard deviation of an analyst’s forecast error (the IEER), to the 

covariance of the forecast noises of co-analysts who have generated forecasts for the same firm 

in the same year as a particular analyst. The covariance is captured by our measure of the 

locational diversity of the co-analysts, OHHI. 

We carefully design our tests to make sure we are identifying the effect of diversity on 

individual analyst forecast error. First, our regressions showing the effect of OHHI on IERR 

incorporate analyst and year (year×analyst) fixed effects, as well as firm and year (year×firm) 

fixed effects. Using analyst-year fixed effects largely rules out the concern that the results are 

driven by analysts who are clustered in a region (e.g., New York, where more than 40 per cent 
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of the analysts in our sample are based), 4 or by analysts who are at a particular stage in their 

careers and they anchor their forecasts to the prior forecasts of co-analysts due to career-

concerns. Moreover, using firm-year fixed effects implies that we exploit within-firm variation 

in OHHI, so that the results are unlikely to be driven by effects that change the firm’s 

information environment.  

Second, our results exploit changes in OHHI caused by analyst relocation, entry, and 

exit “events”. The relocation of an analyst (“event analyst”) causes, for all other analysts 

following the firms covered by this analyst, either an increase, decrease, or no change, in the 

OHHI. Since for the same relocation event, an analyst with overlapping coverage as the 

relocating analyst experiences heterogeneous changes in OHHI for the firms they both cover, 

it is unlikely that the change in OHHI is associated with factors that could affect forecast 

accuracy of the co-analyst in a particular way. A similar argument applies to analysts whose 

OHHI is affected by “new entrants” – that is, analysts who show up in I/B/E/S for the first time 

in our sample period – and those who exit (i.e., no longer show up in I/B/E/S). Our regression 

sample (henceforth referred to as the Combined Sample) combines the firm-years that 

experience changes in analyst location due to the relocation, entry, and exit events, but it 

excludes the forecasts of the triggering event analysts. On average, an analyst in the Combined 

Sample is exposed to 10 events in a given year.  We show that both the within-analyst year and 

within-firm year variation of the change in OHHI is quite significant – the mean range 

(maximum minus minimum) of the change in OHHI being 70 percent and 55 percent on the 

sample mean OHHI, respectively. When we regress the change in IERR (from one year before 

                                                           
4 For example, if several analysts covering a firm are based in New York, the New York-based analyst has a more 

diversified group of peer analysts (lower OHHI) than another analyst not based in New York and covering the 

same firm. If New York-based analysts happen be more accurate in their forecasts, we would be picking up a 

positive association between OHHI and forecast error. 
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the event year to one year after) on the change in OHHI of individual analysts over the 

corresponding period, we find a significantly positive association in the Combined Sample. 

The OHHI for an analyst increases (decreases) when location decisions by event 

analysts covering the same firm result in more (less) correlation of the signal noises of the co-

analysts. Thus, if the forecast error of that analyst increases (decreases), this suggests that the 

analyst assigns some weight to the forecasts of the peers following the same firm. There are 

two possible reasons why the analyst might do so. First, analysts might want to herd with other 

analysts and anchor their forecasts to the mean prior forecast of other analysts (uninformed 

herding). Second, they could also be using the mean forecasts of other analysts to come up with 

a more efficient weighted-average forecast that combines their own information and that 

represented in the mean of the other analysts’ forecasts (observational learning).5  

To investigate whether analysts learn from their peers – that is, assign weights to peer 

forecasts for informational reasons – we appeal to a literature that shows that analysts make 

more accurate forecasts when they are located closer to the firm’s or peers’ operations (Malloy, 

2005; Bae, Stulz, and Tan, 2008; Jennings, Lee, and Matsumoto, 2017). We do two sets of tests 

of the learning hypothesis. First, for each analyst, we calculate the distance of the analyst’s 

location from that of the firm for which the analyst is issuing a forecast. We argue that the 

longer this distance, the less precise is the analyst’s own signal. Similarly, we compute the 

average distance of the analyst’s location from that of all peer firms in the same 3-digit SIC 

industry as the firm being covered that this analyst also covers, and argue that the analyst’s 

                                                           
5 We note that the mean is not the most efficient aggregator of individual forecasts. As is well known, when there 

is common information and signals are not independent, the mean overweights the common information, and 

though unbiased, it is neither consistent nor minimum variance (see. Kim, Lim, and Shaw (2001) who explore 

this issue in the context of analyst forecasts). However, the mean is almost universally used as an aggregator of 

individual predictions, and in the particular setting of analyst forecasts, the consensus forecast is the most widely 

used and followed metric. Thus it could be expected that under observational learning, when it comes to making 

their own forecasts, the analysts would directly rely on the prevailing consensus as a way to incorporate the 

information content from other analysts’ forecasts. 
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information quality is poorer if this distance is larger. Our model shows that the analyst puts 

more weight on the forecasts of the co-analysts when his information quality is poorer, and as 

a result, the sensitivity of the analyst’s forecast error to the OHHI is higher. Our empirical 

results provide strong support for this prediction. Second, we also examine the consequences 

of better or worse information quality of the co-analysts, which would change the weight 

assigned by the analyst to their forecasts. We find that when the average distance of all co-

analysts from the same 3-digit SIC industry peer firms they cover is greater, the sensitivity of 

the analyst’s forecast error to OHHI decreases. On the other hand, the sensitivity is higher when 

the number of same 3-digit SIC peer firms covered by co-analysts is larger. 

Our focus on observational learning from co-analysts’ forecasts of the same firm also 

distinguishes our paper from two recent papers. Kumar, Rantala, and Xu (2021) examine 

“social learning” from the forecasts of co-analysts of other firms covered by the co-analysts 

and the analyst in question. In particular, they show that if the forecasts of these analysts are 

ex post over-optimistic, the analyst becomes less optimistic in his forecast of the focal firm. In 

addition, if these co-analysts make bold positive or negative forecasts for the firms they cover, 

the analyst’s forecasts are more likely to be bold. Phua, Tham, and Wei (2021) examine within-

brokerage peer learning. They find that analysts who occupy more central positions in the 

brokerage’s network based on overlap of industrial coverage make more accurate forecasts. 

Our study is also related to Merkley, Michaely, and Pacelli (2020) and Gerken and 

Painter (2020). Merkley, Michaely, and Pacelli (2020) show that cultural diversity of financial 

analysts improves quality of both consensus and individual forecasts. We argue that economic 

mechanisms through which cultural and geographical diversities affect analyst forecasts are 

different: cultural diversity generates different interpretations for the same information source, 

which may facilitate or impede learning. Therefore, Merkley, Michaely, and Pacelli (2020) 

argue that the relation between cultural diversity and forecast accuracy, theoretically unclear 
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ex ante, is ultimately an empirical issue.6 In contrast, geographical diversity implies different 

information sources and, therefore, our theoretical framework generates clear empirical 

predictions ex ante.  In a paper contemporaneous to ours, Gerken and Painter (2020) utilize 

satellite data on the number of cars in the parking lots of U.S. retailers and analyst location 

information compiled from historical filings of form U4 to study whether analysts overweight 

local information. While both papers show that geographical diversity of analysts reduces error 

in consensus forecast, they emphasize different sources of influence on individual analyst 

forecasts. Contrary to existing literature mentioned above that suggests information advantage 

to local analysts, Gerken and Painter (2020) argue that analysts can overweight their local 

information signals. In contrast, we focus on the extent to which analysts incorporate other 

analysts’ forecasts into account, and show that their forecasts errors are lower when the other 

analysts are geographically more diverse.7   

The rest of the paper is organized as follows. Section 2 discusses the related literature. 

Section 3 develops our hypotheses. Section 4 describes our data and variables. Section 5 reports 

and discusses empirical results. Section 6 states conclusions. 

2. Related Literature 

2.1 Uninformed herding, Learning, and Analyst forecasting Activity 

The setting in which earnings forecasts occur is interesting because each analyst’s 

forecast is in the public domain, and analysts revise their forecasts multiple times during a 

particular forecasting period, knowing the full set of forecasts that have already been made. 

                                                           
6 For example, Merkley, Michaely, and Pacelli (2020) point out “ex ante, the relation between diversity and 

consensus forecast accuracy is unclear” and “to what extent cultural diversity improves output quality remains an 

empirical issue” in their introduction.  
7 Another difference between our papers is that the individual forecast error in Gerken and Painter (2020) is 

defined as the difference between the forecasted earnings and actual earnings, scaled by lagged price (which is 

essentially a measure of forecast optimism), while our individual forecast error is the absolute value of their 

measure.    
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The public nature of these forecasts affects the incentive for analysts to generate informative 

forecasts. On the positive side, to the extent that there is information content in other analysts’ 

forecasts, analysts can learn from each other’s forecasts (Surowiecki, 2004; Bloomfield and 

Hales, 2009; Clement et al., 2011). For example, if a particular analyst revises a prior forecast, 

that could alert the remaining analysts to the possibility of new information being available, 

resulting in more information production. 

 On the negative side, as has been extensively discussed in the literature, the public 

nature of the forecasts can also distort analysts’ incentives. One consequence of this is 

“uninformed herding.” Such herding behaviour could represent a form of free-riding 

(Hirshleifer and Teoh, 2003), which in turn would decrease the incentives of analysts to invest 

in information acquisition and make more efficient forecasts. Uninformed herding could also 

occur if career or reputational concerns cause analysts to supress their own information when 

this involves a significant deviation from the consensus (Scharfstein and Stein, 1990; Trueman, 

1994). When an analyst’s reputation for accuracy is not yet established, the cost of being “bold” 

but wrong might be particularly high. Instead, analysts might prefer to play it safe and herd to 

show that they “get it.” Several authors find evidence consistent with such reputational herding. 

Hong et al. (2000) find that (1) experienced analysts are more likely to provide bold forecasts 

than inexperienced analysts, and (2) inexperienced analysts are more likely than experienced 

analysts to lose their jobs after providing inaccurate or bold forecasts. Clement and Tse (2005) 

extend Hong et al. (2000) by examining the role of other analyst characteristics that could 

mitigate career concern, such as prior forecast accuracy, brokerage size, forecast frequency, 

and the number of companies/industries that the analyst follows. 

 Some studies attempt to estimate the propensity of analysts to herd or “anti-herd”, i.e., 

behave in a contrarian manner. Both Bernhardt, Campello, and Kutsoati (2006) and Huang et 

al. (2017) argue that uninformed herding is the tendency of analysts to bias their forecasts away 
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from their posterior estimates of earnings towards the consensus – irrespective of the 

informativeness of the consensus itself. Anti-herding, on the other hand, corresponds to 

strategically differentiating the forecast from the consensus forecast. From this premise, the 

two studies design different test statistics to estimate the propensity of analysts to herd or anti-

herd, and they come to sharply different conclusions. While Bernhardt et al. (2006) conclude 

that analysts anti-herd, Huang et al. (2017) estimate that 63 percent of analysts exhibit 

uninformed herding behavior, and 16 percent exhibit anti-herding.  

 Keskek, Tse, and Tucker (2014) argue that the reputation-herding theory (Sharfstein 

and Stein, 1990; Trueman, 1994) predicts that late forecasters during a specific “information 

discovery” or “information analysis” phase of information production are herders, so their 

forecasts will be less accurate than earlier ones. In contrast, the “trade-off theory” (Guttman, 

2010) suggests that late forecasters are learners and thus should be more accurate. The authors 

find that earlier forecasters are of higher quality within each phase in terms of forecast accuracy 

improvement (relative to peer’s outstanding forecasts), forecast boldness, and price impact – 

in other words, there is little evidence of “slow learning” by late forecasters.8 

2.2 Local Information, Economic Decisions, and Analyst Activity 

There is a growing literature in Economics and Finance on the importance of local 

information, particularly for analyst activity. Coval and Moskovitz (2001) find that investors 

earn abnormal returns when they tilt their holdings towards local stocks, suggesting the 

importance of local news.9 Ivkovic and Weisbenner (2005) find that the average household 

receives higher returns from its local holdings relative to its nonlocal holdings, suggesting that 

investors can exploit local knowledge. Garcia and Norli (2012) find that firms that have 

                                                           
8 Note that to interpret these results, one has to assume that later forecasters cannot exactly mimic the forecasts of 

earlier forecasters. 
9 Van Nieuwerburgh and Veldkamp (2009) provide a rationale for understanding why local information 

asymmetry persists even when investors can choose to learn what others know. 
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operations mainly in a few locations earn higher returns than geographically dispersed firms. 

