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1 Introduction

“I am prepared for the worst but hope for the best,” Benjamin Disraeli, 1st Earl of

Beaconsfield, UK Prime Minister.

In the standard Bayesian persuasion model, a Sender designs an information structure to

influence the behavior of one or multiple Receivers. The Sender is Bayesian, and in particular

knows the distribution of the Receivers’ prior beliefs. Furthermore, in case there are multiple

strategy profiles consistent with the disclosed information and the assumed solution concept

(e.g., Bayes-Nash equilibrium), the Sender trusts that the Receivers will select the strategy

profile that is most favorable to her. As a result of such assumptions, the Sender’s optimal

signal typically depends on the fine details of the information the Receivers are endowed

with.

In many economic environments of interest, the Sender may not know which information

sources the Receivers have access to, prior to receiving the Sender’s information, and/or

which additional information they may be able to collect after receiving the Sender’s infor-

mation. Furthermore, the Sender may not trust her ability to coordinate the Receivers on

the strategy profile most favorable to her.

We propose a novel formulation of the persuasion problem that accounts for the above

type of uncertainty. We assume the Sender proceeds in two steps. First, she identifies

all information structures that are “worst-case optimal,” i.e., that yield the largest payoff

guarantee when both Nature and the Receivers play adversarially. Adversarial play means

that Nature provides the Receivers with exogenous information that, once paired with the

Sender’s signal, minimizes the Sender’s payoff. Moreover, whenever multiple strategy pro-

files are consistent with the assumed solution concept, the Sender also expects Nature to

coordinate the Receivers on the profile that is worst for her. Second, among all information

structures that are worst-case optimal, the Sender selects one that maximizes her payoff in

case Nature does not provide the Receivers with additional information and the Receivers

play according to the strategy profile that is most favorable to the Sender, among those that

are consistent with the assumed solution concept and the available information. This second

step – in which the Sender uses the “best-case scenario” to evaluate her remaining policies

– is analogous to the optimization in the standard Bayesian persuasion model but on the

restricted set of (worst-case optimal) signals. We refer to solutions to the above problem

as robust solutions. Robust solutions are thus policies that are best-case optimal among all

policies that are worst-case optimal.
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Our main technical result is a separation theorem identifying states that cannot appear

together in the support of any of the posterior beliefs induced by the Sender. Separation

of such states is both necessary and sufficient for worst-case optimality. As a result, robust

solutions maximize the Sender’s best-case-scenario payoff over all information policies that

induce posterior beliefs with admissible supports.

We show how the separation theorem permits us to identify various properties of robust

solutions and qualify in what sense more information is disclosed under robust solutions than

under standard Bayesian solutions: For any Bayesian solution, there exists a robust solution

that is either Blackwell more informative or not comparable in the Blackwell order. A naive

intuition for why robustness calls for more information disclosure is that, because Nature can

always reveal the state, the Sender may opt for revealing the state herself. This intuition,

however, is not correct. While fully revealing the state is always worst-case optimal, it need

not be a robust solution. In fact, if Nature’s most adversarial response to any selection by

the Sender is to fully disclose the state, then any signal chosen by the Sender yields the

same payoff guarantee and hence is worst-case optimal. The Sender then optimally selects

the same signal as in the standard Bayesian persuasion model. Instead, the reason why

robustness calls for more information disclosure than standard Bayesian persuasion is that,

if certain states are not separated, Nature could push the Sender’s payoff strictly below what

the Sender would obtain by fully disclosing these states herself.

We also show that robust solutions are characterized by an optimization program analo-

gous to the one describing Bayesian solutions but with the state-separation condition added

as an additional constraint. Moreover, because such constraints can be incorporated into

the Sender’s objective function, the problem of finding a robust solution is equivalent to the

problem of finding a Bayesian solution with a modified objective function. This implies that

robust solutions can be found using techniques developed for the standard persuasion model,

and that they inherit many of the structural properties of Bayesian solutions, for example,

sufficiency of using as many signals as there are states. Even when a closed-form solution is

not available, our state separation condition is easy to check and often provides economically

meaningful restrictions on the minimal informativeness of the Sender’s signal required for

robustness.

Finally, we revisit some of the applications considered in the literature. We identify

instances in which a Bayesian solution is worst-case optimal (and hence is also a robust

solution), cases where, contrary to what is predicted in the literature, the unique robust

solution entails full disclosure, and cases where a robust solution does not coincide with

either full disclosure or a standard Bayesian solution.
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On the interpretation of the model. A robust solution is best-case optimal among

policies that are worst-case optimal. Importantly, the Sender’s ambiguity over possible

scenarios arises from Nature’s ability to select additional signals and coordinate the Receivers

on any strategy profile consistent with the assumed solution concept. Thus, our best-case

scenario coincides with the standard Bayesian model that assumes that the Sender knows

the exact probability distribution of the Receivers’ information and can select her preferred

strategy profile. As a consequence, a robust solution can be seen as a constrained-optimal

Bayesian solution, where the constraint is that feasible policies must pass a “robustness

test.” Passing the robustness test means being optimal in some adversarial scenario that

can be flexibly chosen depending on the application of interest through the choice of the

solution concept. For example, suppose that the Sender hopes to induce the Receivers to

play a certain (Bayesian Nash) equilibrium profile but is concerned about the possibility

of strategic mis-coordination. The robustness test can be obtained by assuming that the

Receivers will play the rationalizable profile that is worst for the Sender. In this case, a

robust solution maximizes the Sender’s expected (Bayesian-Nash-equilibrium) payoff among

all policies that perform optimally under the worst-case scenario defined above.

In Section 5, we show that defining the worst-case scenario through Nature’s choice

of additional signals implies certain properties of the function that maps posterior beliefs

induced by the Sender to her final payoff. This allows us to generalize the class of robustness

tests that can be accommodated. For example, our results continue to hold in certain cases

where the set of signals that Nature can use is limited, as well as in environments where the

robustness constraint reflects the obligation to provide a minimal payoff guarantee to a third

party.

We also discuss the role of the assumption that the Sender has lexicographic preferences

over her payoffs in the worst- and best-case scenario. We consider an alternative version of

the problem in which the Sender maximizes a weighted sum of these payoffs, and show that,

for objective functions that satisfy a permissive regularity condition, solutions to this problem

coincide with robust solutions as long as the weight on the worst-case scenario is sufficiently

large. This result builds on the special structure of the problem under consideration and

in particular on our state-separation theorem that implies that worst-case optimality is

equivalent to ruling out posterior beliefs with certain supports.

Related literature. The paper is related to the fast-growing literature on Bayesian

persuasion and information design (see, among others, Bergemann and Morris, 2019, and

Kamenica, 2019 for surveys). More closely related are papers that adopt an adversarial

approach to the design of the optimal information structure. Inostroza and Pavan (2018),

Mathevet et al. (2019), Morris et al. (2019), and Ziegler (2019) focus on the adversarial selec-
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tion of the continuation strategy profile (rather than of the Receivers’ exogenous information

structure). Kosterina (2019) and Hu and Weng (2019), instead, study signals that maximize

the Sender’s payoff in the worst-case scenario, when the Sender faces uncertainty over the

Receivers’ exogenous private information (as in this paper). Cui and Ravindran (2020) con-

sider persuasion by competing designers in zero-sum games and identify conditions under

which full disclosure is the unique outcome.1 Related are also Kolotilin et al. (2017) and

Laclau and Renou (2017). These papers consider persuasion of privately informed Receivers.

In the first paper, the Receiver’s private information is about a payoff component different

from the one corresponding to the Sender’s signal. In the second paper, the Receiver has

multiple priors and max-min preferences.2

Our results are different from those in the above papers and reflect a different approach to

the design of the optimal signals. Once she identifies all signals that are worst-case optimal,

the Sender looks at the performance of any such signal in the best-case scenario (as in the

canonical Bayesian persuasion model). In particular, our solution concept reflects the idea

that there is no reason for the Sender to fully disclose the state if she can strictly benefit from

withholding some information under the optimistic scenario while still guaranteeing the same

worst-case payoff. Our lexicographic approach to the assessment of different information

structures is in the same spirit of the one proposed by Börgers (2017) in the context of

robust mechanism design. As anticipated above, our robust solutions are also solutions to

the problem of a designer maximizing a weighted average of her payoff under the worst- and

the best-case scenarios (as in the literature on alpha-max-min preferences3), with a large

weight on the worst-case payoff.

Organization. The rest of the paper is organized as follows. Section 2 introduces the

model. Section 3 contains all main results. Section 4 presents a few applications. Section

5 discusses alternative robustness constraints and the connection between our lexicographic

robust solutions and the solutions to weighted max-min objectives. The Appendix at the

end of the document contains all missing proofs. Finally, the Online Appendix contains

a couple of additional results for the case of weighted objective functions and a complete

analysis of the case of conditionally independent signals, whereby Nature cannot condition

its disclosures on the realization of the Sender’s information.

1Kosterina (2019) assumes that Nature cannot condition its information on the realization of the Sender’s
signal. This situation corresponds to the case of Conditionally-Independent Robust Solutions examined in
the Online Appendix of this paper. The same assumption is made in the Stackelberg version of the zero-sum
game between competing designers examined in Cui and Ravindran (2020).

2See also the literature on Bayesian Persuasion with rationally inattentive Receivers (Bloedel and Segal,
2018, Lipnowski et al., 2019, Matysková, 2019, and Ye, 2019). Contrary to the present paper, in that
literature, the Receivers’ attention costs are known to the designer.

3See, among others, Hurwicz (1951), Gul and Pesendorfer (2015), and Grant et al. (2020).
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2 Model

A payoff-relevant state ω is drawn from a finite set Ω according to the distribution µ0 ∈
∆Ω. A Sender (she) chooses an information structure q : Ω → ∆S that maps states into

probability distributions over signal realizations s ∈ S: We denote by dq(· |ω) the probability

distribution over the set of signal realizations S in state ω. Hereafter, we abuse terminology

and refer to q as the Sender’s signal.

The Sender faces uncertainty about the exogenous sources of information the Receivers

may have access to, when learning about the state. In particular, the Sender need not

know the distribution of Receivers’ beliefs prior to receiving information from her, and/or

the information they may be able to collect about ω, after observing the realization of her

signal. We capture both types of uncertainty by allowing Nature to disclose additional

information to the Receivers that can be arbitrarily correlated with both the state and the

realization of the Sender’s signal. That is, in the eyes of the Sender, Nature chooses an

information structure π : Ω × S → ∆R that maps (ω, s) ∈ Ω × S into a distribution over

a set of signal realizations R. We denote by dπ(· |ω, s) the probability distribution (under

the signal π) over R when the state is ω and the realization of the Sender’s signal is s.

Hereafter, we treat the (measurable) signal spaces S and R as exogenous and assume that

they are subsets of some sufficiently rich space X . As it will become clear from the analysis

below, under our solution concept, there will be no loss of optimality for either the Sender

or Nature in restricting attention to signals that take finitely many values. We then denote

by Q and Π the set of all feasible signals for the Sender and Nature, respectively.

The possibility for Nature to condition her signal on the realization of the Sender’s signal

reflects the Sender’s concern that the Receivers may be able to acquire additional information

after seeing the realization of her signal. Clearly, this is the most adversarial scenario for

the Sender. In certain applications, though, the Sender may find it appropriate to exclude

certain types of signals that Nature can use. As an example of such restrictions, in the Online

Appendix, we consider the case where the Sender expects Nature to select only signals that

are independent of her signal, conditional on the state. This restriction may capture the

idea that the Sender faces ambiguity over the Receivers’ information prior to observing the

realization of her own signal but is certain that they will not be able to collect additional

information after observing the realization of her signal.

Fixing the signals, for any initial belief µ ∈ ∆Ω, we denote by µx ∈ ∆Ω the posterior

belief induced by the realization x of the signals (where x could be a vector). For example,

given q and π, we denote by µs,r0 the common posterior belief over Ω that is obtained starting

from the prior belief µ0 and conditioning on the realization (s, r) of the signals q and π, using
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Bayes rule.

To facilitate the exposition, we abstain from modeling the game played by the Receivers

in response to the information provided by the Sender. We do so by assuming the Sender’s

payoff is described by a pair of functions V , V : ∆Ω→ R that map the induced (common)

posteriors into the Sender’s expected payoff. We assume that V is upper semi-continuous,

and that V is lower semi-continuous. We interpret V (µ) as the conditional expected payoff

to the Sender when, given the induced (common) posterior µ ∈ ∆Ω, the Receivers play (in

the un-modeled game) according to the strategy profile most favorable to the Sender, within

those consistent with the assumed (and un-modeled) solution concept. Similarly, we interpret

V (µ) as the Sender’s conditional expected payoff when, given the induced posterior µ, the

Receivers play according to the strategy profile most adversarial to the Sender.4 Under the

above interpretation, V ≥ V . However, this property plays no role for any of our results.

In Section 5, we leverage on the fact that V does not need to be related to V to provide

alternative interpretations of our model.

The only restriction the above specification imposes is that the Sender discloses the

same information to all Receivers, which seems plausible for many of the applications of

interest. That Nature discloses the same information to all Receivers is not important for

our results. This is because one can always select V (µ) to be the infimum over the set of

the Sender’s payoffs that, given µ, Nature can induce by providing the agents with (possibly

private) signals consistent with the common posterior µ, and coordinating them to play

according to the strategy profile most adversarial to the Sender among those consistent with

the assumed solution concept (e.g., Bayes-Nash equilibrium). For example, the payoffs V (µ)

and V (µ) could be equal to the Sender-best and Sender-worst Bayes Correlated Equilibrium,

respectively, when µ is the common prior of the basic game.

While the distinction between V and V allows our solution concept to capture the

Sender’s ambiguity over equilibrium selection, our results do not hinge on that interpre-

tation. In particular, the above “black-box” formulation includes the simple case in which

V = V = V for some continuous payoff function V , so that the designer faces no ambi-

guity over the outcome that prevails for any given (final) posterior. See also Section 5 for

alternative interpretations of the V and V functions.

4In the case of a single Receiver, the distinction between V and V may reflect different tie-breaking rules
the Sender may expect the Receiver to follow when indifferent over multiple actions.
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3 Robust solutions

Let

v(q, π) :=
∑

Ω

�
S

�
R
V (µs,r0 )dπ(r|ω, s)dq(s|ω)µ0(ω)

denote the expected payoff to the Sender under the adversarial selection rule V when she

chooses signal q and Nature chooses signal π. Similarly, we denote by v(q, π) her expected

payoff under the favorable selection (with V replaced by V in the formula above).

Definition 1. A signal q ∈ Q is worst-case optimal (for the Sender) if for all signals q′ ∈ Q,

inf
π∈Π

v(q, π) ≥ inf
π∈Π

v(q′, π).

We let W ⊂ Q denote the set of worst-case optimal signals for the Sender.

Since Nature can always disclose the state, the Sender’s payoff in the worst-case scenario

is upper bounded by V full(µ0). For any distribution µ ∈ ∆Ω, we let

V full(µ) ≡
∑

Ω

V (δω)µ(ω)

denote the Sender’s expected payoff when, starting from the belief µ, the Sender expects

the state to be fully disclosed (here δω denotes the Dirac distribution assigning measure one

to the state ω). Clearly, this upper bound can be achieved if the Sender discloses the state

herself. Hence, we can make the following simple observation.

Observation 1. A signal q is worst-case optimal (i.e., q ∈ W ) if and only if infπ∈Π v(q, π) =

V full(µ0). The set W of worst-case optimal signals is non-empty because full disclosure of

the state is always worst-case optimal.

With this observation in mind, we can now formally define the notion of a robust solution.

We let ∅ denote a degenerate signal that discloses no information about the state.

Definition 2. A signal q ∈ Q is a robust solution if it maximizes v(q, ∅) over W .

As anticipated in the Introduction, the definition of a robust solution reflects the Sender’s

lexicographic attitude towards the uncertainty she faces. First, the Sender seeks an infor-

mation structure that is worst-case optimal, i.e., that is not outperformed by any other

information structure, in case Nature and the Receivers play adversarially. Second, if there

are multiple signals that pass this test, the Sender seeks one among them that maximizes her

payoff in the most favorable case, under the assumption that Nature does not interfere by

providing the Receivers with exogenous information and that the Receivers play according
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to the selection most advantageous to the Sender (this second step is thus analogous to the

one in the standard Bayesian persuasion model). In short, a robust solution is best-case

optimal among those that are worst-case optimal.

To see that this interpretation is valid, note that a robust solution q also maximizes

supπ∈Π v(q, π) over W (which explicitly captures the assumption that Nature favors the

Sender). The converse, however, is not true: If q maximizes supπ∈Π v(q, π) over W , it need

not maximize v(q, ∅) over the same set. In this sense, our definition of a robust solution is

conservative: Even though the Sender expects that, once the “robustness test” is passed,

Nature and the Receivers play favorably to her, she discloses information herself as opposed

to relying on Nature to do it.

Because the Sender’s payoff depends only on the induced (common) posterior belief, it

is natural to optimize directly over distributions over posterior beliefs (rather than signals).

The next lemma ensures that this is indeed possible in our setting. Given any measurable

set X and any probability measure γ ∈ ∆X over X, let supp(γ) denote the support of γ,

i.e., the smallest closed subset of X whose complement has zero measure according to γ.

