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1 Introduction

An important implication of limited attention is that a decision maker (hereafter, DM)

can consider only a subset of the alternatives available to her. This scarcity gives rise

to the concept of “consideration sets,” (hereafter, CS) which has recently been applied

to a range of areas of study.1

Classic models of sequential learning often involve a DM exploring a fixed set of

options with unknown returns. Yet, a ubiquitous feature of dynamic decision problems

is that the set of options in a DM’s CS is not predetermined. Rather, the DM may choose

to expand her CS by seeking out additional options as part of her learning process, in

response to information she has gathered. This paper studies the tradeoff between

learning about alternatives within the DM’s CS and expansion of the latter through

search for additional options.

Consider, for example, a consumer’s online search for a product. Time is costly,

and the consumer faces a potentially huge amount of options, displayed sequentially

(and, from the perspective of the consumer, stochastically) across multiple pages and/or

different websites. The information displayed in each ad is limited. By clicking on any

of the ads, the consumer is directed to the vendor’s webpage from which she can gather

further information and, when desirable, finalize a purchase. Rather than clicking on

one of the ads on the existing page (or on one of the pages previously visited), the

consumer can also move on to the next page of results, or switch to a different website.

The decision to do so entails some time and/or cognitive cost, and depends on the

information the consumer has gathered about the products thus far, as well as the

relevance and number of suitable new options she expects to find by expanding her

CS. Assuming the consumer behaves “optimally,” under what conditions does she seek

additional new options to explore? If she does move beyond the first page of results,

or switches to a different website, is she likely to go back to results she has already

explored? How do such decisions depend on the gradual resolution of uncertainty and

on the properties of the search technology (e.g., on how search engines distribute ads

across multiple pages). These questions are relevant for both advertisers on a platform

and for the platform’s design of its search environment (e.g., how many ads to display

on each page).2

1The concept of consideration sets also has a long tradition in the marketing literature.
2Consumers typically limit their attention to a relatively small number of websites when buying

products over the internet (De los Santos, Hortaçsu, and Wildenbeest, 2012). According to Epstein and
Robertson (2015), a “recent analysis of ∼300 million clicks on one search engine found that 91.5% of
those clicks were on the first page of search results” although not necessarily in the order by which the
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Similarly, parents choosing a prospective school district may trade-off further evalua-

tions of schools they are already aware of (or that are in their vicinity) with the expansion

of their CS by searching for new options in locations they may not know of ex-ante. R&D

often involves pursuing a number of alternative technologies whose ability to produce

the desirable breakthrough is unknown, but also spending time and/or effort to search

for new alternatives to subsequently explore. The tradeoff between the two activities

(exploration and expansion of the CS) evolves over time based on the development of

existing projects and the ability to find new alternatives.

To study this tradeoff, we introduce a model of sequential learning among an en-

dogenous set of alternatives. In each period, the DM can either focus attention on a

single alternative within her current CS or choose to expand it. We refer to such expan-

sion as “search” for new alternatives, as we assume it is costly and its outcome may be

stochastic. Focusing attention on an alternative generates a signal that is informative

about the alternative’s value (and independent of other alternatives) and may yield a

payoff (positive or negative). The decision to expand the CS (i.e., to search) triggers the

discovery of a stochastic set of new alternatives as a function of the state of the search

technology. This state may evolve over time based on the past outcomes of search and

on the information the DM possesses about the process governing the search results.

For example, the state of the search technology may be stationary, yielding i.i.d. sets

of new options from a known distribution. Alternatively, it may evolve over time in a

non-stationary manner reflecting the DM’s beliefs about the set of alternatives outside

her CS.

Our environment and characterization of the DM’s optimal policy extend Weitzman’s

(1979) classic problem, and its solution based on independent “reservation prices,” to an

environment in which the CS can be sequentially expanded and is endogenous to the

DM’s problem. Alternatives are assigned independent reservation prices, which are used

to determine the order in which attention is allocated among them. These reservation

prices are equivalent to those which determine the optimal policy in the absence of

the option to expand the CS. Expansion of the CS is also assigned a reservation price,

which depends on the information the DM has about the “state” of the existing search

technology, but also on the exploration and future expansion policy the DM plans to

follow once she starts the search. At any given time, the DM’s decision under the optimal

policy is determined by the action – focusing on one of the alternatives within the CS

ads were displayed on the same page (see, e.g., Jeziorski and Segal, 2015). Millward Brown examined
how likely customers are to view products beyond the first page of search results on Amazon, and found
that approximately 70% did not click past the first page of results (see clavisinsight.com 2015).
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or expanding the latter – whose reservation price is the greatest.

Rather than committing to a CS up front and then proceeding to evaluate the al-

ternatives in the optimal order, the DM chooses when to expand the CS based on the

results of her past explorations and past search (i.e., expansion) outcomes. We show

that, despite the fact that the size and composition of the CS may affect the DM’s

beliefs about the results of future searches and in particular the likelihood of finding

alternatives similar to those already in the CS, in expectation, the relative attention the

DM allocates to any pair of alternatives within the CS does not vary with the results of

past search outcomes.

Importantly, the reservation price the DM assigns to the option to expand the CS does

not coincide with the value of the expansion. That is, the decision to expand is typically

sensitive to only partial information about the prospective alternatives the DM expects

to add to the CS, even if such information is relevant for the expected continuation payoff

under the optimal policy. The reservation price corresponding to the expansion of the

CS is linked to the reservation prices of the new alternatives expected to be introduced

in the future. We show that if the search technology is stationary (or “improving” in

an appropriate sense made precise below) then alternatives in the CS at the time of the

expansion never receive attention in the future, and hence are effectively discarded once

the set is expanded. That is, search is equivalent to replacement. When, instead, the

search technology “deteriorates” over time, alternatives are put on hold and returned to

at a later stage, after the CS has been expanded. Furthermore, in this case, the DM

proceeds as if each decision to expand were the last one (that is, the reservation price of

expansion takes into account only information about alternatives that are expected to

be added to the CS as the result of the current search, as if further expansions were not

feasible).

More generally, we show that the decision to expand the CS depends on the composi-

tion of the set only through the information that the latter contains about the probability

of finding new alternatives of different types. This result holds despite the fact that the

alternatives in the set may share similarities with those that are expected to be found

through the expansion and despite the fact that the opportunity cost of searching for

new alternatives (which is linked to the value of continuing to explore the current set)

depends on the entire composition of the CS. Likewise, at any point in time, the rela-

tive attention allocated to any pair of alternatives in the CS is invariant to the search

technology, and in particular is independent of the probability that search will bring

new alternatives similar to those already under consideration. Finally, improvements in

3



the search technology yielding an increase in the probability that search brings alterna-

tives of positive expected value (vis-a-vis the outside option) need not affect the decision

to search, even at histories at which, prior to the improvement, the DM is indifferent

between searching and continuing with the current CS.

The results are not specific to sequential learning. They apply to a broad class of

dynamic experimentation problems with an endogenous set of alternatives. We start

by considering the case in which the DM can revert her decision at all periods, as in

the multi-armed bandit literature. We prove that the optimal policy takes the form of

an index rule with a special index for search. The result is related to the optimality

of index policies in the branching-arm literature (e.g., Weiss, 1988, Weber, 1992, and

Keller and Oldale, 2003). Our contribution is in identifying conditions under which

indexability also applies to the sequential learning problem with endogenous CSs under

examination. To the best of our knowledge, our proof of indexability is new and uses a

recursive representation of the index of search which also yields a novel representation of

the DM’s payoff under the optimal policy (with or without the possibility of expansion).

The representation can be used to price the access to new alternatives as well as the

option to expand the set in the future.3

Next, we consider the case where, in addition to focusing attention on existing alter-

natives and searching for new ones, the DM can also irreversibly commit to one of the

alternatives in the CS, putting an end to the exploration. In general, the irreversibility

of choice is known to preclude a tractable solution. We identify a condition under which

the optimal policy remains indexable, which admits as a special case a generalization

of Weitzman’s (1979) original problem to a setting in which (a) the CS (i.e., the set of

boxes) is endogenous, (b) learning the value of an alternative in the CS may require

multiple explorations, and (c) the DM may derive a positive payoff from exploring an

alternative (possibly higher than the value she derives from irreversibly committing to

it) for an arbitrary large (and possibly infinite) number of periods.4

3The reason why indexability is not obvious is that search is a “meta-arm” bringing alternatives with
correlated returns that one needs to process optimally. Problems in which alternatives correspond to
“meta arms”, i.e., to sub-decision problems with their own sub-decisions, typically do not admit an index
solution, even if each sub-problem is independent from the others, and even if one knows the solution
to each independent sub-problem. In the same vein, dependence, or correlation, between alternatives
typically precludes an index solution. This is so even if each subset of dependent alternatives evolves
independently of all other subsets, and even if one knows how to optimally choose among the dependent
alternatives in each subset in isolation. We provide an example illustrating such difficulties in the Online
Appendix.

4The condition is based on a certain “better-later-than-sooner” property guaranteeing that once
an alternative reaches a state in which the DM can irreversibly commit to it, its “retirement value”
(that is, the value of irreversibly committing to it) either drops below the value of the outside option,
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In Section 2, we kick off by considering the simplest extension of Weitzman’s (1979)

model to a setting with endogenous CSs. As in Weitzman’s model, we assume that it

takes a single exploration to learn an alternative’s value and that exploring an alternative

without committing to it comes at a cost. We characterize the “prizes” that guide the

DM’s sequential alternation between the exploration of the alternatives already in the

CS and the expansion of the latter. We also derive an “eventual-purchase theorem”

in the spirit of Choi, Dai and Kim (2018) (see also Armstrong and Vickers, 2015 and

Armstrong, 2017) that relates the probability that each alternative is eventually selected

to the primitives of the search problem (realized values and search technology) and

discuss how the endogeneity of the CS affects the selection probabilities.

The possibility to expand the CS may change quite radically some of the comparative

statics of the canonical model. To illustrate this possibility in concrete terms, we consider

a stylized market in which three firms advertise on a platform. Each firm has two different

products, and a representative consumer seeks to purchase at most one of the firms’

products. As in Weitzman (1979), the consumer must inspect a product to finalize the

purchase. We consider two cases: one with a fixed CS, and one with an endogenous set.

In the fixed-consideration-set case, there are four advertising slots, with equal visibility.

Each firm is endowed with one slot, but one of the firms, chosen by the platform before

the consumer’s search begins, is given a second slot to advertise her other product. As

in Weitzman (1979), the consumer sees all four ads (i.e., the identity of the firm that was

awarded the second slot) before starting the exploration. She then sequentially decides

between inspecting a product (by clicking on a firm’s ad) and stopping and then either

choosing an inspected product or her outside option (this version of the problem is thus

identical to the one in Weitzman’s problem). In the second environment, instead, ads

are displayed on two different pages. Each firm advertises on the first page, and one of

the firms also advertises on the second page. The identity of this firm is unknown to

the consumer who may have correct beliefs about the probability the slot is assigned

to each firm but nonetheless does not know the realization of the relevant risk. This

environment thus corresponds to a sequential learning problem with an an endogenous

CS. The consumer may expand her CS by visiting the second page but this entails a

cost (the magnitude of which may be small and possibly due only to the postponing of

the exploration of one of the alternatives already in the CS). The consumer’s optimal

or improves over time. This “better-later-than-sooner” property is related to a similar condition in
Glazebrook (1979), who establishes the optimality of an index policy in a class of bandit problems with
stoppable processes. Our approach is, however, quite different and accommodates for the possibility
that the set of alternatives is endogenous.
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inspection strategy is an index policy with a special index for the decision to explore

the second page. When the CS is exogenous (and contains all items), each firm benefits

from an increase in the probability she receives the additional slot that permits it to

display its second product. This is not the case when the CS is endogenous: a firm may

be strictly worse off when the probability the slot on the second page is assigned to it

increases.

The rest of the paper is organized as follows. The remainder of this section dis-

cusses the related literature. Section 2 considers the extension of Weitzman’s model to

a setting with an endogenous set of boxes and contains the example discussed above.

Section 3 presents the general model, contains all the main results, and discusses how

the optimal policy in Weitzman (1979) must be amended to accommodate not only for

endogenous CSs but also for gradual resolution of uncertainty. Section 4 discusses sev-

eral simple extensions, whereas Section 5 concludes. Most of the proofs are relegated to

the Appendix.

1.1 Relation to the literature

The paper is related to the fast-growing literature on CSs. A number of papers in the

marketing literature study the formation of CSs (e.g., Hauser and Wernerfelt, 1990;

Roberts and Lattin, 1991). Eliaz and Spiegler (2011) study implications of different CSs

on firms’ behavior, assuming such sets are exogenous. Masatlioglu, Nakajima, and Ozbay

(2012) and Manzini and Mariotti (2014), instead, identify CSs from choice behavior.

