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Abstract

This paper develops algorithms to solve strong-substitutes product-mix auctions: it finds
competitive equilibrium prices and quantities for agents who use this auction’s bidding
language to truthfully express their strong-substitutes preferences over an arbitrary number
of goods, each of which is available in multiple discrete units. Our use of the bidding
language, and the information it provides, contrasts with existing algorithms that rely on
access to a valuation or demand oracle.

We compute market-clearing prices using algorithms that apply existing submodular
minimisation methods. Allocating the supply among the bidders at these prices then requires
solving a novel constrained matching problem. Our algorithm iteratively simplifies the
allocation problem, perturbing bids and prices in a way that resolves tie-breaking choices
created by bids that can be accepted on more than one good. We provide practical running
time bounds on both price-finding and allocation, and illustrate experimentally that our
allocation mechanism is practical.

Keywords: bidding language, product-mix auction, competitive equilibrium, Walrasian equi-
librium, convex optimisation, strong substitutes, submodular minimisation

1 Introduction.

This paper develops algorithms that solve product-mix auctions in which participants can make
bids that represent any strong-substitutes preferences for an arbitrary number of distinct goods.
(These preferences are also known, in other literatures, as M \-concave, matroidal and well-
layered maps, and valuated matroids). It thus allows bidders to express more general preferences
than could previously be permitted in these auctions, and finds competitive equilibrium prices
and quantities consistent with these, and the auctioneer’s preferences.

Importantly, our algorithms for finding equilibrium differ from existing ones in that they
directly use the information that the product-mix auction ‘language’ provides. This information
is in a very different form from the information provided by a valuation or demand oracle. This
creates additional complexities, as well as simplifications which we can exploit. However, the
language is conceptually simple, and easy for bidders to use in a (product-mix) auction.

The product-mix auction was developed in 2007-8 for the Bank of England to provide liquidity
to financial institutions by auctioning loans to them [Klemperer, 2008]. It is now used at least
monthly by the Bank, and more often when institutions are more likely to be under stress.
(After the 2016 vote for ‘Brexit’, and starting again in March 2019, for instance, the auction
was run weekly.)

∗Dept. of Economics, Oxford University, UK, elizabeth.baldwin@economics.o x.ac.uk.
†Dept. of Computer Science, Oxford University, UK, paul.goldberg@cs.ox.ac.uk.
‡Dept. of Economics, Oxford University, UK, paul.klemperer@nuffield.ox.ac.uk .
§Dept. of Computer Science, Oxford University, UK, edwin.lock@cs.ox.ac.uk.
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Figure 1: Price vectors divide Rn into regions that specify which good is allocated to bids lying in these
region. This example works in the setting with two goods. The price vector p = (4, 4) (marked by a
cross) divides R2 into three regions, each of which labelled according to the good that bids in this region
are allocated.

The original implementation of the auction allowed bidders to each submit a list of bids,
where each bid has n + 1 elements: a price for each of the n goods available, and a total
quantity of goods sought by that bid.1 The auction sets a uniform price for each good (i.e. every
recipient of any particular good pays the same price per unit for that good), and gives each
bid an allocation that maximises that bid’s ‘utility’, assuming quasilinear preferences. That
is, each bid is allocated its desired quantity of the good on which its price strictly exceeds the
auction’s price by most, if there is a unique such good, and is allocated nothing if all its prices
are strictly below the auction’s corresponding prices. (So if a bid only wants one particular good,
it simply sets prices of zero for all the other (n − 1) goods.) A bid that creates a tie (i.e. two
or more of its prices exceed the auction’s corresponding prices by most, or none of its prices
exceed, but at least one equals, the auction’s corresponding prices) can be allocated in any way
consistent with equilibrium (see below). Figure 1 illustrates how the good that a bid is allocated
depends on the bid’s relative position to the price vector. In particular, we note that individual
bids (b1, . . . , bn; +1) that seek exactly one item of a good can be interpreted as a unit-demand
bidder with valuation vector b = (b1, . . . , bn) and quasi-linear utilities. We motivate the bidding
language in the following example.

Example 1 (Figure 2a). Alice participates in an auction held with two goods, say apples
(good 1) and bananas (good 2). For her breakfast, she requires a single item of fruit and is willing
to pay up to £6 for either an apple or a banana. This is expressed by the bid b := (6, 6; +1);
the last element in the bid denotes the quantity of goods sought. Suppose the auction’s prices are
set at p = (p1, p2). If at least one good is priced lower than the respective bid entry, she will
demand the good i ∈ {1, 2} that maximises utility bi − pi. Otherwise, if both apples and bananas
are priced higher than her valuation of £6, she demands neither. In addition, as she is fond
of bananas, Alice wishes to pick up a banana as a second fruit item, but only if the price of a
banana does not exceed £4. This is expressed by the bid b′ := (0, 4; +1).

To illustrate Alice’s demand, consider the following two possible auction prices. If the auction
prices are set at p = (1, 3), then Alice demands one apple and one banana: b demands an apple,
as its utility for an apple or a banana is 5 and 3, respectively, while b′ demands a banana, as
its price is less than £4. On other hand, if auction prices are p = (6, 5), Alice demands only
one banana: b demands a banana and b′ demands nothing, as the price of a banana is too high.
Alice’s two bids b and b′, together with the demand correspondence they induce, are shown in
Figure 2a.

1In the Bank of England’s auction, the bidders are commercial banks, etc., each good is a loan secured against
one of n different specified qualities of collateral (so the prices are interest rates), and the quantity is the amount
of the loan (in £).
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Figure 2: Examples of strong-substitutes demand correspondences on two goods {1,2} belonging to
two bidders, Alice and Bob. Alice’s demand is specified by bid list B = {(6, 6; +1), (0, 4; +1)} and Bob’s
bid list is B′ = {(2, 4; +1), (4, 2; +1), (4, 4;−1), (6, 6; +1)}. Positive and negative bids are depicted as
solid and hollow circles, respectively. Price space is divided into regions corresponding to demanded
bundles (x1, x2), with xi denoting the number of items of good i. At p = (4, 4), Alice demands bundles
{(1, 0), (0, 1), (1, 1), (0, 2)} and Bob demands bundles {(1, 0), (0, 1), (1, 1)}, the discrete convex hulls of
bundles demanded in the regions surrounding p.

The auction’s prices are chosen to maximise the sum of the bids’ and auctioneer’s welfare
– that is, it finds competitive equilibrium prices and quantities.2 Moreover, the auctioneer
expresses her preferences about which goods to allocate in the form of supply functions which
can themselves be equivalently represented as (and thus converted into) a list of bids of the kind
described above.3

Positive and Negative bids. In versions of the product-mix auction thus far implemented, all
bids are for positive quantities of goods. In the quasi-linear preferences case, the market-clearing
prices can then be found by solving straightforward linear programs, and finding an allocation
of the auctioneer’s supply to the individual bidders is similarly straightforward. However, some
strong-substitutes4 preferences (over bundles of non-negative quantities of goods) can only be

2Specifically, the auction finds the lowest such price vector. Since the bids automatically express “strong
substitutes” preferences for all bidders (see Baldwin and Klemperer [2021]), there exist equilibrium price vectors,
and also a unique one among them at which every good’s price is lowest.

3See Appendix 1E of Klemperer [2018] for how to convert supply functions into bid lists. (The bids that
the auctioneer’s supply functions would be converted into would ensure that it sells more units on a good when
prices are high, analogous to a buyer buying fewer units in this case.) Although the auctioneer’s preferences could
equivalently have been represented as a list of bids of the kind made by the bidders, describing them simply as
two-dimensional graphs of ‘supply schedules’ was an important feature of the auction design: participants’ ability
to express their preferences in the ways that are most natural for them is crucial to getting an auction accepted
for practical use, to getting bidders to participate, and to the auction working efficiently.
The Bank of England’s original program restricted to n = 2. Since 2014 its program permits much larger n (it

is currently being run with n = 3), and it also allows richer forms of preferences to be expressed by the auctioneer
(but not by the bidders, whose preference expression has, by contrast, been restricted in recent auctions). A
variant that allowed for bidders’ budget constraints (hence non-quasilinear preferences) was programmed for the
Government of Iceland in 2015-16. See Klemperer [2008, 2010, 2018] and Baldwin and Klemperer [2021] for full
discussion.

4 Strong-substitutes preferences are those that would be ordinary substitutes preferences if we treated every
unit of every good as a separate good. Such preferences have many attractive properties; they mean, for example,
that if the price of any one good increases, and the demand for it decreases, then the demand for all other goods
can increase by at most the amount of that decrease. Strong substitutability is equivalent to M \-concavity
[Shioura and Tamura, 2015]. See Baldwin and Klemperer [2019] for a discussion of the relationship between
‘strong’ and ‘ordinary’ substitutes.
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expressed by using lists of bids for both positive and negative quantities,5 and it has been shown
that any strong-substitutes preferences can be represented using lists of positive and negative
bids.6 The rules for accepting, or not accepting, negative bids are identical to those for positive
bids: if a negative bid is accepted at some prices, it is allocated a negative quantity of the good
it demands, (partially) cancelling the allocated quantities of positive bids that are accepted at
the same prices.

To illustrate why negative bids are useful, we consider the setting with two distinct goods
1 and 2 in which an agent has strong substitutes valuation u and is interested in at most 2
units. In other words, the agent only has a positive value for bundles (0, 1), (1, 0), (1, 1), (0, 2)
and (2, 0), where the 2-dimensional vectors (x1, x2) denote bundles containing x1 units of good
1 and x2 units of good 2. It is known [Shioura, 2017] that the strong substitutes condition is
equivalent to M\-concavity which, in our setting, is equivalent to discrete concavity together
with the following three additional conditions:

(i) u ((1, 1)) ≤ u ((0, 1)) + u ((1, 0)),

(ii) u ((2, 0))− u ((1, 0)) ≤ u ((1, 1))− u ((0, 1)).

(iii) u ((0, 2))− u ((0, 1)) ≤ u ((1, 1))− u ((1, 0)).

It is easy to see (by infinitesimally and independently perturbing bundle values) that the generic
case has strict inequalities in all three conditions. Intuitively, a strict inequality in the first
condition implies that a single unit of good 1 is valued strictly less if the agent also has a unit
of 2 than if he does not, reflecting strict substitutability as distinct from complementarity or
independence between the two goods. A strict inequality in the second or third condition implies
that the marginal utility of a good is reduced more by receiving an additional unit of the same
good than by receiving a unit of a different good; ‘more variety’ is valuable. In contrast, it is
easy to check that any demand correspondence generated only by positive bids is non-generic,
in that at least one of the three conditions must be an equality. Thus a demand correspondence
such as the one illustrated in Example 2 and Figure 2b, in which all three conditions are strict
inequalities, cannot be represented by positive bids only. We refer to Klemperer [2018, Appendix
IC] and Klemperer [2008, p. 15] for further details and examples of the usefulness of negative bids.

Example 2 (Figure 2b). A combination of positive and negative bids is required to express
Bob’s demand correspondence depicted in Figure 2b, which divides price space into six demand
regions for bundles with at most two units. We have u((0, 1)) = u((1, 0)) = 6, u((0, 2)) =
u((2, 0)) = 8 and u((1, 1)) = 10. Bob’s bid list is B′ = {(2, 4; +1), (4, 2; +1), (4, 4;−1), (6, 6; +1)}.

Our contributions. This paper addresses the computational challenges of determining uni-
form component-wise minimal market-clearing prices (at which total market demands equal the
quantities of each good that are available) and allocating a fixed collection of the goods at these
prices, to bidders whose demands are defined by lists of positive and negative bids that express
strong-substitute preferences. Our algorithms exploit the fact that the use of the product-mix
bidding language allows for the efficient computation of a demanded bundle as well as of the
indirect utility derived at any given prices.

Section 2 introduces the product-mix auction’s strong-substitutes bidding language in more
detail, and develops some of its properties. A first contribution of our paper is to show that it
is coNP-complete to determine whether a given list of positive and negative bids constitute a
valid demand correspondence. However, when the number of goods, or the number of negative
bids, is bounded by a constant, we present a polynomial-time algorithm for checking validity.

5The ability to express such preferences was not thought necessary in the Bank of England’s application, but
might be useful in closely related environments (see Klemperer [2018]).

6See [Baldwin and Klemperer, 2021]. This work was also described in Baldwin et al. [2016]; Klemperer [2010]
noted the result for n = 2.
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In Section 3, we consider algorithms for finding component-wise minimal market-clearing
prices that have practical running time bounds. We adopt a discrete steepest descent method
from the discrete optimisation literature [Murota, 2003, Shioura, 2017] that employs submodular
minimisation to find the steepest descent directions and present two techniques that reduce the
number of iterations required by taking long steps in the steepest descent direction. Full details
are provided in Appendix B. The two long-step techniques we describe yield the first algorithms
for price finding that are fully polynomial in the input size of the bid lists and, since submodular
minimisation is rapid in practice [Chakrabarty et al., 2017], we expect our approach to have a fast
running time. Indeed, preliminary experiments suggest our method performs well in practice.

Our main contribution, given in Section 4, is an efficient polynomial-time algorithm that
allocates the auctioneer’s chosen supply among the bidders at given market-clearing prices. The
difficulty in developing this lies in handling bids whose utility is maximised on more than one
alternative good (or whose utility from its most-preferred good is exactly zero), as tie-breaking
choices interact with each other. This gives rise to a novel matching problem. Our algorithm
proceeds by iteratively simplifying the allocation problem at hand, allocating unambiguous bids
and perturbing bids and prices in a way that resolves a subset of the tie-breaks and yields a
simplified allocation problem. Progress is measured in terms of reductions in the number of
edges of a multigraph associated with the allocation problems.

Software implementations. Our price-finding and allocation algorithms are conceptually
simple. They are also straightforward to implement, which has allowed us to develop two
practical implementations in Haskell and Python; these can be found at http://pma.nuff.ox.
ac.uk and https://github.com/edwinlock/product-mix, respectively. Some effort was made
to optimise for speed in the Python implementation by exploiting fast matrix operations provided
by the NumPy package [van der Walt et al., 2011]. Furthermore, in an effort to implement
submodular minimisation efficiently, the Fujishige-Wolfe algorithm [Chakrabarty et al., 2014] was
implemented in combination with a memoization technique to reduce the number of submodular
function queries.

In order to evaluate the practical running time of our allocation algorithm, we used our
Python implementation to run experiments on auctions with various numbers of goods, bidders
and bids. The results of these experiments, given in Appendix A to this paper, demonstrate
that our allocation algorithm is efficient in practice for realistic auction sizes.

Related work. Our work continues a long literature, spanning economics and discrete convex
analysis, on ‘gross’ and ‘strong substitutes’ [Kelso and Crawford, 1982, Milgrom and Strulovici,
2009] and ‘M \-concavity’ [Murota and Shioura, 1999]. While the discrete convex analysis liter-
ature generally allows for multiple units of each good, much focus in economics has been on the
case in which there is only one unit of each good; Milgrom and Strulovici [2009] showed that
‘strong substitutes’ provide the suitable generalisation of gross substitutes to the multi-unit case,
retaining existence of equilibrium while insisting that any two units of the same good should
have the same price.

Algorithms to compute equilibrium prices in these contexts go back to Kelso and Crawford
[1982], Murota et al. [2013, 2016] and Ausubel [2006]; see Shioura and Tamura [2015], Murota
[2016] and Paes Leme [2017] for recent surveys. Market-clearing prices are commonly found
either by performing a discrete steepest-descent search or by solving a convex optimisation
problem by means of an improved cutting plane method of Lee et al. [2015] (cf. Paes Leme
and Wong [2017]). We note that to the best of our knowledge, the cutting plane method has
not yet been implemented and may be computationally expensive in practice; moreover, solving
the convex optimisation problem is not guaranteed to find component-wise minimal prices.
While the steepest-descent methods described in the literature run in pseudo-polynomial time
in the valuation and demand oracle settings, as compared to the fully polynomial algorithm of
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Paes Leme and Wong [2017], our steepest descent algorithm uses long steps and exploits the
bid representation of bidder demand to close this gap, yielding a competitive fully polynomial
algorithm in the bidding-language setting.

Significantly, whereas previous literature has developed algorithms for finding market-clearing
prices, few have addressed the (harder) problem of finding a valid allocation of goods, given those
prices. One such work is Murota [2003], which presents an algorithm that works in the multi-
unit case by reducing the allocation problem to a network flow problem and relies on oracle
access to the valuation function of each bidder. Paes Leme and Wong [2017] provide a different
algorithm, also in the valuation oracle setting, but this is only applicable in the case in which
there is only one unit of each good. We elaborate on this in Section 2.4. As the computation of
a bidder’s valuation of a given bundle is expensive in our bidding-language setting, running the
algorithm of Murota [2003] to solve the allocation problem for product-mix auctions would in-
cur a significant cost for each query to the valuation oracle. In contrast, our algorithms directly
exploit the specific representation provided by the product-mix auction’s bidding language to
find both prices and allocations.