Lemma 1. A signal q ∈ Q is a robust solution if and only if the distribution over posterior

beliefs ρq ∈ ∆∆Ω that q induces maximizes
�
V (µ)dρ(µ) over W, where W ⊂ ∆∆Ω is the

set of distributions over posterior beliefs satisfying

� (
min

π: Ω→∆Ω

{∑
ω, r∈Ω

V (µr)π(r|ω)µ(ω)

})
dρ(µ) = V full(µ0), (WC)

and Bayes plausibility �
µdρ(µ) = µ0. (BP)

Lemma 1 is intuitive. Any feasible distribution over posterior beliefs ρ must satisfy Bayes

plausibility (BP). Given any feasible distribution ρ ∈ ∆∆Ω, the Sender expects Nature to

respond to any posterior belief µ in the support of ρ by choosing a signal π : Ω→ ∆R that

minimizes the Sender’s expected payoff. (Note that the choice of π can depend on which

µ has realized, reflecting the idea that the choice of Nature’s signal may depend on the

realization of the Sender’s signal.) Moreover, as we formally show in the Appendix, without

loss of optimality, Nature can be assumed to select a signal whose signal space is given by

R = Ω. Condition (WC) then states that ρ maximizes the Sender’s payoff in the worst-case

scenario. Thus, a signal q is in W if and only if the distribution over posterior beliefs ρq

induced by q is in W .

Now let lco(V ) denote the lower convex closure of V . That is, if co(V ) denotes the concave

closure of V , as defined by Kamenica and Gentzkow (2011), then lco(V ) = −co(−V ). Clearly,
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for any µ ∈ ∆Ω,

min
π: Ω→∆Ω

{∑
ω, r∈Ω

V (µr)π(r|ω)µ(ω)

}
= lco(V )(µ).

Note that, for any µ ∈ ∆Ω, lco(V )(µ) ≤ V full(µ), with the inequality holding as an equality

when µ = δω, that is, when µ is a Dirac delta assigning measure one to some state ω ∈ Ω.

Hence, co(lco(V )) = V full. With this notation in hands, the worst-case optimality condition

(WC) can be conveniently rewritten as

�
lco(V )(µ)dρ(µ) = V full(µ0). (3.1)

Hereafter, we will abuse terminology and call ρRS a robust solution if it maximizes the

Sender’s expected payoff under the favorable selection
�
V (µ)dρ(µ) over all distributions

ρ ∈ ∆∆Ω satisfying (BP) and (3.1), with no further reference to the underlying signal.

It is useful at this point to contrast the definition of a robust solution to the definition of

a Bayesian-persuasion solution (henceforth, Bayesian solution) as defined in Kamenica and

Gentzkow (2011).

Definition 3. A signal qBP is a Bayesian solution if it maximizes v(q, ∅) over Q. This is

the case if and only if the distribution ρBP ∈ ∆∆Ω over posterior beliefs induced by qBP

maximizes
�
V (µ)dρ(µ) over all ρ satisfying (BP).

Throughout, we will refer to any ρ ∈ ∆∆Ω satisfying (BP) as a feasible distribution.

We are now ready to state our main characterization result. For any function V : X → R,

and Y ⊆ X, let V |Y denote a function defined on the domain Y that coincides with V on Y .

Theorem 1 (Separation Theorem). Let

F ≡ {B ⊆ Ω : V |∆B ≥ V full|∆B}.

Then,

W = {ρ ∈ ∆∆Ω : ρ satisfies (BP) and, ∀µ ∈ supp(ρ), supp(µ) ∈ F}.

Therefore, ρRS ∈ ∆∆Ω is a robust solution if and only if it maximizes

�
V (µ)dρ(µ)

over all distributions ρ ∈ ∆∆Ω satisfying (BP) and such that

supp(ρ) ⊆ ∆FΩ ≡ {µ ∈ ∆Ω : supp(µ) ∈ F}.
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Theorem 1 states that the only difference between a Bayesian solution and a robust solu-

tion is that the latter must satisfy an additional constraint on the supports of the posterior

beliefs it induces: A robust solution can only attach positive probability to posterior be-

liefs supported on “allowed” subsets of the state space, as described by the collection F .

Moreover, the theorem describes exactly what the allowed subsets are: the subset B ⊆ Ω is

allowed if (and only if) V (µ) ≥ V full(µ) for all µ ∈ ∆B. That is, if and only if any posterior

on B yields the Sender an expected payoff no smaller than the one the Sender could obtain,

starting from µ, by fully disclosing the state.

1
0

1

Expected payoff 
after Nature's disclosure

Expected payoff 
before Nature's disclosure

Figure 3.1: Illustration of Theorem 1 in the judge example of Kamenica and Gentzkow (2011)

To gain intuition, fix a posterior belief µ ∈ ∆Ω in the support of the belief distribution

chosen by the Sender. Then, for any belief η ∈ ∆Ω with support supp(η) ⊆ supp(µ), starting

from µ, Nature can induce the belief η with positive probability, while respecting the Bayes

plausibility constraint (for example, by disclosing the state otherwise). If there exists an η

such that V (η) < V full(η), then by inducing µ the Sender exposes herself to a payoff strictly

below what she would obtain by revealing the state. The only way for the Sender to avoid

that exposure is to separate some states in the support of µ so that Nature can no longer

induce η. Conversely, if no such η exists for which V (η) < V full(η), then, conditional on

µ, Nature minimizes the Sender’s payoff by fully disclosing the states in the support of µ.

Because the Sender’s payoff under the worst-case scenario is upper bounded by the payoff

she obtains under full disclosure (by Observation 1), any such µ can be part of a worst-case

optimal distribution.
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Figure 3.1 illustrates the logic of Theorem 1 in the context of the “judge” example of

Kamenica and Gentzkow (2011). The state is binary, i.e., ω ∈ {ωL, ωH} and the Sender

gets a payoff of 1 if and only if the posterior belief she induces assigns probability at least

α ∈ (µ0, 1) to the state being ωH , where µ0 denotes the prior belief that the state is ωH .

The payoff from full disclosure is given by the dashed line connecting the extreme points

(0, V (0)) and (1, V (1)). As Kamenica and Gentzkow show, the Sender can achieve a better

payoff by splitting the prior into a posterior belief of 0 and µ ∈ (α, 1). However, no such

signal is worst-case optimal. Indeed, because µ has full support, Nature can induce any belief

η ∈ (0, α) with positive probability by disclosing the state ωL with appropriate frequency.

By decomposing µ into η and 1, Nature pushes the Sender’s expected payoff below her full-

disclosure payoff. In fact, Nature’s problem, given µ, can be seen as a Bayesian persuasion

problem with prior µ and objective function −V . Thus, Nature can induce a conditional

expected payoff given by lco(V )(µ) – the lower convex closure of V evaluated at µ. In the

judge example, this implies that full-disclosure is the unique worst-case optimal signal and

hence that the only robust solution consists in fulling revealing the state.

Theorem 1 yields a number of direct corollaries that we describe next.

Corollary 1 (Existence). A robust solution always exists.

Indeed, the set W of worst-case optimal distributions is closed, and thus compact (this

is because the collection F is closed with respect to taking subsets, i.e., if B ∈ F , then

all subsets of B also belong to F). It is non-empty because it contains a distribution

corresponding to full disclosure of the state. Finally, the function V is upper semi-continuous,

so existence follows from Weierstrass Theorem.

It is well-known that requiring exact worst-case optimality often precludes existence of

solutions in related models; and indeed we show in the Online Appendix that existence may

fail when Nature selects a conditionally independent signal. When, instead, Nature can

condition on the realization of the Sender’s signal, existence is guaranteed by the fact that

Nature’s optimal response to each signal realization convexifies the Sender’s value function,

hence making it continuous.

Hereafter, we will say that states ω and ω′ are separated by a distribution ρ ∈ ∆∆Ω

if there is no posterior µ ∈ supp(ρ) such that {ω, ω′} ⊆ supp(µ). Intuitively, given any

posterior belief µ induced by ρ, the Receiver never faces any uncertainty between ω and ω′.

Corollary 2 (State separation). Suppose that there exists λ ∈ (0, 1) and ω, ω′ ∈ Ω such that

V (λδω + (1− λ)δω′) < λV (δω) + (1− λ)V (δω′),

Then any robust solution must separate the states ω and ω′.

11



Under the assumptions of Corollary 2, F does not contain the set {ω, ω′}. Thus, by

Theorem 1, a worst-case optimal distribution cannot induce posterior beliefs that have both

of these states in their support. Note that the assumption is that there exists some belief

supported on {ω, ω′} under which full disclosure is strictly better for the Sender, while the

conclusion says that a robust solution cannot induce any posterior belief that puts strictly

positive mass on both ω and ω′. If all states must be separated, full disclosure is the unique

worst-case optimal distribution.

Corollary 3 (Full disclosure). Full disclosure is the unique robust solution if F = Ω, meaning

that any pair of states must be separated under any worst-case optimal distribution.

Corollary 4 (No restrictions). All feasible distributions are worst-case optimal if, and only

if, Ω ∈ F , meaning that no pair of states must be separated under any worst-case optimal

distribution. Then, the set of robust solutions coincides with the set of Bayesian solutions.

For an illustration of Corollaries 3-4, suppose that V is strictly convex. Then, for any

two states ω, ω′ ∈ Ω, V (δω) = V full(δω), V (δω′) = V full(δω′), but

V (λδω + (1− λ)δω′) < λV (δω) + (1− λ)V (δω′) = V full(λδω + (1− λ)δω′)

implying that ω and ω′ must be separated. Since ω and ω′ are arbitrary, F can only

contain singletons, and thus Corollary 3 implies that full disclosure is the unique robust

solution. Conversely, suppose that V is concave. Then, by definition of concavity, for any

µ ∈ ∆Ω, V (µ) ≥
∑

ω∈Ω V (δω)µ(ω) = V full(µ). Thus, Ω ∈ F , and Corollary 4 implies that

all distributions are worst-case optimal. In this case, because worst-case optimality imposes

no restrictions, any robust solution must coincide with a Bayesian solution. While Ω ∈ F is

sufficient for robustness of a Bayesian solution, it is not necessary.

Corollary 5 (Robustness of Bayesian Solutions). A Bayesian solution is robust if and only

if the support of any posterior belief it induces is in F .

A special case of interest is when the state space is binary, as in the judge example above.

The result below extends our analysis of the example from Figure 3.1 to all binary problems.

Corollary 6 (Complete characterization for binary-state case). When Ω = {ωL, ωH}, and

V (p) is the Sender’s payoff when the posterior probability of state ωH is p, then

� if for some p, V (p) < (1 − p)V (0) + pV (1), then full disclosure is the unique robust

solution;
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� otherwise, the set of robust solutions coincides with the set of Bayesian solutions.

By Corollary 6, in the binary-state case, a robust solution discloses weakly more infor-

mation than a Bayesian solution. To see whether this property holds more generally, we

say that ρ ∈ ∆∆Ω Blackwell dominates ρ′ ∈ ∆∆Ω if there exist signals q′ : Ω → ∆S ′

inducing ρ′, and q : Ω → ∆(S ′ × S) inducing ρ such that the marginal distribution of q on

S ′ conditional on any ω ∈ Ω coincides with that of q′.

Corollary 7 (Worst-case optimality preserved under more information disclosure). W is

closed under Blackwell dominance: If ρ′ ∈ W, and ρ Blackwell dominates ρ′, then ρ ∈ W.

The conclusion follows directly from Theorem 1 by noting that if B ∈ F , then any subset

of B must also be in F . An increase in the Blackwell order on ∆∆Ω can only make the

supports of posterior beliefs smaller, so such an increase cannot take a distributions out of

the set W .

Suppose that there exists a Bayesian solution that Blackwell dominates a robust solution.

Then, by Corollary 7, that Bayesian solution must be worst-case optimal, and hence it is

also a robust solution. Therefore, we obtain the following conclusion.

Corollary 8 (Comparison of informativeness). Take any Bayesian solution ρBP . Then,

there exists a robust solution ρRS such that either ρRS and ρBP are not comparable in the

Blackwell order, or ρRS dominates ρBP .

Corollary 8 provides a formal sense in which (maximally informative) robust solutions

provide more information than Bayesian solutions.5 This is a relatively weak notion – it is

certainly possible that the two solutions are not comparable in the Blackwell order. However,

it can never happen that a Bayesian solution strictly Blackwell dominates a maximally

informative robust solution.

While the result in Corollary 8 is intuitive, we emphasize that it is not trivial. Because

Nature can only provide additional information, one may expect more information to be

disclosed overall under robust solutions than under Bayesian solutions. However, Corollary

8 says that the Sender herself will provide more (or at least not less) information than she

would in the Bayesian-persuasion model. Second, we show in the Online Appendix that

the conclusion of Corollary 8 actually fails in the version of the model where Nature can

only send signals that are conditionally independent of the Sender’s signal (conditional on

5By a “maximally informative” solution we mean a solution that is not Blackwell dominated by any other
robust solution. Note that without that qualifier the statements is obviously false. For example, when both
V and V are affine, all distributions are both robust and Bayesian solutions and hence trivially there exist
Bayesian solutions that strictly Blackwell dominate some robust solutions.
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the state). The counterexample we provide is based on failure of the property identified in

Corollary 7. What makes Corollary 7 true in the baseline model is that Nature can induce

any mean-preserving spread of the Sender’s signal, and thus the Sender cannot improve her

worst-case payoff by withholding information.6

Corollary 9 (Additional state separation under robust solutions). If a Bayesian solution

ρBP is not robust and is strictly Blackwell dominated by a robust solution ρRS, then ρRS

separates states that are not separated under ρBP .

The result follows directly from the structure of the set W . If a robust solution ρRS

discloses more information than a Bayesian solution ρBP , and the latter is not robust, it

cannot be that any posterior µ generated by ρRS has the same support as one of the posteriors

generated by ρBP . It must be that ρRS separates states that ρBP does not separate. We

illustrate this and previous points with some examples in the next section.

Finally, we show that robust solutions can be found using the concavification technique

(see Aumann and Maschler, 1995, and Kamenica and Gentzkow, 2011). Indeed, because the

state-separation condition applies posterior by posterior, we can incorporate the constraints

into the objective function V by modifying its value on ∆c
FΩ ≡ ∆Ω \ ∆FΩ (that is, on

the set of posterior not supported in F) to be a sufficiently low number. Formally, let

vlow := minω∈Ω V (δω)− 1, and define

V F(µ) =

V (µ) if µ ∈ ∆FΩ and V (µ) ≥ vlow,

vlow otherwise .
(3.2)

Observe that posteriors µ with V (µ) ≤ vlow are never induced in either a robust or a Bayesian

solution because a strictly higher expected value for the Sender could be obtained by de-

composing such µ into Dirac deltas, by the definition of vlow (which is a feasible operation

for the Sender, under both solution concepts). Therefore, Bayesian solutions under the ob-

jective function V F correspond exactly to robust solution with the original objective, by

Theorem 1. Moreover, we have defined the modification V F of V so that it remains upper-

semi-continuous because the set {µ ∈ ∆Ω : supp(µ) ∈ F and V (µ) ≥ vlow} is closed. By

the above reasoning, we obtain the following corollary.

Corollary 10. A feasible distribution ρ ∈ ∆∆Ω is a robust solution if and only if

�
V F(µ)dρ(µ) = co(V F)(µ0).

6When Nature is constrained to conditionally independent signals, there exist mean-preserving spreads
of the Sender’s signal that Nature cannot induce. Thus, the Sender may choose to withhold information
(relative to the Bayesian solution) to limit Nature’s ability to induce certain distributions of posterior beliefs
with low expected payoffs.
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Corollary 10 implies that the problem of finding a robust solution can always be reduced to

finding a Bayesian solution with a modified objective function. As a result, robust solutions

inherit many of the properties of Bayesian solutions. For example, Kamenica and Gentzkow

(2011) show that there always exists a Bayesian solution that sends at most as many signals

as there are states.

Corollary 11. There always exists a robust solution ρ with |supp(ρ)| ≤ |Ω|.

4 Applications

4.1 Buyer-seller interactions

To illustrate the implications of our solution concept, we start with a few applications of

information design to buyer-seller interactions. We first revisit two well-known results and

show how the conclusions change once robustness is accounted for. Next, we consider a novel

application to a lemons problem.

Privately informed Receiver: Guo and Shmaya (2019)

We first analyze a simple model of buyer-seller interactions along the lines of Guo and Shmaya

(2019): The seller owns an indivisible good of quality ω and gets a payoff of 1 if and only if the

buyer accepts to trade at an exogenously specified price p. The buyer has private information

about the product’s quality ω summarized by the realization t of a signal f mapping each

ω ∈ Ω into a distribution on a finite set T , and this fact is common knowledge. The seller

can decide to disclose more information to the buyer about the product’s quality, taking

f as given, but does not observe the signal realization t. Guo and Shmaya (2019) show

that, when the signal f satisfies MLRP (formally, when the probability distribution f(t|ω)

is log-supermodular), a Bayesian solution has an interval structure: each buyer’s type t is

induced to trade on an interval of states, and less optimistic types trade on an interval that

is a subset of the interval over which more optimistic types trade.

