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1 Introduction

A firm’s behavior depends on its beliefs about the actions of other firms in the same market.

In a retail market, the choice of price to maximize profits depends on beliefs about competitors’

prices. In a procurement auction, a firm’s bid depends on its expectations about other firms’bids.

Managers form their beliefs under uncertainty on demand, costs, and competitors’decisions. These

managers and their firms differ in their abilities to collect and process information and, as a result,

they are heterogeneous in their expectations. This heterogeneity in beliefs can have important

implications on firms’performance and survival in the market. Nevertheless, firms with different

accuracy in beliefs can survive in the same industry, for the same reasons as they can coexist with

different productivity.

The importance of firms’heterogeneity in their ability to form expectations – and the possibility

of biased or non-equilibrium beliefs —has been long recognized in economics, at least since the work

of Simon (1958, 1959). However, in most fields in economics, the status quo has been to assume

rational expectations. In empirical industrial organization (IO), some of the most commonly used

structural models of oligopoly competition assume complete information, perfect certainty, and

Nash equilibrium. For instance, this is the case in models of price competition with differentiated

product (Berry, Levinsohn, and Pakes, 1995; Berry and Haile, 2014), and in empirical games of

market entry (Bresnahan and Reiss, 1991; Ciliberto and Tamer, 2009). Though there is a substantial

literature on structural models of incomplete information in empirical IO, it is mostly concentrated

in auctions (Guerre, Perrigne, and Vuong, 2000; Athey and Haile, 2002), and in discrete choice

games, both static (Seim, 2006; Sweeting, 2009; Bajari et al., 2010), and dynamic (Aguirregabiria

and Mira, 2007; Igami, 2017). Empirical applications to models of quantity or price competition

are not so common, though Armantier and Richard (2003) and Aryal and Zicenko (2019) are good

exceptions.

Most empirical applications of games of incomplete information assume that firms have homo-

geneous beliefs that correspond to a Bayesian Nash equilibrium. Nevertheless, recent papers in

structural IO relax equilibrium assumptions and present evidence of substantial heterogeneity and

biases in firms’beliefs. As one would expect, biased beliefs are more likely in new markets and

after regulatory changes: for instance, after deregulation of the US telecommunication industry

(Goldfarb and Xiao, 2011), the UK electricity market (Doraszelski, Lewis, and Pakes, 2018), the
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Texas electricity spot market (Hortaçsu and Puller, 2008; and Hortaçsu, Luco, Puller, and Zhu,

2019), or the Washington State liquor market (Huang, Ellickson, and Lovett, 2018), and in the

early years of the fast-food restaurant industry in UK (Aguirregabiria and Magesan, 2020). All

these papers use a revealed preference & beliefs approach to identify the structural parameters in

costs and demand together with firms’subjective beliefs. That is, a firm’s observed behavior reveals

information about its preferences (i.e., the structure of its profit function) and about its beliefs.1

Identification of beliefs using a revealed preference & beliefs (RP&B) approach requires restric-

tions either on profit or on beliefs functions. The papers mentioned above use different restrictions

to identify subjective beliefs. In this paper, I present a systematic analysis of the joint identification

of firms’beliefs and structural parameters in a general class of empirical games of market compe-

tition. The analysis introduces minimum restrictions on preferences (profits) and beliefs which are

nonparametric functions of firms’ actions and state variables. I investigate the identification of

beliefs under very weak restrictions.

I present a framework where firms have incomplete information and their beliefs on competitors’

behavior are unrestricted (nonparametric) probability functions on the space of competitors’actions

and conditional on observable state variables. Beliefs may be out of equilibrium. Revenue and cost

functions are also nonparametrically specified. The framework applies both to continuous and

discrete choice games and includes as particular cases models of competition in prices or quantities,

auction models, entry games, and dynamic investment games. I focus on identification results that

exploit a natural exclusion restriction in models of competition: an observable variable that affects

a firm’s cost (or revenue) but does not have a direct effect on other firms’profits. Examples of

this type of variable are firm-specific input prices, total factor productivity, or firm-specific state

variables such as capital stock or the firm’s incumbency status. I show the identification power of

this exclusion restriction under several scenarios on the data available to the researcher: data only

on firms’choices and state variables, as well as applications where the researcher has price and

quantity data to identify the revenue function or the cost function. Identification conditions vary

substantially when the model is static or dynamic, so I study separately these two cases.

This paper relates to several literatures in empirical IO and econometrics. As mentioned above,

1Using observed behavior to identify agents’subjective beliefs was already proposed by Frank Ramsey in his article
titled "Truth and Probability" (Ramsey, 1926). Ramsey argues that probability is related to the knowledge that each
individual possesses, leading to the notion of subjective probability or beliefs. Then, he explains how subjective
beliefs can be inferred using observed behavior. On pages 174-175 in his article, Ramsey uses a simple example to
illustrate the identification of beliefs from observed actions.
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it belongs to a growing literature in empirical IO on structural models of market competition where

firms have biased beliefs (see the references above).

In the econometrics of games, several papers have studied identification of models that allow

for biased beliefs but impose other restrictions, such as Level-k rationality (An, 2017), Cognitive

Hierarchy (Brown, Camerer, and Lovallo, 2013), or Rationalizability (Aradillas-Lopez and Tamer,

2008; Kline, 2018). In this paper, I do not impose these restrictions and show that they are testable.

An, Hu, and Xiao (2018) show the identification subjective expectations in single-agent dynamic

structural models using a RP&B approach. The exclusion restriction that these authors use is quite

different to the one that I present in this paper.

In experimental economics, a good number of papers have estimated agents’beliefs in games

played in laboratory experiments, and have investigated strategic uncertainty (Van Huyck, Bat-

talio, and Beil, 1990; Heinemann, Nagel, and Ockenfels, 2009). In Aguirregabiria and Xie (2020),

we propose a simple to implement experimental design that generates an exclusion restriction that

identifies agents’beliefs in a nonparametric model where agents can have of other-regarding pref-

erences.

The identification of subjective beliefs in games also relates to the identification of structural

games with multiple equilibria in the data. Recent contributions include De Paula and Tang (2012),

Otsu, Pesendorfer, and Takahashi (2016), and Aguirregabiria and Mira (2019).

Finally, as I describe in section 3, the identification of firms’beliefs on competitors’strategies

relates to the traditional IO literature on identification of the nature of competition, pioneered by

Bresnahan (1982). In contrast to the traditional approach, the model in this paper acknowledges

that firms’beliefs are endogenous objects that depend on all the state variables affecting demand

and costs. I show that the exclusion restrictions typically used to identify the form of competition

(or the so-called conjectural variation parameters) cannot identify firms’beliefs.

I have organized the rest of the paper as follows. Sections 2 and 3 present general frameworks

—static and dynamic, respectively —that include as particular cases most models of competition

in empirical applications in IO. Section 4 presents our main results on the identification of firms’

beliefs using a RP&B approach. I summarize and conclude in section 5.
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2 Static games

2.1 Basic framework

Consider N firms competing in a market. Firms are indexed by i. The profit function of firm i is

Πi(ai,a−i, εi,x) where ai ∈ A is the action of firm i, a−i = (aj : j 6= i) ∈ AN−1 is the vector with

the actions of the other firms. The decision variable —ai —can be either discrete or continuous, and

it can represent —among other possibilities —a firm’s level of output, its price, the binary indicator

of entry in a market, the firm’s number of stores, or its investment in R&D. The vector x ∈ X

represents variables that are known by all the firms. The term εi ∈ R is private information of firm

i. For instance, this private information can be a component of the firm’s cost, or a private signal

about the state of the demand. I denote εi as the ‘type’of firm i. Firms’types (ε1, ε2, ..., εN ) are

drawn from a distribution with cumulative distribution function F (ε1, ε2, ..., εN | x). I use Fi(εi |

x) to represent the distribution function of εi. The primitives of the game are Π′s, A, X , and F .