Caplin, Dean, and Leahy (2018) provide necessary and sufficient conditions for rationally

inattentive agents to focus on a subset of all available choices, thus endogenizing the CSs.

Simon (1955) considers a sequential search model, in which alternatives are examined

until a “satisfying” alternative is found.5 Our analysis complements the one in this

literature by providing a dynamic micro-foundation for endogenous CSs. Rather than

committing to a CS up front and proceeding to evaluate the alternatives in it, the DM

expands the CS over time, in response to the results obtained from the exploration of

the alternatives in the set.

The paper is also related to the literature on sequential learning in settings in which

the DM explores one alternative at a time. Most closely related are Ke, Shen, and

Villas-Boas (2016), Austen-Smith and Martinelli (2018), Ke and Villas-Boas (2019),

5Caplin, Dean, and Martin (2011) show that the rule in Simon (1955) can be viewed as resulting
from an optimal procedure when there are information costs.
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and Gossner, Steiner and Stewart (2019).6 Related is also Che and Mierendorff (2019)

who study the optimal sequential allocation of attention to two different signal sources

biased towards alternative actions. In all the above papers, the set of alternatives is

fixed ex-ante. In our model, instead, the DM chooses when to expand the CS based on

the information she has collected about the alternatives already in it.

As mentioned above, our results cover as a special case an extension of Weitzman’s

(1979) classic problem in which the set of boxes is endogenous and where exploration

leads to a gradual resolution of uncertainty. Despite its many applications, relatively few

extensions of Weitzman’s problem have been studied in the literature. Notable excep-

tions include Olszewski and Weber (2015), Choi and Smith (2016), and Doval (2018). In

these papers, though, the set of boxes is fixed. In independent work, Greminger (2020)

considers a version of Weitzman’s (1979) problem in which the DM can bring new alter-

natives to the CS over time. His problem is a special case of ours, both in terms of the

search technology and of the DM’s payoff.

Related is also Garfagnini and Strulovici (2016), who study how successive (forward-

looking) agents experiment with endogenous technologies. Trying a “radically” new

technology reduces the cost of experimenting with similar technologies, which effectively

expands the space of affordable technologies.7 While both their work and ours consider

environments in which the set of alternatives/technologies is expanded over time, the

two models, as well as the analysis and questions addressed, are fundamentally different.

Schneider and Wolf (2019) study the time-risk tradeoff of an agent who wishes to solve

a problem before a given deadline, and allocates her time between implementing a given

method and developing (and then implementing) a new one. Related is also Fershtman

and Pavan (2020), which considers the effects of “soft” affirmative action on minority

recruitment in a setting in which the candidate pool is endogenous.8

2 Pandora’s problem with endogenous boxes

Consider the following extension of Weitzman’s (1979) “Pandora’s problem” in which a

DM optimally constructs her CS over time, accounting for the costs of expanding it.

A DM must make a single choice among alternatives. An alternative is characterized

6Ke and Villas-Boas (2019) study optimal search before choice in a setting where the optimal policy
is not indexable and identify various properties of the optimal policy.

7Technologies are interdependent in their environment. In particular, a radically new technology is
informative about the value of similar technologies.

8The problem in that paper is a special version of the one considered in the present paper.

7



by a pair (F, λ), where F denotes the distribution over the alternative’s unknown value,

u, and where λ denotes the cost of inspecting the alternative (here, as in Weitzman’s

setting, we consider the simple case where the value of each alternative is revealed

immediately upon its first inspection; this assumption is relaxed in the general model in

Section 3). Initially, the DM is aware of only a subset of alternatives – this is her initial

CS – and has an outside option, normalized to zero.

The DM’s CS is endogenous to her decision problem, and adding alternatives into the

CS is increasingly costly. More precisely, at each period t = 0, 1, ..., the DM can either

(a) search for an additional alternative to add to her CS, (b) inspect an alternative to

learn its value, or (c) stop and either recall an observed payoff u from one of the inspected

alternatives or take her outside option (in which case the decision problem ends). Search

expands the CS, introducing a new alternative whose characteristics (F, λ) are drawn

from a set A according to some known distribution F (we consider here the simple case

where search yields a single new alternative in each period and where the draws from A
are independent; such assumptions are relaxed in the general model in Section 3). The

cost of adding an alternative to the CS is equal to c(m), where m is the number of past

searches (i.e., expansions of the CS), and c is a positive, increasing function. Besides

the direct costs of inspecting and adding new alternatives, the DM discounts the future

according to δ.

In such a setting, how should the DM optimally (and dynamically) balance the trade-

off between bringing new alternatives to the CS to inspect in the future and inspecting

her current options? The following Proposition describes the optimal rule. Let

I(F, λ) =
−λ+ δ

∫∞
I(F,λ) udF (u)

1 + δ
1−δPr(u > I(F, λ)|F, λ)

. (1)

denote the “reservation price” (equivalently, the index) of a box of type (F, λ), as defined

in Weitzman (1979) and, for any l ∈ R, let A(l) ≡ {(F, λ) ∈ A : I(F, λ) > l} denote

the set of box types whose reservation price exceeds l.9 Let

IS(m) = −c(m) +
δ
∫
A(IS(m))

(
−λ+ δ

∫∞
IS(m) udF (u)

)
dF(F, λ)

1 +
∫
A(IS(m))

(
δ +

∫∞
IS(m)

δ2

1−δdF (u)
)

dF(F, λ)
. (2)

9Weitzman defines the reservation prices as the solution to λ = δ
∫∞
I(F,λ) (u− I(F, λ)) dF (u)− (1−

δ)I(F, λ), which yields I(F, λ) =
[
−λ+ δ

∫∞
I(F,λ) udF (u)

]
/ [1− δ + δPr(u > I(F, λ)|F, λ)]. The reser-

vation prices in (1) are the same, but multiplied by (1 − δ) to facilitate a comparison with the more
general model introduced in the next section.
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denote the reservation price of the option to expand the CS (equivalently, the “search

index”).10

Proposition 1. The optimal policy is the following: (i) Expand the CS if IS(m) is

positive and is greater than the reservation price I(F, λ) of all uninspected boxes in the

CS and the value u of all inspected boxes. (ii) Inspect any of the boxes in the CS whose

reservation price is the highest, provided that such price is positive and is greater than

IS(m) and the value of all inspected boxes. (iii) Stop and choose any of the inspected

boxes whose observed value is the highest provided that such value is positive and higher

than IS(m) and the reservation price of any uninspected box in the CS. (iv) Stop and

take the outside option if IS(m), the reservation price of all uninspected boxes, and the

value of all inspected boxes are all negative.

The reservation prices I(F, λ) have the following interpretation. Suppose there are

only two alternatives. One is the alternative i characterized by (F, λ), and the other is a

hypothetical alternative, j, with a known value uj. The reservation price is the value of

uj, multiplied by (1−δ), for which the DM is indifferent between taking j and inspecting

the alternative i while maintaining the option to recall j once the value ui is discovered.

The reservation price of search extends this interpretation as follows. Suppose there

are two options: the hypothetical alternative j, and the option of expanding the CS.

The reservation price of search is the value uj of the fictitious alternative j for which

the DM is indifferent between taking j right away, and expanding the CS, maintaining

the option to take j either (a) once the characteristics of the new alternative (F, λ) are

discovered and uj ≥ I(F, λ), or (b), in case uj < I(F, λ), after the value ui of the new

alternative is learned and ui ≤ uj.

Rather than committing to a CS up front and then exploring its alternatives, the

DM optimally chooses the time at which to expand the CS, based on the information

the DM has learned over time. Note that IS, which we interpret as the reservation price

corresponding to the expansion of the CS, is independent of any information about the

composition of the DM’s current CS beyond the number of times it has been expanded,

and is easy to calculate (see, e.g., Subsection 2.2). Importantly, as anticipated in the

Introduction, IS need not coincide with the DM’s expected value of expanding the CS.

An immediate implication of Proposition 1 is that, despite the fact that search may

bring alternatives that are more similar in nature to certain alternatives in the set than

10The characterization of the search index follows from the arguments in the proofs of Theorems 1
and 2.
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others, the relative likelihood of selecting any pair of alternatives in the set remains

constant over time.

The problem described above, and its solution, are a special case of the more general

problem studied in Section 3. Before turning to the general model, we describe below

two applications of this simple problem.

2.1 Consumer search and eventual purchases

Despite the importance of sponsored search in modern business activities, the few models

of online consumer search that have been developed remain quite restrictive.11 For

example, the literature has typically assumed that consumers click ads sequentially in

the order they are displayed, and that click-through-rates depend on positions but not

on the ads displayed at the various positions. Such assumptions do not appear to

square well with empirical findings.12 An important feature of online consumer search is

that the consumer is presented with a potentially huge amount of search results, which

are displayed in a sequence across multiple pages. Most of the options are initially

unobservable, and require the consumer to incur the (time, or mental) cost of scrolling

through multiple pages. Clearly, consumers do not read all of the results. Instead, the

set of search results a consumer reads (and considers clicking on) is partial, and fashioned

by the way ad links are assigned by search engines to different pages.

As a first step toward a better understanding of consumer search in such markets,

we apply Proposition 1 as follows. When a consumer enters a query on a search engine,

a first list of alternatives is presented (the ones displayed on the first page). Reading

the text displayed on a page is costly, and adds the alternatives displayed on the page

to the consumer’s CS. The consumer may also click on one of the alternatives in the

CS (that is, on one of the links displayed on one of the pages she has read already) in

which case she is directed to a vendor’s website (also at a cost). Once the consumer

visits a vendor’s website, she learns her value for the vendor’s product or service (think

of such values as net of prices, so that the discovery of the prices is incorporated into

the learning process). At any point in time, the consumer can then stop and purchase

a product among those offered by those vendors she visited. To recap, at each point in

11Sponsored search advertising accounts for a large fraction of Internet advertising revenues (see, e.g.,
Edelman, Ostrovsky, and Schwarz, 2007).

12For example, in an empirical analysis of consumer search in online advertising markets using data
from Microsoft Live, Jeziorski and Segal (2015) find that almost half of the users who click on a link
do not click in sequential order of positions, and that click-through-rates do depend on the identity of
competing ads.
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time, the consumer can either read the information displayed in response to the search

query (i.e., search), click on one of the texts/links she has read already to be directed to

the corresponding vendor’s webpage (i.e., learn about a specific alternative’s value), or

purchase a product, in which case the decision problem ends.13

Suppose the results are indexed by natural numbers in increasing order i = 1, 2, ....
When (search) result i is read, and hence added to the consumer’s CS, the consumer

receives information (Fi, λi) about the result under consideration. Such information is

drawn from a set A according to a distribution F that reflects the consumer’s beliefs over

the way the search results are displayed by the platform. The information Fi denotes

the distribution over the consumer’s ultimate value ui for the corresponding product,

whereas λi represents the cost the consumer assigns to visiting the vendor’s webpage

and learning her value ui for the vendor’s product (heterogeneity in both Fi and λi

may reflect the consumer’s prior experiences, the vendors’ reputations, as well as the

consumer’s expectations about the ease of navigating within the vendors’ websites).

Denote the index of product i, once added to the CS, by Ii ≡ I(Fi, λi). The cost

of reading a result is c(m), where c is increasing and m is the number of past searches.

Let ISi ≡ IS(i− 1), with the function IS as defined in (2). In this formulation, we are

assuming that the consumer reads the results in the order with which they are presented.

Under such an assumption, the order by which the results are displayed matters, but how

the search engine bundles different results on different pages is inconsequential (see the

next subsection for a case where the bundling plays a role). Importantly, the consumer

need not click on results in the same order as she reads them.

The consumer’s initial outside option, normalized to zero, is captured by product

i = 0 (purchasing product 0 is therefore interpreted as taking the outside option).

This formulation corresponds to a special case of the model in the previous subsec-

tion. With the consumer’s optimal behavior described by Proposition 1, the model can

then be used to endogenize the probability with which the consumer selects the various

products. Choi, Dai and Kim (2018) (and, independently, Armstrong, 2017) derive a

static condition characterizing eventual purchase decisions based on a comparison of “ef-

fective values,” in a model where consumers face a fixed set of alternatives, and therefore

the optimal policy is the one characterized by Weitzman. Building on Proposition 1,

Proposition 2 below shows how to extend the characterization of the eventual purchasing

13That is, in this environment, search coincides with reading, whereas inspecting an alternative co-
incides with clicking on its link. Note that this formulation implicitly assumes that the consumer does
not click on a result without first reading it, and that a purchase cannot be made without first visiting
a vendor’s website. Both assumptions seem quite natural in this context.
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probabilities to the case of endogenous CSs.