Kang, Stice-Lawrence, and Wong (2019) use satellite data on car counts in the parking lots of 

U.S. retailers and find that local institutional investors trade in the same direction as this 

information. They also find that investors sometimes overweight local information. Chen 

(2017) finds that managers overreact to local economic news at the firm’s headquarters; cutting 

investment in plants when the local economy at the firm headquarter is performing less well.  

Turning to analyst activity, Malloy (2005) finds that forecast revisions by local analysts 

has stronger effect on stock prices. Jennings, Lee, and Matsumoto (2015) find that geographical 

distance of a firm’s location from that of the analyst matters for the latter’s forecast quality. In 

addition, they find that managers frequently refer to other firms in the same location in earnings 

conference calls, suggesting the relevance of local information for analyst activity. Chen, 

Mayew, and Yan (2018) find that analysts working in the same office and covering different 

firms in the same location are more accurate in their forecasts and generate stronger stock price 

response, suggesting that sharing local information via social interactions is useful. Bae, Stulz, 

and Tan (2008) and O’Brien and Tan (2015) confirm that geographical proximity generates 

information advantage of analysts in a cross-border and an IPO setting, respectively. 

3. Hypothesis Development 

3.1 Analysts’ Geographical Dispersion and Forecast Errors 

To develop our hypotheses, we consider a simple model of analyst learning. Here, we 

present the main ingredients of that model, discuss the association of the model parameters 

with our empirical constructs, and develop the main hypotheses. Details of the model and 

derivations are provided in Appendix B. 

In the model, analyst learning from the prior forecasts of other analysts takes a 

particularly simple form: an analyst arrives at his “optimal” forecast via a suitably chosen 
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weighted average of his forecast, based on his own information set (excluding the forecasts of 

the other analysts) and the mean of the prior forecasts of the other analysts. We note that a 

weighted average or mean is not, in general, an efficient aggregator of individual forecasts 

(Kim et al., 1998). Nonetheless, the practise of combining individual predictions into the mean 

is ubiquitous – not only is the consensus mean forecast that combines all the analyst forecasts 

an extremely common and well-publicized metric, many other forecasts such as central bank 

forecasts of macroeconomic variables are also mean forecasts. Accordingly, we assume that 

analysts also use the mean when aggregating the forecasts of other analysts. However, they 

determine how much weight to assign to this mean relative to their own forecasts. 

3.2 Forecast Environment and the Mean Absolute Deviation (MAD) 

We now describe the forecast environment. Let 𝑥𝑖  denote an individual analyst i’s 

forecast of the earnings-to-price ratio. We assume that  

                            𝑥𝑖𝑡 = 𝑓 + 𝜖𝑖𝑡                                                                                                  (3.1)                                                                                                               

where f denotes the actual earnings-to-price ratio, and 𝜖𝑖𝑡  denotes all other sources of the 

analyst-specific forecast noise. We assume that 𝜖𝑖𝑡 is normally distributed with mean 0 and 

variance σ2. Although we do not explicitly model it, the analyst could be assumed to be a 

Bayesian forecaster who has a prior forecast on f and observes a signal which is the earnings 

plus a noise term.10 In what follows, to avoid confusion with an analyst’s absolute forecast 

error (defined below), we refer to the error 𝜖𝑖𝑡 as forecast noise or signal noise. 

                                                           
10 A Bayesian analyst has a prior on the true earning f (assumed to have a Normal distribution with mean f and 

precision h) and observes zi= f + ξit, where ξit is an analyst-specific noise term with precision si. Let f = f + η. The 

Bayesian forecast conditional on zi is xit=(h/(h+si))f + (si/(h+si))zi = (h/(h+si))( f-η)+(si/(h+si))(f+ξit,)=f+(si/(h+si))* 

ξit+(h/(h+si))(- η)=f+ζit, where ζit has mean zero and precision h+si. See Barron, Kim, Lim, and Stevens (1998) for 

an exposition of the Bayesian framework. 
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The individual (absolute) forecast error is given by |𝑥𝑖𝑡  – 𝑓 |, that is, the individual 

absolute deviation. Einhorn, Hogarth, and Klempner (1977) derive the expression for the mean 

absolute deviation (MAD) for the case of normally distributed errors. This is given by: 

                     𝑀𝐴𝐷 =  2𝜎𝜙(0)                                                                        (3.2) 

 

where 𝜙 denotes the density of the standard normal variable. Clearly 

                  
𝜕(𝑀𝐴𝐷)

𝜕𝜎
> 0.                                                                                   (3.3) 

Thus, the MAD is increasing in the standard deviation of the forecast noise.  

3.3 Analysts’ Location Diversity and the Consensus Forecast Error 

Extension to the MAD of the consensus forecast is straightforward. The consensus is 

the mean of N forecasts 𝑥𝑖𝑡, given by 𝑋𝑡 = 𝑓 +
∑ ∈𝑖𝑡

𝑁
𝑖=1

𝑁
. The standard deviation is given by 𝜎𝑁 =

√
1

𝑁
[𝜎2 + (𝑁 − 1)𝜎𝑛𝑚], where 𝜎𝑛𝑚 denotes the covariance between the noise in the signals for 

any pair of analysts n and m. The expression for the MAD of the consensus forecast follows 

from (3.2) by replacing σ with σN.  

Our first hypothesis relates to the effect of greater location diversity of analysts on the 

MAD. Throughout, our measure of location diversity is the Herfindahl-Hirschman Index (HHI) 

of analyst locations, which is an inverse measure of diversity. Suppose there are Q possible 

locations (we leave details for Section 4). The HHI is defined as 

           𝐻𝐻𝐼𝑗 = ∑ (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑠𝑡𝑠 𝑖𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑞

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑠𝑡𝑠 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑓𝑖𝑟𝑚 𝑗
)

2
𝑄
𝑞=1                        (3.4)   
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where the denominator is the total number of analysts following firm j in year t, and the 

numerator is the number of analysts in a particular location q. 

Hypothesis 1 (H1): (i) The average covariance between analysts’ forecast noise is increasing 

in the HHI of analyst locations. (ii) The MAD of the consensus forecast is increasing in the 

HHI of analyst locations. 

Hypothesis H1(i), if true, is a direct test of the assumption that we will maintain 

throughout, namely, that the idiosyncratic noise in analyst signals will be less correlated if the 

analyst locations are more geographically dispersed, as proxied by the inverse of the HHI. Note 

that from Equation (3.3) and the expression for 𝜎𝑁, Hypothesis 1(ii) immediately follows via 

the effect of location diversity on 𝜎𝑛𝑚 as postulated in (i).  

We next turn to individual analyst’s forecast errors (IEER). A key assumption 

underlying our framework is that analyst i, in making his last forecast, assigns a weight (1-αi) 

to the mean of the latest forecasts of all other analysts, and a weight αi to his own signal. In 

Appendix B, we show that the analyst can improve forecast accuracy by choosing an 

appropriate value of αi. The focus of much of our subsequent discussion is the effect of analyst 

geographic location on the weight 1-αi assigned to the mean forecast of the other analysts. Here, 

we provide intuitive arguments supporting the development of our hypotheses. Appendix B 

provides formal derivations. 

Since analysts assign positive weights on the mean forecasts of other analysts to 

improve the accuracy of their forecasts, they incorporate the idiosyncratic components of the 

signals of other analysts in their own forecasts. The diversification principle therefore implies 

that the less correlated the individual idiosyncratic components of the other analysts’ signals   

are, the lower will be analyst i’s expected forecast error. For our empirical tests, we construct 

an HHI based on the geographical location of the other analysts (co-analysts) whose latest 
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forecast for the same firm in the same year is available to the analyst i, and label this as OHHI. 

The OHHI is therefore an analyst-specific inverse measure of the geographical location 

diversity of the co-analysts for each firm-year, and as long as the analyst assigns a positive 

weight on the mean forecast of the co-analysts, we show in the model that it will be positively 

related to analyst i’s mean absolute forecast error: 

Hypothesis 2 (H2): The sensitivity of the absolute forecast error of an individual analyst 

(IEER) with respect to the OHHI – the locational HHI based on the locations of the co-analysts 

following the firm with prior forecasts – is positive. 

In other words, if we regress an individual analyst’s forecast error on that analyst’s 

OHHI, as long as 0<αi <1, the regression coefficient will be positive. 

 In Appendix B, we derive an explicit solution for αi and show that 0< αi <1. However, 

it is important to note that Hypothesis 2, if true, can hold even under uniformed herding, and 

not only when analysts are engaging in informed herding or observational learning, as is 

assumed in the model and the derivation of αi. This is because under uninformed herding, the 

analyst’s forecast is also a weighted average of his own posterior of the earnings and the 

average of the forecasts of the other analysts.11 However, as we show in Appendix B, the 

observational learning model has several unique implications regarding how αi and hence the 

sensitivity of the IEER to OHHI depends on the quality of analyst i’s signal and that of the co-

analysts.  

Since our next two hypotheses build on these results, we summarize these intuitive 

results here. We show that lower precision of the analyst’s own signal causes the analyst to 

place higher weight on the remaining analysts’ mean forecast. Moreover, an analyst assigns a 

                                                           
11 See, for example, Huang et al. (2017). 
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higher weight to the mean forecast of the co-analysts if these co-analysts have, ceteris paribus, 

more precise signals (i.e., better information quality).12  

 We next discuss tests of the learning hypothesis. Following Malloy (2005) and Bae, 

Stulz, and Tan (2008), we argue that an analyst i’s information about a particular firm j ‘s 

earnings is likely to be more precise when (i) the analyst i is located closer to the firm j, and 

(ii) the average distance of the analyst i’s location from that of all other firms in the same 3-

digit SIC industry as firm j that they cover (“peer” firms) is shorter. We identify higher 

information quality of co-analysts of analyst i covering firm j in terms of (i) their average 

proximity to peer firms of the firm j (i.e., firms in the same 3-digit SIC industry as the firm j 

that they also cover), and (ii) the number of such peer firms covered by all the co-analysts of 

analyst i covering firm j as a group.  

Hypothesis 3 (H3): Analysts will assign a higher weight to the forecasts of other analysts 

(lower 𝛼𝑖) and the sensitivity of IERR to OHHI will be higher, if, ceteris paribus,  

(i) the information quality of the signals of other analysts following the firm, measured as 

discussed above, is higher. The sensitivity of IERR to OHHI will be unambiguously larger in 

this case. 

(ii) the analyst’s own information quality, measured as discussed above, is poorer. The 

sensitivity of IERR to OHHI will be larger under plausible conditions in this case. 

4. Data and Variables 

                                                           
12 As the model makes clear, these comparative static results “work through” the effects of the underlying 

parameters on αi, and the effect of αi on the sensitivity of the IEER to OHHI. We focus on the OHHI sensitivity 

of IEER rather than the direct effect on αi (which captures the sensitivity of an individual analyst’s forecast to the 

average of other analysts’ forecasts, i.e. the “Consensus” forecast) for two reasons. First, whether analyst learning 

affects analyst forecast error is of independent interest. Second, the error term in a regression of an individual 

analyst’s forecast on the Consensus will be correlated with the Consensus, leading to biased estimates. 
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We obtain realized earnings and analyst earnings forecasts from the I/B/E/S Unadjusted 

Detail History files. Analyst location was published in Nelson’s Directory of Investment 

Research, available up to 2008. Our main analysis is limited to the period 1994-2010 (under 

the assumption that our analyst location information in 2008 is roughly accurate over a span of 

two additional years).13  

We primarily consider the last annual earnings per share (EPS) forecast of each analyst 

for each firm fiscal year. We use the I/B/E/S actual earnings instead of the Compustat earnings 

because the I/B/E/S has a policy of reporting actual earnings numbers that are consistent with 

forecasts, i.e., it excludes the same items from actual EPS numbers that the majority of analysts 

exclude from their forecasts (Christensen, 2007). The sources of accounting and financial data 

are Compustat and CRSP, respectively.  