Firms simultaneously decide their actions to maximize their respective expected profits. Under

the standard solution concept of Bayesian Nash Equilibrium (BNE), the primitives of the model are

assumed common knowledge —that is, every firm knows that every firm knows ... these primitives.

The model that I consider here does not impose this restriction. This model only assumes that

each firm knows its own profit function, the vector of variables x, and its private information εi.

For instance, some firms may not know the distribution function F or the profit functions of other

firms. Furthermore, the fact that x is known to all the firms might not be common knowledge.

A firm does not know the private information of its competitors and therefore it does not know

their actions. Firms form probabilistic beliefs about the actions of competitors. Let bi(a−i | εi,x)

be a probability density function that represents firm i’s beliefs. This is a probability function

in the space of the actions of firms other than i and conditional on firm i′s information. We use

Bi(a−i | εi,x) to denote the distribution function associated with the density bi(a−i | εi,x). Given

its beliefs, a firm’s expected profit is:

Πei (ai, εi,x, bi) =

∫
a−i

Πi(ai,a−i, εi,x) bi(a−i|εi,x) da−i, (1)

The integral is over the Lebesgue measure on AN−1, which can be either continuous or discrete. A

firm chooses its strategy function σi(εi,x, bi) to maximize expected profits:

σi(εi,x, bi) = arg max
ai∈A

Πei (ai, εi,x, bi). (2)
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It is convenient to represent a firm’s strategy as a cumulative distribution function. Let pi (ai|x)

be the probability density function of choice variable ai conditional on x, that is, the so called con-

ditional choice probability (CCP) function. We use Pi (ai|x) to denote the cumulative distribution

function associated to pi. According to the model, this distribution comes from firm i’s best re-

sponse and satisfies the following equation. For any value a0 ∈ A,

Pi
(
a0|x

)
≡ Pr

(
σi(εi,x, bi) ≤ a0 | x; bi

)
=

∫
1
{
σi(εi,x, bi) ≤ a0

}
dFi(εi|x) (3)

In this framework, the payoff functions {Πi} and the distribution of private signals, F (.|x),

are primitives of the model. The predictions of the model are the choice probabilities. The belief

functions {bi} are endogenous outcomes of the model. However, the model is incomplete in the

sense that it does not specifies how these beliefs are determined. Instead, it specifies a general

framework that includes as particular cases many different models for the determination of beliefs

such as Bayesian Nash equilibrium, Cognitive Hierarchy models, and many others.

2.2 Main assumptions

I focus on models where a firm’s action ai is a single variable that can be either continuous or

discrete. If the decision is continuous, then A = R. If the decision is discrete, then it is ordered and

A = {0, 1, ..., J}, e.g., number of products, stores, etc.2 The framework imposes some restrictions on

the marginal profit function to guarantee that a firm’s best response function is strictly monotonic

in εi. For the rest of this subsection, I present assumptions such that: (i) these marginal conditions

of optimality are necessary and suffi cient such that they fully characterize a firm’s optimal best

response function; and (ii) we can obtain a simple characterization of the optimal decision rule

using the cumulative choice probability function Pi (ai|x).

Let ∆Πi(ai,a−i, εi,x) be the marginal profit function. Here the concept of marginal profit is

broad and depends on the decision variables ai. If the decision variable is continuous — such as

output or price —the marginal profit is at the intensive margin and it corresponds to the math-

ematical concept of partial derivative: ∆Πi(ai,a−i, εi,x) ≡ ∂Πi(ai,a−i, εi,x)/∂ai. If the decision

variable is discrete —such as entry decision, number of stores, or number of products —the marginal

profit is at the extensive margin and it corresponds to a difference function: ∆Πi(ai,a−i, εi,x) ≡

Πi(ai,a−i, εi,x) −Πi(ai − 1,a−i, εi,x).

2Note that any binary choice (e.g., a market entry decision) is a particular case of ordered discrete choice variable.
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The following assumption provides suffi cient conditions for the monotonicity of a firm’s best

response function with respect to its type εi.

ASSUMPTION 1. For any value of (ai,a−i, εi,x), the marginal profit function ∆Πi(ai,a−i, εi,x)

is: (A) additively separable in the private information εi such that

∆Πi(ai,a−i, εi,x) = ∆πi(ai,a−i,x)− εi ; (4)

(B) ∆πi(ai,a−i,x) is strictly decreasing in the own action ai. For discrete choice models, and

without loss of generality, I adopt the notational convention of ∆πi(0,a−i,x) = +∞ and ∆πi(J +

1,a−i,x) = −∞. �

The strict monotonicity of the marginal profit with respect to the own action —Assumption

1(B) —holds in most models of market competition. For models of competition in price or quantity,

a downward sloping demand curve and a non-decreasing marginal costs are suffi cient conditions for

the monotonicity of the marginal profit with respect to the own action.

The additivity of the private information in assumption 1(A) is not without loss of generality.

The following example presents a simple model to illustrate some restrictions imposed by this

assumption.

EXAMPLE 1. Consider a model of Cournot competition in an homogeneous product industry.

Variable ai ∈ R+ represents firm i’s amount of output. The inverse demand function is linear:

p = α − β
∑N
j=1 aj . Parameters α and β are the true demand parameters. Firms do not know

these parameters. Instead, each firm receives a private and independent signal (αi, βi) about the

value of these parameters. The cost function of firm i is: γi ai + δi a
2
i , where γi and δi are private

information of this firm. Therefore, the profit function is Πi = (αi − βi
∑N
j=1aj) ai −γiai −δia2

i ,

and the marginal profit function is:

∆Πi = αi − βi
∑N
j=1aj − βi ai − γi − δi ai (5)

This expression shows that the private information variables αi and γi enter additively in the

marginal profit. However, this is not the case for the private information variables βi and δi

which interact with the own output and with the output of other firms. Therefore, for this model,
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Assumption 1(A) restricts private information to enter in the intercept of the demand curve (αi)

or/and in the linear term of cost function (γi). It does not allow private information in the slope

of the demand (βi) or in the quadratic term of the cost function (δi). �

For all the identification results in this paper, Assumption 1(A) can be replaced with the weaker

assumption that ∆Πi = ∆πi(ai,a−i,x) − gi(ai,a−i,x) εi where function gi(ai,a−i,x) is positive

valued and it is known to the researcher. For notational simplicity, I use Assumption 1(A) instead

of this weaker version.3

Assumption 2 establishes the restriction that firms’types are independently distributed —inde-

pendent private values (IPV ). This restriction is stronger than what we need to characterize best

response functions and to obtain the identification results in this paper. However, it is convenient

because it facilitates the derivations and proofs.

ASSUMPTION 2. (A) The private information variables (ε1, ε2, ..., εN ) are independently dis-

tributed conditional on x: F (ε1, ε2, ..., εN |x) =
∏N
i=1Fi(εi|x). (B) Every firm i knows that other

firms’private information is independent of its own private information such that a−i and εi are

independent conditional on x. �

Assumption 2 implies that εi is not an argument of the beliefs function bi(a−i|εi,x). Firms

have beliefs that are consistent with this independence: every firm is aware that —conditional on

x —the actions of the other firms are independent of its own type. For the rest of the paper, I

represent a belief function as bi(a−i|x).