We note that the valuation oracle setting of Murota et al. [2013, 2016] and others provides
no straightforward way to compute a demanded bundle or the indirect utility function at given
prices. In contrast, our bidding-language setting is somewhat analogous to but more informative
than the demand oracle setting of Ausubel [2006] and Paes Leme and Wong [2017], which
presupposes access to an oracle returning a demanded bundle at given prices.

This paper assumes that bidders are able to construct and submit bid lists that represent
their strong-substitutes preferences. When the number of goods is large or the preferences are
otherwise complex, this may present difficulties for bidders. Goldberg et al. [2020] address this
issue by presenting algorithms that generate bid lists on behalf of bidders using only access to
a demand or valuation oracle to elicit bidders’ preferences.

2 Preliminaries.

We denote [n] := {1, . . . , n} and [n]0 := {0, . . . , n}. In our auction model, there are n distinct
goods [n]; a single copy of a good is an item. A bundle of goods, typically denoted by x,y
or z in this paper, is a vector in Zn whose i-th entry denotes the number of items of good i.
The target bundle t is a bundle the auctioneer wants to allocate amongst the bidders. Vectors
p, q ∈ Rn typically denote vectors of prices, with a price entry for each of the n goods. We write
p ≤ q when the inequality holds component-wise. It is often convenient to regard a rejected bid
as being accepted on a notional reject good for which bids and prices are always zero. Letting
the reject good be 0, the set of goods is then [n]0. In this setting, we identify bundles and prices
with the n+ 1-dimensional vectors obtained by adding a 0-th entry of value 0.

A valuation u is a function that maps bundles to non-negative real numbers. We assume
that bidders have quasi-linear utilities, i.e. the utility derived from bundle x at price p by a
bidder with valuation u is given by

u(x)− p · x. (1)

Any valuation u is associated with a demand correspondence Du that maps p to the set of
bundles that maximise (1). We omit the subscript u when it is clear from context.

For any subset X ⊆ [n], eX denotes the characteristic vector of X, i.e. an n-dimensional
vector whose i-th entry is 1 if i ∈ X, 0 otherwise. Furthermore, ei denotes the vector whose i-th
entry is 1 and other entries are 0.

A set function f : 2[n] → Z is submodular if it satisfies f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T )
for all S, T ⊆ V . Submodular function minimisation (SFM) is the task of finding a minimiser
of a submodular function. It is well-known that the minimisers of submodular functions form a
lattice; that is, if S and T are minimisers of f , then so are S∪T and S∩T . SFM can be solved in
polynomial time using the improved cutting plane method of Lee et al. [2015]. For SFM that is
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efficient in practice, we refer to two SFM algorithms from the literature. The subgradient descent
approach by Chakrabarty et al. [2017] determines a minimiser in time O(nF 3γ log n), while the
Fujishige-Wolfe algorithm described by Chakrabarty et al. [2014] takes time O(F 2(n2γ + n3)),
where F is an upper bound on the absolute value of f and γ denotes the time it takes to query f .
Experimental results [Chakrabarty et al., 2014] indicate that the running time of the Fujishige-
Wolfe algorithm depends less on F than suggested by the above bound. For the price-finding
algorithms described in Section B, we require a subroutine that finds the inclusion-wise minimal
minimiser. Note that such a subroutine can be obtained by calling any SFM algorithm n + 1
times. Indeed, let S be a minimiser of f and, for every v ∈ S, let Sv be a submodular minimiser
of the function f restricted to [n] \ {v}. Then if S0 denotes the minimal minimiser of f , we have
v ∈ S0 if and only if f(Sv) > f(S), as the minimisers of a submodular function form a lattice.
Hence, we obtain S0 := {v ∈ S | f(Sv) > f(S)}.

2.1 Strong substitutes valuation functions.

In this paper, we assume that bidders have strong substitutes valuations. We review some basic
properties of strong-substitutes (SS) valuations. A SS valuation divides price space into regions
corresponding to bundles: any bundle x has a price region where x is demanded, possibly along
with other bundles (see Figure 2). It is known [Murota, 2003, Theorem 11.16] that each such
region is a convex lattice. When a demand region for some bundle x has full dimensionality, in
its interior x is the only bundle demanded; we call this interior a unique demand region (UDR).

Definition 1. A valuation u is ordinary substitutes if, for any prices p′ ≥ p with Du(p) = {x}
and Du(p′) = {x′}, we have x′k ≥ xk for all k such that pk = p′k. A valuation u is strong
substitutes (SS) if, when we consider every unit of every good to be a separate good, u is
ordinary substitutes.

Definition 1 for strong substitutes is equivalent to the definition of Milgrom and Strulovici
[2009] and also to M \-concavity [Murota and Shioura, 1999]: see footnote 4. It is equivalent
to gross substitutes (GS) [Kelso and Crawford, 1982] if there is only one item of each good.
While GS guarantees that a competitive equilibrium exists in single-unit auction markets, the
condition is not sufficient for the existence of such an equilibrium in the multi-unit case (Shioura
and Tamura [2015] give an example). SS represents a generalisation of single-unit GS that
provides a general sufficient condition for the existence of an equilibrium. We refer to Shioura
and Tamura [2015] for a detailed discussion on the distinction between GS and SS.

Definition 2. The indirect utility function fu of valuation u maps a price vector p to the utility
that a bidder with demand Du has for receiving her preferred bundle at a given price vector p
in the following way.

fu(p) := u(x)− p · x, where x ∈ Du(p). (2)

We note that fu(p) is convex, piecewise-linear and continuous for SS valuations u.

2.2 Representing strong substitutes valuations with weighted bids.

We describe how every strong substitutes valuation function can be represented by a finite list B
of positive and negative bids. A bid b consists of an (n+1)-dimensional vector (b1, . . . , bn; bn+1),
where the first n components b1, . . . , bn of the vector denote the bid’s ‘valuation’ for the goods [n]
and the (n+ 1)-th component bn+1 is an integer corresponding to the bid’s weight (the quantity
of goods sought by the bid, which may be positive or negative). For the reader’s convenience,
we also define the alternative notation w(b) := bn+1 to denote b’s weight. Moreover, we restrict
ourselves to positive and negative unit weights ±1. This is without loss of generality, as any bid
with a weight of w(b) ∈ Z can be represented by w(b) unit bids with the same vector and of the
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same sign. Finally, when working with the notional reject good 0 as described in Section 2, we
identify the bid b with the (n+2)-dimensional vector (0, b1, . . . , bn; bn+1) obtained by prepending
a 0-th entry of value 0 (and thus indexing from 0 instead of 1). This allows us to define a demand
correspondence DB that maps each price vector p to a set of bundles demanded at p, and an
indirect utility function fB associated with B.

A bid b demands good i ∈ [n]0 at p if the surplus bi − pi at price p is maximal, that is if we
have i ∈ arg maxi∈[n]0(bi − pi); recall that good 0 is the notional ‘reject’ good and b0 = p0 = 0
by definition. We say that arg maxi∈[n]0 (bi − pi) is the set of demanded goods of b at p. A bid
b is marginal (on the set of its demanded goods) at p if b demands more than one good at p.
Moreover, we say that price p is marginal with respect to a given bid list B if there are bids
in B that are marginal at p, and non-marginal otherwise. We illustrate these definitions using
Example 1 (Figure 2a). Recall that Alice’s bid list B consists of two positively-weighted bids
b := (6, 6; 1) and b′ := (0, 4; 1). At prices p = (2, 4), the bid b is not marginal as it demands
only good 1 while b′ is marginal between the reject good and good 2. At prices p = (6, 6), the
bid b is marginal between the reject good, good 1, and 2 while b′ is rejected (it only demands
the reject good). Finally, at prices p = (6, 2), both bids are non-marginal, as they each demand
only good 2. More generally, all prices that lie on facets of the polyhedral complex in Figure 2a
are marginal, while all prices in the interior of the polyhedra are non-marginal.

For any bid list B, we define the demand correspondence DB(p) at prices p as follows,
distinguishing between the cases that p is marginal and non-marginal. If p is non-marginal,
every bid b ∈ B uniquely demands some good i(b). In this case, DB(p) is a singleton set
consisting of the bundle x that is obtained by adding up an amount w(b) of good i(b) for each
b ∈ B, i.e. DB(p) = {x} with x :=

∑
b∈B w(b)ei(b). In Example 1, the demand correspondence

at non-marginal prices p = (6, 2) is DB(6, 2) = {(0, 2)}, as both bids demand good 2. At
p = (1, 2), the demand correspondence is DB(1, 2) = {(1, 1)}, as b uniquely demands good
2 and b′ uniquely demands good 1. Figure 2a shows the demand in the different polyhedron
interiors corresponding to non-marginal prices.

If p is marginal, DB(p) consists of the discrete convex hull of the bundles demanded at
non-marginal prices arbitrarily close to p, where the discrete convex hull of a set of bundles X is
defined as conv(X)∩Zn. In Figure 2a, we see that bundles demanded in the local neighbourhood
of p = (0, 4) are (1, 0) and (1, 1), which implies DB(p) = {(1, 0), (1, 1)}. At p = (4, 4), we have
DB(p) = {(1, 0), (0, 1), (1, 1), (0, 2)}.

For any bid list B, we can define the indirect utility function

fB(p) =
∑
b∈B

w(b) max
i∈[n]0

(bi − pi). (3)

From (3) it is clear that we can compute fB(p) efficiently. In our setting, we can also
efficiently compute a bundle demanded at a given price p. This demand oracle problem is
noted in Paes Leme [2017] as an algorithmic primitive needed to implement the Walrasian
tâtonnement procedure. If p is non-marginal, simply allocate each bid b a positive or negative
item of the good i(b) it uniquely demands and add up these items to obtain the demanded
bundle x =

∑
b∈B w(b)ei(b). However, if p is marginal and the bid list contains both positive

and negative bids, we emphasise that independently allocating to each bid one of the goods it
demands may not result in a bundle that lies in DB(p). In Example 2 (depicted in Figure 2b), for
instance, we see that at prices p = (4, 4), allocating a negative item of good 1 to bid (4, 4;−1),
a positive item of good 1 to bid (4, 2; 1) and a positive item of good 2 each to bids (2, 4; 1) and
(6, 6; 1) leads to a total bundle of (0, 2) 6∈ DB(p). Instead, care must be taken to accept bids
in a consistent way; one way to do this is to perturb entries of the price vector slightly so as
to break ties, then note that the resulting bundle is demanded at the unperturbed prices. Note
that a demand oracle does not provide us with a way to tell whether a given bundle of interest
is demanded at p.
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A result by Baldwin and Klemperer [2021] shows that any SS demand correspondence can
be represented as a finite list of positive and negative bids, and this representation is essentially
unique (up to redundancies). Conversely, however, not all lists of positive and negative bids
induce a strong substitutes valuation function. We call a bid list valid if the indirect utility
function fB defined in (3) is convex; Theorem 1 gives two further equivalent characterisations of
validity. The proof is given in Appendix D.1. In Section 4, we will also introduce a weaker local
notion of validity by introducing local validity in the ε-neighbourhood of a price p.

Theorem 1. Let B be a list of positive and negative bids and fB be the associated indirect utility
function as defined in (3). The following conditions are equivalent.

1. B is valid.

2. There is no price vector p and pair of distinct goods i, i′ ∈ [n]0 at which the weights of the
bids marginal on i and i′ sum to a negative number.

3. fB is the indirect utility function of a strong substitutes valuation u with quasi-linear util-
ities so that DB(p) = Du(p) for all p ∈ Rn.

2.3 Deciding validity of bid lists.

In our auction, bidders submit their lists of positive and negative bids to the auctioneer prior
to the auction. We show in Theorem 2 that checking the validity of a given list of bids is
computationally hard. The proof, given in Appendix C, exploits definition (2) of validity in
Theorem 1. However, in Appendix C we provide a straightforward algorithm to verify the
validity of a given bid list in polynomial time if the number of goods, or the number of negative
bids, is bounded by a constant.

Theorem 2. Deciding the validity of a given list of positive and negative bids is coNP-complete.

Theorem 3. Let B be a list of positive and negative bids. If the number of goods or the number
of negative bids is bounded by a constant, there exists a polynomial-time algorithm for checking
the validity of B.

Furthermore, many useful subclasses of bid lists (of arbitrary size) are easily checkable for
validity in practice. Hence, while the coNP-completeness result is disappointing, it does not
seem to be an important limitation on the auction, as sensible restrictions on the permitted bids
can allow us to check validity efficiently in practice.

2.4 The computational challenges.

In this subsection we state the computational problems to be solved. For any bidder j ∈ J ,
where J is the set of bidders, Bj denotes the bids of bidder j. We assume each Bj is valid,
as defined in Section 2.2, and provided as a list of vectors encoded in binary. Let B be the
aggregate list of bids obtained by aggregating the lists of all bidders. As the aggregation of
strong substitutes valuation functions is strong substitutes, B is valid. Figure 3a depicts the
aggregate bid list of Alice and Bob from Figure 2. The running times of our algorithms are
given in terms of n, |J |, |B| and M := maxb∈B ‖b‖∞, the maximum bid vector entry.

Suppose the auctioneer intends to sell target bundle t. Our aim is to compute a competitive
equilibrium: a market-clearing price p at which t is demanded and an allocation of t to the
various bidders so that every bidder receives a bundle they demand at p. In the event that not
enough bids are made for the target bundle, some items can go unsold, which is equivalent to
the auctioneer buying them back from the market. To reflect this, the auctioneer places a total
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of ‖t‖1 +1 positive bids at 0.7 The computation of a competitive equilibrium separates into two
problems.

The price-finding problem. Given the aggregate bid list B and target bundle t, find the
coordinate-wise minimalmarket-clearing price p at which t is demanded, that is t ∈ DB(p).

The allocation problem. Given a valid bid list Bj for each bidder j ∈ J , a target bundle t
and market-clearing price p, allocate t to the bidders so that each bidder receives a bundle
they demand at p, that is, a partition (tj)j∈J of t with tj ∈ DBj (p) for all j ∈ J .

Note that we do not ask for a breakdown of which of j’s bids are accepted on which goods.8

Indeed, we show that a solution to the allocation problem can be obtained without this know-
ledge.

Theorem 4. Suppose that each bidder j ∈ J has SS demand correspondence Dj. Given a target
allocation t and a market-clearing price p for t, there exists a partition t =

∑
j∈J t

j such that
tj ∈ Dj(p).

Theorem 4 (cf. Danilov et al. [2001], Murota [2003], Milgrom and Strulovici [2009]) ensures
that if the target bundle t is aggregately demanded at market-clearing price p, then there
exists an allocation of t among the bidders so that every bidder receives a bundle she demands.
However, care must be taken in finding such an allocation, as bidders cannot simply be allocated
an arbitrary bundle they demand at the market-clearing price. (Indeed, in Figure 2 the lowest
prices at which Alice and Bob aggregately demand (1, 1) is given by p = (4, 4). If we allocate
Alice the whole bundle (1, 1), Bob does not demand the empty remainder (0, 0) at p.)

Working in the valuation oracle setting, Paes Leme and Wong [2017] present an algorithm
that solves the allocation problem if there exist prices at which the target bundle is uniquely
demanded. Such prices are guaranteed in the single-unit case (i.e. when there is only one unit of
every good) but need not exist in the multi-unit case. (Indeed, the bundle (1, 1) is not uniquely
demanded at any prices for the aggregate demand correspondence of Alice and Bob shown in
Figure 3a.)

If we had (oracle) access to the valuations of the bidders, we could perturb the valuations such
that the target bundle is uniquely demanded at some price by subtracting carefully constructed
functions that are discrete-convex in one variable.9 However, recall that our bidding language
does not give straightforward access to bidder valuations.10 Moreover, it is not clear how to
perturb the bids individually to achieve a suitable ‘indirect’ perturbation of the valuations.
Instead, our allocation algorithm takes the approach of perturbing bids bidder by bidder.

Some intuition can be gained by considering the addition of a small ‘random’ perturbation
vector vj to all the bids in bid set Bj (a different vj for each j ∈ J) and recomputing the new
market-clearing prices. This has the effect of breaking ties between bids in two different bid
sets. (This also uses the plausible fact, established in Proposition 14, that small perturbations
make only small changes to the market clearing price(s).) However, the perturbations need

7Of course, any positive reserve price can be reflected by appropriately locating the auctioneer’s bids.
8Once a partition of t has been obtained, it is easy to compute such a breakdown since the task can be

formulated as a maximum network flow problem, in which each positive bid b is a source node with outgoing
flow given by its weight w(b). There are n + 1 intermediate nodes, one node vi for each good i, including the
‘reject’ good 0. Connect each positive bid node to the goods on which it may be accepted. Each vi is connected
to a sink node whose incoming flow is the i-th element of tj . (For i = 0 the incoming flow is given by the total
weight of bids minus the number of elements of tj .) Each negative bid b is a sink node whose flow is its weight
w(b), and is connected to any vi for which b demands good i.

