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1 Introduction

Since the early 2000s, academic economists and policymakers have been keenly interested in the level
of certain latent variables (such the output gap, the natural rate of interest, the NAIRU, etc.) and in
the changes that extraordinary events (the 2008 financial crisis, the COVID-19 virus, etc.) have pro-
duced in nature of the cyclical fluctuations in inflation and unemployment. Unfortunately, while the
profession agrees on the centrality of these issues, in practice, different users draw conclusions looking
at different measured quantities. For example, the term output gap is interchangeably employed to
refer to the difference between the actual output and its potential, defined as the level prevailing
absent nominal frictions; between actual output and its permanent component; or between actual
output and its statistical (long run) trend. However, potential output may not be trending (in a
statistical sense), and may feature both permanent and transitory swings. Similarly, the natural rate
of interest is, at times, defined with reference to the frictions present in a model and, at others, as
the long run component of real interest rates. When it comes to cyclical fluctuations, there are also a
number of competing definition in the literature, see e.g. Pagan [2019], and researchers use different
approaches to extract them. Clearly, without a consensus on what the objects of interest are, the
measurement of latent quantities becomes elusive. However, even if a consensus could be reached,
the available extraction tools are statistical in nature and do not employ, even in a reduced form
sense, the information provided by the structural models economists use to discuss the features of
these latent variables, making economic analyses and policy prescriptions whimsical.

Perhaps unsurprisingly, the lapse between theory and measurement creates confusion in the pro-
fession. In recent years macroeconomists have argued about what the data tells us about, e.g.,
potential output (see Coibon, Gorodnichenko, and Ulate [2018]), the properties of the natural rate
of interest (see Laubach and William [2015]), or the dynamics of NAIRU (see Crump, Giannoni, and
Sahini [2019]); the best tool to extract cyclical fluctuations (see Hamilton [2018]; whether permanent
or transitory disturbances are responsible for macroeconomic fluctuations (see Schmitt-Grohe and
Uribe [2019], Jorda’, Singh, and Taylor [2020]); whether ”the trend is cycle” Aguiar and Gopinath
[2007], or the ”cycle drives the trend”, Heathcote, Perri, and Violante [2020]; or which theory is
consistent with cyclical facts (see Angeletos, Collard, and Dellas [2019]).

Canova [1998] and Canova [1999] demonstrated that existing methods used to separate one ob-
servable variable into two latent components (trend and cycle, for short) produce time series with
different properties. Hence, without a firm stand on the features of the objects of interest are and
a reliable mapping between theoretical and statistical quantities, it is impossible to fruitfully select
among various method for applied exercises. Canova [2014] reiterated the argument by showing that
fitting stationary structural models to the output of standard statistical procedures results in hetero-
geneous estimates of the structural parameters and in different dynamics in response to structural
disturbances, both of which make inference difficult. More recently, Beaudry, Galizia, and Portier
[2018] showed that there are interesting fluctuations in hours that standard filtering approaches dis-
regard, see also Lubik, Matthes, and Verona [2019]. They also argue that these fluctuations could
help researchers to understand better the type of models which are consistent with the data; see
Kulish and Pagan [2019] for a critical view.

This paper sheds light on the relationship between theoretical notions of gaps (transitory fluctua-
tions) and the cycles recoverable with statistical approaches using a laboratory economy. I conduct a
Monte Carlo exercise employing a number of general equilibrium models as data generating process
(DGP), and the Smets and Wouters [2007] model as the baseline setup. This model is a natural
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benchmark to work with for three reasons: it has a good fit to the data of many countries; it has
been used to analyze policy trade-offs and optimal policy decisions, see e.g. Justiniano, Primiceri,
and Tambalotti [2013]; many policy institutions use versions of this model for counterfactuals and
out-of-sample forecasting exercises.

In such a model, latent variables are well defined objects. Potentials are the equilibrium outcomes
obtained eliminating nominal frictions, markup and monetary disturbances, and the gaps are the
deviations between the level and the potential of the variables. Similarly, the permanent component
is what the model produces when certain disturbances have permanent features, while the transitory
component is the difference between the level variables and the permanent component. Thus, when
an economic model generates the data, one can evaluate which approach produces estimates close to
model-based gaps (transitory components) and examine the reasons for why distortions occur. To
the best of my knowledge, a systematic exercise of this type is missing in the literature. Christiano,
Trabant, and Walentin [2010] simulated data from a search and matching friction model and study
whether the HP and an optimal two-sided filter capture model-based output potential.? simulated
simple time series models and compared the ability of Hodrick and Prescott, band pass, and local
projection filters to separate permanent from transitory fluctuations.

Because one may expect that the conclusions obtained to be DGP driven, I demonstrate that
the features responsible for the distortions I highlight are independent of the details of the lab
economy. For example, the calibration of the experiment; the number of disturbances; the presence
of financial frictions, or the underlying principles used to construct the equations of the model are
not responsible for the conclusions. I show that it is the interaction between theoretical properties
of the latent variables and the characteristic of filters which determines the outcomes I obtain.
In particular, it is the fact that gaps and potentials (transitory and permanent components) have
similar spectral features and similar distribution of variance by frequency that renders standard
filtering approaches incapable of recovering the latent variables of interest. In turn, these features
are determined by two characteristics of equilibrium models: linear approximations to the solution
produce endogenous variables with the typical ”Granger spectral shape” whenever they are driven
by persistent disturbances; gaps and potentials (permanent and transitory components) are driven
either by the same disturbances or by disturbances with similar persistence. Thus, the problems
I discuss here are widespread and can be worsened any time a model has disturbances producing
important low frequency components in certain gaps variables, such as Beaudry et al. [2018], that
stretch out the effect of shocks in the low frequencies, such as Gertler and Comin [2006] or that make
equilibrium adjustments costly.

I employ numerous extraction methods in the exercises, covering well the set of procedures com-
monly used in practice. Eight approaches are univariate (polynomial, Hodrick and Prescott, first
order and long order differencing, unobservable component, band pass, wavelet, Hamilton local pro-
jection); and two are multivariate (Beveridge and Nelson, Blanchard and Quah). Because many
approaches have free parameters and some require parameter estimation, I examine whether the
ranking is affected when parameters are set to alternative values or the sample size changes.

The punchline of the paper is simple. If the data has been generated by the class of models
macroeconomists nowadays employ to interpret aggregate fluctuations and policymakers to provide
counterfactuals and out-of-sample predictions, the available toolkit of trend and cycle decompositions
is inappropriate and all the procedures will not produce anything resembling the potentials and the
gaps (or the permanent and the transitory components) the data possesses. If one has to choose, the
oldest (Polynomial) and the simplest (differencing) procedures turn out to be the best.
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My investigation suggests that the practice of defining cyclical those fluctuations with 2-8 years
periodicity needs considerable refinement. When standard macroeconomic models are taken seriously,
the filters designed with such a definition in mind produce severe inferential distortions. Equilibrium
models generate gaps (transitory components) whose low frequency (32-64 quarters) fluctuations are
more important than business cycle (8-32 quarters) fluctuations; at the same time, they produce
potentials (permanent components) with considerable business cycle variations. Thus, filters that
focus on 8-32 quarters fluctuations overestimate the variability of the gaps (transitory components)
at business cycle frequencies and underestimate their variability at low frequencies. These distor-
tions alter the sequence and the number of turning points, the amplitude and persistence properties
of expansions and recessions, and the ability of estimated latent variables to predict interesting
macroeconomic trade-offs.

Given these biases, one may choose to structurally estimate the model assumed to have generated
the data, and to construct model-based estimates of the latent components, much in the spirit of
Christiano et al. [2010],Justiniano et al. [2013], or Furlanetto, Gelain, and Taheri-Sanjani [2020]. If
model misspecification is a concern, the composite approach of Canova and Matthes [2018] could
render latent variables measurement more robust. While structural models are popular, policy insti-
tutions are likely to use statistical methods to extract gaps (transitory components) in the foreseeable
future, perhaps benchmarking the outcomes with an estimated model, see e.g. Croitorov, Hristov,
McMorrow, Pfeiffer, Roeger, and Vandermuellen [2019].

Bearing this in mind, I design a (univariate) filter that outperforms existing ones, when gaps and
potentials have the features I emphasize. The filter is flexible, can be rigged to produce estimated gaps
with important low frequency variations and potentials with interesting business cycle frequencies
variations; to generate time paths that are close to those of the DGP; and to improve on the best
procedures in terms of the Monte Carlo statistics I consider. While the gains are more moderate for
transitory components, the filter is competitive with the best approaches even in this case.

The rest of the paper is organized as follows. The next section provides a refresher of the ter-
minology and the definitions used in the paper; section 3 discusses the design of the experiment;
section 4 lists the filtering procedures; section 5 presents the statistics; and section 6 summarizes of
outcomes. Section 7 interprets the results and designs a filter which can capture relevant features of
the DGP. Section 8 concludes. The appendix reports the details of the simulation results.

2 A Refresher of the terminology and some definitions

The properties of a zero mean, stationary time series Xt can be equivalently summarized with the au-
tocovariance function, γ(τ) = E(XtX

′
t−τ ), or with the spectral density S(ω) = 1

2π

∑∞
τ=−∞ e

−iωτγ(τ), ω =
[−π, π], see e.g. Canova [2007]. While both functions are symmetric (around τ = 0, or ω = 0), the
elements of the former are correlated while those of the latter are not. When the spectral density
is evaluated at Fourier frequencies ωj = 2πj

T
, one can associate spectral frequencies with periods of

oscillations p = 2π
ωj

, and thus split the variance of the process (the area under the spectral density,∑
ωj
S(ωj)) into orthogonal regions comprising cycles with different periodicity.

In practice, one typically associate very low frequencies variations, i.e. fluctuations with long
period of oscillations, with trends; medium frequency variations, i.e. fluctuations with medium
period of oscillations, with business cycles; and high frequency variations, i.e. fluctuations with short
period of oscillations, with irregular cycles. To analyze ”trends” or ”business cycles’ in isolation, one
typically employs filters. Ideally, a filter eliminates fluctuations at ”uninteresting” frequencies and
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leaves unchanged the fluctuations at ”interesting” frequencies. Low pass filters, i.e. filters with the
frequency representation F (ωj) = 1, if ωj < ω̄1 and zero otherwise, and band pass filters, i.e. filters
with the frequency representation F (ωj) = 1, if ω̄1 < ωj < ω̄2 and zero otherwise, have these features.
However, with a finite sample of data, both types of filters generate distortions due leakages over
other frequencies and compressions at the required frequencies - think of a badly tuned receiver: the
signal from your favorite station will be weaker than otherwise; and signals from other stations will
make the reception noisy.

Apart from low pass and band pass filters, there are a variety of statistical approaches one can
use to extract fluctuations with different periodicity. Generally speaking, the procedures fall into
two classes: moving average and regression methods. Because all approaches imperfectly extract the
variance of the spectrum at the required frequencies, even in large samples, they should be considered
approximations to ideal filters. The class of moving average filters is generally interest among applied
investigators because, if the weights sum to one, they will detrend a series, in the sense that they
produce a stationary output from a non-stationary input. Because not all filters can be represented
via moving averages and because not all weights necessarily sum one, detrending and filtering are
distinct operations. Furthermore, because different approaches produce approximation errors with
different properties, one should expect filtered data to display different time profiles and different
moments (see e.g. Canova [1998], Canova [1999]).

When Xt displays a unit root, S(ωj = 0) goes to infinity, and the variance of Xt also goes to
infinity. However, away from the zero frequency, one can still examine the spectral properties of
non-stationary data. In particular, one can still analyze long cycles (say, those with periodicity 32
to, say, 64 quarters), provided that Xt is long enough to contain reliable information about them.
While there are ways to analyze the very low frequency components (for example, using the local
spectrum or the growth rate of the data), when the DGP is non-stationary I will present results
simply omitting the zero and neighboring frequencies (from 64 quarters to infinity).

The squared gain function can be employed to understand the behavior of the filtered series and
the distortions different filters generate. The function tells us, frequency by frequency, the proportion
of the variance of the filtered series to the variance of the original series. For example, a unitary
squared gain at ωj means that a method has left untouched the variability of the original series,
while a zero squared gain means that it has wiped out all the variability at ωj. Squared gain values
between zero and one, on the other hand, indicate the extent of the attenuation of the variability at
frequency ωj and values in excess of one provide evidence that the filter has amplified the variance
of the original series at ωj.

3 The design of the experiment

As the baseline DGP for the experiment, I use the standard closed economy new-Keynesian model
popularized by Smets and Wouters [2007] (SW) with real frictions (habit in consumption, investment
adjustment costs), nominal frictions (price and wage stickiness and indexation), and a Taylor rule
for interest rate determination. In a new-Keynesian setup, a set of equations characterizing the
optimality conditions for the potential economy - the economy without nominal frictions, markups
and monetary disturbances - is added to the optimality conditions of the original problem (see
appendix) and the solution for level and potential variables is jointly found. Gaps are obtained as
the difference between the levels and the potentials for each endogenous variable. One can assume
that all the exogenous disturbances are transitory or that some of them are permanent and others are
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transitory. In the latter case, another decomposition is possible, where the permanent component is
the portion of the data driven by permanent disturbances, and the transitiory component the portion
of the data driven by transitory disturbances. As discussed below, when some of the disturbances
are permanent, potentials and gaps feature permanent and transitory fluctuations. Thus, gaps may
not be interesting objects (gaps may ”never close”) but the transitory components of the data are.

The model economy features seven structural disturbances (to TFP, to investment, to government
expenditure, to the Taylor rule, to the price and wage markups, and to the risk premium). In the
baseline specification, all disturbances are stationary. In this case, potentials and gaps are stationary,
and there is no long run trend (permanent path) to speak of. Thus, one may wonder what is
the purpose of trend-cycle decompositions in this situation. When disturbances are stationary but
persistent, important low frequency variations appears in the data. Thus, to focus attention on
fluctuations with interesting periodicities, a researcher may want to purge the data to highlight the
fluctuations of interest. Hence, even in this case, the experiments I run are relevant.
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Figure 1: Log spectral densities of gaps and potentials: Stationary SW model.

Because in the baseline specification disturbances are persistent, gaps and potentials both feature
low and business cycle fluctuations and their spectral power at low and business cycle frequencies is
generally similar. Furthermore, because TFP, investment and government expenditure disturbances
affect both the gaps and potentials, the two components will be contemporaneously correlated.

To illustrate these facts, I plot in figure 1, the log spectral density of the gaps and of the potentials
for eight variables the model produces, using one realization of the disturbances, when T=750.
The low frequency variability of the gaps (32-64 quarters) is generally larger than their business
cycle variability (8-32 quarters); gaps and potentials almost equally account for the variance of
the observables at low and business cycle frequencies; and that the correlation between gaps and
potentials equals 0.86, on average across variables.

The baseline specification may appear to be unrealistic to some readers: common wisdom sug-
gests that certain real variables should display an upward trend. To insure that this is the case, I

6



alternatively consider a setup with a unit root in TFP. In this case, the levels of output (Y), con-
sumption (C), investment (I) and real wages (W) will be on a balanced growth path. Because TFP
drives both the gaps and the potentials of these four variables, both latent components will display
an unbounded peak at frequency zero (produced by the unit root) and will respond to transitory
disturbances. Thus, as in the baseline specification, the gaps for these four variables will feature
significant low frequency variability; gaps and potentials will still display similar spectral shapes, and
will be correlated. For the variables not affected by the unit root (hours (H), return to capital (RK),
capacity utilization (CapU), inflation π), the baseline scenario applies.

It is also worth examining what happens to the spectral shape of the latent variables when, as in
Aguiar and Gopinath [2007], ”the trend is the cycle”, i.e. the permanent TFP disturbance accounts
for a large portion of the data variance at business cycle frequencies. To generate this setup, I
decrease by 3/4 the persistence of the transitory disturbances. Figure 2, which plots the gaps in the
baseline, in the unit root and in the ”trend is the cycle” setups, indicates that the qualitative features
of the gaps log spectra I emphasize remain unchanged. In particular, even in the last scenario, gaps
will still display important low frequency variability.

