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SUMMARY

The paper surveys some recent developments in analysing dynamic
economic models which incorporate rational expectations by
private agents and can be represented formally by systems of
simultaneous linear d@ifferential eguations. Much of the recent
literature in macroeconomics and open economy macroeconomics fits
into this category- Problems with obtaining exact analytical
solutions for larger systems meant until recently that the
dynamics had to be restricted to two or three dimensions. This
is a considerable drawback if one realises that many interesting
policy issues can only be answered by studying the simultaneous
and interdependent adjustment of various asset stocks (money,
domestic debt, foreign assets, the capital stock, etc.) and
several prices (domestic wages and prices, the exchange rate,
bond prices, ete.). The methods surveyed in the paper can be
implemented numerically even for large dynamic systems with
simple and efficient computer algorithms. The consequences of
alternative policy rules and of any combination and sequence of
anticipated or unanticipated, current or future and permanent or
transitory exocgenous shocks can be evaluated.

The methods can also be applied to the problem of optimal policy
design when the model is linear and the objective function is
quadratic. "Optimal" is defined with reference to the policy
maker's objectives, whatever these may be.

A frequently encountered problem with policy design in rational
expectations models is that optimal policies tend to be “time-
inconsistent”. Even if ne new information arrives concerning the
exogenous environment of the policy maker, there will be a
tendency for the latter %o renege on previously announced plans and
policies, once these announcements have had the desired effect on
the private economy. Time~inconsistent policies are therefore
not credible, unless the government can somehow precommit itself.
Without precommitment, a credible, but inferior "time-consistent®
policy can be derived which again fits into the general soclution
format outlined in the paper. Indeed recent work by Marcus



(ii)

Miller and Mark Salmon (not surveyed in the paper) shows that
decentralised policy design with many pclicy makers in an
interdependent world economy (or within a single national

economy} can be analysed within the same formal framework.

The paper concludes with an illustration involving a numerical
exarple of optimal and time-consistent anti-inflationary policy
design in a model with long-term nominal contracts.



1. Introduction

The first systematiec introduction to economic dynamics came for

me, as for many of my contemporaries, through William Baumel's lucid

1/
and "user-friendly” book Economic Dynamics (Baumol [18701). It

seems appropriate, therefore, to survey in this volume honouring
William Baumol's coptributions to econenics, sﬁme of the recent devel-
opments in modelling dynamic macroeconcmic systems. All these
developments bear the hallmark of the rational expectations revolution
which has swept macroeconomics and international finance singce the
early Seventies. Only models represented by systems of first order
linear diffexential equations with constant coefficients are tonsidered.
The reason for limiting the discussion to linear systems will be
obvious to those who have agtempted to analyse even very simple non-
linear rational expectations models. The restriction to continucus
time systems reflects the existence of mapy excellent survey articles
on general discrete time systems (e.g. Wniteman [1¢82], Blanchard
[1283] and McCallum [1983]). Continuous time rational expectations
wodels, by contrast, appear extensively in the literature in one, two

or occasienally three dimensions, but have not been the subject of

1. The first edition of this book appeared as

]
H
‘g

arly as 1951.



systematic surveys to anything like the same extent. [Exceptions are

Dixit [1980], Buiter [198la, 1982) and Currie and Levine [1982].)

Section I1 of the paper summarises the continuous time analogue
of the discrete time sglution method of Blanchard and Kahn {1980],
ag developed in Buiter [1982]. Scction III considers some problems
that are assbeoiated (or may appear to be associated) with this
solution method. Section IV contains the solution te the general
linear-gquadratic optimal control problem in continuous time rational
expectations models. It builds on work by Calve {18781, Driffill

[1982), Miller and Salmon {1982, 1983] and Buiter [1983].

Both optimal (but in gemeral time-inconsistent) and time-consistent
{but in general sub-optimal) sclutions are derived in a uniform
framework. & numerical example, involving optimal and time-consistent
anti~inflationary policy design in a contract model (using an
algorithm developed by Austin and Buiter [1982]), serves as an -

illustration cf the general approach in Section V.

II. Solving copntinucus time linear rational expectations models

Congider the continucus time linear rational expectations
model given in (1).

[ x(£) j

| = &

th;}(t) J i—y{tl _!1

x(t) + BZ(1)

with boundary conditions



(o)

(2a)} F,ox(t ) + ¥, y(t) = £ ; F, is n, xn and of full rank.
1 =1 2 o 1 1 1

(Zh) The solution i5 restricted to lie on the stable manifold.

¥ Ls an n, vector of predetermined state variables, v an n-ny

vector of non-predetermined state variables and z 2 k-vector of

exogenous or forcing variables. A, B, Fl and ¥, are known constant

matrices; f is a known vector of constants. E is the expectation

eperator and £{t) the information set conditioning expectatiens

formed at time t. For any vector w, Et wi{s) = E{w(s)|R(t)) and
wit) I lim {ﬁiﬁ%{.giﬁl} . The information set Q{t) contains all
s+t -

current and past values of x, v and z and the true structure of the

model given in (1) and (2a, b).
Formally, we assume :
(A3 E wis) = w(s) s <t

(AZ) 2Lty > Q(s) t>s

We shall make use of the "law of iterated projections”, i.e.

(3 BEMs) R D [aie)) = | B iRe ) t, <t

|
W[ Blw(s) [l 1) T <t
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assumption (Al) combines "perfect hindsight” {s < t} and "weak
consistency” (s = t) [see Turnovsky and Burmeister [1977]).
Assumption {AZ) means that memory deesn't decay- Cendition (3}

is a basic property of conditional expectations, if (A2) holds.