9See Murota [2003, Theorem 6.13 (4)].
10To the best of our knowledge, the most efficient way to compute the valuation of bundle x is to determine a

price p at which x is demanded using our price-finding algorithm from Section B, computing the indirect utility
fB(p) at this price and then solving (2) for u(x).
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(a) Aggregate demand of Alice and Bob
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(b) Lyapunov function g for target bundle t = (1, 1)

Figure 3: Figure (a) shows the demand of the aggregate bid list obtained by aggregating Alice’s and
Bob’s bids from Figure 2, while (b) depicts a contour plot of the Lyapunov function g for target bundle
t = (1, 1). Note that p = (4, 4) is the minimal market-clearing price for t. Starting at 0, MinUp
repeatedly moves in direction d = (1, 1) until it reaches p, whereas LongStepMinUp makes a single
long step from 0 to p.

to be exponentially small in the number of goods in order to ensure that all possible ties are
broken. (One can check, noting the pigeonhole principle, that if perturbations are multiples
of some inverse-polynomial, then they will have distinct subsets having the same sum, losing
the guarantee that all possible ties are broken.) Our algorithm of Section 4 avoids this by
systematically perturbing and un-perturbing bid sets, making decisions on marginal bids as it
proceeds.

A desideratum that we do not address here is fairness of allocation, in the sense that equal
bidders should be treated equally. Note that this is in conflict with our requirement that bids
should be allocated entirely or not at all: in the simplest configuration where two bidders offer
the same price for a single available item, only one of those bidders will have their bid allocated.

3 Finding market-clearing prices.

In order to determine component-wise minimal prices at which the market is cleared, we apply
an iterative steepest-descent approach from the discrete convex optimisation literature [Shioura,
2017]. This approach generalises an algorithm used by Ausubel’s ascending auction design [Aus-
ubel, 2006] and Gul and Stacchetti [2000] for the task of finding equilibrium prices in single-unit
markets. Shioura [2017] and others define the Lyapunov function with regard to indirect util-
ity function fu and target bundle t as gt(p) := fu(p) + t · p. Given a starting point p := p0

that is known to be dominated by the market-clearing price p∗, the steepest-descent method
repeatedly applies submodular minimisation (cf. Section 2) to find the component-wise minimal
subset S ⊆ [n] minimising gt(p+eS)−gt(p) and moves a unit step in this direction by updating
p := p+eS . The method terminates once a local maximum is reached, upon which it has found
component-wise minimal market clearing prices. Adapting this method to our bidding-language
setting, we can use our direct knowledge of the bids and (3) to express gt for any list B as

gt(p) := fB(p) + t · p =
∑
b∈B

w(b) max
i∈[n]0

(bi − pi) + t · p. (4)

As B is a valid bid list by assumption, Theorem 1 guarantees that the function fB defined
in (3) is the indirect utility function fu of some strong substitutes valuation u, so (4) is a
well-defined Lyapunov function. (Figure 3b depicts a contour plot of the Lyapunov function
defined for the aggregate demand of Alice and Bob as given in Examples 1 and 2 and shown in
Figure 3a.) Moreover, (4) implies that gt can be evaluated at any p in time O(n|B|).
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In order to improve the running time of the steepest-descent method, Shioura [2017] proposes
aggregating several steps in the same direction into a single ‘long’ step. After finding the
component-wise minimal direction eS , we move λ(p, S) unit steps in this direction at once by
updating p := p + λ(p, S)eS , where λ(p, S) is defined as

λ(p, S) := max{λ ∈ Z+ | g′(p;S) = g′(p + (λ− 1)eS ;S)} (5)

and g′(p;S) := gt(p + eS) − gt(p). In Appendix B, we present two methods for computing
(5) at every iteration of the steepest-descent procedure. The first method uses binary search
to find λ(p, S) in time O(n|B| logM), while the second (the ‘demand change’ method) exploits
our knowledge of the individual bids to determine the step length in time O(n|B|2). Hence we
see that as the running time guarantees differ, the best method in practice is context-specific.
Overall, these improvements yield the first price-finding algorithms that are fully polynomial in
the size of the bid lists.

Theorem 5. The steepest descent approach takes time O(n2|B|2 logM+n|B|T (n)) and O(n2|B|3+
n|B|T (n)) with the binary search and demand change long step methods, respectively.

The computation time of the steepest descent method, even with long steps, is dominated
by the task of finding a component-wise minimal submodular minimiser. In practice, we can
exploit our knowledge of the bids to decrease the dimensionality of the submodular function
to be minimised, which leads to performance improvements. For full details on these practical
improvements, and on the ‘unit-step’ and ‘long-step’ steepest-descent methods for computing
market-clearing prices in the bidding-language setting, we refer to Appendix B.

4 Allocations to the separate bidders.

Suppose we are given a market-clearing price p for target bundle t. We now present an algorithm
that solves the allocation problem, i.e. finds a partition (tj)j∈J of the target bundle t such that tj

is demanded by bidder j at price p. We note that while the market-clearing price p returned by
our steepest descent approach in Section 3 is component-wise minimal, our allocation algorithm
works for any integral market-clearing price.

Algorithm 1 Allocate
1: Input: Initial allocation problem A.
2: Output: Target bundle allocation.
3: Allocate all non-marginal bids by applying NonMarginals (Algorithm 3).
4: while A has a non-empty bid list do
5: Run the FindParams subroutine (Algorithm 2).
6: if FindParams returns a demand cluster (I, j∗) with at most one link good i∗ then
7: Process unambiguous marginal bids with UnambiguousMarginals (Algorithm 4).
8: else
9: Simplify the allocation problem with ShiftProjectUnshift (Algorithm 5).

10: Allocate all (newly) non-marginal bids with NonMarginals (Algorithm 3).
11: return the partial allocation bundle mj for each bidder j ∈ J .

Our algorithm Allocate, stated in Algorithm 1, repeatedly simplifies the problem until it
becomes vacuous. It generates a sequence of allocation problems by iteratively allocating parts
of the target bundle to bidders and removing satisfied bids from the bid lists until the residual
supply bundle (initially the target bundle) is empty. In order to capture this formally, we define
a generalised allocation problem in Section 4.1; the definition introduces a weaker notion of local
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validity for bid lists and also features a partial allocation bundle for each bidder as well as a re-
sidual target bundle. With every allocation problem we associate a corresponding marginal bids
multigraph and derived graph. These graphs, and key terminology such as demand clusters and
link goods, are defined in Section 4.2. The marginal bids multigraph is used to quantify progress
and establish the running time of the algorithm, while the derived graph is required for Al-
locate to decide whether to apply the UnambiguousMarginals or ShiftProjectUnshift
procedure.

The algorithm starts by removing all non-marginal bids and transferring their demanded
items from the residual supply to the partial allocation bundle of the bid’s owner. This is
performed by the procedure NonMarginals, which is defined in Section 4.3. Next, the al-
gorithm calls the FindParams subroutine (defined in Section 4.2), which constructs and works
on the derived graph. If FindParams identifies a subset of marginal bids that can be alloc-
ated unambiguously, Allocate invokes UnambiguousMarginals (defined in Section 4.3) to
process these bids. Otherwise FindParams identifies parameters that Allocate uses to call
the ShiftProjectUnshift procedure. ShiftProjectUnshift is defined in Section 4.4; it
does not allocate items and delete bids but instead simplifies the allocation problem by shift-
ing and projecting the bids in order to strictly reduce the demand ties between bids. Finally,
NonMarginals is invoked again to process any bids that may have become non-marginal. The
algorithm repeats this process until the allocation problem become vacuous in the sense that all
bid lists are empty, at which point the partial allocation bundles constitute a valid allocation of
the target bundle t at prices p. Section 4.5 gives the running time and a proof of correctness
for Allocate.

4.1 The generalised allocation problem.

We now introduce allocation problems formally and define the terminology and technical tools
required to reason about how Allocate successively reduces the initial allocation problem
using the three procedures NonMarginals, UnambiguousMarginals and ShiftProject-
Unshift. In general, we note that applying these procedures may result in bid lists that are
no longer valid in the sense of Theorem 1. (Figure 5 in Section 4.3 gives an example of how
applying NonMarginals can result in an invalid bid list.) Instead, we introduce the notion of
local validity that requires bid lists to be valid only in the neighbourhood of the market-clearing
price p. For prices p in this neighbourhood, we can define the demand correspondence DB(p)
in the same way as for globally valid bid lists. Let B(p, ε) := {y ∈ Rn | ‖y − p‖∞ < ε} denote
the open ball with regard to the L∞-norm.

Definition 3. We say that a set of bids B is (locally) valid at p if there exists an open, convex
neighbourhood P of p that satisfies the following equivalent criteria.

1. The indirect utility function fB restricted to P is convex.

2. There is no price vector p ∈ P and pair of goods i, i′ ∈ [n]0 at which the weights of the
bids marginal on i and i′ sum to a negative number.

For a set of bids B that is valid at p, define DB(p) to be the discrete convex hull of bundles
demanded at UDRs adjacent to p. If P = B(p, ε) for some ε > 0, we say that B is ε-valid at p.

Proposition 6. The two criteria in Definition 3 are equivalent.

The proof is given in Appendix D.2.

Definition 4. An allocation problem is a 4-tuple A = [p, (Bj)j∈J , (mj)j∈J , r], where

1. p ∈ Rn+1 is a price vector with p0 = 0,
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2. for each bidder j ∈ J , Bj is a list of bids in {0} ×
(
Z + {0, 1

10}
)n × Z that is locally valid

at p,

3. mj ∈ Zn+1
+ for each j ∈ J is the partial allocation,

4. r ∈ Zn+1
+ is the residual supply,

and there exists a valid allocation (rj)j∈J of the residual supply r to bidders, i.e. rj ∈ DBj (p)
and

∑
j∈J r

j = r. For any such valid allocation, we say that tj := rj + mj is a solution to A.

Note that the bids need not be integral and the bid lists for the bidders are only required to
be locally valid at p. The intuition behind this definition is to capture the action of successively
allocating items of the target bundle t to bidders, which may break global validity but preserves
local validity at p. For each bidder j ∈ J , the partial allocation mj is a bundle denoting the
subset of t already allocated to j, while r denotes the remaining part of t not yet allocated
to any bidder. The 0-th coordinates of mj and r denote the number of reject goods (not yet)
allocated.

Definition 5. We say that A′ is a valid reduction from A if A′ is an allocation problem and all
solutions to A′ are also solutions to A.

In the initial problem, the residual supply is given by the target bundle and the partial
allocation vectors are 0. Note that t0 denotes the total number of rejected bids and can be
computed as the total weight of bids minus the total number of items in t. In the vacuous
problem, the bid lists are empty and the residual supply is 0.

Technical tools. The following observations and lemma will be used in Section 4.4 to prove
that applying the procedure ShiftProjectUnshift to an allocation problem A produces an
allocation problem that is a valid reduction from A. We define the surplus gap of a bid b at p
as the difference between the utility derived from a demanded good and the maximum utility
derived from a non-demanded good. This allows us to describe the goods that b demands when
we perturb the price or the bid by a small amount. Moreover, we see in Lemma 9 that the size
of the neighbourhood around p in which a bid list is valid can be lower bounded by the surplus
gaps of the bids in B. Formally, let I = arg maxi∈[n]0 bi − pi denote the goods demanded by b
at p. Then if I 6= [n]0, we define the surplus gap of b at p as

max
i∈[n]0

(bi − pi)− max
i∈[n]0\I

(bi − pi).

Observation 7. If bid b demands goods I at p with a surplus gap of at least ε, then for any
price p′ ∈ B(p, ε/2), the goods I ′ demanded by b at p′ form a subset of I.

Observation 8. If bid b demands goods I at p with a surplus gap of at least ε, then for any bid
b′ ∈ B(b, ε/4) and price p′ ∈ B(p, ε/4), the goods I ′ demanded by b′ at p′ form a subset of I.

Lemma 9. If B is δ-valid at p for some δ > 0 and all bids in B have a surplus gap of at least ε
at p, then B is ε/2-valid at p.

Proof. We show that fB is convex on B(p, ε/2) by verifying that it satisfies midpoint convexity.
Note that fB is linear on the line segment connecting p to q, for any q ∈ B(p, ε/2). Indeed, fB
is the sum of terms w(b) maxi∈[n]0(bi−pi) and it suffices to show that each term is linear. Hence
fix b and define h(p) = w(b) maxi∈[n]0(bi − pi) as well as r = θp + (1− θ)q. By Observation 7,
the goods demanded by b at q, r and p satisfy Iq ⊆ Ir ⊆ Ip. Hence, for any i∗ ∈ Iq, we have
h(p) = w(b)(bi∗ − pi∗) = θh(p) + (1 − θ)h(q). Now fix q, q′ ∈ B(p, ε/2) and choose θ > 0 so
that r = θp + (1 − θ)q, r′ = θp + (1 − θ)q′ and (r + r′)/2 are in B(p, δ). As fB is convex
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(a) A marginal bids multigraph.

6 {1, 5, 6}, A 1 {1, 2}, C

{5, 6}, C 5 {1, 2, 5}, B 2 {2, 3, 4}, A

(b) A derived graph.

Figure 4: Example of a marginal bids multigraph (a) and derived graph (b) with three bidders A,B,C
and six goods 1, . . . , 6. Goods 1, 2, 5, 6 are link goods. Goods 2, 3, 4 form a demand cluster ({2, 3, 4}, A)
with one link good, represented by a leaf demand cluster in the derived graph (bolded in both graphs).

on B(p, δ), by assumption, we have f
(
1
2(r + r′)

)
≤ 1

2f(r) + 1
2f(r′). Secondly, we have f(r) =

θf(p) + (1− θ)f(q), f(r′) = θf(p) + (1− θ)f(q′) and f(12(r+r′)) = θf(p) + (1− θ)f(12(q+q′))
due to the linearity of fB on the line segments connecting p to q, q′ and (q+q′)/2 . This implies
midpoint convexity, f

(
1
2(q + q′)

)
≤ 1

2f(q) + 1
2f(q′).

4.2 The marginal bids graph and the derived graph.

With every allocation problem A we associate a marginal bids multigraph and a derived graph.
As mentioned above, the marginal bids multigraph allows us to provide upper bounds on the
running time of our allocation algorithm. Moreover, in order to decide whether to apply
UnambiguousMarginals or ShiftProjectUnshift and to determine the input parameters
for these procedures, our Allocate algorithm calls the subroutine FindParams, defined in
this section, which first constructs the derived graph and then attempts to find a maximal open
or closed path in this graph.

Definition 6. The marginal bids graph GA associated with allocation problem A is an undir-
ected edge-labelled multigraph whose vertices are the goods [n]0 (including the ‘reject’ good).
GA has an edge (i, i′) labelled with j if bidder j has a bid that is marginal at p between i and i′.

For any bidder j, let GA[j] denote the subgraph of GA induced by all j-labelled edges; note
that this graph is simple, as there is at most one edge labelled j connecting two goods i and i′ in
GA. A pair (I, j) with I ⊆ [n]0 and j ∈ J is a demand cluster if I is the set of vertices of some
connected component of GA[j]. Intuitively, this captures the dependencies between the demands
of (and thus the possible allocations to) bidder j’s bids. A vertex is a link good if its incident
edges are labelled with more than one bidder. (Effectively, a link good expresses a dependency
between demand clusters of different bidders.) We call a cycle in GA a multi-bidder cycle if it
contains edges labelled by different bidders. A vertex in such a cycle is called a cycle-link good if
its two edges in the cycle are labelled differently. Note that any multi-bidder cycle has at least
two cycle-link goods. Like link goods, multi-bidder cycles and their cycle-link goods capture the
dependencies between demands of (and thus possible allocations to) different bidders.

Definition 7. The derived graph DA associated with allocation problem A is a simple bipartite
graph whose two disjoint and independent vertex sets are the set of link goods and the set of
demand clusters of GA. There is an edge between link good i and demand cluster (I, j) if i ∈ I.

Note that by the definition of link goods, every link good is adjacent to at least two demand
clusters in the derived graph. This is consistent with our observation that a link good can be
interpreted as a link between connected components of GA[j] for different bidders j. Figure 4
gives an example of a marginal bids multigraph and its corresponding derived graph.

We describe a procedure to construct the derived graph in near-linear time O(α(n)n|B|)
using a disjoint-union data structure. Here α(·) is the inverse Ackermann function, which grows
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extremely slowly and is near-constant in our context, as α(n) ≤ 4 for any n ≤ 22
22

16

. The
disjoint-union data structure (cf. Tarjan and van Leeuwen [1984]) maintains a representation of
a set partition and admits a α(n)-time operation to merge two subsets of the partition. Internally,
it assigns a distinct label to each subset of the partition and provides α(n)-time access to the
label of the subset in which a given element lies.