0 1 2 3

-4

-2

0

2

4

6

Lo
g 

sp
ec

tr
a

Output

p=32 p=8

ygap
ygap1
ygap2

0 1 2 3
-4

-2

0

2

4

6

Consumption

p=32 p=8

cgap
cgap1
cgap2

0 1 2 3

-4

-2

0

2

4

6

8
Investment

p=32 p=8

igap
igap1
igap2

0 1 2 3
-5

0

5
Hours

p=32 p=8

hgap
hgap1
hgap2

0 1 2 3
Frequency

-4

-2

0

2

Lo
g 

sp
ec

tr
a

Return to Capital

p=32 p=8

rkgap
rgap1
rgap2

0 1 2 3
Frequency

-4

-2

0

2

4

6

Real Wage

p=32 p=8

wgap
wgap1
wgap2

0 1 2 3
Frequency

-4

-2

0

2

4

Capacity Utilization

p=32 p=8

capgap
capgap1
capgap2

0 1 2 3
Frequency

-6

-4

-2

0

2

4

Inflation

p=32 p=8

infgap
infgap1
infgap2

Figure 2: Log spectral densities of gaps: Stationary SW, SW with TFP unit roots, SW with ’trend
is the cycle’ models.

Although the DGP I employ is popular, it does not account for financial frictions, nor it takes
into account the relationship between the real and the financial side of the economy. Given the
interest that the macro-financial links have generated over the last 10-15 years, one may be curious
as to whether the presence of finance considerations and frictions alter the spectral properties of the
gaps. In models with financial frictions, I define potentials in the same way I have done without
them: they characterize the economy without nominal rigidities and with markups, risk premium,
and inflation target disturbances set to zero. Thus, financial frictions (and risk shocks if present)
affect the potential economy and the gaps.
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Figure 3: Log spectral densities of gaps: Stationary SW, SWFF and CMR models.

Figure 3 compares the spectral properties of the gaps produced in the baseline specification
(SW); in the baseline specification with financial frictions (SWFF), see Del Negro, Giannoni, and
Schorfheide [2015]; and in the specification with risky contracts (CMR), see Christiano, Motto, and
Rostagno [2014]. The features of the gaps I have emphasized are independent of the existence of
financial frictions, except for the return to capital, which displays much larger business cycle and
high frequency variations when financial frictions matter. If anything, the relative importance of low
frequency components in the gaps grows larger. Quantitatively, the CMR model displays lower log
spectral densities because the disturbances have smaller variability. Although not reported to save
space, potentials either have unchanged spectral features (SWFF), or display magnified variance in
very low frequency portion of the spectrum (CMR).

What happens to the patterns I describe when the model features other types of frictions, for
example search and matching, or important short run adjustment costs? Any mechanism stretching
out the effects of the disturbances, where by this I mean increasing the persistence of their effects, or
creating a large amount of ”medium term” volatility, will increase the proportion of the variance of the
gaps and their importance relative to potentials in the low frequencies. On the other hand, adjustment
costs will tend to increase the volatility at business cycle frequencies, thus affecting the frequency
distribution of the variance of both the gaps and the potentials. Hence, tagging on additional features
to the baseline model is likely to make figure 1 more extreme, in the sense that gaps may have even
more variability in the low frequencies, and potentials may have more variability at business cycle
frequencies, and thus magnifying the distortions I obtain with the baseline specification.

It is also useful to point out that policy models built according to different principles also produce
gaps with the features I discuss. As an illustration, figure 4 plots the log spectra of the output gap
and of the output potential produced by one simulation of ECB-Base, the Euro area version of US-
FRB model. Clearly, the portion of the gap variance in the low frequencies is important: over 40
percent of the total variance of the process is in this area; and it contributes to about 80 percent
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of the total output variance at those frequencies. Two features in this kind of models are however
different: the potential (which is generated with a production function approach) is basically a unit
root process and contributes much less to the output variance away from the zero frequency; output
gap and output potential are driven by independent disturbances.

One final exercise may provide useful additional information. In the baseline specification, TFP,
investment and government spending disturbances drive both potentials and the gaps. Given that
these shocks are highly persistent, the conclusions that potentials and gaps have similar spectral
features follows as a corollary. What happens if investment and government spending disturbances
are absent? Would that make gaps and potentials different, given that markup, risk premium, and
monetary policy disturbances affect only gaps? Figure 5 shows that this is not the case and none of
the features I discuss is altered 1.

Hence, in the class of models I consider, the persistence of the disturbances determines the low
frequencies properties of gaps. Any model featuring persistent TFP disturbances and the definition
of potential I employ will make gaps and potentials correlated, induce similar spectral distribution
of variance, and produce large low frequency variability in the gaps.

1I have also generated gaps and potentials in the model of Beaudry et al. [2018], where there is a TFP and preference
shock (broadly interpreted as demand shock and interchangeable with a monetary policy shock). With an appropriately
parameterization, the model is able to generate a peak the spectral density at low frequencies of the hours. However,
because the endogenous mechanism generating this peak affects both gaps and potentials, gaps will display important
low frequency components, gaps and potentials will have similar spectral shapes, and will be correlated.
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Figure 5: Log spectral density of gaps: Stationary SW model with 7 or 5 disturbances.

What are the spectral features of the transitory components the SW model generates? Figure
6 shows that when transitory shocks have standard persistence the distribution of the variance by
frequencies of gaps and the transitory components is qualitatively similar ( compare ”gaps” with
”tra1”). Note that, while gaps and potentials are correlated, transitory and permanent components
are uncorrelated. Figure 6 also shows that the relative importance of transitory low frequency
fluctuations decreases in ”the trend is the cycle” scenario (compare ”tra1” and ”tra2”). However,
as expected, the importance of the permanent component at business cycle frequencies is magnified
relative to the baseline setup. Thus, the association between business cycle frequencies and transitory
fluctuations will be poor also in this case.

I summarize the properties of output gaps (transitory components) for the DGPs I examined in
table 1. All in all, there seems to be little loss of generality in taking the SW model as the baseline
DGP for the experiments. Furthermore, the setup with stationary but persistent disturbances pro-
vides a useful benchmark to estimate the distortions produced by standard filters for gaps extraction.
The scenario with a unit root in TFP, on the other hand, seems a reasonable alternative to examine
the performance of filters when extracting transitory fluctuations 2 3.

2In policy circles, the idea that permanent disturbances can be represented with a random walk may be considered
unreasonable, given that one often hears the view that ”drivers in the long run are smooth”. One could clearly
use ARIMA processes for the disturbances, but this will not affect any of the features this section emphasize. The
results obtained with ECB-Base model, which uses a production function approach to generate potentials confirms
this. With ARIMA disturbances, potentials and gaps will still be correlated, will display similar frequency distribution
of variance, and gaps will feature important low frequency variations. The use of ARIMA disturbances, on the other
hand, complicates the extraction of transitory components because an important portion of the variability of the data
at all frequencies is due to the permanent component.

3All the DGPs I consider have disturbances with stationary moments. When there is, e.g. stochastic volatility,
none of the features I have emphasized are altered, provide that a third order approximation to the solution is used
to simulate data. If anything stochastic volatility increases the portion of the variance of gaps and potentials in the
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Figure 6: Log spectral density of gaps and transitory components: stationary SW, SW with TFP
unit root, SW ’trend is the cycle’ models.

Table 1: Relative variances

All Low BC Own variance Own variance
frequencies frequencies frequencies low frequencies BC frequencies

Gap (SW stationary) 0.58 0.66 0.50 0.16 0.07

Gap (SW 5 shocks) 0.64 0.65 0.91 0.10 0.04

Gap (SWFF) 1.06 0.91 1.01 0.22 0.05

Gap (CMR) < 0.01 < 0.01 < 0.01 0.15 0.02

Gap (ECB-Base) 0.01 0.35 0.27 0.33 0.40

Transitory (SW unitoot) 0.01 0.80 0.64 0.18 0.10

Transitory (SW trendiscycle) < 0.01 0.61 0.36 0.22 0.44

Notes: SW stationary is the baseline SW model, SW 5 shocks is the baseline SW model without investment

and government spending shocks, SWFF is the SW model with financial frictions; CMR is the

model of Christiano et al. [2014]. ECB-Base is the Euro area version of the US-FRB model. SW

unitroot is SW model with permanent TFP disturbances; SW trendiscycle is the SW model with low

persistence of transitory disturbances. The first three columns present the faction of the variance

of output due to the gap, overall, at low (LOW) or at business cycle (BC) frequencies. The last two

columns report the fraction of the variance of the output gap (transitory output components) at

low (32-64 quarters) and at business cycles (8-32 quarters) frequencies. Sample T=750. Numbers

may exceed 1 because latent components are correlated.

low frequencies, but it does not change the relative importance of the two components at low and business cycle
frequencies.
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4 The filtering procedures

There are numerous procedures a researcher can employ to extract two latent components from one
observable variable. I focus on the most commonly used in the macroeconometric literature. I do
not consider production function based procedures, because estimates of the long run values of the
inputs need demographics, participation rates, and other slow moving variables that can not be
produced within my framework of analysis. The procedures I consider differ in many dimensions.
Some are statistical and others have some economic justification; some are univariate and others
multivariate; some require parameter estimation and others do not. From my point of view, the two
most important differences are the assumed properties of the trend; and the correlation between the
latent components.

The first approach is the oldest and maintains that the trend is deterministic and uncorrelated
with the cycle. Thus, the latter can obtained as the residual of a regression on a polynomial trend.
I use a quadratic polynomial and run the regressions variable by variable, meaning that I do not
exploit the fact that the trend will have common features in my dataset. The results obtained with
this approach are denoted, in the text and the tables, by the acronym POLY

The second approach is the Hodrick and Prescott filter. Here the trend is assumed to be stochastic
but smooth and uncorrelated with the cycle. The latter is the difference between the level of the
series and the Hodrick and Prescott trend, which is obtained via the ridge estimator:

ỹ = (H ′H + λQ′Q)−1H ′y (1)

where λ is a smoothing parameter, y = (y1, . . . yt) the observable series, ỹ = (ỹ1, . . . , ỹt, ỹt+1, ỹt+2), the

trend, H = (It×t, 0t×2) and Qt×(t+2) =



1 −2 1 0 ... ... 0 0 0
0 1 −2 1 ... ... 0 0 0
0 0 1 2 ... ... 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 ... ... −2 1 0
0 0 0 0 ... ... 1 −2 1


. I set λ = 1600 and

denote the results with the acronym HP. In the sensitivity analysis, I consider λ = 51200 (acronym:
HPa), a value close to the BIS recommendations, see Borio [2012].

The third approach assumes that the trend is stochastic, displays at least one unit root, and it
is uncorrelated with the cycle. I consider two separate sub-cases: one where the cycle is obtained by
short differencing (one period); and one where it is obtained by a long differencing (24 periods) the
observable variable. I denote the results with the acronyms FOD and LD, respectively. In sensitivity
analysis, I also consider 4 and 16 periods differencing operators (acronyms: FODa, LDa)

The fourth approach permits the trend to be stochastic and to display both stationary or non-
stationary features, but assumes that its variability is entirely located in the low frequencies of the
spectrum. To extract cycles with 8-32 quarters periodicity, I use the band pass filter implementation
of Christiano and Fitzgerald [2003], which employs asymmetric and non-stationary (time-dependent)
weights. I denote the results with the acronym BP. For sensitivity, I also examine the trigonometric
version of the filter see Corbae, Ouliaris, and Phillips [2002] (acronym: Trigo), the stationary, trun-
cated symmetric version of Baxter and King [1999] (acronym: BK), and a version of the baseline
filter designed to extract cycles with periodicities of 8-64 quarters (acronym: BPa)

As alternative, I have considered the wavelet filtering approach, recently employed by Lubik et al.
[2019]. Wavelet are one-sided MA filters, where the length of the MA polynomial depends on the
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cycles being extracted. For example, to exact cycles with a 8-32 quarters periodicity, a MA(16) is
used but to extract cycles with a 32-64 quarters periodicity, a MA(32) is employed. Wavelets have
some intuitive advantages over band pass filters, as they work in time domain and the number of
MA terms is finite. I denote the results obtained with this approach with the acronym Wa.

The fifth approach is based on local projections and follows Hamilton [2018]. Here the trend
is defined as the medium term predictable component of a variable and it is obtained by running a
regression of each variable at t+m on current and up to d lags of the variable. The cyclical component
is assumed to be uncorrelated with the trend and obtained as the residual of the regression. I set
m=8, d=4, and report results with the acronym Ham. In the sensitivity analysis, I consider the
alternative of m=12 and d=2 (acronym: Hama)

The sixth approach is based on a state space formulation of the latent variable problem. It
assumes that the trend is a random walk with drift; that the cycle is an AR(2) process, and allows
the innovations in the trend and cycle to be correlated. No (measurement) error is present in the
measurement equation. Using a flat prior on the parameters, I compute posterior distributions
using a MCMC approach, as in Grant and Chan [2017], using 30000 burn-in draws and saving 5000
draws. The reported properties are computed averaging the resulting trends and cycles estimates
over retained draws. I denote the results with the acronym UC. In the sensitivity analysis I consider
a bivariate UC filter with output and capacity utilizations as observables (acronym UCbiv).

Given the general equilibrium nature of the DGP, univariate approaches are inefficient as they
disregard, for example, the presence of balance growth, when there is a unit root in TFP, or the
fact that cyclical components across series have similar features (since they are driven by the same
disturbances). The next two procedures account for the possibility that commonalities may be
present. The first, based on Beveridge and Nelson [1981]’ decomposition, defines the trend as the
predictable long run component of a vector of variables. The cycles are obtained as the difference
between the vector of observables and the estimated trends. Here trends and cycles are driven by
the same shocks (and thus perfectly correlated), which are the reduced form innovations of a vector
autoregression on lags of the relevant variables. I run the decomposition unrestricted, that is, without
the signal-to-noise prior restriction of Kamber, Morley, and Wong [2018], because the DGP is already
a low order VAR(p) polynomial.

The second procedure follows Blanchard and Quah [1989] and still uses a vector autoregression
to compute the innovations. However, the decomposition uses identified disturbances to separate the
two latent components: the trend is driven by supply disturbances and the cycle by both supply
and demand disturbances. In the implementation I use, the vector autoregression includes output
growth and hours for both approaches. I denote the results with the acronyms BN and BQ. In the
sensitivity analysis, I also consider a trivariate VARs with output growth, consumption to output, and
investment to output ratios (acronyms: BNa, BQa). While there are other multivariate approaches
one could considered, the list of procedures I employ is sufficiently exhaustive and covers well what
is available in the literature, making the comparison exercise meaningful and informative.

4.1 What should we expect?

Given that different assumptions are used to identify the latent components, one should expect the
methods to produce different outcomes, see Canova [1998]. Furthermore, since no procedure takes
into account the features of the DGP discussed in the section 3, biases might be expected.

To be specific, procedures which assume no correlation between the two latent components, should
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be relatively poor when extracting gaps but better endowed when extracting transitory fluctuations.
A deterministic polynomial approach is likely to overestimate the volatility of both the gaps and of
transitory fluctuations, given that both potentials and permanent components are stochastic; while
methods which impose a unit root should be better suited to separate permanent and transitory
components than potentials and gaps. Finally, methods designed to focus attention on cycles of a
particular periodicity, will distort the frequency distribution of the variance of gaps and of transitory
fluctuations as they will attribute the low frequency variations belonging to both components to the
trend, and the cyclical (and high frequency) fluctuations belonging to both components to the cycle.
Biases may be significant because model-based gaps and transitory components display variability
at all frequencies, while such approaches carve the spectrum by frequencies, see Hansen and Sargent
[1979] for an earlier statement of this problem, and Canova [2014] for a recent one.

The presence of unit roots is unlikely to affect much the conclusions obtained without and dis-
tortions will be present also in this case. Misspecification of the properties of the DGP is the reason
for their existence. For example, since a number of procedures assume that permanent components
are random walks, while the growth of permanent components the model generates are highly seri-
ally correlated, estimates obtained with these methods will distort the properties of the transitory
components. Perhaps more importantly, many approaches will twist the frequency distribution of
transitory variability. Thus, turning point dating, measures of durations and amplitudes of expan-
sions and recessions and cross-variable relationships will be generally distorted.