ASSUMPTION 3. The private information εi is a continuous random variable with support the

real line and with a cumulative distribution function conditional on x —Fi(εi|x) —that is strictly

increasing over the whole real line. �
3 In a recent paper, Allen and Rehbeck (2019) show that the assumption of additive separability of unobservables

provides identification of preferences and counterfactual behavior in a very general class of single-agent static decision
models.
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2.3 Characterization of firms’best response functions

Define the expected marginal profit (without including the private component εi):

∆πei (ai,x; bi) ≡
∫
a−i

∆πi(ai,a−i,x) bi(a−i|x) da−i. (6)

Consider the marginal condition of optimality. If ai is firm i’s optimal choice, then: (i) for models

with continuous decision variable, ∆πei (ai, x; bi)− εi = 0; and (ii) for models with discrete decision

variable, ∆πei (ai+1, x; bi) < εi ≤ ∆πei (ai, x; bi), where —remember —I have adopted the convention

that ∆πi(0,a−i,x) = +∞ and ∆πi(J + 1,a−i,x) = −∞. Let σi(εi, x, bi) be firm i’s best response

function.

The following Proposition 1 establishes that the marginal condition is necessary and suffi cient.

This proposition also characterizes a firm’s best response function in terms of the cumulative choice

probability function.

PROPOSITION 1. (A) Under Assumptions 1 and 2, the marginal condition of optimality is a

necessary and suffi cient condition for firm i’s best response, i.e., σi(εi,x, bi) = ai iff the marginal

condition holds for value ai. (B) Under Assumptions 1 to 3, for any value a0 in the choice set A,

we have the following relationship between the cumulative choice probability function Pi(a
0|x) and

the expected marginal profit:

Pi(a
0|x) = Fi

[
∆πei (a

0,x; bi) | x
]
. (7)

This relationship is invertible such that we have:

Qi(a
0|x) = ∆πei (a

0,x; bi), (8)

where Qi(a0|x) ≡ F−1
i

[
Pi(a

0|x)
]
and F−1

i is the inverse of Fi (quantile function). �

The following examples illustrate this characterization of best response functions using four

standard models of competition: Cournot, auctions, market entry, and number of stores, respec-

tively.

EXAMPLE 2 (Cournot competition). Consider a Cournot game of quantity choice in an homoge-

neous product industry. Let ai ∈ R+ be firm i’s amount of output. The market demand function
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is d(Q,x) where Q =
∑N
i=1 ai, and a firm’s marginal cost function is ci(ai,x) + εi. The expected

marginal profit function is ∆πei (ai,x; bi)− εi where:

∆πei (ai,x; bi) = −ci(ai,x) +

∫
a−i

ai d
(∑

j 6=i aj ,x
)
bi(a−i|x) da−i. � (9)

EXAMPLE 3 (Market entry game). Consider a game of market entry. Let ai ∈ {0, 1} be the

indicator of the event "firm i is active in the market". A firm’s profit if not active in the market

is zero, Πi(0,a−i, εi,x) = 0. If active in the market, a firm’s profit is equal to the variable profit

vi(a−i,x) —i.e., revenue minus variable cost —minus the entry cost eci(x)+ εi. The marginal profit

is the profit if active minus the profit if not active, which in this case is zero. Then, the expected

marginal profit function is:

∆πei (1,x; bi)− εi = −eci(x)− εi +
∑
a−i

vi(a−i,x) bi(a−i|x). � (10)

EXAMPLE 4 (Competition in number of stores or products). Consider a competition game where

ai ∈ {0, 1, ..., J} represents the number of products that the firm has in the market. Similarly as in

the market entry game, a firm’s profit is equal to the variable profit vi(ai,a−i,x) minus the fixed

cost fci(ai,x)+ ai εi. In this case, the private information εi is associated to the increase in the

fixed cost from managing one more product. Then, the expected marginal profit function is:

∆πei (ai,x; bi)− εi = −∆fci(ai,x)− εi +
∑
a−i

∆vi(ai,a−i,x) bi(a−i|x), (11)

with∆fci(ai,x) ≡ fci(ai,x)−fci(ai−1,x), and∆vi(ai,a−i,x) ≡ vi(ai,a−i,x)−vi(ai−1,a−i,x). �

EXAMPLE 5 (Procurement auction). This example is slightly different to the previous ones because

the private information variable εi is not additive in the marginal condition of optimality. I use this

example to illustrate how this condition is not necessary to obtain the characterization of the best

response function that I use for the identification results in this paper. Consider a procurement

auction where ai ∈ R represents firm i‘s bid. The profit function is Πi(ai,a−i, εi,x) = (ai−ci(x)−εi)

1{aj > ai ∀j 6= i}, where ci(x)+εi is the cost and 1{.} is the indicator function such that 1{aj > ai

∀j 6= i} is the indicator of the event "firm i has the lowest bid and wins the auction". The expected
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profit function is:

Πei (ai, εi,x; bi) = (ai − ci(x)− εi)
∫
a−i

1{aj > ai ∀j 6= i} bi(a−i|x) da−i

= (ai − ci(x)− εi) W (ai,x,bi)

(12)

where W (ai,x,bi) ≡
∫
a−i

1{aj > ai ∀j 6= i} bi(a−i|x) da−i is firm i’s subjective probability of

wining the auction given its beliefs. Therefore, expected marginal profit function is:

∆πei (ai, εi,x; bi) = W (ai,x,bi) + (ai − ci(x)− εi) ∆W (ai,x,bi), (13)

where ∆W (ai,x,bi) represents the derivative of the subjective probability of winning with respect

to the own bid ai. Note that this expected marginal profit function is not additively separable

in εi. However, ∆πei is strictly monotonic in ai and εi, and this implies that the best response

function is strictly monotonic in εi. More specifically, we have that σi(εi,x, bi) = a0 if and only if

εi = a0 − ci(x) + W (a0,x,bi)
∆W (a0,x,bi)

. This implies that we can represent the best response function using

the following formula for the conditional quantile function:

Qi(a
0|x) = a0 − ci(x) +

W (a0,x,bi)

∆W (a0,x,bi)
. � (14)

2.4 Common equilibrium restrictions in empirical applications

The framework presented above includes as particular cases most games of competition with incom-

plete information in empirical IO applications. A main difference is that most empirical applications

have assumed that firms’beliefs satisfy some equilibrium restrictions. Different equilibrium con-

cepts have been used in the literature. I present here the equilibrium concepts that have received

more attention in empirical applications in IO.

All these equilibrium concepts assume that firms choose their best response strategies given

their beliefs: that is, they impose the best response conditions described above. In addition, they

restrict beliefs to satisfy some additional equilibrium restrictions. I describe below these additional

restrictions.

(a) Bayesian Nash Equilibrium (BNE) with independent private values. This is the most commonly

used solution concept in games of incomplete information in IO. It has received particular attention

in auction games (e.g., Guerre, Perrigne, and Vuong, 2000; Athey and Haile, 2002), and in discrete

choice games (e.g., Seim, 2006; Sweeting, 2009). It has been used also in empirical applications
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of Cournot competition models with incomplete information (Armantier and Richard, 2003; Aryal

and Zicenko, 2019).

A BNE can be described as N cumulative choice probability functions — {Pi(ai|x) : i =

1, 2, ..., N} — satisfying the following conditions: (i) [best responses] Pi(ai|x) satisfies the best

response equation (7) given beliefs bi; and (ii) [rational beliefs] the cumulative beliefs function Bi

is equal to the actual distribution function of the choices of the other firms conditional on x:

Bi(a−i|x) =
∏
j 6=i
Pj (aj |x) (15)

(b) Cognitive Hierarchy (CH) and Level-K models. These models propose equilibrium concepts

where firms have biased beliefs, that is, Bi(a−i | x) 6=
∏
j 6=iPj (aj |x). They are based on the

following ideas. Firms are heterogeneous in their beliefs and there is a finite number of belief types.