Consider now the situation faced in the above environment by a seller who is uncertain

about what information the buyer may have access to, over and above the one contained in

the signal f . To avoid uninteresting cases, assume that f is not fully revealing.7

In such an environment, given any posterior µ ∈ ∆Ω induced by the seller (where the

posterior is obtained by conditioning only on the realization of the seller’s signal, before

7That is, conditional on any state ω, there is positive conditional probability that the signal realization t
from f does not reveal that the state is ω.
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conditioning on the buyer’s type), the seller’s payoff can be written as

V (µ) =
∑
ω∈Ω

∑
t∈T

1

(∑
ω′∈Ω ω

′f(t|ω′)µ(ω′)∑
ω′∈Ω f(t|ω′)µ(ω′)

> p

)
f(t|ω)µ(ω)

where 1(a) is the indicator function taking value 1 if the statement a is true and 0 otherwise.

The following is a simple implication of Corollary 2.

Proposition 1. Any robust solution must separate any state ω ≤ p from any state ω′ > p.

A robust solution thus essentially removes any buyer’s uncertainty over whether or not

to purchase the product. In other words, when the seller faces uncertainty about the buyer’s

exogenous information, she cannot benefit from disclosing information strategically. Disclos-

ing a binary signal informing the buyer of whether the state is (weakly) below or (strictly)

above p is an example of a robust solution. Another one is to fully disclose the state.

Intuitively, if a posterior belief pulls together states that are both below and above p,

Nature could send a signal that induces a sufficiently pessimistic belief about the quality

of the good to induce the buyer not to trade, regardless of the realization of her type t,

even when the good is of high quality. By fully disclosing the state, the seller guards herself

against this possibility and ensures that all high-quality goods (ω > p) are bought with

certainty.

The limits of price discrimination: Bergemann, Brooks and Morris (2015)

In an influential paper, Bergemann et al. (2015) consider the problem of a monopolistic seller

quoting a price to a buyer who is privately informed about her value ω for the seller’s good.

They characterize all feasible distributions over consumer surplus and seller’s profit, as the

seller’s information about the buyer’s value varies (which we can model as a consequence of

information about ω revealed by a Sender). Here, we argue that the model is robust to the

uncertainty the Sender may face about the monopolist’s exogenous information when the

Sender maximizes (i) seller’s profit or (ii) buyer’s surplus.

In case (i), the Bayesian solution is full disclosure. Because full disclosure is always worst-

case optimal, this is also a robust solution. In the more interesting case (ii), the Bayesian

solution is quite complicated and consists of multiple signals that carefully segment the

market. Nevertheless, this solution is also robust. To see that, we can apply Theorem 1:

Because the buyer’s surplus is 0 at degenerate beliefs, we have that V full(µ) = 0 for all µ,

while V (µ) ≥ 0 for all µ. Thus, Ω ∈ F , and any Bayesian solution is robust.

That being said, there are other objective functions for which robust solutions differ from

Bayesian solutions. For example, suppose that the Sender wants to maximize the expected

16



price quoted by the seller. Bayesian solutions always involve some randomization (except

for degenerate cases) and might in general be complicated. However, the unique robust

solution is to fully disclose the state because the Sender’s objective function projected to any

∆{ω, ω′} takes the shape analogous to the objective function in the judge example (see Figure

3.1), implying that any two states must be separated. Similarly, if the Sender maximizes

a weighted combination of consumer’s and producer’s surplus, with strictly positive weight

to both, then full disclosure is the unique robust solution whereas the Bayesian solution

involves a more complex market segmentation.

Lemons problem

In the previous two examples, either full disclosure or the Bayesian solution emerged as

robust solutions. We now consider a simple example with adverse selection in which this is

not the case.

A seller values an indivisible good at ω while the buyer values it at ω +D, where D > 0

is a known constant. The value ω is observed by the seller but not by the buyer. To avoid

confusion, we use a “tilde” (ω̃) whenever we refer to ω as a random variable. The seller

can commit to an information disclosure policy about the object quality, ω. We consider a

simple trading protocol in which, after the information structure is determined, a random

exogenous price p is drawn from a uniform distribution over [0, 1] and trade happens if and

only if both the buyer and the seller agree to trading at that price (the exogenous price

can be interpreted as a benchmark price in the market, or can be seen as coming from an

exogenous third party, e.g., a platform). That is, if the state is ω and the buyer’s belief

about the state is µ, then trade happens if and only if p ≥ ω and Eµ[ω̃|ω̃ ≤ p] + D > p.8

To avoid trivial cases, we assume that the support of the price distribution contains Ω, that

is, Ω∩ (0, 1) = Ω. We are interested in finding the robustly optimal disclosure policy for the

seller.

Given the induced posterior µ, the payoff to the seller is given by

V (µ) =
∑
ω∈Ω

(� 1

ω

(p− ω)1{Eµ[ω̃|ω̃≤p]+D>p}dp

)
µ(ω).

Note that, in this example, V = V = V , as the buyer’s tie-breaking rule does not influence

the Sender’s payoff in expectation. The following lemma identifies a key property of robust

solutions.

8Because p is drawn from a continuous distribution, the way the buyer’s indifference is resolved plays no
role in this example.
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Lemma 2. Any two states ω and ω′ such that |ω − ω′| > D must be separated under any

robust solution.

Proof. Pick any two states ω and ω′ such that ω > ω′+D and let B = {ω′, ω}. To simplify

the notation, for any λ ∈ [0, 1], let v(λ) ≡ V |∆B(λδω +(1−λ)δω′). It is enough to prove that

v′(0) < v(1)− v(0) as this implies that v(λ) is strictly below the payoff from full disclosure

λv(1) + (1 − λ)v(0) for small enough λ > 0. Indeed, this means that V |∆B(µ) is below the

full-disclosure payoff Vfull|∆B(µ) for posterior beliefs µ supported on B that put sufficiently

small mass on ω; the conclusion then follows from Corollary 2. For low enough λ, using the

fact that ω > ω′ +D, we have

v(λ) = (1− λ)

(� ω′+D

ω′
(p− ω′)dp

)
.

That is, only the low type ω′ trades if the buyer believes the seller’s type to be ω′ with high

probability. We thus have

v′(0) = −
� ω′+D

ω′
(p− ω′)dp,

so that

v′(0)− v(1) + v(0) = −
� min{ω+D;1}

ω

(p− ω)dp < 0

by the assumption that max Ω < 1.

For intuition, notice that when only types ω′ and ω are present in the market, if the

buyer’s posterior belief µ puts sufficient mass on the low state ω′, namely, Eµ[ω̃] + D < ω,

then the high type ω does not trade. Indeed, any price below ω is rejected by the ω-type

seller, and any price above ω is rejected by the buyer. At the same time, type ω′ does not

benefit from the presence of the higher type ω because of adverse selection: Eµ[ω̃|ω̃ ≥ p] = ω′

for all prices p ∈ [ω′ + D,Eµ[ω̃] + D] that could be accepted by the buyer if she did not

condition on the fact that ω̃ ≤ p. Therefore, Nature can induce posterior beliefs that push

the seller’s expected payoff below what she could receive by fully disclosing the state.

The above reasoning does not apply to types that are less than D apart. This is because

the adverse selection problem is mute for such types, as the next lemma shows.

Lemma 3. Suppose that supp(µ) ⊆ [ωµ, ωµ + D], where ωµ is the minimum of supp(µ).

Then, 1{Eµ[ω̃|ω̃≤p]+D>p} = 1{Eµ[ω̃]+D>p} for any p ≥ ωµ.

Proof. Clearly, 1{Eµ[ω̃|ω̃≤p]+D>p} ≤ 1{Eµ[ω̃]+D>p}. Suppose that the inequality is strict for some

p ≥ ωµ : Eµ[ω̃] +D > p but Eµ[ω̃|ω̃ ≤ p] +D ≤ p. This is only possible when p < ωµ, where
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ωµ is the maximum of supp(µ). But then

p ≥ Eµ[ω̃|ω̃ ≤ p] +D ≥ ωµ +D ≥ (ωµ −D) +D = ωµ > p,

a contradiction.

Intuitively, Lemma 3 states that when µ puts mass on types that are less than D apart,

adverse selection has no bite – the buyer trades under the same prices as if the seller did

not possess private information (that is, she does not need to condition on p ≥ ω̃). We can

now use this observation to prove a result that helps characterize robust solutions. For any

B ⊆ Ω, we let diam(B) = max(B)−min(B).

Lemma 4. Fix any B ⊆ Ω such that diam(B) ≤ D. Then, V |∆B(µ) is concave on ∆B (and

non-affine if |B| ≥ 2).

The proof is technical and hence relegated to the Appendix. Intuitively, Lemma 4 states

that the seller does not benefit from splitting posterior beliefs with sufficiently small supports.

The next result is then a simple implication of the above lemmas:

Lemma 5. F = {B ⊂ Ω : diam(B) ≤ D}.

Indeed, we know that diam(B) ≤ D is necessary for B ∈ F by Lemma 2. Lemma 4 tells

us that this condition is sufficient as well: Because V |∆B(µ) is concave when diam(B) ≤ D,

it lies everywhere above the full-disclosure payoff on that subspace.

Lemma 5 states that any worst-case optimal distribution must disclose enough informa-

tion to make the adverse selection problem mute. Furthermore, there is no need to disclose

any additional information. Because disclosing additional information is detrimental to the

Sender, Lemma 4 implies, any robust solution discloses just enough information to eliminate

the adverse selection problem.

Proposition 2. Under any robust solution ρRS, for any µ, µ′ ∈ supp(ρRS), diam(supp(µ)) ≤
D; diam(supp(µ′)) ≤ D; but diam(supp(µ) ∪ supp(µ′)) > D.

Indeed, since V |∆B(µ) is concave but not affine on ∆B whenever diam(B) ≤ D, if

diam(supp(µ) ∪ supp(µ′)) ≤ D, the Sender could merge µ and µ′ into a single posterior,

improve her expected payoff, while maintaining worst-case optimality. In particular, full

disclosure is not a robust solution as long as there exist ω and ω′ in Ω that are less than D

apart.

A closed-form characterization of the optimal policy seems difficult (for the same reasons

that make it difficult to solve for a Bayesian solution). However, one of the benefits of
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the proposed solution concept is that it permits one to identify important properties that all

robust solutions must satisfy. Here, that property is that a robust solution must disclose just

enough information to neutralize the adverse selection problem. We believe that the same

approach – deriving properties of robust solutions without completing solving for optimal

policies – is likely to be fruitful in other applications as well.

4.2 Supermodular games

In this subsection, we consider an application featuring multiple Receivers in which the

lowest and the highest selections V and V correspond to different rationalizable profiles in

the continuation game among the Receivers.

Consider the following stylized game of regime change. A continuum of agents of measure

1, uniformly distributed over [0, 1], must choose between two actions, “attack” the regime

and “not attack” it. Let ai = 1 (respectively, ai = 0) denote the decision by agent i to

attack (respectively, not attack) the regime and A the aggregate size of the attack. Regime

change happens if and only if A ≥ ω, where ω ∈ Ω ⊂ R parametrizes the strength of

the regime (the underlying fundamentals) and is commonly believed to be drawn from a

distribution µ0 whose support intersects (−∞, 0), [0, 1], and (1, ∞). Each agent’s payoff

from not attacking is normalized to zero, whereas his payoff from attacking is equal to g in

case of regime change and b otherwise, with b < 0 < g. Hence, under complete information,

for ω ≤ 0 (alternatively, ω > 1), it is dominant for each agent to attack (alternatively, not

to attack), whereas for ω ∈ (0, 1] both attacking and not attacking are rationalizable actions

(see, among others, Inostroza and Pavan, 2018, and Morris et al., 2019 for similar games of

regime change). The Sender’s payoff is equal to 1 − A (that is, she seeks to minimize the

size of the aggregate attack). The Sender is constrained to disclose the same information

to all agents, as in the case of stress testing. Contrary to what is typically assumed in the

literature, the Sender is uncertain about the exogenous information the agents are endowed

with.

Suppose first that the Sender knew that the only information the agents possess is the

common prior µ0 and were confident in her ability to coordinate the Receivers on the best

rationalizable profile – corresponding to a Bayesian solution ρBP . A Bayesian solution would

then be similar to the one in the judge example in Section 3 (see the proof of Proposition

3 in the Appendix). To see this, note that for the Receivers to abstain from attacking, it

must be that their common posterior assigns probability at least α ≡ g/(g+ |b|) to the event

that ω > 0.9 Now let µ+
0 ≡ µ0(ω > 0) denote the probability assigned by the prior µ0 to

9When Pr(ω > 0) < α, the unique rationalizable profile is for each agent to attack.
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the event that ω > 0 and (to make the problem interesting) assume that µ+
0 < α, so that,

in the absence of any disclosure, all agents attack in the unique rationalizable profile. The

Sender can then maximize her payoff through a policy that, when ω > 0, sends the “null”

signal s = ∅ with certainty, whereas, when ω ≤ 0, fully discloses the state with probability

φBP ∈ (0, 1) and sends the signal s = ∅ with the complementary probability, where φBP is

defined by µ+
0 /[µ

+
0 + (1− µ+

0 )(1− φBP )] = α.

This policy, however, is not robust. First, when the agents assign sufficiently high prob-

ability to the event that ω ∈ (0, 1], while it is rationalizable for each of them to abstain from

attacking, it is also rationalizable for them to attack. Hence, if the Sender does not trust

her ability to coordinate the agents on the rationalizable profile most favorable to her, it

is not enough to persuade them that ω > 0; the Sender must persuade them that ω > 1.

Furthermore, if the Sender faces ambiguity over the information the agents are exogenously

endowed with, worst-case optimality requires that all states ω > 1 be separated from all

states ω ≤ 1. (The arguments are similar to those in the judge’s example in Section 3: For

any induced posterior whose support contains both states ω > 1 and states ω ≤ 1, Nature

can construct another posterior that induces the agents to attack also when ω > 1, thus

bringing the Sender’s payoff below her full information payoff.) One may then conjecture

that, as in the judge example, full disclosure of the state is a robust solution. This is not

the case. The reason is that, in case Nature (and the agents) plays favorably to the Sender,

fully disclosing the state triggers an aggregate attack of size A = 1 for all ω ≤ 0. The Sender

can do better by pooling states below 0 with states in [0, 1] and then hope that Nature (and

the agents) play favorably. Formally, we have the following result:

Proposition 3. The following policy is a Bayesian solution. If ω ≤ 0, the state is fully

revealed with probability φBP ∈ (0, 1) whereas, with the complementary probability, the Sender

sends the “null” signal s = ∅. If, instead, ω > 0, the signal s = ∅ is sent with certainty.

Such a policy is not robust. The following policy, instead, is a robust solution. If ω ≤ 0,

the state is fully revealed with probability φRS ∈ (0, 1), with φRS > φBP , whereas, with the

complementary probability, the signal s = ∅ is sent. If ω ∈ (0, 1], the signal s = ∅ is sent

with certainty. Finally, if ω > 1, the state is fully revealed with certainty.

While neither the Bayesian nor the robust solutions in the above proposition are unique,

any robust solution must fully separates states ω > 1 from states ω ≤ 1, whereas any

Bayesian solution pools states ω > 1 with states ω ≤ 1. The robust solution displayed in

the proposition Blackwell dominates the Bayesian solution, consistently with the results in

Corollaries 8 and 9.

21



4.3 Mean-measurable case

Finally, we consider an example in which Ω ⊆ [0, 1], V = V , and V (µ) = u(Eµ[ω̃]), for all

µ ∈ ∆Ω, for some continuous function u : [0, 1]→ R. The Sender’s payoff depends only on

the mean of each posterior distribution over states that she induces. Corollary 2 implies that

under the above assumptions, two states ω and ω′ must be separated in a robust solution if

there exists λ ∈ (0, 1) such that u(λω + (1− λ)ω′) < λu(ω) + (1− λ)u(ω′).

We will show how the above condition can be leveraged to find robust solutions in an

example that received significant attention in previous work: We assume that u(x) is strictly

convex, strictly increasing, and differentiable for all x < α, and equal to u(α) for all x ≥ α,

for some α ∈ (0, 1), as depicted in Figure 4.1. Kolotilin (2018) obtains a similar objective

function in a model with a privately informed Receiver who takes a binary action (under

some assumptions on the distribution of the Receiver’s information); Dworczak and Martini

(2019) obtain it in a model in which a principal motivates an agent to take costly effort

by rewarding her with a fixed share of the prize and disclosing information about the prize

value (the kink corresponds to the minimum level of the agent’s expected value of the prize

necessary for the agent to choose full effort); Duffie et al. (2017) obtain it in a model where

a market regulator designs a benchmark that discloses the size of gains from trade to market

participants to induce an efficient level of entry in the presence of externalities (the kink

corresponds to the minimum level of the expected value of the gains from trade at which all

market participants enter). These papers show that the optimal Bayesian solution is upper

censorship: It reveals the state up to a threshold, and then pools the remaining states into

a single message that induces the posterior mean α.

1
0

1

Figure 4.1: The function u(x)
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Our first result shows which states must be separated by a robust solution. For any

x ∈ [0, 1], let

β(x) ≡

x+ u(α)−u(x)
u′(x)

x ∈ [0, α),

α x ≥ α.

The function β(x) is a decreasing function that outputs the x-coordinate of the point at

which a line tangent to u at x crosses the horizontal line y = u(α).