For ordinary n-dimensional first corder linear differential
equation systems, z unigue scoluticn exists if thexe are n  linearly

2/
independent boundary conditiens. For the o, predetermined variables
¥, the boundary conditions take the form of ay linear restricticns

at the initial date to. For many applications these linear restrictions

will take the form of n, initial values, i.e.
&

(2a") x{to) = x(:o)

In Buiter and Miller {1982, 1883a] a more general form of the boundary

conditions for the oredetermined wvariables such as {2a)l was necessary.
The meaning of the boundary condition (2b} will become apparént

below. A sufficient condition for ruling ocut the explosive growth

of the expectaticn, held at time £, of future values of z, is that

Et z(s) is a bounded function of s on [t, + %} and continuous

almost everywhere.

2. HNote that, through the presence of the conditicnal expectations
operator E_., eguation (1) strictly speaking represents a partial
differential equation svstem. The solution chesen hexe is the
"minimal state” soluticn (see McCallum [1983)) involving only
"fundamentals". Rational expectations and weal consistency ensure
that the additional degrees of freedom introduced through the
presence of the axpectation coperator are actually very limited.




The sclution for x and y is restricted to be a continucus functicn
of time when therg is no change in current expectations of future
values of the forcing variables, i.e. x(t) and y(t) are continuous
functions of t as long as Etz(s) , s > &, doesn't vary with t.

3/

This rules out anticipated future discrete jumps in y. The
economic raticnale for this restriction appears sound: an infinite
instantaneous rate of capital ¢ain cannet be anticipated in models
with reascnably rich opportunities for intertemporal arbitrage and

speculaticn.

There iz no formal recognition of uncertainty in the medel. The
expectations are to De interpreted as $inglewvalued or point expectations,
i.e. expectations held with complete subjective certainty. It will be
clear, however, that the results obtained for (1) are applicable to the
stethastic linear differential eguation system given in (4}, provided

thers are no measurement errors in the ckservation of the state vector

4/
T —
[x y]™ .
r - - 7
{4} t dxit) ; = 2 x(t)cti B z(z)dr + dv
iEtdy(tl yitidr |
|
L - - I

The continucus time vector process vit) is a staticnary zerc mean

stochastic process with independent increments. Examples are Wiener

3. and, if F, ¥ C, in x.

T
4, m denotes the transpose of m.



processes (or Brownian motion), the Poisson [or jump) process and
mixed Poisson and Brownian processes. z(t) is a strictly deterministic
function of time. Because of the linearity of (4), certainty
equivalence applies and the solutions for the deterministic case are
directly transferable (with suitable redefinition of the integrals

as stochastic integrals) te the stochastic system given in {4). The
same applies’fo the optimal decision rules for the linear-quadratic
contreol problem analysed in Section IV. If the state vector is measured

with errcr, €.g9. if the information set consists of current and past

observations on Y(t) = E 'Ec{(t)-' + &{t) , where HE iz an mxn known
{t)

matrix and e(t) is a stationary zero mean stochastic process with
. : . T .
indé¢pendent increments and independent of [x v]~ , then the sclution
of {4) invelves coptimal (e.g. Ralman) f£iltering (see e.g. Bryson and

Bo [1975]). For reascns of space this case is not considered further.

Returning to the model of eguations (1} and {(2a, b) we assume

{A3) A ¢an be diagonalized by a similarity transformation
(A4) A has n distinct eigenvalues
{A5) A has B, eigenvalues with non—positive real parts

(stable roots) and n-—n1 elgenvalues with positive real

parts (unstable roots).

Necessary and sufficient for (A3) is that A have n linearly

independent eligenvectors. (Ad) is sufficient for (A3) and saves us



the notaticnal bother of having to give the general selutien for
the case of repeéted eigenvalues. The example in Section IIT
shows that no problems of principle are invelved. There exists

a straightforward Jordan canonical form generalization of the
method of this Section to the case where A cannet be diagonalized

by a similarity transformation.

Assumption (AS) states that there are as many stable roots as
predetermined veriables and as many unstable roots as nen-predetermined
variables. Section III contains an example with one predetermined
variable, one non-predeterminec variable and two zero roots. The

solution method of this Secticn is nevertheless applicable.
Given (A3) = (AR5} we can write

(3} A = Vv AV

¥ is an nxn wmatrix whose rows are linearly independent left
eigenvectors of A. A is a diagonal matrix whose diagonal
elements are the eigenvalues of A. A, B, V, V“l‘hnd A~ are

partitioned conformably with x and y as in (6).
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Al is an n, ®n diagonal matrix containing the stable reoots of A
ané f, an (n-—nl) 4 (n-—nl) diagonal matrix containing the
unstable roots of A

We also define

o 1P

e
r
1,

p is an n, vector and g an n-n, vector.

Taking expectations conditional en Et on both sides of (4) and

using {5}, {6) and (7) we eobtain

(8) Et g{t) = A2 Et gt} + DEtZ(t)
where
(9) D = V., B, + V., B



(sl

From the law of iterated projections given in {3) it follows
that, for t <5

E_ %(s) = A E_gis) + DEtz(s)

Treating this as a differential equation in s, conditional on Et,
we ¢an write the solution for th(s) in "forward-looking"

form as

(a0 th(s) = e X, —

X, is an n-n, vector of arbitrary constants. Since ‘N'z
contains unstable roots only, boundary condition (2b), that the

solutien should be convergent, compells us to choose K2 as

follows:

Given (Zb') we evaluate {i1C) at + = 5. From the weak consistency
assumpticon {Al) it then follows that

) .

f "5 -1
-le

) DEtz(‘z)d'r
T

(10"} gt} =

From equatiens (6) and (7) we know that g = V’lx + v22y .