That is, Bi(a−i|x) belongs to a finite family of K belief functions, {B(k)(a−i|x) : k = 1, 2, ...,K}.

Each of member of this family is a ‘belief type’. Belief types correspond to different levels of

strategic sophistication and are determined by a hierarchical structure.

A firm type-0 has arbitrary believes B(0). In the Level-k model, a type-k firm believes that all

the other firms are type-(k-1). Therefore, a type-k firm has beliefs:

B(k)(a−i|x) =
∏
j 6=i
Fj

(
∆πej (aj ,x;B(k−1)) | x

)
(16)

This recursive equation defines the belief functions for every type k between 1 and K. Note that

the only unrestricted function is the beliefs function for type-0: the rest of the belief functions are

known functions of B(0) and the primitives of the model.

The CH model is more flexible than the Level-k model. In the CH model, a type-k firm believes

that the other firms come from a probability distribution over types 0 to (k-1). This model has been

estimated in IO applications in Goldfarb and Xiao (2011), Brown, Camerer, and Lovallo (2013),

and Hortaçsu, Luco, Puller, and Zhu (2019).

These models allow for some flexibility in beliefs. However, they still impose important restric-

tions. More specifically, they do not include BNE or rational beliefs as a particular case, and there

is a small number of belief types —K is smaller than N , and typically 2 or 3 in actual applications.

(c) Rationalizability (Bernheim, 1984; Pearce, 1984). The concept of rationalizability imposes two

simple restrictions on firms’beliefs and behavior. First, every firm maximizes its own expected
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profit given beliefs. And second, this rationality is common knowledge, i.e., every firms knows that

every firm knows ... that all the firms are rational. The set of outcomes of the game that satisfy

these conditions — the set of rationalizable outcomes — includes all the Bayesian Nash equilibria

(BNE)of the game but also outcomes where players have biased beliefs. More specifically, in a game

with multiple equilibria, each firm has beliefs that are consistent with a BNE, but these beliefs may

not correspond to the same BNE: that is, a firm believes that they are playing equilibrium A and

other firm believes that the equilibrium played is B.

In general, the set of rationalizable beliefs is larger than the set of BNE but substantially

smaller than the set of all the possible beliefs. Therefore, the condition of common knowledge

rationality imposes non trivial restrictions with respect to the model that I consider in this paper.

I show that these additional restrictions are testable.

(d) Correlated Bayesian Nash Equilibrium. In recent work, Bergemann and Morris (2013, 2016)

have introduced the solution concept of Bayesian Correlated Equilibrium (BCE). This solution is

more robust than BNE, in the sense that it delivers all predictions compatible with BNE for any

information structure within a wide class. Magnolfi and Roncoroni (2017) study inference based

on the BCE solution concept. Their goal is to identify payoff parameters but they do not study

the identification of beliefs. Their work illustrates a trade-off between robustness to assumptions

about information structures and the ability to achieve point identification.

3 Dynamic games

In this section, I extend the previous framework to a dynamic game. Time is discrete and indexed

by t. Now, πit(ait,a−it, εit,xt) represents the profit function of firm i at period t. The arguments

of this function have the same interpretation as in section 2. Firms choose their actions at every

period t to maximize their expected and discounted profits Et(
∑T−t
s=0β

s
i πit+s), where βi is the firm’s

discount factor and T is the time horizon that can be finite or infinite.

I introduce an additional assumption that, in dynamic structural models, is typically described

as the conditional independence assumption.

ASSUMPTION 4. (A) The vector of state variables xt follows a controlled Markov process with

transition probability density function fxt (xt+1 | ait, a−it, xt). (B) The private information vari-
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able εit is independently and identically distributed over time. �

Assumption 4(B) implies that the private information variables are not serially correlated. This

assumption is not innocuous. It rules out the possibility of firms using the history of other firms’

decisions to learn about these firms’type. This type of learning is the focus of the Experience-Based

equilibrium concept in Fershtman and Pakes (2012).

Every period, firms choose simultaneously their actions to maximize their intertemporal values.

A firm’s value at period t depends on the actions of other firms at that period and in the future.

Firms form probabilistic beliefs about the actions of competitors, now and in the future. Let

b
(t)
it+s(a−i,t+s | xt+s) be a probability density function, in the space of the actions of firms other

than i, that represents the beliefs of firm i at period t about the behavior of other players at period

t+ s. This representation of beliefs allows for general forms of beliefs updating. According to this

notation, b(t+1)
it+s − b

(t)
it+s represents the change (or update) from period t to period t+ 1 in the beliefs

that firm i has about the behavior of competitors at period t+ s.

Given a firm’s beliefs at period t, b(t)i ≡ {b
(t)
i,t+s : s ≥ 0}, its best response at period t is the

solution of a single-agent dynamic programming (DP) problem. We can represent this DP problem

using Bellman’s principle. Let V
b
(t)
i

it (xt, εit) be the value function. Then,

V
b
(t)
i

it (xt, εit) = max
ait∈A

{∫
a−it

[
Πit(ait,a−it, εit,xt) + v

b
(t)
i
it (ait,a−it,xt)

]
b
(t)
it (a−it|xt) da−it

}
(17)

where v
b
(t)
i
it (ait,a−it,xt) is the continuation value that has the following expression:

β

∫
V
b
(t)
i

it+1(xt+1, εit+1) fxt(xt+1|ait,a−it,xt) dxt+1 dFi(εit+1|xt) (18)

Given its beliefs, a firm chooses its strategy to maximize its value. That is, the best response

strategy function, σit(εit,xt,b
(t)
i ), is the maximand of the term in brackets {.} in equation (17).

As in the static game, it is convenient to represent a firm’s strategy as a cumulative distribution

function, or as a quantile function.

PROPOSITION 2. In the dynamic game, under Assumptions 1 to 4, for any value a0 in the

choice set A, we have the following relationship between the cumulative choice probability function

Pit(a
0|xt) and the marginal expected intertemporal profit:

Pit(a
0|xt) = Fi

[
∆πeit(a

0,xt; b
(t)
it ) + ∆v

e,b
(t)
i

it (a0,xt; b
(t)
it ) | xt

]
, (19)
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where ∆πeit(a
0,xt; b

(t)
it ) ≡

∫
a−it

∆πit(ait,a−it,xt) b
(t)
it (a−it|xt) da−it, and ∆v

e,b
(t)
i

it (a0,xt; b
(t)
it ) ≡∫

a−it

∆v
b
(t)
i
it (ait,a−it,xt) b

(t)
it (a−it|xt) da−it. This relationship is invertible such that we have:

Qit(a
0|xt) = ∆πeit(a

0,xt; b
(t)
it ) + ∆v

e,b
(t)
i

it (a0,xt; b
(t)
it ), (20)

where Qit(a0|xt) ≡ F−1
i

[
Pit(a

0|xt)
]
. �

In this framework, the sequence of beliefs b(t)i =
{
b
(t)
i,t+s : s ≥ 0

}
is completely unrestricted. This

framework contains as particular cases most solution concepts in dynamics games of competition

with incomplete information. I present here some common cases.

(a) Markov Perfect Equilibrium (MPE). This is the most commonly used solution concept in ap-

plications of dynamic games in empirical IO (Maskin and Tirole, 1988; Ericson and Pakes, 1995).

Here we consider a version of MPE that allows for non-stationarity due to finite time horizon T

or/and primitive functions πit and fxt that vary over time.