Proposition 2. For all i ≥ 1, let wi = min{Ii, ui, ISi } denote the “effective value” of

product i. The consumer purchases product i if, for all j 6= i, wj < wi (and only if

wi ≥ wj, for all j 6= i).

Proposition 2 provides a micro-foundation for why (and the extent to which) higher

positions imply higher eventual purchase probabilities, a property typically assumed

exogenously in existing models. As in Choi, Dai and Kim (2018), consumers’ even-

tual purchase decisions are determined by a static comparison of effective values, as in

canonical discrete-choice models. However, contrary to Choi, Dai and Kim (2018), such

effective values now account for the endogenous order by which the various alternatives

are found, and hence can be used to study the effects of varying such order (e.g., by

platforms).

The result follows from the following monotonicity property of the optimal policy in

Proposition 1: If a consumer reads result i (equivalently, engages into the i-th search),

then the reservation prices and discovered values of all options previously encountered

must be no greater than ISi . Hence, if after reading the i-th result, Ii ≥ ISi , the consumer

proceeds to inspect product i. Similarly, if i is inspected and ui ≥ Ii, the consumer will

proceed to purchase product i. Note that an immediate implication is that, if the cost

of reading c(·) is strictly increasing, all other things equal, the further a result i is down

the list, the more likely it is that its effective value coincides with ISi . Therefore, we

have the following result:

Corollary 1. Suppose that the cost of reading c(·) is strictly increasing. Then, condi-

tional on being read, results further down the list are more likely to be clicked on and

purchased immediately.

A key difference with respect to an environment with an exogenous set of alternatives

is that reading additional results is a substitute for inspecting those that have been read

already. This property leads to very different dynamics. For example, suppose there is a

fixed set of alternatives (and hence search is à la Weitzman), and consider the effects of a

reduction in inspection costs or an increase in products’ values that raise the reservation

prices of all products uniformly. When the set of alternatives is exogenous, the eventual

purchase probabilities are unaffected by such a change. When, instead, alternatives are

brought endogenously to the CS, the aforementioned change shifts the balance between

expansion of the CS and inspection of its alternatives, and therefore has implications

12



for the eventual purchase decisions. The following subsection provides an illustration of

such new effects and their implications.

2.2 Consumer search and multi-product competition

Consider the following stylized model of multi-product competition. There are three

firms advertising on a platform. Each firm i ∈ {1, 2, 3} has two different products with

similar characteristics (meaning that (F, λ) is the same for both products; the value the

buyer attaches to the two products may be different though), and a representative con-

sumer seeks to purchase at most one of these product. Formally, each firm i’s product is

characterized by the pair (vi, pi), where vi represents the product’s value to the consumer

in case it is a good match for her tastes, and pi is the probability with which the product

is a good match for the consumer. If a product is not a good match, its value is 0.14

Hence, in this problem, ui ∈ {0, vi} and Pr(ui = vi) = pi. The consumer learns vi and

pi by reading the product’s ad, but must inspect the product (e.g., by clicking on the

ad to be directed to the vendor’s website) to learn whether ui = vi or ui = 0, and in

order to finalize the purchase (as in the rest of the search literature, we assume that the

consumer cannot purchase the product without visiting the vendor’s website). Whether

or not a product is a good match for the consumer is independent across products. For

example, firms may be hotel chains advertising their hotels in different locations, on a

platform such as Kayak.

We consider two environments. In the first, the consumer’s CS is fixed in advance,

while in the second it is endogenously determined as part of the consumer’s optimal

policy. As it will become clear from the discussion below, the two environments have

very different implications when it comes to the profitability of securing more ad space.

Fixed CS. There are four slots for advertising products, each equally visible. Each

firm receives a single slot, and the remaining slot, to be used for advertising an addi-

tional product, is assigned to one of the firms randomly (such randomness may reflect

uncertainty the firms face about the platform’s objectives when choosing the assignment

of the slots). Specifically, suppose the probability with which firm i gets a second slot

is γi ∈ [0, 1], with γ1 + γ2 + γ3 = 1. In this fixed-consideration-set environment, the

identity of the firm that receives the additional slot is determined ex-ante, i.e., prior to

the consumer visiting the platform. Once the consumer visits the platform, she sees all

four products (that is, all four products are in the consumer’s CS at the beginning of the

14Once again, v is the consumer’s value, net of the product’s price.
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exploration/inspection process). The consumer sequentially decides which product to

inspect and when to stop, at which point she either chooses an inspected product or her

outside option (normalized to zero). To keep things simple, suppose the consumer incurs

no cost for inspecting a product other than the time cost of postponing the purchase

of the final product. The consumer discounts time geometrically with a discount factor

δ. In other words, the consumer faces a standard problem à la Weitzman (1979), with

four products: (v1, p1), (v2, p2), (v3, p3), and (vsj , psj), where j ∈ {1, 2, 3} is the identity

of the firm selected by the platform to display the second ad and where (vsj , psj) are the

characteristics of the selected firm’s second product. To make things simple, assume

that (vsj , psj) = (vj, pj) for all j ∈ {1, 2, 3}, meaning that the two products that each firm

displays are identical in the eyes of the consumer prior to visiting the firm’s webpage

and learning whether each product is a good match or not.

It is easy to verify that, in this environment, the reservation prices are equal to

I(v, p) = (1− δ)δpv
1− δ + δp

. (3)

As proved in Weitzman (1979), the optimal policy is to inspect products in descending

order of their reservation prices, stopping when the remaining reservation prices are all

smaller than the maximal realized value among the inspected products.

Firms are interested in maximizing the probability with which one of their products

is selected. For simplicity, here we assume that each firm makes equal profits on each of

its two products. Clearly, in this environment, any firm i benefits from an increase in

the probability γi it is given a second slot.

Endogenous CS. Now suppose search results are displayed on two separate pages.

All three firms advertise on the first page, but one of them, selected at random by

the platform, is also offered the possibility to advertise on the second page.15 Thus,

in this case, there are three products in the consumer’s initial CS, one for each firm.

The consumer has the option of expanding her CS by visiting the second page. If

the consumer does so, the identity of the firm selected to display the additional ad is

revealed to the consumer. As indicated above, the probability with which each firm i

gets to display the additional ad is γi ∈ [0, 1]. By visiting the second page, the consumer

thus adds a new product to her CS, with each product (vi, pi) selected with probability

γi.

15This stylized setting easily extends to one with more than two pages and/or with a stochastic
number of slots per page.
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Again, there is no direct cost for either inspecting a product or for expanding the

CS. The cost of each decision is simply the opportunity cost of waiting a period to make

a different decision, with each period discounted according to δ.16

In this case, the consumer’s optimal policy is given by Proposition 1, and is based

on the comparison of Weitzman’s reservation prices (1) with the search index (2). As in

the case of exogenous CS, the reservation price of each product is given by (3).

Without loss of generality, suppose firms are ordered in decreasing order of reservation

prices Ii. It is easy to verify from (2) that, in this case, the reservation price of expanding

the CS (equivalently, the search index) is equal to

IS =δ2maxk∈{1,2,3}


∑k
i=1 γipivi

1 +∑k
i=1 γiδ

(
1 + piδ

1−δ

)
 . (4)

Importantly, note that IS is different from the consumer’s expected payoff from expand-

ing her CS. Whether or not IS takes into account the benefits of inspecting a particular

type of product depends on the relationship between the reservation price of that product

and IS itself. In particular,

IS =



δ2γ1p1v1

1+γ1δ

(
1+ piδ

1−δ

) if I2<
δ2γ1p1v1

1+γ1δ

(
1+ piδ

1−δ

)<I1∑2
i=1 γipivi

1+
∑2

i=1 γiδ

(
1+ piδ

1−δ

) if I3 <
∑2

i=1 γipivi

1+
∑2

i=1 γiδ

(
1+ piδ

1−δ

) < I2∑3
i=1 γipivi

1+
∑3

i=1 γiδ

(
1+ piδ

1−δ

) if
∑3

i=1 γipivi

1+
∑3

i=1 γiδ

(
1+ piδ

1−δ

) < I3

. (5)

Suppose again that firms are interested in maximizing the probability with which a

product of theirs is selected, given the consumer’s optimal policy. Perhaps surprisingly,

when the latter’s CS is endogenous, a firm may suffer from an increase in the probability

it is given a second slot, even if this implies that its competitors are less likely to display

their ads, and even if all products have a positive expected value in the eyes of the

consumer.

For concreteness, let δ = 0.9 and suppose the three types of products are: (v1, p1) =
(10, 1

10), (v2, p2) = (3, 1
3), and (v3, p3) = (2, 1

2). Note that the lotteries corresponding

to each of the products have the same mean value, but are mean preserving spreads

16The assumption that expanding the CS takes the same amount of time as inspecting a product is
completely innocuous and made only for simplicity. In Section 4, we discuss how the results can be
amended to accommodate for the possibility that the time it takes to evaluate an alternative and to
expand the CS may differ.
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Figure 1: The change φ(ζ) − φ(0) in the probability with which a product

of firm 2 is selected, as a function of ζ (in blue). The horizontal gray lines

represent the indices I1, I2, I3, and the dark gray curve represents IS as a

function of ζ.

of one another; hence I1 > I2 > I3. Initially, γ1 = γ2 = 1
4 , and γ3 = 1

2 . Using the

above characterization of the indices, it is easily verified that I1 = 0.473, I2 = 0.225,
I3 = 0.163, and

IS = γ1p1v1 + γ2p2v2

1 + γ1δ
(
1 + p1δ

1−δ

)
+ γ2δ

(
1 + p2δ

1−δ

) = 0.174.

Also note that I3 < IS < I2. As a result, IS does not take into account the benefits

from inspecting firm 3’s additional product, in case firm 3 is the one that is selected to

display on the second page.

Now suppose the search engine increases the probability firm 2 is selected on the

second page, at the expense of firm 1. Precisely, suppose that γ2 is increased by ζ ∈
[0, 0.25] while γ1 is reduced by the same amount. Let φ(ζ) denote the probability that

one of firm 2’s products is ultimately chosen when firm 2 is given the second ad with

probability γ2 + ζ. Figure 1 depicts the change φ(ζ)−φ(0) in the probability that one of

firm 2’s products is selected as a function of ζ, where φ(0) = (1−p1)(p2 +(1−p2)γ2p2) =
0.35. The horizontal gray lines correspond to the indices I1, I2, and I3, whereas the

dark gray curve depicts IS, as a function of ζ. Note that IS is decreasing in ζ. This is

because I1 > I2. Hence, an increase in ζ implies a lower reservation value for expanding

the CS. IS starts out above I3, and intersects I3 at ζ∗ (the vertical dashed line). For

ζ < ζ∗, I3 < IS < I2, whereas for ζ > ζ∗, IS < I3. The function IS(ζ) has a kink at

ζ = ζ∗ (see (5)). For ζ ∈ [0, ζ∗), the CS is expanded before firm 3’s product is inspected,

while for ζ ∈ (ζ∗, 0.25] the opposite is true. The probability that one of firm 2’s products
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is chosen is equal to φ(ζ) = (1− p1)(p2 + (1− p2)(γ2 + ζ)p2) for ζ ∈ [0, ζ∗) and is equal

to φ(ζ) = (1 − p1) (p2 + (1− p2)(1− p3)(γ2 + ζ)p2) for ζ ∈ (ζ∗, 0.25], with a downward

discontinuity at ζ = ζ∗ equal to (1−p1)(1−p2)p2p3(γ2+ζ∗). Furthermore, the downward

drop in φ(ζ) at ζ = ζ∗ makes φ(ζ)− φ(0) negative over (ζ∗, 0.25].
We summarize the implications of the above observations in the following proposition.

Proposition 3. Suppose that the CS is endogenous. A reduction in the probability that

firm 2 is given a second slot may increase the overall probability that firm 2 sells one of

its products (and hence its profits).

The result illustrates how novel effects emerge once the endogeneity of consumers’

CS is accounted for. The reason why firm 2 suffers from an increase in the probability it

is given a second ad is that this reduces the attractiveness for the consumer of expanding

the CS, thus inducing her to inspect firm 3’s product prior to expanding the CS. When

strong enough, this new effect may imply a drop in firm 2’s profits.17

3 Gradual resolution of uncertainty

In the model in the previous section, the resolution of uncertainty concerning the prof-

itability of each alternative takes a single exploration, as in Weitzman’s (1979) original

work. In this section, we relax this assumption. We first consider a different version of

the problem in which the DM alternates between the exploration of the alternatives in

the CS and the expansion of the latter, without having to commit irreversibly to any

alternative. This version corresponds to the one in the multi-armed bandit literature,

except for the endogeneity of the set of arms. We allow for general processes governing

the gradual resolution of uncertainty, establish the optimality of a certain index policy,

and relate the dynamics of search and exploration to the search technology and the

primitives of the model. We then enrich this problem by adding to it an irreversible

choice, like in Weitzman (1979).