4.1 Main Dependent Variables 

The main dependent variable is the absolute forecast error, where the forecast is either 

a consensus forecast of all analysts covering a firm or an individual forecast of an analyst. The 

consensus forecast error is computed as follows: for each firm year, we first calculate the 

difference between the mean of the earnings forecasts of all analysts and the corresponding 

actual earnings being forecasted, scaled by the share price as of the end of the previous fiscal 

year. To obtain our primary dependent variable (ERR), we take the absolute value of the 

calculated difference. For the analyses of individual forecasts of the analysts, our dependent 

variable is IERR, calculated in a similar way as ERR, as the absolute difference between the 

                                                           
13 We thank Kee-Hong Bae and Hongping Tan for providing us with the location data for analysts, which include 

the analyst’s identity number, the identity number of the affiliated equity research firm, and the time information. 

The coverage is limited before 1994. Nelson Publishing Inc. stopped producing its Directory of Investment 

Research after 2008. Using Nelson’s Directories, we also manually check and exclude observations for which 

there is insufficient information to clearly identify the location of the analyst. 
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individual forecast value of each analyst and the actual value being forecasted, scaled by the 

prior fiscal year-end share price.  

Another dependent variable is RHO, which measures the degree to which analysts’ 

forecasts covary relative to the overall level of uncertainty in a firm year. It is the Fisher 

transformation (Fisher, 1915, 1921) of the variable , estimated following Barron et al. (1998): 

                               𝑅𝐻𝑂 =
1

2
𝑙𝑛 (

1+𝜌

1−𝜌
) , where 𝜌 =

𝑆𝐸−
𝐷

𝑁

(1−
1

𝑁
)𝐷+𝑆𝐸

                        (4.1) 

where SE is the squared difference between the mean of the last annual EPS forecasts of all 

analysts and the actual value of EPS being forecasted (both scaled by the market share price as 

of the end of the previous fiscal year), in a firm year; D is the variance of these last individual 

forecasts (scaled by the market share price); and N is the number of analysts in that firm year. 

When analysts are more geographically diverse, there is lower common uncertainty in relation 

to the total uncertainty, whereby both  and RHO are smaller. Hence, analyst geographical 

diversity and RHO are expected to have a negative relationship. 

4.2 Main Explanatory Variables 

 The key explanatory variable is the location diversity of analysts, constructed for each 

firm year. Figure A3 in Appendix C displays the US geographical distribution of analysts in 

2006. Not surprisingly, a large number of analysts are located in New York City. Figure A4 

shows the US distribution of headquarters of the listed firms in our sample in 2006, which is 

more dispersed than the analyst location distribution shown in Figure A3. Our location sample 

covers the period between 1994 and 2010, for which the location data has good coverage. Our 

main geographical classification is based on U.S. Metropolitan Statistical Areas (MSAs) and 

cities that are not located in a U.S. MSA (“non-MSA cities”).  

4.2.1 Construction of group location diversity measure 
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For each firm year, we pool all analysts following the same firm in the same year 

together and then divide them into different location groups based on the U.S. MSAs and non-

MSA cities in which they are located. We then calculate the Herfindahl-Hirschman Index for 

each firm year (𝐻𝐻𝐼𝑗,𝑡) as an inverse measure of geographical location diversity: 

           𝐻𝐻𝐼𝑗,𝑡 = ∑ (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑠𝑡𝑠 𝑖𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑞𝑗,𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑠𝑡𝑠𝑗,𝑡
)

2

𝑎𝑙𝑙 𝑞   ,                                  (4.2) 

where the subscripts j and t index firm and year, respectively. 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑠𝑡𝑠𝑗,𝑡 

is the total number of analysts producing forecasts for firm j in year t. Number of analysts in 

location qj,t is the number of analysts producing forecasts for firm j in year t in the qth location. 

The largest possible value of the HHI is 1.0, when all analysts are based in the same MSA or a 

non-MSA city. The lower the HHI, the more diverse the geographical location of analysts. 

Hence, the HHI is an inverse measure of diversity.  

4.2.2 Construction of “Other Location Diversity” measure (OHHI) 

Particularly useful for our analysis is an analyst-firm-year specific HHI, which we term 

OHHI, which for analyst i and firm j is the HHI based on the locations of prior co-analysts (i.e. 

those co-analysts who have forecasts published before the publication of analyst i’s last forecast 

in the same firm fiscal year under consideration),  

    𝑂𝐻𝐻𝐼𝑖,𝑗,𝑡 = ∑ (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑖𝑜𝑟 𝑐𝑜−𝑎𝑛𝑎𝑙𝑦𝑠𝑡𝑠 𝑖𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑞𝑗,𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑖𝑜𝑟 𝑐𝑜−𝑎𝑛𝑎𝑙𝑦𝑠𝑡𝑠𝑗,𝑡
)

2

𝑎𝑙𝑙 𝑞                               (4.3) 

𝑂𝐻𝐻𝐼𝑖,𝑗,𝑡 is the other location-Herfindahl-Hirschman Index for analyst i of firm j in year t. We 

exclude analyst i while computing this measure and co-analysts whose only forecast for the 

fiscal year is published after analyst i’s last forecast. 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑖𝑜𝑟 𝑐𝑜 −

𝑎𝑛𝑎𝑙𝑦𝑠𝑡𝑠𝑗,𝑡 is the total number of the prior co-analysts producing annual EPS forecasts for 

firm j in year t. 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑠𝑡𝑠 𝑖𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑞𝑗,𝑡
≠𝑖 is the number of the prior co-analysts 
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in the qth location where q is one of the U.S. MSAs or non-MSA cities. Similar to HHI, the 

lower the OHHI, the more diverse the geographical location of the prior co-analysts.  

4.2.3 Proxies for information quality 

Based on a strand of literature that suggests that geographical proximity is associated 

with better information quality (e.g., Malloy, 2005; Bae, Stulz, and Tan, 2008; and Jennings et 

al., 2017), we adopt two measures of an analyst’s geographical distance from firms. The first 

measure is the distance in kilometres between the analyst’s location and the business location 

of the firm being covered (“BUS DIS”). The other measure is the weighted average distance 

between the analyst’s location and 50 states, where the weights reflect the degree of relevance 

of the states for the operation of the firm being covered [“GEO DIS”] (García and Norli, 

2012).14 Based on BUS DIS and GEO DIS, we construct the following 3x2 distance measures 

to capture information quality of analysts: (1) the analyst’s geographical distance from the firm 

in question (2) the average of the analyst’s geographical distance from the peer firms, in the 

same 3-digit SIC industry as that of the firm under consideration, covered by the analyst, and 

(3) the average of the individual average distances of all the prior co-analysts from peer firms 

(in the same 3-digit industry as that of the firm under consideration) that they cover.  

The literature also shows that the degree of analyst coverage and industry experience 

explain forecasting performance (e.g., Bradley, Gokkaya, and Liu (2016); Merkley, Michaely, 

and Pacelli (2017)). Consistently, we expect that prior co-analysts’ coverage of peer firms, in 

the same industry, improves information quality of their forecasts for the firm under 

consideration. We thus compute the number of peer firms, in the same 3-digit SIC industry as 

                                                           
14 We obtain the latitude and longitude of firms’ business locations from (https://www3.nd.edu/~mcdonald/) on 

24 February 2019 and relevance of states for firms’ operation, up to year 2008, from Diego Garcia’s webpage 

(https://sites.google.com/site/financieru/resources/software). 
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that of the firm being forecast, covered by prior co-analysts, as a proxy for quality of signals 

of these prior co-analysts.   

We define other variables in Appendix A. All variables except count, time, and dummy 

variables are winsorized at 1% and 99% to minimize the impact of outliers and data errors.  

4.3 Relocation, Entry, and Exit Samples 

Our main tests are based on a sample which we call the Combined Sample. The sample 

is constructed by identifying firm-years in which a firm is affected by one of the following 

“events” induced by a triggering analyst: (i) an analyst following the firm changes his location 

(ii) a new analyst with no prior history in I/B/E/S starts covering a firm, or (iii) an analyst 

covering the firm ceases to have any record of coverage in I/B/E/S. Such relocation, entry, or 

exit events are not specific to any particular firm in the portfolio of firms covered by the 

triggering “event analyst”, and result in different changes to the OHHI of the co-analysts of 

such an event analyst in the firms that he covers. As we discuss below, a typical analyst in a 

given year in the Combined Sample is exposed to multiple such events associated with firms 

he covers (the mean is 10 and the median is 6). There are also multiple events per firm-year 

(mean of 2.3 and median of 2). As a result, there is significant within-analyst-year as well as 

within-firm-year variation in the change in the OHHI. Our empirical specification examines 

the association between the change in OHHI (the independent variable of interest) and the 

change in the analyst’s forecast error (IEER) from period t-1 to period t+1 for an analyst 

exposed to at least one event in period t. By exploiting within-analyst-year variation in changes 

or shocks to OHHI that are associated with events exogenous to a particular analyst, our 

approach therefore avoids standard endogeneity concerns that the choice of an analyst’s 

location and hence the OHHI could be correlated with information quality or location 

characteristics (for example, an analyst located farther from the cluster of co-analysts would 



22 

 

have high OHHI and may also be informationally disadvantaged, which could correlate with 

the analyst’s forecast error). Moreover, the induced within-firm-year variation in OHHI also 

absorbs firm-year specific factors that could affect forecast error. 

More specifically, the Relocation Sample, based on relocations of analysts from one 

MSA to another MSA, is constructed as follows. Suppose analyst i is recorded in MSA A in 

year t  and in MSA B in year t+1. We identify those firms which analyst i covers in year t-1 as 

event firms. The relocation event induces heterogenous changes in the OHHI of analysts 

covering an event firm from year t-1 to year t+1. There are 1,278 relocations in our sample. 

We observe a fairly even distribution of relocations between 1997 and 2006, except 2003 in 

which approximately 25% of relocations take place. About 56% of relocations are associated 

with job turnovers when analysts move from one brokerage house to another brokerage house. 

The Entry and Exit Sample consists of the entry and exit events of analysts either 

entering or leaving the I/B/E/S database. This sample is constructed as follows. For an entry, 

suppose analyst i first appears in the database in year t (event year). We identify those firms 

which analyst i covers in year t as event firms. For an exit, suppose year s is the last year in 

which analyst i appears in the database (event year). We identify those firms which analyst i 

covers in year s-1 as event firms. The entry and exit events induce heterogeneous changes in 

the OHHI of analysts covering an event firm from year s-1 to year s+1. There are 4,421 entry 

and exit events. The majority of them fairly spread between 1998 and 2008, except 2001 and 

2002 in which there are more events, accounting for approximately 10% and 11% of these 

events, respectively. This pattern is consistent with that documented in Derrien and Kecskés 

(2013). The Combined Sample combines the Relocation and the Entry and Exit Samples.  

4.4 Summary Statistics and Correlations 
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Table 1A reports the summary statistics of OHHI and OHHI (changes in OHHI) based 

on the Combined Sample. The prior co-analysts’ locations are fairly diversely distributed, with 

mean and median OHHI of 0.30 and 0.26. Noticeably, in relation to the average OHHI, the 

variation of OHHI within firm-year and within analyst year is quite substantial. The within-

firm-year mean and median of the range (i.e., maximum minus minimum) of OHHI are 0.16 

and 0.10, while the within-analyst-year mean and median of the range are 0.21 and 0.15. These 

represent substantial variation when compared with the mean (median) value of the OHHI of 

0.295 (0.264). A typical sample analyst is exposed to multiple events in a given year, with a 

mean of 10 and median of 6. The mean and median of the corresponding statistics for an 

average firm-year are 2.3 and 2, respectively.  