First we show how to compute the demand clusters for each bidder. Fix a bidder j and
initialise the disjoint-union data structure. For each bid b ∈ Bj , compute the marginal goods S
at prices p and, fixing any i ∈ S, merge the sets containing i and i′ for all i′ ∈ S \ {i}. Now
the data structure has learnt the vertex partition induced by the connected components of GA
in time O(α(n)n|Bj |). In order to recover this partition and express it as a family of sets, we
initialise an empty family K of sets, where each set in K will have an associated label. For each
good in i ∈ [n], determine the label l of i’s subset in the data structure. If there already is a
set in K with label l, add i to this set. Otherwise, add the new singleton set {i} with label l
to K. Finally, iterate through K and delete all singleton sets. This takes time O(α(n)n). Now K
represents the family of demand clusters of bidder j. Hence in total it takes time O(α(n)n|B|)
to compute the demand clusters for all bidders.

In order to compute the link goods, iterate through the demand clusters of all bidders and
count the number of times each good appears. If a good appears at least twice, it is a link
good. Once we know which good is a link good, we can compute the edges of the derived graph:
for each demand cluster (I, j), add an edge between (I, j) and each link good in I. Iterating
through the demand clusters of all bidders takes O(nm) = O(n|B|) time.

The FindParams subroutine. In every iteration, the Allocate algorithm employs a
subroutine to decide, using the derived graph, whether to invoke UnambiguousMarginals
or ShiftProjectUnshift, and to compute the input parameters for the respective procedure.
This subroutine FindParams, given in Algorithm 2, takes as input an allocation problem and
returns one of three possible outputs: a demand cluster (I, j) with no link goods, a demand
cluster (I, j) with one link good denoted i∗, or a cycle-link good i∗ and the label j∗ of one of
its incident edges in the multi-bidder cycle. The Allocate algorithm invokes Unambiguous-
Marginals if FindParams returns a demand cluster and ShiftProjectUnshift if it returns
a cycle-link good and edge label.

FindParams works by walking through the graph to find a maximal path. A path in a
graph is a sequence of distinct vertices v1, . . . , vk such that vi and vi+1 are connected by an edge
for all i ∈ [k− 1]; it is maximal if we cannot extend the path with any vertex vk+1. We say that
the path is closed if there is an edge between v1 and vk, and open otherwise. (Hence a closed
path is a cycle.)

Algorithm 2 FindParams
1: Compute the derived graph DA.
2: if DA contains an isolated demand cluster then
3: return this demand cluster (without a link good).
4: Starting from any link good, take a walk in DA to find a maximal path that alternates

between link good and demand cluster vertices (without revisiting edges).
5: Let i∗ and (I, j∗) be the last link good and demand cluster visited, respectively.
6: if the path is open then
7: return (I, j∗) and i∗.
8: else
9: return i∗ and j∗.

16



p1

p2

2 4 6

2

4

6

(0, 1)

(0, 0)

(a) Alice’s bid list after applying NonMarginals.
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(b) Bob’s list after applying NonMarginals.

Figure 5: The resulting bid lists after applying NonMarginals (Algorithm 3) to Alice’s and Bob’s bid
lists from Figure 2 at prices p = (6, 4) (marked by a cross). Note that Alice’s bid list remains globally
valid, whereas Bob’s bid list is only locally 2-valid at p (indicated by the hatched square).

Lemma 10. In time O(α(n)n|B|), FindParams returns a demand cluster (I, j∗) with no link
goods, a demand cluster (I, j∗) with one link good i∗, or a cycle-link good i∗ and the label j∗ of
one of its incident edges in the multi-bidder cycle.

Proof. Note that any path has length at most 2n. Hence constructing the derived graph, which
takes time O(α(n)n|B|), dominates the running time. By construction of the derived graph,
an isolated demand cluster in DA contains no link goods, while a leaf demand cluster contains
exactly one link good. Hence if there is an isolated demand cluster, the subroutine returns
a demand cluster without a link good. If the path found is open, the last vertex must be a
leaf demand cluster and the subroutine returns a demand cluster with single link good. Now
suppose the path is closed and consider only the cycle formed by alternating link good and
demand cluster vertices. Firstly, note that there is a path between consecutive link goods in the
marginal bids graph GA using only j-labelled edges. Secondly, consecutive demand clusters have
different bidder labels. These two observations imply that GA contains a simple multi-bidder
cycle with cycle-link good i∗ and an incident edge labelled with j∗.

4.3 Allocating unambiguous bids.

Non-marginal bids. Suppose bidder j has a non-marginal bid b at market-clearing prices p
that demands good i ∈ [n]0 in the allocation problem A. Then this bid contributes exactly
w(b) ∈ {−1, 1} items of good i to any solution of A. Hence we can unambiguously allocate these
items to mj and remove them from the residual supply r, thus accepting the non-marginal bid
on the appropriate good. NonMarginals, given in Algorithm 3, processes all non-marginal
bids in this way. Note that while this operation may not preserve global validity of bid lists,
the resulting lists remain locally valid at p, so that the result is a valid allocation problem.
Figure 5 gives an example. Allocate calls NonMarginals in every iteration in order to
process non-marginal bids that can be allocated unambiguously.

Lemma 11. Given a valid allocation problem A, NonMarginals (Algorithm 3) outputs a
reduction A′ of A in linear time. Moreover, we have GA = GA′ .

Proof. Let A′ = [p, (Bj)′j∈J , (mj)′j∈J , r
′] be the output of NonMarginals. First we show

that A′ is a valid allocation problem. Fix some j ∈ J . Since Bj is locally valid by assumption,
the indirect utility function fBj is convex in some small neighbourhood of p. Allocating a non-
marginal bid to bidder j corresponds to subtracting from the utility function fBj (q) the term
maxi∈[n]0(bi− qi). In a sufficiently small neighbourhood of p, this term is linear, so the resulting
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Algorithm 3 NonMarginals (accept non-marginal bids)

1: Input: Allocation problem A = [p, (Bj)j∈J , (mj)j∈J , r].
2: Output: Reduced allocation problem A′ without non-marginal bids.
3: for all bidders j ∈ J do
4: for all non-marginal bids b ∈ Bj do
5: Determine unique good i demanded by b and remove b from Bj .
6: Increment mj

i by w(b).
7: Decrement ri by w(b).

utility function is also convex in some open neighbourhood of p. It is straightforward to see that
(tj)j∈J is a solution to A′ if and only if it is a solution to A, so A′ is a reduction of A. To see
that GA = GA′ , note that the marginal bids are unchanged.

Unambiguous marginal bids. Let A be an allocation problem without non-marginal bids
and suppose FindParams returns a demand cluster (I, j) with at most one link good. Unambiguous-
Marginals is invoked by Allocate to unambiguously allocate the bids specified by this de-
mand cluster. By the definition of a demand cluster, none of bidder j’s bids are marginal
between items in both I and [n]0 \ I. Let BjI denote the bids marginal on goods in I. All bids
b ∈ BjI contribute an item of a good in I to bidder j’s final allocation bundle, while all other
bids contribute an item of a good not in I.

If the demand cluster (I, j) has no link goods, none of the bids by bidders other than j are
marginal on I, so all items of goods i ∈ I in the residual supply must be allocated to j. Hence we
reduce our allocation problem by transferring ri items from the residual supply r to bidder j’s
partial allocation bundle mj for each i ∈ I and removing all bids marginal on items in I from
Bj .

If the demand cluster (I, j) has a single link good i∗, all items of goods in I \ {i∗} must be
allocated to j by the same argument as above. Secondly, the bids in BjI must be allocated a
total of

∑
b∈BjI

w(b) units of goods from I. Hence the difference
∑

b∈BjI
w(b)−

∑
i∈I\{i∗} ri gives

us the number of items of i∗ that must be allocated to bidder j. This yields Algorithm 4.

Algorithm 4 UnambiguousMarginals (process all unambiguous marginal bids)

1: Input: Allocation problem A = [p, (Bj)j∈J , (mj)j∈J , r] and demand cluster (I, j) with at
most one link good i∗.

2: Output: Valid reduction A′ of A with no bids marginal on goods in I.
3: if (I, j) has no link goods then
4: for all i ∈ I do
5: Increment mj

i by ri and set ri to 0.
6: else
7: Compute d =

∑
b∈BjI

w(b)−
∑

i∈I\{i∗} ri.

8: Increment mj
i∗ by d and decrement ri∗ by d.

9: for all i ∈ I \ {i∗} do
10: increment mj

i by ri and set ri to 0.
11: Remove all bids marginal on I from Bj .

Lemma 12. UnambiguousMarginals, given in Algorithm 4, returns a valid reduction of the
input allocation problem in time O(n|Bj |). Moreover, the marginal bids graph GA′ of A′ has
strictly fewer edges than GA.
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Proof. In order to see that A′ is a valid allocation problem, we verify that the new bid list (Bj)′
of bidder j after applying UnambiguousMarginals is locally valid by checking criterion (2)
of Definition 3. Fix a price p and goods i, i′. Recall that bids in Bj cannot be marginal on goods
in I and [n]0 \ I, by the definition of key lists. If i ∈ I and i′ ∈ [n]0 \ I, then Bj has no bids
marginal on i and i′. If both i, i′ are goods in I, all bids marginal on i and i′ are removed by
UnambiguousMarginals. If neither i nor i′ is a good in I, then none of the bids marginal
on i and i′ are removed. As Bj is locally valid by assumption, this implies that (Bj)′ is also
locally valid. It is straightforward to see that a solution to A′ is a solution to A, as the partial
allocation performed by UnambiguousMarginals is unambiguous. Finally, let i, i′ ∈ I and
note that the marginal bids graph GA contains an edge between i and i′ that is not present
in GA′ . As removing bids does not introduce new edges to the graph, GA′ has strictly fewer
edges.

4.4 The shift-project-unshift reduction.

Suppose that FindParams returns a cycle-link good i∗ and the label j∗ of one of its adjacent
edges in the cycle. In this case Allocate invokes the ShiftProjectUnshift procedure
to obtain a reduction. Unlike NonMarginals and UnambiguousMarginals, this procedure
does not make progress by allocating items and deleting the satisfied bids. Instead, it temporarily
shifts the bids of bidder j∗ and perturbs the market-clearing price p using SFM. We show that
the marginal bids graph for this new allocation problem has strictly fewer edges, reducing the
overall dependencies between the demands of bids. Finally, the procedure projects the bids of
bidder j∗ in such a way that it can unperturb the market-clearing price while retaining the
dependency structure of the new marginal bids graph. We now introduce the shift and project
operations.

Shifting bids. Suppose all bids are integral and we shift some bidder’s bids by a small quantity
ε < 1/4 (we use ε = 1/10 for concreteness) in the direction of i by adding εei to each bid vector.
Then Lemma 13 and Proposition 14 (proved in Appendix D.3) together show that we can use
SFM to find a price pε ∈

{
p + εeS , S ⊆ [n]

}
, at which the new allocation problem A′ with

shifted bids and price vector pε is a valid reduction.

Lemma 13. Fix ε with |ε| < 1/4, as well as i ∈ [n] and j ∈ J . Let A be an allocation
problem with integral bids and prices, and let A′ be obtained by replacing Bj with (Bj)′ :={
b + εei | b ∈ Bj

}
. Then the bid lists of all bidders in A′ are locally valid at any price pε ∈

B(p, ε). Moreover, the bundles demanded by any bidder at pε in A′ form a subset of the bundles
they demand at p in A.

Proof. As the bids and prices in A are integral, each bid either demands all goods [n]0 or has a
surplus gap of at least 1 at p. By Lemma 9, all bid lists are 1/2-valid at p. This implies that
every unshifted bid list is (1/2− ε)-valid at pε and the shifted bid list is (1/2− 2ε)-valid at pε.
By Observations 7 and 8, a non-marginal bid demands the same good for all q ∈ B(pε, δ) and
sufficiently small δ > 0. Hence a bidder will demand the same set of bundles at all non-marginal
prices in B(pε, δ). As the bundles a bidder demands at pε are by definition the discrete convex
hull of bundles they demand at non-marginal prices infinitesimally close to pε, we are done.

Proposition 14. Let A be an allocation problem with price vector p and fix ε with |ε| < 1/4. If
we shift bidder j’s bids by ε, there exists a price pε ∈

{
p± εeS , S ⊆ [n]

}
, at which the residual

supply r is demanded. We can determine pε using submodular minimisation of the Lyapunov
function g with regard to the aggregate bid list and the residual supply r.
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Projecting bids. Next we define a projection operation on bids. The idea of this operation
is to modify a bid b so that its surplus gap at p is increased. As a consequence, if that bid
or the price is perturbed slightly, it ‘remembers’ its preferred goods. Let b be a bid and I =
arg maxi∈[n]0(bi − pi) be the set of demanded goods at price p. The projection b′ of b w.r.t. p
is defined as follows.

b′ :=

{
b− e[n]0\I if 0 ∈ I,
b + eI otherwise.

Note that we allow for bid vector entries to be negative. Figure 6 illustrates the projection
operation.

Observation 15. If bid b demands all goods [n]0, we have b′ = b. Otherwise, the projection
operation on b w.r.t. p increases the bid’s surplus gap at p by 1.

Lemma 16. Projecting all bids in a bidder’s bid list B w.r.t. p does not change the set of bundles
demanded at p. Moreover, if B is locally valid at p, the projected bid list is locally 1/2-valid.

Proof. Suppose all bids in B have a surplus gap of at least ε at p and B is locally δ-valid at p.
Note that at any price q in the open ball B(p, ε) centred at p, every bid demands the same set of
goods before and after projecting. Hence the projected bid list is locally min{δ, ε}-valid at p, and
the set of bundles demanded at p, consisting of the discrete convex hull of bundles demanded
in UDRs bordering p remains the same. The second statement follows from Observations 9
and 15.
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(a) Five numbered bids before projecting.
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(b) The result of projecting w.r.t. prices p = (4, 4).

Figure 6: Example of the project operation w.r.t. prices p = (4, 4) on five bids numbered from 1 to 5
shown in (a). The projected bids are shown in (b). Note that only the negative bid is unchanged, as it
demands all goods, including the reject good.

The procedure. The procedure ShiftProjectUnshift is stated in Algorithm 5. It shifts
and projects to reduce the number of edges in marginal goods graph. This effectively reduces
the number of demand ties among the bids in our allocation problem. Lemmas 17 (proved in
Appendix D.4) and 18 establish that the reduction obtained by ShiftProjectUnshift is valid
and makes progress.

Lemma 17. The marginal bids graph GA′ of A′ has strictly fewer edges than GA.

Lemma 18. ShiftProjectUnshift, given in Algorithm 5, returns a reduction A′ of A in
time O(T (n) + n|B|), where T (n) is the time it takes to minimise an n-dimensional submodular
function.
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Algorithm 5 ShiftProjectUnshift

1: Input: Allocation problem A = [p, (Bj)j∈J , (mj)j∈J , r], cycle-link good i∗ and edge label
j∗.

2: Output: Allocation problem A′.
3: Add 1

10e
i∗ to each of j∗’s bids and compute a new market-clearing price pε = p + 1

10e
S∗ by

solving S∗ = arg minS⊆[n] gr(p± 1
10e

S) using SFM.
4: Project every bid set w.r.t. pε.
5: Subtract 1

10e
i∗ from each of j∗’s bids and reset price to p.

Proof. Let A′ and A′′ denote the allocation problems after executing lines 3 and 4, respectively.
First we show that A′ is a reduction of A. Indeed, by Proposition 14 and Step 1, the residual
bundle r is aggregately demanded at pε in A′. Furthermore, for any allocation (rj)j∈J =
(tj−mj)j∈J of the residual bundle r at price pε in A′, Lemma 13 implies that (mj +rj)j∈J is a
solution of A. Secondly, Lemma 16 implies that A′′ is a reduction of A′. Finally, after line 5, the
bid lists are locally valid at p by Lemma 13. Proposition 14 implies that the residual bundle r
is demanded at some price p′ ∈

{
pε ± εeS | S ⊆ [n]

}
. Note that if a bundle is demanded at p′,

it is also demanded at [p′] due to the structure of our integral bid vectors, where [·] denotes the
operation of rounding each component to the nearest integer. As [p′] = p, the result follows.

4.5 The main algorithm.

The algorithm Allocate, stated in Algorithm 1 above, combines the procedures NonMarginals,
UnambiguousMarginals and ShiftProjectUnshift in order to solve the allocation prob-
lem described in Section 2.4. Recall that it uses FindParams as a subroutine to decide whether
to call UnambiguousMarginals or ShiftProjectUnshift in each iteration of the loop.
Theorem 19 proves correctness and gives a running time bound for Allocate. We note that
this bound is likely to be pessimistic.