AMPE can be described asN sequences of cumulative choice probability functions —{Pit(ait|xt) :

i = 1, 2, ..., N ; t ≥ 1} —satisfying the following conditions: (i) [best responses] Pit(ait|xt) satisfies

the best response condition given beliefs b(t)i ; and (ii) [rational beliefs] beliefs b
(t)
i are equal to the

actual probability distribution of the choices of the other firms: for any t ≥ 1, s ≥ 0, a−i ∈ AN−1,

and x ∈ X ,

b
(t)
i,t+s(a−i|x) =

∏
j 6=i
pj,t+s (aj |x) (21)

(b) Dynamic equilibrium with Learning. Bayesian, Adaptive, or other forms of learning. All these

equilibrium concepts impose some restrictions on beliefs: both on the heterogeneity of firms’beliefs

and on the evolution of beliefs over time. They are restricted versions of the general model presented

above.
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4 Identification

4.1 Data

This section presents results on the identification of beliefs in the previous general framework. I

distinguish three scenarios for the data available to the researcher which are common in empirical

IO applications.

(a) Only firms’choice data. The researcher has a sample of M local markets, indexed by m,

where she observes firms’actions and state variables: {aimt, xmt : i = 1, 2, ..., N ; t = 1, 2, ..., T data}.

In empirical applications of market entry models, it is often the case that the researcher has only

choice data —e.g., firms’entry/exit decision —and there is no direct information on firms’revenues

or costs.

(b) Choice data + revenue function. In addition to data on firms’choices, the researcher

may have data on some components of the profit function. In many IO applications, the researcher

observes prices and quantities and can estimate the demand system. Given the demand system,

the researcher knows the revenue function.

(c) Choice data + revenue function + cost function. Data on firms’marginal costs is rare

but it is sometimes available (Hortaçsu and Puller, 2008; Hortaçsu et al., 2019). Marginal costs can

be also obtained from the estimation of a production function if the dataset contains information

on firms’output and input quantities, and input prices.

To incorporate in our framework the data that the researcher has on the revenue or cost func-

tions, we distinguish these two components in the profit function. A firm’s profit is equal to revenue

minus cost: πi = ri − ci. Accordingly, the marginal profit is equal to the marginal revenue minus

the marginal cost: ∆πi = ∆ri − ∆ci. The economic interpretation of this marginal revenue and

marginal cost depends on the particular decision variable of the model that can be continuous —

e.g., quantity, price, investment —or discrete —e.g., entry, number of products.

For the identification analysis below, I consider that the researcher has a random sample with

infinite markets: M →∞. This population level approach is standard in the literature on identifi-
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cation. Given this infinite sample, the cumulative choice probability function Pi(a0|x0) is identified

for every firm i and at every point (a0,x0) in the support A×X . More precisely, by definition we

have that Pi(a0|x0) = E(1{aim ≤ a0} | xm = x0), and the expectation E(1{aim ≤ a0} | xm = x0)

is identified from our sample. For the rest of this section, I treat Pi as a known function.

4.2 The identification problem

Consider the static game. By Proposition 1, we have that:

Pi(a
0|x) = Fi

(
∆rei (a

0,x, bi)−∆cei (a
0,x, bi) | x

)
(22)

where∆rei (a
0,x, bi) ≡

∫
∆ri(ai,a−i,x) bi(a−i|x) da−i and∆cei (a

0,x, bi) ≡
∫

∆ci(ai,a−i,x) bi(a−i|x)

da−i are the (subjective) expected marginal revenue and expected marginal cost, respectively.

Equation (22) summarizes all the restrictions that the model imposes on the distribution function

Pi. The left-hand-side of this equation — the distribution Pi — is known to the researcher. The

right-hand-side depends on the model primitives —the structural functions Fi, ∆ri, and ∆ci —and

on beliefs bi. The model is fully (point) identified if the system of equations in (22) implies unique

values for structural functions and beliefs.

It is clear that the model is strongly under-identified. While the number of restrictions —the

dimension of the distribution Pi —is (|A| − 1) |X |, we have that only the dimension of the beliefs

function bi is (|A|N−1 − 1) |X | which is obviously larger than the number of restrictions. When

Fi, ∆ri, and ∆ci are unknown to the researcher, the under-identification is stronger. Despite the

under-identification of the model, I show below that it possible to identify a function that only

depends on beliefs. The identification of this "beliefs object" can be used to test the validity of

different equilibrium concepts and restrictions on beliefs.

For the sake of simplicity, I first illustrate the identification results in a simple model of competi-

tion: a binary choice game with two firms. Furthermore, I assume that the probability distribution

Fi is known to the researcher. Later, in section 4.4, I show that extend this identification result

extends to models with: (i) multinomial and continuous choices; (ii) nonparametric specification

Fi; (iii) more than two players; and (iv) dynamic games.

4.3 Two-firms binary choice game

Consider a binary choice game of price competition between two firms: ai = 0 represents the

choice of the low price (promotion price) and ai = 1 means the choice of high price (regular price).

16



Let qi = di(ai, a−i,x) be the demand function for the product of firm i. and let Ci(qi,x) be the

cost as a function output. Therefore, using our notation, the revenue function is ri(ai, a−i,x)≡ ai

di(ai, a−i,x), and the cost function is ci(ai, a−i,x) = Ci(di(ai, a−i,x),x).4

Let Pi(0|x) —or in short Pi(x) —be the probability that firm i chooses the low price. And let

bi(0|x) —or in short bi(x) —be this firm’s belief about the probability that the competitor chooses

the low price. The marginal profit function is ∆πi(a−i,x) ≡ πi(1, a−i,x) − πi(0, a−i,x), that is,

the difference between the profit with high price and with low price. Marginal profit is equal to

marginal revenue minus marginal cost: ∆πi(a−i,x) = ∆ri(a−i,x)−∆ci(a−i,x).

As established in Proposition 1, the best response equation can be represented as:

Qi(x) = ∆πi(0,x) + bi(x) [∆πi(1,x)−∆πi(0,x)] (23)

with Qi(x) ≡ F−1
i (Pi(x)). Given this system of equations —for every value of x —we are interested

in the identification of marginal profits ∆πi(0,x) and ∆πi(1,x), and the beliefs function bi(x).

We are particularly interested in the identification of the beliefs function bi(x), or at least on the

identification of an object or parameter that only depends on this belief function.

Without further restrictions, he model is under-identified. More specifically, the order condi-

tion for identification does not hold: for each value of x, there is only one restriction — i.e., one

value of Qi(x) —but three unknowns, ∆πi(0,x), ∆πi(1,x), and bi(x). Section 4.3.1 describes the

identification of beliefs when the researcher has revenue and cost data. In sections 4.3.2 and 4.3.3,

I present an exclusion restriction that identifies firms’beliefs even with only choice data.

4.3.1 Identification with revenue and cost data

Suppose that the researcher knows the revenue function and the cost function: the dataset includes

information on prices and quantities of inputs and outputs that can be used to identify demand

and cost functions. This implies that the marginal profits ∆πi(0,x) and ∆πi(1,x) are known to the

researcher. Therefore, under the condition that ∆πi(1,x) − ∆πi(0,x) 6= 0, equation (23) implies

that the beliefs function is fully identified:

bi(x) =
Qi(x)−∆πi(0,x)

∆πi(1,x)−∆πi(0,x)
(24)

4Even if a firm’s cost depends only on its own output, the cost as a function of prices depends both on the own
price and competitors’prices. This is simply because the quantity produced and sold by a firm depends on all the
prices. In contrast, in a Cournot game, where the decision variable ai represents a firm’s output, the cost function
ci(ai, a−i,x) does not depend on a−i.
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The identification condition ∆πi(a−i = 1,x) − ∆πi(a−i = 0,x) 6= 0 is quite intuitive. A firm’s

observed behavior reveals information about the firm’s beliefs only if beliefs have an effect on

behavior, and this is the case only if other firms’actions affect the firm’s profit, i.e., only if∆πi(a−i =

1,x)−∆πi(a−i = 0,x) 6= 0.