For concreteness, we continue to focus on sequential learning. However, it should be

clear that the analysis applies more generally to a broader class of problems in which

the evolution of the different alternatives may originate in shocks other than the arrival

of information, and where the endogeneity of the shocks may reflect for example a

preference for variety, or habit formation.

17Similar effects emerge in more general settings with more than two pages and more than two slots.
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3.1 General framework

In each period t = 0, ...,∞, the DM can either explore one of the alternatives in the

CS, or expand the CS by searching for new alternatives. Denote by Ct ≡ (0, ..., nt) the

period-t CS, with nt ∈ N. The DM’s CS in period 0 is C0 ≡ (0, ..., n0).
Given Ct, search brings a (stochastic) set of new alternatives Ct+1\Ct = (nt +

1, ..., nt+1) that the DM can explore in subsequent periods and which are added to

the current CS. Let xit ∈ {0, 1} denote the decision to focus on alternative i in period t

(equivalently, to explore alternative i), with xit = 1 if the DM focuses on i and xit = 0
otherwise. Let xt ≡ (xjt)∞j=0, and denote by x ≡ (xs)∞s=0 a complete sequence of atten-

tion/exploration decisions. Search involves a direct cost ct ≥ 0. Let yt ∈ {0, 1} denote

the decision to search in period t, with yt = 1 if the DM searches and yt = 0 otherwise.

Denote by y ≡ (ys)∞s=0 a complete sequence of search decisions. The period-t overall

decision is summarized by dt ≡ (xt, yt). A sequence of decisions d ≡ (x, y) is feasible if

for all t ≥ 0, (i) xjt = 1 only if j ∈ Ct, and (ii)
∑∞
j=0 xjt + yt = 1. The DM may also

have an outside option, which we normalize to zero.18

Selecting alternative i ∈ Ct at period t generates a stochastic flow payoff uit ∈ R,

the distribution of which is a function of the alternative’s state. The dependence of

flow payoffs on the state of the various alternatives, and the description of the search

technology, are outlined below.

Each alternative has a type ξ, an element of an arbitrary topological space Ξ, which

determines the stochastic process governing the evolution of its state. The process cor-

responding to each alternative of type ξ is Markov and time-homogeneous (i.e., invariant

to calendar time). Slightly abusing notation, denote by ωP = (ξ, θ) ∈ ΩP = Ξ × Θ the

alternative’s current state, where θ is an element of an arbitrary set Θ. The superscript

P is meant to highlight that this is the state of a “physical” alternative in the CS, not

the state of the search technology, or the overall state of the decision problem, which we

will define below.

Depending on the application, θ may have different interpretations. In our sequential

learning environment, it is natural to interpret θ as the history of signals the DM has

received about the profitability of the alternative under consideration. However, it could

also represent the DM’s history of beliefs about that alternative, or a sufficient statistics

18To allow for this, simply assume alternative 0 is degenerate, with a deterministic payoff equal to
zero at all periods. One can also let the search decision correspond to a particular alternative in the
CS. While this poses no problem from a mathematical standpoint, the definition of CS favored in the
literature (and in the popular language) suggests it is best to keep search separated from the alternatives
in the CS.
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of the latter (e.g., her current belief). In the case of habit-formation, but also in certain

learning environments, it may represent the history of payoffs the DM derived from

selecting the alternative in previous periods. Importantly, while ξ is fixed and indexes

the alternative’s “type,” or process, θ evolves over time. Denote by σ the sigma-field

associated with ΩP , and by HωP ∈ ∆(ΩP ) the distribution over ΩP when the alternative’s

current state is ωP . Without loss of generality, we assume that the flow payoffs the DM

receives over time are governed by the same process describing the evolution of the

alternative’s state (that is, they can be represented by a deterministic function of the

alternative’s state). The first time the DM focuses on an alternative of type ξ, the latter

is in state (ξ, θ0) where, without loss of generality, θ0 can be taken to be the same across

all ξ. We do not describe explicitly the mappings from states to payoffs as the analysis

does not require it.

The process governing the cost incurred due to search, the number of new alternatives

introduced as the result of search, and their types, is also Markov time-homogeneous.

The search technology’s state is summarized by ωS, which consists of the history

((c0, E0), (c1, E1), ..., (cm, Em))

of past search costs and of alternatives’ types added to the CS. Here m ∈ N denotes

the number of times search has been carried out in the past, and Ek = (nk(ξ) : ξ ∈ Ξ)
is a vector representing, for each alternative’s type ξ, the number of alternatives nk(ξ)
of type ξ found as the result of the k’th search.19 Denote the set of possible states of

search by ΩS. The distribution over the cost and the set of new alternatives added to

the CS is denoted by HωS .
20

Next, we define the state of the decision problem as follows. For each ωP ∈ ΩP , let

SP (ωP ) ∈ N denote the number of alternatives in the CS in state ωP . The state of the

decision problem is given by the pair S ≡ (ωS,SP ), where SP : ΩP → N is a function

describing, for each ωP ∈ ΩP , the number of alternatives in the CS in state ωP . Next

let Ω ≡ ΩP ∪ ΩS and note that ΩP ∩ ΩS = ∅. With an abuse of notation, we will

sometime find it useful to denote the entire state of the decision problem as a function

19The first time search is carried out, its state is (c0, E0), where c0 can be taken arbitrarily (it plays
no role in the analysis since the cost of the first search is c1), and E0 is a description of the types of
alternatives in C0.

20Note that this formulation allows the search technology to depend in flexible ways on the results of
previous searches. The key assumptions are that the search process is time-homogeneous, and that the
outcome of each new search is drawn from HωS independently from the idiosyncratic and time-varying
component θ of each alternative in the CS.
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S : Ω→ N that specifies, for each ω ∈ Ω, including ω ∈ ΩS, the number of alternatives,

including search, in state ω. We will then denote by St the state of the decision problem

at the beginning of period t. Clearly, with this representation, at each period t, there

is a unique ω̂s ∈ ΩS such that St(ωS) = 1 if ωs = ω̂s and St(ωS) = 0 if ωs 6= ω̂s. The

special case where the DM does not have the option to search corresponds to the case

where St(ωS) = 0 for all ωS ∈ ΩS, all t.

Defining the state of the decision problem this way allows us to keep track of all

relevant information, and facilitates the analysis.

3.2 Optimal policy

A policy χ for the above decision problem is a rule governing the decisions in each period

– whether to focus attention on an alternative in the CS or search for new ones – based

on the available information. Given a sequence of feasible decisions (dt)t≥0, the state

process (St)t≥0 generates a natural filtration {Ft}t≥0. A policy χ is then a Ft-measurable

sequence of feasible decisions. Denote by Ut ≡
∑∞
j=0 xjtujt − ctyt the realized period-t

net payoff. A policy χ is optimal if it maximizes the expected discounted sum of the

net payoffs Eχ [∑∞t=0 δ
tUt|S0] , where δ ∈ (0, 1) denotes the discount factor. To guarantee

that the process of the expected net payoffs is well behaved, we assume that for any

state S and policy χ, δTEχ [∑∞s=T δsUs|S]→ 0 as T →∞.21

For each ωP ∈ ΩP , let

IP (ωP ) ≡ sup
τ>0

E
[∑τ−1

s=0 δ
sus|ωP

]
E
[∑τ−1

s=0 δ
s|ωP

] , (6)

denote the “index” of an alternative currently in state ωP , where τ denotes a measurable

stopping time.22 The definition in (6) is equivalent to the definition in Gittins and Jones

(1974) and Gittins (1979). Given the state S, denote the maximal index among the

alternatives within the DM’s CS by I∗(SP ) = maxωP∈{ω̂P∈ΩP :SP (ω̂P )>0}I(ωP ). Note that

I∗(S) depends on S only through the state of the alternatives in S.

We now define an index for search that depends on the state of the alternatives

in the CS only through the information that the latter contains for the evolution of

21This property guarantees the solution to the Bellman equation corresponding to the above dynamic
program coincides with the true value function; it is immediately satisfied if payoffs and costs are
uniformly bounded.

22Specifically, τ is a stopping time with respect to the process whose filtration is obtained by focusing
attention on the alternative with initial state ωP in all periods.
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the search technology. Given the representation introduced above, such information is

represented by the number of alternatives of each type ξ ∈ Ξ brought to the set by

past searches. Such information is already encoded in the state ωS. As a result, the

index of search depends on the state of the entire decision problem only through ωS.

Analogously to the indices defined above, the index for search is defined as the maximal

expected average discounted net payoff, per unit of expected discounted time, obtained

between the current period and an optimal stopping time. Contrary to the standard

indexes, however, the expected arrival of alternatives as the result of search implies that

the maximization in the definition is not just over the stopping time, but also over the

rule governing the allocation of future attention among the new alternatives and further

search. Denote by τ a measurable stopping time, and by π a measurable rule prescribing,

for any period s between the current one and the stopping time τ , either the selection

of one of the new alternatives brought in by search or further search. Importantly, π

selects only among search and alternatives that were not already in the CS when search

was launched.23

Formally, given the state of the search technology ωS ∈ ΩS, its index is defined by

IS(ωS) ≡ sup
π,τ

E
[∑τ−1

s=0 δ
sUπ

s |ωS
]

E
[∑τ−1

s=0 δ
s|ωS

] , (7)

where Uπ
s denotes the stochastic net flow payoff obtained in period s, under the rule π.

Denote by χ∗ the policy that selects at each period t ≥ 0, given the overall state

St of the decision problem, search if and only if IS(ωS) ≥ I∗(SP), and otherwise an

arbitrary alternative with index I∗(SP ).24 Ties between the alternatives may be broken

arbitrarily. In order to maintain consistency throughout the analysis, we assume that,

in the case of a tie IS(ωSt ) = I∗(SPt ), the tie is broken in favor of search.

To present the next result, we first introduce the following notation. Let κ(v) ∈
N ∪ {∞} denote the first time at which, when the DM follows the index policy χ∗, (i)

the search technology reaches a state in which its index is no greater than v, and (ii)

all alternatives – regardless of when they were introduced into the CS – have an index

no greater than v. That is, κ(v) is the minimal number of periods until all indices are

weakly below v. In case this event never occurs, κ(v) = ∞. Note that between the

23That is, π does not select among alternatives present before the launch of search. To make things
clear, suppose search is launched in period t and terminated in period τ > t. Then at each period
t < s < τ , π selects between search and alternatives available in period s but which were not yet in the
CS in period t.

24Recall that I∗(SP) is the largest index of the “physical” alternatives in the CS.
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current period and the first period at which all indices are weakly below v, if the DM

searches, new alternatives are introduced, in which case the evolution of their indices

must also be taken into account in the computation of κ(v).
Let V∗(S0) denote the maximal expected (per-period) payoff the DM can attain,

given the initial state S0. That is,

V∗(S0) = (1− δ) sup
χ

Eχ
[ ∞∑
t=0

δtUt|S0

]
.

Theorem 1. (i) The index policy χ∗ is optimal in the sequential search problem with

endogenous consideration sets.

(ii) The DM’s expected (per-period) payoff under the index policy χ∗ is equal to

∫ ∞
0

(
1− E

[
δκ(v)|S0

])
dv. (8)

(iii) The index of search, as defined in (7), is such that, for any ωS ∈ ΩS,

IS(ωS) =
E
[∑τ∗−1

s=0 δsUs|ωS
]

E
[∑τ∗−1

s=0 δs|ωS
] , (9)

where τ ∗ is the first time s ≥ 1 at which IS and all the indexes of the alternatives brought

in by search fall below the value IS(ωS) of the search index when search was launched,

and where the expectations are with respect to the process induced by the index rule χ∗.

Proof of Theorem 1. The proof is in three steps. Step 1 below first establishes

the result in part (iii) and then uses the recursive representation of the index of search

in (9) to show that, when the DM follows an index policy, her expected (per-period)

payoff satisfies the representation in (8), thus establishing part (ii). Steps 2 and 3, in

the Appendix, then use the representation in (8) to show that the DM’s payoff under

the proposed index rule satisfies the Bellman equation for the dynamic program under

consideration, thus proving the optimality of the index policy.