Theorem 19. Allocate solves the allocation problem in time O
(
n2|J |(α(n)n|B|+ T (n))

)
,

where T (n) is the time required to minimise an n-dimensional submodular set function.

Proof. By construction, the marginal bids graph of the initial allocation problem has at most
|J |
(
n+1
2

)
edges. Every call to UnambiguousMarginals or ShiftProjectUnshift strictly

reduces the number of edges (by Lemmas 12 and 17). Hence after at most |J |
(
n+1
2

)
iterations of

Step 2, the marginal bids graph of the current allocation problem is an empty graph, implying
that there are no more marginal bids. In particular, at this point a single call to NonMarginals
allocates all remaining non-marginal bids and returns a vacuous allocation problem. As all
three procedures NonMarginals, UnambiguousMarginals and ShiftProjectUnshift
return a reduction in the sense of Definition 5, the solution to the final vacuous allocation
problem is also a solution to the original allocation problem. To see the running time guarantee,
note that FindParams and the procedures NonMarginals, UnambiguousMarginals and
ShiftProjectUnshift are each called at most |J |

(
n+1
2

)
= O(n2|J |) times, and FindParams

dominates NonMarginals and UnambiguousMarginals.

Incorporating priorities. The FindParams subroutine as stated in Section 4.2 is not fully
specified, and different implementations may lead to different inputs for UnambiguousMarginals
or ShiftProjectUnshift when given the same allocation problem. If the input for Shift-
ProjectUnshift depends on the implementation used, ties may be broken differently and thus
the target bundle is allocated differently among the bidders.

In order to control which input for ShiftProjectUnshift is returned, we propose the use
of a priority list consisting of a permutation of all good-bidder pairs (i, j) ∈ [n]0×J . The priority
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list can be chosen to favor certain types of bidder; for example, if it is considered desirable to
bring ‘small’ bidders (having low demand) into the market, we can prioritise their bids, making it
slightly more likely that they will be allocated. Moreover, the list may be given as an additional
input parameter at the start of Allocate or be generated and updated dynamically as Alloc-
ate runs. The subroutine FindParams is replaced by PriorityParams, which returns the
highest pair (i, j) in the priority list that constitutes a valid input to ShiftProjectUnshift,
or an input to UnambiguousMarginals if no such pair exists. Recall that a pair (i, j) is a
valid input for ShiftProjectUnshift if i is a cycle-link good in some multi-bidder cycle and
j is the label of one of its edges in this cycle. This is the case if the derived graph DA has a
cycle containing the edge from i to the demand cluster (I, j) satisfying i ∈ I. For any (undirec-
ted) graph G and edge vw, one can check whether G has a cycle containing vw by determining
whether its endpoints v and w are connected in the graph G − vw obtained by deleting vw,
using breadth first search (BFS). This implies the following subroutine.

Algorithm 6 PriorityParams
1: Compute the derived graph DA.
2: for all pairs (i, j) in the priority list do
3: if i is a link good and i ∈ I for some demand cluster (I, j) then
4: Check whether the edge from i to (I, j) lies in a cycle by temporarily removing the

edge and verifying (using BFS) whether the two endpoints are still connected in the graph.
5: return (i, j) if the edge lies in a cycle.
6: return some leaf demand cluster (I, j) and the adjacent link good i.

To see that PriorityParams is well-defined, note that the priority list is a permutation of
all possible pairs (i, j). Hence if the derived graph contains a cycle, the subroutine will return
it, otherwise there exist at least two leaves for Step 2 to choose from. In practice, we can prune
the priority list dynamically by removing pairs (i, j) once i is no longer a link good. This is
possible because UnambiguousMarginals and ShiftProjectUnshift do not add edges to
the derived graph, and so a good cannot become a link good again at some later point.

5 Conclusions and further work.

This paper has provided a practical process for running auctions in which bidders can ex-
press strong substitutes preferences using positive and negative bids. Previous work has shown
[Baldwin and Klemperer, 2021] that all strong substitutes preferences can be represented using
appropriate combinations of these bids. Although the coNP-completeness result we showed in
Section 2.3 indicates that, at least in high dimensions, some restrictions may be needed on the
allowed sets of bids, useful sub-classes of collections of bids are easily checkable for validity in
practice, and can be checked offline, bidder by bidder, prior to the auction.

Our use of the product-mix auction’s bidding language (by contrast with previous authors’
usage of an abstract oracle) facilitates computing allocations as well as prices. One question for
future research is whether we can also exploit the information provided by the bidding language
to improve the computational efficiency of the pre-existing submodular function minimisation
subroutine that both our price-finding and allocation algorithms use. Another obvious question
is the extent to which our methods can be extended to broader classes of valuations.
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A Experiments.

In order to evaluate the practical running time of our allocation algorithm, we run experiments
on various numbers of goods, bidders and bids. We use our own Python implementation of
the product-mix auction, available at https://github.com/edwinlock/product-mix. Some
effort was made to optimise for speed by exploiting fast matrix operations provided by the
NumPy package [van der Walt et al., 2011]. Furthermore, in an effort to implement submodular
minimisation efficiently, the Fujishige-Wolfe algorithm was implemented in combination with a
memoization technique to reduce the number of submodular function queries.
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A.1 Generating test data.

We describe a procedure to generate a valid list of positive and negative bids at points within the
lattice [M ]n and a bundle x that is demanded in aggregate by these bids at prices p = 1

2Me[n]

in the centre of the lattice. In our experiments, we fix M = 100. The bids are generated in
such a way that for parameter q at least q bids are marginal between two or more goods at p
and we pick x such that p is the component-wise minimal market-clearing price vector. For any
permutation π of [n], let pπ = p+

∑
i∈[n]

ε
2ie

π(i) for some ε < 0.1. Note that a unique bundle is
demanded at pπ for any permutation π.

Algorithm 7 GenerateList(n,M,q)
1: Initialise: Empty bid list b and bundle x = 0.
2: Repeat the following q times:
3: Pick a subset S of goods with |S| ≥ 2 from [n]0 and flip a fair coin.
4: if the coin lands on heads then
5: Pick a positive bid that is marginal on goods S at p and add it to B.
6: Pick any good i ∈ S uniformly at random and increment xi by one.
7: else
8: Generate a negative bid b that is marginal on goods S at p, as well as the following three

positive bids.
9: Pick two goods i, j ∈ [n] and add a bid at points b − λie

i and b − λje
j for some

1 ≤ λi ≤ bi − 1 and 1 ≤ λj ≤ bj − 1.
10: Add a bid at b + λ1 for some 1 ≤ λ ≤ mini∈[n]M − bi.
11: Pick a permutation π of [n] and increment x by the bundle aggregately demanded at pπ

by the four bids just generated.
12: if p is the component-wise minimal market-clearing price vector of x then
13: return B.
14: else
15: Repeat the algorithm.

Generated in this way, every bid list has 2.5q bids in expectation. The procedure Gener-
ateList is repeated for each bidder, so the total number of bids generated is B = 2.5qm.

Lemma 20. The bid list generated by GenerateList is valid.

Proof. Note that the union of finitely many valid bid lists is again a valid bid list. Hence it suffices
to show that the list consisting of one negative bid b and three positive bids b− λiei, b− λjej
and b + λ1 is valid. To see this, apply Theorem 19 from the main paper.

A.2 Testing the algorithm.

We run Allocate on allocation problems with bid lists generated by GenerateList for dif-
ferent numbers of goods n, bidders m and bids B. It should be noted that, as expected, the
value of M has no discernable impact on the running time of the allocation algorithm and thus
can be fixed to M = 100. We perform three pairs of experiments in which we vary one of the
parameters n,m, q and fix the other two to realistic values.

1. For the first pair of experiments, we vary the average number of bids by running Gener-
ateList with values q = 20, 40, 60, . . . , 500. We fix the number of bidders to m = 5 and
the number of goods to n = 2 and n = 10, respectively.

2. For the second pair of experiments, we vary the number of goods from n = 10 to 50 in
steps of 5 and fix q to 50 and 100, respectively.

25



3. Finally, the last pair of experiments varies the number of bidders from m = 2 to m = 20
in steps of 1 with two goods n = 2, while the bid numbers are fixed by setting q to 50 and
100, respectively.

For each data point (n,m, q), 50 allocation problems with n goods, m bidders and 2.5q bids
per bidder (in expectation) are generated. The Allocate algorithm is then timed on each
allocation problem and the average over all 50 times is recorded.

A.3 Results.

The outcomes of the three pairs of experiments are shown in Figures 7 to 9. The experimental
data corroborates the running time bounds for Allocate given in Theorem 9: the algorithms
is linear in the number of bids and quadratic in the number of goods. Figure 9 suggests that
our algorithm runs in quadratic time on our generated allocation problems, which is in line with
our theoretical bound, as the total number of bids B = 2.5qm is linear in m. Overall, we see
that our allocation algorithm runs quickly even when presented with a large number of bids.

(a) Parameters: n = 2,m = 5,M = 100. (b) Parameters: n = 10,m = 5,M = 100.

Figure 7: Testing Allocate by varying the number B of bids for each bidder while keeping all other
parameters fixed. We increase q from 20 to 500 in steps of 20, fix the number of bidders at m = 5 and
set the number of goods to n = 2 (a) and n = 10 (b), respectively.

(a) Parameters: m = 5,M = 100, q = 50. (b) Parameters: m = 5,M = 100, q = 100.

Figure 8: Testing Allocate by varying the number n of goods. We increase n from 5 to 50 in steps
of 5, fix the number of bidders at m = 5 and M = 100 and set the number of bids to q = 50 (a) and
q = 100 (b), respectively.

B Finding market-clearing prices.

We discuss two iterative steepest descent algorithms, MinUp and LongStepMinUp, from
Shioura [2017] that determine a minimal minimiser of an L\-convex function. Both algorithms
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(a) Parameters: n = 2,M = 100, q = 50. (b) Parameters: n = 2,M = 100, q = 100.

Figure 9: Testing Allocate by varying the number m of bidders. We increase m from 2 to 20 in steps
of 1, fix the number of goods at n = 2 and set q to 50 (a) and 100 (b), respectively.

use the SFM subroutine described in Section 2 to find the component-wise minimal discrete
steepest descent direction. For the second algorithm, we present two methods of computing step
lengths and show that both methods yield a polynomial running time in our bidding-language
setting.

In order to apply the steepest descent method to our price-finding problem, we define a Lya-
punov function g and note in Proposition 21 that its restriction to Zn+ is L\-convex. Moreover,
Lemma 22 states that the lowest market-clearing price is integral and finding it reduces to de-
termining the minimal minimiser of g. This approach generalises an algorithm used by Ausubel’s
ascending auction design [Ausubel, 2006] and Gul and Stacchetti [2000] for the task of finding
equilibrium prices in single-unit markets.

Let B be a valid bid list. By Theorem 1, the function fB defined in (3) is the indirect utility
function fu of some strong substitutes valuation u. For any strong substitutes valuation u, the
Lyapunov function with regard to indirect utility function fu and target bundle t is defined as
gt(p) := fu(p) + t · p. We suppress the subscript t if it is clear from context. We can use our
knowledge of the bids in B and (3) to express gt for the list B as

gt(p) := fB(p) + t · p =
∑
b∈B

w(b) max
i∈[n]0

(bi − pi) + t · p. (6)

From (6) it is clear that we can evaluate g at any price p in time O(n|B|).
A function f : Zn → R is L\-convex if it satisfies the translation submodularity property,

f(p) + f(q) ≥ f((p− α1) ∨ q) + f(p ∧ (q + α1)) (∀p, q ∈ Zn+, ∀α ∈ Z+). (7)

Here, ∨ and ∧ denote the component-wise maximum and minimum, respectively.
The following proposition and lemma demonstrate that we can use algorithms for minimising

L\-convex functions to find the minimal price p∗ at which t is demanded.

Proposition 21 (Murota et al. [2013, 2016]). The Lyapunov function gt restricted to Zn+
is L\-convex.

Proof. It is known that the indirect utility function fu restricted to Zn is L\-convex if and only
if the valuation function u is strong substitutes (cf. Shioura and Tamura [2015, Theorem 7.1]).
Secondly, it is easy to verify that adding a linear term to an L\-convex function preserves L\-
convexity. As the bid list B is valid, we have fB = fu for some strong substitutes valuation u
and it follows that the function fB(p) + t · p is L\-convex.

Lemma 22. The Lyapunov function gt with regard to a valid (integral) bid list and any target
bundle t is convex, and p is a minimiser of g if and only if it is a market-clearing price for
target bundle t. Moreover, the minimal minimiser of g is integral.

27



Proof. The first statement is immediate from the fact that fB is convex and t · p is a linear
term. To see the second statement, note that for any market-clearing price p of target bundle t,
we have g(p) = u(t), whereas for any price p at which t is not demanded, we have g(p) =
maxx∈D(p)(u(p)− x · p) + t · p > u(t). Here u is the valuation function as defined in Section 2
and we use (2).

Finally, the integrality of the minimal minimiser of g follows from the fact that if t is
demanded at p, then t is also demanded at bpc. To see this, fix a bid b and note that if
b demands good i at p, it still demands i at bpc. Indeed, as b demands i at p, we have
bj − pj ≤ bi − pi for all goods j, which implies

bj − bpjc < bj − pj + 1 ≤ bi − pi + 1 ≤ bi − bpic+ 1.

Due to the integrality of the bids and prices in bpc, this implies bj − bpjc ≤ bi − bpic.

Let p be a point that is dominated by some minimiser of g. Shioura [2017] noted that p
minimises g if and only if g(p) ≤ g(p + eS) for every S ⊆ [n]. For any integral point p ∈ Zn+
and S ⊆ [n], let the slope function g′(p;S) := g(p + eS) − g(p) denote the amount by which
p decreases when moving in the direction of eS . If S minimises g′(p;S), we call eS a steepest
descent direction. For any integral vector p, the L\-convexity of g implies that g′(p;S) is an
integral submodular function [Shioura and Tamura, 2015, Theorem 7.2] and hence there exists
a unique component-wise minimal steepest descent direction eS0 .

Let p∗ be the minimal minimiser of g. If p is dominated by p∗ and we move in the minimal
steepest descent direction, the point p+eS0 is also dominated by p∗. This suggests Algorithm 8
(called GreedyUpMinimal in Shioura [2017]), which iterates a point p by moving by some
step eS0 , all the while remaining dominated by p∗, until p = p∗.

Algorithm 8 MinUp

1: Pick a point p ≤ p∗ (e.g. p = 0).
2: Find the inclusion-wise minimal set S0 ∈ [n] minimising g′(p;S).
3: if S0 = ∅ then
4: return p.
5: else
6: Set p = p + eS0 and go to line 2.

By the existence of the auctioneer’s reserve bids, we can initialise p to 0. For this starting
point, running time analysis by Murota and Shioura [2014] implies that 8 iterates exactly ‖p∗‖∞
times. As we know that p∗ is bounded from above by the component-wise maximum over all
bids B, the number of iterations is at most M := maxb∈B ‖b‖∞. In each iteration of Step 2,
we can determine S0 using the SFM subroutine described in Section 2 that finds a minimal
minimiser of a given function in time T (n). This leads to the following running time for MinUp.

Theorem 23 (cf. Murota and Shioura [2014]). The algorithm MinUp finds the component-
wise minimal market-clearing price in time O(MnT (n)), where T (n) denotes the time it takes
to find a minimiser of g′.

We note that the running times of the two practical SFM algorithms mentioned in Section 2
are given with respect to an upper bound on the absolute value of the objective function. In
order to provide such an upper bound for our slope function g′, observe that the two points p
and p + eS share a demanded bundle x, for any p and S ⊆ [n]. As every bid contributes at
most one item to t and x, this implies g′(p;S) = (t− x) · eS ≤ |B|.
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B.1 Longer step sizes.

The analysis by Murota and Shioura [2014] shows that MinUp performs optimally for an iterative
algorithm that is constrained to steps with an L∞-size of at most 1. As described by Shioura
[2017], we can, however, exploit monotonicity properties of the function g′(p;S0) in order to
increase step sizes without changing the trajectory of p as the algorithm runs. This reduces the
number of SFM subroutine calls, the most expensive part of the algorithm. In particular, if eS0

denotes the minimal steepest descent direction at p, we take a single long step λeS0 for some
λ ∈ Z+ that is equivalent to several consecutive steps of MinUp in the same direction eS0 .

We follow Shioura [2017] in choosing step length

λ(p, S0) = max{λ ∈ Z+ | g′(p;S0) = g′(p+ (λ− 1)eS0 ;S0)}, (8)

that is, the farthest distance we can move before the slope

g′(p + (λ− 1)eS0 ;S0) = g(p + λeS0)− g(p + (λ− 1)eS0)

in the direction of eS0 changes. We give two methods to compute (8) in Section B.1.1. This
leads to the following algorithm (referred to as GreedyUp-LS in Shioura [2017]).