Lemma 6. The set F of admissible supports for the posteriors induced by worst-case optimal

policies is given by10

F = {B ⊂ Ω : B ⊆ {ω} ∪ [β(ω), 1], for some ω ∈ Ω}.

The set F consists of all sets B contained in subsets of Ω of the form {ω} ∪ [β(ω), 1] for

some ω ∈ Ω. Worst-case optimal distributions need not separate states that lie above α. On

the other extreme, let x0 be the supremum of ω ∈ Ω, ω < α, such that u(ω)+u′(ω)(1−ω) <

u(α). All states ω < x0 must be fully revealed because for any such ω, {ω}∪ [β(ω), 1] = {ω}.
For any intermediate state ω ∈ [x0, α), instead, worst-case optimality requires that ω must

be separated from all states except the ones in [β(ω), 1]. Note that because β(ω) ≥ α for

any ω, this implies that all states below α must be separated from one another.

Given Lemma 6, to arrive at a robust solution, one needs to solve an optimal persuasion

problem subject to the additional constraint that the supports of induced posterior beliefs

satisfy the condition in Lemma 6.

Proposition 4 (Mean-measurable case). There exists a robust solution with the following

structure: For some x? ∈ [x0, α):

� States ω < x? are fully revealed;

� States ω ∈ (x?, α) are pooled (under separate signals) with states above β(ω) to induce

a posterior mean of at least α;

� There may exist a state ω = x? which is revealed with some probability and, with the

remaining probability, pooled with states above β(x?) to induce a posterior mean of

exactly α.

In certain cases, deriving a robust solution is particularly simple. We know that all states

x < x0 must be revealed to guarantee worst-case optimality (by Lemma 6). Conditional on

10If β(ω) > 1, [β(ω), 1] = ∅.
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the state being above x0, the Sender’s payoff is upper-bounded by u(α). If this upper bound

can be achieved by a worst-case optimal distribution, then this distribution must be a robust

solution.

Corollary 12. Suppose that a feasible distribution ρ ∈ ∆∆Ω, in addition to satisfying the

restrictions of Lemma 6, is such that conditional on any ω ≥ x0, any of the induced posteriors

has a mean above α. Then, ρ is a robust solution.

A robust solution resembles a Bayesian solution in that low states are fully revealed and

sufficiently high states are pooled to induce a posterior mean above α. However, there is

a crucial difference. In the Bayesian solution, all sufficiently high states are pooled into a

single signal which allows to maximize the pooling region. In contrast, in a robust solution,

a posterior mean above α is induced by many different signal realizations because no two

states below α can be pooled with one another.

5 Discussion

5.1 Alternative robustness tests

In this subsection, we discuss what properties of our setting are key for the main results,

including the conclusion that robustness only constrains the supports of posterior beliefs;

subsequently, we observe that our methods extend to alternative robustness tests.

Instead of modeling Nature playing against the Sender, consider a function V : ∆Ω→ R
mapping posterior beliefs induced by the Sender to payoffs. Suppose that V ≤ Vfull and that

V(µ) < Vfull(µ) =⇒ V(η) < Vfull(η), ∀η ∈ ∆Ω s.t. supp(η) = supp(µ). (5.1)

Define the robustness test by requiring that ρ ∈ ∆∆Ω selected by the Sender satisfies

�
V(µ)dρ(µ) ≥ Vfull(µ0). (5.2)

That is, when posteriors are evaluated according to V , the Sender’s signals must be at least

as good as full disclosure. Then, by V ≤ Vfull and (5.1), the robustness property is equivalent

to requiring that for all µ ∈ supp(ρ), supp(µ) ∈ {B ⊆ Ω : V|∆(B) ≥ Vfull|∆(B)}, analogously

to Theorem 1.

Our baseline model can be understood as a special case of the above framework where

V = lco(V ) with V interpreted as the Sender’s payoff under adversarial equilibrium selection.

In our framework, the property that V ≤ Vfull is a consequence of the fact that Nature can

always disclose the state, while (5.1) follows from convexity of lco(V ).
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The more general formulation shows that Nature does not need to have access to all

possible signals for our results to hold. As long as V ≤ Vfull, for property (5.1) to hold,

it suffices that starting from any belief η, Nature can induce any other belief µ with the

same support as µ, with positive probability. This is consistent with various constraints

that can be imposed on Nature’s choice, for example, with a capacity constraint on the

informativeness of Nature’s signal (e.g., based on entropy reduction).

We also notice that the above constraint may admit alternative interpretations. For

example, consider a setting where two different information designers move sequentially and

where the upstream designer faces ambiguity over the downstream designer’s response.11

The downstream designer’s objective, or instruments, may not be known to the upstream

designer. In this setting, V(µ) represents the upstream designer’s lowest payoff over all

possible reactions by the downstream designer. Our results carry over to this setting provided

that the upstream designer expects the downstream designer to be able to fully reveal the

state and generate with positive probability any belief η with the same support as the belief

µ induced by the upstream designer.

Finally, the function V need not be related to the Sender’s payoff. For example, the con-

straint (5.2) may reflect the obligation by the Sender to provide a minimal payoff guarantee

to a third party (e.g., another principal in an organization). In this case, the constraint in

(5.2) may reflect ambiguity aversion by the third party instead of the Sender herself. The

Sender may be a standard expected-utility maximizer with preferences represented by the

function V . The constraint in (5.2) may arise from the third party’s concern that the infor-

mation provided by the Sender may be manipulated (by other, un-modeled players) prior to

reaching the Receivers (in this example, V is the third party’s payoff and V = lco(V )).

5.2 Weighted objective function

Our solution concept assumes that the Sender follows a lexicographic approach: She first

maximizes her objective in the worst-case scenario, and only in case of indifference chooses

between policies based on their best-case performance. In this section, we examine a more

flexible objective function under which the designer attaches a weight λ ∈ [0, 1] to the worst-

case scenario, and a weight 1 − λ to the best-case scenario. This approach is reminiscent

of what is assumed in the literature on alpha-max-min preferences (Hurwicz, 1951, Gul and

Pesendorfer, 2015, Grant et al., 2020). A possible interpretation is that the designer is

Bayesian, and the weights reflect the assessed probabilities of Nature being adversarial and

11Cui and Ravindran (2020) consider a zero-sum game between two information designers in the spirit
of the exercise described here, but where the upstream designer faces no ambiguity over the downstream
designer’s best response.
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favorable, respectively. We show that, under mild regularity conditions, robust solutions

correspond exactly to solutions for the weighted objective function provided that the weight

λ on the worst-case scenario is sufficiently large. The result uses the special structure of the

persuasion model, and provides a Bayesian foundation for the less standard lexicographic

approach.12

Formally, for some λ ∈ [0, 1], the designer’s problem is stated as follows

sup
q∈Q

{
λ inf
π∈Π

v(q, π) + (1− λ)v(q, ∅)
}
.

Our previous results imply that this is equivalent to

sup
ρ∈∆∆Ω

{
λ

�
∆Ω

lco(V )(µ)dρ(µ) + (1− λ)

�
∆Ω

V (µ)dρ(µ)

}
(5.3)

subject to (BP). The function V (µ) is upper semi-continuous by assumption. Moreover, any

convex lower-semi-continuous function on ∆Ω is continuous,13 and thus lco(V ) is continuous.

Therefore, the problem for a fixed λ is equivalent to a standard Bayesian persuasion problem

with an upper semi-continuous objective function Vλ(µ) ≡ λlco(V )(µ) + (1− λ)V (µ), and a

feasible ρ is a solution if and only if it concavifies Vλ at the prior µ0.

Our goal is to relate the solutions to the problem defined by (5.3) (which we will denote by

S(λ) and call λ-solutions) to robust solutions. Note that 0-solutions coincide with Bayesian

solutions while 1-solutions are worst-case optimal solutions. Under a regularity condition

introduced below, we show that robust solutions are a subset of the worst-case optimal

solutions that are also λ-solutions for sufficiently high λ.

Let d denote the Chebyshev metric on ∆Ω: d(µ, η) = maxω∈Ω |µ(ω)− η(ω)|.

Definition 4. The function V is regular if there exist positive constants K and L such

that for every non-degenerate µ ∈ ∆Ω and every ω ∈ supp(µ), there exists η ∈ ∆Ω with

supp(η) ⊆ supp(µ) \ {ω} such that d(µ, η) ≤ Kµ(ω) and V (µ)− V (η) ≤ Ld(µ, η).

Regularity requires that, for any µ and any ω ∈ supp(µ), there exists a nearby belief

supported on supp(µ) \ {ω} that is not much worse for the designer under the favorable

selection V . This only has bite for beliefs µ for which µ(ω) is small for some ω; else the

condition follows from boundedness of the function V . Obviously, Lipschitz continuous

functions are regular. However, the condition is much weaker because the Lipschitz condition

is required to hold (i) only for beliefs µ that attach vanishing probability to some state ω,

(ii) only for some belief η in the neighborhood of a given µ, and (iii) only in one direction

12We thank Emir Kamenica and Ron Siegel for suggesting we investigate the validity of this result.
13For completeness, we provide a proof in the Online Appendix OA.1.1.
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(the condition rules out functions V (µ) that decrease at an infinite rate as µ(ω) approaches

0). And, indeed, regularity allows for highly discontinuous objective functions (we maintain

that V is upper semi-continuous). For example, V (µ) = v(Eµ[ω]), for some real-valued

function v is regular, no matter the function v. This is because when µ(ω) is small, one

can always find a belief η supported on supp(µ) \ {ω} with exactly the same mean as µ. A

different example is V (µ) =
∑k

i=1 ai1{µ∈Ai} for some partition (A1, ..., Ak) of ∆Ω; such an

objective arises when the Receiver has finitely many actions, and the Sender’s preferences

are state-independent.

Theorem 2. Suppose that V is regular. Then, there exists λ < 1 such that for all λ ∈ (λ, 1),

S(λ) coincides with the set of robust solutions.

In the Online Appendix, we show that without the regularity condition we can prove a

slightly weaker version of one direction of the equivalence: Any limit of λ-solutions as λ↗ 1

is a robust solution. However, we also show, by means of an example, that there exist robust

solutions that cannot be obtained as the limit of λ-solutions.

In the remainder of this section, we describe the key lemmas leading to Theorem 2 that

shed some light on the proof (the full proof is in the Appendix).

First, we observe that if the designer decides to induce a belief µ ∈ ∆c
FΩ ≡ ∆Ω \∆FΩ,

then we can bound from below the loss that is incurred in the worst-case scenario relative

to a worst-case optimal policy.

Lemma 7. There exists a constant δ > 0 such that for any µ ∈ ∆c
FΩ,

V full(µ)− lco(V )(µ) ≥ δ · max
B⊆supp(µ), B /∈F

min
ω∈B
{µ(ω)}.

For regular functions, we can correspondingly bound from above the gains from inducing

a belief µ ∈ ∆c
FΩ in the best-case scenario. The Sender can always achieve co(V F)(µ)

without sacrificing worst-case optimality, by Corollary 10. For µ ∈ ∆c
FΩ, it is possible that

V (µ) > co(V F)(µ) but the difference can be upper bounded.

Lemma 8. For a regular function V , there exists a constant ∆ > 0 such that for any

µ ∈ ∆c
FΩ,

V (µ)− co(V F)(µ) ≤ ∆ max
B⊆supp(µ), B /∈F

min
ω∈B
{µ(ω)}.

Together, the above two lemmas imply the following result:

Lemma 9. Suppose that V is regular. There exists λ < 1 such that, for all λ ∈ (λ, 1], if ρ

solves the problem defined by (5.3), then ρ cannot assign positive probability to ∆c
FΩ.
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Theorem 2 follows from Lemma 9. Indeed, because, for high λ, any λ-solution assigns

probability one to beliefs in ∆FΩ, any λ-solution delivers the same expected payoff to the

Sender in the worst-case scenario. As long as the weight 1 − λ on the best-case scenario

is strictly positive, a λ-solution must thus maximize the Sender’s payoff in the best-case

scenario, conditional on being worst-case optimal, that is, it must be a robust solution.

6 Conclusions

We introduce and analyze a novel solution concept for information design in settings in

which the Sender faces uncertainty about the Receivers’ sources of information. Under the

proposed approach, the Sender first identifies all information structures that are “worst-case

optimal”, i.e., that yield the highest payoff when Nature and the Receivers play adversarially

to her. The Sender then picks an information structure that, in case Nature and the Receivers

play favorably to her, maximizes her expected payoff over all information structures that are

worst-case optimal. We call such solutions robust. Our main result is a separation theorem

that identifies states that can be present together in one of the induced posteriors and states

that must be separated. We then use the characterization to identify various properties

of robust solutions, and to illustrate the implications of robustness in a few applications

considered in the literature. In the Online Appendix, we discuss how the analysis and the

key results must be adapted to accommodate the possibility that the Sender expects Nature

to be unable to condition her disclosure on the realization of the Sender’s signal.

Throughout the analysis, we restrict attention to the case of public persuasion in which

the Sender discloses the same information to all Receivers (but expects Nature to possibly

engage in discriminatory disclosures). In future work, it would be interesting to extend the

analysis to private persuasion, whereby the Sender discloses different signals to different

Receivers. It would also be interesting to examine how the properties of robust solutions

change as one considers different solution concepts for the game among the Receivers.
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A Missing Proofs

A.1 Proof of Lemma 1

Because the order in which signals are observed does not influence the posterior belief under

Bayesian updating, we have µs,r0 = (µr0)s = (µs0)r, where recall that µx is the posterior belief

induced by observing signal realization x. Thus, using Fubini’s theorem, and the law of

iterated expectations,

v(q, π) =
∑
ω∈Ω

�
R

�
S
V (µs,r0 )dπ(r|ω, s)dq(s|ω)µ0(ω)

=
∑
ω′∈Ω

�
S

(∑
ω∈Ω

�
R
V ((µs0)r) dπ(r|ω, s)µs0(ω)

)
dq(s|ω′)µ0(ω′).

Therefore, for any s ∈ S, Nature’s problem of minimizing the Sender’s payoff can be written

as

− sup
π: Ω→∆R

∑
Ω

�
R
−V ((µs0)r) dπ(r|ω)µs0(ω), (A.1)

where we suppressed the dependence of π on s in the notation because this problem is

solved for every s ∈ S separately. The optimization problem (A.1) is a standard Bayesian-

persuasion problem with a finite state space and an upper semi-continuous objective function

(because V is lower semi-continuous). By Kamenica and Gentzkow (2011), it is without loss

of generality to take R = Ω, the supremum is attained, and the value of the problem is given

by the negative of the concave closure of −V , evaluated at µ = µs0. Since R is now finite,
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we can let π(r|ω) denote the probability of sending signal r in state ω. Define

V π(µ) =
∑
ω, r∈Ω

V (µr)π(r|ω)µ(ω),

and using Observation 1, we then have that a signal q is worst-case optimal if and only if∑
Ω

�
S

(
min

π: Ω→∆Ω
V π(µs)

)
dq(s|ω)µ0(ω) = V full(µ0). (A.2)

A distribution ρ of posterior beliefs can be induced by some signal function q : Ω → ∆S if

and only if ρ satisfies (BP). We conclude that a signal q satisfies (A.2) if and only if the

distribution of posterior beliefs ρq that it induces satisfies (WC) and (BP). This finishes the

proof of Lemma 1.

A.2 Proof of Theorem 1

Let X = {ρ ∈ ∆∆Ω : ρ satisfies (BP) and supp(ρ) ⊆ ∆F(Ω)} . It is enough to prove that

W = X (the rest of the theorem follows directly from definitions).

Proof of W ⊆ X : Let ρ ∈ W . By definition of W , ρ satisfies (BP). We will show that

supp(ρ) ⊆ ∆F(Ω). Suppose not. Then, there exists A ⊂ supp(ρ), with ρ(A) > 0, such that

for any µ ∈ A, supp(µ) /∈ F . That is, given µ, there exists η ∈ ∆Ω with supp(η) ⊆ supp(µ)

such that V (η) < V full(η). Because lco(V ) ≤ V (where recall that lco(V ) denotes the lower

convex closure of V ), we have that lco(V )(η) < V full(η). Because supp(η) ⊆ supp(µ), there

exists a small enough λ > 0 such that µ = λη + (1− λ)η′, for some η′ ∈ ∆Ω. We have

lco(V )(µ) = lco(V )(λη + (1− λ)η′) ≤ λlco(V )(η) + (1− λ)lco(V )(η′)

< λV full(η) + (1− λ)V full(η
′) = V full(µ), (A.3)

where the first inequality follows from convexity of lco(V ), the second (strict) inequality

from lco(V )(η) < V full(η) and lco(V ) ≤ V full, and the final equality follows from the fact

that V full is affine.

We are ready to obtain a contradiction. Recall from equation (3.1) that since ρ is a

worst-case optimal distribution, it must satisfy

�
lco(V )(µ)dρ(µ) = V full(µ0)
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which, by (BP) and the fact that V full is affine, can also be written as

�
[lco(V )(µ)− V full(µ)] dρ(µ) = 0. (A.4)

Because lco(V ) ≤ V full, we must have lco(V )(µ) = V full(µ) for all µ ∈ supp(ρ), contradicting

(A.3).