Step 1. We start by proving part (iii). Clearly, by definition, for all ωS,

IS(ωS) ≥
E
[∑τ∗−1

s=0 δsUs|ωS
]

E
[∑τ∗−1

s=0 δs|ωS
] .

To see that the opposite inequality must also hold, note that by definition of τ ∗ in (iii),

between period s = 0 and period τ ∗ − 1, any option chosen under the index policy
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(whether exploring an alternative or searching again) must yield an expected per-period

average payoff greater than IS(ωS). Therefore, by following the index policy until τ ∗−1,

the expected average payoff on the right-hand-side of (9) must be greater than IS(ωS).
Next, consider part (ii). We first introduce some notation. Define S1

t ∨S2
t ≡ (S1

t (ω)+
S2
t (ω) : ω ∈ Ω) and S1

t \S2
t ≡ (max{S1

t (ω)−S2
t (ω), 0} : ω ∈ Ω). Any feasible state of the

decision problem must specify one, and only one, state of the search technology (i.e., one

state ω̂S for which St(ω̂S) = 1 and such that St(ωS) = 0 for all ωS 6= ω̂s). However, it

will be convenient to consider fictitious (infeasible) states where search is not possible,

as well as fictitious states with multiple search possibilities. If the state of the decision

problem is such that either (i) the CS is empty, or (ii) there is a single alternative in the

CS and the latter cannot be expanded, we will denote such state by et(ω), where ω ∈ Ω
is the state of the search technology in case (i) and of the single physical alternative in

case (ii). Observe that the independence of the processes governing the evolution of the

alternatives (conditional on their types ξ) along with the independence of these processes

from the evolution of the search technology (conditional on the information about the

types of the alternatives in the CS encoded into ωS) imply that, for any v ∈ R and

states S1 and S2, κ(v|S1 ∨ S2) = κ(v|S1) + κ(v|S2). That is, the time it takes to bring

all indexes below v when the state of the decision problem is S1 ∨ S2 is the sum of the

times it takes to accomplish the same thing when the state is S1 and S2, respectively.

We construct the following stochastic process based on the values of the indices, and

the expansion of the CS through search, under the index policy. Starting with the initial

state S0 = (SP0 , ωS0 ), let v0 = max{I∗(SP0 ), IS(ωS0 )}. Consider the first time t0 in which,

when the DM follows the policy χ∗, all indices are strictly below v0, with t0 = ∞ if

this event never occurs. Note that t0 differs from κ(v0), as t0 is the first time at which

all indices are strictly below v0, whereas κ(v0) = 0 is the first time at which all indices

are weakly below v0. Next let v1 = max{I∗(SPt0), IS(ωSt0)}, where St0 = (SPt0 , ωSt0) is the

state of the system at time t0. Note that, by construction, t0 = κ(v1). Furthermore,

if t0 < ∞ then v0 > IS(ωS0 ) implies ωSt0 = ωS0 . We can proceed in this manner to

obtain a stochastic, strictly decreasing, sequence of values (vi) i≥0, with corresponding

stochastic times (κ(vi))i≥0. Next, for any i = 0, 1, 2, ..., let η(vi) = ∑κ(vi+1)−1
s=κ(vi) Us denote

the discounted sum of the net payoffs between periods κ(vi) and κ(vi+1) − 1, when

the DM follows the index policy and let (η(vi))i≥0 define the corresponding sequence of

discounted accumulated net payoffs, with η(vi) = 0 if κ(vi) =∞.

Denote by V(S0) the expected (per-period) net payoff under the index policy χ∗,

given the initial state of the problem S0. That is, V(S0) = (1− δ)Eχ∗ [∑∞t=0 δ
tUt|S0]. By
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definition of the processes (κ(vi))i≥0 and (η(vi))i≥0,

V(S0) = (1− δ)E
[ ∞∑
i=0

δκ(vi)η(vi)|S0

]
.

Next, using the definition of the indices (6) and (7), observe that

vi =
(1− δ)E

[
η(vi)|Sκ(vi)

]
E
[
1− δκ(vi+1)−κ(vi)|Sκ(vi)

] . (10)

To see why (10) holds, recall that, at period κ(vi), given the state of the system Sκ(vi),

the optimal stopping time in the definition of the index vi is the first time at which

the index of the physical alternative corresponding to vi (if vi corresponds to a physical

alternative), or the index of search and of all alternatives introduced through future

searches (in case vi corresponds to the index of the search technology), drop below vi.25

Rearranging, multiplying both sides of (10) by δκ(vi), and using the fact that δκ(vi) is

known at κ(vi), we have that

(1− δ)E
[
δκ(vi)η(vi)|Sκ(vi)

]
= viE

[
δκ(vi) − δκ(vi+1)|Sκ(vi)

]
.

Taking expectations of both sides of the previous equality given the initial state S0, and

using the law of iterated expectations, we have that

(1− δ)E
[
δκ(vi)η(vi)|S0

]
= E

[
vi
(
δκ(vi) − δκ(vi+1)

)
|S0
]
.

If follows that

V(S0) = E
[ ∞∑
i=0

vi
(
δκ(vi) − δκ(vi+1)

)
|S0

]
. (11)

Next, note that δκ(vi) = 0 whenever κ(vi) = ∞, and that, for any i = 0, 1, ...,
25Note that if, at period κ(vi), there are multiple options (“physical” alternatives and search) with

index vi, the average sum E
[
η(vi)|Sκ(vi)

]
of the discounted net payoffs across all alternatives with index

vi until the indices of all such options drop below vi (in case search is included, also those of the new

arriving alternatives), per unit of average discounted time, E
[
1− δκ(vi+1)−κ(vi)|Sκ(vi)

]
/(1 − δ), is the

same as the average sum of the discounted net payoffs of each individual option with index vi normalized
by the average discounted time until the index of that alternative falls below vi. This follows from the
independence of the processes. Hence, Condition (10) holds irrespectively of whether, at κ(vi), there is
a single or multiple options with index vi.
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Figure 2: An illustration of the function δκ(v) and the region∑∞
i=0 v

i
(
δκ(vi) − δκ(vi+1)

)
=
∫∞

0 vdδκ(v), for a particular path with κ(v3) =
∞.

κ(v) = κ(vi+1) for all vi+1 < v < vi. It follows that (11) is equivalent to

V(S0) = E
[∫ ∞

0
vdδκ(v)|S0

]
= E

[∫ ∞
0

(
1− δκ(v)

)
dv|S0

]
=
∫ ∞

0

(
1− E

[
δκ(v)|S0

])
dv.

(12)

The construction of the integral function (12) is illustrated in Figure 2.

In the Appendix (Step 2) we then use the representation in (12) to characterize

the difference in the DM’s expected payoff between (a) following the index policy χ∗

from the outset and (b) searching in the first period and then reverting to χ∗ from the

next period onward. To do so, we introduce an additional fictitious “retirement option,”

which is available at all periods and which yields a constant payoff M <∞. The above

characterization in turn permits us to establish that V solves the Bellman equation of

the corresponding decision process (Step 3). Together with some standard arguments

from dynamic programming, the above properties imply that χ∗ is indeed an optimal

policy, thus establishing part (i) in the Theorem. Some of the derivations in Steps 2 and

3 are a bit tedious and hence relegated to the Appendix. �

3.3 Search and exploration dynamics

Equipped with the result in Theorem 1, we now highlight a few important properties of

the dynamics of learning and expansion of the CS as a function of the search technology.

Corollary 2. At any point in time, the decision to expand the CS depends on the
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composition of the CS only through the information that the latter contains about the

likelihood that new searches will bring alternatives of different types ξ.

The corollary is an immediate implication of the optimal policy being an index pol-

icy. However, note that the result is not trivial, for the opportunity cost of searching,

which coincides with the value of continuing with the current CS, typically depends on

the composition of the set over and above the information that the latter contains for

expected search outcomes.

Corollary 3. At any point in time, the relative likelihood of selecting any pair of alter-

natives in the CS is invariant to the state of the search technology.

Corollary 3 is also an immediate implication of Theorem 1. More generally, the

optimal policy being an index policy implies that the relative frequency with which the

DM explores any two alternatives in the CS is invariant to what the decision maker

expects to find by expanding the CS. This is true despite the fact that the expansion of

the CS may bring alternatives that are more similar to some alternatives in the CS than

others.

Corollary 4. An improvement in the search technology yielding an increase in the prob-

ability that search brings an alternative of positive expected value (vis-a-vis the outside

option) need not affect the decision to search even at histories at which, prior to the

improvement, the DM is indifferent between searching and continuing with the current

CS.

The result follows from the fact that improvements in the search technology need not

imply an increase in the index of search. This is because, as shown in (9), the optimal

stopping time in the search index coincides with the first time at which the index of

search and the indexes of all alternatives brought in by search fall below the value of the

search index at the time search was launched. As a result, any marginal improvement

in the search technology affecting only those alternatives whose index at the time of

arrival is below the value of the search index at the time search was launched does not

affect the search index, and hence the decision to expand the CS. Note that the result

hinges on the fact that the DM needs to explore the various alternatives that search

brings to determine their values. When, instead, search is stochastic, but the value of

the alternatives search brings is revealed to the DM upon arrival (as in the literature

on undirected search), any marginal improvement in the search technology necessarily

breaks the indifference in favor of search.
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Definition 1. A search technology is stationary if HωS = H for all ωs ∈ ΩS, deteriorat-

ing if (−ck, Ek) is decreasing in k in the sense of first-order stochastic dominance, and

improving if (−ck, Ek) is increasing in k in the sense of first-order stochastic dominance.26

Corollary 5. If the search technology is stationary, for any two states S, S ′ at which

the DM expands the CS, V∗(S) = V∗(S ′).

The corollary says that the continuation value when search is launched is invariant

to the state of the CS. The result follows from the fact that, without loss of optimality,

the DM never comes back to any alternative in the CS after search is launched. The

same property holds in case of improving search technologies, as reported in the next

corollary.

Corollary 6. If the search technology is stationary or improving and search is carried

out at period t, without loss of optimality, the DM never comes back to any alternative

in the CS at period t.

Since the state of an alternative changes only when the DM focuses on it, if in period

t, IS ≥ I∗(SP ), under a stationary or improving search technology, the same inequality

remains true in all subsequent periods. In this case, search corresponds to disposal of

all alternatives within the current CS. Each time the DM launches herself into search,

she starts fresh.

Corollary 7. If the search technology is stationary or deteriorating, at any history, the

decision to expand the CS is the same as in a fictitious environment in which the DM

expects she will have only one further opportunity to search.

The result follows again from the characterization of the optimal stopping time in

the recursive representation of the search index in (9). This time coincides with the

first time at which the index of any physical alternative brought in by search, and the

index of search itself, drop below the value of the search index at the time search was

initiated. If the search technology is stationary, or deteriorating, the index of search falls

(weakly) below its initial value immediately after search is launched. Hence, IS(ωS) is

independent of any information pertaining to future states of the search technology,

conditional on ωS.

26That is, the search technology is deteriorating if for any k and any upper set Z ∈ R × R|Ξ|,
Pr((−ck+1, Ek+1) ∈ Z) ≤ Pr((−ck, Ek) ∈ Z). This definition is quite strong. In more specific environ-
ments in which there is an order on the set of types Ξ, weaker definitions are consistent with the results
in the corollaries below.
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Corollary 8. Suppose the DM does not have the option to search (i.e., S0 is such that

S0(ωS) = 0 for all ωS ∈ ΩS). Let Ŝ0 denote the state that coincides with S0 except for

the fact that Ŝ0(ω̂S) = 1 for some ω̂S ∈ ΩS. The DM’s willingness-to-pay to have access

to a search technology in state ω̂S is equal to

P∗(S0; ω̂S) =
∫ ∞

0

(
E
[
δκ(v)|S0

]
− E

[
δκ(v)|Ŝ0

])
dv.

The result in Corollary 8 can be used to price access to a search technology with

limited knowledge about the details of the environment. To see this, suppose that the

econometrician, the analyst, or a search engine, have enough data about the average time

it takes for an agent with exogenous outside option equal to v ∈ R+ to exit and take the

outside option, both when search is available and when it is not. Then by integrating

over the relevant values of the outside option one can compute P∗(S0; ω̂S) and hence the

maximal price that the DM is willing to pay to access the search technology.

3.4 Irreversible choice

In many decision problems, in addition to learning about existing options and searching

for new ones, the DM can irreversibly commit to one of the alternatives, thus bringing

to an end the exploration process. Consider Weitzman’s (1979) search problem, where

uncertainty about the reward from each box is resolved immediately after opening the

box, and where a box can be chosen only if it was previously opened. Under these

assumptions, whether or not the choice of a box is reversible is irrelevant: since there

is no additional information to be learned about the opened box, there is no reason for

the DM to change her selection. Doval (2018) studies a generalization of Weitzman’s

problem where a box may be selected even if it has not been previously opened. She

shows that the optimal solution takes the form of an index policy only under certain

conditions, and studies the case in which the index policy need not be optimal.