Table 1B shows other summary statistics. Forecast errors for the Combined Sample are 

generally smaller than those in the full sample, possibly because the analysts in the former 

sample have more experience. The median and mean error of the consensus forecasts are 0.29% 

and 1.16% in the full sample (0.21% and 0.88% in the Combined Sample), respectively. 

Meanwhile, the statistics of the absolute errors of the last forecasts of all analysts have a median 

of 0.21% and mean of 0.89% in the full sample (0.15% and 0.59% in the Combined Sample).15 

The reason why the statistics for individual forecasts are smaller than those for consensus 

forecasts is that there are a larger number of individual forecasts for firm years with larger 

coverage, and forecasts for firms with larger coverage tend to be more accurate. On the other 

hand, in both the full sample and the Combined Sample, the average difference between the 

mean of individual forecast absolute errors and the mean consensus absolute error for the same 

firm year (“mean(IERR) – ERR”) is positive, consistent with Jensen’s Inequality.  

                                                           
15 Our forecast error statistics are comparable to summary statistics reported in the literature. For example, 

Clement et al. (2011) report a median of the mean consensus absolute errors of 0.2%. Walther and Willis (2013) 

show a mean of the individual forecast absolute errors of 0.95%. 
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Other statistics are also similar to those reported in the literature. The statistics of 

experience variables are comparable to those in Bradley, Gokkaya, and Liu (2017). The 

statistics of coverage variables are in line with Clarke, Khorana, and Patel (2007), Soltes (2014), 

and Guan, Wong, and Zhang (2015). 

5. Results 

5.1 Location HHI and Common Uncertainty  

One of the basic premises of our analysis is that analysts’ signals are less correlated if 

their locations are more geographically dispersed (Hypothesis H1(i)). This is plausible because 

if they are more dispersed, analysts are likely to collect their information from different 

sources, and signals are more likely to be idiosyncratic. Analysts also are more likely to 

share/exchange information or incorporate each other’s views expressed in earnings conference 

calls if they are from the same region or familiar with each other, which could cause their 

signals to be more correlated.  

In Table A1 in Appendix D, we show that geographical location of analysts matters. 

Specifically, analyst forecasts are sensitive to news about the state in which the analyst is 

located, to the extent that this state is relevant for the firm’s operations (following Garcia and 

Norli (2012)). Results reported in the first two columns show that the total number of earnings 

forecasts an analyst makes for all the stocks he covers in a given week is positively related to 

the number of news stories related to the state in the previous week. Results reported in the last 

four columns show that an analyst’s forecast is less optimistic relative to those of other analysts 

covering the same firm for the same fiscal year if the number of risk- or uncertainty-related 

news stories for his state, relative to the total number of such stories in all 50 states in the 

previous week, is higher. These results suggest that location matters for analysts’ forecasting 

behavior, and so analysts from the same location are likely to have more correlated forecasts.  
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To test H1(i), we follow Barron et al. (1998) and, for each firm year, obtain an estimate 

of the ratio of the pairwise covariance of the analysts’ forecast errors (C) scaled by the overall 

uncertainly (V - the average of each analyst’s expected variance of earnings, conditional on his 

information).16 Following Equation (14) in Barron et al. (1998), we estimate 𝜌 =
𝐶

𝑉
, which the 

authors call Consensus, the ratio of common uncertainty to overall uncertainty. Since ρ is 

similar to a correlation coefficient, we take a Fisher transformation (Fisher, 1915, 1921) of ρ 

and regress the transformed measure, RHO, on HHI, with a number of firm-year level control 

variables, and firm and year fixed effects. The results are reported in the first four columns of 

Table 2. Our dependent variables are based on the last forecasts of all analysts in the firm’s 

fiscal year. The regressions reported in the first two columns are in levels for the full sample, 

while in the third and fourth columns, all variables are in first difference. In Column (2), we 

also control for the Fisher-transformed Consensus based on the first forecast of each analyst in 

the firm’s fiscal year, to control for other factors that could simultaneously affect both the HHI 

and the Consensus. The regression reported in the third column is for the full sample, while 

that in the fourth column is for the Combined Sample. In all four columns, the transformed ρ is 

positively and significantly related to the locational HHI (an inverse measure of analyst 

locational dispersion), consistent with H1(i). The economic magnitude of this relationship is 

also meaningful. For example, the coefficient of HHI in Column (1) suggests that one standard 

deviation reduction in HHI (0.234 in Table 1B) is associated with a decrease of 0.066 in RHO, 

which is around 10% of the mean of RHO (shown in Table 1B).    

 In the last four columns of Table 2, we report results of a related exercise. Here, we 

directly test whether location dispersion affects the mean absolute error of the consensus 

forecast (Hypothesis H1(ii)). Since the absolute error does not take negative values, we can 

                                                           
16 In Appendix B, we show that under plausible conditions, greater diversity translates to lower error covariance 

in our model setting even in the presence of learning.  
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mainly focus on a logarithmic transformation of the absolute error (ERR); however, we also 

report results for regressions in first difference. Control variables are the same as in the first 

four columns. Columns (5) and (6) report the results in levels, while for the results reported in 

Columns (7) and (8), all variables are in first difference. Results reported in Column (6) also 

control for the consensus error based on the first forecasts of all analysts in the same firm fiscal 

year. Consistent with Hypothesis H1(ii), we find that the HHI is positively and significantly 

related to the consensus error.  

5.2 Diversity and Individual Analyst Forecast Error 

Having shown the relationship between firm-level location diversity measure and (i) 

the pairwise correlation between individual analyst errors, as well as (ii) the mean consensus 

forecast error, we next turn to our main query: whether analysts take the prior forecasts of other 

analysts into account when making their own forecasts. As discussed in Section 2, there could 

be two types of reasons why the prior consensus forecast influences an analyst’s forecast. First, 

there could be career concern or reputation-related reasons for paying attention to and not 

deviating too much from the consensus forecast of prior analysts; second, if there is information 

content in the forecasts of prior analysts, there could be information-related reasons for taking 

cognizance of these prior forecasts. However, let alone establishing possible motives, even 

establishing that analysts influence each other is challenging (Cohn and Juergens, 2014). 

 The discussion leading to Hypothesis H2 says that if an analyst assigns some positive 

weight to the mean prior forecast of the co-analysts (equivalently, if his forecast is a weighted 

average of his own signal and the prior forecasts of co-analysts), then his forecast error will be 

affected by the standard deviation of the prior forecast noises of these co-analysts. If greater 

location diversity of the co-analysts is associated with lower covariance between their forecast 

errors, then location diversity of co-analysts will be negatively related to an analyst’s mean 
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absolute forecast error or IEER. Recalling that the OHHI is an inverse measure of locational 

diversity of the co-analysts, the forecast error will thus be positively related to OHHI. To test 

this hypothesis, we regress ΔIEER, the change in the absolute error of the last forecast of an 

individual analyst, on the corresponding ΔOHHI with analyst×year and year×firm fixed effects. 

By incorporating analyst-year fixed effects, we ensure that our results are not driven by a 

clustering of analysts with particular traits (relevant for forecast accuracy) into certain 

geographical regions or due to a particular analyst’s career concerns. 17  Moreover, 

incorporating firm-year fixed effects further absorbs factors related to a firm’s information 

environment that could affect forecast errors. 

 Table 3 presents the results. The first column presents results in levels for the Combined 

Sample, while Columns (2)-(7) present results in difference for the Relocation Sample, the 

Entry/Exit Sample and the Combined Sample. The variable of interest is OHHI in Column (1) 

and ΔOHHI in Columns (2)-(7). Other control variables (in differences from year t-1 to year 

t+1 in Columns (2)-(7)) are drawn from the literature. These comprise the time between the 

release date of analyst’s forecast and the data date of the earnings being forecast, the monthly 

cumulative stock returns from the data date of the last annual earnings to the date of the 

analyst’s forecast, the variance of the monthly stock returns for the past 12 months preceding 

the date of the analyst’s forecast, an indicator of a negative forecast, and the time since the 

analyst’s first forecast for the firm in question. For the results in difference, we also report a 

specification in which we include the change in the average distance of the locations of the co-

analysts from an analyst’s location (LN(CODIS)), and interact this variable with ΔOHHI. This 

is done to control for changes in the correlation between an analyst’s own forecast error and 

                                                           
17 For example, many brokerages are headquartered in the state of New York. This implies that any random firm 

is likely to have a higher proportion of analysts based in New York covering it, and so these New York-based 

analysts will have lower OHHI compared with analysts based elsewhere. If New York-based analysts are more 

accurate in their forecasts, we would find a positive association between OHHI and IERR.  
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those of the co-analysts due to the relocation, entry or exit events, which can affect the analyst’s 

forecast error as long as some weight is assigned to the mean forecasts of the co-analysts. 

In all regressions, standard errors are clustered at the analyst×year level. The coefficient 

of OHHI and ΔOHHI in Columns (1) and (4), respectively, for the Combined Sample are 

significant at the 1% level. The coefficient of ΔOHHI remains similarly positive and significant 

for the relocation and entry/exit subsamples. The other control variables have signs and 

significance that are generally consistent with those reported in the literature. The change in 

average distance from co-analysts has a significant negative sign, which is consistent with the 

possibility that the average correlation between the noise in the analyst’s signal and those of 

the co-analysts lowers the analysts forecast error (IEER).18  

5.3 Observational Learning 

We next test several implications that are unique to the learning hypothesis, as 

mentioned in Hypothesis H3. First, we test Hypothesis H3(i), which posits that an analyst is 

likely to assign a higher weight to co-analysts’ prior forecasts when the information quality of 

the signals of these latter analysts is better. We construct two measures of information quality 

based on the average geographical distance of these analysts from peer firms, in the same 3-

digit SIC industry as the firm under consideration, that they cover, and another measure based 

on the number of such peer firms that they cover. The measures of geographic distance are 

based both on the distance from the peer firm’s headquarter (“BUS DIS”), as well as the 

weighted average distance of the analyst’s location from all 50 states, with the weight being 

the relevance of the state for the peer firm’s business (“GEO DIS”), as described in section 

4.2.3. A larger average distance of the co-analysts suggests poorer information quality of the 

co-analysts, and thus, as predicted by Hypothesis 3(i), a smaller weight on the OHHI. 

                                                           
18 This can be readily seen from Equation (3.2) and Equation (A3) in Appendix B. 
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Consistently, in the first four columns of Table 4, we find that the interaction of ΔOHHI and 

the average distance of the co-analysts from the peer firms they cover (X*ΔOHHI) is negative 

and significant (at the 5 percent level in Columns (1), (3), and (4), and at the 10 percent level 

in Column (2)). Next, we argue that if analysts cover more similar firms, their forecasts as a 

group will be more informative, and hence the analyst will assign a higher weight to their 

forecasts, resulting in a higher sensitivity of individual forecast errors to OHHI. In Columns 

(5) and (6), we find that the interaction of ΔOHHI and the total number of peer firms covered 

by all the prior co-analysts (in hundreds) are positive and significant at the 1 percent level.  

In Table 5, we turn our attention to the information quality of an individual analyst. 

Information quality is measured in two ways: the distance of the analyst from the firm being 

covered, and the average distance of the analyst from all same 3-digit SIC peer firms that he 

also covers. When these distance measures are higher, we posit that the analyst’s information 

quality is poorer. Hypothesis 3(ii) suggests that the interactions of these information quality 

measures with ΔOHHI should be positive, since the analyst would assign more weight to the 

forecasts of co-analysts when his own information quality is poorer. This is what we find – the 

interactions of the distance measures with ΔOHHI are positive and significant at the 1 percent 

level in all eight columns of Table 5.19  

6. Conclusion 

Using US data for the 1994-2010 period, we document that when analysts following 

the same firm are more geographically diverse, their forecasts are less correlated and their 

consensus forecasts are more accurate. We further show that when the other analysts covering 

the same firm are more geographically spread, an analyst’s individual forecast is also more 

                                                           
19 While the coefficient of ΔOHHI itself is negative, it can be verified that the net effect of ΔOHHI (the sum of 

the coefficients of the first two terms in each column) becomes positive at slightly above 100 kilometres and 

reaches the estimate from Table 3 at around 1,400 kilometres (see Appendix E). 
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accurate. These results are consistent with the notion that higher analyst diversity is associated 

with more complete “cancelling out” of idiosyncratic components of their individual forecasts, 

whereby both consensus and individual forecasts have smaller errors. This is similar to the 

diversification effect in the portfolio theory.  