All in all, none of the procedures I examine is close to the ideal, given the DGP I consider.
Moreover, because different procedures employ different assumptions to identify the latent variables,
they will produce different biases. The question of interest is which one is least damaging and
why. Note that because the distortions I discuss hold in population, small samples can add to the
problems, especially for those procedures requiring parameter estimation. Finally, while tinkering
with the parameters of the filters may lead to some quantitative improvements, it is unlikely that
any modification will dramatically change the fact that no procedure is close to the ideal.

5 The statistics

To measure the performance of different approaches, I employ a number of standard statistics. These
are computed averaging results using 100 data replications, to wash out simulation uncertainty. First,
I compute the mean square error (MSE), calculated as the difference between the true gaps (transitory
components) and the estimates.

Second, I report the contemporaneous correlation between the true gaps (transitory components)
and the estimates, the first order autocorrelation and the variability of the estimates, benchmarking
them with those of the true gaps (transitory components). I compute these four statistics for 9
series the model generates: output, consumption, investment, return to capital (real rate), hours,
real wages, capacity utilization, inflation and nominal rate. Note that the latter two series have no
potential. I also extract a factor from the data, apply the filtering procedures, and compare MSE,
variability, auto and contemporaneous correlations of the filtered series to the those of the factor
computed using the true gaps (transitory components).

Third, I compute turning points in the filtered data and compare their number, the average dura-
tion and the average amplitude of expansions and recessions with those of the true gaps (transitory
components). Because in the baseline specification, the model is solved linearly around the steady
state, duration and amplitudes are roughly symmetric across business cycle phases in the simulated
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gaps (transitory components). This may not necessarily be the case in the estimates.
Policymakers are interested in latent variables for two reasons. First, because the want to measure

in real time the state of the economy. Second, because they want to use them to predict other
variables, for example, inflation via a Phillips curve, or employment (hours) with a Okun law. For
this reason, I also compute two additional set of statistics. The first measures the MSE in real time,
focusing attention on the last 12 periods of each sample; the second compares the variance of the
prediction error in the regressions implied by the true output gap (transitory output) and those
implied by the estimates. Letting yit−j denote either the true output gap (transitory output) or the
estimated one and m=1,4, the predictive regressions take the form:

πt+m = α0 + α1πt +
3∑
j=1

βjy
i
t−j + et+m (2)

Ht+m = α0 + α1Ht +
3∑
j=1

βjy
i
t−j + vt+m (3)

6 The results

Table 2 summarizes the results counting, for each statistics, the number of times a procedure is
least distorting across variables using the baseline SW specification as the DGP. Counting measures
assign a one to the best procedure (0.5 if there is a tie) and zero to the others. Totals are computed
equally weighting all statistics. Tables 5-11 in the appendix give the details: for each variable (
factor) and for each procedure. Table 5 reports the average MSEs across replications; table 6 the
average real time MSEs; table 7 the average contemporaneous correlation, table 8 the average AR1
coefficient; and table 9 the average variability; table 10 the average number of turning points, the
average duration and amplitude of recessions and expansions for output and the factor; and table 11
the average variance difference between each procedure and the true one in the prediction error of
Phillips curve and Okun law regressions. In each table the upper panel reports the performance of
different filters for gaps extraction; the lower panel their ability to recover the transitory components.

The Polynomial approach is, by far, the least distorting procedure when measuring gaps. The
approach is superior as far MSE, contemporaneous correlation, AR1, variability, and Phillips curve
regressions are concerned. The next approaches in the ranks are appropriate for some statistics (the
HP filter for turning points (TP) detection; the Wavelet filter for TP detection, AR1 coefficient
and variability) but they seem much less suited than the Polynomial filter to capture features of
the gaps. Three additional aspects of the top panel of table 2 are worth emphasizing. The long
difference filter is superior to the Hamilton filter. Hamilton [2018] shows that his filter is close to a
eight-period difference filter. Hence, the horizon of the local projection h = 8 is probably too short.
The commonly used UC approach, on the other hand, is competitive only in terms of real time MSE;
for other statistics, it is never among the top procedures. Finally, the performance of the bivariate
BQ and BQ procedures is poor: they top other approaches for hours gaps in terms of MSE, real time
MSE, and contemporaneous correlation, but never rank first for output gaps.

Quantitatively speaking, the distortions are large and biases relative to theory-based measures of
gaps important. For example, the average MSEs are all larger than the average MSE produced by
a random walk (which, e.g., for the output gap is 14.45), and the real time MSE are almost twice
as large as the real time MSE produced by a forecast that uses T − 12 value for all successive 12
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periods. Distortions are also considerable in terms of volatility and correlation measures. At the
opposite extreme, biases in the persistence parameter are relatively small and, except for the FOD
filter, all estimates are in a close range of the true AR1 coefficient.

Table 2: Summary results, Stationary SW, T=750

Statistic POLY HP FOD LD BP Wa Ham UC BN BQ BW
Gaps

MSE 5 3 1 0.5 0.5 8
Corr 9 0.5 0.5 8
AR1 4 3 3 6
Var 4 2 3 1
TP 1.5 5 2 1.5 3

RT-MSE 1 3 2 3 0.5 0.5 8
PC 2 2
OL 1 1

Total 25.5 9 2 8.5 0 9 4 4 1.5 1.5 35

Transitory
MSE 9 1
Corr
AR1 4 5.5 0.5 1
Var 3 6 1 1
TP 4 4 2 3

RT-MSE 4 6
PC 1 1
OL 2

Total 11 4 13 11 0 5.5 1 7.5 0 1 5

Notes: POLY is polynomial detrending, HP is Hodrick and Prescott filtering, FOD is first order differencing,

LD is 24 order differencing, UC is unobservable component filtering, BP is band pass filtering, Wa

is wavelet filtering, Ham is local projection detrending, BN and BQ are bivariate Beveridge and

Nelson and Blanchard and Quah decompositions, BW is Butterworth filtering. MSE is the mean

square error, Corr the contemporaneous correlation with the true series, AR1 the first autoregressive

coefficient, Var the variability, TP the number of turning points, the duration and the amplitude of

expansions and recessions, RT-MSE is the real time MSE, PC is Philips curve predictions, OL the

Okun law predictions. In each row the ranking is over 9 series and one factor, except for TP where

the ranking is for output and the factor. Numbers are computed summing the top ranks, equally

weighting all variables; ties each get a value of 0.5.

When it comes to characterizing the properties of the transitory components, the FOD filter is
the least distorting, closely followed by the Polynomial and LD filters. Note that the FOD filter is
superior only in MSE measures, while the Polynomial and LD approaches come on top for a number
of statistics. Relative to gaps extraction, one can notice a deterioration of the performance of HP and
Hamilton filters and an improvement in the performance of the UC filter. However, the improvement
entirely comes from the real time MSEs, and involves output, consumption and investment. In other
words, the filter seems appropriate when predicting in real time the transitory component of output,
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consumption and investment up to 12 quarters ahead, but it gives a poor characterization of their
historical properties. The performance of BN and BQ is still deficient, despite the fact that they
use more information to extract the latent transitory variables. Given the popularity of the BQ
procedure, the next section examines why this may be the case. Finally, the band pass filter is
relatively poor for all statistics and all series when extracting gaps or transitory components. In
comparison, the Wavelet filter does a more reasonable job. Because both filters aim at capturing
portions of the spectrum, the differential performance is due to the fact that the wavelet filter induces
a smaller approximation error in the low frequencies.

Quantitatively, the distortions generally larger when extracting transitory components. Relative
to the stationary case, the presence of unit root alters the relative variance of the two latent compo-
nents in the low frequencies and this affects the performance of a number of approaches. Interestingly,
almost all procedures are unsatisfactory in terms of correlation with the true transitory components,
see figure 7 for example. Thus, MSE errors tend to be large and the ups and downs of the estimated
transitory components have nothing to do with the ups and downs of the true transitory components.
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BP
LD

Figure 7: True and estimated transitory components. Various filters.

Many approaches underestimate the variability of both the gaps and the transitory components.
The exceptions are the Polynomial, the BN and BQ procedures. For the polynomial filter, this is due
to the nature of the squared gain function I discuss in section 7. The excess variability produced by
BN and BQ procedures is less expected. The next section discusses why.

To summarize, and somewhat unexpectedly, the Polynomial approach, the crudest and the oldest
method existing in the literature, is the least damaging when characterizing the properties of the
gaps. A similarly crude differencing filter ranks well when extracting the transitory components of
the data. Interestingly, using larger information sets or fancier econometrics do not seem to help.
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6.1 Focusing on output gaps/transitory output

Table 2 considers 9 series generated by the baseline SW model and the factor characterizing their
common dynamics. Because policymakers are mostly concerned with output gaps and transitory
output dynamics, is it worth to zoom in on how different procedures characterize latent output
quantities. Table 3 reports the results for the 6 DGP considered in section 3. Overall, the Polynomial
approach does well in replicating output gap dynamics when the DGP is a model of the Smets and
Wouter variety and when financial frictions are present, the approach clearly dominates all others.
Given that the Polynomial approach has been discredited for leaving near non-stationary dynamics
in filtered series - and referees often harp about filtering data with such a procedure - these results
are surprising and deserve further discussion.

Table 3: Summary results for output, different DGPs, T=750

DGP POLY HP FOD LD BP Wa Ham UC BN BQ BW
Gap (SW stationary) 6 3 1 1 2 1 7

Gap (SWFF) 10 1 1 2 7
Gap (CMR) 2 2 1 2 0.5 2 1 2.5
Gap (SW5) 4 6 1 1 1 1 7

Transitory (SW unit root) 2 3 2 4 1 1 3
Transitory (SW trendiscycle) 1 4 2 2 1 3 7

Notes: POLY is polynomial detrending, HP is Hodrick and Prescott filtering, FOD is first order differencing,

LD is 24 order differencing, UC is unobservable component differencing, BP is band pass filtering,

Wa is wavelet filtering, Ham is local projection detrending, BN and BQ are bivariate Beveridge and

Nelson and Blanchard and Quah decompositions, BW is Butterworth filtering. SW stationary is the

stationary Smets and Wouter model; SWFF is the Smets and Wouter model with financial frictions;

CMR is the Chirstiano Motto and Rostagno model; SW5 is the stationary Smets and Wouter model

with 5 shocks; SW unitroot is the Smets and Wouter model with a unit root in technology; and

SW trendiscycle is the Smets and Wouter model with a unit root in tehcnology and low persistence

for the transitory shocks. Numbers are computed summing the top ranks, equally weighting all

statistics; ties each get a value of 0.5.

The HP filter also does reasonably well, primarily in characterizing transitory components. This
is true when the disturbances are highly persistent and when they are not. The performance of the
HP filter is striking, in light of the criticisms raised in the literature; see Hamilton [2018] for the latest
installment. The LD filter is also reasonably satisfactory in characterizing the transitory component
of output, but only when it is highly persistent. When focusing on output, the LD filter is clearly
superior to the Hamilton filter. One interesting feature of the table is the differential performance of
the BQ approach: while it is generally poor in the baseline setups, it does reasonably well when the
persistence of the transitory shocks fall. In this case, in fact, the spectral features of the permanent
and the transitory components become sufficiently different to make the decomposition work.

6.2 Sensitivity

I have repeated the Monte Carlo exercise varying the parameters of different procedures, adjusting
certain filters to better capture the low frequency component of the data, or adding information
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to multivariate approaches. The performance of HP and BP filters can be generally improved by
choosing a higher λ or lowering the limit of the frequency band (see tables A.1-A.7 in the on-line
appendix) but the basic ranking of procedures remain unchanged.

Table 4: Summary results, Stationary SW, T=150

Statistic POLY HP FOD LD BP Wa Ham UC BN BQ BW
Gaps

MSE 4 4 1 0.5 0.5 7
Corr 7 2 0.5 0.5 10
AR1 3 4.5 2.5 4
Var 5 1 3 0.5 0.5 2
TP 0.5 3.5 2 1 2 1 2

RT-MSE 3 4 2 0.5 0.5 8
PC 2 2
OL 2

Total 19.5 11.5 2 10.5 0 8.5 6 4 1.5 1.5 33

Transitory
MSE 4 1 5
Corr
AR1 0.5 7 1.5 0.5 0.5 3
Var 3 7 7
TP 2 2 3 1.5 1.5

RT-MSE 5 3 2
PC 2
OL 1 0 1 2

Total 5.5 2 10 19 5.5 2.5 0 8.5 0.5 0.5 13

Notes: POLY is polynomial detrending, HP is Hodrick and Prescott filtering, FOD is first order differencing,

LD is 24 order differencing, UC is unobservable component filtering, BP is band pass filtering, Wa

is wavelet filtering, Ham is local projection detrending, BN and BQ are bivariate Beveridge and

Nelson and Blanchard and Quah decompositions, BW is Butterworth filtering. MSE is the mean

square error, Corr the contemporanoeus correlation with the true series, AR1 the first autoregressive

coefficient, Var the variability, TP the number of turning points, the duration and the amplitude of

expansions and recessions, RT-MSE is the real time MSE, PC is Phillips curve predictions, OL is

Okun law predictions. In each row the ranking is over 9 series and one factor, except for TP where

the ranking is for output and the factor. Numbers are computed summing the top ranks, equally

weighting all variables; ties each get a value of 0.5.

In particular, the Polynomial procedure is still the least distorting when measuring gaps and
none of the refinements is able to produce MSEs which are uniformly smaller, both for the gaps and
the transitory components. The alternative HP and Hamilton filters produce estimated cycles whose
frequency distribution is more in line with those of gaps (transitory data) but this does not change the
relative position of the filters in the ranks - the improvements are larger for those variables or statistics
where the filters were already the top approaches. Quantitatively speaking, the gains obtained by
optimizing the parameters of the filters are small.The most significant changes are produced with the
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bivariate UC approach for the real time MSE; with the alternative BP filter for the AR1 coefficients;
and with the alternative Hamilton and LD filters for variabilities.

Perhaps more interesting are the results obtained with samples of 150 observations. Tables 2
and 3 use large samples (T=750). In practice, estimation uncertainty matters; and given that some
procedures require parameter estimation and others do not, a smaller sample size may affect the
ranking. Table 4 summarizes the results for T=150 (tables A.8-A.14 in the on-line appendix provide
the details). Overall, the Polynomial approach is still the best when measuring gaps. However, a
short sample worsens its performance and improves the one of procedures, such as HP or LD filters,
which do not require parameter estimation. Also, while there are statistics specific changes in the
ranking, the snapshot of table 2 is, by and large, maintained.

When measuring the transitory components results are somewhat affected. The FOD filter, which
was best in table 2, now looses its superiority and the LD filter becomes the least distorting, and
the UC approach lags third. The LD filter dominates when measuring the AR1 and the volatility of
the transitory component, while the FOD filter is still superior in terms of MSE measures. The UC
filter, on the other hand, does relatively well only in terms MSE measures. For the two regressions
policymakers care about, the sample size makes little difference, and the LD filter is overall the most
appropriate method to construct regressors in the predictions equations.

I have also conducted an additional experiment where the benchmark SW model is simulated
using a second order solution. In this case procedures which assume a linear, parametric structure
are penalized relative to procedures which non-parametrically split the data. The magnitude of the
distortions is, on the whole, larger, but the ranking of procedures does not seem to be affected.

7 The gain functions of the filters

To understand the results, I examine the estimated squared gain function of each filter, which mea-
sures, frequency by frequency, how the variance of the output relates to the variance of the input
of the filter. Since the theoretical squared gain function for output is different from zero, bounded
above and, for gaps, close to half at all frequencies (see table 1), deviations of estimated squared gain
functions from the theoretical one give a synthetic idea of the distortions of each filter produce.

Figure 8 presents the estimated squared gain functions for 12 filters (Polynomial, HP, BP, Hamil-
ton, FOD, LD, BN, BQ, UC, Wave, HPa and BPa) using one realization of the output series, when
all disturbances are stationary. Note that there is no loss of generality focusing on one realization
because the spectral properties of output are similar across replications. Furthermore, because the
spectral properties of gaps (transitory components) are similar across variables, the output squared
gain function suffices for my purposes.