Proof of W ⊇ X : Suppose that ρ ∈ X . It suffices to show that (3.1) holds, or that

lco(V )(µ) ≥ V full(µ) for all µ ∈ supp(ρ). Fix any µ ∈ supp(ρ). Because supp(ρ) ⊆ ∆F(Ω),

we have that V |supp(µ) ≥ V full|supp(µ). Because V dominates an affine function V full on

supp(µ), so does its (lower) convex closure lco(V ). In particular, lco(V )(µ) ≥ V full(µ) which

finishes the proof.

A.3 Proof of Lemma 4

By Lemma 3, we can write

V (µ) =
∑

ω∈supp(µ)

(� Eµ[ω̃]+D

ω

(p− ω)dp

)
µ(ω) =

1

2

∑
ω∈supp(µ)

(Eµ[ω̃] +D − ω)2 µ(ω).

Let B = {ω1, ..., ωn} with ω1 < ω2 < ... < ωn, and let µi = µ(ωi). Then, V can be treated

as a function defined on a unit simplex in Rn: V (µ) = 1
2

∑n
i=1 µi

(∑n
j=1 µjωj +D − ωi

)2

.

To prove the lemma, it is enough to prove that a function Ṽ defined by Ṽ (µ2, ..., µn) =

V (1− µ2 − ...− µn, µ2, ..., µn) has a negative semi-definite hessian. By a direct calculation,

denoting ω−1 = [ω2, ..., ωn], we obtain Hessian(Ṽ ) = −(ω−1 − ω1)T · (ω−1 − ω1), which is a

negative semi-definite matrix (of rank 1).

A.4 Proof of Proposition 3

Given any µ ∈ ∆Ω, let µ+ ≡ µ(ω > 0) denote the probability that µ assigns to the event

that ω > 0. In this application, the upper selection features all agents attacking if µ+ < α,

and all agents refraining from attacking if µ+ ≥ α, where α ≡ g/(g + |b|), implying that

V (µ) = 0 if µ+ < α and V (µ) = 1 if µ+ ≥ α.

Let µ+
0 < α, as assumed in the main text. The following policy is then a Bayesian

solution. The Sender randomizes over two announcements, s = 0 and s = 1. She announces

s = 0 with certainty when ω > 0 and with probability (1 − φBP ) ∈ (0, 1) when ω ≤ 0,

with φBP satisfying Pr(ω > 0|s = 0) = µ+
0 /[µ

+
0 + (1 − µ+

0 )(1 − φBP )] = α. To see that

this is a Bayesian solution, first note that, without loss of optimality, the Sender can confine
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attention to policies with two signal realizations, s = 0 and s = 1, such that, when signal

s = 0 is disclosed, Pr(ω > 0|s = 0) ≥ α and all agents refrain from attacking, whereas

when signal s = 1 is disclosed, Pr(ω > 0|s = 1) < α and all agents attack.14 Next note

that, starting from any binary policy sending signal s = 1 with positive probability over a

positive measure subset of R+, one can construct another binary policy that sends signal

s = 0 (thus inducing all agents to refrain from attacking) with a higher ex-ante probability,

contradicting the optimality of the original policy. Hence, any binary Bayesian solution must

send signal s = 0 with certainty for all ω > 0. Furthermore, under any Bayesian solution,

the ex-ante probability
� 0−

−∞ π(0|ω)dµ0(ω) that signal s = 0 is sent when ω < 0 is uniquely

pinned down by the condition Pr(ω > 0|s = 0) = µ+
0 /[µ

+
0 +

� 0−

−∞ π(0|ω)dµ0(ω)] = α. Because

the Sender’s preferences depend only on 1−A, the specific way the policy sends signal s = 0

when ω < 0 is irrelevant, thus implying that the binary policy described above is indeed a

Bayesian solution. By the same token, it is also easy to see that the above binary policy is

payoff-equivalent to one that sends signal s = 0 with certainty when ω > 0, whereas, when

ω < 0, with probability φBP fully reveals the state and with the complementary probability

sends signal s = 0. Signal s = 0 can then be interpreted as the “null” signal s = ∅ as claimed

in the proposition.

To see that the above Bayesian policy is not robust, let µ(0,1] ≡ µ(ω ∈ (0, 1]) denote

the probability that µ assigns to the interval (0, 1]. Recall that, given any posterior µ, if

µ+ ≡ µ(ω > 0) < α, the unique rationalizable action is to attack. If µ+ ∈ [α, α + µ(0,1]]

both attacking and not attacking are rationalizable. Finally, if µ+ > α + µ(0,1], the unique

rationalizable action is to refrain from attacking. Hence, under the most adversarial selection,

V (µ) = 0 if µ+ ≤ α + µ(0,1], and V (µ) = 1 if µ+ > α + µ(0,1]. Next, observe that worst-

case optimality requires that all states ω > 1 be separated from all states ω ≤ 1. Indeed,

V full(µ) = µ(ω > 1) = µ+ − µ(0,1] and, given any common posterior µ induced by the

Sender, Nature always minimizes the Sender’s payoff by using a signal that discloses the same

information to all agents. Arguments similar to those in the judge’s example in Section 3

imply that any worst-case optimal distribution (and hence any robust solution) must separate

states ω > 1 from states ω ≤ 1.

Because the above restriction is the only one imposed by worst-case optimality, on the

restricted domain Ω̄ ≡ {ω ∈ Ω : ω ≤ 1}, any robust solution must coincide with a Bayesian

solution. Let φRS ∈ (0, 1) be implicitly defined by µ
(0,1]
0 /[µ

(0,1]
0 + (1 − µ+

0 )(1 − φRS)] = α.

Arguments similar to the ones above then imply that the following policy is a Bayesian

14The arguments for this result are the usual ones. Starting from any policy with more than two signal
realizations, one can pool into s = 0 all signal realizations leading to a posterior assigning probability at least
α to the event that ω > 0 and into s = 1 all signal realizations leading to a posterior assigning probability
less than α to ω > 0. The binary policy so constructed is payoff-equivalent to the original one.
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solution on the restricted domain. When ω ∈ (0, 1], the Sender sends signal s = 0 with

certainty. When, instead, ω ≤ 0, with probability φRS > φBP , the Sender fully reveals

the state, and with the complementary probability 1 − φRS, the Sender sends signal s = 0.

Lastly, observe that, given any posterior µ with supp(µ) ⊂ (1,+∞), the unique rationalizable

profile features all agents refraining from attacking. This means that, once the Sender fully

separates the states ω ≤ 1 from the states ω > 1, she may as well fully reveal the state when

the latter is strictly above 1.

Combining all the arguments above together, it is then easy to see that the following

policy is a robust solution. When ω ≤ 0, with probability φRS ∈ (0, 1) the Sender fully

reveals the state, whereas, with the complementary probability 1−φRS, she sends the signal

s = ∅. When ω ∈ (0, 1], the Sender discloses the signal s = ∅ with certainty. Finally, when

ω > 1, the Sender fully reveals the state, as claimed in the proposition.

A.5 Proof of Lemma 6

Suppose that ω < α. By Corollary 2, ω must be separated from each ω′ such that for some

λ ∈ (0, 1), u(λω + (1 − λ)ω′) < λu(ω) + (1 − λ)u(ω′). This condition holds for any ω′ < α

because the function u is strictly convex on [0, α). When ω′ ≥ α, the condition is equivalent

to u′(ω) < (u(α)− u(ω)) / (ω′ − ω), or ω′ < β(ω).

Thus, a necessary condition for ρ to be worst-case optimal is that, for any µ ∈ supp(ρ),

if ω ∈ supp(µ), and ω < α, then only [β(ω), 1] can have a non-empty intersection with

supp(µ) \ {ω}.
We now show that this condition is also sufficient. For any ω ∈ Ω, take any subset

B of {ω} ∪ [β(ω), 1] and any µ ∈ ∆B. If V (µ) = u(α) (that is, if Eω̃∼µ[ω̃] ≥ α) then

V (µ) ≥ V full(µ) because u(α) upper-bounds V (and hence also V full). If, on the other hand,

V (µ) < u(α) (equivalently, Eω̃∼µ[ω̃] < α), then necessarily ω < α, and

V (µ) = u (Eω̃∼µ[ω̃]) ≥ u(ω) + u′(ω)(Eω̃∼µ[ω̃]− ω) = Eω̃∼µ [u(ω) + u′(ω)(ω̃ − ω)]

≥ Eω̃∼µ [u(ω̃)] = V full(µ),

where the first inequality follows from the fact that u is convex on [0, α] (and hence lies above

the line tangent to it at ω < α), and the second inequality holds because, by definition

of β(·), u(ω) + u′(ω)(ω̃ − ω) ≥ u(ω̃) for ω̃ ∈ supp(µ). Hence, we have shown that any

ρ ∈ ∆∆Ω with the property that, for any µ ∈ supp(ρ), if ω ∈ supp(µ) and ω < α, then

[0, β(ω)] ∩ supp(µ) \ {ω}} = ∅, is worst-case optimal.
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A.6 Proof of Proposition 4

We order the state space so that Ω = {x1, ..., xk, ω1, ..., ωn} and x1 < ... < xk < α ≤
ω1 < ... < ωn. We also normalize u(α) = 1 to simplify notation. The proof of Proposition

4 follows from Lemma 6 combined with the following lemma (and the fact that a robust

solution exists, by Corollary 1).

Lemma 10. Suppose that ρ is a robust solution. Conditional on state xi, a posterior mean

induced by ρ is either equal to xi (full revelation) or lies above α. Moreover, if conditional

on some xi there is positive conditional probability of inducing a posterior mean above α,

then conditional on all states ω > xi the posterior mean lies above α with probability one.

To prove the first part of the lemma, towards a contradiction, suppose that there is

µ ∈ supp(ρ) such that xi ∈ supp(µ) and y ≡ Eµ[ω̃] ∈ (xi, α) (the posterior mean cannot be

lower than xi because, by Lemma 6, xi cannot be pooled with any lower state). By Lemma 6,

supp(µ) ⊆ {xi}∪ [β(xi), 1]. We will show that we can improve upon ρ by revealing the state

xi with (small) probability ε > 0 conditional on inducing belief µ under ρ. The expected

payoff given µ is

Vold ≡ u

xiµ(xi) +
∑

ω≥β(xi)

ωµ(ω)

 ,

and under the alternative policy it becomes

Vnew ≡ µ(xi)ε u(xi) +

µ(xi)(1− ε) +
∑

ω≥β(xi)

µ(ω)

u

(
xiµ(xi)(1− ε) +

∑
ω≥β(xi)

ωµ(ω)

µ(xi)(1− ε) +
∑

ω≥β(xi)
µ(ω)

)
.

We have

lim
ε→0

Vnew − Vold
ε

= µ(xi)(y − xi)
[
u′(y)− u(y)− u(xi)

y − xi

]
> 0

by strict convexity of u on [0, α) and the fact that y > xi. Therefore, ρ can be improved

upon by a distribution that is worst-case optimal, and thus it could not have been a robust

solution.

To prove the second part of Lemma 10, towards a contradiction, suppose that there

are µ, µ′ ∈ supp(ρ) such that xi ∈ supp(µ), ω > xi, ω ∈ supp(µ′), y ≡ Eµ[ω̃] ≥ α but

y′ ≡ Eµ′ [ω̃] < α. Because ω > xi and β(x) is a monotone function, we know from Lemma 6

that ω can be pooled with any state with which xi can be pooled (we do not lose worst-case

optimality). Moreover, by the first part, we know that ω is fully revealed in this case, and

in particular we must have ω = xj for some j > i, and y′ = xj. We can assume without
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loss of generality that y = α because we can reveal some states above α conditional on µ

with sufficiently high probability so that the conditional mean falls to exactly α, and the

expected payoff stays the same (because u(x) is constant for x ≥ α). To simplify notation,

let µ =
∑

ω≥β(xi)
µ(ω) and

ω =

∑
ω≥β(xi)

ωµ(ω)∑
ω≥β(xi)

µ(ω)
.

Then, all subsequent calculations are unaffected if we assume that µ puts mass µ on the

“synthetic” state ω, instead of the individual ωi’s in its support. Thus, it is without loss of

generality to assume that µ puts mass 1−µ on xi and mass µ on ω while µ′ is a Dirac delta

at xj > xi.

Let p be the conditional probability under ρ of inducing belief µ conditional on inducing

either µ or µ′. We can assume that p ∈ (0, 1) as otherwise one of these beliefs is induced

with unconditional probability 0.

Consider a modification of ρ conditional on the realization of beliefs {µ, µ′}: Instead of

inducing µ with probability p and µ′ with probability 1− p, consider inducing (1) µ′ (equal

to δxj) with probability (1− p)(1− ε); (2) µγ with probability (1− p)ε+ pµγ supported on

{xj, ω}, where γ is such that

Eµγ [ω̃] =
xj(1− p)ε+ ωpµγ

(1− p)ε+ pµγ
= α;

(3) µ with probability p(1 − γ); (4) δxi with probability p(1 − µ)γ. Intuitively, we are

modifying the signal so that the higher state xj is pooled towards posterior mean α instead

of the lower state xi. By Lemma 6, the modified signal is still worst-case optimal. We have

γ =
ε

µ

(
α− xj
ω − α

1− p
p

)
which lies in (0, 1) for small enough ε. Denoting the conditional expected payoff (conditional

on {µ, µ′}) under the original signal by Vold and the conditional expected payoff under the

modified signal by Vnew, we get that

Vnew − Vold = −ε(1− p)u(xj)− γp+ (1− p)ε+ pµγ + p(1− µ)γu(xi).
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Therefore, we have

Vnew − Vold
ε

=
1− p
µ

[
−µu(xj)−

α− xj
ω − α

+ µ+ µ
α− xj
ω − α

+ (1− µ)
α− xj
ω − α

u(xi)

]
= (1− p)(1− u(xi))

[
1− u(xj)

1− u(xi)
− 1− µ

µ

α− xj
ω − α

]
. (A.5)

Note that µω + (1− µ)xi = α, and thus (1− µ)/µ = (ω − α) / (α− xi) so that

Vnew − Vold
ε

= (1− p)(1− u(xi))

[
1− u(xj)

1− u(xi)
− α− xj
α− xi

]
> 0 ⇐⇒ 1− u(xj)

α− xj
>

1− u(xi)

α− xi

which is true because u is strictly convex in the relevant range, u(α) = 1, and xj > xi. Thus,

we have shown that ρ can be improved upon by a worst-case optimal signal, and thus could

not have been a robust solution.

A.7 Proof of Lemma 7

For any B ⊆ Ω, with B /∈ F , fix an arbitrary µB ∈ ∆Ω with supp(µB) ⊆ B such that

V (µB) < V full(µB), and hence lco(V )(µB) < V full(µB). Then let δB ≡ V full(µB)− lco(V )(µB)

and δ ≡ minB/∈F δB > 0.

Consider any µ ∈ ∆c
FΩ. Let B ⊆ supp(µ) be such that B /∈ F . Then, we can write

µ = κµB + (1 − κ)µ′ for some µ′ and κ, as long as κ is such that, for all ω ∈ supp(µ),

µ(ω) ≥ κµB(ω). This equality can be written in particular for κ = minω∈B{µ(ω)}. Because

V full− lco(V ) is a concave function as the difference between an affine function and a convex

function, we have

(V full − lco(V )) (µ) = (V full − lco(V )) (κµB + (1− κ)µ′) ≥

κ (V full − lco(V )) (µB) + (1− κ) (V full − lco(V )) (µ′) ≥ min
ω∈B
{µ(ω)}δB ≥ min

ω∈B
{µ(ω)}δ.

Since B was arbitrary, we also have that

(V full − lco(V )) (µ) ≥ δ · max
B⊆supp(µ), B /∈F

min
ω∈B
{µ(ω)}.

A.8 Proof of Lemma 8

Before proving Lemma 8, we first prove that regularity implies a seemingly stronger property

that will be more convenient to work with.

Lemma 11. If the function V is regular, then there exist positive constants K and L such

that for every non-degenerate µ ∈ ∆Ω and every set A ( supp(µ), there exists η ∈ ∆Ω with

37



supp(η) ⊆ A such that d(µ, η) ≤ K maxω∈supp(µ)\A{µ(ω)} and V (µ)− V (η) ≤ Ld(µ, η).

Proof of Lemma 11. The proof is by induction. If the set A is equal to supp(µ) \ {ω} for

some ω ∈ supp(µ), then the conclusion follows directly from the definition of regularity. This

means that we have proven the lemma for the case |supp(µ) \ A| = 1.

Induction step: Suppose that we have proven the lemma for all sets A such that |supp(µ)\
A| = k. Next, we prove it for sets A with |supp(µ) \ A| = k + 1.

Concretely, suppose that we have a set A ( supp(µ) with |supp(µ) \ A| = k + 1. To

simplify notation, let δA := maxω∈supp(µ)\A{µ(ω)}. Define A′ = A ∪ {ω?} for some ω? ∈
supp(µ)\A. By the inductive hypothesis, there exists η′ ∈ ∆Ω with supp(η′) ⊆ A′ such that

d(µ, η′) ≤ K maxω∈supp(µ)\A′{µ(ω)} and V (µ)− V (η′) ≤ Ld(µ, η′).

Next, we apply the definition of regularity to the measure η′ and the state ω?: There

exists η with supp(η) ⊆ supp(η′)\{ω?} ⊆ A such that d(η′, η) ≤ Kη′(ω?) and V (η′)−V (η) ≤
Ld(η′, η).