Algorithm 9 LongStepMinUp

1: Pick a point p ≤ p∗ (e.g. p = 0).
2: Compute inclusion-wise minimal minimiser S0 ⊆ [n] of g′(p;S0) using SFM.
3: Determine λ(p, S0), as defined by (8), using a method from Section B.1.1.
4: if S0 6= ∅ then
5: Set p = p + eS0 and go to line 2.
6: return p.

Note that the values of p follow the same trajectory for MinUp and LongStepMinUp.
This is an immediate consequence of Lemma 25, which rests on the monotonicity properties of
g′(p, S0) stated in Proposition 24.

Proposition 24 (Shioura [2017], Theorem 4.16). Let S0 and S′0 be minimal steepest des-
cent directions at p and p + eS0 , respectively. Then we have

1. g′(p + eS0 ;S′0) > g′(p;S0) or

2. g′(p + eS0 ;S′0) = g′(p;S0) and S0 ⊆ S′0.

Lemma 25. Let S0 denote the minimal steepest descent at p and let λ(p, S0) be defined by (8).
Then eS0 is the minimal steepest descent at p + (λ− 1)eS0 for any 1 ≤ λ ≤ λ(p, S0).

Shioura [2017] bounds the number of iterations of LongStepMinUp as follows.

Theorem 26 (Shioura [2017], Theorem 4.17). The number of iterations of LongStep-
MinUp is at most nmax{−g′(0;S) | S ⊆ [n]}.

Note that 0 and eS0 share a demanded bundle x, so for any S ⊆ [n] we have

g′(0;S) = g(eS)− g(0) = fu(eS) + t · eS − fu(0) = (t− x) · eS ≥ −
∑
i∈[n]

xi ≥ −|B|,

as each bid contributes at most one unit to the demanded bundle. This implies that LongStepMinUp
takes at most n|B| iterations to find component-wise minimal equilibrium prices.
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B.1.1 Computing the step length.

Fix a price p and let eS0 be the component-wise minimal steepest descent direction at p. We
describe two methods to compute the step length defined by (8). The first method uses binary
search and is also suggested in Shioura [2017], while second method exploits our knowledge
of the bids to determine λ(p;S0). Note that we can evaluate g′(p;S0) in time O(n|B|), as
g′(p;S0) = g(p + eS0)− g(p).

Theorem 27. The LongStepMinUp algorithm in combination with the binary search and
demand change methods has a respective running time of O(n2|B|2 logM + n|B|T (n)) and
O(n2|B|3 + n|B|T (n)).

A description of the two methods, as well as a proof of this theorem, is provided below. Note
that as the two methods have different running time guarantees, the best method in practice is
context-specific.

Binary search. Note that λ(p;S0) can be bounded by the total number of unit steps in
MinUp, which in turn is bounded by M . By Proposition 24, we have that g′(p;S0) < g′(p +
λeS0 ;S0) implies g′(p;S0) < g′(p + λ′eS0 ;S0) for all λ′ > λ. Hence we can apply binary search
to find λ(p;S0) in time O(n|B| logM).

Demand change. Alternatively, we can exploit our knowledge of the individual bids to de-
termine λ(p;S0). We proceed by performing a demand-change procedure, which repeatedly
determines the highest value µ for which every bid b ∈ B demands the same goods (or a super-
set thereof) at prices p + µeS0 that it demands at p + eS0 and updates p to p + µeS0 .

Fix a bid b and let I denote the goods it demands at p. If I 6⊆ S0, then b demands the same
set of goods Ib = I \ S0 at all prices p+ µ′eS0 with µ′ ≥ 1. On the other hand, suppose I ⊆ S0.
We define µb := minj∈[n]0\S0

((bi− pi)− (bj − pj)), where i is any good in I, and consider the set
of goods that b demands at prices p + µ′eS0 with µ′ ≥ 1. If 1 ≤ µ′ < µb, then b demands I, if
µ′ = µb then b demands a superset of I and if µ′ > µb, then b demands none of the goods in I.
We define C to be the set of bids that demand a subset of S0 at p, and let µ(p, S0) := minb∈C µb.
Note that we can determine the value of µ(p, S0) in time O(n|B|).

The demand-change procedure takes as input a price p0 := p and direction eS0 , and consists
of the following steps. Initially, we set λ to 0. Compute µ(p, S0), and increment λ by µ(p, S0).
If we have λ = λ(p0, S0), return λ. Otherwise, increment p by µeS0 and repeat the above with
the same value for eS0 .

Note that in order to check whether λ = λ(p0;S0), we can compute g′(p0 + µeS0 ;S0) and
verify that g′(p0 + µeS0 ;S0) = g′(p0;S0), which takes time O(n|B|). Lemma 28 proves that the
demand-change procedure correctly computes the value of λ(p;S0) in time O(n|B|2).

Lemma 28. The demand-change procedure returns λ(p;S0) in at most |B| iterations.

Proof. Let K denote the number of iterations in the demand-change procedure and let pk, µk

and Ck be the values of p, µ(p, S0) and C after the k-th iteration. For notational convenience,
let p0 = p and µ0 = 0. Proposition 24 implies that it suffices to show

g′(p;S0) = g′(pK − eS ;S0) and g′(p;S0) < g′(pK ;S0) (9)

in order to prove the first claim that λ = λ(p, S0).
Firstly, note that there is a bundle x that is demanded at pk−1 and pk, as well as all prices

in between these two points. Indeed, if a bid b demands good i at pk−1 + eS0 , then b also
demands i at the two prices pk−1 and pk − eS0 = pk−1 + (µk − 1)eS0 , by construction of µk.
Hence, making use of (2), we get

g′(pk−1;S0) = (t− x) · eS0 = g′(pk − eS0 ;S0).
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Secondly, note that for every 0 ≤ k < K, we have g′(pk − eS0 ;S0) = g′(pk;S0), and for the last
iteration K we have g′(pK − eS0 ;S0) < g′(pK ;S0). This implies (9).

Now we turn to the second claim, that K ≤ |B|. This follows from the fact that Ck−1 ) Ck

and |C0| ≤ |B|. Indeed, if b 6∈ Ck−1, then b demands goods I 6⊆ S0 at pk−1 and Ib = I \S0 at any
prices pk−1+µeS0 for any µ ≥ 1, so b 6∈ Ck. Now suppose b ∈ Ck−1 is a bid for which µk−1 = µb
(at pk−1). Then we claim that b 6∈ Ck. Indeed, the demanded goods I ′ of b at p + (µb + 1)eS0

satisfy I ′ 6⊆ S0 by construction of µb. By the same argument as above, b demands goods not in
S0 at all prices p + µeS0 with µ ≥ µb + 1.

B.2 Some practical improvements.

The computation time of MinUp and LongStepMinUp is dominated by the task of finding a
minimal set S0 minimising g′(p;S) using SFM. In practice, we can exploit our direct access to
the bids to speed up the computation of S0 by decreasing the dimensionality of the submodular
function to be minimised. The following observations can be seen as a special case of observations
by Ausubel [2006]. Fix p ∈ Zn+ and let eS0 be the minimal steepest descent direction at p. Note
that p and p + eS0 share a demanded bundle x due to the structure of our price space. Hence

g′(p;S0) = g(p + eS0)− g(p) = (t− x) · eS0 ,

and S0 minimises this term if and only if S0 contains all indices i ∈ [n] with ti < xi and no
indices j ∈ [n] with tj > xj . In particular, we have S0 := {i ∈ [n] | ti < xi} due to the minimal
minimiser property of S0.

If p has a unique demanded bundle x, which is easy to verify, it is straightforward to
compute x. Hence, in this case we can determine the minimal steepest descent direction eS0

without performing SFM. In the case that p has at least two demanded bundles, the demanded
bundle x shared by p and p + eS0 is unknown. However, if we define index sets Ip and Jp as

Ip := {i ∈ [n] | xi > ti,∀x ∈ D(p)},
Jp := {i ∈ [n] | xi ≤ ti, ∀x ∈ D(p)},

we have Ip ⊆ S0 and Jp∩S0 = ∅. Hence we can restrict ourselves to minimising the submodular
function h : [n] \ (Ip ∪ Jp)→ Z defined by h(T ) = g′(p;T ∪ Ip) and reduce the dimensionality of
the SFM problem from n to n − |Ip ∪ Jp|. The following lemma shows that computing Ip and
Jp is cheap.

Lemma 29. Ip and Jp can be computed in time O(n|B|).

Proof. Note that Ip = {i ∈ [n] | minx∈D(p) xi > ti} and Jp = {i ∈ [n] | maxx∈D(p) xi ≤ ti},
where we compute the minimum and maximum component-wise. Fix i ∈ [n]. The minimum
minx∈D(p) xi is attained if no marginal bid selects good i. Hence

minxi =
∑
{w(b) | b ∈ B is non-marginal and demands i}.

Similarly, we claim that maxx∈D(p) xi is attained if good i is selected whenever possible and
thus maxx∈D(p) xi is the sum of the weights of the bids for which i is demanded. Consider
the price perturbation p′ defined by p′i = pi and p′j = pj + ε for j 6= i. Here ε > 0 is chosen
sufficiently small so that every bid that is marginal on i at p is non-marginal and demands i at
p′, while every non-marginal bid demanding good i at p is also non-marginal and demands i at
p′. This perturbation corresponds to our proposed rule to compute maxxi by selecting good i
whenever possible.

Note that all bundles x′ at price p′ have the same number of items of i and are also demanded
at p. As p ≤ p′ and pi = p′i, the strong substitutes property implies that there exists x′ ∈ D(p′)
such that xi ≤ x′i for all x ∈ D(p). In other words, any demanded bundle x′ at p′ maximises xi.
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C Hardness of testing validity of unrestricted bid sets.

Here we show that the question of whether a set of bids is valid is coNP-complete. We also
present a simple algorithm verifying the validity of a given list of positive and negative unit bids
that runs in polynomial time if the number of goods, or the number of negative bids, is bounded
by a constant. For any list of bids B, let B+ and B− denote the positive and negative bids.

C.1 Checking validity is coNP-complete.

Definition 8. Given a list of positive and negative bids B, the problem Valid Bids is to decide
whether B is valid.

Theorem 30 (Theorem 2). Valid Bids is coNP-complete.

The proof of Theorem 30 uses an equivalent definition of validity for the list of bids. Define
regions in Rn+ that are generated by a point p and coordinates i, j ∈ [n] as follows.

Hp
i := {x ∈ Rn+ | x ≤ p, xi = pi} (10)

F pij := {x+ βe[n] | β ∈ R+,x ≤ p, xi = pi and xj = pj .} (11)

A bid b = (b1, . . . , bn; bn+1) is contained in a region Hp
i (or F pij) if the ‘valuation’ vector

(b1, . . . , bn) consisting of the first n components lies in it. Moreover, we say that Hp
i or F pij

is negative for a list of bids if it contains more negative than positive bids, otherwise it is
non-negative.

Observation 31. For any x,y ∈ Rn+, we have x ∈ F yij if and only if (x − y)i = (x − y)j and
x− (x− y)i1 ≤ y.

Observation 32. Fix i, j ∈ [n], i 6= j. Then containment in the regions given in (10) and (11)
is transitive in the sense that, for any x,y, z ∈ Rn+,

• x ∈ Hy
i and y ∈ Hz

i , implies x ∈ Hz
i .

• x ∈ F yij and y ∈ F zij, implies x ∈ F zij.

The following definition of valid bids restates the definition given in Theorem 1, 3., in terms
of regions (10) and (11).

Definition 9 (Valid bids). A list of positive and negative bids is valid if, for any point p ∈ Rn+
and two coordinates i, j ∈ [n], Hp

i and F pij are non-negative.

On the basis of Definition 9, the proof of Theorem 2 works by reducing the well-known
NP-complete problem 3-CNF Satisfiability to Valid Bids by means of an intermediate NP-
complete decision problem More Negatives Dominated, which we define in Definition 10.
The NP-completeness of More Negatives Dominated is established in Theorem 33 and the
reduction from More Negatives Dominated to Valid Bids is given below as the proof
of Theorem 2. For any two points x,y ∈ Rn, we say that x dominates y if xi ≥ yi for all
i ∈ {1, . . . , n}.

Definition 10. Given two lists P and N of vectors in Rn+, More Negatives Dominated is
the problem of deciding whether there exists a vector z ∈ Rn+ that dominates more vectors in
N than in P .

Theorem 33. The problem More Negatives Dominated is NP-complete.
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Proof. Note that verifying whether a given point z ∈ Rn+ dominates more vectors in N than in P
can be done in polynomial time. This establishes membership of More Negatives Dominated
in the class NP. We show completeness by reducing from 3-CNF Satisfiability. Recall that
a boolean formula φ defined on n variables x1, . . . , xn is 3-CNF if

φ =
m∧
i=1

Ci,

where Ci = Li1 ∨ Li2 ∨ Li3 are its clauses and Lij ∈ {x1, . . . , xn, x1, . . . , xn} are its literals. Here
xi denotes the negation of xi. Without loss of generality, we assume that the three variables
appearing in each clause are distinct. Given such a 3-CNF formula φ, first construct a pair of
lists (Pi, Ni) of vectors in Rn+ for each clause Ci as follows. For notational convenience, ea...z

denotes the characteristic vector e{a,...,z} of {a, . . . , z}.

• If Ci = xa ∨ xb ∨ xc, let Ni = {e∅} and Pi = {eabc}.

• If Ci = xa ∨ xb ∨ xc, let Ni = {e∅, eabc} and Pi = {eab}.

• If Ci = xa ∨ xb ∨ xc, let Ni = {e∅, eab, eac} and Pi = {ea, eabc}.

• If Ci = xa ∨ xb ∨ xc, let Ni = {ea, eb, ec, eabc} and Pi = {eab, eac, ebc}.

Finally, let N be the sum of the Ni and let P be the sum of the Pi together with m − 1
copies of e∅. This completes our reduction from 3-CNF Satisfiability to More Negatives
Dominated. Clearly, P and N can be constructed from φ in polynomial time. To show
correctness of the reduction, associate with every vector z ∈ Rn+ a truth assignment βz (on
boolean variables x1, . . . , xn) that sets xi to true if zi < 1 and false otherwise.

Observation 34. Let z ∈ Rn+ be a point and βz be its associated truth assignment. For any
i ∈ {1, . . . ,m}, z dominates one more point in Ni than in Pi if βz satisfies Ci and an equal
number of points in Ni and Pi if βz does not satisfy Ci.

Suppose φ is a satisfiable 3-CNF formula with satisfying truth assignment β. Then define
z ∈ Rn+ by

zi =

{
0 if β[xi] = true,

1 else.

Hence β is the truth assignment associated with z. By Observation 34, z dominates one more
point in Ni than in Pi for each i, so due to the additional m − 1 origin points e∅ added to
P , z dominates exactly one more point in N than in P . Conversely, suppose there exists a
point z ∈ Rn+ that dominates more points in N than in P , and let βz be its corresponding truth
assignment. Then z dominates at leastm more points in N than in

∑m
i=1 Pi. By Observation 34,

we know that z dominates at most one more point in Ni than in Pi, which implies that this
is the case for each i. Hence by the same observation, βz satisfies all clauses of φ and thus φ
itself.

Proof of Theorem 2. In order to show that a list of bids B is not valid, it suffices to provide a
certificate in the form of a point p and coordinates i, j ∈ [n]. We can verify in polynomial time
whether Hp

i or F pij is negative. This establishes membership of Valid Bids in coNP.
Let (N,P ) be an instance of More Negatives Dominated and n be the dimension of its

vectors. We construct an (n + 1)-dimensional instance B of Valid Bids such that (N,P ) ∈
More Negatives Dominated if and only if B 6∈ Valid Bids as follows. Let the negative and
positive bids of B be given by prepending a component to the vectors as follows.

B− := {(1,v) | v ∈ N}
and B+ := {(1,w) | w ∈ P}+ {(0,v) | v ∈ N}+ {(1,v) + e[n+1] | v ∈ N}.
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Clearly, B = B+ +B− can be constructed efficiently. Note that all F xij and all Hx
i with i 6= 0

are non-negative by construction. Indeed, fix F xij and suppose it contains r negative bids. Then
for each such bid (1,v), where v ∈ N , there exists a positive bid (1,v) +e[n+1] that is contained
in F xij , so that the region is non-negative. Analogously, for any Hx

i with i 6= 0, each negative bid
(1,v) has a corresponding positive bid (0,v). Further, as Hx

0 contain no negative points unless
x0 = 1, the correctness of our reduction thus follows from the fact that z dominates r points
from N and s points from P if and only if Hx

0 with x = (1, z) contains r negative and s positive
bids.