Figure 8 displays some known and some less known features The squared gain of the polynomial
approach is zero at the zero frequency and one everywhere else. Thus, the procedure removes very
long run variability and leaves the rest of the spectrum of the input series untouched. This means
that the estimated cycles have roughly the same features as in the original series and the frequency
distribution of the variance is similar. The squared gain of the HP filter displays its well-known high-
pass features. The filter eliminates low frequency variability, keeps the high frequency variability
unchanged and, at business cycle frequencies, smoothly eliminates power, when moving from cycles
of 8 to 32 quarters. The band pass filter knocks out low and high frequency variability and passes
the business cycle frequencies almost unchanged. Because the sample is finite, the filter displays
compression, in the sense that at some business cycle frequencies, the squared gain is less than one.
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Figure 8: Estimated squared gain function for output: selected filters.

Perhaps more interesting is the squared gain of the Hamilton filter, which has not been yet
explicitly described in the literature. Because the projection equation uses yt+m as dependent variable,
the gain function is zero at m/2 separate frequencies. Between these frequencies the filter has a bell-
shaped squared gain and, at the vertex, the height exceeds 10. Hence, while at certain frequencies
the variability of the original series is eliminated, at others, it is multiplied by a factor of 10 or
more. Apart from this severe alteration in the distribution of the variance by frequency, it is clear
that the filter is not a classical business cycle filter: it emphasizes frequencies of the spectrum
not necessarily connected with meaningful cycles and creates excess variability at ’uninteresting’
frequencies. Hamilton [2018] mentions that the cycles his approach produces are similar to those of
a LD filter. Figure 8 confirms that the squared gain of the latter has, qualitatively, the same features
as the Hamilton filter. However, because I take a 24-quarter rather than an 8-quarter difference, the
LD filter also emphasizes low frequency variability.

The FOD approach has the familiar squared gain function: it attributes all the variability of
the original series in the low and business cycle frequencies to the trend while the cycle captures,
primarily, very high frequency variability.

The BN and the BQ filters have qualitatively similar squared gain functions, despite the fact that
in the BN decomposition trends and cycle components are correlated while in the BQ they are not.
Quantitatively, this difference matters and the BN filter is, in general, more distorting. Note that
the squared gain function of both filters is large at very low frequencies. Hence, the estimated cycles
display strong very low frequency variations and considerable persistence.
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Figure 9: Estimated squared gain function: UC filter

The UC and the Wavelet filters have gains functions different from the others. In particular,
the squared gain of the UC filter is less than one at all frequencies and has a vertex of around 0.4
in the low frequencies. Thus, it seems to recognize that gaps display variability at all frequencies
and possess substantial power in the low frequencies. However, this shape depends on the estimated
parameters. As shown in figure 9, the squared gain for, e.g. consumption, magnifies the variance at
business cycle and at certain high frequencies. The Wavelet filter also has a squared gain function
with no zeros except at the zero frequency. However, it increases the variability of the original series
at low frequencies and this accounts for its somewhat mixed performance in the exercises I run.

Figure 8 also plots the gain function of the alternative HP and BP filters (HPa, BPa), both of
which capture cycles with 8 to 64 quarters periodicity. Clearly, by changing the parameters of the
filters, one can shifts a portion of the low frequency variations of the data to the cycle. Still, these
changes do not reduce the squared gain at business cycle or high frequencies. Thus, all the variability
at these frequencies is still erroneously attributed to the cycle and this accounts for the fact that the
alternative and the original HP and BP filters are similar in the rankings.

Although the quantitative details change when the TFP disturbance has a unit root, the estimated
squared gain functions are similar (see figure 15 in the appendix). Hence, the characteristics of the
filters are more important than the properties of the DGP in determining the shape of the gain
functions. Noticeable differences occur for the BP filter, whose compression increases; the Wavelet
filter, whose magnification in the low frequencies increases. Note also that, apart from the BN and
BQ filters, no procedures sees any difference in the two experiments I run and many approaches fail
to recognize that gaps and transitory components are objects with different economic interpretation.

7.1 Discussion

The tables indicate that the Polynomial approach is the least distorting when extracting gaps and
figure 8 explains why. Because the estimated squared gain is one at almost all frequencies, there is a
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general overestimation of the true gaps variance but the persistence and variance share by frequency
are roughly matched. Thus, the ups and downs in the theory-based and estimated gaps are similar
in terms of timing and durations. A similar argument roughly holds when extracting transitory
components. However, because transitory components do not have a constant variance share by
frequency, distortions are larger.

Because in the DGP, potentials explain an important portion of the variance at business cycle
frequencies and gaps explain a large fraction of the variance at low frequencies, HP and BP filters
distort the frequency distribution of the variance of the latent variables. In fact, they attribute most
of the low frequency variations to the trend and all the business cycle variations are attributed to the
cycle. Hence, the persistence of the gaps is underestimated and the filtered series have patterns of
ups and downs that do not generally match those of theory-based gaps in terms of timing, durations,
and amplitudes. While the frequency distribution of the variance of the latent components changes
when TFP has a unit root, HP and BP filters are still deficient because they fail to recognize that,
at business cycle frequencies, the variability of the permanent component is significant.

Since the HP filter is the leading procedure to extract cycles in international institutions (e.g.
BIS or OECD), further discussion is warranted. The standard HP filter uses a smoothing parameter
of λ = 1600, which typically is interpreted as indicating that the standard deviation of the cycle is
40 times larger than the standard deviation of the second difference of the trend. Hamilton [2018]
criticizes this choice of λ suggesting that estimates of the ratio obtained in state space models that
approximate a one-sided HP filter are much smaller. When I compute the range of theoretical λ
values obtained by taking the variability of the gaps (transitory components) to the second difference
of the potential (permanent components) across series I simulated I find that indeed they are much
smaller than 1600 and in the range of [3,24]. Still, gaps display quite a lot of low frequency variations
and only when λ = 51200 these variations become part of the estimated cycle. Note that λ = 51200
is close to the value typically used to extract financial cycles and that, with such a λ, the absolute
performance of HP filter improves. When the two latent components have similar spectral properties,
are correlated, and the gaps are not iid, λ does not have the interpretation given in the literature.
Hence, application of a standard state space approach to estimate the smoothing parameter leads to
considerable distortions when attributing low frequency components to trends or to cycles 4.

Hamilton [2018] suggested to employ the local projection filter to extract cyclical fluctuations.
My Monte Carlo exercise shows that when data is generated by standard equilibrium models, the
filter ranks low, both for gaps and transitory components. A few reasons may explain this surprising
outcome. First, gaps and potentials are correlated while the projection equation used to separate
them assumes that they are not. Second, even though the approach does not impose unit roots,
unit roots are in fact removed (these are the zeros in the estimated squared gain function). Because
the simulated data displays, at most, one unit root, the series are overdifferenced and spurious MA
components are present in the estimated cycles. While theoretically important, these two reasons
may not be crucial to explain the poor performance of the approach because the LD filter, which
has the same problems, has a much better score. So what is it that makes the projection filter
inferior? First, the filter does not recognize low frequency gaps variations and attributes them to the
trend. Second, it magnifies the importance of certain high frequency variations, with little economic
interpretation. Figure 10 illustrates the difficulties of the filter in replicating the dynamics of the
output gap (transitory output) in one of the simulation.

4The UC setup I use is not appropriate to quantify the magnitude of the distortions in λ because the trend is
correctly assumed to be a random walk.
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Figure 10: True output gap, true transitory output and estimated Hamilton cycles.

VAR-based decompositions perform well for hours but not for output and the distortions in terms
of MSE, correlation with the true component, or variability are large, both in absolute and in relative
terms. This is true when all shocks are stationary and when the TFP shock has a unit root. When
TFp is stationary, the VAR used is misspecified (output is overdifferenced), this may be one of the
reasons for the inferior performance of BN and BQ approaches for output gap extraction. When TFP
has a unit root, the overdifferencing problem disappears. Still, both approaches are poor. To illustrate
the problem, figure 11 presents the estimated BN and BQ and true transitory output component for
one simulation. The estimated BN transitory component shows considerable low frequency variations
which are absent from the true transitory component. They are produced because the filter forces
the transitory and the permanent components to be perfectly correlated. The BQ filter also produces
a transitory component with low frequency variations, but also increased high frequency variations.
Still, in both cases, some frequency variations present in the theory-based permanent components
are erroneously attributed to the transitory component.

Coibon et al. [2018] have argued that a BQ decomposition can be used to measure the dynamics of
potential output. My results do not support their choice because the estimated permanent component
will tend to overstate the dynamics of potential fluctuations if a DSGE model generates the data.
Figure 12, which plots potential and permanent output components in one simulation together with
the estimated BQ permanent components, clearly shows the problem. The BQ permanent component
displays too much low frequency variations (there are very long drifts in the ups and downs) and too
little medium-business cycle variations.
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Figure 11: True and estimated transitory components: BN and BQ filters.
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Figure 12: True and estimated potential and permanent components, BQ filter.

Why is the BQ decomposition so poor? It turns out that the VAR used to extract latent vari-
ables is misspecified, even when TFP has a unit root, because of the deformation problems studied
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in Canova and Ferroni [2019]. In particular, the VAR model is bivariate (trivariate) while the DGP
has seven disturbancess; and not all the states of the DGP enter the empirical model. Thus, not only
seven shocks are compressed into two (three) innovations; since states are omitted, some VAR inno-
vations became serially correlated, even when a generous lag length is used. Deformation problems
increase the persistence of the estimated shocks and mess around the correlation structure between
the estimated and actual shocks. Indeed, the estimated BQ transitory output series is more persistent
than the true transitory output series and the correlation between the TFP disturbances and the
estimated supply shocks is low (0.43) because supply shocks capture a number of stationary demand
disturbances present in the DGP. When the sample is short (T=150), standard problems estimating
long term quantities in small samples are added, see Erceg, Guerrieri, and Gust [2005]. Since a long
lag length is needed to reduce states omission in the VAR, parameter estimation may be further
compromised, making inference about latent components problematic.

Ramey and Zubairy [2018] have used estimates of trend output to scale down the variables, prior
to the computation government spending multipliers. While they use a polynomial approach and
thus minimize the distortions when the DGP belongs the class of DSGE models I consider, a two-step
approach to compute multipliers is generally problematic since inference depends on the quality of
the preliminary trend output estimates one has available.

7.2 A class of univariate filters for DSGE-based gaps

None of the procedures I have employed is optimal for the class of DGPs I consider, making inferential
distortions large. When the proportion of the variance of the two latent components at low and
business cycle frequencies is roughly similar, standard filters generate biases. Different filters carve
the spectrum of the observables differently but they they tend to attribute most of the low frequency
variations to the trend and all of the business cycle variations to the cycle, muting the persistence
and the dynamic properties of the estimated cycles, altering the sequence of turning points, and the
properties of amplitudes and durations of business cycle phases.

How does one then proceeds in practice? One obvious way is to setup a structural model, esti-
mate its parameters by conventional likelihood methods, and, with mode estimates and some initial
conditions, generate model-based latent quantities of interest. Examples of such an approach exist
in the literature, see e.g. Christiano et al. [2010],Justiniano et al. [2013] or Furlanetto et al. [2020].
Clearly, if the sample is short and the prior insufficiently tight, estimates of the latent variables
reflect the noise present in the parameter estimates. Furthermore, if the model is misspecified, biases
litter estimates of the latent quantities. While not much can be done about small samples, model
misspecification can be taken care, in part, with the approach of Canova and Matthes [2018]. The
setup is useful because it uses the cross equations restrictions present in different models to estimate
common parameters and this may help to robustify the measurement of latent quantities.

However, most researchers may prefer to be agnostic about the process generating the data
and, when selecting a filter, only willing to take into account the frequency domain features I have
emphasized. In this case, is there an alternative filter producing gaps estimates uniformly superior
to those produced by standard procedures?

Engineers extensively employ Butterworth filters in their analyses, because they are flexible, have
uniform squared gain across the frequencies of interest, have a ARMA representation, and do not
feature side loops. For my purpose, they are useful because one can design Butterworth filters
insuring that the estimated cycle features significant low frequency variations and the estimated
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trend significant business cycle variations. Figure 13 shows the squared gain function of a number
of Butterworth filters as function of the polynomial order (n) used to filter the data (reported are
n=1,2,4); the cutoff point ω, where the squared gain declines (reported are 0.95π, 0.75π and 0.50π);
and of the scale parameter G0, determining the height of the squared gain (reported are G0 = 1, 0.4).
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Figure 13: Squared gain functions, various Butterworth filters.

Clearly, by appropriately choosing the three parameters, one can give the function a variety of
shapes and mimic, e.g., low pass, high pass, or band pass filters. In fact, the HP and BP filters are
special high pass and band pass Butterworth filters, when G0 = 1. For gaps estimation, the relevant
squared gain function is the black one with circles since it has a uniform height of 0.4 up to ω = 2/3π.
Thus, when data is filtered with such a filter, a portion of the low frequency variations would go to
the estimated cycle and a portion of the business cycle frequency variations to the estimated trend.

Figure 14 plots one simulation of the output gap together with the estimated cycles the different
Butterworth filters produce and their log spectral density. Interestingly, regardless of the parameter
choice, the filtered series display the low frequency movements present in the true output gap and
replicate quite well the distribution of variance of the process at low and business cycle frequencies.
When compared with figures 10 or 11, the match is superior. This pattern is not specific to output
gaps. Figures A1-A4 in the on-line appendix show that the same pattern holds true for 8 gaps series
and 8 transitory series generated by one simulation of the model, when the same Butterworth filter is
employed to extract gaps (a low pass filter with n=1,ω = 0.95π, G0 = 0.4) or transitory components
(a high pass filter with n=1, ω = 0.004 and G0 = 1).
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Figure 14: Output gap and Butterworth filtered series and log spectra.

The last column of tables 2-4 report the number of times Butterworth estimates improves the
best performing method across statistics and series; the last column of tables 5-11 gives the average
values for each statistics across Monte Carlo simulation. It is remarkable that the cycles obtained
with a Butterworth filter are closer to the actual gaps than the previously selected best approach on
average in 37 out of 66 cases when T=750 (21 cases when focusing on output gaps) and in 33 out
of 66 cases when T=150. Thus, if a statistical rather than an economic model-based filter is to be
used, a careful design of Butterworth filters may help to solidify economic inference about gaps.

The performance for transitory components is less impressive, as it is difficult to twist a Butter-
worth filter to produce cycles which simultaneously displays larger variability at low frequencies and
smaller variability at business cycle frequencies relative to the permanent component (as reported in
table 1). To do so, one would need a non-uniform gain function across frequencies; in other words,
G0 needs to be made a function of ω. Still, even with this handicap, the approach does better or, at
least, not worse than the previously selected best approach in over 1/3 of the cases.

8 Conclusions

This paper has a simple message. If the data has been generated by the class of models macroe-
conomists employ to interpret aggregate fluctuations and policymakers to provide counterfactuals
and out-of-sample predictions, the available toolkit of trend and cycle decompositions misses the
right screwdriver and has hard time to produce anything resembling the potentials and the gaps (or
the permanent and the transitory components) the data possesses. If one has to choose, the oldest
(Polynomial) and the simplest (differencing) procedures turn out to be the best.

I obtain these conclusions because in theory, gaps and transitory components both have sub-
stantial low frequency variability; potentials and permanent components have considerable business
cycle variability, and the frequency distribution of the variance of gaps and potentials is similar. In
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this situation, filters that carve the spectrum by frequencies are unsuitable; as are methods that
fail to recognize that low frequency variations in the gaps (transitory components) are as or more
important than business cycle variations. The polynomial approach produces the smallest distortions
when measuring gaps because, away from the zero frequency, it leaves the frequency distribution of
variance of the level data unchanged. On the other hand, long differencing works better for transitory
fluctuations because a portion of the low frequency variations enter in the estimate of the cycle.

Given the unsatisfactory performance of popular filters, one should be careful in using their output
to evaluate the state of the business cycle, to forecast inflation or unemployment, or to provide policy
recommendations. The warning is even more important when the sample is short, the filter requires
parameter estimation, and real time estimates are needed for inference.