If '\722 iz invertible, the solution f£or the non-predetermined

variables can therefore be written as



~1

. ' 2(*-?)
(11) vit) = - v 3 v21 ®{t) - v22 J [ DEtz(T)dT
t

An equivalent expression, provided Wll has an inverse, is

[ A, (e-1)
J e ” DEtz(T)éT
T

. _ 1 |
(11" w(g) = w21 “11 x(ti v22

Substituting (11) or (11') into the eguations of motion for =x
given in {1) and choosing the backward-looking selution for

% (t) we find that the predetermined variables are given by {(12)

or (12"}
:‘.I(t-to) -1 (t-s) -1
(12} x{t) = LA Wy xltO) + lele Wiy B z(s)ds
o
t
Ay fe-s) -1 A, (s=7)
- J wll e wll A12 v22 J e DESZ(T)des
to s
fotemry F (-5} _
12"y x(t) = W11 e wll x(to) + lel e Wll alz(s)ds
tO
Ft .'\I {t=s) 1 {5=1)
- jwlle {Alvlz 22 W 124\2}J DESz(TJdes
T

s
o

Boundary conditicn (2a) can be written as

(13 x(to) = -F°F vit ) +F,°f

[

The initial value for x at t = to is solved for from (13) zad (11)

or (11') with v evaluated at t = to.
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Thus the non-predetexmined variables can be expressed as a
function of the cuyrent predetermined variables and of current
expectaticons of future values of the forcing variables. The predetermined
wariables at time t depend in a non-eéxplosive manner on their
initial wvalues at to , on the actual wvalues of the fogeing variables

between to and t and on the expectations, formed at sach instant

between to and t, of the future values of the forcing variables.

It is clear that, if the process governing the forcing variables

2 can be expressed by z system of simultaneous first order lineax
5/
differential equations =z = Lz , then the x wvector can be augmented

to include =z ; the seoluticen of this augmented homogeneous system only

involves the first terms on the r.h.s. of (11) (or (117)) and [12) (or

12")). For many purposes, and especially for optimal poliecy design, it
is however very informative to keep the explicit dependence of x and vy

on actual and anticipated future values of 2z .

III. Tnree Problems

Three issues arise in connection with the selution method cutlined

1) the rather minor problem of<ensuring that

the eigenvalues are “assigned to" the proper state variables where such

in Section II. They are

an unambiguous assignment is dictated by the strusture of the model: 23

the existence of solutions other than the minimal state solution invelving

5. ©Or, in the stochastic case, dz = Lzdt + dw where w is a stationary,
zero mean stochastic process with independent increments and
independent of the state vector [x y]T.



only fundamentals and 32) the problem of zere eigenvalues or eigenvalues

with zero real parts.

III. 1 The right xoot in the right place

Congider the simple two-variable homogeneous system given in

equation (14).

- = r
(14} F x{t) = ra Gy 1 x(t)]
| .

et ulz = Q. The eigenvalues are Al = all and Azﬁ o

22
x{t) is predetermined, with x{to) = i(to) and vt} 4is

non-predetermined.

The solutieon is given by :

A, (et ) o, ft~t )
RS D= U E e L
xlt) = e x(uo) = e x(to)
o A, (et ) At o, Aqlt)
- 2 21 2
vt} = K—:gi— e ! © x(tc) + Xe = = x(t) + Ke
17%22 %2
o Oljt
= Ei x{t) + Ke
®117%2

¥ is to be determined by a boundary conditien for y.
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Let &y > 0 and &, < O. Clearly we have the right number
of stable and unstable eigenvalues (one of each) but unfortunately
the unstable root is unambiguously attached to the predetermined

variable. Also, since a22 < 0, we cannot use the convergence
criterion to set K = 0. This problem will ¢f course be

revealed 1f the system is solved correctly. The purpose of pointing
it out here is merely to remind the reader that equality between

the number of stable eigenvalues and the number of predetermined
state variables and between the number of unstable elgenvalues and
the number of non-predetermined variables is not strictly sufficient

for the applicability of the solution methods of Section II.

ITI. 2 Sunspets and other forms of non-unicueness

The solution for the non-predetermined variables given in (11)
in terms of the current values of the predetermined variables and the
current and anticipated future values of the forcing variables is
what McCallum has called the "minimal state" solutioen (MeCallum [188317.

t ipvelves only the fundamentals (i.e. the forcing variazbles actually

appearing in the equations of the model) and a minimal representation

of the state variables.

A simple scalar example will illustrate the wealth of alternative
solutions that satisfy the equations of motion of these rational

expectations models.
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(15) Et;'f(t) = &yt + B ozt e > 0.

The minimal state solution for the non-predetermined

variable vy is

@

(16) yir) = -8 Je"“‘s“t)Etz(s)as-
t
It is easily checked that any varlable ui{t) can be added
to this solution, provided u{t) satisfies the homogeneous

eguation of (13) i.e. provided

(17)  E_ae) = aule)
alt-t )
For instance, u(t) = y{tc)e satisfies (15) as would
alt-t )
L) = z{to)e . ult}, however, need not invelve v or =

and could involve processes that are completely extraneous to the

model under consideration (see e.g. Buiter [1981b]). It is
ecasily checked that ult} can be written as :

~a (T-%)
v

u{t} = lim Et e (.

oo

The extranecus element in the solution of (15) is generally
ruled out on the grounds that unless u{t) = 0 for all t, an
expleosive process w;ll be added to the behaviour of the

system and that this would cause the system to viclate (implicit)
physical boundaries or other plausible constraints in finite

time. BRoundary cendition (2b} is the expression of this view.