The results suggest that analysts assign positive weights to the mean forecasts of other 

analysts, which is consistent with both uninformed herding and observational learning, 

whereby an analyst’s forecast is a weighted average of the mean prior forecast of other analysts 

and his own signal. We find strong evidence for the latter type of behavior. We document that 

when an analyst is more distant from sources of information, the analyst puts more weight on 

the forecasts of co-analysts; similarly, when the co-analysts are closer to sources of information 

or cover more stocks from the same industry as a particular firm, an analyst assigns more 

weight to their forecasts in making his own forecast. Overall, our results suggest that analysts 

incorporate peer analyst forecasts into their own forecasts to generate more informationally 

efficient forecasts. 
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Table 1A. OHHI (Prior Co-Analysts’ Location Diversity) and Event Exposure Summary Statistics  

The table reports summary statistics of OHHI, OHHI (change in OHHI) and the number of events (i.e., 

relocations, entries and exits of analysts), based on the Combined Sample, consisting of those analyst-firm-years 

affected by these events. The event analysts are excluded. OHHI is the Herfindahl-Hirschman Index of the 

geographical locations, based on the U.S. Metropolitan Statistical Areas (MSAs) and cities that are not in a U.S. 

MSA., of all prior co-analysts who have annual EPS forecasts published before the publication of analyst i’s last 

annual EPS forecast in the same firm fiscal year. To be included in the sample, we require that the data for 

constructing all the variables used for an observation are available. When there are multiple forecasts with multiple 

activations on the same date in the I/B/E/S database, we take the forecast of the latest activation date. 

 Mean Median S.D. 

OHHI 0.295 0.264 0.151 

OHHI 0.003 0.000 0.150 

OHHI > 0 0.103 0.067 0.118 

OHHI < 0 -0.098 -0.068 0.105 

Range of OHHI within firm year 0.161 0.103 0.189 

S.D. of OHHI within firm year 0.069 0.042 0.080 

Range of OHHI within analyst year 0.205 0.154 0.220 

S.D. of OHHI within analyst year 0.106 0.083 0.087 

Number of relocations, entries and exits per firm year 2.309 2.000 1.982 

Number of relocations, entries and exits per analyst year 9.892 6.000 10.941 

 

 

 

  



35 

 

Table 1B. Other Summary Statistics  

The table includes summary statistics of the main dependent and independent variables we use in this paper. 

Appendix A provides the definitions of the variables. The sample period is from 1994 to 2010. To be included 

in the sample, we require that the data for constructing all the variables used for an observation are available. 

When there are multiple forecasts with multiple activations on the same date in the I/B/E/S database, we take 

the forecast of the latest activation date. The Combined Sample, consists of those analyst-firm-years affected 

by Relocation, Entry, or Exit. * indicates a firm-level variable. All other variables (without *) are individual-

level variables. 

 Full Sample  Combined Sample 

VARIABLES Mean Median S.D.  Mean Median S.D. 

Panel A: Main Variables 

*ERR (consensus) 1.163 0.291 2.895  0.898 0.216 2.571 

  IERR (individual) 0.889 0.210 2.593  0.590 0.154 1.464 

*Jensen’s Inequality:  

  [mean(IERR)j,t – ERRj,t] 0 
0.166 0.009 0.773  0.152 0.018 0.631 

*RHO 0.659 0.390 0.917  0.530 0.323 0.713 

*HHI 0.453 0.388 0.234  0.382 0.344 0.175 

Panel B: Distance Variables 

BUS DIS, in km 1698 1553 865  1650 1193 1441 

GEO DIS, in km 1615 2637 763  1603 1535 1005 

BUS IDIS, in km 1718 1580 896  1697 1547 1064 

GEO IDIS, in km 1624 1641 770  1615 1631 832 

CODIS, in km 1155 896 1014  1141 893 947 

Panel C: Control Variables in Tables 2-5 

  FIRM_EXP, in years 3.230 1.996 3.592  5.178 4.115 3.811 

  LN(HORIZON) 4.173 4.205 0.866  4.184 4.234 0.877 

  RETTODATE 0.021 0.040 0.353  0.023 0.042 0.351 

  SIGMA 0.111 0.095 0.063  0.108 0.094 0.059 

  LOSS 0.089 0.000 0.285  0.072 0.000 0.258 

Panel D: Additional Control Variables in Table 2 

*COVERAGE 9 7 9  9 7 9 

  NFIRM 18 16 12  18 17 10 

  NSIC3 6 5 4  6 5 4 

  FORECAST_EXP, in years 7.167 5.911 5.573  9.067 7.984 5.408 

*LN(SIZE) 7.760 7.700 1.737  7.584 7.457 1.649 

*LN(BM) -0.955 -0.885 0.682  -0.899 -0.837 0.680 

*RET 0.014 0.013 0.036  0.012 0.011 0.036 

*PROFIT 0.129 0.144 0.220  0.121 0.137 0.208 

*VOL_ROE 0.076 0.007 0.321  0.059 0.007 0.220 

*EPS_SKEW 0.000 0.000 0.016  0.000 0.001 0.018 

  SP500 0.401 0.000 0.490  0.566 1.000 0.496 
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Table 2. Analyst Location Diversity (HHI), Ratio of Average Covariance to Total Uncertainty (RHO) and Absolute Error of Mean Consensus Forecasts (LN(ERR)) 

The regression sample in Columns (1)-(3) and (5)-(7) is the full sample, while that in Columns (4) & (8) is the Combined Sample. In Columns (1) & (2), the dependent variable 

is RHO based on a Fisher transformation (Fisher 1915, 1921). RHO measures the degree to which analysts’ beliefs covary relative to the overall level of uncertainty in a firm 

year. The pre-transformed RHO is estimated following Barron et al. (1998) as (SE – D/N)/[(1 – 1/N) D + SE], where SE is the squared difference between the mean of the last 

annual EPS forecasts of all analysts, who make the forecasts for firm j in year t,  and the actual EPS being forecasted (both scaled by the market share price of the firm as of 

the end of the previous fiscal year); D is the variance of the individual scaled forecast of the analysts; N is the number of the analysts (Equation (16) in Barron et al. 1998). In 

Columns (5) & (6), the dependent variable is the natural logarithm of 1 plus the absolute error of the mean of the last forecasts of all analysts (“mean consensus”), LN(ERR), 

for firm j in fiscal year t. In Columns (3), (4), (7) & (8), all variables are in first difference. HHI is the Herfindahl-Hirschman Index of all analysts, who make the forecasts for 

firm j in fiscal year t, for their geographical locations, based on the U.S. Metropolitan Statistical Areas (MSAs) and cities where the city is not in a U.S. MSA. COVERAGE is 

the number of the analysts in a firm fiscal year. FIRST ERR [FIRST RHO] is the same as ERR [RHO], except that it is based on the first forecasts of the analysts.  For brevity, 

the results of other control variables are not reported. Estimated coefficients and the robust standard errors (in parentheses) are reported. ***, **, and * indicate the 1%, 5%, 

and 10% levels of significance, respectively. 

Sample Full Full Full Combined Full Full Full Combined 

 Level Level 
First  

Difference 

First  

Difference 
Level Level 

First  

Difference 

First  

Difference 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  RHO RHO RHO RHO LN(ERR) LN(ERR) LN(ERR) LN(ERR) 

HHI 0.282*** 0.191*** 0.251*** 0.229** 0.127*** 0.061*** 0.080** 0.092* 
 (0.044) (0.036) (0.064) (0.107) (0.023) (0.012) (0.029) (0.053) 

LN(FIRST ERR)      0.545***   

      (0.019)   

FIRST RHO  0.337***       
  (0.017)       

COVERAGE -0.018*** -0.015*** -0.026*** -0.018*** 0.003*** -0.001 0.004** 0.004* 
 (0.002) (0.002) (0.004) (0.003) (0.001) (0.001) (0.001) (0.002) 

Year & Firm Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 

Year & Firm S.E. Cluster Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 34,722 34,714 28,505 11,919 33,773 33,773 27,865 11,962 

Within R2 0.018 0.131 0.014 0.017 0.215 0.583 0.100 0.100 
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Table 3. Prior Co-Analysts’ Location Diversity (OHHI) and Absolute Error of Individual Forecasts (IEER) 

The sample is Combined Sample. The relocating, entering, and exiting analysts are excluded. The dependent variable is based on the absolute error of analyst i’s last annual 

EPS forecast for firm j in year t (IERR). In Column (1), the dependent variable is the natural logarithm of 1 plus IERR. In Columns (2) - (7), the dependent variable is the 

difference in IERR. OHHI is the Herfindahl-Hirschman Index of the geographical locations, based on the U.S. Metropolitan Statistical Areas (MSAs) and cities that are not in 

a U.S. MSA., of all prior co-analysts (i.e., those other analysts who have annual EPS forecasts published before the publication of analyst i’s last annual EPS forecast in the 

same firm fiscal year).  LN(CODIS) is the natural logarithm of 1 plus the average distance (in km) of analyst i’s city from the cities of the prior co-analysts. The other variables 

are defined in Appendix A. Explanatory variables are at the level (indicated in in square brackets) in Column (1) and in difference () in Columns (2) – (7). Estimated coefficients 

and the robust standard errors (in parentheses) are reported. ***, **, and * indicate the 1%, 5%, and 10% levels of significance, respectively. 

Sample: Combined Combined Combined Relocation Relocation Entry & Exit Entry & Exit 

Regression: Level Difference Difference Difference Difference Difference Difference 

  [LN(IERR)] IERR IERR IERR IERR IERR IERR 

  (1) (2) (3) (4) (5) (6) (7) 

[OHHI] ΔOHHI 0.187*** 0.556*** 0.535*** 0.545*** 0.557*** 0.730*** 0.698*** 

 (0.016) (0.047) (0.049) (0.101) (0.107) (0.075) (0.079) 

ΔOHHI*ΔLN(CODIS)   -0.015  0.002  0.007 

   (0.021)  (0.043)  (0.027) 

ΔLN(CODIS)   -0.013**  -0.028**  -0.024*** 

   (0.005)  (0.012)  (0.008) 

[LN(FIRM_EXP)] ΔLN(FIRM_EXP) 0.011*** -0.004* -0.004 0.004 0.004 0.001 0.002 

 (0.002) (0.002) (0.003) (0.004) (0.004) (0.003) (0.003) 

[LN(HORIZON)] LN(HORIZON) 0.086*** 0.130*** 0.131*** 0.112*** 0.115*** 0.134*** 0.133*** 

 (0.002) (0.004) (0.004) (0.006) (0.007) (0.004) (0.005) 

[RETTODATE] RETTODATE 0.100*** 0.205*** 0.198*** 0.140*** 0.136*** 0.257*** 0.246*** 

 (0.005) (0.013) (0.014) (0.035) (0.036) (0.022) (0.023) 

[SIGMA] SIGMA  0.674*** 1.619*** 1.567*** 2.067*** 2.208*** 1.623*** 1.472*** 

 (0.054) (0.153) (0.157) (0.362) (0.387) (0.255) (0.241) 

[LOSS] LOSS 0.101*** 0.198*** 0.168*** -0.001 0.013 0.143* 0.092 

 (0.015) (0.044) (0.045) (0.103) (0.106) (0.080) (0.083) 

CONSTANT -0.270*** 0.228*** 0.224*** 0.183*** 0.186*** 0.242*** 0.237*** 

 (0.019) (0.002) (0.003) (0.007) (0.007) (0.003) (0.004) 

Year×Firm Fixed Effects Yes Yes Yes Yes Yes Yes Yes 

Year×Analyst Fixed Effects Yes Yes Yes Yes Yes Yes Yes 

Year×Analyst S.E. Clusters Yes Yes Yes Yes Yes Yes Yes 

Observation 124,854 127,484 113,813 31,578 28,134 92,719 82,771 

Adjusted R2 0.672 0.600 0.600 0.620 0.621 0.656 0.659 
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Table 4. OHHI and IEER: Signal Quality of Prior Co-Analysts  