One could argue that the class of structural models I used has little to do with the real world
and thus, after a cautionary warning, proceed with business as usual. This response disregards the
fact that the features that make existing filters inappropriate also obtain in models with additional
or different frictions and different organizing principles, as long as disturbances are persistent. Thus,
unless one is willing to dismiss a large portion of existing macroeconomic models or twist them in
a way that the persistence of shocks entering different latent variables is considerably altered, one
must find a different way out of the conundrum I brought to light.

I have suggested two potential solutions. One solution is to compute gaps (transitory components),
conditional on a model and the estimated parameters. While the exercise straightforward, some
researchers may be reluctant to follow such an approach, given that even complex models are not the
DGP of the data and apparently innocent estimation choices may impair inference, see e.g. Canova
[2014]. If robustness is the main concern, the approach of Canova and Matthes [2018] can be used
to provide robust estimates of model-based latent components.

The alternative is to design extraction filters that take into account the features the data is likely
to display. I have described a class of Butterworth filters that can be rigged to produce estimated
latent components with features close to those of the DGP and showed that they are uniformly
superior to the available methods for gaps estimation and competitive with the best approaches for
transitory components estimation.

Two additional implications of the results are worth emphasizing. While it is standard to think
of economic and financial cycles as being distinct, in the sense that the largest share of the variances
is located at different frequencies of the spectrum, see e.g. Borio [2012], the fact that models with
or without financial constraints have similar features and that gaps and transitory components have
considerable low frequency power in both situations, suggests that perhaps, it is the insistence of
macroeconomists on focusing attention on cycles of 8 to 32 quarters that has given a misleading
impression that the two cycles have different periodicities. I will explore this issue in future work.

There has been an industry over the last 30 years trying to collect stylized business cycle facts,
both to inform the construction of realistic models of aggregate fluctuations and to test them, see
Angeletos et al. [2019] for a recent example. These exercises generally focus attention on fluctuations
with 8 to 32 quarters periodicity. Given the results I have presented, it is perhaps desirable to switch
attention to a broader range of cycles, or at the minimum, take into consideration the fact that
most of the data variance is not located at business cycles frequencies, see also Kulish and Pagan
[2019]. Paying more attentions at the spectral properties of the data will help researchers to better
understand what kind of models is consistent with the data.
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Appendix

Equations of the Smets-Wouter DGP
Flexible price economy

1 ∗ at = calfa ∗ rkft + (1 − calfa) ∗ wft − 0 ∗ (1 − calfa)at (4)

zcapft = (1/(czcap/(1 − czcap))) ∗ rkft (5)

rkft = wft + labft − kft (6)

kft = kpft−1 + zcapft (7)

inveft = (
1

1 + cbetabar ∗ cgamma
) ∗ (inveft−1

+ cbetabar ∗ cgamma ∗ inveft+1 + (
1

cgamma2 ∗ csadjcost
) ∗ pkft) + qst (8)

pkft = −rrft − 0 ∗ bt + (
1

(1 − chabb/cgamma)/(csigma ∗ (1 + chabb/cgamma))
) ∗ bt

+ (crk/(crk + (1 − ctou))) ∗ rkft+1 + ((1 − ctou)/(crk + (1 − ctou))) ∗ pkft+1 (9)

cft = (chabb/cgamma)/(1 + chabb/cgamma) ∗ cft−1 + (1/(1 + chabb/cgamma)) ∗ cft+1

+ ((csigma− 1) ∗ cwhlc/(csigma ∗ (1 + chabb/cgamma))) ∗ (labft − labft+1)

− (1 − chabb/cgamma)/(csigma ∗ (1 + chabb/cgamma)) ∗ (rrft + 0 ∗ bt) + bt (10)

yft = ccy ∗ cft + ciy ∗ inveft + gt + crkky ∗ zcapft (11)

yft = cfc ∗ (calfa ∗ kft + (1 − calfa) ∗ labft + at) (12)

wft = csigl ∗ labft + (1/(1 − chabb/cgamma)) ∗ cft −
(chabb/cgamma)

(1 − chabb/cgamma)
∗ cft−1 (13)

kpft = (1 − cikbar) ∗ kpft−1 + cikbar ∗ inveft + cikbar ∗ (cgamma2 ∗ csadjcost) ∗ qst (14)

Sticky price - wage economy

mct = calfa ∗ rk + (1 − calfa) ∗ wt − 1 ∗ at − 0 ∗ (1 − calfa) ∗ at (15)

zcapt = (1/(czcap/(1 − czcap))) ∗ rkt (16)

rkt = wt + labt − kt (17)

kt = kpt−1 + zcapt (18)

invet = (1/(1 + cbetabar ∗ cgamma)) ∗ (invet−1 + cbetabar ∗ cgamma ∗ invet+1

+ (1/(cgamma2 ∗ csadjcost)) ∗ pkt) + qst (19)

pkt = −rt + pinft+1 − 0 ∗ bt + (1/((1 − chabb/cgamma)/(csigma ∗ (1 + chabb/cgamma)))) ∗ bt
+ (crk/(crk + (1 − ctou))) ∗ rkt+1 + ((1 − ctou)/(crk + (1 − ctou))) ∗ pkt+1 (20)
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ct = (chabb/cgamma)/(1 + chabb/cgamma) ∗ ct−1 + (1/(1 + chabb/cgamma)) ∗ ct+1

+ ((csigma− 1) ∗ cwhlc/(csigma ∗ (1 + chabb/cgamma))) ∗ (labt − labt+1)

− (1 − chabb/cgamma)/(csigma ∗ (1 + chabb/cgamma)) ∗ (rt − pinft+1 + 0 ∗ bt) + bt (21)

yt = ccy ∗ ct + ciy ∗ invet + gt + 1 ∗ crkky ∗ zcapt (22)

y = cfc ∗ (calfa ∗ kt + (1 − calfa) ∗ labt + at) (23)

pinft = (1/(1 + cbetabar ∗ cgamma ∗ cindp)) ∗ (cbetabar ∗ cgamma ∗ pinft+1 + cindp ∗ pinft−1

+
((1 − cprobp) ∗ (1 − cbetabar ∗ cgamma ∗ cprobp)/cprobp)

((cfc− 1) ∗ curvp+ 1)
∗mct) + spinft (24)

wt = (1/(1 + cbetabar ∗ cgamma)) ∗ wt−1 + (cbetabar ∗ cgamma/(1 + cbetabar ∗ cgamma)) ∗ wt+1

+
cindw

(1 + cbetabar ∗ cgamma)
∗ pinft−1 −

(1 + cbetabar ∗ cgamma ∗ cindw)

(1 + cbetabar ∗ cgamma)
∗ pinft

+
(cbetabar ∗ cgamma)

(1 + cbetabar ∗ cgamma)
∗ pinft+1

+
(1 − cprobw) ∗ (1 − cbetabar ∗ cgamma ∗ cprobw)

((1 + cbetabar ∗ cgamma) ∗ cprobw)
∗ 1

((clandaw − 1) ∗ curvw + 1
)

∗ (csigl ∗ lab+
1

(1 − chabb/cgamma)
∗ ct

− ((chabb/cgamma)/(1 − chabb/cgamma)) ∗ ct−1 − wt) + 1 ∗ swt (25)

rt = crpi ∗ (1 − crr) ∗ pinft + cry ∗ (1 − crr) ∗ (yt − yft)

+ crdy ∗ (yt − yft − yt−1 + yft−1) + crr ∗ rt−1 +mst (26)

(27)

Law of motion of shocks

at = crhoa ∗ at−1 + eat (28)

bt = crhob ∗ bt−1 + ebt (29)

gt = crhog ∗ gt−1 + egt + cgy ∗ eat (30)

qst = crhoqs ∗ qst−1 + eqst (31)

mst = crhoms ∗mst−1 + emt (32)

spinft = crhopinf ∗ spinft−1 + epinfmat − cmap ∗ epinfmat−1 (33)

epinfmat = epinft (34)

swt = crhow ∗ swt−1 + ewmat − cmaw ∗ ewmat−1 (35)

ewmat = ewt (36)

kpt = (1 − cikbar) ∗ kpt−1 + cikbar ∗ invet + cikbar ∗ cgamma2 ∗ csadjcost ∗ qst (37)
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Table 5: Average MSE, T=750

Variable POLY HP FOD LD BP Wa Ham UC BN BQ BW
Gap

Y 27.36 25.57 29.07 48.5 27.1 28.41 27.6 23.14 10852 184.5 18.74(*)
C 29.46 32.42 35.35 45.74 33.85 33.53 32.79 32.44 NaN NaN 19.63(*)
I 125.37 85.87 86.83 240.06 90.35 114.44 109.71 106.12 NaN NaN 83.33(*)
H 2.79 6.26 7.71 9.26 6.81 5.76 4.7 5.12 1.94 1.94 0.99(*)

RK 4.95 2.36 2.85 6.11 2.57 3.12 3.12 2.85 NaN NaN 4.37
W 17.7 23.72 25.25 31.71 24.51 24.37 23.93 23.95 NaN NaN 10.09(*)

CapU 15.67 7.48 9.03 19.37 8.15 9.89 9.88 9.07 NaN NaN 13.86
π 0.17 0.45 0.65 0.65 0.53 0.45 0.26 0.52 NaN NaN 0.03(*)
R 0.16 0.47 0.76 0.76 0.61 0.53 0.25 0.8 NaN NaN 0.04(*)

Factor 2.48 4.61 5.07 4.64 4.83 4.02 4.15 5.02 NaN NaN 1.83(*)
Transitory

Y 74.71 36.46 33.96 75.35 35.81 47.45 49.98 37.1 24543 302.32 56.11
C 92.58 41.55 40.1 80.13 41.03 53.65 51.61 42.91 NaN NaN 63
I 307.1 200.36181.74 385.41 198.38 252.35 268.54 238.4 NaN NaN 283.76
H 16.01 10.37 9.67 18.38 10.12 12.3 13.62 9.78 521.27 521.27 14.28

RK 12.14 7.54 7.31 12.68 7.48 9.11 8.91 7.57 NaN NaN 10.41
W 51.56 25.53 25.08 46.39 25.34 32.38 30.26 26.63 NaN NaN 37.44

CapU 38.47 23.91 23.17 40.18 23.69 28.87 28.25 24.23 NaN NaN 33
π 1.06 0.77 0.69 1.31 0.74 0.87 1 0.87 NaN NaN 0.98
R 1.32 0.99 0.97 1.66 0.9 1.04 1.26 0.9 NaN NaN 1.23

Factor 6.4 4.66 4.57 6.54 4.63 5.21 5.24 4.87 NaN NaN 5.65

Notes: POLY is polynomial detrending, HP is Hodrick and Prescott filtering, FOD is first order differencing,

LD is 24th order differencing, UC is unobservable component filtering, BP is band pass filtering,

Ham is local projection detrending, BN and BQ are bivariate Beveridge and Nelson and Blanchard

and Quah decompositions, BW is Butterworth filtering. Y is output, C consumption, I investment,

H hours, RK the real rate, W the real wage, CapU capacity utilization, R the nominal rate, and π

the inflation rate. Factor is the first principal component of the nine series. The MSE is computed

averaging over 100 data replications. In bold the best approach. A (*) in the last column indicates

that the BW filter improves over or is comparable to the best approach.
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Table 6: Average real time MSE, T=750

Variable POLY HP FOD LD BP Wa Ham UC BN BQ BW
Gap

Y 43.84 25.08 27.93 54.02 24.83 27.65 28.29 21.26 439.69 222.04 20.73(*)
C 53.13 33.03 35.1 52.69 33.4 36.33 35.48 34.36 NaN NaN 18.44(*)
I 162.86 83.09 81.71 301.44 81.7 127.4 118.88 74.94 NaN NaN 74.76(*)
H 5.35 6.55 7.71 9.1 6.51 5.36 4.91 6.32 2.06 2.06 1.04(*)

RK 6.7 3.35 3.75 6.1 3.27 3.11 3.84 3.19 NaN NaN 3.95
W 39.03 26.31 28.01 38.73 26.33 27.07 27.63 21.12 NaN NaN 10.72(*)

CapU 21.23 10.63 11.89 19.34 10.38 9.85 12.18 10.08 NaN NaN 12.51
π 0.42 0.45 0.64 0.78 0.49 0.5 0.26 0.6 NaN NaN 0.03(*)
R 0.4 0.49 0.76 0.81 0.61 0.51 0.25 0.93 NaN NaN 0.04(*)

Factor 5.44 5.04 5.33 5.39 5.09 4.37 4.54 5.36 NaN NaN 1.78(*)
Transitory

Y 104.69 38.47 37.49 69.19 38.86 47.51 49.89 33.64 995.6 481.3 49.1
C 134.98 45.2 44.78 85.81 44.92 57.57 53.08 36.17 NaN NaN 53.99
I 383.51 219.49205.35 415.73 219.43 283.34 302.13 206.23 NaN NaN 302.89
H 21.14 11.53 11.35 17.27 11.64 13.28 15.29 9.17 563.41 563.41 13.96

RK 17.42 9.57 9.42 14.1 9.58 10.96 11.29 9.03 NaN NaN 10.49
W 78.62 21.8 21.52 45.11 21.89 29.38 25.85 26.11 NaN NaN 27.64

capU 55.19 30.34 29.86 44.68 30.37 34.74 35.78 27.89 NaN NaN 33.24
π 1.21 0.78 0.74 1.32 0.75 0.89 1.11 0.73 NaN NaN 0.91
R 1.66 1.07 1.1 1.87 0.97 1.18 1.52 0.83 NaN NaN 1.24

Factor 9.81 5.85 5.87 8.2 5.83 6.7 6.61 5.23 NaN NaN 6.17

Notes: POLY is polynomial detrending, HP is Hodrick and Prescott filtering, FOD is first order differencing,

LD is 24th order differencing, UC is unobservable component filtering, BP is band pass filtering,

Ham is local projection detrending, BN and BQ are bivariate Beveridge and Nelson and Blanchard

and Quah decompositions, BW is Butterworth filtering. Y is output, C consumption, I investment,

H hours, RK the real rate, W the real wage, CapU capacity utilization, R the nominal rate, and π

the inflation rate. Factor is the first principal component of the nine series. The MSE is computed

averaging over 100 data replications. In bold the best approach. A (*) in the last column indicates

that the BW filter improves over or is comparable to the best approach.
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Table 7: Contemporaneous correlations, T=750

Variable POLY HP FOD LD BP Wa Ham UC BN BQ BW
Gaps and Filtered variables

Y 0.65 0.34 0.03 0.38 0.25 0.41 0.44 0.44 -0.33 0.25 0.71(*)
C 0.65 0.33 0.06 0.36 0.23 0.37 0.38 0.31 NaN NaN 0.72(*)
I 0.59 0.27 0.04 0.34 0.19 0.37 0.44 0.43 NaN NaN 0.65(*)
H 0.86 0.42 0.06 0.5 0.31 0.54 0.68 0.67 0.93 0.93 0.93(*)

RK 0.53 0.41 0.04 0.38 0.29 0.4 0.36 0.22 NaN NaN 0.55(*)
W 0.67 0.26 0.01 0.31 0.16 0.32 0.3 0.06 NaN NaN 0.77(*)

CapU 0.53 0.41 0.04 0.38 0.29 0.4 0.36 0.16 NaN NaN 0.55(*)
π 0.93 0.61 0.17 0.57 0.48 0.61 0.84 0.57 NaN NaN 1.00(*)
R 0.94 0.67 0.29 0.59 0.48 0.6 0.88 0.36 NaN NaN 1.00(*)

Factor 0.71 0.31 0.04 0.43 0.2 0.45 0.41 0.16 NaN NaN 0.79(*)
Transitory and Filtered variables

Y 0.01 0 0 0.01 0 0.01 -0.01 0.01 0.05 0 0.01
C 0.01 0 -0.01 -0.01 0 -0.02 -0.02 0.01 NaN NaN 0
I 0.01 0 -0.01 0 0 0 -0.01 0 NaN NaN 0
H -0.01 0 0 0.01 0 0.01 0 0 -0.02 -0.02 0