The same kind of nuilsance process cannot be added to the sclution



f18a)

{1Eb)

(19)

of & boundary value problem involving an ordinary differential equation
for & predetermined variable such as x in equation (18) because it

would vieolate the initial condition.

2t} = yx(t) + Sz(t}

x(to} = x(to)

The minimal state solution for x, given the initial boundary condition is
t

ylt=t.) _ { -
xizy=e O ke + 8 j YIS ighas

b

We cannot add to this solution any non-zero term u(t), because although
any ult) satisfying the homogeneous eguation G(t} = yu(t) would
satisfy the equation of moticn (18z)}, it would viclate the condition

x(to) = ;(to) unless u(tol, and therefore uf(t), t>t is egual

o’

to zero. The reason for the nén—uniqUEness in the solutien for (15) and
its absence in (18) is therefore not that, as was pointed out by Shiller
[1878], (15) is a partial differential eguation involving time in two

ways: calendar time end the expectations or forecast horizon. At each

instant t, a boundary condition must therefore be given for

lim e_u(T_t)
T+

Et ¥(1). These boundary cenditions cannot, however, be set

completely independently of each other, as reflected in the constraint

Tan

that wult} must satisfy (17). Without the expectation operater in (15)
we would have to select a single boundary cendition to determine
u(t) = lim oo iTe) v{T} . t is the lack of compelling economic

T~
econemic arguments for choosing ul(t) = ¢ that is the fundamental

reason for the indeterminacy, not the presence of the expectation operator.
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In terms of the general model of Section II, we can add to
the fundamental sclution for the canonical forward-locking
variables g, given in (1C') , any n--n1 vector process u
{deterministic or stochastic) which satisfies the homegeneous

o +*

systex N ult) = A2 y(t). rough g = V2Ix+ V22y

uniqueness ©of g -can be translated inte non-unigueness for y and

this non-

x.

In what follows, the analysis will be restricted to the
minimal state solution, for convenience rather than cut of a deep
conviction that any properly specified macroeconomic medel would
generate the right set of boundary conditiens to puncture any

extraneous bubbles at their inception.

ITI. 3 Zero roots and the hysteresis phenomencn

There iz nothing in the analysis thus far to rule out zerc roots
in Al ., the set of eigenvalues governing the behaviour of the homo-
8/
geneous solution for x. From {12) it can be seen that a zero root
7/

in Al means that for one or more of the predetermined variables,
the'influence of the initial conditions does not wear off, even
asymptotically, and that the contribution of the exogencus variables
is similarly undamped. The model will exhibit hysteresis: if the

forging variables become constant after some point in time and if the

6. Multiple zero roots will complicate the seolution methed somewhat,
but the Jordan cancnical form representaticn of the system can
always be used even when A cannct be diagonalized as in (5).

7. and through them possibly also for cne or more of the non-predet—
ermined variables (see equaticn (11}.
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system converges to a staticnary or steady state equilibrium, the
stationary equilibrium values of one or more of the state variables
will be functions of the initial conditions and of the values of the
exogenous variables along the adjustﬁént path to the stationary
equilibrium; the steady state cenditions alone do not suffice to
determine unique steady state values for x and y (see e.g. Buiter
and Gersovitz [1981] and Buiter and Miller [1983b]). A general algebraic
treatment of the case where Al containeg a zero root ¢an be found in
Giavazzi and Wyplesz [1983]. The main points can be brought out guite
simply with the example given below, which also has some intrinsic
economic interest. We also use this example to consider the case where
a gero root is ceontained in 4, i.e. where the non-predetermined

variables (or g) are governed by a zero root.

The example is a contract model of the inflation-unemployment
trade-pff due to Marcus Miller. This is discussed in Buiter and

Miller [1983p). The basic version is represented in eguations {(20)-(22).

(20 plt) = w(ylt) - y(t)) + 7 v>0
- (t—to) T —;l(t—s)
(21) TiL) = ﬂ(to)e oy | cisle '§S; 5> o
T, )
F . =z (1=t}
(22) cle) = z, ) E_ pltle éT i, >0
t

p is the logarithm of the general price level, 7 the "core”
rate of inflation, ¢ <the current rate of contract infletion,

v actual cutput and § the exogenous natural level of output.



Eguation (20) is the familiar core inflation-augmented Phillips
curve. Core inflation, in (21), is a backward-looking exponentially
declining moving average of past contract inflation. Current
contract inflation in (22) is a forward-locking exponentially
declining moving average of future expected inflation. Both the
price level, p, and core inflation, 7, are treated as predetermined.
Current confract inflation, ¢, however, i5 non-predetermined and can
move discentinucusly at a peoint in time in response te "news". The
medel can be viewed as a medification of Calve's [1983] continuous
time contract model of the inflation process. Calve specified the
urrent general price level as a backward=looking function of past
contract prices, and the current contract price level as a forward-
locking functicon of expected future general price levels and excess
demands. Inertia or sluggishness therefore characterizes only the
price level in Calve's model, not both the price level and the core

rate of inflation as in equations (20 - 22).

We can represent the model in state-space form as in eguations

(23a, b), treating the output gap v-—§ as exogenous.