Given the identification of firms’beliefs, the researcher can test the validity of restrictions on

beliefs with economic relevance.

(a) Testing for unbiased beliefs. We say that firm i has unbiased beliefs about the behavior of the

other firm if bi(x) − p−i(x) = 0 for every value of x. Given the identification of bi(x) and that

p−i(x) is known to the researcher, we can test the null hypothesis of a firm’s unbiased beliefs.

(b) Testing for BNE. The concept of BNE imposes the restrictions that all the firms play best

responses and have unbiased beliefs. Therefore, testing the null hypothesis of BNE is equivalent to

test the joint restrictions b1(x)− p2(x) = 0 and b2(x)− p1(x) = 0 for every value of x.

(c) Testing for Rationalizabilitty. Given that the researcher knows firms’profit functions, she can

construct the set of rationalizable beliefs, and then test if the identified beliefs —b1(x) and b2(x)

—belong to this set. To construct the set of rationalizable beliefs we can use a simple iterative

procedure as in Aradillas-Lopez and Tamer (2008). This iterative procedure exploits the property

that the best response probability function Fi(∆πi(0,x)+ bi(x) [∆πi(1,x) −∆πi(0,x)]) is strictly

monotonic in the beliefs function bi(x). Suppose, without loss of generality, that ∆πi(1,x) −

∆πi(0,x) > 0. At iteration k, the set of level-k rationalizable beliefs for firm 1 is [L
(k)
1 (x), U (1)

1 (x)]

with 
L

(k)
1 (x) = F2(∆π2(0,x) + L

(k−1)
2 (x) [∆π2(1,x)−∆π2(0,x)])

U
(k)
1 (x) = F2(∆π2(0,x) + U

(k−1)
2 (x) [∆π2(1,x)−∆π2(0,x)])

(25)

And we have the symmetric expression for the set of level-k rationalizable beliefs for firm 2.

4.3.2 Identification with revenue but not cost data

Suppose that the researcher has data that identifies the demand system and therefore the revenue

function ri(ai, a−i,x). The cost function is unknown. The best response equation is:

Qi(x) = ∆ri(0,x)−∆ci(0,x) + bi(x) [∆ri(1,x)−∆ri(0,x) + ∆ci(1,x)−∆ci(0,x)] (26)
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where Qi(x), ∆ri(0,x), and ∆ri(1,x) are known, and bi(x), ∆ci(1,x), and ∆ci(0,x) are unknown.

This restriction cannot identify beliefs and cost functions. For any possible value of bi(x), there

exist values of the marginal costs ∆ci(1,x) and ∆ci(0,x) such that the best response equation

holds. Therefore, there exist infinite combinations of (bi(x), ∆ci(0,x), ∆ci(1,x)) that satisfy the

best response equation (26).

This identification problem is closely related to the traditional identification problem of the

nature of competition, or the identification of collusive behavior (Bresnahan, 1982). Almost any

observed behavior can be justified as one with "non-collusive beliefs" if we select the appropriate

marginal cost function. The following Example describes connection in detail.

EXAMPLE 6 (Firms’beliefs and conjectural variations). In an influential paper, Bresnahan (1982)

studies the identification of the form (or nature) of competition in a model with complete informa-

tion. In a complete information game, the nature of competition can be described as a conjectural

variation (CV) parameter. This CV parameter has similarities with our beliefs function, but there

are also substantial differences between them. Our beliefs function is an endogenous object that

varies with all the exogenous characteristics in the vector x affecting demand and costs. CV pa-

rameters are typically interpreted as exogenously given and do not vary when demand or costs

change. As I explain below, this has important implications on the identification of beliefs relative

to the identification of CV parameters.

The best response equation in Bresnahan (1982) is similar as equation (26) but replacing the

beliefs function bi(x) with a parameter CVi that is assumed invariant with x. After the identification

of the demand and marginal revenue functions, Bresnahan proposes an exclusion restriction that

implies the identification of the parameter CVi. I first describe this identification result using our

notation, and then I show this assumption cannot provide identification of beliefs in our model of

incomplete information.

Bresnahan’s identification of the nature of competition (CV). Suppose that the vector of ex-

ogenous variables x has two components (x̃, z) where z is a variable that satisfies two conditions:

(Bresnahan-i) z affects the marginal revenue function, or more precisely the function ∆ri(1,x) −

∆ri(0,x) —that is, variation in z "rotates" the demand curve such that marginal revenue changes;

and (Bresnahan-ii) z does not enter in the marginal cost function.

Consider the best response equation (26) but where the beliefs function bi(x) is replaced with a
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constant parameter CVi. Let z1 and z2 be two different values of the special variable that "rotates"

the demand curve. Consider the best response equation evaluated at two different points, (x̃, z1)

and (x̃, z2), and obtain the difference between these two equations. We get:

Qi(x̃, z
1)−Qi(x̃, z2) = ∆ri(0, x̃, z

1)−∆ri(0, x̃, z
2)

+ CVi
[
∆ri(1, x̃, z

1)−∆ri(0, x̃, z
1)−∆ri(1, x̃, z

2) + ∆ri(0, x̃, z
2)
]
(27)

Everything in this equation except parameter CVi is known to the researcher. Furthermore,

the identification assumption (ii) above implies that ∆ri(1, x̃, z
1) −∆ri(0, x̃, z

1) −∆ri(1, x̃, z
2) +

∆ri(0, x̃, z
2) is different to zero. Therefore, we can solve for CVi to identify this parameter.

This exclusion restriction does not work for the identification of beliefs. In our model, the

beliefs function bi(x) is an endogenous object that depends on all the exogenous variables affecting

demand or costs. Therefore, under Bresnahan’s identification assumptions (i) and (ii), we have

that right-hand-side of equation (27) becomes:

∆ri(0, x̃, z
1)−∆ri(0, x̃, z

2) +
[
bi(x̃, z

1)− bi(x̃, z2)
]

[∆ci(1, x̃)−∆ci(0, x̃)]

+bi(x̃, z
1)
[
∆ri(1, x̃, z

1)−∆ri(0, x̃, z
1)
]
− bi(x̃, z2)

[
∆ri(1, x̃, z

2)−∆ri(0, x̃, z
2)
] (28)

This expression depends both on beliefs and costs and it cannot be used to separately identify one

from the other. �

A useful exclusion restriction: firm-specific cost shifters The rest of this subsection

presents an exclusion restriction that provides identification of firms’ beliefs. Suppose that the

vector x contains a firm-specific variable that affects the marginal cost of a firm but not the

marginal cost of its competitors. For instance, input prices —wages, prices of intermediate inputs

—can have firm specific variation because long-term contracts, bargaining, internal labor markets,

etc. Assumption 5 describes this condition more formally.

ASSUMPTION 5. Vector x has the following elements (x̃, z1, z2, ..., , zN ) where x̃ can affect the

marginal revenues and marginal costs of all the firms in an unrestricted way, and each variable zi

is firm-specific and satisfies the following conditions: (A) firm i’s marginal cost (or/and marginal

revenue) depends on zi; and (B) firm i’s marginal cost and marginal revenue do not depend on

z−i ≡ {zj : j 6= i}. �
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Under Assumption 5, it is possible to identify firm i’s beliefs using this firm’s change in behavior

when z−i varies. Proposition 3 establishes formally this result.