RK 0.01 0 -0.01 -0.01 0 -0.01 -0.01 0 NaN NaN 0.01
W -0.02 0.01 -0.01 -0.02 0 -0.02 -0.02 0 NaN NaN -0.01

CapU 0.01 0 -0.01 -0.01 0 -0.01 -0.01 -0.01 NaN NaN 0.01
π 0.03 0 0 0.01 0 0.01 0.01 0.01 NaN NaN 0.01
R 0.01 0 0 0 0 0 0 0 NaN NaN 0

Factor 0.03 0 0 0 0 0 0 0.01 NaN NaN 0.01

Notes: POLY is polynomial detrending, HP is Hodrick and Prescott filtering, FOD is first order differencing,

LD is 24th order differencing, UC is unobservable component filtering, BP is band pass filtering,

Ham is local projection detrending, BN and BQ are bivariate Beveridge and Nelson and Blanchard

and Quah decompositions, BW is Butterworth filtering. Y is output, C consumption, I investment,

H hours, RK the real rate, W the real wage, CapU capacity utilization, R the nominal rate, and

π the inflation rate. Factor is the first principal component of the nine series. Correlations are

computed averaging over 100 data replications. In bold the best approach. A (*) in the last column

indicates that the BW filter improves over or is comparable to the best approach.
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Table 8: AR1 coefficient, T=750

Variable True POLY HP FOD LD BP Wa Ham UC BN BQ BW
Gaps and filtered variables

Y 0.98 0.98 0.83 0.21 0.96 0.930.98 0.89 0.89 1 0.97 0.98(*)
C 0.98 0.99 0.83 0.23 0.97 0.930.99 0.89 0.88 NaN NaN 0.98(*)
I 0.99 0.98 0.89 0.51 0.97 0.930.98 0.91 0.98 NaN NaN 0.98(*)
H 0.98 0.95 0.78 0.11 0.93 0.930.97 0.89 0.9 0.96 0.96 0.96

RK 0.97 0.99 0.83 0.21 0.97 0.94 0.99 0.89 0.93 NaN NaN 0.99
W 0.98 0.99 0.82 0.12 0.98 0.94 0.99 0.87 0.94 NaN NaN 0.99

CapU 0.97 0.99 0.83 0.21 0.97 0.94 0.99 0.89 0.91 NaN NaN 0.99
π 0.94 0.93 0.78 0.16 0.9 0.92 0.96 0.88 0.83 NaN NaN 0.94(*)
R 0.83 0.80 0.54 -0.21 0.76 0.91 0.95 0.77 0.47 NaN NaN 0.85(*)

Factor 0.98 0.99 0.8 0.14 0.97 0.930.99 0.89 0.93 NaN NaN 0.99(*)
Transitory and filtered variables

Y 0.97 0.98 0.83 0.2 0.96 0.930.98 0.89 0.89 0.99 0.98 0.97(*)
C 0.99 0.99 0.84 0.26 0.98 0.930.99 0.89 0.87 NaN NaN 0.98
I 0.98 0.97 0.89 0.5 0.97 0.930.98 0.91 0.98NaN NaN 0.97
H 0.96 0.95 0.78 0.1 0.93 0.930.97 0.89 0.9 0.96 0.96 0.94

RK 0.99 0.98 0.83 0.19 0.97 0.940.99 0.89 0.93 NaN NaN 0.98
W 0.99 0.99 0.82 0.14 0.98 0.940.99 0.87 0.94 NaN NaN 0.98

CapU 0.99 0.98 0.83 0.19 0.97 0.940.99 0.89 0.93 NaN NaN 0.98
π 0.94 0.93 0.78 0.15 0.91 0.92 0.97 0.88 0.84 NaN NaN 0.91
R 0.84 0.81 0.54 -0.21 0.76 0.91 0.95 0.76 0.41 NaN NaN 0.77

Factor 0.99 0.98 0.8 0.12 0.96 0.930.99 0.88 0.93 NaN NaN 0.97

Notes: POLY is polynomial detrending, HP is Hodrick and Prescott filtering, FOD is first order differencing,

LD is 24th order differencing, UC is unobservable component filtering, BP is band pass filtering,

Ham is local projection detrending, BN and BQ are bivariate Beveridge and Nelson and Blanchard

and Quah decompositions, BW is Butterworth filtering. Y is output, C consumption, I investment,

H hours, RK the real rate, W the real wage, CapU capacity utilization, R the nominal rate, and π

the inflation rate. Factor is the first principal component of the nine series. The AR1 coefficient is

computed averaging over 100 data replications. In bold the best approach. A (*) in the last column

indicates that the BW filter improves over or is comparable to the best approach.
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Table 9: Variability, T=750

Variable True POLY HP FOD LD BP Wa Ham UC BN BQ BW
Gaps and filtered variables

Y 23.62 38.81 4.07 1.56 42.88 3.45 15 16.62 6.83 4632.6 81.43 31.08
C 28.77 36.04 2.14 0.82 29.97 1.78 10.41 9.93 4.14 NaN NaN 31.38
I 69.37 171.48 26.61 6.85 235.27 24.0184.51 98.16 139.45 NaN NaN 129.97
H 6.43 6.82 1.39 0.65 9.39 1.15 3.28 4.46 1.26 8.06 8.06 4.98

RK 2.48 6.3 0.4 0.15 6.05 0.33 2.1 1.88 0.3 NaN NaN 5.21
W 20.85 20.83 0.9 0.38 17.78 0.68 6.13 4.67 0.6 NaN NaN 18.04

CapU 7.86 19.98 1.25 0.48 19.17 1.03 6.64 5.96 0.8 NaN NaN 16.52
π 0.58 0.47 0.14 0.07 0.68 0.12 0.24 0.39 0.25 NaN NaN 0.35
R 0.69 0.59 0.24 0.22 0.88 0.15 0.27 0.51 0.17 NaN NaN 0.42

Factor 5.05 3.13 0.21 0.09 2.8 0.17 0.97 0.93 0.39 NaN NaN 2.7
Transitory and filtered variables

Y 28.94 42.79 4.07 1.56 42.04 3.38 14.72 17.11 6.16 7649.1 140.59 24.2(*)
C 33.58 54.45 2.32 0.86 38.29 1.86 13.22 11.65 3.99 NaN NaN 23.65
I 160.43137.45 25.7 6.62 203.33 23.23 73.7 89.49 100.49 NaN NaN 110.4
H 8.29 6.96 1.35 0.64 9.19 1.1 3.21 4.5 1.15 12.03 12.03 5.25

RK 6.32 5.14 0.38 0.15 5.33 0.31 1.85 1.72 0.3 NaN NaN 3.37
W 20.43 26.62 0.93 0.39 19.92 0.7 6.85 5.06 0.74 NaN NaN 12.45

CapU 20.02 16.3 1.2 0.46 16.88 0.97 5.86 5.45 1.01 NaN NaN 10.69
π 0.57 0.46 0.14 0.06 0.67 0.11 0.23 0.37 0.25 NaN NaN 0.37
R 0.69 0.58 0.23 0.21 0.87 0.15 0.27 0.5 0.15 NaN NaN 0.49

Factor 4.52 2.11 0.17 0.08 1.98 0.14 0.69 0.72 0.44 NaN NaN 1.18

Notes: POLY is polynomial detrending, HP is Hodrick and Prescott filtering, FOD is first order differencing,

LD is 24th order differencing, UC is unobservable component filtering, BP is band pass filtering,

Ham is local projection detrending, BN and BQ are bivariate Beveridge and Nelson and Blanchard

and Quah decompositions, BW is Butterworth filtering. Y is output, C consumption, I investment,

H hours, RR the real rate, W the real wage, CapU capacity utilization, R the nominal rate, and

π the inflation rate. Factor is the first principal component of the nine series. The variability is

computed averaging over 100 data replications. In bold the best approach. A (*) in the last column

indicates that the BW filter improves over or is comparable to the best approach.
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Table 10: Number of turning points, average durations, average amplitudes, T=750

Variable True POLY HP FOD LD BP Wa Ham UC BN BQ BW
Output Gap and filtered output

Number TP 125.87 123.4 124.78 109.11 124.51 129.74 135.95 112.77 130.24 147.91 111.78 128
DurE 5.67 5.8 5.73 6.68 5.79 5.5 5.22 6.39 5.52 4.5 6.49 5.62(*)
DurR 5.71 5.81 5.75 6.49 5.75 5.5 5.27 6.32 5.49 5.19 6.36 5.57
AmpE -2.49 -3.62 -3.57 -4.69 -5.09 -1.43 -1.47 -5.67 -1.48 -16.91 -6.47 -2.67(*)
AmpR 2.49 3.62 3.57 4.69 5.09 1.43 1.47 5.67 1.48 16.91 6.47 2.67(*)

Factor Gap and filtered factor
Number TP 120.07120.44 122.63 103.61 120.51 130.47 135.31 113.42 130.78 NaN NaN 124.97

DurE 6.01 5.96 5.84 6.87 5.98 5.48 6.28 5.25 5.46 NaN NaN 5.71
DurR 5.92 5.93 5.84 7.05 5.93 5.46 6.39 5.31 5.63 NaN NaN 5.75
AmpE -1.08 -0.83 -0.82 -1.12 -1.17 -0.3 -1.36 -0.32 -0.49 NaN NaN -0.61
AmpR 1.08 0.83 0.82 1.12 1.17 0.3 1.36 0.32 0.49 NaN NaN 0.61

Output Transitory and filtered output
Number TP 125.57 123.94 125.69 109.32 125.35 130.63 137.32 112.3 130.72 150.61 111.23 123.88

DurE 5.66 5.76 5.72 6.56 5.73 5.44 5.19 6.35 5.6 4.18 6.52 5.76
DurR 5.75 5.79 5.66 6.55 5.68 5.49 5.2 6.45 5.37 5.32 6.38 5.79(*)
AmpE -3.4 -3.62 -3.58 -4.72 -5.11 -1.41 -1.47 -5.74 -1.44 -22.65 -5.59 -3.62(*)
AmpR 3.4 3.61 3.57 4.71 5.1 1.41 1.47 5.73 1.44 22.65 5.59 3

Factor transitory and filtered factor
Number TP 121.2 120.79 121.56 105.4 121.8 131.03 113.62 135.26 126.26 NaN NaN 120.69

DurE 5.9 5.96 5.87 6.87 5.93 5.45 6.25 5.25 5.72 NaN NaN 5.96
DurR 5.92 5.92 5.94 6.76 5.86 5.44 6.38 5.32 5.76 NaN NaN 5.92(*)
AmpE -0.98 -0.74 -0.73 -1 -1.05 -0.27 -1.17 -0.29 -0.52 NaN NaN -0.74
AmpR 0.98 0.74 0.73 1 1.05 0.27 1.17 0.29 0.52 NaN NaN 0.74

Notes: POLY is polynomial detrending, HP is Hodrick and Prescott filtering, FOD is first order differencing,

LD is 24th order differencing, UC is unobservable component filtering, BP is band pass filtering,

Ham is local projection detrending, BN and BQ are bivariate Beveridge and Nelson and Blanchard

and Quah decompositions, BW is Butterworth filtering. Y is output and Factor is the first principal

component of the nine series. DurE and DurR are the durations of expansions and recessions; AmpE

and AmpR the amplitudes of expansions and recessions. Statistics are computed averaging over 100

data replications. In bold is the best approach. A (*) in the last column indicates that the BW

filter improves over or is comparable to the best approach.
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Table 11: Phillips curve and Okun law predictions, T=750

Step ahead POLY HP FOD LD BP Wa Ham UC BN BQ BW
Phillips curve prediction: Output Gap

1 0.25 0.26 0.27 0.37 0.26 0.32 0.36 0.27 0.36 0.4 0.21(*)
4 1.41 1.5 1.67 1.91 1.67 1.55 1.87 1.53 2.14 2.23 1.04(*)

Phillips curve prediction: Transitory Output
1 0.21 0.45 0.19 0.14 0.43 0.15 0.14 0.19 0.13 0.1 0.21
4 0.79 0.93 0.6 0.49 2.89 0.7 0.52 0.77 0.52 0.58 0.68

Okun law prediction: Output Gap
1 0.24 1.24 0.24 0.19 3.79 0.21 0.19 1.21 0.21 0.26 0.44
4 3.67 33.84 2.49 1.75 45.94 2.74 2.23 10.88 2.43 2.04 3.13

Okun law prediction: transitory Output
1 0.32 0.31 0.33 0.30 0.31 0.32 0.31 0.37 0.34 0.33 0.32
4 3.02 2.81 2.76 2.68 3.05 2.73 2.85 3.27 3.21 2.89 2.93

Notes: POLY is polynomial detrending, HP is Hodrick and Prescott filtering, FOD is first order differencing,

LD is 24th order differencing, UC is unobservable component filtering, BP is band pass filtering,

Ham is local projection detrending, BN and BQ are bivariate Beveridge and Nelson and Blanchard

and Quah decompositions, BW is Butterworth filtering. The Phillips curve and the Okun law

predictions are regression of the form: xt+m = α0 + α1xt +
∑3

j=1 βjyt−j where yt−j is the true gap

( transitory) or the estimated one, xt = πt (inflation) or Ht (hours) and m=1,4. Reported the

difference in variance of the prediction error between each procedure and the true prediction error,

averaged over 100 data replications. In bold the best approach. A (*) in the last column indicates

that the BW filter improves over or is comparable to the best approach.
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Figure 15: Estimated squared gain functions for output; unit root in TFP
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On-line appendix

Table A.1: Average MSE, T=750

Variable HPa LDa BPa Hama BNa BQa FODa Trigo BK UCbiv
Gap

Y 24.31 42.79 26.38 27.09 29.07 29.07 32.62 27.16 27.1 315.18
C 30.24 41.98 32.75 31.8 12.34 12.34 36.48 33.88 33.85 NaN
I 95.33 211.45 99.14 116.97 75.29 75.29 120.79 90.67 90.35 NaN
H 5.29 9.11 6.14 3.98 NaN NaN 8.43 6.82 6.81 NaN

RK 2.25 4.88 2.49 3.3 NaN NaN 3.2 2.58 2.57 NaN
W 22.04 29.56 23.82 22.85 NaN NaN 26.17 24.53 24.51 NaN

CapU 7.14 15.47 7.88 10.47 NaN NaN 10.13 8.16 8.15 170.23
π 0.38 0.65 0.45 0.22 NaN NaN 0.65 0.53 0.53 NaN
R 0.38 0.76 0.53 0.21 NaN NaN 0.76 0.61 0.61 NaN

Factor 4.07 4.66 4.51 3.66 NaN NaN 5.06 4.84 4.83 NaN
Transitory

Y 41.68 65.77 39.94 56.77 33.96 33.96 41.32 35.83 35.81 119.31
C 45.84 67.11 44.14 58.69 34.14 34.14 44.75 41.05 41.03 NaN
I 230.26 357.78 222.85 293.58 198.98 198.98 229.67 198.61 198.38 NaN
H 11.55 17.01 11.09 14.61 NaN NaN 11.99 10.13 10.12 NaN

RK 8.19 11.13 7.94 9.73 NaN NaN 8.04 7.48 7.48 NaN
W 27.7 38.84 26.78 33.99 NaN NaN 27.06 25.34 25.34 NaN

CapU 25.94 35.26 25.17 30.83 NaN NaN 25.46 23.7 23.69 113.85
π 0.85 1.26 0.81 1.04 NaN NaN 0.93 0.74 0.74 NaN
R 1.08 1.62 0.98 1.3 NaN NaN 1.27 0.9 0.9 NaN

Factor 4.89 6.02 4.81 5.55 NaN NaN 4.88 4.63 4.63 NaN

Notes: HPa is modified Hodrick and Prescott filtering, FODa is fourth order differencing, LDa is 16th order

differencing, BPa is modified band pass filtering, Hama is modified local projection detrending, BNa

and BQa are trivariate Beveridge and Nelson and Blanchard and Quah decompositions, Trigo and

BK are the trigonometric and the Baxter and King versions of a BP filter, UCbiv is bivariate UC

filtering. Y is output, C consumption, I investment, H hours, RK the real rate, W the real wage,