C.2 A simple algorithm for testing validity.

In Section C.1, we show that checking the validity of a bid list in the general case in coNP-
complete. Hence we cannot expect an efficient algorithm for the task of checking validity of a
list of bids in the general case. Here we present a simple algorithm that tests validity of a given
list of bids in polynomial time if the number of goods or the number of negative bids is bounded
by a constant. Such constraints may be reasonable in certain economic settings.

C.2.1 The algorithm

Our procedure rests on Theorem 35, which reduces the validity condition from Definition 9 to
a finite number of checks. Lemma 36 reduces the number of checks further. Together, the
two results immediately yield Algorithm 10, whose running time is given in Theorem 37. For
any set of bids U , define the minimal dominating vector md(U) of U as the component-wise
maximum over the valuation vectors of the bids in U , so that md(U)i = maxb∈U bi for all
i ∈ [n]. We note that if all bids of U agree on some coordinate i (that is, if bi = b′i for all
b, b′ ∈ U), they lie in Hx

i for large enough x, and md(U) is the minimal such x so that Hx
i

contains all points in U . Similarly, for any set of bids U and i ∈ [n], define mdF (i, U) as
mdF (i, U) := minb∈U bi1 + md({b − bi1 | b ∈ U}). We note that if, for some i 6= j, the set U
satisfies bi − bj = b′i − b′j for all b, b′ ∈ U , then the bids in U lie in F xij for small enough x, and
it follows from Observation 31 that mdF (i, U) = mdF (j, U) is the maximal such x.

Theorem 35. A list of bids B is valid if and only if the following two conditions hold.

1. For every set U ⊆ B− of negative bids that agree on the i-th coordinate, that is bi =

b′i ∀b, b′ ∈ U , the region Hmd(U)
i is non-negative.

2. For every set U ⊆ B− of negative bids that satisfies bi − b′i = bj − b′j for all b, b′ ∈ U and

some i 6= j, the region FmdF (i,U)
ij is non-negative.

Proof. Proof. The implication is immediate by Definition 9. Conversely, suppose B satisfies
the second condition. First we show that condition 1 of Definition 9 is satisfied. Fix Hx

i , let
U = B− ∩Hx

i be the set of negative bids in Hx
i and y = md(U). Then by construction, we have

b ∈ Hy
i for all b ∈ U and y ∈ Hx

i . As Hy
i has |U | negative bids, it also contains at least |U |

positive bids by assumption and by Observation 32, these positive bids are also in Hx
i . Condition

2 is shown analogously. Fix F xij , let U be the negative bids in this region and z = mdF (U).
Suppose b ∈ F zij for every b ∈ U and z ∈ F xij . Then Observation 32 implies that F xij is non-
negative. To see that b ∈ F zij for every b ∈ U , we verify the conditions of Observation 31.
Firstly,

zi − zj = min
b∈U

bi − (min
b∈U

bi + max
b∈U

(bj − bi)) = max
b∈U

(bj − bi) = bj − bi

for all b ∈ U , as the difference bj − bi is the same for all b ∈ F zij . Secondly, for any k ∈ [n] and
b ∈ U , we have

(b− (bi − zi)1)k = zi + bk − bi ≤ zi + max
b∈U

(bk − bi) = zk.

34



We can verify z ∈ F xij similarly.

Lemma 36. For any list of negative bids U ⊆ B− there exists a list U ′ ⊆ U with |U ′| ≤ n so
that md(U ′) = md(U). Moreover, for each coordinate i ∈ [n], there exists a list U ′′ ⊆ U with
|U ′′| ≤ n+ 1 so that mdF (i, U ′′) = mdF (i, U).

Proof. Proof. Let U ′ be a list of bids u1, . . . ,un, where uk is a bid from U that maximises the
k-th component, i.e. uk ∈ arg maxv∈U vk. Then md(U ′) = md(U) by construction. Secondly,
fix i ∈ [n] and let U ′′ be a list of bids u1, . . . ,un+1, where u1 ∈ arg minb∈U bi and uk ∈
arg maxb∈U (bk − bi) for k ∈ {2, . . . , n+ 1}. Then mdF (U ′′) = mdF (U) by construction and we
are done.

Algorithm 10 Checking the validity of a bid list B
1: for all subsets U ⊆ B− of negative bids with |U | ≤ n+ 1 do
2: for all i, j ∈ [n] do
3: Verify the two conditions given in Theorem 35.

Theorem 37. Algorithm 10 runs in time O
((|B−|

n

)
n3|B|

)
. Moreover, if |B−| ≤ k or n ≤ k, the

algorithm is polynomial in the input size n|B|.

Proof. Proof. There are
(|B−|
n+1

)
subsets U of B− for the algorithm to iterate over, while there are

n2 possibilities for the index pair i, j. For each U and i, j, checking the conditions in Theorem 35
takes n|B| time. This implies the running time. Suppose the number of negative bids |B−| ≤ k
is bounded by some k ∈ N. Then

(|B−|
n+1

)
is constant and the running time of our algorithm is

O(n3(|V |+ |W |)). Secondly, if the number of goods n ≤ k is bounded, we have
(|B−|
n+1

)
≤ |B−|k+1

and hence a running time of O(|B−|k+1|B|).

D Additional proofs.

We give some definitions that are used in the proofs below. Here and in the following, we use
terminology and material developed in Baldwin and Klemperer [2019] and refer to the same for
details. Define the Locations of Indifference Prices (LIP) for a bid b as

Lb = {p ∈ Rn | | arg max
i∈[n]0

(bi − pi)| > 1}.

Similarly, the LIP of a list of bids B is given by

LB = {p ∈ Rn | |DB(p)| > 1}.

Any LB can be decomposed into an (n − 1)-dimensional rational polyhedral complex ΠB. We
call the (n − 1)-dimensional polyhedra in this complex its facets. Endow every facet F of ΠB
with a weight, as follows:

wB(F ) :=
∑
{w(b) | b ∈ B and Lb ⊇ F}.

Finally, we say that (ΠB, wB) is balanced if for every (n− 2)-cell G of Π, the weights w(Fj)
on the facets F1, . . . , Fl that contain G, and primitive integer normal vectors vFj for these facets
that are defined by a fixed rotational direction about G, satisfy

∑l
j=1w(Fj)vFj = 0.

Definition 11 (cf. Baldwin and Klemperer [2019, Definition 3.9]). The strong substitutes
vectors are those non-zero vectors in Zn which have at most one +1 entry, at most one −1 entry,
and no other non-zero entries.
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D.1 Proof of Theorem 1.

Proof of Theorem 1. The equivalence of (1) and (2) follows from Proposition 6 if we set P = Rn.
The implication (3) ⇒ (1) is well-known; see for instance Murota and Shioura [2014, Theorem
7.3] for a stronger statement. We now show eq2⇒ (3), using the Valuation-Complex Equivalence
Theorem from Baldwin and Klemperer [2019]. Let (Π, wB) be the weighted polyhedral complex
associated with B. Note that as well as showing that balancing holds, we must also demonstrate
that all weights of the polyhedral complex are positive, which is the setting for Baldwin and
Klemperer [2019]. Observe first that every facet of ΠB has a strong substitutes vector as its
normal vector, as this property holds for any individual Lb.

Note that the weighted polyhedral complex (Πb, wb) associated with a single bid is balanced.
If w(b) = 1 then this follows because (Πb, wb) is the weighted polyhedral complex associated
with a simple valuation for at most one unit of any good (and see Baldwin and Klemperer
[2019, Section 2.3]). This then extends to the case w(b) = −1 because changing the sign of
the weights of all facets does not affect balancing. Then (ΠB, wB) is also balanced, as it is the
complex corresponding to the union of balanced LIPs (see the proof of Lemma 3.13 in Baldwin
and Klemperer [2019]).

Next we see that all weights of (ΠB, wB) are non-negative. Let F be a facet of ΠB and fix a
point p in the relative interior of F . Then, since the normal vector to F is a strong substitutes
vector (and by Baldwin and Klemperer [2019, Proposition 2.4]), every bid is either non-marginal
at p or marginal between the same two distinct goods, i, i′ ∈ [n]0. Let Bii′ denote the bids that
are marginal between i, i′ at p. Note that we have F ⊆ Lb if and only if b is marginal on i, i′,
so wB(F ) =

∑
b∈Bii′

w(b) ≥ 0 (by assumption 2).
(ΠB, wB) may have zero-weighted facets: let the set of these be Π0

B and write Π+
B := ΠB \Π0

B.
Then Π+

B inherits from ΠB the structure of a polyhedral complex. Moreover, if we write w+
B for

the restriction of wB to the facets of Π+
B , then (Π+

B , w
+
B ) is balanced: removing 0-weighted facets

does not affect this criterion.
So, we write L+B for the union of the cells in Π+

B . Let p be a price vector whose components
are strictly larger than the components of any bid, so that DB(p) = 0. By the valuation-complex
equivalence theorem, there exists a unique concave valuation u such that Lu = L+B , wu = w+

B ,
u(0) = 0 and Du(p) = 0.

If w(b) is positive then Lb has the property that facets and weights define all changes in
demand between UDRs, [Baldwin and Klemperer, 2019, Section 2.2], and it is easy to see that
the same follows for negative-weighted bids, and thus extends by aggregation to our positive-
weighted polyhedral complex (Π+

B , w
+
B ). The same holds for Lu for standard reasons. SoDu(p) =

DB(p) implies Du(p) = DB(p) for all UDR prices p ∈ Rn, and hence for all prices, since u is
concave and DB(p) is defined to be discrete convex.

We now show that fB = fu. For any bundle x, let p be a price at which x is demanded
and let (i(b))b∈B be a list of goods allocated to the bids b ∈ B in order to obtain x. That is,
i(b) ∈ DB(p) for every b ∈ B and x =

∑
b∈B w(b)ei(b). Then we claim that

u(x) =
∑
b∈B

w(b)bi(b). (12)

This then immediately implies fB(p) = fu(p) for any p ∈ Rn, as

fB(p) =
∑
b∈B

w(b) max
i∈[n]0

(bi − pi) =
∑
b∈B

w(b)(bi(b) − pi(b)) = u(x)− x · p = fu(p).

To see that (12) holds, let x′ and x′′ be bundles demanded in neighbouring UDRs and let p be
a price on the relative interior of the facet separating these UDRs. Moreover, let (i′(b))b∈B and
(i′′(b))b∈B be the allocation to bids at p that lead to bundles x′ and x′′. Then we have

u(x′)− p · x′ = u(x′′)− p · x′′ (13)
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and
fB(p) =

∑
b∈B

w(b)(bi′(b) − pi′(b)) =
∑
b∈B

w(b)(bi′′(b) − pi′′(b)). (14)

Suppose (12) holds for bundle x′ and (i′(b))b∈B. Then (13) and (14) imply that (12) holds for
x′′ and (i′′(b))b∈B. Finally, as u(0) = 0 = fB(0), this implies (12) for all possible bundles x, by
induction.

Finally, the strong substitutes property for u follows immediately from concavity of u and
our observation above that all facets of ΠB, and hence of Lu, are normal to a strong substitutes
vector [Baldwin and Klemperer, 2019, Proposition 3.8].

D.2 Proof of Proposition 6.

We make use of the following technical observation to prove Proposition 6.

Observation 38. Let f : [0, 1] → R be a continuous, piecewise-linear function. If its slope is
non-decreasing as we move from 0 to 1, f is convex. This implies that if f is not convex, there
exists a point λ at which two linear segments meet and the slope decreases.

Proof of Proposition 6. Recall that fB restricted to P is convex if and only if

fB(λp + (1− λ)q) ≤ λfB(p) + (1− λ)fB(q), ∀p, q ∈ P and λ ∈ [0, 1]. (15)

Suppose that p and q are two non-marginal prices in neighbouring UDRs such that for some
λ ∈ (0, 1), the point r = λp+ (1− λ)q lies on the interior of a facet separating the UDRs. This
implies two possibilities for each bid b ∈ B. Either b non-marginally demands the same good at
p and q (and thus also at r). Or b non-marginally demands i at p and i′ at q, and is marginal
(only) on i and i′ at r. Moreover, all bids of the latter kind are marginal on the same two goods.

Let Bii′ denote the bids that demand the set {i, i′} at r. We show that fB satisfies (15)
for p, q and any λ ∈ [0, 1] if and only if the weights of the bids marginal on i and i′ sum to a
non-negative number, i.e. if

∑
b∈B w(b) ≥ 0. By construction, we have

fB(p) =
∑

b∈Bii′

w(b)(bi − pi) +
∑

b6∈Bii′

w(b) max
j∈[n]0

(bj − pj),

fB(q) =
∑

b∈Bii′

w(b)(bi′ − qi′) +
∑

b6∈Bii′

w(b) max
j∈[n]0

(bj − qj),

fB(r) =
∑

b∈Bii′

w(b)(bi − ri) +
∑

b6∈Bii′

w(b) max
j∈[n]0

(bj − rj).

Hence the inequality
fB(r) ≤ λfB(p) + (1− λ)fB(q) (16)

holds if and only if ∑
b∈Bii′

w(b)[(bi − qi)− (bi′ − qi′)] ≤ 0. (17)

Note that the term (bi − qi)− (bi′ − qi′) is strictly negative, as b demands i′ and not i at q.
Moreover, this term is the same for all bids b ∈ Bii′ , as i and i′ are both demanded at r. This
implies by (17) that

∑
b∈Bij w(b) ≥ 0 if and only if (16) holds.

Now we prove our main statement. Suppose fB restricted to P is not convex. Then there
exist p, q ∈ P and λ ∈ [0, 1] that violate (15). Due to continuity of fB, we can perturb p and
q slightly so that (15) is still violated, p, q are non-marginal and the line segment [p, q] crosses
only interiors of facets of the LIP LB. We can assume wlog that p and q are in neighbouring
UDRs; otherwise, we can apply Observation 38 to find two non-marginal prices on the interior
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of the line segment for which (15) fails. Thus we can apply the above to see the implication
2⇒ 1.

For the converse ((1) ⇒ (2)), suppose there exist r and i, i′ ∈ [n]0 such that the weights of
bids marginal on i, i′ at r sum to a negative number. Wlog we can assume that all marginal
bids at r are marginal only on goods i, i′, by subtracting δe{i,i′} from r for some infinitesimal
positive value of δ if necessary. Hence r lies on the interior of a facet F and for small enough
ε > 0, the points p = r + εei − εei′ and q = r − εei + εei

′ lie in P and in neighbouring UDRs
separated by F . By the above, this implies that p and q with λ = 1/2 violate (15) and we are
done.

D.3 Proof of Proposition 14.

In order to prove Proposition 14, we first present and prove three technical lemmas and one
proposition about local prices and demand for valuations.

Lemma 39. Suppose G is an invertible matrix whose rows are strong substitute vectors (Defin-
ition 11). Then there exists a diagonal matrix U multiplying some (possibly empty) set of rows
of G by −1, such that every column of UG contains exactly one +1 entry and such that the rows
of (UG)−1 contain at most two non-zero entries, and all non-zero entries of (UG)−1 are +1.

Proof. Note that any vector of the form ei − ej for i 6= j has zero inner product with
∑

k e
k

and conclude that, since G is invertible, at least one row of G is ± a coordinate vector. So there
exists an elementary row swapping operation T1, an elementary row multiplying operation U1

which multiplies one row by either +1 or −1, and an elementary column swapping operation
V1, such that T1U1GV1 = G′ whose first row is e1. Note that all of these elementary matrix
operations are themselves unimodular.

Because G′ is invertible we can apply the same logic to the matrix that remains when we
strike the first row and column from G′, obtaining a (n − 1) × (n − 1) submatrix whose first
row is the first coordinate vector. These elementary operations may be extended to the original
first row and column without changing the desired properties. Continuing in this fashion, we
obtain an expression TnUn · · ·T1U1GV1 · · ·Vn = G(n) such that G(n) is an lower triangular matrix
with 1s along its main diagonal, where for all i, Ui is an elementary row multiplying operation
which multiplies a row by either +1 or −1 and Ti, Vi are elementary row and column swapping
operations respectively. The rows of G(n) are still strong substitute vectors and so any non-zero
entries below the main diagonal are −1s.

It is clear that (G(n))−1 is given by the lower triangular matrix whose entries are the absolute
value of the entries of G(n). In particular, then, each row of (G(n))−1 contains at most two non-
zero entries, and all non-zero entries of (G(n))−1 are +1.

Now note that, by properties of elementary matrices, we may re-write TnUn · · ·T1U1 = TU
in which T is a permutation matrix and U multiplies some (possibly empty) set of rows by −1.
We may similarly write V1 · · ·Vn = V where V is a permutation matrix. So G(n) = TUGV .
Since T and V both simply permute rows and columns, we conclude that UG inherits from G(n)

the property that each column contains exactly one +1 entry.
Thus (G(n))−1 = V −1(UG)−1T−1 i.e. (UG)−1 = V (G(n))−1T . As the structure of permuta-

tion matrices are identical, whether they act on rows or columns, this implies that (UG)−1

inherits from (G(n))−1 the properties of each row containing at most two non-zero entries, and
all non-zero entries being equal to +1.