PROPOSITION 3. Let z1
−i, z

2
−i, and z

3
−i be three different values for the variable z−i. Then, under

Assumptions 1-3 and 5, the following equation holds:

bi(x̃, zi, z
1
−i)− bi(x̃, zi, z2

−i)

bi(x̃, zi, z1
−i)− bi(x̃, zi, z3

−i)
=
Qi(x̃, zi, z

1
−i)−Qi(x̃, zi, z2

−i)

Qi(x̃, zi, z1
−i)−Qi(x̃, zi, z3

−i)
(29)

such that an object that depends only on beliefs (left hand side) is identified using the firm’s observed

behavior (right hand side). �

The term Qi(x̃, zi, z
1
−i) −Qi(x̃, zi, z1

−i) captures the change in the behavior of firm i when z−i

varies from z1
−i to z

2
−i: that is, the change in the probability that firm i charges a low price when

the competitor’s wage rate changes. Since variable z−i does not affect firm i’s marginal revenue or

marginal cost —Assumption 5(B) —the observed change in the pricing behavior in firm i should

be because a change in its beliefs. The difference between the best-response equation at points

(x̃, zi, z
1
−i) and (x̃, zi, z

2
−i) is:

Qi(x̃, zi, z
1
−i)−Qi(x̃, zi, z2

−i) =
[
bi(x̃, zi, z

1
−i)− bi(x̃, zi, z2

−i)
]

[∆πi(1, x̃, zi)−∆πi(0, x̃, zi)] (30)

This difference is not suffi cient to identify the beliefs parameter bi(x̃, zi, z1
−i)−bi(x̃, zi, z2

−i). The rea-

son, is that∆πi(1, x̃, zi)−∆πi(0, x̃, zi) depends on unknown marginal costs through the term∆ci(1, x̃, zi)−

∆ci(0, x̃, zi). However, we can also obtain the difference between the best-response equation

at points (x̃, zi, z
1
−i) and (x̃, zi, z

3
−i) to get a similar equation as (30) but for Qi(x̃, zi, z

1
−i) −

Qi(x̃, zi, z
3
−i). Note that the term ∆πi(1, x̃, zi)−∆πi(0, x̃, zi) is common between these equations.

Therefore, we can cancel this unknown common term by obtaining the ratio between these two

difference equations.

Equation (29) shows that the observed variation in the pricing behavior of firm i —when the

competitor’s input prices change —reveals information about this firm’s beliefs. We can separate

beliefs from the primitives in the profit function.

In some models, the cost function of a firm does not depend on the action of other firms. For

instance, this is the case in Cournot models of quantity competition or in the entry games because, in

these models, the cost function ci is a "pure" cost function and not the composition of the true cost
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function and the demand function. In these models, we have that ∆ci(1, x̃, zi)−∆ci(0, x̃, zi) = 0

such that ∆πi(1, x̃, zi) − ∆πi(0, x̃, zi) = ∆ri(1, x̃) − ∆ri(0, x̃) that is known to the researcher.

Therefore, we can identify the following beliefs parameter:

bi(x̃, zi, z
1
−i)− bi(x̃, zi, z2

−i) =
Qi(x̃, zi, z

1
−i)−Qi(x̃, zi, z2

−i)

∆ri(1, x̃)−∆ri(0, x̃)
(31)

Given the identification of these beliefs objects, we can implement tests for the null hypotheses

of unbiased beliefs and BNE in a similar way as I have described above at the end of section 4.3.1.

4.3.3 Identification using only firms’choice data

The previous exclusion restriction can be applied to the identification of beliefs also when the

researcher has not identified the revenue function. Proposition 3 applies also to this case. Similarly,

we can use the identified beliefs parameters to test the null hypotheses of unbiased beliefs and BNE.

4.4 Extensions

Under Assumption 5 and the condition that Fi is known to the researcher, the identification result in

Proposition 3 extends to models where the decision variable is (ordered) multinomial or continuous

choices as long as the support of the the state variable zi has at least as many points as the decision

variable zi. The proof is a bit more technical than Proposition 3 because it requires to represent

the model in vector form and to show that a linear function of beliefs can be written as linear

projection of the vector of quantiles. See Proposition 1 in Aguirregabiria and Magesan (2020).

For the other extensions, for simplicity, I consider the two-player binary choice game.

4.4.1 Identification in dynamic game

We can apply Proposition 2 to the two-player dynamic binary choice game to obtain the following

expression for the quantile best response condition:

Qit(xt) = ∆rit(0,xt)−∆cit(0,xt) + b
(t)
it (xt) [∆rit(1,xt)−∆rit(0,xt)−∆cit(0,xt) + ∆cit(1,xt)]

+ ∆v
b
(t)
i
it (0,xt) + b

(t)
it (xt)

[
∆v

b
(t)
i
it (1,xt)−∆v

b
(t)
i
it (0,xt)

]
(32)

In this equation, the first line is identical to the static game, and the second line contains the

continuation value and therefore the dynamics of the game.

Unfortunately, the exclusion in Assumption 5 is not suffi cient for the identification of beliefs in

the dynamic game. Without further assumptions, variable z−it is a state variable that affects the
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(marginal) continuation values of the two firms, even if this variable satisfies Assumption 5 such

that it does not have a different effect on the marginal profit of firm i at period t. For instance,

suppose that z−it is the wage rate paid by firm −i —the competitor of firm i. Though the value

of the competitors’wage rate at period t does not have a direct effect on the contemporaneous

marginal profit of firm i —once we account for the expected decision of the competitor — it can

affect the continuation value as it affects future wages.

Assumption 5∗ extends assumption 5 such that we can get identification of beliefs in dynamic

games.

ASSUMPTION 5 ∗. Vector xt has the following elements (x̃t, z1t, z2t, ..., , zNt) which satisfy

conditions (A) and (B) in Assumption 5. In addition, they also satisfy (C) the transition probability

of the state variable zit is such that zit+1 does not depend on (zit, z−it) once we condition on ait

and x̃t, i.e.,

Pr (zit+1 | ait, x̃t, zit, z−it) = Pr (zit+1 | ait, x̃t) . � (33)

Assumption 5∗(C) holds in many applications of dynamic games in empirical IO. The incumbent

status, capacity, capital stock, or product quality of a firm at period t− 1 are state variables that

enter in the firm’s payoff function at period t due to investment and adjustment costs. A firm’s

payoff function at period t depends also on the competitors’values of these variables at period t,

but it does not depend on the competitors’values of these variables at t − 1. Very importantly,

Assumption 5∗(C) does not mean that firm i does not condition his behavior on the state variables

z−it. Each firm conditions his behavior on all the state variables that affect the profit of a firm in

the game, even if these variables are excluded from his own payoff.

More specifically, an important class of dynamic games that satisfies Assumption 5∗(C) consists

of models where the transition rule for this state variable is zi,t+1 = ait. It is clear that this

transition rule is a particular case of equation (33). This is an important class of dynamic games

that includes as particular cases games of market entry/exit, technology adoption, pricing with

menu costs, and some dynamic games of quality or capacity competition, among others.

Of course, Assumption 5∗(C) rules out many candidates for exclusion restrictions that do satisfy

conditions Assumption 5(A) and Assumption 5(B). As I have mentioned above, this is the case of
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the competitor’s input prices because the typically follow Markov processes where zi,t+1 depends

on zit.