CapU capacity utilization, R the nominal rate, and π the inflation rate. Factor is the first principal

component of the nine series. Statistics are computed averaging over 100 data replications. For C

and I BNa and BQa refer to the comparison of filtered C/Y and I/Y with the data. In bold are

cases where the reported statistic improves the best result presented in table 5.
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Table A.2: Average real time MSE, T=750

Variable HPa LDa BPa Hama BNa BQa FODa Trigo BK UCbiv
Gap

Y 25.26 44.46 22.44 27.71 27.93 27.93 32.59 26.02 24.83 8.61
C 34.6 47.47 32.24 35.45 13.45 13.45 37.88 33.83 33.4 NaN
I 92.97 259.48 86.36 128.54 72.86 72.86 126.45 87.39 81.7 NaN
H 6.15 9.11 5.77 4.06 NaN NaN 8.61 6.67 6.51 NaN

RK 3.3 5.17 3.12 3.71 NaN NaN 4.09 3.32 3.27 NaN
W 27.01 34.22 24.85 25.74 NaN NaN 30.06 27 26.33 NaN

capU 10.47 16.39 9.89 11.76 NaN NaN 12.96 10.53 10.38 3.76
π 0.44 0.77 0.46 0.23 NaN NaN 0.67 0.53 0.49 NaN
R 0.44 0.81 0.52 0.21 NaN NaN 0.79 0.65 0.61 NaN

Factor 4.96 5.08 4.72 4 NaN NaN 5.37 5.15 5.09 NaN
Transitory

Y 40.83 62.42 39.27 55.83 37.49 37.49 42.85 38.65 38.86 7.52
C 47.14 68.28 44.55 58.09 49.59 49.59 48.62 45.08 44.92 NaN
I 236.45 397.07 237.89 345.75 230.58 230.58 243.9 218.85 219.46 NaN
H 11.92 17.11 11.58 16.05 NaN NaN 13.17 11.63 11.65 NaN

RK 9.79 12.64 9.88 12.49 NaN NaN 9.81 9.55 9.59 NaN
W 22.49 34.8 22.6 30.08 NaN NaN 22.43 21.93 21.89 NaN

capU 31.02 40.04 31.29 39.58 NaN NaN 31.1 30.25 30.37 2.06
π 0.84 1.3 0.79 1.13 NaN NaN 1.03 0.78 0.75 NaN
R 1.13 1.7 1.01 1.52 NaN NaN 1.42 1.01 0.97 NaN

Factor 6.04 7.18 5.85 6.78 NaN NaN 6.18 5.8 5.83 NaN

Notes: HPa is modified Hodrick and Prescott filtering, FODa is forth order differencing, LDa is 16th order

differencing, BPa is modified band pass filtering, Hama is modified local projection detrending, BNa

and BQa are trivariate Beveridge and Nelson and Blanchard and Quah decompositions, Trigo and

BK are the trigonometric and the Baxter and King versions of a BP filter, UCbiv is bivariate UC

filtering. Y is output, C consumption, I investment, H hours, RK the real rate, W the real wage,

CapU capacity utilization, R the nominal rate, and π the inflation rate. Factor is the first principal

component of the nine series. Statistics are computed averaging over 100 data replications. For C

and I BNa and BQa refer to the comparison of filtered C/Y and I/Y with the data. In bold are

cases where the reported statistic improves the best result presented in table 6.
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Table A.3: Correlations, T=750

Variable HPa LDa BPa Hama BNa BQa FODa Trigo BK UCbiv
Gap

Y 0.46 0.35 0.36 0.53 0.03 0.03 0.15 0.24 0.25 -0.01
C 0.44 0.32 0.32 0.46 0.81 0.81 0.16 0.22 0.23 NaN
I 0.38 0.31 0.29 0.51 0.73 0.73 0.14 0.19 0.19 NaN
H 0.58 0.45 0.46 0.76 NaN NaN 0.22 0.31 0.31 NaN

RK 0.5 0.35 0.39 0.44 NaN NaN 0.16 0.29 0.29 NaN
W 0.39 0.25 0.26 0.4 NaN NaN 0.07 0.15 0.16 NaN

capU 0.5 0.35 0.39 0.44 NaN NaN 0.16 0.29 0.29 0.03
π 0.71 0.55 0.6 0.88 NaN NaN 0.38 0.47 0.48 NaN
R 0.76 0.57 0.59 0.9 NaN NaN 0.44 0.48 0.48 NaN

Factor 0.46 0.38 0.32 0.52 NaN NaN 0.15 0.2 0.2 NaN
Transitory

Y 0 0 0 0 0 0 0 0 0 0.07
C 0 -0.02 0 -0.02 -0.05 -0.05 -0.01 0 0 NaN
I 0 0 0 -0.01 0.01 0.01 -0.01 0 0 NaN
H 0 0.01 0 0 NaN NaN 0 0 0 NaN

RK 0 -0.01 0 0 NaN NaN -0.01 0 0 NaN
W 0 -0.01 0.01 -0.03 NaN NaN -0.01 0 0 NaN

CapU 0 -0.01 0 0 NaN NaN -0.01 0 0 -0.01
π 0.01 0.01 0.01 0.01 NaN NaN 0 0 0 NaN
R 0 -0.01 0 -0.01 NaN NaN 0 0 0 NaN

Factor 0 0 0 0 NaN NaN 0 0 0 NaN

Notes: HPa is modified Hodrick and Prescott filtering, FODa is forth order differencing, LDa is 16th

order differencing, BPa is modified band pass filtering, Hama is modified local projection detrending,

BNa and BQa are trivariate Beveridge and Nelson and Blanchard and Quah decompositions, Trigo

and BK are the trigonometric and the Baxter and King versions of a BP filter, UCbiv is bivariate

UC filtering. Y is output, C consumption, I investment, H hours, RK the real rate, W the real wage,

CapU capacity utilization, R the nominal rate, and π the inflation rate. Factor is the first principal

component of the nine series. Statistics are computed averaging over 100 data replications. For C

and I BNa and BQa refer to the comparison of filtered C/Y and I/Y with the data. In bold are

cases where the reported statistic improves the best result presented in table 7.
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Table A.4: AR1 coefficient, T=750

Variable True HPa LDa BPa Hama BNa BQa FODa Trigo BK UCbiv
Gap

Y 0.98 0.92 0.95 0.96 0.94 0.21 0.21 0.83 0.93 0.93 0.84
C 0.98 0.93 0.96 0.97 0.93 0.98 0.98 0.84 0.93 0.93 NaN
I 0.99 0.94 0.96 0.96 0.95 0.98 0.98 0.88 0.93 0.93 NaN
H 0.98 0.88 0.92 0.95 0.92 NaN NaN 0.78 0.93 0.93 NaN

RK 0.97 0.93 0.96 0.97 0.93 NaN NaN 0.84 0.94 0.94 NaN
W 0.98 0.94 0.97 0.97 0.92 NaN NaN 0.84 0.94 0.94 NaN

CapU 0.97 0.93 0.96 0.97 0.93 NaN NaN 0.84 0.94 0.94 0.78
π 0.94 0.86 0.9 0.95 0.91 NaN NaN 0.77 0.92 0.92 NaN
R 0.83 0.67 0.75 0.94 0.79 NaN NaN 0.57 0.91 0.91 NaN

Factor 0.98 0.92 0.96 0.97 0.93 NaN NaN 0.82 0.93 0.93 NaN
Transitory

Y 0.97 0.92 0.95 0.96 0.93 0.2 0.2 0.82 0.93 0.93 0.96
C 0.99 0.94 0.97 0.97 0.93 0.98 0.98 0.85 0.93 0.93 NaN
I 0.98 0.94 0.96 0.96 0.95 0.98 0.98 0.87 0.93 0.93 NaN
H 0.96 0.87 0.92 0.96 0.92 NaN NaN 0.77 0.93 0.93 NaN

RK 0.99 0.93 0.96 0.97 0.93 NaN NaN 0.83 0.94 0.94 NaN
W 0.99 0.94 0.97 0.97 0.92 NaN NaN 0.84 0.94 0.94 NaN

CapU 0.99 0.93 0.96 0.97 0.93 NaN NaN 0.83 0.94 0.94 0.94
π 0.94 0.86 0.9 0.95 0.91 NaN NaN 0.77 0.92 0.92 NaN
R 0.84 0.67 0.74 0.94 0.79 NaN NaN 0.57 0.91 0.91 NaN

Factor 0.99 0.91 0.95 0.96 0.93 NaN NaN 0.8 0.93 0.93 NaN

Notes: HPa is modified Hodrick and Prescott filtering, FODa is forth order differencing, LDa is 16th order

differencing, BPa is modified band pass filtering, Hama is modified local projection detrending, BNa

and BQa are trivariate Beveridge and Nelson and Blanchard and Quah decompositions, Trigo and

BK are the trigonometric and the Baxter and King versions of a BP filter, UCbiv is bivariate UC

filtering. Y is output, C consumption, I investment, H hours, RK the real rate, W the real wage,

CapU capacity utilization, R the nominal rate, and π the inflation rate. Factor is the first principal

component of the nine series. Statistics are computed averaging over 100 data replications. For C

and I BNa and BQa refer to the comparison of filtered C/Y and I/Y with the data. In bold are

cases where the reported statistic improves the best result presented in table 8.
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Table A.5: Variability, T=750

Variable True HPa LDa BPa Hama BNa BQa FODa Trigo BK UCbiv
Gap

Y 23.62 9.55 33.07 7.64 22.67 1.55 1.55 8.87 3.5 3.45 276.56
C 28.77 5.55 21.42 4.27 14.67 13.32 13.32 4.85 1.81 1.78 NaN
I 69.37 59.88 195.72 50.47 127.94 94.69 94.69 55.95 24.4 24.01 NaN
H 6.43 2.63 8.1 2.13 5.36 NaN NaN 3.02 1.17 1.15 NaN

RK 2.48 1.12 4.28 0.81 2.84 NaN NaN 0.9 0.33 0.33 NaN
W 20.85 2.92 12 2.09 7.6 NaN NaN 2.11 0.7 0.68 NaN

CapU 7.86 3.54 13.57 2.57 8.99 NaN NaN 2.85 1.05 1.03 127.04
π 0.58 0.23 0.65 0.2 0.43 NaN NaN 0.31 0.12 0.12 NaN
R 0.69 0.33 0.86 0.23 0.54 NaN NaN 0.52 0.15 0.15 NaN

Factor 5.05 0.53 2 0.41 1.35 NaN NaN 0.47 0.17 0.17 NaN
Transitory

Y 28.94 9.38 32.94 7.56 23.87 1.55 1.55 8.82 3.42 3.38 261.54
C 33.58 6.46 26.44 4.88 18.27 21.93 21.93 5.36 1.88 1.86 NaN
I 160.43 55.57 178.23 48 114.37 104.02 104.02 53.11 23.55 23.23 NaN
H 8.29 2.53 7.89 2.07 5.5 NaN NaN 2.92 1.11 1.1 NaN

RK 6.32 1.03 3.87 0.78 2.54 NaN NaN 0.85 0.31 0.31 NaN
W 20.43 3.1 13.2 2.24 8.49 NaN NaN 2.22 0.71 0.7 NaN

CapU 20.02 3.26 12.25 2.49 8.04 NaN NaN 2.68 0.99 0.97 89.91
π 0.57 0.22 0.63 0.19 0.41 NaN NaN 0.3 0.11 0.11 NaN
R 0.69 0.32 0.84 0.23 0.53 NaN NaN 0.51 0.15 0.15 NaN

Factor 4.52 0.41 1.5 0.32 1.03 NaN NaN 0.38 0.14 0.14 NaN

Notes: HPa is modified Hodrick and Prescott filtering, FODa is forth order differencing, LDa is 16th order

differencing, BPa is modified band pass filtering, Hama is modified local projection detrending, BNa

and BQa are trivariate Beveridge and Nelson and Blanchard and Quah decompositions, Trigo and

BK are the trigonometric and the Baxter and King versions of a BP filter, UCbiv is bivariate UC

filtering. Y is output, C consumption, I investment, H hours, RK the real rate, W the real wage,

CapU capacity utilization, R the nominal rate, and π the inflation rate. Factor is the first principal

component of the nine series. Statistics are computed averaging over 100 data replications. For C

and I BNa and BQa refer to the comparison of filtered C/Y and I/Y with the data. In bold are

cases where the reported statistic improves the best result presented in table 9.
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Table A.6: Number of turning points, average durations, average amplitudes, T=750

Variable True HPa LDa BPa Hama BNa BQa FODa Trigo BK UCbiv
Output Gap

Number of TP 125.87 123.44 124.31 128.28 119.83 109.11 109.11 141.49 129.37 129.74 129.2
DurE 5.67 5.77 5.75 5.55 5.99 6.68 6.68 5.03 5.52 5.5 4.93
DurR 5.71 5.83 5.77 5.58 6 6.49 6.49 5.06 5.52 5.5 6.27
AmpE -2.49 -3.61 -5.08 -1.45 -4.95 -4.69 -4.69 -5.22 -1.43 -1.43 -21.68
AmpR 2.49 3.61 5.08 1.45 4.95 4.69 4.69 5.22 1.43 1.43 - 21.69

Factor Gap
Number of TP 120.07 120.69 121.06 128.56 118.84 NaN NaN 138.45 129.98 130.44 NaN

DurE 6.01 5.93 5.9 5.57 6.05 NaN NaN 5.16 5.49 5.49 NaN
DurR 5.92 5.93 5.96 5.53 6.05 NaN NaN 5.16 5.49 5.46 NaN
AmpE -1.08 -0.83 -1.16 -0.31 -1.25 NaN NaN -1.19 -0.3 -0.3 NaN
AmpR 1.08 0.83 1.16 0.31 1.25 NaN NaN 1.19 0.3 0.3 NaN

Transitory output
Number of TP 125.57 123.94 124.84 128.87 119.01 109.32 109.32 142.5 130.56 130.63 127.76

DurE 5.66 5.79 5.8 5.53 6.09 6.56 6.56 5.03 5.46 5.44 5.5
DurR 5.75 5.76 5.68 5.55 5.97 6.55 6.55 5 5.47 5.49 5.81
AmpE -3.4 -3.61 -5.1 -1.45 -5.17 -4.72 -4.72 -5.25 -1.41 -1.41 -12.25
AmpR 3.4 3.61 5.1 1.45 5.18 4.71 4.71 5.25 1.41 1.41 12.27

Transitory factor
Number of TP 121.2 120.91 120.96 129.39 118.07 NaN NaN 140.58 131.44 131.04 NaN

DurE 5.9 5.97 5.98 5.52 6.12 NaN NaN 5.07 5.44 5.45 NaN
DurR 5.92 5.91 5.89 5.52 6.03 NaN NaN 5.11 5.43 5.44 NaN
AmpE -0.98 -0.74 -1.05 -0.27 -1.07 NaN NaN -1.06 -0.27 -0.27 NaN
AmpR 0.98 0.74 1.05 0.27 1.08 NaN NaN 1.06 0.27 0.27 NaN

Notes: HPa is modified Hodrick and Prescott filtering, FODa is forth order differencing, LDa is 16th order

differencing, BPa is modified band pass filtering, Hama is modified local projection detrending, BNa

and BQa are trivariate Beveridge and Nelson and Blanchard and Quah decompositions, Trigo and

BK are the trigonometric and the Baxter and King versions of a BP filter, UCbiv is bivariate UC

filtering. Y is output, C consumption, I investment, H hours, RK the real rate, W the real wage,

CapU capacity utilization, R the nominal rate, and π the inflation rate. Factor is the first principal

component of the nine series. Statistics are computed averaging over 100 data replications. For C

and I BNa and BQa refer to the comparison of filtered C/Y and I/Y with the data. In bold are

cases where the reported statistic improves the best result presented in table 10.
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Table A.7 Phillips curve and Okun law predictions, T=750

Variable HPa LDa BPa Hama BNa BQa FODa Trigo BK UCbiv
Phillips curve prediction: Output Gap

1 0.21 0.36 0.25 0.34 0.27 0.27 0.32 0.26 0.26 0.32
4 1.48 1.81 1.88 1.74 1.67 1.67 1.69 1.68 1.67 1.6