Since d(µ, η′) ≤ KδA and µ(ω?) ≤ δA (because ω? ∈ supp(µ) \ A), it follows that

η′(ω?) ≤ (K + 1)δA. Thus, we have

d(µ, η) ≤ d(µ, η′) + d(η′, η) ≤ KδA +K(K + 1)δA ≤ K(K + 2)δA,

and

V (µ)− V (η) = V (µ)− V (η′) + V (η′)− V (η) ≤ L(d(µ, η′) + d(η′, η))

≤ LK(K + 2)δA ≤ LK(K + 2)d(µ, η),

where the last inequality follows from the fact that supp(µ) \ supp(η) contains some ω that

has probability δA under µ (and 0 under η). Therefore, we obtain the inductive hypothesis

with constants K ′ = K(K + 2) and L′ = LK(K + 2).

This finishes the proof of Lemma 11.

Now we prove Lemma 8: We have to show that there exists a constant ∆ > 0 such that

for any µ ∈ ∆c
FΩ,

co(V F)(µ) + ∆ max
B⊆supp(µ), B /∈F

min
ω∈B
{µ(ω)} ≥ V (µ). (A.6)

Let δ̄ ≡ maxB⊆supp(µ), B /∈F minω∈B{µ(ω)}. By definition of δ̄, there must exist a set

A ( supp(µ), with A ∈ F , such that for all ω ∈ supp(µ) \ A, µ(ω) ≤ δ̄. To see that, let

C ≡ {ω ∈ supp(µ) : µ(ω) > δ̄}. Clearly, if C = ∅, then it suffices to let A coincide with

any element of supp(µ). If, instead, C 6= ∅, then let A = C. We claim that A defined this
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way belongs to F . If that was not the case, from the definition of δ̄, we would have that

δ̄ ≥ minω∈A{µ(ω)} > δ̄, a contradiction.

By Lemma 11 applied to µ and the set A (which we can apply since V is regular), there

must exist η with supp(η) ⊆ A, d(µ, η) ≤ K maxω∈supp(µ)\A{µ(ω)} ≤ Kδ̄, such that

V (µ)− V (η) ≤ Ld(µ, η) ≤ LKδ̄. (A.7)

Importantly, co(V F)(η) ≥ V (η) because supp(η) ⊆ A ∈ F . Therefore,

co(V F)(µ) + ∆ δ̄ ≥ co(V F)(µ)− co(V F)(η) + V (η) + ∆ δ̄.

On the line segment connecting µ and η, co(V F) is affine: Indeed, we have that V F(κµ+(1−
κ)η) = vlow for any κ > 0, since any such belief κµ + (1− κ)η /∈ F ; but this implies that V

lies strictly below its concave closure (except possibly at η), and hence is affine. This means

in particular that co(V F) is Lipschitz continuous on that segment, that is, for some constant

N , co(V F)(µ)−co(V F)(η) ≥ −Nd(µ, η). Therefore, using (A.7) and d(µ, η) ≤ Kδ̄, we have

that

co(V F)(µ) + ∆ δ̄ ≥ −Nd(µ, η) + V (η) + ∆ δ̄ ≥ V (µ) + (∆−NK − LK)δ̄.

Thus, to prove the desired inequality (A.6), it is enough to set ∆ = NK + LK.

A.9 Proof of Lemma 9

It is enough to prove that, for high enough λ, if supp(ρ) * ∆FΩ, then the Sender’s objective� [
λlco(V )(µ) + (1− λ)V (µ)

]
dρ(µ) increases strictly by splitting any µ ∈ supp(ρ) such that

µ ∈ ∆c
FΩ into beliefs that yield co(V F)(µ) – such a split is always available to the Sender

and, by definition of co(V F), yields the payoff V full(µ) in the worst-case scenario (if µ has

zero probability under ρ, then the same argument can be applied to a set S ⊆ supp(ρ) of

positive measure under ρ such that S ∩ ∆FΩ = ∅). By Lemma 7 and 8, we have that, for

some ∆ > 0 and δ > 0,

[
λV full(µ) + (1− λ)co(V F)(µ)

]
−
[
λlco(V )(µ) + (1− λ)V (µ)

]
= λ [V full (µ)− lco(V )(µ)] + (1− λ)

[
co(V F)(µ)− V (µ)

]
≥ (λδ − (1− λ)∆) max

B⊆supp(µ), B /∈F
min
ω∈B
{µ(ω)} > 0

if λ > λ where λ = ∆
∆+δ

< 1.
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A.10 Proof of Theorem 2

It is enough to prove that for λ ∈ (λ, 1), where λ as defined in Lemma 9, ρ concavifies V F

at µ0 if and only if ρ concavifies λlco(V ) + (1 − λ)V at µ0. This, however, follows directly

from Lemma 9. For λ > λ, a feasible ρ ∈ ∆∆Ω that concavifies λlco(V ) + (1 − λ)V at µ0

(i.e., is a λ-solution) must not put positive probability on beliefs µ ∈ ∆c
FΩ. However, lco(V )

is affine on such beliefs, by definition of F . Therefore, as long as λ ∈ (λ, 1), ρ concavifies

λlco(V ) + (1− λ)V (µ) at µ0 if and only if it concavifies V at µ0 on ∆FΩ. This, however, is

equivalent to concavifying V F at µ0.
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Online Appendix

OA.1 Supplementary results for Section 5.2

In this Online Appendix, we revisit Section 5.2 and examine the consequences of relaxing

the regularity condition.

One direction of Theorem 2 continues to hold in a slightly weaker form.

Theorem OA.1. If λn ↗ 1, and ρn ∈ S(λn) converges to ρ in the weak∗ topology as n→∞,

then ρ is a robust solution.

Proof. Take ρn as in the statement of the theorem. By optimality of ρn, the value of the

Sender’s objective (with weight λn) cannot be increased strictly by switching to a robust

solution. That is,

�
∆Ω

[
(1− λn)V (µ) + λnlcoV (µ)

]
dρn(µ) ≥ (1− λn)coV F(µ0) + λnV full(µ0)

When combined with Lemma 7, the above inequality implies that

�
∆Ω

V (µ)dρn(µ)−coV F(µ0) ≥ λn
1− λn

·δ ·
�

∆c
FΩ

[
max

B⊆supp(µ), B /∈F
min
ω∈B
{µ(ω)}

]
dρn(µ), (OA.1)

where ∆c
FΩ denotes the complement of ∆FΩ. Because the left hand side of the above

inequality is bounded, and λn/(1− λn) diverges to infinity, we must have that

�
∆c
FΩ

[
max

B⊆supp(µ), B /∈F
min
ω∈B
{µ(ω)}

]
dρn(µ)→ 0.

Because the set of possible supports is finite (since Ω is finite), this implies that for any

A ⊂ Ω such that A /∈ F ,

�
{µ∈∆Ω: supp(µ)=A}

[
max

B⊆A,B/∈F
min
ω∈B
{µ(ω)}

]
dρn(µ)→ 0.

On the set {µ ∈ ∆Ω : supp(µ) = A} the function maxB⊆A,B/∈F minω∈B{µ(ω)} is continuous,

bounded, and strictly positive. By definition of convergence in the weak∗ topology, we have,

�
{µ∈∆Ω: supp(µ)=A}

[
max

B⊆A,B/∈F
min
ω∈B
{µ(ω)}

]
dρ(µ) = 0.

Because the integrand is strictly positive, we must have ρ ({µ ∈ ∆Ω : supp(µ) = A}) = 0.

Because this is true for any A /∈ F , and there are finitely many such A, this implies that

supp(ρ) ⊆ ∆FΩ, and thus ρ is worst-case optimal.
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Since the right hand side of inequality (OA.1) is non-negative, we have that

coV F(µ0) ≤ lim sup
n

�
∆Ω

V (µ)dρn(µ) ≤
�

∆Ω

V (µ)dρ(µ) ≤ coV F(µ0),

where the second inequality comes from upper-semi continuity of V , and the last inequality

follows from the fact that ρ is worst-case optimal, while coV F(µ0) is the upper bound on

the best-case payoff that a worst-case optimal distribution can yield. This, however, means

that
�

∆Ω
V (µ)dρ(µ) = coV F(µ0), and thus ρ is a robust solution, by Corollary 10.

Next, we show that, without the regularity condition, there exist robust solutions that

cannot be approximated by λ-solutions.

Example OA.1. Let Ω = {1, 2, 3}, and µ0 = (1/3, 1/3, 1/3). Let V be equal to 0 everywhere

except at µ = µ0 where V (µ0) = −1. Let V be such that

V (1, 0, 0) = V (0, 1, 0) = V (0, 0, 1) = V (1/2, 1/2, 0) = V (1/2, 0, 1/2) = 0,

and

V (1− 2x, x, x) =
√
x, ∀x ≤ 1/3,

and V (µ) = −1 anywhere else. Notice that V violates regularity because along the line

segment (1− 2x, x, x), as x→ 0, V decreases at an infinite rate to 0, while V (µ) ≤ 0 for all

µ that do not have full support.

By definition of V , any worst-case optimal solution puts no mass on beliefs with full-

support. Thus, a robust solution is any Bayes-plausible convex combination of beliefs at

which V = 0. However, we will show that in the limit as λ → 1, all λ-solutions must put

positive (bounded away from zero) mass on the belief (1, 0, 0). Therefore, the distribution

ρRS that puts mass 1/3 on (1/2, 1/2, 0) and on (1/2, 0, 1/2) and mass 1/6 on (0, 1, 0) and on

(0, 0, 1) is a robust solution but is not a limit of λ-solutions.

Note first that lco(V )(µ) = −3 minω µ(ω). Consider a distribution ρ that attaches weight

m (potentially m = 0) to beliefs of the form (1 − 2x, x, x) for x ∈ (0, 1/3]. Because the

objective function Vλ(µ) ≡ λlco(V )(µ)+(1−λ)V (µ) is strictly concave on that line segment,

a λ-solution attaches the entire weight m to a single x?. For a fixed λ, the optimal choice of

x? is

x? =

(
1− λ

6λ

)2

.

The remaining mass 1 − m must be distributed over the beliefs (1, 0, 0), (0, 1, 0), (0, 0, 1),

(1/2, 1/2, 0), and (1/2, 0, 1/2), with weights satisfying the Bayes-plausibility constraint. Be-
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cause the Sender’s payoff is equal to 0 on any such belief, a λ-solution is characterized by

the level of m that maximizes

(1−m)[0] +m[−3λx? + (1− λ)
√
x?] = m

(1− λ)2

12λ

subject to the Bayes-plausbility constraint. Because the above function is increasing in

m, any λ-solution, λ < 1, puts probability m? to the the belief (1 − 2x?, x?, x?), where

m? ≥ 1/3 is the largest value of m consistent with Bayes plausibility. Next observe that

(1− 2x?, x?, x?) converges to (1, 0, 0) as λ→ 1. Hence, all limits of λ-solutions put at least

1/3 mass on (1, 0, 0) which is what we wanted to prove.

OA.1.1 Convex lower semi-continuous functions on ∆Ω are con-

tinuous

Lemma OA.1. A convex lower semi-continuous function V : ∆Ω→ R is continuous.

Proof. Suppose not. Then, since the function is lower semi-continuous, there must exist a

sequence µn → µ such that lim inf V (µn) > V (µ). We can write µn = κnµ+(1−κn)ζn, where

κn = min
ω∈supp(µ)

min

{
µn(ω)

µ(ω)
,

1− µn(ω)

1− µ(ω)

}
,

and

ζn =
µn − κnµ

1− κn
.

Because µn → µ and Ω is finite, we have that κn < 1 and κn → 1. Thus, ζn is a well-defined

probability measure for high enough n because, for any ω ∈ Ω,

0 ≤ µn(ω)− κnµ(ω)

1− κn
≤ 1.

By convexity of V , we have

V (µn) = V (κnµ+ (1− κn)ζn) ≤ κnV (µ) + (1− κn)V (ζn) ≤ κnV (µ) + (1− κn)M
n→∞→ V (µ),

where M is an upper bound on the value of the function V that can be defined as M =

maxω∈Ω V (δω) given that the function is convex. This is a contradiction with lim inf V (µn) >

V (µ).
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OA.2 The case of conditionally independent signals

In the main version of the model, we did not impose any restrictions on the signal chosen

by Nature. In particular, Nature’s choice of the signal could depend on the Sender’s signal

realization. In this appendix, we study a solution concept under which Nature’s signal

must be conditionally independent (conditional on the state) of the Sender’s signal. This

assumption might be appropriate for settings in which Nature’s move reflects the Sender’s

ambiguity over the information the Receivers might possess prior to receiving the Sender’s

information, and acquiring additional information after receiving the Sender’s information

is too costly or otherwise infeasible for the Receivers.

Unless specified otherwise, we maintain all the assumptions imposed in the main text.

The Sender continues to choose an information structure q : Ω → ∆S which maps states

ω into probability distributions over signal realizations, s. However, we modify Nature’s

strategy space: Nature selects a conditionally independent signal distribution π : Ω→ ∆R.
When the spaces S andR of signal realizations are finite, we can write the Bayesian posterior

belief given the prior µ0 and the signal realizations (s, r) as

µs,r0 =
π(r|ω)q(s|ω)µ0(ω)∑
ω′ π(r|ω′)q(s|ω′)µ0(ω′)

.

We assume that V is upper semi-continuous and lower-bounded, and that V is lower

semi-continuous and upper-bounded.

The Sender’s expected payoffs v(q, π) and v(q, π) under the favorable and adversarial

selections, respectively, continue to be defined as in the main text, but with dπ(r|ω, s)
replaced by dπ(r|ω).

With that modification in mind, the definition of a worst-case optimal signal (Definition 1

in the main text) remains the same, except for the fact that the infimum over Nature’s signals

is now taken over the (smaller) space of conditionally independent signals. To distinguish

between the two solution concepts, we call signals that are optimal in the worst case over all

Nature’s signals that are conditionally independent CI-worst-case optimal. We use WCI to

denote the set of CI-worst-case optimal signals. Observation 1 remains valid: Full disclosure

is always CI-worst-case optimal, and a signal is in WCI if and only if it achieves the full-

disclosure payoff in the worst case. Then, we define a CI-robust solution analogously to

Definition 2: A signal q is a CI-robust solution if it maximizes v(q, ∅) over WCI .
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OA.2.1 Summary of results

We start by summarizing the relationship between robust and CI-robust solutions. The

summary serves as a road map for the next subsections where the results foreshadowed here

are formally developed.

Characterizing CI-robust solutions turns out to be significantly more complicated than

characterizing robust solutions. In particular, the restrictions imposed by CI-worst-case

optimality do not take the tractable form described in Theorem 1. Therefore, the results

that we obtain for this case are more limited in scope:

� Corollary 1 fails for CI-robust solutions, i.e., a CI-robust solution may fail to exist.

We show in Subsection OA.2.3 (Theorem OA.2) that a CI-robust solution exists under

a stronger assumption of continuity of V . Moreover, we introduce a notion of weak

CI-robust solutions (that relaxes the condition of CI-worst-case optimality), and show

that a weak CI-robust solution exists under no further assumptions on V .

� In Subsection OA.2.5, we provide a sufficient condition (Theorem OA.3) for state sep-

aration under a CI-robust solution. This condition is weaker than the one in Corollary

2; that is, whenever two states must be separated under a CI-robust solution, they

also must be separated under a robust solution. We show that in the applications

considered in Section 4.3, the sufficient condition for state separation from Theorem

OA.3 applies, and CI-robust solutions coincide with robust solutions.

� Corollary 3, Corollary 4, and Corollary 5 do not extend to CI-robust solutions because

we do not have a characterization similar to the one in Theorem 1. In Subsection

OA.2.2 and Subsection OA.2.5, we obtain various (weaker) sufficient conditions for

either full-disclosure to be the unique CI-robust solution, or for all distributions to be

CI-worst-case optimal.

� In Subsection OA.2.4, we analyze the binary-state case. Unlike robust solutions, as

described by Corollary 6, CI-robust solutions for binary-state problems may coincide

with neither Bayesian solutions nor full disclosure. However, we give sufficient condi-

tions for Bayesian solutions and full disclosure, respectively, to constitute CI-robust

solutions.

� In Subsection OA.2.6, we show that Corollary 7 and Corollary 8 fail for CI-robust

solutions. That is, it is possible that a Bayesian solution is strictly more informative

than all CI-robust solutions.
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OA.2.2 Preliminary observations

We first make a couple of observations to simplify the problem of finding a CI-robust solution.

Lemma OA.2. The set of CI-robust solutions when the signal space used by Nature is equal

to Ω is the same as when it is equal to R, for any R ⊃ Ω.

Proof. Observe that

v(q, π) =
∑

Ω

�
R

�
S
V (µs,r0 )dπ(r|ω)dq(s|ω)µ0(ω)

=

�
R

(∑
Ω

[�
S
V (µs,r0 )dq(s|ω)

]
µr0(ω)

)
︸ ︷︷ ︸

V q(µ
r
0)

(∑
ω

dπ(r|ω)µ0(ω)

)
,

where

V q(µ) ≡
∑

Ω

[�
S
V (µs)dq(s|ω)

]
µ(ω).