The sample is the Combined Sample. The dependent variable (IERR) is the change (from year t-1 to year t+1) in the absolute error of the last forecast of analyst i covering firm j, where firm j is a firm 

affected by a relocation, entry or exit event in year t. The relocating, entering, and exiting analysts are excluded.  indicates a variable in difference (year t+1 value minus year t-1 value). OHHI is the 

Herfindahl-Hirschman Index of the geographical locations, based on the U.S. Metropolitan Statistical Areas (MSAs) and cities that are not in a U.S. MSA., of all prior co-analysts (i.e., those generating their 

forecasts for firm j in the same fiscal year prior to firm i’s last forecast).  In Columns (1)-(4), the independent variable X is the average distance of all prior co-analysts of analyst i from all peer firms of firm 

j that they cover. Peer firms are other firms in the same 3-digit SIC industry as firm j. In Columns (1)-(2), we first compute the individual average distance (in km) between each prior co-analyst and the 

business location of all peer firms covered by that analyst. We then take the average of the individual average distance of all the prior co-analysts. X [“BUS IDIS”] is the logarithm of 1 plus the average of 

the individual average distance. In Columns (3)-(4),   each co-analyst’s distance from a peer firm of firm j that he covers is a weighted average distance from all 50 states, for which the weight is the degree 

of relevance of the state for the business of each peer firm covered by that analyst. The remaining steps for computing X [“GEO IDIS”] are the same as those for calculating X[“BUS IDIS”] in Columns (1)-

(2). In Columns (5)-(6), X [“ICOVERAGE”] is the total number of other peer firms (in hundreds) of firm j in the same SIC3 industry, covered by all the prior co-analysts of analyst i. LN(CODIS) is the 

natural logarithm of 1 plus the average distance (km) of analyst i’s city from the cities of the prior co-analysts. Estimated coefficients and the robust standard errors (in parentheses) are reported. ***, **, and 

* indicate the 1%, 5%, and 10% levels of significance, respectively. 

X: 
Peer firms’ 

BUS IDIS 

Peer firms’ 

BUS IDIS 

Peer firms’ 

GEO IDIS 

Peer firms’ 

GEO IDIS 

Peer firms’ 

ICOVERAGE 

Peer firms’ 

ICOVERAGE 

 IERR IERR IERR IERR IERR IERR 

 (1) (2) (3) (4) (5) (6) 

X*OHHI -0.110** -0.102* -0.121** -0.106** 0.159*** 0.151*** 
 (0.053) (0.055) (0.051) (0.054) (0.047) (0.049) 

OHHI 1.186*** 1.079*** 1.226*** 1.086*** 0.358*** 0.358*** 
 (0.355) (0.373) (0.345) (0.361) (0.060) (0.063) 

X -0.059*** -0.061*** -0.059*** -0.059*** -0.239*** -0.233*** 
 (0.009) (0.010) (0.009) (0.009) (0.016) (0.017) 

OHHI*LN(CODIS)  0.064  0.029  -0.010 

 
 (0.120)  (0.110)  (0.027) 

OHHI*LN(CODIS)*X  -0.030  -0.023  0.023 

 
 (0.025)  (0.023)  (0.042) 

LN(CODIS)*X  -0.002  0.003  -0.010 

  (0.006)  (0.005)  (0.007) 

LN(CODIS)  -0.014  -0.039  -0.004 
  (0.039)  (0.033)  (0.007) 

Other Controls Yes Yes Yes Yes Yes Yes 

X*Other Controls Yes Yes Yes Yes Yes Yes 

Year×Firm Fixed Effects Yes Yes Yes Yes Yes Yes 

Year×Analyst Fixed Effects Yes Yes Yes Yes Yes Yes 

Year×Analyst S.E. Clusters Yes Yes Yes Yes Yes Yes 

Observation 88,386 87,612 78,493 77,754 127,484 113,813 

Adjusted R2 0.653 0.652 0.615 0.615 0.602 0.602 
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Table 5. OHHI and IEER: Signal Quality of Analyst  

The sample is the Combined Sample. The dependent variable (IERR) is the change (from year t-1 to year t+1) in the absolute error of the last forecast of analyst i covering firm j, where firm j is a firm 

affected by a relocation, entry or exit event in year t. The relocating, entering, and exiting analysts are excluded.  indicates a variable in difference (year t+1 value minus year t-1 value). OHHI is the 

Herfindahl-Hirschman Index of the geographical locations, based on the U.S. Metropolitan Statistical Areas (MSAs) and cities that are not in a U.S. MSA., of all prior co-analysts (i.e., those generating their 

forecasts for firm j in the same fiscal year prior to firm i’s last forecast). LN(D) is the logarithm of 1 plus the distance (in km) between the analyst’s city and the firm’s business location [“BUS DIS”] 

in Columns (1) & (2), and the weighted average of the distance between the analyst’s city and 50 states [“GEO DIS”] in Columns (3) & (4), for which the weight is the degree of state’s relevance 

for the firm’s business. In Columns (5)-(6) and (7)-(8), we replace the location of the firm being forecast in Columns (1)-(2) and (3)-(4) by the locations of the other peer firms, in the same 3-digit 

SIC industry as that of the firm under consideration, covered by the analyst and compute the average distance of the analyst’s city from these peer firms. LN(CODIS) is the natural logarithm of 1 

plus the average distance (km) of analyst i’s city from the cities of the prior co-analysts. Estimated coefficients and the robust standard errors (in parentheses) are reported. ***, **, and * indicate 

the 1%, 5%, and 10% levels of significance, respectively. 

Distance of analyst’s city from: 
Firm’s 

BUS DIS 

Firm’s 

BUS DIS 

Firm’s 

GEO DIS 

Firm’s 

GEO DIS 

Peer Firms’ 

BUS IDIS 

Peer Firms’ 

BUS IDIS 

Peer Firms’ 

GEO IDIS 

Peer Firms’ 

GEO IDIS 
 IERR IERR IERR IERR IERR IERR IERR IERR 

 (1) (2) (3) (4) (5) (6) (7) (8) 

LN(D)*OHHI 0.221*** 0.191*** 0.363*** 0.503*** 0.196*** 0.162*** 0.268*** 0.395*** 

 (0.062) (0.062) (0.092) (0.106) (0.056) (0.056) (0.077) (0.099) 

OHHI -1.031** -0.825* -2.118*** -3.144*** -0.860** -0.626 -1.421** -2.362*** 

 (0.441) (0.441) (0.665) (0.768) (0.396) (0.398) (0.557) (0.717) 

LN(D) 0.053*** 0.052*** 0.034 0.044 0.039** 0.040** -0.008 -0.007 

 (0.019) (0.019) (0.021) (0.029) (0.016) (0.016) (0.021) (0.026) 

OHHI*LN(CODIS)  0.001  0.026  -0.029  0.214 

  (0.279)  (0.453)  (0.227)  (0.405) 

OHHI*LN(CODIS)*LN(D)  -0.001  -0.004  0.003  -0.030 

  (0.040)  (0.063)  (0.033)  (0.056) 

LN(CODIS)*LN(D)  -0.031***  -0.036**  -0.027***  -0.014 

  (0.010)  (0.015)  (0.008)  (0.015) 

LN(CODIS)  0.211***  0.261**  0.185***  0.096 

  (0.069)  (0.105)  (0.056)  (0.110) 

Other Controls Yes Yes Yes Yes Yes Yes Yes Yes 

LN(D)*Other Controls Yes Yes Yes Yes Yes Yes Yes Yes 

Year×Firm Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 

Year×Analyst Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 

Year×Analyst S.E. Clusters Yes Yes Yes Yes Yes Yes Yes Yes 

Observation 107,439 106,874 89,008 88,016 105,487 104,936 86,119 85,184 

Adjusted R2 0.608 0.607 0.545 0.544 0.609 0.608 0.544 0.542 
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Appendix A. Variable Definitions  

This appendix provides the variable definitions in alphabetic order. Subscripts i, j, and t (s) index analysts, firms, time, 

respectively. * indicates a control variable without tabulated results.  

BIAS RELATIVE TO MEAN(MEDIAN) CONSENSUSi,j,t: the difference between analyst i’s last annual EPS forecast and 

the mean(median) of last annual EPS forecasts of all analysts who make EPS forecast for firm j in year t, scaled by the 

share price of the firm as of the end of the previous fiscal year. (Data Sources: I/B/E/S and CRSP) 

BUS DIS (DISTANCE FROM FIRM’S BUSINESS LOCATION)i,j,t: the distance between analyst i’s city and the business 

location of firm j. (Data Source: Nelson’s Directories and Bill McDonald’s website https://www3.nd.edu/~mcdonald/) 

BUS IDIS (DISTANCE FROM PEER FIRMS’ BUSINESS LOCATION)i,j,t: the distance between analyst i’s city and the 

average business location of other peer firms covered by the analyst in the same 3-digit SIC industry as firm j being 

forecast. (Data Source: Nelson’s Directories and Bill McDonald’s website https://www3.nd.edu/~mcdonald/) 

CODISi,j,t: the average distance of analyst i’s city from the cities in which all prior co-analysts are located. Prior co-

analysts are those other analysts who have annual EPS forecasts published before publication of analyst i’s last annual 

EPS forecast in the same firm fiscal year (firm j year t). 

COVERAGEj,t: the number of analysts covering firm j for fiscal year t. (Data Source: I/B/E/S)  

ERRj,t: =
|𝐹−𝐴|

𝑃
× 100, where F is the last mean annual EPS (earnings per share) forecast of all analysts for firm j in year 

t. A is the actual value of the EPS being forecast. P is the market share price of firm j as of the end of the last fiscal year. 

(Data Sources: I/B/E/S and CRSP) 

*EPS_SKEWj,t: the difference between the mean and median of EPS, scaled by the market share price for the end of 

fiscal year t-1 for firm j for the period between fiscal year t-4 and fiscal year t + 4, excluding fiscal year t. (Data Source: 

I/B/E/S) 

FIRST ERRj,t: =
|𝐹−𝐴|

𝑃
× 100, where F is the first mean annual EPS (earnings per share) forecast of all analysts for firm 

j in year t. A is the actual value of the EPS being forecast. P is the market share price of firm j as of the end of the last 

fiscal year. (Data Sources: I/B/E/S and CRSP) 

FIRST RHOj,t: =
1

2
𝑙𝑛 (

1+𝜌

1−𝜌
) , where 𝜌 =

𝑆𝐸−
𝐷

𝑁

(1−
1

𝑁
)𝐷+𝑆𝐸

 where SE is the squared difference between the mean of the first 

annual EPS forecasts of all analysts, who produce forecasts for firm j in year t, and the actual value of EPS being 

forecasted, scaled by the market share price of the firm as of the end of the previous fiscal year. D is the variance of the 

individual scaled forecasts of the analysts. N is the number of the analysts. (Data Sources: I/B/E/S and CRSP) 

FNUMi,t: analyst i’s weekly number of annual EPS forecasts. (Source: I/B/E/S) 

GEO DIS (DISTANCE FROM FIRM’S WEIGHTED LOCATIONS)i,j,t: the distance between analyst i’s city and the 

weighted average of relevant states of firm j, where the weight is the degree of relevance of the state for the firm. 