Lemma 40. Suppose that G is an invertible n′ × n′ matrix whose rows are strong substitute

vectors (Definition 11), and that Hi is the ith column of H = (hij)
n
i,j=1 :=

(
0
G2

)
where we have
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written G in block form G =

(
G1

G2

)
. Then either G−1Hi = eS for some S ⊆ [n′] with i ∈ S, or

G−1Hi = −eS for some S ⊆ [n′] with i /∈ S.

Proof. By Lemma 39 there exists a diagonal matrix U with +1 and −1 on its diagonal such that
the rows of (UG)−1 contain at most two non-zero entries, and all non-zero entries of (UG)−1

are +1, and each column of UG contains precisely one +1 entry. Observe that G−1Hi =
(UG)−1UHi. We may therefore replace G by UG for brevity in the proof.

By definition G−1Gi = ei. But each row of G−1 contains at most two non-zero entries, all
+1, so this is a stacked set of equations of the form gli = 0 or gli + gmi = 0 (with any indices
l 6= m with exceptionally one which takes the form of either gji = 1 or gji + gki = 1 (with some
indices j 6= k). The latter case correponds to the ith row of G−1. Since each gji ∈ {−1, 0, 1}
we conclude for the ith row that there exactly one non-zero entry in Gi which is aligned to a
non-zero entry in the ith row of G−1, and this entry is equal to +1. Write this as gji = 1, i.e. j
is the row in Gi of this entry.

Recall it follows that gki{−1, 0} for k 6= j. Translating this across to G−1Hi, we find there
are two cases:

If hji = gji = 1 then every incidence of ‘gli = 0’ translates to ‘hli = 0’ and so gives us a
zero entry in Hi; and every incidence of gli + gmi = 0 either translates to hli + hmi = 0 or to
hli + hmi = 1 (which holds if, w.l.o.g., gli = −1 but hli = 0; note that in this case it must follow
that gmi = 1 and hence that m = j and hence by assumption that hmi = 1). That is, every
entry in Hi is either 0 or +1, and in particular the ith entry is 1.

But suppose hji = 0 6= gji. It still holds that every incidence of ‘gli = 0’ translates to
‘hli = 0’. But now every incidence of gli + gmi = 0 either translates to hli + hmi = 0 or to
hli + hmi = −1. For if w.l.o.g. gli = −1 then gmi = 1 and so m = j and hmi = 0 and hence
hli + hmi ∈ {−1, 0}. That is, every entry in Hi is either 0 or −1, and in particular the ith entry
is 0.

Lemma 41. Suppose that G is an n′×n matrix whose rows are strong subtitute vectors (Defin-
ition 11) and that S ⊆ [n]. Then GeS ∈ {−1, 0, 1}n and in particular GeS ≥ −1 (the vector of
1s).

Proof. Each row of GeS is the sum of a subset of the entries in the corresponding row of G, and
so by definition of strong substitue vectors it is only possible that this is ±1 or 0.

Proposition 42. Suppose that we have two strong substitute integer-valued valuations, u1 and
u2. Fix i ∈ [n] and write u2[ε,i] for the valuation given by u2[ε,i](x) = u2(x) + εei · x. For any
r1, r2 ∈ Zn suppose that there exists a price p∗ such that r1 ∈ Du1(p∗), and r2 ∈ Du2[ε,i](p

∗).
Then there exists a price p0 such that r1 ∈ Du1(p0), and r2 ∈ Du2(p0). Moreover then, for any
p such that r := r1 + r2 ∈ Du{1,2}(p), it follows that r1 ∈ Du1(p), and r2 ∈ Du2(p).

Proof. For j = 1, 2 write P j for the set of prices p at which rj ∈ Duj (p). It follows from the
definition of u2[ε,i] that the set of prices p at which r2 ∈ Du2[ε,i](p) is equal to P 2 + {εei}. And
it follows by assumption that r1, r2 that P 1 ∩ (P 2 + {εei}) 6= ∅.

By Baldwin and Klemperer [2019, Proposition 2.7], P 1, P 2 are polyhedra in Rn, so each may
be written as those p such that:

Hjp ≥ Aj (18)

where Hj is an aj × n matrix for some aj ∈ Z+ and Aj ∈ Raj . Moreover by Baldwin and
Klemperer [2019, Proposition 3.10], we can choose Hj such that each row of Hj is a strong
substitutes vector (Definition 11) and then, as we assume each valuation uj is integer-valued,
also Aj ∈ Zaj . Then P 2 + {εei} is defined by

H2(p− εei) ≥ A2 ⇔ H2p ≥ A2 + εH2
i (19)
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where H2
i is the ith column of H2.

Write H =

(
H1

H2

)
and A =

(
A1

A2

)
, and Ĥ =

(
0
H2

)
, inequalities defining P 1 ∩ (P 2 + {εei})

are:
Hp ≥ A+ εĤi (20)

Now argue similarly to Theorem 19.1 in Schrijver [1998]. We know that P 1∩(P 2+{εei}) 6= ∅.
Let F = {p : H ′p = A′+ εĤ ′i} be a minimal face of this intersection, where H ′p ≥ A′+ εĤ ′i is a
subsystem of (20) with linearly independent rows. After possibly permuting the columns of H ′,
that is, the indices of the goods, we can write H ′ =

(
G G̃

)
where G is invertible. Moreover we

can chose this permutation such that the ith coordinate remains within the first square matrix
– that is, if G is n′×n′ then assume when we re-ordering that i ≤ n′. Moreover, G inherits from
H1, H2 the property that its rows are strong substitute vectors. Now define:

pε :=

(
G−1

(
A′ + εĤ ′i

)
0

)
and p0 :=

(
G−1A′

0

)
Note p0 is an integer vector, since A is integer and G is unimodular. Moreover, we can apply
Lemma 40: either G−1Ĥ ′i = eS for some S ⊆ [n′], with i ∈ S or G−1Ĥ ′i = −eS for some S ⊆ [n′]
with i /∈ S (here n′ is the dimension of G). So, either pε = p0 + εeS for some S ⊆ [n] with i ∈ S
or pε = p0 − εeS for some S ⊆ [n] with i /∈ S. Moreover, in either case, pε − εei ∈ {p0 ± εeS′}
for some S′ ⊆ [n].

We also see immediately that pε is a vector in F , and hence in P 1 ∩ (P 2 + {εei}). So (20)
holds at pε: Hpε ≥ A+ εĤi. We will show that also p0 ∈ P 1 ∩ P 2.

First consider (18) for j = 1, which holds at pε. Note also that H1 has strong substitute
rows and (p0 − pε) ∈ ±εeS for S ⊆ [n], so applying Lemma 41 together with (18):

H1p0 = H1pε +H1(p0 − pε) ≥ A1 − ε1.

The rows of H1p0 and A1 are integer, and ε ∈ (0, 1), so H1p0 ≥ A1.
Next consider that (19) holds at pε. Again H2 has strong substitute rows and this time use

that (p0 − pε + εei) ∈ ±εeS′ for S′ ⊆ [n], so applying Lemma 41 together with (19):

H2p0 = H2(pε − εei) +H2(p0 − pε + εei) ≥ A2 − ε1.

Again, the rows of H2p0 and A2 are integer, and ε ∈ (0, 1), so H2p0 ≥ A2. Thus we have
established that p0 ∈ P 1 ∩ P 2, as required to show that rj ∈ Duj (p

0) for j = 1, 2.
Now take any p such that r := r1+r2 ∈ Du{1,2}(p), and suppose that sj ∈ Duj (p) for j = 1, 2

with r = s1+s2: we have an equilibrium with potentially a different allocation of bundles across
the two agents. By Mas-Colell et al. [1995, Proposition 2.F.1] we know that for j = 1, 2 we have
(sj−rj)·(p−p0) ≤ 0, with equality holding only if the agent is indifferent between both bundles
at both prices. So, adding across j = 1, 2, we obtain ((s1 + s2)− r) · (p−p0) ≤ 0, with equality
holding only if the two agents are both indifferent between both bundles at both prices. But as
s1 + s2 = r it must indeed follow that ((s1 + s2) − r) · (p − p0) = 0 and so in particular that
also rbj ∈ Duj (p) for i = 1, 2, as required.

Proof of Proposition 14. Re-label so that bidder j has valuation u2 and the aggregate valuation
from all remaining agents is u1. We know that r ∈ Du{1,2}(p) by definition of an allocation
problem.

As in Proposition 42 we write u2[ε,i] for the valuation given by u2[ε,i](x) = u2(x) + εei · x.
Since both u1 and u2[ε,i] are strong substitute valuations, there exists a price p∗ ∈ Rn such
that r ∈ Du1,2[ε,i](p

∗), and thus there exist r1, r2 ∈ Zn such that r1 + r2 = r and such that
r2 ∈ Du1(p∗), r2 ∈ Du2[ε,i](p

∗). By Proposition 42 it follows that rj ∈ Duj (p) for j = 1, 2.
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As in Proposition 42 write P j for the set of prices p′ at which rj ∈ Duj (p
′), and observe

that the set of prices p′ at which r2 ∈ Du2[ε,i](p
′) is equal to P 2 + {εei}. We know that

p ∈ P 1 ∩P 2 (so this is non-empty) and p∗ ∈ P 1 ∩ (P 2 + {εei}) (so this is non-empty). We seek
pε ∈ P 1∩(P 2+{εei}) with pε ∈ p±εeS for some S ⊆ [n]; this is sufficient for r ∈ Du{1,2[ε,i]}(p

ε),
as we require.

As at line (18) above we express both polyhedra as H ip′ ≥ Aj , where rows of Hj are strong
substitutes vectors. Therefore P 1 ∩ (P 2 + {εei}) is defined by the set of inequalties:

H1p′ ≥ A1 and H2(p′ − εei) ≥ A2 (21)

Now, for j = 1, 2, let
(Hj)′p′ ≥ (Aj)′ (22)

be the subsystem of Hjp′ ≥ Aj consisting of all rows which hold with equality at p. (If both
of these subsystems are empty then subsequent arguments will simply set pε = p). Write

H =

(
(H1)′

(H2)′

)
, A =

(
(A1)′

(A2)′

)
and Ĥ =

(
0

(H2)′

)
. Thus when we stack the corresponding rows

of (21) we obtain the new system:
Hp′ ≥ A+ εĤi. (23)

This defines a superset of P 1∩(P 2+ε), since we have already removed some rows fromHjp′ ≥ Aj
for j = 1, 2. But p∗ ∈ P 1 ∩ (P 2 + ε) so (23) defines a non-empty polytope. So let F = {p′ :
H ′p′ = A′ + εĤ ′i} be a minimal face of this polytope, where

H ′p′ ≥ A′ + εĤ ′i (24)

is a subsystem of (23) with linearly independent rows.
After possibly permuting the columns of H ′, that is, the indices of all goods, we can write

H ′ =
(
G G̃

)
, where G is invertible. Moreover we can choose this perumtation such that the

ith coordinate remains within the first square matrix – that is, if G is n′×n′ then assume when

we re-order that i ≤ n′. Correspondingly write p′ =

(
p′1
p′2

)
So our system (23) is now written:

(
G G̃

)(p′1
p′2

)
≥ A′ + εĤ ′i. (25)

Observe that, by definition of the rows we identified at (22), we have
(
G G̃

)(p1

p2

)
= A′ and

so p1 = G−1A′ −G−1G̃p2. Write now:

pε :=

(
G−1(A′ + εĤ ′i)−G−1G̃p2

p2.

)
(26)

so that
H ′pε =

(
G G̃

)
pε = A′ + εĤ ′i. (27)

We wish to show that (21) holds for p′ = pε. We can immediately observe that pε − p =(
εG−1Ĥ ′i

0

)
. So, by Lemma 40, either pε = p+εeS for some S ⊆ [n] with i ∈ S, or pε = p−εeS

where S ⊆ [n] with i /∈ S. Moreover, in either case, pε − εei ∈ {p± εeS′} for some S′ ⊆ [n].
We also immediately observe that pε satisfies (24) with equality, and so pε ∈ F . Thus by

definition of F , also pε satisfies (23). It follows by definition of (22) that, for every row in the
original systems Hjp′ ≥ Aj that holds with equality at p, the corresponding shifted equation
in (21) holds at pε. It remains to show that this is also true for rows that are slack at p. Let
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(Hj)′′p′ ≥ (Aj)′′ be the subsystems of such rows, for j = 1, 2, and observe that by integrality it
follows that

(Hj)′′p ≥ (Aj)′′ + 1. (28)

Now, applying Lemma 41 and (28) for j = 1, we obtain:

(H1)′′pε = (H1)′′p + (H1)′′(pε − p) ≥ (A1)′′ + (1− ε)1 ≥ (A1)′′.

And applying Lemma 41 to pε − p− εei, and (28) for j = 2

(H2)′′(pε − εei) = (H2)′′p + (H2)′′(pε − p− εei) ≥ (A2)′′ + (1− ε)1 ≥ (A2)′′.

So, for every row in the original systems Hjp′ ≥ Aj that is slack at p, the corresponding shifted
equation in (21) holds for pε. This completes the proof that pε ∈ P 1 ∩ (P 2 + {εei}).

It follows that r ∈ Du1,2[ε,i](p
ε), which was constructed to be positioned relative to p as

described in the proposition.
Finally, recall that the prices at which r is demanded are equivalent to the prices that

minimise the Lyapunov function g(p) = fB(p) + r · p. It is known that fB (and thus g) are
submodular [Murota and Shioura, 2014, Theorem 7.2], so

h+(S) := g(p + εeS)− g(p), h−(S) := g(p + εeS)− g(p),

are submodular set functions. Hence in order to determine a price pε ∈
{
p + εeS | S ⊆ [n]

}
at

which r is demanded, we find minimisers S+ and S− of h+ and h− using SFM, then let

pε = arg min
{
g
(
p + εeS

+
)
, g
(
p− εeS−

)}
.

Note that we do not require minimal submodular minimisers to find pε, and so this step takes
2T (n) time, where T (n) is the time is takes to perform submodular minimisation on h±. We
also note that finding pε is analogous to finding a steepest descent direction in Appendix B.

D.4 Proof of Lemma 17.

Here we prove that applying ShiftProjectUnshift strictly reduces the number of edges in
the marginal bids graph GA.

Proof of Lemma 17. First we show that every edge in GA′ is present in GA. To see this, fix some
bid b and note by Observation 7 and Lemma 16 that Steps 1, 2 and 3 do not make b marginal
on any new goods.

Secondly we prove that for any multi-bidder cycle C with cycle-link good i∗ and incident
label j∗, ShiftProjectUnshift removes at least one of the edges of C from the marginal bids
graph. Re-label the goods going around cycle C as 1, . . . , k, so that 1 = i∗ and so that bidder j∗

placed the bid marginal between goods 1 and 2. Also, for convenience, index the marginal bid
that is marginal between goods i and i+ 1 as ‘i’, and index the marginal bid between goods k
and 1 as ‘k’. Thus b1 ∈ Bj∗ and bk /∈ Bj∗ . (In general the differently labelled bids need not be
from different bidders). The existence of a marginal bid between goods i and i+ 1 means that
we have an equality

bii − pi = bii+1 − pi+1 (29)

for i = 1, . . . , k − 1, and also
bkk − pk = bk1 − p1 (30)

But if we take the sum of the first k − 1 equations, and cancel, we find

k−1∑
i=1

bii −
k−1∑
i=1

bii+1 =

k−1∑
i=1

(pi − pp+1) = p1 − pk
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So it must hold that
k−1∑
i=1

(bii − bii+1) = bk1 − bkk. (31)

For any bid b in the bid lists (Bj)j∈J , fixed j∗ ∈ J and i∗ ∈ [n], let

b̃ :=

{
b + 1

10e
i∗ b ∈ Bj∗

b otherwise

Suppose we replace each bid b by b̃ as above and recompute the prices. Since prices shift by
at most 1

10 , a bid that is not marginal on a pair of goods, cannot become marginal on them. If we
assume for a contradiction that all edges in C are all still present in G′ then we can write down
similar expressions to (29) and (30) (w.r.t. new prices), then eliminate those prices obtaining a
version of (31), namely

∑k−1
i=1

(
b̃ii − b̃ii+1

)
= b̃k1 − b̃kk. But by definition of b̃, we know that

k−1∑
i=1

(b̃ii − b̃ii+1) =
k−1∑
i=1

(bii − bii+1) +
1

10
,

and b̃k1 − b̃ik = bk1 − bkk.

This is inconsistent with (31), so we have the required contradiction.
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