Therefore,

v(q, π) =

�
R
V q(µ

r
0)dΠµ0,π(r),

where Πµ0,π ∈ ∆R denotes the unconditional distribution over R induced by µ0 and π. From

this observation, it is easy to see that, without loss of generality, we can assume that Nature

chooses a distribution ν ∈ ∆∆Ω over posterior beliefs over Ω, subject to Bayes plausibility.

In particular, to minimize the Sender’s payoff, Nature solves the following problem:

inf
ν∈∆∆Ω

�
supp(ν)

V q(µ)dν(µ)

subject to �
supp(ν)

µdν(µ) = µ0.

When V (µ) is lower semi-continuous, so is V q(µ), for any q. Formally, for any sequence {µn}
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of posterior beliefs over Ω converging to µ ∈ ∆Ω, we have that

lim inf
n

V q(µn) ≡ lim inf
n

∑
Ω

[�
S
V (µsn)dq(s|ω)

]
µn(ω)

= lim inf
n

{∑
Ω

[�
S
V (µsn)dq(s|ω)

]
µ(ω) +

∑
Ω

[�
S
V (µsn)dq(s|ω)

]
[µn(ω)− µ(ω)]

}

≥
∑

Ω

[�
S

lim inf
n

V (µsn)dq(s|ω)

]
µ(ω) + lim inf

n

∑
Ω

[�
S
V (µsn)dq(s|ω)

]
[µn(ω)− µ(ω)]

≥
∑

Ω

[�
S
V (µs)dq(s|ω)

]
µ(ω)− ||V || · lim inf

n

∑
Ω

|µn(ω)− µ(ω)|

=
∑

Ω

[�
S
V (µs)dq(s|ω)

]
µ(ω) = V q(µ),

where the first inequality follows from Fatou’s lemma, whereas the second inequality follows

from the fact that V is bounded, along with the continuity of posterior beliefs in the prior.

Therefore, Nature’s problem has a solution. Furthermore, minimizing the Sender’s payoff

requires at most |Ω| signals (by the same argument as in the Bayesian persuasion literature).

Thus it is without loss of generality to setR = Ω to find all CI-worst-case optimal signals.

From now on we assume thatR = Ω (unless stated otherwise) and abuse notation slightly

by letting π(r|ω) denote the probability Nature sends signal r in state ω (using the fact that

the signal space is finite).

We apply a similar transformation to the Sender’s problem next. By the law of total

probability,

∑
ω,r∈Ω

�
S
V (µs,r0 )π(r|ω)dq(s|ω)µ0(ω) =

�
S

(∑
ω,r∈Ω

V (µs,r0 )π(r|ω)µs0(ω)

)
︸ ︷︷ ︸

V π(µs0)

(∑
ω∈Ω

dq(s|ω)µ0(ω)

)
,

where

V π(µ) ≡
∑
ω,r∈Ω

V (µr)π(r|ω)µ(ω),

and hence ∑
ω,r∈Ω

�
S
V (µs,r0 )π(r|ω)dq(s|ω)µ0(ω) =

�
S
V π(µs) · dQµ0,q(s),

where Qµ0,q ∈ ∆S is the unconditional distribution over S induced by µ0 and q. Recall

that a distribution ρ ∈ ∆∆Ω is feasible if it satisfies the Bayes plausibility constraint (BP).
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Therefore, the problem of finding a CI-robust solution is equivalent to the problem of finding

a feasible ρ ∈ ∆∆Ω that maximizes
�
V (µ)dρ(µ) among all CI-worst-case optimal distribu-

tions, that is, among all distributions that satisfy

inf
{π: Ω→∆Ω}

�
supp(ρ)

V π(µ)dρ(µ) = V full(µ0). (OA.1)

As before, we will abuse notation slightly by calling ρ the CI-robust solution.

Condition (OA.1), contrasted with Lemma 1, highlights the difference between worst-case

optimality and CI-worst-case optimality. In Lemma 1, the infimum is inside the integral, i.e.,

it is computed posterior by posterior. For CI-worst-case optimality, instead, the infimum is

outside the integral, and Nature’s problem involves a trade-off because it cannot respond

differently to each realized posterior induced by the Sender’s signal.

Before proceeding, we make two simple observations that show that CI-robust solutions

coincide with Bayesian solutions in certain simple cases.

Observation OA.1. When V and V are convex, full disclosure is a CI-robust solution.

Proof. Let V ∈ {V , V }. Note that, by Jensen’s inequality,

Vπ(µ) =
∑
ω, r

V

(∑
ω′

µr(ω′)δω′

)
π(r|ω)µ(ω)

≤
∑
ω, r, ω′

V (δω′)
π(r|ω′)µ(ω′)∑
ω̃ π(r|ω̃)µ(ω̃)

π(r|ω)µ(ω) =
∑
ω

V (δω)µ(ω), (OA.2)

and hence, for any feasible ρ ∈ ∆∆Ω,

�
supp(ρ)

Vπ(µ)dρ(µ) ≤
∑
ω

V (δω)µ0(ω) = V full(µ0).

for any π.

Note that we have established an even stronger property in the proof: Full disclosure is a

dominant strategy for the Sender (it is optimal irrespective of the signal chosen by Nature).

Observation OA.2. When V and V are concave, no disclosure is a CI-robust solution.

Proof. First, note that, irrespective of the Sender’s signal, Nature always fully discloses the

state – this follows from the proof of Observation OA.1 applied to the negative of V (which

is a convex function under the assumptions of the observation). This implies that all feasible

distributions for the Sender are CI-worst-case optimal.

48



On the other hand, we have, for any π and ρ (using the concavity of V , along with

Jensen’s inequality)

�
supp(ρ)

V π(µ)dρ(µ) =

�
supp(ρ)

∑
ω, r

V (µr)π(r|ω)µ(ω)dρ(µ)

=
∑
r

(�
supp(ρ)

V (µr)

∑
ω π(r|ω)µ(ω)∑
ω π(r|ω)µ0(ω)

dρ(µ)

)∑
ω

π(r|ω)µ0(ω)

≤
∑
r

V

(�
supp(ρ)

µr
∑

ω π(r|ω)µ(ω)∑
ω π(r|ω)µ0(ω)

dρ(µ)

)∑
ω

π(r|ω)µ0(ω)

=
∑
r, ω

V (µr0) π(r|ω)µ0(ω) = V π(µ0),

where the last term is the expected payoff for the Sender when the Sender chooses no

disclosure and Nature chooses π.

Again, in the proof of Observation OA.2, we have established a stronger property – no

disclosure is dominant for the Sender when the objective function is concave.

OA.2.3 Existence

Unlike in the baseline model, without additional restrictions on V , existence of a CI-robust

solution cannot be guaranteed. Example OA.2 illustrates the difficulty.

Example OA.2. Suppose the state is binary, ∆Ω = [0, 1], µ ∈ [0, 1] is the probability that

the state is 1, and µ0 = 1/2. Let

V(µ) =


{2µ} µ < 1/2,

[−1, 1] µ = 1/2,

{2− 2µ} µ > 1/2,

and let V and V be, respectively, the point-wise highest and lowest selections from the

correspondence V . Then, V is continuous, whereas V has a discontinuity at µ = 1/2.

A distribution ρ is CI-worst-case optimal if and only if it guarantees the Sender a payoff

of 0 (this is the payoff from full disclosure of the binary state). Any feasible continuous

distribution of posterior beliefs (for example, ρ ∈ ∆∆Ω that is uniform on [0, 1]) yields a

payoff guarantee of 0 because Nature cannot induce a posterior belief of 1/2 with positive
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probability. This conclusion relies crucially on the assumption that Nature’s signal must be

conditionally independent of the Sender’s signal. The set WCI is not closed: Any sequence

of continuous distributions converging to a Dirac delta at 1/2 lies in WCI but its limit does

not. At the same time, any such sequence yields values that converge to the upper bound

of 1 – the best achievable payoff to the Sender in the best case. It is also clear that the

supremum of 1 cannot be achieved by any CI-worst-case optimal signal (because the only

candidate – a Dirac delta at 1/2 – is not CI-worst-case optimal). This shows that a CI-robust

solution may fail to exist. Note, however, that a Dirac delta at 1/2 (which corresponds to

no disclosure by the Sender) can be approximated by a sequence of distributions that are

themselves CI-worst-case optimal.

The observations in the example above motivate a weaker definition of robustness for

which existence is guaranteed.

Definition OA.1. A feasible distribution over posterior beliefs ρ ∈ ∆∆Ω is a weak CI-

robust solution if it maximizes
�

supp(ρ)
V (µ)dρ(µ) over cl(WCI), where cl(WCI) denotes the

closure (in the weak∗ topology) of the set of CI-worst-case optimal distributions of posterior

beliefs.

A weak solution thus relaxes the requirement that the distribution ρ is CI-worst-case

optimal. Instead, it requires that it can be approximated by distributions that are CI-worst-

case optimal. With this in mind, we establish our main existence result.

Theorem OA.2. A weak CI-robust solution always exists. If V is continuous, then a CI-

robust solution also always exists.

Proof. Define

v(ρ) ≡ inf
π

�
supp(ρ)

V π(µ)dρ(µ)

as the CI-worst-case value for the Sender when she chooses the distribution ρ. We will prove

that this function is continuous in ρ when V is continuous.

First, by a result in Kamenica and Gentzkow (2011), for any feasible distribution of

posterior beliefs ρ ∈ ∆∆Ω there exists a signal function qρ : Ω → ∆S that induces this

distribution (the subsequent results do not depend on which particular qρ we pick). From

the proof of Lemma OA.2, we then have that v(ρ) is equal to the value of the following

minimization problem by Nature:

inf
ν∈∆∆Ω

�
supp(ν)

V qρ(µ)dν(µ)
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subject to �
supp(ν)

µdν(µ) = µ0,

where, for any signal function q, V q is defined as in the proof of Lemma OA.2.

Second, note that, under the assumption that V is continuous,
�

supp(ν)
V qρ(µ)dν(µ) is

continuous in (ν, ρ) (this amounts to saying that, under a continuous objective function, the

payoff from any pair of signals is continuous in their distribution).

Third, because the set of distributions ν ∈ ∆∆Ω satisfying the Bayes plausibility con-

straint
�

supp(ν)
µdν(µ) = µ0 is compact, and because the objective function V is continuous,

it follows from Berge’s theorem of maximum that the value function v(ρ) is continuous in ρ,

which is what we wanted to prove. Moreover, the problem of finding a distribution ρ ∈ ∆∆Ω

that maximizes v(ρ) subject to the Bayes plausibility condition
�

supp(ρ)
µdρ(µ) = µ0 has a

solution, and the set of solutions, WCI , is non-empty and compact.

When, instead, V is not continuous, what remains true is that the set cl(WCI) is non-

empty (by Observation 1 in the main text) and compact because it is a closed subset of a

compact space.

We can now finish the proof of both parts of Theorem OA.2 with a single argument by

observing that in the case when V is continuous, we have WCI = cl(WCI). Thus, the problem

of finding a (weak) CI-robust solution is equivalent to the problem of finding a distribution

ρ ∈ ∆∆Ω that maximizes
�

supp(ρ)
V (µ)dρ(µ) over cl(WCI). Because the objective function is

upper semi-continuous in ρ (this follows from the fact that, by assumption, V is upper semi-

continuous), and the domain cl(WCI) is compact, a solution to the above problem always

exists, thus establishing existence of (weak) CI-robust solutions.

When Nature can send arbitrary signals, including signals that are correlated with the

Sender’s signal, existence of robust solutions does not require the additional assumption that

V is continuous (see Corollary 1). This is because, in that case, given any induced posterior

µ, Nature can always induce a conditional expected payoff to the Sender equal to lco(V )(µ)

– the lower convex closure of V evaluated at µ. The convex closure is a convex function,

and convex functions are continuous on the interior of the domain. This guarantees that the

set W of worst-case optimal distributions is closed, while, in general the set of CI-worst-case

optimal distributions WCI need not be closed.

OA.2.4 CI-robustness for binary state

In this subsection, we consider the case where Ω is binary. Unlike in the case where Nature

can condition on the realization of the Sender’s signal, considering this case first is useful
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because our general characterization of state separation in the next subsection relies on the

analysis of the binary case. Let Ω = {0, 1}, and, with a slight abuse of notation, let V (µ)

denote the payoff to the Sender when the posterior belief µ puts probability µ on state 1.

Let s ≡ V (1) − V (0) denote the slope of the (affine) function describing the full-disclosure

payoff.

Proposition OA.1. If either (i) V is right-differentiable at 0 and V ′(0) < s, or (ii) V is

left-differentiable at 1 and V ′(1) > s, then full disclosure is the unique CI-robust solution.

Proof. We only prove the result for case (i) – the proof for case (ii) is analogous. We do so

by showing that full disclosure is the unique signal that is CI-worst-case optimal. Without

loss of generality, normalize V (0) = 0 so that s = V (1). Full disclosure yields the payoff

of µ0V (1) regardless of what Nature does. We will prove that the only way to guarantee

a payoff of µ0V (1) is to disclose all information. To show this, it suffices to show that for

all feasible ρ ∈ ∆∆Ω with support other than {0, 1} (where µ = 0 and µ = 1 are the two

Dirac distributions assigning measure one to ω = 0 and ω = 1, respectively), there exists

a (binary) signal π for Nature such that the Sender’s payoff given ρ and π is strictly below

µ0V (1).

Abusing notation slightly, let π be the binary signal given by π(1|1) = π, π(0|1) = 1−π,

and π(0|0) = 1. Under such a signal, given any posterior belief µ induced by the Sender,

Nature splits µ into p = 1 with probability µπ and into p = (1−π)µ
(1−π)µ+1−µ = (1−π)µ

1−µπ with

probability 1−µπ. Let Uρ(π) denote the conditional expected payoff to the Sender when the

latter chooses the distribution ρ ∈ ∆∆Ω and Nature chooses signal π:

Uρ(π) =

� 1

0

[
µπV (1) + (1− µπ)V

(
(1− π)µ

1− µπ

)]
dρ(µ)

= µ0πV (1) +

� 1

0

(1− µπ)V

(
(1− π)µ

1− µπ

)
dρ(µ).

In particular, we have that Uρ(1) = µ0V (1) because π = 1 corresponds to a signal by Nature

that fully discloses the state. Let U ′ρ(1) denote the left derivative of Uρ(π) with respect to

π, evaluated at π = 1 (let ∆ρ(1) be the probability mass that ρ puts on the belief µ = 1).
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We then have that

U ′ρ(1) = lim
ε→0

Uρ(1)− Uρ(1− ε)
ε

= µ0V (1)− lim
ε→0

� 1

0
(1− µ(1− ε))V

(
εµ

1−µ(1−ε)

)
dρ(µ)

ε

(1)
= µ0V (1)−

�
[0, 1)

lim
ε→0

V
(

εµ
1−µ(1−ε)

)
εµ

1−µ(1−ε)

µ− µ2 + µ2ε

1− µ+ µε

 dρ(µ)− V (1)∆ρ(1)

= µ0V (1)− V ′(0) [µ0 −∆ρ(1)]− V (1)∆ρ(1) = [µ0 −∆ρ(1)] [s− V ′(0)] > 0, (OA.3)

as long as µ0 > ∆ρ(1) – which is true except when ρ is full disclosure. In step (1) above, we

have used the Lebesgue dominated convergence theorem (using the fact that V is bounded,

and has a right derivative at µ = 0). The reason why we separated the integral over [0, 1] into

an integral over [0, 1) and its value at 1 is that, for all µ < 1, we have that limε→0
εµ

1−µ(1−ε) = 0,

but for µ = 1, εµ
1−µ(1−ε) = 1.

Summarizing, unless ρ = ρfull, where ρfull denotes the distribution induced by full dis-

closure, we have U ′ρ(1) > 0, and hence µ0V (1) = Uρ(1) > Uρ(1 − ε) for small enough ε.

This means that, when ρ 6= ρfull, Nature can bring the Sender’s payoff strictly below the

full information payoff V full(µ0) by selecting a binary signal π that is almost fully revealing.

Therefore, full disclosure is the unique CI-worst-case optimal distribution, and hence the

unique CI-robust solution.

The judge example of Kamenica and Gentzkow (2011) (see Figure 3.1, and the discussion

around it in the main text) satisfies assumption (i) of Proposition OA.1 because the derivative

of V at 0 is 0, while the slope s = V (1) − V (0) is strictly positive. Therefore, the unique

CI-robust solution is full disclosure of the state.

The proof of Proposition OA.1 shows that, through an appropriate binary signal, Nature

can make sure that any non-degenerate posterior belief µ induced by the Sender can be

decomposed into a Dirac delta at ω = 1 and a posterior arbitrarily close to a Dirac at ω = 0.

The condition s > V ′(0) implies that any posterior close to (but different from) a Dirac at

ω = 0 yields the Sender a payoff strictly less that a Dirac at ω = 0. In turn, this implies

that, unless the Sender fully reveals the state herself, Nature can bring the Sender’s expected

payoff strictly below the full information payoff. Therefore, in such cases, full disclosure is

the unique CI-robust solution.

Loosely speaking, under the conditions in Proposition OA.1, the Sender fully reveals the

state not because she is worried that, else, Nature will do it, but because she realizes that

if she does not fully reveal the state herself, Nature will almost fully reveal the state, and

being exposed to almost full revelation is strictly worse than being exposed to full revelation.