(Data source: Nelson’s Directories and Diego Garcia’s webpage 

(https://sites.google.com/site/financieru/resources/software)) 

GEO IDIS (DISTANCE FROM PEER FIRMS’ WEIGHTED LOCATIONS)i,j,t: the distance between analyst i’s city and 

the average of the weighted average of relevant states of other peer firms covered by the analyst in the same 3-digit 

SIC industry as firm j, where the weight is the degree of relevance of the state for the peer firm. (Data source: 

Nelson’s Directories and Diego Garcia’s webpage (https://sites.google.com/site/financieru/resources/software)) 

𝐻𝐻𝐼𝑗,𝑡: = ∑ (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑠𝑡𝑠 𝑖𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑞𝑗,𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑠𝑡𝑠𝑗,𝑡
)

2

𝑎𝑙𝑙 𝑞 , where 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑠𝑡𝑠𝑗,𝑡 is the total number of analysts 

producing annual EPS forecasts for firm j in year t. Number of analysts in location qj,t is the number of analysts 

producing the annual EPS forecasts in the qth location where q is one of the U.S. Metropolitan Statistical Areas (MSAs) 

or a city which is not in a U.S. MSA. (Data Sources: I/B/E/S, Nelson’s Directories) 

ICOVERAGEi,j,t: the total number of other peer firms (in hundred), in the same 3-digit SIC industry as that of firm j, 

covered by all prior co-analysts who have annual EPS forecasts published before publication of analyst i’s  last annual 

EPS forecast in the same firm fiscal year (firm j year t). (Data Source: I/B/E/S) 

IERRi,j,t: the absolute error of individual forecasts, estimated as the absolute difference between analyst i’s  last annual 

EPS forecast (for firm j in year t) and the actual value of EPS being forecast, scaled by the market share price of firm j 

as of the end of the last fiscal year. (Data Sources: I/B/E/S and CRSP) 

*LN(BMj,s-1): the natural logarithm of firm j’s book value of equity divided by its market capitalization at the end of 

fiscal year s-1, i.e., LN(BM) = ln(ceq/(csho × prcc_f)), used as a control variable in year t. (Data Source: Compustat) 
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LN(FIRM_EXPi,j,t): the natural logarithm of 1 plus the number of days since the release day of the first annual EPS 

forecast for firm j made by analyst i. (Data Source: I/B/E/S) 

*LN(FORECAST_EXPi,t): the natural logarithm of 1 plus the number of days since the release day of the first annual 

EPS forecast made by analyst i. (Data Source: I/B/E/S) 

LN(HORIZONi,j,t): the natural logarithm of 1 plus the number of days between the release date of analyst i’s earnings 

forecast for firm j and the data date of the realized earnings being forecast. (Data Source: I/B/E/S) 

*LN(SIZEj,s-1): the natural logarithm of firm j’s market capitalization at the end of fiscal year s-1, i.e., LN(SIZE) = 

ln(csho × prcc_f), used as a control variable in year t. (Data Source: Compustat) 

LOSSi,j,t:  an indicator that equals 1 if the forecast (for firm j in year t) made by analyst i is negative and equals 0 

otherwise. (Data Source: I/B/E/S) 

NEWSNUMi,s-1: the number of news stories about the state in which analyst i is located in the previous week. (Data 

Source: Bloomberg) 

*NFIRMi,t: the number of firms for which analyst i generates annual EPS forecasts in fiscal year t. (Data Source: I/B/E/S) 

*NSIC3i,t: the number of 3-digit SIC industries for which analyst i makes annual EPS forecasts in fiscal year t. (Data 

Source: I/B/E/S) 

𝑂𝐻𝐻𝐼𝑖,𝑗,𝑡: = ∑ (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑖𝑜𝑟 𝑐𝑜−𝑎𝑛𝑎𝑙𝑦𝑠𝑡𝑠 𝑖𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑞𝑗,𝑡

≠𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑖𝑜𝑟 𝑐𝑜−𝑎𝑛𝑎𝑙𝑦𝑠𝑡𝑠𝑗,𝑡
≠𝑖 )

2

𝑎𝑙𝑙 𝑞 , where 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑖𝑜𝑟 𝑐𝑜 − 𝑎𝑛𝑎𝑙𝑦𝑠𝑡𝑠𝑗,𝑡
≠𝑖  is the 

total number of other non-i analyst who have annual EPS forecasts published before publication of analyst i’s last annual 

EPS forecast in the same firm fiscal year (i.e., firm j year t). 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑠𝑡𝑠 𝑖𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑞𝑗,𝑡
≠𝑖  is the number of 

prior co-analysts in the qth location where q is one of the U.S. Metropolitan Statistical Areas (MSAs) or a city which is 

not in a U.S. MSA. (Data Sources: I/B/E/S, Nelson’s Directories) 

*PROFITj,s-1: the operating income of firm j for fiscal year s-1 over the book value of equity as of the end of fiscal year 

t-2, i.e., PROFIT = ib/lagged ceq, used as a control variable in year t. (Data Source: Compustat) 

*RETj,s-1: the average monthly stock returns for firm j for the past 12 months in relation to the date of the last actual 

annual earnings in year s-1, used as a control variable in year t. (Data Sources: I/B/E/S and CRSP) 

RETTODATEi,j,t: the cumulative stock returns (using monthly data) for firm j between the data date of the last annual 

earnings and the date on which the earnings forecast made by analyst i is released. (Data Source: I/B/E/S) 

𝑅𝐻𝑂𝑗,𝑡: =
1

2
𝑙𝑛 (

1+𝜌

1−𝜌
) , where 𝜌 =

𝑆𝐸−
𝐷

𝑁

(1−
1

𝑁
)𝐷+𝑆𝐸

 where SE is the squared difference between the mean of the last annual EPS 

forecasts of all analysts, who make forecasts for firm j in year t, and the actual value of EPS being forecasted, scaled by 

the market share price of the firm as of the end of the previous fiscal year. D is the variance of the individual scaled 

forecast of the analysts. N is the number of analysts. (Data Sources: I/B/E/S and CRSP) 

RISK_NEWSNUMi,j,s-1 (in 10,000s): the number of news stories about the state in which analyst i is located that mention 

terms associated with risk/uncertainty in the previous week, scaled by the total number of risk/uncertainty news stories 

for all 50 states; the variable takes a value of 0 when the state of analyst i’s location is not a relevant state for firm j 

(being forecast). 

RISK_NEWSNUM_GROWTHi,j,s-1 is the growth of RISK_NEWSNUM to the previous week from the average of the 

immediate prior 4 weeks, and takes a value of 0 when the state of analyst i’s location is not a relevant state for  firm j 

(being forecast). 

SIGMAi,j,t: the variance of the raw monthly stock returns for firm j for the past 12 months in relation to the month in 

which the EPS forecast (for firm j made by analyst i) is released. (Data Sources: I/B/E/S and CRSP) 

*SP500i,j,t: an indicator that equals 1 if firm j is in the S&P 500 index when the forecast, made by analyst i, is released 

and equals 0 otherwise. (Data Source: CRSP) 

*VOL_ROEj,s-1: the variance of the residuals from an AR(1) model for firm j’s annual ROE using the past 10-fiscal-year 

series, used as a control variable in year t. ROE is calculated as the ratio of earnings to the beginning book value of 

equity, i.e., ROE = ib/lagged ceq. (Data Source: Compustat) 
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Appendix B: A Model of Analyst Learning 

 

 

We build on the model introduced in Section 3 to incorporate individual analyst learning from 

the forecasts of other analysts. 

Individual Analyst Forecast Error and Location Diversity 

Let the forecasts of all analysts observed by analyst i before making his own forecast be given 

by: 

                  𝑥𝑤𝑡 = 𝑓 + 𝜖𝑤𝑡
−  ,   𝑤 ≠ 𝑖.                                                                                        (A1)                                                                                                                        

Analyst i then observes his own signal 𝑓 + 𝜖𝑖𝑡, and posts his own forecast.  The covariance of 

𝜖𝑖𝑡 with 𝜖𝑤𝑡
− , w ≠ i,  𝐶𝑜𝑣(𝜖𝑤𝑡

− , 𝜖𝑖𝑡), is denoted by 𝜎𝑖𝑤
′ . For w, k ≠ i, assume that 𝐶𝑜𝑣(𝜖𝑤𝑡

− , 𝜖𝑘𝑡
− ) = 𝑐.  

We assume 𝜎𝑖𝑤
′ ≤ 𝑐. In our setting, the covariance structure of errors directly reflects 

the diversity of analyst locations. We can interpret c to reflect the average diversity of the 

location of analysts whose forecasts are available to analyst i when he makes his last forecast 

in a firm-year.  Greater diversity corresponds to lower c.  

The variance of 𝜖𝑖𝑡 is assumed to be σi
2, and we assume that the variance of 𝜖𝑤𝑡

−  is the 

same for all w, and is denoted by s. The inverse of these parameters captures, respectively, the 

informativeness, or precision, of analyst i’s signal and that of the other analyst following the 

firm. The distinction is useful when we consider the effect of a change in the quality of analyst 

i’s own signal or that of the average quality of the signal of the other analysts as a group on the 

weight analyst i assigns to the mean forecast of other analysts. 

We assume that analyst i, in making the last forecast, assigns a weight (1-αi) to the mean 

forecast of the previous round of all other analysts, and a weight αi to his own signal (or his 

own Bayesian update of forecast, given his signal, that is, what his forecast would be if he did 
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not observe other analysts’ forecasts) in the last round. We show that the analyst can improve 

forecast accuracy by choosing an appropriate value of αi.  

Then, an analyst’s forecast is: 

            𝑥̂𝑖𝑡 = 𝑓 + 𝛼𝑖𝜖𝑖𝑡 + (1 − 𝛼𝑖)
∑ ∈𝑤𝑡

−
𝑤≠𝑖

𝑁−1
                                                                       (A2) 

It is straightforward to show that the standard deviation of 𝑥̂𝑖𝑡 is given by 𝜎̂𝑖, where 

            𝜎̂𝑖
2 = 𝜎𝑓

2 + (𝜎𝑖
2𝛼𝑖

2 + 𝑠
(1−𝛼𝑖)2

𝑁−1
) + (1 − 𝛼𝑖) (2𝛼𝑖𝜎𝑖𝑤

′ + 𝑐(1 − 𝛼𝑖)
𝑁−2

𝑁−1
)            (A3)                                                    

The MAD of analyst i’s last forecast of the round (henceforth IERR – individual error) 

is given by Equation (3.2), with 𝜎 = 𝜎̂𝑖. The IERR is increasing in the covariance c. If diversity 

lowers the covariance (Hypothesis H1), an analyst’s forecast accuracy will improve with 

greater diversity of the other analysts. Differentiating the expression for MAD in Equation (3.2) 

with respect to c, and noting that, for the individual analyst,  in that expression are replaced 

by 𝜎̂𝑖 , respectively, we have:20 

𝜕(𝐼𝐸𝐸𝑅)

𝜕𝑐
=

𝜕(𝐼𝐸𝐸𝑅)

𝜕𝜎̂𝑖

𝜕𝜎̂𝑖

𝜕𝑐
=

√2

√𝜋

1

2𝜎̂𝑖
(1 − 𝛼𝑖)2 𝑁−2

𝑁−1
> 0 𝑖𝑓 1 > 𝛼𝑖 .                                        (A4) 

This leads to Hypothesis 2. 

 

Hypothesis 2 was derived under the assumption of a fixed αi. This is appropriate if the 

choice of the weight is determined by factors outside this framework, such as career concern, 

reputation, or incentives to curry favour from management. However, if αi is chosen optimally 

to minimize expression (A3), by virtue of the Envelope Theorem, Hypothesis 2 remains valid. 

                                                           
20 It could be argued that the parameter c corresponding to location diversity should be related to a “primitive” 

covariance between the signal noises of co-analysts before learning has occurred. Below, we show that the 

covariances of the errors are also positively related to such a primitive c after learning has occurred.  
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Thus, both uninformed herding and observational learning as modelled here are consistent 

with a positive association between analyst’s location diversity and individual forecast error.  

To distinguish implications of learning that are distinct from those of uninformed 

herding, we consider the optimal choice of 𝛼𝑖 under learning. We assume that the objective of 

an analyst is to minimize the mean absolute forecast error. From Equations (3.2), it immediately 

follows that this is achieved by choosing 𝛼𝑖 to minimize the expression in Equation (A3). The 

solution is: 

                                                      𝛼 =
1

1+
(𝑁−1)(𝜎𝑖

2−𝜎𝑖𝑤
′ )

𝑠−𝑐+(𝑁−1)(𝑐−𝜎𝑖𝑤
′ )

  .                                                                     (A5) 

Note that under our assumptions, 0 < 𝛼 < 1. 