In this section, we extend our analysis to a general model of learning, searching for

new alternatives, and irreversible choice in which, at each period, the DM can (i) focus

attention on one of the alternatives in the CS, (ii) expand the CS through search, or

(iii) irreversibly commit to one of the alternative in the CS, possibly based on partial

information about its value. We assume the DM must explore each alternative of type ξ

at least Mξ ≥ 0 times before she can irreversibly commit to it (for example, a consumer

must visit a vendor’s webpage at least once to finalize a transaction with that vendor).

The case Mξ = ∞ corresponds to the model with no irreversible choice of the previous
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subsection. We allow for the possibility that the value of each alternative may never be

fully revealed, with each exploration bringing new information, and for the possibility

that the payoff from selecting an alternative in the CS without committing to it is

positive in each period and evolves according to an arbitrary process.

Formally, we modify the general model of Section 3 as follows. In addition to the

actions xt and yt defined above, we introduce an additional action, zjt ∈ {0, 1}, repre-

senting the irreversible choice of an alternative j in the CS in period t, with zjt = 1 if the

DM irreversibly chooses alternative j, and zjt = 0 otherwise. The period-t complete de-

cision is then summarized by dt ≡ (xt, yt, zt), with zt = (zjt)∞j=0. A sequence of decisions

d is feasible if, for all t ≥ 0, (i) xjt = 1 or zjt = 1 only if j ∈ Ct, (ii)
∑∞
j=1 xjt+yt+zjt = 1,

(iii) zjt = 1 if zjs = 1 for some s < t, and (iv) zjt = 1 only if alternative j of type ξ has

been explored at least Mξ times. Together, the above conditions imply that, once an

alternative is chosen (that is, once the DM has committed to it), there are no further

decisions to be made.

Focusing on an alternative (i.e., exploring it without committing to it – formally

captured by xjt = 1) changes its state and may yield a flow payoff/cost, as in the baseline

model. Irreversibly selecting alternative j of type ξ in period t (formally captured

by zjt = 1) yields a flow payoff to the DM from that moment onward, the value of

which may be only imperfectly known to the DM at the time the irreversible decision is

made. Denote by R(ωP ) the expected flow value from choosing an alternative when its

current state is ωP = (ξ, θ). Note that since the choice is irreversible, R(ωP ) admits two

equivalent interpretations: (i) If the the alternative is chosen, an immediate expected

payoff equal to R(ωP )/(1 − δ) is obtained and there are no further payoffs; (ii) payoffs

continue to accrue at all subsequent periods after the irreversible choice is made, with

each expected payoff equal to R(ωP ).
Now suppose that each alternative’s states can be partially ordered, based on the

number of times the DM has focused on the alternative. Formally, suppose the set Θ
takes the product form Θ = Θ′ ×N, with m ∈ N denoting the number of times the DM

focused on the alternative and θ′ all additional information. For any ωP = (ξ, (θ′,m))
and ω̂P = (ξ̂, (θ̂′, m̂)), we say that ω̂P “follows” ωP if and only if ξ̂ = ξ and m̂ ≥ m.

Denote this relation by ω̂P � ωP .

Condition 1. A type-ξ alternative has the better-later-than-sooner property if, for any

ωP = (ξ, (θ′,m)), with m ≥ Mξ, and any ω̂P � ωP , either R(ω̂P ) ≥ R(ωP ), or

R(ω̂P ), R(ωP ) ≤ 0.

The following environments are examples of settings satisfying Condition 1.
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Example 1 (Weitzman’s extended problem). Consider the following extension

of Weitzman’s original problem: (i) The set of boxes is endogenous; (ii) each box of

type ξ requires Mξ explorations before the box’s value is revealed; (iii) the DM can

irreversibly commit (i.e., select) a box only if its value has been revealed, i.e., only after

Mξ explorations, where Mξ can be stochastic (in this case, θ′ specifies also whether or

not a box can be selected and any information the DM may have about the value of

Mξ); (iv) the flow payoff from exploring a box without committing to it is equal to the

cost of exploring the box (with the latter evolving stochastically with the number of past

explorations) and is equal to zero for any exploration t > Mξ; (v) the payoff R(ωP ) from

irreversibly committing to a box whose value has been revealed (i.e., after the Mξ’th

exploration) remains constant after the Mξ-the exploration and is equal to the box’s

prize. Clearly, this problem satisfies the better-later-than-sooner property.

Example 2 (Purchase/Lease problem). In each period, an apartment owner either

chooses one of the real-estate agents she knows to lease her apartment, or searches for

new agents. In addition, the owner can use one of the agents to sell the apartment. The

decision to sell the apartment is irreversible. Once the apartment is sold, the owner’s

problem is over. The (expected) flow value ujt the owner assigns to leasing the apartment

through agent j of type ξ in state ωP = (ξ, (θ′,m)) is a function of the information θ′

the owner has accumulated over time about agent j’s ability to deal with all sorts of

problems related to tenants. The (expected) value R(ωP ) the owner assigns to selling

the apartment through the same agent may also depend on the agent’s expertise with

tenant-related problems but is primarily a function of the familiarity the agent has with

the apartment, which is determined by the number of times m the agent has been

hired by the owner in the past. If the agent has no or little past experience selling

apartments (this information is contained in ξ), R(ωP ) ≤ 0. Else, for any θ′ and θ̂′,

R(ξ, (θ̂′, m̂)) ≥ R(ξ, (θ′,m)) if and only if m̂ ≥ m. Clearly, this problem too satisfies

the better-later-than-sooner property of Condition 1. Contrary to Weitzman’s extended

problem discussed in the previous example, the DM may derive a higher (expected) value

from using an alternative without irreversibly committing to it (i.e, from leasing instead

of selling through an agent) for an arbitrary long, possibly infinite, number of periods.

To accommodate for irreversible choice, we need to modify the definition of the index
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of each physical alternative in state ωP ∈ ΩP as follows:

IP (ωP ) ≡ sup
π,τ

E
[∑τ−1

s=0 δ
sUπ

s |ωS
]

E
[∑τ−1

s=0 δ
s|ωs

] , (13)

where τ is a stopping time, and where π is a rule specifying whether the DM focuses

attention on the alternative, or irreversibly commits to it (i.e., chooses it). Similarly,

modify the index of search IS(ωS) in (15) by letting the rule π now specify not only

whether the DM keeps searching or explores one of the alternatives introduced through

search, but also whether she irreversibly commits to one of the alternatives that the new

search brought to the CS.

Next, amend the definition of the index policy χ∗ as follows. At each period t ≥ 0,

given the state St of the decision problem, the policy specifies to (a) search if IS is greater

than the index IP of any physical alternative and the expected “retirement” value R of

each alternative in the CS; (b) focus attention on a physical alternative in state ωP if its

index IP is greater than its expected retirement value R, as well as the index of search,

and both the index and the expected retirement value R of any other alternative in the

CS; (c) choose (i.e., irreversibly commit to) an alternative in state ωP if its retirement

value R(ωP ) is greater than its index IP (ωP ), as well as the index of search and both

the index and the expected retirement value of any other physical alternative in the CS.

We then have the following result (the proof is in the Appendix)

Theorem 2. Suppose Condition 1 is satisfied for all ξ ∈ Ξ. The conclusions in Theo-

rem 1 apply to the problem with irreversible choice under consideration. However, the

stopping time τ ∗ in the characterization of the index of search in (9) is now the first

time s ≥ 1 at which IS, all the indexes of the alternatives brought in by search, and

all retirement values of such alternatives fall below the value IS(ωS) of the search index

when search was launched.

The result is established by considering a fictitious problem without irreversible choice

in which, each time the DM focuses on a physical alternative in state ωP , an “auxiliary

alternative” with constant flow payoff equal to R(ωP ) is added to the CS and remains

available in all subsequent periods, irrespectively of possible changes in the state of

the physical alternative that generated it. The better-later-than-sooner property of

Condition 1 guarantees that, if the DM ever selects one of these auxiliary alternatives, she

necessarily picks the one corresponding to the latest activation of the physical alternative

that generated it. This last property in turn implies that both (a) the non-perishability
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of the auxiliary alternatives and (b) the reversibility of choice in the fictitious problem

play no role, which in turn implies that the optimal policy in the fictitious problem

coincides with the one in the primitive problem.

3.5 Pandora’s problem with endogenous boxes and gradual res-

olution of uncertainty

Equipped with the above results, we now revisit the extension of Weitzman’s (1979)

search problem introduced in Example 1. Recall that the problem is a generalization

of the one in Section 2, in which (a) fully learning the value of each box (which, as

in Weitzman’s problem, is necessary to irreversibly commit to it) requires an arbitrary

number of explorations M , with M stochastic and possibly equal to ∞, and (b) each

exploration s ≤M brings additional information both about the box’s prize, u, and the

number of explorations M necessary to learn the value u. For simplicity, and contrary to

Weitzman, we assume here that there are no direct costs associated with the exploration

of the various boxes (other than time), or with the expansion of the CS.27

More precisely, denote by ωP = (ξ, θ′, n) the state of each box, represented by the

box’s primitive characteristics ξ (e.g., the prior distribution from which the box’s prize, u,

the number of explorations necessary to discover u, and the sequence of signals that lead

to the discovery of u, are drawn), the history of signal realizations θ′, and the number

of times n the box has been explored. When a new box is added to the CS, its type ξ is

drawn from a set Ξ from a known distribution F . For simplicity, and consistently with

the specification in Section 2, we assume that each expansion of the CS brings exactly

one box.28

Let the reservation price of each box in state ωP be equal to

IP (ωP ) = sup
τ>0

E
[
δφ
(
1− δτ−φ

)
1{φ<τ}u|ωP

]
1− E [δτ |ωP ] , (14)

where τ is a (stochastic) stopping-time and φ is the (stochastic) time at which the box’s

prize u is revealed. Similarly, let

IS(m) = sup
τ>0

δ
∫
A(IS(m))

(
E
[
δφ
(
1− δτ−φ

)
1{φ<τ}u|ξ

])
dF(ξ)

1−
∫
A(IS(m)) (E [δτ |ξ]) dF(ξ) (15)

27Introducing direct costs complicates the notation and the expressions for the reservation prices
below, but is otherwise innocuous.

28This assumption is also not necessary, but simplifies the characterization of the reservation prices.
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denote the reservation price of the option to expand the CS, where m denotes the number

of times the CS has been expanded in the past, A(l) ≡ {ξ ∈ Ξ : I(ξ, θ′0, 0) > l} denotes

the set of box types whose reservation price upon arrival exceeds l (the initial value θ′0

plays no role and can be taken arbitrarily), and τ , φ and u are as defined above.

Proposition 4. In the sequential learning problem with an endogenous set of boxes and

gradual resolution of uncertainty described above, the optimal policy is the same as in

Proposition 1 but with the boxes’ reservation prices given by (14) and the reservation

price of the search option given by (15).

We conclude by noting that the above generalization of Weitzman’s model also ac-

commodates for a generalization of the“eventual purchase”result of Section 2 to a setting

in which the resolution of uncertainty is gradual. Consider the same environment de-

scribed in Section 2, but now assume it takes Mi explorations (each with cost λi) to

learn product i’s value. Denote by Iki the reservation price of product i after it has been

added to the CS and has been explored k times, and ISi the search index after i−1 past

searches, as defined in Section 2.29

Proposition 5. For all i ≥ 1, let wi = min{ISi , I1
i , I2

i , ..., I
Mi−1
i , ui} be the “effective

value” of product i. The consumer purchases product i if, for all j 6= i, wj < wi (and

only if wi ≥ wj for all j 6= i).

Similarly to its counterpart in Section 2, the result in Proposition 5 permits one to

reduce the sequential learning problem with endogenous CS and gradual resolution of

uncertainty to a static discrete-choice model. Contrary to the result in Section 2, how-

ever, the eventual purchase probabilities that one obtains from the “effective values” of

Proposition 5 now depend not only on the endogenous sequence of expansions of the

CS and the products’ ultimate values ui but also on the realizations of the signals the

consumer receives about the values ui after each exploration. Note that when the reso-

lution of uncertainty about each alternative’s value is gradual, the indices Iki reflect the

rate at which information is revealed about the alternative (i.e., the speed of learning).