(23a) F ST - r'rr(t)

| B
l = 1 +
Lﬁtr-:(t)—l % ‘ ‘:2_}1 Lc(t)J ey

(23b) pl) = [1 e ] Mme + v [y - vy
=14

—
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The two characteristic roots of the state eguation system

(23a) are Al =0 and AZ =L, %, The solutions for
- i/
m, ¢ and p are therefore given by

t
¢ ( (:2-;1){S-T) -
(24a) TE) = mle) 4Ly T, b J Je E_{y(7) ~y(7)dtds
tO s
o
FoE R (e _
{24D) clt) = wit) + :2 ¥ J ] Et(y(r) - yiT)iaT

(24¢) plL) = wit) "+ Plylt) - yit))

The fact that Al = 0 creates no problems whatsoever. Core
inflation 7!lt) can be reduced below its initial valiue ﬂ(to)
only through past expectations (formed between to and t] of
future recessions (negative values of Esty(r) - §(1))).

Current contract inflatien o(t) differs from current core
inflaticn w(t) if the “"present wvalue" of currently anticipated
future booms or recessions differs from zerc. Note that a
sustained and sustainable reduction (e.g. a steady state
reducticn) in inflation é(t) reguires an eqﬁa%ireducFion in

core inflation w(t) .

Note that, in terms of the solution methed of Section II,

- 1

vos |1 £W and W = .5 .53 . There are two linearly
1 -1J .5 —.SJ
L

independent eigenvectors even though at least one znd possibly
both eigenvalues are zero.




2c

Consider an aggregate demand policv which keeps constant the
output gap after some time t1 >t at y(ti) - ;(tl). The only

value of

ot

his permanent output gap for which a staticnary
egullibrium exists is of course zero. In that case the steady state
conditions of {23b) only give us % = ¢ = p . The common staticnary

equilibrium value of core inflation, contract inflation and actual
inflation cannot he determined from the steady state conditions
alene. It is, from (24a), a function of the initial value of m,

and of the entire sequence of expectations of future values of the

output gap. The rank deficiency of the state matrix in (23a) produces

this "hysteresis". If the zero output gap for t Z,tl has been

anticipated correctly from to onwards, i.e. if Es(y(T)-§(r)) =0,
H s > -

'r_>_t1 -—-tO then

lim 7(t) = lim c(t} = lim 5{t) = 7{zg)

oo T tore t1 t1
( (Ez—il)(s-'r) .
+ Cl £2 ] J j e Es(y(T}—y(T})des
t, s

It will be apparent from equations (24z, b, ¢} that even if
Ay ® _— :1 = € (if there is no discounting of expected future
inflation in the contract inflation equation) the model is still
well-behaved, 1.e. e(t) is finite, if the undiscounted exvected
o
cumulative net output gap f Et(y(T) ~ ¥{1)1d1 is finite. If we
T
again make the stronger assumption that the cutput gap expected after

seme time tl is zero, then this is sufficient (but not necessary)

for L to remain bounded for all time with its steady-state value
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given by (25) with ;l = T, A zero xeoot in A2 therefore merely
puts tighter constraints on the permissible forcing processes to
ensure bounded values for the non-predetermined variables; it doesn't

invalidate the general solution procedure of Section IT.

IV Cptimal and time-ronsistent policy design

In this section we consider the optimal control of the medel
given in (1). The vector of forcing variables is divided into two
components, u and Z. u is an & vector of peolicy instruments and z a k
vecter of exogenous varlables. The model is rewritten in (26a, b,
c, d} . For simplicity the boundary conditions for the predetermined
variables are assumed to take the form of ny initial values at to.
Without significant loss of generality the non-explosiveness
condition for the exogenous variables and the convergence condition
for the non-predetermined variables given in (2b) are expressed as

(26c) and (26d) respectively.

r T r
-~ | :
(26a) x(t) a T L su 4 Fin
%Ety(?) vit) N
L — - 4 el -
2 = x
(26b) x(to] X(to)
26)  1im e E zts) = 0 wEso versg,
S
(268 1im o 77 B y(s) = 0 ¥E>0 ¥ty



[
[

The objective functional to be minimized is the familiar gquadratic

given in {27)

-r{t—t.}
27 min Jixy = J o Ty Ta o Tz afie w  frie] e © ae
{ult)} {u(t)) T V(t) ‘y(t)
u(t) (t)
- m

where
n = g @ o a7
XM XY Xu Xz
o n o} 2
xv yy “ya yz
| T
L el @ 2 f
xa Ya uu uz
T T
o o Q o
I xz vz uz zZ

L > C is the discount rate.

& is a symmetric positive semi-definite matrix. Like’

the vector wT it is partiticned conformably with x,y,u and =z
Quu is a symmetric, positive definite matrix.

A, B and F are also partitioned conformably with

x and y.

The cbjectiwve function {27) is sufficiently general to include the
case whers the state eguaticn (26a! is supplemented by an cutput eguation
vit) = G, x(t)—[ + G, ult) + G3 z{t) , and the integrand in the cbjective

y(t)i

T, oL
funcricnal is specified in terms of the output vecter as v (t) Qwit) +w vi{¥).
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Optimal Pelicies

The natural interpretation of this optimal control problem is that
of a non-gco-operative Stackelberg leader—follower game. Equation (26a)
represents the 'reaction function' of the follower (the economilc system)
who takes as given the current and anticipated future actions of the

controller, who is the leader.
To derive the optimal policy we define the Hamiltonian E

5 T T T T T
(28) B{t) = {ilx(t) me(tJ-*Zy(tJ ﬂ){yx(t)-*-y(t) Ryyy(t)ﬂx(t) ﬁxuu(t)+2y(t) 2 ult)
T zmeaveTe ze 4o e w2t )8 stz () 8 _z(0)]

®z yz uu uz zz

~L{t-t.)
+ ot x(E) sun vit) culuge) + ohz(e) Ye 0

x v u z

+ A(E) [An x(t) + 312 vit) + Bl ult) + F1 z(t)]

T
+ A(;) [A21 x{t) + By vit) + 52 ult) + F, z(t)]

)\),{t) is the ny vector of co-state variables corresponding to the predeter—

e

mined state variables x{t) while ?\y(t) is the n-n, vector of co-state

variables corresponding to the non-predetermined state variables y{t).