From this, the following comparative static results follow:  

For N>2: 

(𝑖)
𝜕𝛼

𝜕𝑠
> 0;   (𝑖𝑖) 

𝜕𝛼

𝜕𝜎𝑖
2 < 0 .                                                                                                                           (A6) 

The results are intuitive: an analyst assigns a lower weight to his own signal (lower αi), 

i.e., a higher weight to the mean forecast of the co-analysts, if these analysts have higher 

precision of their signals (lower s). Lower precision of the analyst’s own signal (higher 

𝜎𝑖
2) causes the analyst to place higher weight on the co-analysts’ mean forecast 

Hypothesis 3: The first implications of part 1, i.e., H3(i), follows from the comparative static 

results in Equation (A6) since the closer the other analysts are to the firm being followed, the 

more precise is their signal (lower s). This leads to both lower 𝛼𝑖 and lower 𝜎̂𝑖 (recall that we 

do not need to consider the effect of 𝛼𝑖 on 𝜎̂𝑖 since the latter is already optimized with respect 

to 𝛼𝑖). From Equation (A4), it follows that since 𝛼𝑖  and 𝜎̂𝑖  both decrease as s falls, the 

sensitivity of the IEER to OHHI increases.  
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Considering H3(ii), result (ii) in Equation (A6) implies that 𝛼𝑖 will be smaller when 𝜎𝑖
2 

is higher, which we argue is the case when the analyst is more distant from the same industry 

peer firms. However, the sensitivity of IERR to OHHI as per Equation (A4) is not 

unambiguously higher since 𝜎̂𝑖  also increases. We fix the number of analysts at N=10 and 

normalize the variance/covariance magnitudes by assuming 𝑠 = 1. The remaining parameter 

values are as follows: 𝑐 = 0.5, 𝜎𝑖𝑤
′ ≤ 0.5, and 𝜎𝑖

2 ∈ (𝜎′𝑖𝑤, 5).  The expression 
1

2𝜎̂𝑖
(1 −

𝛼𝑖)
2 𝑁−2

𝑁−1
 representing the sensitivity of the IERR with respect to c is monotonically increasing 

in 𝜎𝑖
2 in this range, 𝛼𝑖 is monotonically decreasing, and 𝜎̂𝑖, while increasing, is almost flat (see 

Figure A1 below). Varying c does not affect this pattern. 

Comment: Note that the comparative static results in Equation (A6) directly imply the effect 

of parameter changes on αi. We do not try to test for these effects in our empirical design for 

the following reason. From Equation (A2), we can write an individual analyst’s forecast as  

𝑥̂𝑖𝑡 = (1 − 𝛼𝑖) (𝑓 +
∑ ∈𝑤𝑡

−
𝑤≠𝑖

𝑁−1
) + 𝛼𝑖(𝑓 + 𝜖𝑖𝑡). The researcher observes the forecast,  𝑥̂𝑖𝑡, and the 

mean of the other analysts’ forecasts,  𝑓 +
∑ ∈𝑤𝑡

−
𝑤≠𝑖

𝑁−1
, which is the Consensus based on the latest 

earlier forecasts by other analysts, 𝐶−𝑖 . Unfortunately, the coefficient β of  𝐶−𝑖  from a 

regression 𝑥̂𝑖𝑡 = 𝛽𝐶−𝑖 + 𝐴𝑛𝑎𝑙𝑦𝑠𝑡 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝜂𝑖  does not recover (1-𝛼)  because the error 

𝜂𝑖 = 𝛼𝑖(𝑓 + 𝜖𝑖𝑡) is correlated with 𝐶−𝑖, creating an endogeneity bias. 

  Chen and Jiang (2006) regress the difference in an analyst’s forecast and the actual 

earnings on the difference of the Consensus and the actual earnings (called Deviation), which 

avoids this endogeneity bias. However, in that setting, the coefficient of Deviation captures the 

extent to which the weight an analyst assigns to his own signal deviates from the correct 

Bayesian weight reflecting the information content of the signals. Since the correct Bayesian 

weight changes when the information content of signals change, this framework cannot be used 

to address how the weight assigned by the analyst changes. 

 

Comparative Statics 
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Error covariance and a “primitive” c 

The forecast noise covariances between prior co-analysts in our model (denoted by c) are 

affected by these analysts learning from the forecasts of analysts that precede them. It could be 

argued that the OHHI should be related to a more primitive covariance – one that captures the 

covariance between signal noises before learning has occurred. We show that the forecast noise 

covariances after learning has occurred increase in such a primitive c under plausible 

conditions. 

To do so, we calculate the correlation between the forecasts of prior co-analysts when these 

forecasts already reflect the learning of these co-analysts from their respective peers (prior co-

analysts). Such a covariance should replace the parameter c in Equation (A3). We show that, 

under plausible conditions, this covariance is increasing in a primitive covariance c, which is 

the covariance between analyst-specific signal noises. 

For a pair of analysts i and j, we have 

𝐶𝑜𝑣 ((𝛼𝑖𝜀𝑖 + (1 − 𝛼𝑖)
∑ 𝜖𝑤

−
𝑤≠𝑖

𝑁 − 1
) (𝛼𝑗𝜀𝑗 + (1 − 𝛼𝑗)

∑ 𝜖𝑤
−

𝑤≠𝑗

𝑁 − 1
)) 

= (𝛼𝑖𝛼𝑗𝐶𝑜𝑣(𝜀𝑖, 𝜀𝑗) + 𝛼𝑖(1 − 𝛼𝑗)
∑ 𝑐𝑜𝑣(𝜖𝑤

− , 𝜀𝑖)𝑤≠𝑗

𝑁 − 1
) 

+ (𝛼𝑗(1 − 𝛼𝑖)
∑ 𝑐𝑜𝑣(𝜖𝑤

− , 𝜀𝑗)𝑤≠𝑖

𝑁 − 1
+ (1 − 𝛼𝑖)(1 − 𝛼𝑗)

𝑐𝑜𝑣(∑ 𝜖𝑤
−

𝑤≠𝑖 , ∑ 𝜖𝑤
−)𝑤≠𝑗

(𝑁 − 1)2
) 

= 𝛼𝑖𝛼𝑗𝑐 + 𝛼𝑖(1 − 𝛼𝑗)𝜎𝑤
′ + 𝛼𝑗(1 − 𝛼𝑖)𝜎𝑤

′ + (1 − 𝛼𝑖)(1 − 𝛼𝑗)𝑐 

 

Here, we have assumed that the common correlation between the signal noises 𝜀𝑖and 𝜀𝑗 in the 

last round is the same as that in the prior round – both being denoted by the primitive c. 

   

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 
0 . 0 

0 . 5 

1 . 0 

1 . 5 

2 . 0 

𝜎𝑖
2 

 

OHHI Sensitivity 

𝛼𝑖 

𝜎̂𝑖 

Figure A1. Parameters: 𝑁 = 10, 𝑠 = 1, 𝑐 = 0.5, 𝜎𝑖𝑤 =  0.4, and 𝜎𝑖
2 ∈ (𝜎𝑖𝑤, 5). 
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For fixed 𝛼𝑖  and 𝛼𝑗  this expression is increasing in c .  For the symmetric case, since α is 

increasing in c, it is easy to check that the covariance is increasing in c for α ≥ ½ (a sufficient 

condition, but hardly necessary). Moreover, we get an increasing relationship between the 

covariances and the primitive c once we endogenize α as per Equation (A6) for a large set of 

plausible parameter values. Figure A2 provides an example, in which N is set equal to 10, and 

firms i and j are symmetric. For c in the range indicated below, the common α ranges from 0.16 

at c=0.3 to 0.52 at c=0.7. 
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Figure A2. Parameter values:  𝑠 = 1, 𝜎𝑖
2 = 0.7, 𝜎𝑤

′ = 0.3.  
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Appendix C 

 

Figure A3. U.S. Distribution of Analysts (2006) 
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Figure A4. U.S. Distribution of Headquarters of Listed Firms (2006)  
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Appendix D. Importance of Analysts’ Locations for Their Forecasts 
 

Table A1. Sensitivity of Analysts’ Forecasts to Number of Risk News and Total Number of News Related 

to their States  

Columns (1a) and (1b) consist of firm-analyst observations for which the state in which the analyst is located (“analyst’s 

state”) is a relevant state for the business of the firm covered by the analyst (Garcia and Norli, 2012). FNUM is the analyst’s 

weekly number of forecasts. NEWSNUM is the number of news stories about the analyst’s state in the previous week. BIAS 

RELATIVE TO MEAN(MEDIAN) CONSENSUS is the difference between the analyst’s last forecast and the mean(median) 

of last forecasts of all analysts in the same firm year, scaled by the share price of the firm as of the end of the previous fiscal 

year. RISK_NEWSNUM (in 10,000s) is the number of news stories about the analyst’ that mention terms associated with 

risk/uncertainty in the previous week, scaled by the total number of risk/uncertainty news stories for all 50 states; the 

variable takes a value of 0 when the analyst’s state is not a relevant state of the firm. RISK_NEWSNUM_GROWTH is the 

growth of RISK_NEWSNUM to the previous week from the average of the immediate prior 4 weeks, and takes a value of 0 

when the analyst’s state is not a relevant state of the firm. Refer to Appendix A for the definitions of the other variables. 

Columns (2a), (2b), (3a) and (3b) consist of forecasts published more than 90 days prior to the fiscal year end. Estimated 

coefficients and the robust standard errors (in parentheses) are reported. ***, **, and * indicate the 1%, 5%, and 10% levels 

of significance, respectively.  

 
(1a) (1b) (2a) (2b) (3a) (3b) 

 LN(FNUM) FNUM 
BIAS RELATIVE TO 

MEAN CONSENSUS 

BIAS RELATIVE TO 

MEDIAN CONSENSUS 

LN(NEWSNUM) 0.160***      

 
(0.038)      

NEWSNUM 
 0.384**     

 
 (0.187)     

RISK_NEWSNUM 
  -0.081*  -0.082*  

 
  (0.041)  (0.041)  

RISK_NEWSNUM_GROWTH 
   -0.012**  -0.013** 

 
   (0.006)  (0.005) 

LN(FORECAST_EXP) 
  0.015** 0.015** 0.007 0.007 

 
  (0.006) (0.006) (0.005) (0.005) 

LN(FIRM_EXP) 
  0.000 0.000 0.000 0.000 

 
  (0.002) (0.002) (0.002) (0.002) 

NFIRM 
  -0.000 -0.000 0.000 0.000 

 
  (0.000) (0.000) (0.001) (0.001) 

NSIC3 
  -0.001 -0.001 -0.003 -0.003 

 
  (0.002) (0.002) (0.002) (0.002) 

LN(HORIZON) 
  0.331** 0.331** 0.332** 0.331** 

 
  (0.131) (0.132) (0.132) (0.132) 

LOSS 
  -0.845*** -0.845*** -0.743*** -0.743*** 

 
  (0.087) (0.087) (0.080) (0.080) 

SIGMA 
  1.255*** 1.253*** 1.269*** 1.267*** 

 
  (0.158) (0.157) (0.235) (0.234) 

RETTODATE 
  0.755*** 0.755*** 0.692*** 0.692*** 

 
  (0.057) (0.057) (0.059) (0.059) 

CONSTANT 0.191*** -0.632*** -1.966** -1.973** -1.920** -1.927** 

 
(0.004) (0.024) (0.706) (0.707) (0.713) (0.714) 

Fixed Effects Analyst 

Year-week 

Analyst 

Year-week 

Analyst Analyst Analyst Analyst 

S.E. Clusters Analyst 
Year-week 

Analyst 
Year-week 

Analyst 
Firm, Yr 

Analyst 
Firm, Yr 

Analyst 
Firm, Yr 

Analyst 
Firm, Yr 

Observation 1,421,524 1,413,820 574,405 574,405 574,405 574,405 

Adjusted/Pseudo R2 0.163 0.164 0.0783 0.0783 0.0705 0.0704 
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Appendix E 
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Figure A5. BUS DIS of Prior Co-Analysts and Sensitivity of IERR to OHHI 