The above intuition can also be used to compare CI-worst-case optimality to worst-
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case optimality (and hence CI-robustness to robustness). As explained in the main text,

a sufficient condition for full disclosure to be the unique robust solution is that the payoff

V (µ) lies below the full-disclosure payoff (1−µ)V (0)+µV (1) at some interior µ̂. A sufficient

condition for full disclosure to be the unique CI-robust solution is that V (µ) is below the

full-disclosure payoff (1− µ)V (0) + µV (1) for µ sufficiently close to one of the two bounds,

µ = 0 or µ = 1. When Nature can condition her disclosure on the realization of the Sender’s

signal (equivalently, on the posterior µ induced by the Sender), for any interior µ, Nature

can induce the “final” posterior belief µ̂ with positive probability, without restricting its own

ability to influence the Receivers’ beliefs conditional on other realizations of the Sender’s

signal. In contrast, when Nature’s signal is conditionally independent, and Nature chooses

to induce the posterior belief µ̂ with positive probability conditional on the Sender inducing

µ, it can no longer independently choose what posterior beliefs the Receivers will have

conditional on other realizations of the Sender’s signal. In particular, even if Nature’s signal

realization shifts µ to a µ̂ that yields a low payoff to the Sender, the same signal realization

could shift some other η to a η̂ that has a high payoff to the Sender. In short, Nature cannot

target the same posterior belief µ̂ regardless of the realization of the Sender’s signal. There

is an important exception though: By “almost” fully disclosing the state, Nature can make

sure that, no matter the posterior belief induced by the Sender, the final posterior is in an

arbitrary small neighborhood of a Dirac belief δω, with a probability arbitrarily close to 1

conditional on ω (thus, in this case, although Nature cannot always target a particular µ̂, it

can target an arbitrarily small region). If the Sender’s payoff V (µ) is below the full-disclosure

payoff for µ in a neighborhood of δω, Nature can exploit any discretion left by the Sender

to push the Sender’s payoff strictly below V full. This is what makes the neighborhoods of

Dirac distributions special in the analysis of CI-worst-case optimality.

As a partial converse to Proposition OA.1, we have the following result:

Proposition OA.2. If V (µ) ≥ V full(µ) for all µ, then all feasible distributions ρ ∈ ∆∆Ω

are CI-worst-case optimal. In this case, a distribution ρ ∈ ∆∆Ω is a CI-robust solution if

and only if it is a Bayesian solution.

Proof. By Theorem 1 in the main text, under the assumptions of the proposition, all feasible

distributions are worst-case optimal, and hence they are also CI-worst-case optimal. Hence,

for ρ ∈ ∆∆Ω to be a CI-robust solution, ρ must maximize V over the entire set of feasible

distributions, which means that ρ must be a Bayesian solution. Likewise, if ρ is a Bayesian

solution, it maximizes V over the entire set of CI-worst-case optimal solutions and hence it

is CI-robust.

We can summarize the results for the binary-state case as follows. If V (µ) ≥ V full(µ) for
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all µ, then, neither worst-case nor CI-worst-case optimality have any bite. In this case, the

set of CI-robust solutions coincides with the set of robust solutions, which coincides with

the set of Bayesian solutions. If, instead, V (µ) < V full(µ) for some µ, then full disclosure is

the unique robust solution but not necessarily the unique CI-robust solution. However, full

disclosure is the unique CI-robust solution if V (µ) < V full(µ) for µ in some neighborhood

of either 0 or 1. When V (µ) < V full(µ) for some interior µ but not in any neighborhood of

either 0 or 1, the set of CI-robust solutions can be difficult to characterize.

OA.2.5 State separation under CI-robustness

In this subsection, we characterize properties of CI-robust solutions for the general case with

an arbitrary number of states. The analysis parallels the one leading to Theorem 1 in the

main text, but the results are not as sharp as in the case of robust solutions.

Given a function V : ∆Ω→ R, let dV (µ; µ′) denote the Gateaux derivative of V at µ in

the direction of µ′. The latter is defined by

dV (µ; µ′) = lim
ε→0

V ((1− ε)µ+ εµ′)− V (µ)

ε
,

whenever the limit exists. Recall that V full(µ) =
∑

Ω V (δω)µ(ω) is the expected payoff from

full disclosure. We then have that, starting from the Dirac distribution µ = δω, the Gateaux

derivative of V full(µ) in the direction of the Dirac distribution δω′ is equal to

dV full(δω; δω′) = lim
ε→0

V full((1− ε)δω + εδω′)− V full(δω)

ε
= V (δω′)− V (δω).

Theorem OA.3. Suppose that for some pair of ω, ω′ ∈ Ω, dV (δω; δω′) < V (δω′) − V (δω).

Then, any CI-worst-case optimal distribution ρ must separate states ω and ω′ with probability

one.

Proof. The proof relies on insights developed for the binary-state case (see Proposition

OA.1). Nature can always fully reveal the states Ω \ {ω, ω′}, so that, conditional on the

state belonging to {ω, ω′}, the results for the binary-state case apply.

Suppose that some CI-worst-case optimal distribution ρ does not separate ω and ω′. That

is, there exists a non-zero-measure set of µ ∈ supp(ρ) such that µ(ω), µ(ω′) > 0. Consider

a signal π by Nature that reveals all states other than ω and ω′ perfectly, and, conditional

on the state belonging to {ω, ω′}, sends signals as in the proof of Proposition OA.1. The

condition dV (δω; δω′) < V (δω′) − V (δω) implies that the assumptions of Proposition OA.1

hold. Given π, the Sender’s expected payoff is strictly below her full-information payoff, and

hence ρ is not a CI-worst-case optimal distribution.
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Theorem OA.3 can be used to provide a weaker version of Corollary 3.

Corollary OA.1. If for all ω, ω′ ∈ Ω, the condition of Theorem OA.3 holds, then full

disclosure is the unique CI-robust solution.

We can also identify a simple sufficient condition under which no states need to be

separated, and hence CI-robust solutions coincide with Bayesian solutions.

Corollary OA.2. If V ≥ V full, then all feasible distributions are CI-worst-case optimal.

This is the same condition as the one identified by Corollary 4 in the main text. More-

over, Corollary 4 actually implies Corollary OA.2 because if a distribution is worst-case

optimal when Nature can choose any signal, then it is also worst-case optimal when Nature

is restricted to choosing conditionally independent signals.

Theorem OA.3 gains a more tractable form in the case where Ω ⊂ R, and the Sender’s

payoff depends only on the expected state, as in Section 4.3.

Corollary OA.3. Suppose that V (µ) = u(Eµ[ω]) for some differentiable function u. If

u′(ω) < u(ω′)−u(ω)
ω′−ω , then any CI-worst-case optimal distribution must separate the states ω

and ω′ with probability one.

While Theorem OA.3 and Corollary OA.3 have more limited power than Theorem 1,

they imply that the CI-robust solutions in the application considered in Section 4.3 satisfy

the same properties as their robust-solution counterparts.

Claim OA.1. In the application in Section 4.3, the set of CI-worst-case optimal distributions

is the same as the set of worst-case optimal solutions.

Proof. It is enough to observe that all the arguments in the proof of Lemma 6 in the main

text hold true when Nature is restricted to selecting conditionally independent signals. The

result then follows directly from Corollary OA.3.

Intuitively, the proof of Lemma 6 in the main text treats separately each pair of states

ω and ω′ and is established by observing that the payoff V (µ) lies strictly below the full-

disclosure payoff V full(µ) when the support of µ includes states ω and ω′ that satisfy the

condition in Corollary OA.3. Hence, Lemma 6 applies also to the case of conditionally

independent signals.

56



OA.2.6 A Bayesian solution can Blackwell dominate a CI-robust

solution

Corollary 8 in the main text states that, for any Bayesian solution ρBP , one can find a

robust solution ρRS that is either incomparable to, or more informative than, ρBP in the

Blackwell sense. In this subsection, we show that this conclusion does not extend to CI-

robust solutions. We do this by means of a counterexample. Our counterexample is rather

contrived and has no immediate economic interpretation. We suspect that the conclusion of

Corollary 8 can only fail, when one replaces robustness with CI robustness, in very special

cases.

The example exploits the fact that Corollary 7 in the main text does extend to CI-robust

solutions: a mean-preserving spread of a CI-worst-case optimal distribution need not be

CI-worst-case optimal. For intuition, think of a mean preserving spread as an additional

signal, on top of the original signal. When Nature can condition her signal on the realization

of the Sender’s signal, she can entertain mean-preserving spreads that provide additional

information to the Receivers for some realizations of the Sender’s signals but not for others.

This means that any mean-preserving spread engineered by the Sender can also be engi-

neered by Nature. The result that mean-preserving spreads of worst-case optimal policies

are worst-case optimal then follows from the fact that Nature can always engineer herself

such spreads starting from the original distribution selected by the Sender. Hence, for the

original distribution to be worst-case optimal, it must be that any mean-preserving spread

of such distribution is also worst-case optimal.

This conclusion does not extend to the case of conditionally independent signals. The

reason is that, when Nature is not allowed to condition her signal on the realization of the

Sender’s signal, any mean-preserving spread of the Sender’s signal that Nature can choose

provides more information to the Receivers than the original signal for all non-degenerate

µ in the support of the Sender’s original signal. This means that certain mean-preserving

spreads by the Sender cannot be replicated by Nature. As a result, there is no guarantee

that a mean-preserving spread designed by the Sender preserves CI-worst-case optimality. In

turn, this implies that the Sender can strictly benefit from withholding information, whereas

this is never the case when Nature can condition its signal on the realization of the Sender’s

signal.

Counterexample. The state is binary, Ω = {0, 1}, and the prior is uniform. Letting µ

denote the probability assigned to the state ω = 1, the Sender’s payoff under the favorable se-

lection satisfies V (µ) = 2 if µ /∈ G and V (µ) = 3 if µ ∈ G, where G ≡ {1/3, 7/12, 2/3, 3/4}.
Clearly, given V , there are many Bayesian solutions – any feasible distribution of posteri-
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Figure OA.2.1: The functions V and V

ors with support in G is optimal. Consider the solution ρBP that puts mass 1/2 on 1/3,

mass 1/4 on 7/12, and mass 1/4 on 3/4. This solution is Blackwell more informative than

the Bayesian solution ρR that puts mass 1/2 on 1/3, and mass 1/2 on 2/3. Indeed, the

distribution ρBP can be obtained from the distribution ρR by sending an additional signal

whenever the posterior induced by ρR is 2/3 (the additional signal then decomposes 2/3 into

the posteriors 7/12 and 3/4). Figure OA.2.1 illustrates the value function V (the black solid

line) and the fact that ρBP is a mean-preserving spread of ρR (this fact is indicated by the

red solid arrows). The counterexample is constructed by selecting the Sender’s payoff under

the adversarial selection V so that ρR is the unique CI-robust solution.

The idea is to construct a function V under which the Sender gets a low payoff from

inducing beliefs 7/12 and 3/4 (that is, by splitting 2/3 into 7/12 and 3/4) so that ρBP is

not CI-worst-case optimal. Let V (µ) = 0 except over a finite set of points specified below.15

Suppose that V (7/12) = V (3/4) = −1, whereas V (µ) = 0 for all µ 6= {7/12, 3/4}. Then

ρBP is clearly not CI-worst-case optimal, for, by not disclosing any information, Nature

guarantees that the Sender’s expected payoff under ρBP is strictly below her full information

15Note that, contrary to what assumed throughout the analysis, the function V considered in this example
is not lower semi-continuous. However, this is not essential for the result. The specific function V considered
here simplifies the calculations but the result remains true also for certain lower semi-continuous functions.
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payoff, which is equal to zero. Note, however, that this is not enough, because under such

V , ρR is also not CI-worst-case optimal. Indeed, by choosing π appropriately, Nature can

induce a posterior of 7/12 and/or of µ = 3/4 with positive probability, thus bringing the

Sender’s payoff strictly below the full-information payoff. In particular, Nature could use

the same signal that the Sender uses to split 2/3 into 7/12 and 3/4. Therefore, we need to

construct V so that, if Nature chooses such a signal, when the Sender’s induced posterior is

1/3 instead of 2/3, the Sender’s expected payoff is sufficiently above zero to compensate for

the loss that Nature imposes to the Sender when the latter induces the posterior 2/3.

Observe that there is a unique binary signal that splits 2/3 into 7/12 and 3/4 (the effects

of such decomposition on V are illustrated by the green dotted arrows in Figure OA.2.1).

Conditional on the Sender inducing a posterior of 1/3, the same signal then decomposes 1/3

into 7/27 and 3/7 with conditional probabilities that are pinned down uniquely. We can then

choose the values V (7/27) and V (3/7) in such a way that, when Nature selects the binary

signal π and the Sender induces a distribution ρR, the Sender’s expected payoff is exactly

equal to 0 – her full-disclosure payoff.

However, Nature does not need to pick a signal π that decomposes 2/3 into 7/12 and 3/4

(which also decomposes 1/3 into 7/27 and 3/7). To minimize the Sender’s payoff, Nature

can pick a signal that induces only one of the two posteriors 7/12 and 3/4 with positive

probability when the Sender induces a posterior of 2/3. An example of such a signal is the

one corresponding to the orange dashed arrows in Figure OA.2.1 (Such a signal decomposes

1/3 into 7/27 and 7/12 and 2/3 into 7/12 and 28/33). For ρR to be CI-worse case optimal,

the value of V (28/33) must then be selected in a way that the Sender’s ex-ante expected

payoff is at least zero.

To complete the characterization of V , we use Lemma OA.2 which says that, to minimize

the Sender’s expected payoff, Nature can restrict itself to binary signals. If V (7/12) =

V (3/4) − 1, and V (µ) ≥ 0 for all µ 6= 7/12, 3/4, it suffices to consider binary signals that,

given ρR, induce a final posterior of either 7/12 or 3/4 with strictly positive probability.

To construct a function V that makes ρR CI-worst-case optimal, we can use the proof of

Lemma OA.2 which states that Nature’s problem can be thought of as choosing a distribution

over [0, 1] that minimizes the expectation of V q(µ) over all feasible distributions, where q

is any signal by the Sender that induces ρR. One such signal is the binary signal given by

S = {l, h}, q(l|0) = 2/3, and q(l|1) = 1/3. This q induces ρR when the prior is µ0 = 1/2.

Given such a signal, we then have that the Sender’s expected payoff when Nature induces

the posterior µ is equal to

V q(µ) ≡
∑

Ω

[�
S
V (µs)dq(s|ω)

]
µ(ω) =

(
2

3
− 1

3
µ

)
V

(
µ

2− µ

)
+

(
1

3
+

1

3
µ

)
V

(
2µ

1 + µ

)
.
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To guarantee that ρR is a CI-worst-case optimal distribution it then suffices to choose a

V that takes value 0 almost everywhere (including at µ = 0 and at µ = 1), is such that

V (µ) < 0 only for µ = 7/12, 3/4, at which it takes value V (7/12) = V (3/4) = −1, and is

such that V q(µ) ≥ 0 for all µ. Under such a V , when the Sender picks the above signal q,

no matter the signal selected by Nature, the Sender’s expected payoff is at least equal to her

full-information payoff (which is equal to 0). Hence q is CI-worst-case optimal. There are

only four values of µ at which V q(µ) can be negative: µ = 7/17, 3/5, 14/19, 6/7. Indeed,

only for these four posteriors, given the Sender’s signal q, the final posterior takes value

equal to 7/12 or 3/4. These four posteriors are given by the solutions to µ/(2− µ) = 7/12,

µ/(2 − µ) = 3/4, (2µ)/(1 + µ) = 7/12, and (2µ)/(1 + µ) = 3/4. At each such µ, we

want V q(µ) = 0. This gives us four equations in four unknowns – the values of V at the

aforementioned four posterior beliefs. Solving this system, we obtain that

V

(
7

27

)
=

8

9
, V

(
3

7

)
=

8

7
, V

(
28

33

)
=

8

11
, V

(
12

23

)
=

8

13
, (OA.4)

| as illustrated in Figure OA.2.1. This completes the construction of the function V , as

summarized in the following claim.

Claim OA.2. Let Ω = {0, 1}, the prior be uniform, V (µ) = 0 except that V (7/12) =

V (3/4) = −1 and (OA.4) holds, and V (µ) = 2 except that V (1/3) = V (7/12) = V (2/3) =

V (3/4) = 3. Then, there exists a Bayesian solution ρBP that strictly Blackwell dominates

the unique CI-robust solution ρR.

By the construction of V , ρR is CI-worst-case optimal, and because it yields the maximal

payoff of 3 under V , it is a CI-robust solution. It only remains to show that ρR is the unique

CI-robust solution. To see this, note that any other distribution ρ′ that yields a payoff of 3

under V must assign strictly positive probability to either 7/12 or 3/4 and no mass outside

{1/3, 7/12, 2/3, 3/4} (since this is the only way to guarantee an expected payoff of 3 which

is required for being a CI-robust solution). Furthermore, for ρ′ to be CI-worst-case optimal,

it must yield a non-negative expected payoff under V when Nature discloses no information

which is impossible if ρ′ assigns positive probability to {7/12, 3/4}.
Summarizing, we have constructed an example in which there exists a Bayesian solution

ρBP that strictly dominates the unique CI-robust solution ρR in the Blackwell order.
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