The first-order cenditions for an optimum are given by the equations

of motion {(26a) and {2%a, b, «)



b
o

3H(t} _
{29a} i) o] Pt
~3E(t) _ > T
(28h) D Et Ax(t) Wt
-gH(t) _ T
{292) avle Ay(t)_ Tt
Defiﬁlng the current value co-state variables ({shadew prices)
t(t-tO)I
(30a) u {t) = e At}
b4 ®
:(t—tO)I
(30b) uy(t) e Ay(‘:.l
we can solve (28a) for the optimum instrument values as in (31) .
s w _o=1,T ol T el T RS
(31)  wufg) = Quugxu x{t} Quu Qyu vit) Quu Bl u(%) Quu 52 uy(t)

-1 -1
Quu Quz z(e) - Yae ¥y
Substituting for u(t) from (31) into (26a) and inte (28b, &)

the behaviour of the state variables and the co-state variables under

cptimal control is given in (32).
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! |
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e aul
-1.T -1.T
Ali Blﬂuuqxu Al _Blnuugyu
-1.7 -1.7
A I
21782700 A, 2nuu9yu
- EQXX—RXUQUHQ"{LI ‘LQ -qnnuugyul
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The 2n boundary conditions for the econcmy under the optimal policy

take the form:

r2
w

-1 T
=B _{
Bl uuBI

-1 %
-B2QuuBl

T T
[All—nxuﬂu B -~CL

T -1
2, TR
r 1

zlt) + | -B R _u
IMan

[A

- Blﬁu B

-
~B 0 7

u 1 nll A

2 uu

21

T
22 QyuguLBQ

T

(33a) x(to} = x(to)

(33b) lm 2SI g =0 530, s>t
oo s -

8. I is the kxk identity matrix.




(33¢)  lim ¢~ E ufv) xit) =0

133d) uy(to) =0

The crucia} boénﬁary condition is the one relating to the
initial valwes of the co-state variables ceorrespending t¢ the non-
predetermined state varlables given in (33d). Since y(tO) is free,
it will be set optimally, i.e., the values of the co-state variables
I at the initial date, tO’ which measure the marginal contribution

¥

of y(to) ¢ the chjective functional, will be zerc. (See Bryson and

9/
HEo [1985, p. 55-591, Calwo [1978]1.}

The dynamic system under optimal control, given in (32)
therefore contains n predetermined variables (x, the predetermined
state variables and pyf the shadow prices of the non-predetermined
state variables) and n non-predetermined variables (y, the non-—
predetermined state variables and ux, the shadow prices of the
predetermined state variables). Following Miller and Salmon [1982,
1983], we rearrange (32} by grouping tegether the predetermined and
non-predetermined variables and by subsuming the constant vector (the
last term on the r.h.s. of (32)) under the exogencus variables.
Letting z = sz , we obtain

1]

9, TFor (234) to hold, a controllability condition for y must be
satisfied: there must exist at t. & path of expected future policy
{Et uls) ;: s 3.t0} such that y{t,) can be set at the value required
<]
to make uy(tc} equal to zerc. See Brysenm and Ho [1875; p.58, p-164

and Appendix B, pp. 455-457].
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L’:'c(t) '1 i\\:(t) 1
| o (e ‘ Y
(34) ‘ o =3 |- i+ Bo(e)
E (%) T ey ]
Tt 1 b4 i
ift y(tll L?(t)_
and from (31)
(35) wlt) = C ‘x(tf‘ + D z(t)
uy(t)
1, (t)
‘ (t}’

1f 2 can be diagonalised and if it has n stable and n unstable
characteristic roots the solution method of Section IT can be applied
to [34) and the optimal policy as well as the behaviour of the economy

under optimal pelicy can be computed easily.

Time-Consistent Rational Expectations Seclutdons

Tt is obvious from the boundazy condition {(33d) and the equations
of moticn under. optimal control (32) that in generalllﬁc;he cqntroller
re-optimises at = t1> tO his optimal plan from time"t1 > to onwards
will not be the continuation for t 3_t1 of the optimal plan derived
at time tO‘ even if ne new information about the exogenous variables
hag acerued between tO and tl. The cptimal plan is not in general time

consistent. {See Kydland and Prescott [1977]). The reason 1s that while



u, = 0 at =t = to, it will, in general, be different from zerc for
t > to, given the dynamics of equation (32). Reoptimizing at

t o= t1 > to, the controller will, taking x(tlj as given, be

tempted to adopt a plan for t > tl that will set Uv(ti) = 0.

Unless, under the optimal plan adopted at t = to,

K, at t = t1 would have been egqual to zere anyway, the re-

the value of

optimization at t::t1 would falsify the expectations held between

to and tl by the agents represented in the model of eguation (26&).10/
It is these expectations that will have brought the system to x(tl)—_
in the first place. Past expectations of future policy actions would
have been used as an additional pelicy instrument, unconstrained by the

requirement that they be egual to actual, realized policy actions

lexcept for unforeseen exogenous shocks) .

If the agents in the model anticipate that the controller will
recptimize at tl' taking as given their past expectations of his
future actions, embodied in x(tl), they will expect uy(tl) = 0. If

the controller can reoptimize at each and every instant, they will

10. Note that the "followers" whose behavicur is given by (26) form
expectaticons not oniy of future valuas of z but also of future
values of u. This is clear from equation (12}, if we interpret
z a$ containing both policy instruments and variables exogenous
toe the system and to the controller. The followers (the agents
forming expectations in (26)) take an open-leoop view (in
stochastic models an "innovetion-contingent” open-loop view [see
Buiter (1981b}1) of future policy.