This introduces a new tradeoff. As in Section 2, expansion of the CS is a substitute for

exploration of the alternatives already in it. As a result, changes in the environment

(e.g., in the inspection costs and/or in the products’ values) that increase (alternatively,

reduce) the relative desirability of expansion may lead the consumer to favor alternatives

for which learning is faster (alternatively, slower).

29Note that, in this problem, product i’s type ξ = (Fi, λi) coincides with the distribution Fi over the
consumer’s value ui for product i and the signals θi = (θ1

i , ..., θ
Mi
i ) the consumer receives about ui after

each exploration, along with the cost λi of each exploration.

33



4 Extensions

In this section, we discuss how the results accommodate for a few simple extensions that

may be relevant for applications.

Relative length of expansion. In order to allow for frictions in searching for new

alternatives, we assume that, whenever the DM searches, she cannot focus on (that is,

explore) any of the alternatives in the CS. In reality, the amount of time that each

search occupies may differ from the amount of time that each exploration takes. For

example, the online search for alternative providers of a given service may take seconds,

but searching for a potentially suitable candidate for a given position make take longer

than an interview. The results easily extend to a setting in which the number of periods

that each search takes may differ from the number of periods that the exploration of

each alternative occupies, with both times varying stochastically with the state. More

generally, all of the results can be extended to a semi-Markov environment, where time

is not slotted. Furthermore, because the length of time the exploration of each alter-

native takes can be arbitrary, by rescaling the payoffs and adjusting the discount factor

appropriately, one can make the length of time for which the exploration of the exist-

ing alternatives is paused because of search arbitrarily small. The results therefore also

apply to problems in which search and learning occur “almost” in parallel.

Multiple expansion possibilities. As illustrated in an example in the Online Ap-

pendix, if there are multiple options for search for which the outcome is correlated,

an index policy cannot be guaranteed to be optimal.30 Instead, the analysis readily

extends to an environment in which there are multiple search possibilities with indepen-

dent outcomes, by allowing for the possibility of multiple “search arms”. For example,

a researcher may choose in which field to search for a new project. A department with

a single new faculty position may choose in which field to search for candidates. The

analysis can also be extended to allow the results of search to include not just physical

alternatives, but also new search possibilities.

No discounting. The proofs rely on the assumption that δ < 1. As discussed above,

an important special case of our analysis is an extension of Weitzman’s problem in which

the set of boxes is endogenous. Many applications of Weitzman’s problem assume no

discounting (i.e., δ = 1). Our results extend to this case since, as noted in Olszewski and

30Such correlation arises naturally in an environment in which the DM can choose how much to invest
in search, with different levels of investment corresponding to different “intensities” of search.
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Weber (2015), Weitzman’s problem with δ = 1 is a special case of a multi-arm bandit

problem with un-discounted “target processes”, in which once an arm reaches a certain

(target) state, payoffs no longer accrue. A well known result for such problems is that

the finiteness they impose allows to take the limit as δ → 1 (see, e.g., Dumitriu, Tetali,

and Winkler, 2003).

5 Concluding remarks

We introduce a model of sequential learning in which the decision maker alternates be-

tween exploring alternatives already in the consideration set and searching for new ones

to explore in the future. The consideration set is thus constructed gradually over time

in response to the information the decision maker collects. We characterize the optimal

policy and study how the tradeoff between the exploration of existing alternatives and

the expansion of the consideration set depend on the search technology. This trade-

off is conveniently summarized in a collection of indexes where the index for search is

computed in recursive form accounting for future optimal decisions. The analysis also

accommodates for certain irreversible decisions that admit as a special case an extension

of Weitzman’s (1979) “Pandora’s boxes” problem in which the set of boxes is endogenous

and the resolution of uncertainty about each box’s value is gradual.

The analysis may be of interest to dynamic decision problems in which the decision

maker is unable to consider all feasible alternatives from the beginning, either because

of limited attention or because of the sequential provision of information by interested

third parties such as online platforms and search engines.
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A Proofs

Proof of Proposition 1. The environment is a special case of the one studied in

Section 3.4. Condition 1 is satisfied in this environment since Mξ = 1 for all ξ ∈ Ξ and

all uncertainty is resolved upon the first inspection. As a result, Theorem 2 applies. It

remains to verify that the policy described in the proposition coincides with the index

policy of Theorem 2. This follows from observing that the reservation prices (1) are a

special case of the indexes in (13) and, because the search technology is deteriorating,
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the reservation price of the option to expand the CS, IS, is a special case of the search

index (9). �

Proof of Proposition 2. Since product 0 corresponds to the outside option, one of

the products is always purchased. Let i 6= j be such that wi > wj. It suffices to show

that product j will not be purchased.

Case 1: j > i. Suppose wj = ISj . Then min{Ii, ui} ≥ wi > ISj . This means that

the consumer reads j’s result only after clicking on i’s result. Once she clicks on i’s

result, however, she will not read j’s result, since ui > ISj . Next suppose wj = Ij. Then

min{Ii, ui} ≥ wi > Ij. The consumer therefore clicks on j’s result only after clicking on

i’s. But again, once she does so, she will not click on j’s result, since ui > Ij. Finally,

suppose wj = uj. Then even if she clicks on j’s result, since ui ≥ wi > uj, the consumer

will either recall a previous product or continue to search and find a better one. Hence

product j will never be purchased, as claimed.

Case 2: j < i. Since ISi ≥ wi > wj = min{Ij, uj, ISj }, j cannot be purchased before

i’s result is read. Since the search indexes are declining, ISi ≤ ISj . Because wi > wj,

in turn this implies that wj = min{Ij, uj, ISj }. Hence, min{Ii, ui} ≥ min{Ii, ui, ISi } =
wi > wj = min{Ij, uj}. Arguments analogous to those in Case 1 establish that j cannot

be purchased. �

Proof of Theorem 1. Step 2 . We use the representation of the DM’s payoff under

the index rule in (8) to characterize how much the DM obtains from following the index

policy χ∗ from the outset rather than being forced to make a different decision in the first

period and then reverting to χ∗ from the next period onward. Such a characterization

will permit us to establish in Step 3 the optimality of χ∗ through dynamic programming.

Given the initial state S0, for any ωP ∈ {ω̂P ∈ ΩP : SP0 (ω̂P ) > 0}, denote by

E
[
ũ|ωP

]
the immediate expected payoff from focusing on an alternative in state ωP

(the expectation is taken under the distribution HωP ) and by ω̃P the new state of that

alternative triggered by its exploration. Let

V P (ωP |S0) ≡ (1− δ)E
[
ũ|ωP

]
+ δE

[
V
(
S0\e(ωP ) ∨ e(ω̃P )

)
|ωP

]
(16)

denote the DM’s payoff from starting with exploring an alternative in state ωP and then
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following the index policy χ∗ from the next period onward. Similarly, let

V S(ωS|S0) ≡ −(1− δ)E
[
c̃|ωS

]
+ δE

[
V
(
S0\e(ωS) ∨ e(ω̃S) ∨W P (ω̃S)

)
|ωS

]
(17)

denote the DM’s payoff from expanding the CS, when the state of search is ωs, and

then following the index policy χ∗ from the next period onward, where E
[
c̃|ωS

]
is the

immediate expected cost from searching, ω̃S is the new state of search after the first

search is carried out, and W P (ω̃S) is the state of the new alternatives brought to the CS

by search, with c̃ and W P (ω̃S) jointly drawn from the distribution HωS .31

We introduce a fictitious “auxiliary option” which is available at all periods and

yields a constant reward M < ∞ when chosen. Denote the state corresponding to this

fictitious auxiliary option by ωAM , and enlarge ΩP to include ωAM . Similarly, let e(ωAM)
denote the state of the problem in which only the auxiliary option with fixed reward

M is available. Since the payoff from the auxiliary option is constant at M , if v ≥ M ,

then κ(v|S0 ∨ e(ωAM)) = κ(v|S0). If, instead, v < M , then clearly κ(v|S0 ∨ e(ωAM)) =∞.

Hence, the representation in (8), adapted to the fictitious environment that includes the

auxiliary option, implies that

V(S0 ∨ e(ωAM)) =
∫∞

0

(
1− E

[
δκ(v)|S0 ∨ e(ωAM)

])
dv = M +

∫∞
M

(
1− E

[
δκ(v)|S0

])
dv

= V(S0) +
∫M
0 E

[
δκ(v)|S0

]
dv.

(18)

The definition of χ∗, along with Conditions (16) and (17), then imply the following:

Lemma 1. For any (ωS, ωP ,M),

V(e(ωS) ∨ e(ωAM)) =

V
S(ωS|e(ωS) ∨ e(ωAM)) if M ≤ IS(ωS)

M > V S(ωS|e(ωS) ∨ e(ωAM)) if M > IS(ωS)
(19)

V(e(ωP ) ∨ e(ωAM)) =

V
P (ωP |e(ωP ) ∨ e(ωAM)) if M ≤ IP (ωP )

M > V P (ωP |e(ωP ) ∨ e(ωAM)) if M > IP (ωP ).
(20)

31Note that WP (ω̃S) is a deterministic function of the new state ω̃S = ((c0, E0), (c1, E1)) of search.
To see this, recall that, for any m, the function Em counts how many alternatives have been added to
the CS, for each possible state ωP , as a result of the m’th search.
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Proof of Lemma 1. First note that the index corresponding to the auxiliary option

is equal to M . Hence, if M ≤ IS(ωS), χ∗ prescribes to start with search. If, instead,

M > IS(ωS), χ∗ prescribes to select the auxiliary option forever, yielding an expected

(per period) payoff of M. To see why, in this case, M > V S(ωS|e(ωS) ∨ e(ωAM)), observe

that the payoff V S(ωS|e(ωS)∨e(ωAM)) from starting with search and then following χ∗ in

each subsequent period is equal to V S(ωS|e(ωS) ∨ e(ωAM)) = E
[∑τ̂−1

s=0 δ
sU π̂

s + δτ̂

1−δM |ω
S
]
,

for some stopping and selection rules τ̂ , π̂. This follows from the fact that, once the

DM, under χ∗, opts for the auxiliary option, he will continue to select that option in all

subsequent periods. By definition of IS(ωS),

M > IS(ωS) = sup
π,τ

E
[∑τ−1

s=0 δ
sUπ

s |ωS
]

E
[∑τ−1

s=0 δ
s|ωs

] ≥
E
[∑τ̂−1

s=0 δ
sU π̂

s |ωS
]

E
[∑τ̂−1

s=0 δ
s|ωs

] .

Rearranging, ME
[∑τ̂−1

s=0 δ
s|ωs

]
> E

[∑τ̂−1
s=0 δ

sU π̂
s |ωS

]
. Therefore,

V S(ωS|e(ωS) ∨ e(ωAM)) = E
[
τ̂−1∑
s=0

δsU π̂
s + δτ̂M

1− δ |ω
S

]
< ME

[
τ̂−1∑
s=0

δs + δτ̂

1− δ |ω
S

]
= M.

Similar arguments establish Condition (20). �

Next, for any initial state S0 of the decision problem, and any state ωP ∈ {ω̂P ∈ ΩP :
S0(ω̂P ) > 0} of the physical alternatives in the CS corresponding to S0, let DP (ωP |S0) ≡
V(S0) − V P (ωP |S0) denote the payoff differential between (a) starting by following the

index rule χ∗ right away and (b) focusing first on one of the physical alternatives in state

ωP and then following χ∗ thereafter. Similarly, let DS(ωS|S0) ≡ V(S0) − V S(ωS|S0)
denote the payoff differential between (c) starting with χ∗ and (d) starting with search

in state ωS and then following χ∗. The next lemma relates these payoff differentials to

the corresponding ones in a fictitious environment with the auxiliary option introduced

above.32

Lemma 2. Let S0 be the initial state of the decision problem, with ωS ∈ ΩS denoting

32In the statement of the lemma, S0 \ e(ωS) is the state of a fictitious problem in which search is not
possible, whereas SP0 \e(ωP ) is the state of the CS obtained from SP0 by subtracting an alternative in
state ωP .

40



the state of the search technology, as specified in S0. We have that33

DS(ωS|S0) =
∫ I∗(SP0 )

0
DS(ωS|e(ωS) ∨ e(ωAv ))dE

[
δκ(v)|S0 \ e(ωS)

]
. (21)

Similarly, for any physical alternative in the CS of type ωP ∈ {ω̂P ∈ ΩP : SP0 (ω̂P ) > 0},

DP (ωP |S0) =
∫ max{I∗(SP0 \e(ωP )),IS(ωS)}

0
DP (ωP |e(ωP ) ∨ e(ωAv ))dE

[
δκ(v)|S0 \ e(ωP )

]
.