The key implication of Assumption 5∗(C) is that the marginal continuation values∆v
b
(t)
i
it (a−it,xt)

— which are defined as conditional on the competitor’s decision a−it — do not depend on the

state variable z−it: that is, ∆v
b
(t)
i
it (a−it, x̃t, zit, z−it) = ∆v

b
(t)
i
it (a−it, x̃t). This state variable af-

fects future expected continuation values ∆v
e,b

(t)
i

it (xt; b
(t)
it ) only through the firm’s beliefs: that

is, ∆v
e,b

(t)
i

it (xt; b
(t)
it ) = ∆v

b
(t)
i
it (0, x̃t)+ b

(t)
it (x̃t, zit, z−it) [∆v

b
(t)
i
it (1, x̃t) − ∆v

b
(t)
i
it (0, x̃t)]. This property

implies the identification of beliefs.

PROPOSITION 4. Consider the two-player binary choice dynamic game under Assumptions 1-4

and 5 ∗. Then, the following equation holds:

bit(x̃t, zit, z
1
−it)− bit(x̃t, zit, z2

−it)

bit(x̃t, zit, z1
−it)− bit(x̃t, zit, z3

−it)
=
Qit(x̃t, zit, z

1
−it)−Qit(x̃t, zit, z2

−it)

Qit(x̃t, zit, z1
−it)−Qit(x̃t, zit, z3

−it)
(34)

such that an object that depends only on beliefs (left hand side) is identified using the firm’s observed

behavior (right hand side). �

Note that Proposition 4 does not impose any restriction on the evolution of beliefs over time.

Therefore, the result is robust to very general forms of firms’ learning. On the negative side,

Proposition 4 establishes the identification of firms’ beliefs about competitors contemporaneous

behavior: that is, beliefs at period t about the opponents’behavior at period t. We cannot identify

beliefs about the opponent’s behavior in the future. However, Aguirregabiria and Magesan (2019)

show that the identification of the evolution of these contemporaneous beliefs is enough for testing

a very general class of models of learning and beliefs formation.

4.4.2 Identification of beliefs with unknown distribution of private information

When the state variables zi have continuous support, beliefs can be identified even when the

researcher does not know the distribution Fi, that is nonparametrically specified.

PROPOSITION 5. Consider the static binary choice game under Assumptions 1-3 and 5. Suppose

that: (i) the distribution Fi is independent of zi and z−i but it may depend on x̃; (ii) zi and z−i are

continuous random variables; (iii) Pi(x̃, zi, z−i) is strictly monotonic zi and z−i and asymmetric
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in these two arguments, i.e., for z 6= z′, generically, Pi(x̃, z, z′) 6= Pi(x̃, z
′, z); (iv) the researcher

knows the revenue function; and (v) firm i’s marginal cost does not depend on a−i. Let (zAi , z
A
−i)

and (zBi , z
B
−i) be two arbitrary values of (zi, z−i). Then, there exist unique values zAB∗−i and zBA∗−i —

which can be identified by the researcher —such that: zAB∗−i 6= zBA∗−i ; Pi(x̃, zAi , z
A
−i) = Pi(x̃, z

B
i , z

AB∗
−i );

Pi(x̃, z
B
i , z

B
−i) = Pi(x̃, z

A
i , z

BA∗
−i ); and the following condition holds:

bi(x̃, z
A
i , z

A
−i)− bi(x̃, zAi , zBA∗−i )

bi(x̃, zBi , z
B
−i)− bi(x̃, zBi , zAB∗−i )

= −∆ri(1, x̃, z
A
i )−∆ri(0, x̃, z

A
i )

∆ri(1, x̃, zBi )−∆ri(0, x̃, zBi )
(35)

such that an object that depends only on beliefs (left hand side) is identified using the firm’s observed

behavior and revenue function. �

Condition (iv) —firm i’s marginal cost does not depend on the other firm’s actions —applies to

Cournot, market entry, auctions, and many other models. Under this condition, the best response

quantile equation becomes:

Qi(x) = ∆ri(0,x)−∆ci(0,x) + bi(x) [∆ri(1,x)−∆ri(0,x)] (36)

Under conditions (ii) and (iii) in Proposition 5, for any value p in the interior of the image set

of function Pi(x̃, zBi , .), we can find a unique value z
∗
−i that solves equation p = Pi(x̃, z

B
i , z−i) with

respect to z−i. Given that the function Pi(.) is identified, this value z∗−i is also identified. Define

zAB∗−i as the unique value of z−i that solves the equation Pi(x̃, zAi , z
A
−i) = Pi(x̃, z

B
i , z−i) with respect

to z−i, and similarly, define zBA∗−i as the unique value of z−i that solves the equation Pi(x̃, zBi , z
B
−i) =

Pi(x̃, z
B
i , z−i) with respect to z−i. Given the asymmetry of function Pi with respect to zi and z−i

—condition (iii) —we have that zAB∗−i and zBA∗−i are two different values.

Since Pi(x̃, zAi , z
A
−i) = Pi(x̃, z

B
i , z

AB∗
−i ) and the distribution function Fi is independent of (zi, z−i)

—condition (i) —the quantile values Qi(x̃, zAi , z
A
−i) and Qi(x̃, z

B
i , z

AB∗
−i ) are also the same. Applying

this condition to the best response quantile equation, we have that (omitting x̃ as an argument for

notational simplicity):

0 = Qi(z
A
i , z

A
−i)−Qi(zBi , zAB∗−i )

=
{

∆ri(0, z
A
i )−∆ci(0, z

A
i ) + bi(z

A
i , z

A
−i)

[
∆ri(1, z

A
i )−∆ri(0, z

A
i )
]}

−
{

∆ri(0, z
B
i )−∆ci(0, z

B
i ) + bi(z

B
i , z

AB∗
−i )

[
∆ri(1, z

B
i )−∆ri(0, z

B
i )
]} (37)
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Similarly, we obtain the condition:

0 = Qi(z
B
i , z

B
−i)−Qi(zAi , zBA∗−i )

=
{

∆ri(0, z
B
i )−∆ci(0, z

B
i ) + bi(z

B
i , z

B
−i)

[
∆ri(1, z

B
i )−∆ri(0, z

B
i )
]}

−
{

∆ri(0, z
A
i )−∆ci(0, z

A
i ) + bi(z

A
i , z

BA∗
−i )

[
∆ri(1, z

A
i )−∆ri(0, z

A
i )
]} (38)

Adding up equations (37) and (38), we obtain the condition 0 = [bi(z
B
i , z

B
−i)− bi(zBi , zAB∗−i )] [∆ri(1, z

B
i )−

∆ri(0, z
B
i )]+ [bi(z

A
i , z

A
−i)− bi(zAi , zBA∗−i )] [∆ri(1, z

A
i )−∆ri(0, z

A
i )], and this condition implies equa-

tion (35) in Proposition 5.

5 Conclusions

Firms face substantial uncertainty about competitors’strategies. The assumption of complete in-

formation may be convenient in some empirical applications, but it ignores sources of strategic

uncertainty that can be important to understand the observed variation in behavior between firms,

across markets, and over time. Furthermore, in changing economic environments —e.g., new regula-

tions, mergers, pandemics —the assumption that firms have unbiased beliefs can be very unrealistic

and affect our estimates of structural parameters. Perhaps most importantly, heterogeneity in

firms’beliefs can be an important source of misallocation and ineffi ciency in some industries.

In this paper, I have presented a framework where firms have incomplete information, face

strategic uncertainty, and may have biased beliefs. I have shown that standard exclusion restrictions

—which are present in most applications in empirical IO —provide identification of objects that

depend only of firms’beliefs. The approach imposes minimal restrictions on beliefs and on structural

functions. As such, the identified beliefs can be used to explore the determinants of firms’beliefs

and their form of learning.
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