(36)

(3%

anticipate uy(t) oVt > - The ¢haracterization of a time-

consistent rational expectations solutien is then straightforward.

A time-consistent raticnal expectations solutien is characterised

by zero values at each instant ef the co-state variables ecorresponding

to the non-predetermined state variables, i.e. by w (&) 20, & > t_.
b's - 0
: . - = T .
The optimality condition - -3—; = ?\v no leonger applies as the contreller

is effectively forced to treat v(t) as exdgenous rather than as

driven by the eguations of motion of the svstem.

The eguations of motion under time-consistent control are
therefore cbtained by omitting the rows corresponding to ﬂy(t) and
the columns corresponding to uv(t} in (32). The behavicur of the

System under time-consistent control is given by (33a, b, ¢) and

1.T -1.T ~-1_7

v T =9 - - r
% (t) }’ B,-BO @ A B B0 B 7 Fx
. i -1.T ~1,.T -1.T
ty(t) - j A21_Bzﬂuuﬂxu A22-B2guunyu —B2Quu31 | viw
- \ -1.7 T ~1,T T ~1.T o
Epi () { L_[ﬁmc_nxuguuﬂxu} R P Hnlj | L My (e
! -

- -1 I -1 -
* 1 E"191.111Quz 1 z(t) + L Bl nuu Li’u N N
-1 ~1
| FZ —Bzguunuz ‘ - BZ uu mu
-t -8 o ta ] | Ln "y
L Xz oWwum uz ¥4 unu X
-1.T -1.,T -1_T . -1 -1
ut = —Quu ﬂxux(t) - Quu ﬂyu vit) - S‘luu Bl ‘L.x(t) Quu guz z(t} ‘Quu w,
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Note that while the time-consistent sclution is a product of the
realisation {ex ante) by the agents in the model (the followers)
+hat the controller {the leader] will cheat if he has an incentive
to do so (if uv(t} # 0) , there is no cheating (ex post) along
the time—consis;ent path because the incentive to cheat has been
eliminated; the leader has lost his leadership.

Obviously, the optimal policy will be time-consistent i.f.f.

under the optimal policy, (¢} 20, 2>t If this is not

'L»y 0"
the case, precommitment is necessary for the controller to implement

the optimal solution.

Twe comments on this time-consigtent seluticon are pertinent.
First, the "loss of leadership” solution characterised in (36) and
(37) doesn't solve the time-inconsistency problem associated with
optimal policy in ratiomal expectations models. It is merely an
alterpative solution that may be relevant when precommitment is
impossible. Miller and Salmen [1982, 1983] have shown that the
rime-consistent solution is egquivalent to the open~loop Nash
equilibrium in a two-player linear-guadratic differential game.
This sheds further light on the "loss of leadership" interpretation

of the time-consistent selution.

Second, the analvsis of Section IV brings out the incompleteness
of the standard spececification of the optimal control problem. As

pointed out by Reinganum and Stokey [1981], the period of commitment
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is a crucial parameter of the optimization problem. Treating

the period of commitment as exogenous, we can interpret the

cptimal policy as the equilibrium policy when credibility is
complete and the period over which éhe leader can make binding
commitments is infinite. The time-consistent solution represents
the other extreme when the period of commitment has shrunk to zero
and no credible anncuncements of future policy actions are

possible at all. Clearly, one could plausibly think of intermediate
cases in which the period of commitment is pesitive but finite.

Even more interesting would be an endegencus determination of the
pericd of commitment or a theory of precommitment. Reputation
effects, threats and sanctions, voluntary or self-imposed constraints
on future freedom of actien etc. all would come into play. We

are unfortunately still far removed from such a positive theory

of constitutions.

Section V : An example of optimal and time-consistent pelicies:

anti-inflationary policy in a contract medel

As an example of optimal and time-consistent policy design
we shall consider anti~inflationary pelicy in the medel given by
. < e -
equations (20} {22), whose state-space representation is in

(232, b). The level of demand v is treated as the control

variable and the objective functional is given in {38).
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(3%a)

(39k)
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Y, 82 0.

- - el
Tytst - y07 + yptsn e

Deviations of output from its target level

v

-pl{s~t)

ds

as are deviations of the inflatdon rate from zerc.

—_

not egual the natural level of output.

The eguations of motien for the state variables =

c

v* need

and

their current value co-state variables Yo and uc and the

optimal path of demand are given in eguations (25%a, b).
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Note from (3%b) that the optimal policy does not feed back
directly from Mao the shadow price of core inflation. In {3%a),
T and Eté similarly don't feed back from wy directly, but only
indirectly through the effect of uﬂ_or uc. This is a reflection
of ocur assumpticn that core inflation is simply an exponentially
geciding moving average of past contract inflation. The shadow
price of contract inflaticn therefore contains the relevant information
about the shadow price of core inflation. <The optimal policy has
the sensible property that if we start off with the "bliss" rate of
core inflation {w = Q) and if the target and natural levels of
output ccincide, then demand will be kept at the natural level and
full employment with zerc inflation endures. Cet. par. a higher
value of y* relative to § means a higher optimal level of demand;
also a higher inherited wvalue of core inflation implies a ilower
optimal level of demand. If uc >0, i.e. if current core inflation
makes a positive marginal contribution to the minimized value of the
loss function, then current demand is high relative to its leng run

value.