(22)

Proof of Lemma 2. Using Condition (18), we have that, given the state S0 ∨ e(ωAM)
of the decision problem, and ωS ∈ ΩS,

DS(ωS |S0 ∨ e(ωAM )) = V(S0) +
∫M

0 E
[
δκ(v)|S0

]
dv + E

[
c̃|ωS

]
−δE

[
V(S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S)) +

∫M
0 E

[
δκ(v)|S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S))

]
dv|ωS

]
,

(23)

where the equality follows from combining (17) with (18). Similarly,

DS(ωS |e(ωS) ∨ e(ωAM )) = V(e(ωS)) +
∫M

0 E
[
δκ(v)|e(ωS)

]
dv + E

[
c̃|ωS

]
−δE

[
V(e(ω̃S) ∨WP (ω̃S))) +

∫M
0 E

[
δκ(v)|S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S))

]
dv|ωS

]
.

(24)

Differentiating (23) and (24) with respect to M , using the independence across al-

ternatives and search, and the property that κ(v|S1 ∨ S2) = κ(v|S1) + κ(v|S2), we have

that

∂DS(ωS|S0 ∨ e(ωAM))
∂M

= E
[
δκ(M)|S0\e(ωS)

] ∂DS(ωS|e(ωS) ∨ e(ωAM))
∂M

. (25)

That is, the improvement in DS(ωS|S0 ∨ e(ωAM)) that originates from a slight increase

in the value of the auxiliary option M is the same as in a setting with only search and

the auxiliary option, DS(ωS|e(ωS) ∨ e(ωAM)), discounted by the expected time it takes

(under the index rule χ∗) until there are no indices with value strictly higher than M ,

in an environment without search where the CS is the same as the one specified in S0.

33Recall that I∗(SP0 ) is the largest index of the physical alternatives present in the CS under the
state S0.
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Similar arguments imply that, for any ωP ∈ {ω̂P ∈ ΩP : S0(ω̂P ) > 0},

∂DP (ωP |S0 ∨ e(ωAM))
∂M

= E
[
δκ(M)|S0\e(ωS)

] ∂DP (ωP |e(ωP ) ∨ e(ωAM))
∂M

. (26)

Let M∗ ≡ max{I∗(SP0 ), IS(ωS)}. Integrating (25) over the interval (0,M∗) of possi-

ble values for the auxiliary option and rearranging, we have that

DS(ωS|S0 ∨ e(ωA0 )) = DS(ωS|S0 ∨ e(ωAM∗))−
∫M∗
0 E

[
δκ(v)|S0\e(ωS))

]
∂DS(ωS |e(ωS)∨e(ωAv ))

∂v
dv

= DS(ωS|S0 ∨ e(ωAM∗))−
[
E
[
δκ(v)|S0\e(ωS))

]
DS(ωS|e(ωS) ∨ e(ωAv ))

]M∗
0

+
∫M∗

0 DS(ωS|e(ωS) ∨ e(ωAv ))dE
[
δκ(v)|S0\e(ωS))

]
= DS(ωS|S0 ∨ e(ωAM∗))−DS(ωS|e(ωS) ∨ e(ωAM∗))
+
∫M∗
0 DS(ωS|e(ωS) ∨ e(ωAv ))E

[
δκ(v)|S0\e(ωS))

]
,

where the second equality follows from integration by parts, whereas the third equality

from the fact that E
[
δκ(M∗)|S0\e(ωS)

]
= 1 together with E

[
δκ(0)|S0\e(ωS)

]
= 0, as the

DM can always receive her outside option. That the outside has value normalized to

zero also implies that DS(ωS|S0 ∨ e(ωA0 )) = DS(ωS|S0). It is also easily verified that

DS(ωS|S0 ∨ e(ωAM∗)) = DS(ωS|e(ωS) ∨ e(ωAM∗)).34 Therefore, we have that

DS(ωS|S0) =
∫ M∗

0
DS(ωS|e(ωS) ∨ e(ωAv ))dE

[
δκ(v)|S0\e(ωS)

]
. (27)

Similar arguments imply that

DP (ωP |S0) =
∫ M∗

0
DP (ωP |e(ωP ) ∨ e(ωAv ))dE

[
δκ(v)|S0\e(ωP )

]
. (28)

To complete the proof of Lemma 2, consider first the case where, given S0, χ∗ spec-

ifies focusing on a physical alternative (i.e., M∗ 6= IS(ωS)). Then Condition (21)

in the lemma follows from (27) by noting that M∗ = I∗(SP0 ). Observe that, for

any state ωP ∈ ΩP , if M∗ > max{I∗(SP0 \e(ωP )), IS(ωS)} then M∗ = IP (ωP ), in

which case the integrand DP (ωP |e(ωP ) ∨ e(ωAv )) in (28) is equal to zero over the re-

gion [0, I(ωP )], and hence also over the interval [0,max{I∗(SP0 \e(ωP )), IS(ωS)}]. That

34This follows immediately from the observation that V(S0∨e(ωAM∗)) = V(e(ωS)∨e(ωAM∗)) = M∗, and
similarly E

[
V
(
S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S) ∨ e(ωAM∗)

)
|ωS
]

= E
[
V
(
e(ω̃S) ∨WP (ω̃S) ∨ e(ωAM∗)

)
|ωS
]
.

Intuitively, under the index policy, any alternative with index strictly below M∗ never receives any
attention given the presence of an auxiliary option with payoff M∗.
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is, in this case, Condition (22) clearly holds. Next, pick any state ωP ∈ ΩP such that

IP (ωP ) < M∗. Condition (22) follows directly from (28) by noting that, in this case,

M∗ = max{I∗(SP0 \e(ωP )), IS(ωS)}.
Next, consider the case where, given S0, χ∗ specifies search (i.e., M∗ = IS(ωS)).

Then, for any ωP ∈ ΩP , max{I∗(SP0 \e(ωP )), IS(ωS)} = M∗, in which case Condition

(22) in the lemma follows directly from (28). That Condition (21) also holds follows

from the fact that, in this case, DS(ωS|S0) = 0 and the integrand DS(ωS|e(ωS)∨ e(ωAv ))
in (27) is equal to zero over the entire region [0, IS(ωS)]. �

Step 3. Using the characterization of the payoff differentials in Lemma 2, we now estab-

lish that the average per-period payoff under the index policy χ∗ satisfies the Bellman

equation for the dynamic optimization problem under consideration. Let V∗(S0) ≡
(1 − δ)supχ∈XEχ [∑∞t=0 δ

tUt|S0] denote the value function for the dynamic optimization

problem.

Lemma 3. For any state of the decision problem S0, with ωS denoting the state of the

search technology as specified under S0,

1. V(S0) ≥ V S(ωS|S0), with the inequality holding as an equality if and only if

IS(ωS) ≥ I∗(SP0 );

2. for any ωP ∈ {ω̂P ∈ ΩP : S0(ω̂P ) > 0}, V(S0) ≥ V P (ωP |S0) with the inequality

holding as an equality if and only if IP (ωP ) = I∗(SP0 ) ≥ IS(ωS).

Hence, for any S0, V(S0) = V∗(S0), and χ∗ is optimal.

Proof of Lemma 3. First, use (19) to note that the integrand in (21) is non-negative

for all 0 ≤ v ≤ I∗(SP0 ), and that the entire integral in (21) is equal to zero if and only

I∗(SP0 ) ≤ IS(ωS). This establishes Condition 1 in the lemma. Similarly, use (20) to

observe that for any ωP ∈ {ω̂P ∈ ΩP : SP0 (ω̂P ) > 0}, the integrand in (22) is non-

negative for any 0 ≤ v ≤ max{I∗(SP0 \e(ωP )), IS(ωS)}, and that the entire integral in

(22) is equal to zero if and only if IP (ωP ) ≥ max{I∗(SP0 \e(ωP )), IS(ωS)}, which is the

case if and only if IP (ωP ) = I∗(SP0 ) ≥ IS(ωS). This establishes Condition 2 of the

lemma.

Next, note that, jointly, Conditions 1 and 2 in the lemma imply that

V(S0) = max

V S(ωS|S0), max
ωP∈{ω̂P∈ΩP :SP0 (ω̂P )>0}

V P (ωP |S0)

 .
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Hence V solves the Bellman equation. That δTEχ [∑∞s=T δsUs|S] → 0 as T → ∞ guar-

antees V(S0) = V∗(S0), and hence the optimality of χ∗. �

This completes the proof of the theorem. �

Proof of Theorem 2. To ease the notation, assume the initial CS is empty. It will

be evident from the arguments below that the optimality of χ∗ does not hinge on this

assumption. Consider first an environment where Mξ = 0 for all ξ. It will also become

evident from the arguments below that the result easily extends to environments where

Mξ > 0, as well as to environments where Mξ is stochastic, and gradually learned over

time.

Consider the following auxiliary environment , where all choices are reversible. Sup-

pose that, whenever an alternative of type ξ is brought into the CS, an additional

auxiliary alternative is also introduced into the CS, yielding a fixed flow payoff of

R(ξ, (θ′0, 0)).35 Next, suppose that, whenever a non-auxiliary alternative in state ωP

receives attention for the m-th time, a new auxiliary alternative is immediately intro-

duced into the CS, yielding a fixed payoff of R(ξ, (θ′,m)), where ωP = (ξ, (θ′,m)) is

the new state of the physical alternative after receiving attention for the m-th time, as

defined in the main text. We say that an auxiliary alternative corresponds to an (non-

auxiliary) alternative j if it has been introduced as the result of alternative j either being

brought into the CS (through search) or receiving attention at some prior period. In

this auxiliary environment, define the index of search as in (7), with the rule π specify-

ing whether to keep searching or exploring one of the physical alternatives introduced

through search, including the auxiliary alternatives brought in by the explorations of

the physical alternatives introduced through search. For each physical alternative in

state ωP , define its new index as in (13), with the rule π in the definition of the index

specifying for each period prior to stopping whether to focus on the alternative itself or

to one of the auxiliary alternatives introduced as the result of the alternative’s future

explorations (importantly, π excludes any auxiliary alternative introduced in periods

prior to the one in which the index is computed). Finally, let the index of any auxiliary

alternative coincide with the alternative’s retirement value, as specified by the function

R.

It is easy to see that the same steps as in the proof of Theorem 1 imply that, in this

auxiliary environment, the index policy based on the above new indices is optimal.36 It

35Recall that R(ξ, (θ′0, 0)) is the retirement value of a physical alternative of type ξ that has never
been explored.

36The proof must be adjusted to accommodate for the auxiliary alternatives introduced as the result
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is also easy to see that the DM’s problem in the auxiliary environment is a relaxation

of the problem in the primitive environment in which (a) all decisions are reversible,

and (b) physical alternatives can be retired also in states experienced in the past which

may have changed as the result of further explorations. Hereafter, we argue that the

DM’s payoff in the primitive environment under the proposed index policy is the same

as under the corresponding index policy in the auxiliary environment. To see this, first

observe that, in the auxiliary environment, once the DM focuses attention on an auxiliary

alternative, she continues to do so in all subsequent periods, since the indexes R(ωP ) of

the auxiliary alternatives do not change. This implies that the reversibility of choice in

the auxiliary environment plays no role. Next, observe that Condition 1 implies that, in

the auxiliary environment, if the DM selects an auxiliary alternative, she always picks the

one corresponding to the “newest” state of the corresponding non-auxiliary alternative,

for the latest has the highest expected value R among all the auxiliary alternatives

corresponding to the same physical alternative. This implies that the non-perishability

of the older versions of the auxiliary alternatives in the auxiliary environment also plays

no role. The same condition also guarantees that the policy π in the definition of the

index of the physical alternatives in the auxiliary problem coincides with the one in (13)

where the selection π is restricted to be over the exploration of the alternative under

consideration and the retirement of the latter in its most recent state.

Finally, note that the proof immediately extends to settings in which Mξ > 0 by

assuming that, in the auxiliary environment, an auxiliary alternative is introduced into

the CS only when its corresponding physical alternative has been explored more than

Mξ times, with Mξ possibly stochastic and learned over time (in this latter case, the

state θ′ of a physical alternative may also contain information about Mξ). �

Proof of Proposition 4. The result follows from Theorem 2, by noting that the

perceived value of the alternative, u, given the current information about it, is precisely

the expected flow value of choosing an alternative R(ωP ). The reservation prices (14)

are a special case of (13) in this setting, and, since the search technology is deteriorating,

(15) is a special case of (9). �

Proof of Proposition 5. The proof follows from arguments analogous to those in the

proof of Proposition 2, and is therefore omitted. �

of the DM exploring the physical alternatives. Since all the steps are virtually the same, the proof is
omitted.
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