The steady 5tate equilibrium undex optimal pelicy is characterised
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A 17Ey)e

7
- . i _:
e = ]_‘+>(oc))a(y* ¥)
I
z
,=_—1._..._._ * _ o
He Ylp+g,) (pety) ¥ ¥)
- l -
LTSN y* -
y = ¥

Thus the syster ander optimal policy always converges towards
the natural level of output. If the target level of output
coincides with the natural level of output steady state inflation

11

will be zero.__/ For there to be a unigue convergent saddlepoint
equilibriuwr the model should possess two stable and two unstable
roots; the state matrix in {39a) should therefore have a positive
determinant. This requires ;2 > . The shadow price of core
inflation is always positive (negative) in long-run equilibrium if
¥ > § {w* < §) H the determinant condition for saddlepoint stability
implies that the opposite hcolds for the shadow price of contract
inflation. This reflects the backward-locking nature of 1 and the

forward-lecking nature of c.

In the numerical example given below, p2 + (Zl - tp €0,

11. If rhers is no discounting, the steady state wvalue of the loss
function is urnbounded {unless y = ¥*) and no solution exists.
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s0 the long-run rate of inflation will be positive [negative} if
y* o> § (y* < §). I have not been able to establish whether or

not this is a necessary condition for saddlepoint stability in

general.

Following Section IV, a time-consistent policy is obtained by
deleting the rows and columns coxregponding to uc in (3%a, b).
The behaviour of the state variables, the remaining co-state

variable and the policy instrument y 1s given in equations (402, b):

(40a) \

=1 -5, v | .
ERICY —5 g, | e { 57 -y
e L] Lhw
" - - _\ i _
a0y yim = - _qmy o+ § o+ (y* - )
THvd 1y
w(to) = w(to).
The shadow price of core-inflation, H is determined recursively,
given the solution for {40a), by (41) but policy has become
completely "backward-locking” and ¥ no lenger "feeds back" from
any shadow price.
: v v -
= - | - *
(41) Etuw(t) mit) + (o + al)pﬂ = (y vy

1+yw2 1+vy



The steady state conditions are

T = ¢ = é = j% (v* - ¥
AL
1 -
= * -
br L{p+g,) v ¥

Again y* = ; implies zero inflation in the long run. Long=run

inflatien will be positive (negative) if v* > ¥ (v* < v). Note
2

that if p~ + (;1 - ﬁo}p < 0, inflation will be higher in the

lony run under the time-consistent policy than under the optimal

policy, if w* » v.

Figures 1 and 2 depict the behavicur of some of the variables
of interest under optimal and time-consistent policy for the
fellowing wvalues of the parameters : Ly = S L= 8 b= 5

Yy=1 and o = .03. 1In Pigure 1, y* = .02 and

<k
n
o
it
=]

Figure 2 both * and ¥ equal zero. The initial rate of core
Su Y Y equ

inflation at t = 0 is ten per cent.

In Figure 1 under optimal pelicy, inflation remains slightly
above zero (at .028 per cent) even in the leng run. There is a fairly
sharp initial recessicn. The shadew price of contrart inflation
starts at zero butr becomes sharply negative and converges to a

negative long-run value. The shadow price of core inflation (not drawn)
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Jumps to .12 at t = Q and converges to .075. The negative values
=¥ Mo under the optimal policy signal the time inconsistency

problem. The time-consistent policy.has a smaller recession
throughout. The authorities cannot credibly announce a path of

deep recession, as they would be tempted not to have a fierce

recession once the anncuncement effect of that recession has

succeaeded in bringing down core inflation. When thé target level

of output exceeds the natural lewvel, the cost of not having cvredibility

iz a long=run rate of inflation which in the numerical example is

four per cent - well above the optimal long-run inflation xate.

In Figure 2, y* = § and the long-run conflict between output
target and output constraint is absent. Both time-consistent and
optimal policies yield zero long-run inflation. Inflation is,
however, brought down more rapidly under the cptimal pelicy. This
ig reflected in a deeper initial recession under the optimal policy;
after period 9, however, the recession is slightly more severe

under the time-consistent pelicy.



FIGURE 1
optimal {op) and time-consistent (te) anti-inflationary
policy when y* > y.
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FIGURE 2

Optimal (op})
policy when y* =y
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Conclusion

The solution method discussed in this paper can be used to
study the behaviour of continuous time linear raticnal
expectations models under exogenocus policy, under ad-~hoc linear
policy feedback rﬁles, under coptimal policy and under time-
consistent gélicy. The consequences of any combination and
sequence of anticipated or unanticipated, current or future and
permanent or transitory shecks can be evaluated. The great virtue
of the methed is its analvtical simplic¢ity ané computaticnal
efficiency, even for fairly large dynamic systems. AS was
indicated in Sectien II, the explicit consideration of uncertainty
in the form of additive white noise is, because of certainty
eguivalence, a very simple matter. 2 more general specification
of uncertainty {e.g. random parameters} very soon leads to awsome
complications. Deterministic non-linear systems can be tackled on
a "try-it-ané-see-if-it-works" basis with a wide variety of exisiing
nen-linear two peoint boundary wvalue problem soluticon algorithms.
E.g. successful applications of the technique of "multiple sheoting”
in economics can be found e.g. in the work of Brunc and Sachs [1982)

(see alsc Lipton, Poterba, Sachs and Summers [1982]).

Decentralized, non-cooperative policy design in continucus time
linear rational expectations models has been picneered by Miller
and Salmen [1982, 1983] using a iinear-quadratic differential game

approach. As with the "single player" optimal control problem of



section IV, the behaviour ¢f the system under various kinds of
decentralized control can be reduced to the standard format of
equation (1). It appears safe to predict continped growth in

the range of applications of these methods in the fields of

macroeconomics and international finance.
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