Phillips curve prediction: Transitory Output
1 0.36 0.15 0.39 0.13 0.19 0.19 0.16 0.42 0.43 0.15
4 1.03 0.54 3.21 0.5 0.6 0.6 0.62 2.87 2.89 0.73

Phillips curve prediction: Output Gap
1 0.55 0.21 4.67 0.21 0.24 0.24 0.23 3.75 3.79 4.91
4 17.25 1.99 55.2 2.56 2.49 2.49 2.27 45.59 45.94 17.28

Okun law prediction: Transitory Output
1 0.32 0.31 0.32 0.31 0.33 0.33 0.31 0.31 0.31 0.34
4 2.85 2.69 3.21 2.97 2.76 2.76 2.63 3.03 3.05 2.95

Notes: HPa is modified Hodrick and Prescott filtering, FODa is forth order differencing, LDa is 16th order

differencing, BPa is modified band pass filtering, Hama is modified local projection detrending, BNa

and BQa are trivariate Beveridge and Nelson and Blanchard and Quah decompositions, Trigo and

Bk are the trigonometric and the Baxter and King versions of a BP filter, UCbiv is bivariate UC

filtering. The Phillips curve and the Okun law predictions are regression of the form ; xt+m =

α0 + α1xt +
∑3

j=1 βjyt−j where yt−j is the true gap ( transitory) or the estimated one, xt = πt
(inflation) or Ht (hours) and m=1,4. Reported is the difference in variance of the prediction error

between each procedure and the true prediction error, averaged over 100 data replications. In bold

cases where the reported statistic improves the best result presented in table 11.
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Table A.8: Average MSE, T=150

Variable POLY HP FOD LD BP Wa Ham UC BN BQ BW
Gap

Y 27.26 26.32 29.77 51.56 27.55 29.84 28.02 104.64 1146.1 140.71 20.06(*)
C 31.97 33.63 36.48 50.27 34.8 36.07 34.25 112.85 NaN NaN 22.36(*)
I 111.95 86 87.82 250.93 89.22 117.93 107.82 159.06 NaN NaN 90
H 5.51 6.58 7.93 8.9 7.02 5.69 5.27 89.77 3.58 3.58 1.08(*)

RK 2.63 2.5 3.02 6.64 2.69 3.54 3.19 2.71 NaN NaN 4.76
W 19.78 21.09 22.65 30.86 21.79 22.57 21.86 18.93 NaN NaN 11.04(*)

CapU 8.32 7.92 9.58 21.03 8.51 11.22 10.09 22.82 NaN NaN 15.08
π 0.42 0.51 0.69 0.66 0.57 0.48 0.37 0.59 NaN NaN 0.03(*)
R 0.4 0.5 0.79 0.76 0.63 0.54 0.35 0.6 NaN NaN 0.04(*)

Factor 4.01 4.5 5.21 6.56 4.77 4.36 4.4 4.72 NaN NaN 2.49(*)
Transitory

Y 47.3 37.73 35.29 77.94 36.87 49.42 48.31 87.87 1849.5 120.7 50.38
C 52.96 44.44 43.08 80.37 43.87 55.58 52.1 101.61 NaN NaN 55.32
I 263.42 210.79 192.59 403.39 207.75 267.84 263.75172.93 NaN NaN 280.51
H 12.5 10.31 9.61 19.49 10.04 12.84 13.02 62.44 53.43 53.43 13.38

RK 9.09 7.52 7.31 12.45 7.44 9.07 8.54 3.16 NaN NaN 9.59
W 33.57 28.47 28.05 48.54 28.21 35.16 31.96 23.57 NaN NaN 36.51

CapU 28.82 23.83 23.16 39.46 23.58 28.74 27.06 21.37 NaN NaN 30.38
π 0.88 0.77 0.71 1.3 0.75 0.86 0.91 0.79 NaN NaN 0.93
R 1.12 0.99 0.99 1.68 0.91 1.06 1.19 0.86 NaN NaN 1.2

Factor 6.25 4.74 4.39 10.55 4.61 6.53 6.14 7.91 NaN NaN 6.89

Notes: POLY is polynomial detrending, HP is Hodrick and Prescott filtering, FOD is first order differencing,

LD is 24th order differencing, UC is unobservable component filtering, BP is band pass filtering,

Ham is local projection detrending, BN and BQ are bivariate Beveridge and Nelson and Blanchard

and Quah decompositions, BW is Butterworth filtering. Y is output, C consumption, I investment,

H hours, RK the real rate, W the real wage, CapU capacity utilization, R the nominal rate, and π

the inflation rate. Factor is the first principal component of the nine series. The MSE is computed

averaging over 100 data replications. In bold the best approach. A (*) in the last column indicates

that the BW filter improves over or is comparable to the best approach.
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Table A.9: Average real time MSE

Variable POLY HP FOD LD BP Wa Ham UC BN BQ BW
Gap

Y 36.98 35.83 38.66 42.87 36.09 26.59 33.48 120.31 334.35 269.97 18.85(*)
C 45.82 44.24 46.91 40.11 44.31 34.39 44.88 129.96 NaN NaN 21.2(*)
I 134.64110.61 111.67 248.47 110.73 115.56 117.75 287.04 NaN NaN 78.04(*)
H 9.46 8.98 10.28 9.09 9.05 6.39 5.98 82.42 3.41 3.41 1.04(*)

RK 3.83 2.41 2.69 8.21 2.44 3.89 3.5 7.61 NaN NaN 5.24
W 24.24 22.62 23.18 27.01 22.66 20.14 23.12 29.28 NaN NaN 10.19(*)

CapU 12.15 7.62 8.52 26 7.72 12.34 11.08 37.28 NaN NaN 16.62
π 0.68 0.65 0.87 0.8 0.67 0.6 0.49 0.67 NaN NaN 0.04(*)
R 0.68 0.65 0.93 0.88 0.74 0.64 0.45 0.78 NaN NaN 0.05(*)

Factor 10.19 8.01 8.21 9.51 7.95 7.43 8.22 9.33 NaN NaN 3.81(*)
Transitory

Y 45.68 39.3 38.8 76.63 39.31 49.81 49.64 122.66 459.47 217.52 52.81
C 53.27 44.02 43.52 89.39 44.09 59.56 52.25 127.17 NaN NaN 56.19
I 231.54 187.57 173.41 377.49 187.57 250.4 241.36 279.46 NaN NaN 244.74
H 11.27 10.02 9.98 16.49 9.83 11.2 12.54 61.70 61.36 61.36 11.8

RK 9.74 7.7 7.64 14.38 7.56 10.04 9.1 5.41 NaN NaN 8.05
W 38.01 32.35 32.08 58.36 32.32 42.02 35.64 37.61 NaN NaN 40.23

CapU 30.85 24.41 24.22 45.56 23.96 31.81 28.82 25.24 NaN NaN 25.52
π 0.83 0.73 0.69 1.26 0.73 0.86 0.95 0.75 NaN NaN 0.91
R 1.11 0.92 0.92 1.8 0.83 1.11 1.34 0.75 NaN NaN 1.3

Factor 8.41 6.44 6.38 11.44 6.42 8.05 8.02 7.22 NaN NaN 7.24

Notes: POLY is polynomial detrending, HP is Hodrick and Prescott filtering, FOD is first order differencing,

LD is 24th order differencing, UC is unobservable component filtering, BP is band pass filtering,

Ham is local projection detrending, BN and BQ are bivariate Beveridge and Nelson and Blanchard

and Quah decompositions, BW is Butterworth filtering. Y is output, C consumption, I investment,

H hours, RK the real rate, W the real wage, CapU capacity utilization, R the nominal rate, and π

the inflation rate. Factor is the first principal component of the nine series. The MSE is computed

averaging over 100 data replications. In bold the best approach. A (*) in the last column indicates

that the BW filter improves over or is comparable to the best approach.
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Table A.10: Contemporaneous correlations, T=150

Variable POLY HP FOD LD BP Wa Ham UC BN BQ BW
Gaps and Filtered variables

Y 0.59 0.45 0.04 0.48 0.33 0.52 0.54 0.13 -0.58 0.15 0.74(*)
C 0.58 0.45 0.08 0.46 0.33 0.48 0.48 0.11 NaN NaN 0.76(*)
I 0.51 0.37 0.04 0.45 0.27 0.49 0.51 0.29 NaN NaN 0.66(*)
H 0.75 0.53 0.09 0.62 0.41 0.68 0.77 0.1 0.93 0.93 0.93(*)

RK 0.6 0.5 0.03 0.42 0.37 0.45 0.43 0.34 NaN NaN 0.61(*)
W 0.57 0.4 0.02 0.44 0.26 0.45 0.39 0.13 NaN NaN 0.74(*)

CapU 0.6 0.5 0.03 0.42 0.37 0.45 0.43 0.25 NaN NaN 0.61(*)
π 0.87 0.74 0.22 0.65 0.6 0.72 0.91 0.58 NaN NaN 1(*)
R 0.89 0.79 0.34 0.66 0.59 0.68 0.93 0.77 NaN NaN 1(*)

Factor 0.49 0.34 0.01 0.38 0.24 0.41 0.39 0.32 NaN NaN 0.7(*)
Transitory and Filtered variables

Y -0.01 -0.01 -0.02 -0.02 -0.01 -0.03 -0.03 -0.02 -0.08 0.02 -0.03
C 0 0.01 -0.01 -0.04 0.02 -0.03 -0.02 -0.03 NaN NaN 0
I -0.03 0 -0.02 -0.02 -0.01 -0.01 -0.02 -0.03 NaN NaN 0
H -0.02 -0.01 -0.02 -0.02 -0.01 -0.02 -0.03 0 -0.02 -0.02 -0.02

RK -0.04 -0.01 -0.01 -0.02 -0.01 -0.01 -0.01 0.02 NaN NaN -0.04
W -0.02 0.01 -0.03 -0.06 0.01 -0.05 -0.04 0.02 NaN NaN -0.06

CapU -0.04 -0.01 -0.01 -0.02 -0.01 -0.01 -0.01 0 NaN NaN -0.04
π 0.01 0.01 0 0 0.01 0.02 0.03 -0.01 NaN NaN -0.01
R 0.01 0.01 0 -0.01 0.01 -0.01 0.02 0.01 NaN NaN 0

Factor -0.04 -0.01 -0.01 -0.06 -0.01 -0.06 -0.04 -0.01 NaN NaN -0.04

Notes: POLY is polynomial detrending, HP is Hodrick and Prescott filtering, FOD is first order differencing,

LD is 24th order differencing, UC is unobservable component filtering, BP is band pass filtering,

Ham is local projection detrending, BN and BQ are bivariate Beveridge and Nelson and Blanchard

and Quah decompositions, BW is Butterworth filtering. Y is output, C consumption, I investment,

H hours, RK the real rate, W the real wage, CapU capacity utilization, R the nominal rate, and

π the inflation rate. Factor is the first principal component of the nine series. Correlations are

computed averaging over 100 data replications.In bold the best approach. A (*) in the last column

indicates that the BW filter improves over or is comparable to the best approach.
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Table A.11: AR1 coefficient, T=150

Variable True POLY HP FOD LD BP Wa Ham UC BN BQ BW
Gaps and filtered variables

Y 0.96 0.94 0.81 0.2 0.95 0.93 0.98 0.89 1.00 0.97 0.79 0.96(*)
C 0.96 0.95 0.81 0.21 0.96 0.93 0.98 0.88 1.00 NaN NaN 0.97
I 0.98 0.96 0.88 0.5 0.97 0.930.98 0.91 0.99 NaN NaN 0.97
H 0.96 0.9 0.76 0.11 0.92 0.920.97 0.88 1.00 0.93 0.93 0.93

RK 0.95 0.95 0.81 0.19 0.96 0.93 0.98 0.88 0.92 NaN NaN 0.98
W 0.95 0.96 0.8 0.1 0.97 0.93 0.99 0.86 0.93 NaN NaN 0.98

CapU 0.95 0.95 0.81 0.19 0.96 0.93 0.98 0.88 0.92 NaN NaN 0.98
π 0.9 0.87 0.76 0.16 0.88 0.92 0.96 0.86 0.77 NaN NaN 0.9 (*)
R 0.76 0.69 0.53 -0.21 0.73 0.91 0.94 0.72 0.29 NaN NaN 0.78(*)

Factor 0.97 0.95 0.81 0.19 0.96 0.930.98 0.88 0.91 NaN NaN 0.98(*)
Transitory and filtered variables

Y 0.95 0.93 0.81 0.2 0.95 0.93 0.98 0.89 1.00 0.95 0.86 0.94
C 0.96 0.95 0.83 0.24 0.97 0.93 0.98 0.88 1.00 NaN NaN 0.96(*)
I 0.96 0.95 0.88 0.48 0.96 0.93 0.98 0.9 0.99 NaN NaN 0.96(*)
H 0.94 0.89 0.76 0.09 0.92 0.92 0.97 0.87 0.990.93 0.93 0.91

RK 0.97 0.95 0.81 0.18 0.96 0.930.98 0.88 0.93 NaN NaN 0.95
W 0.97 0.95 0.81 0.11 0.97 0.93 0.99 0.87 0.92 NaN NaN 0.96

CapU 0.97 0.95 0.81 0.18 0.96 0.930.98 0.88 0.92 NaN NaN 0.95
π 0.9 0.86 0.76 0.13 0.89 0.92 0.96 0.86 0.77 NaN NaN 0.88
R 0.75 0.69 0.52 -0.21 0.73 0.91 0.94 0.72 0.29 NaN NaN 0.73(*)

Factor 0.97 0.93 0.81 0.17 0.96 0.930.98 0.88 0.91 NaN NaN 0.95

Notes: POLY is polynomial detrending, HP is Hodrick and Prescott filtering, FOD is first order differencing,

LD is 24th order differencing, UC is unobservable component filtering, BP is band pass filtering,

Ham is local projection detrending, BN and BQ are bivariate Beveridge and Nelson and Blanchard

and Quah decompositions, BW is Butterworth filtering. Y is output, C consumption, I investment,

H hours, RK the real rate, W the real wage, CapU capacity utilization, R the nominal rate, and π

the inflation rate. Factor is the first principal component of the nine series. The AR1 coefficient is

computed averaging over 100 data replications. In bold the best approach. A (*) in the last column

indicates that the BW filter improves over or is comparable to the best approach.
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Table A.12: Variability, T=150

Variable True POLY HP FOD LD BP Wa Ham UC BN BQ BW
Gaps and filtered variables

Y 15.65 14.85 3.95 1.56 36.28 3.21 12.1 13.7 192.03 425.21 24.07 20.88
C 17.59 9.23 2.06 0.81 24.54 1.67 8.11 7.98 190.93 NaN NaN 18.35(*)
I 44.67 87.39 25.58 6.85 205.24 22.25 70.02 80.12 242.9 NaN NaN 93.09
H 4.66 3.4 1.34 0.65 7.72 1.08 2.58 3.58 186.35 5.41 5.41 3.54

RK 1.9 1.92 0.38 0.15 4.87 0.3 1.61 1.53 0.23 NaN NaN 2.65
W 11.4 5.54 0.86 0.38 14.81 0.64 4.81 3.75 0.51 NaN NaN 9.36

CapU 6.02 6.07 1.2 0.48 15.44 0.94 5.12 4.85 29.82 NaN NaN 8.41
π 0.42 0.27 0.14 0.07 0.54 0.11 0.18 0.3 0.08 NaN NaN 0.26
R 0.53 0.38 0.23 0.22 0.75 0.15 0.22 0.41 0.06 NaN NaN 0.32

Factor 5.36 1.92 0.49 0.27 4.82 0.4 1.56 1.7 0.26 NaN NaN 2.8
Transitory and filtered variables

Y 18.21 13.18 3.93 1.57 33.83 3.1 11.28 13.14 204.37 652.08 25.43 19.44(*)
C 17.43 10.23 2.28 0.87 27.95 1.75 9.1 8.86 207.63 NaN NaN 15.46(*)
I 113.84 70.9 24.77 6.64 168.26 21.36 58.08 68.56 237.58 NaN NaN 102.97(*)
H 5.68 3.39 1.31 0.65 7.98 1.04 2.61 3.55 169.43 6.93 6.93 4.72(*)

RK 3.95 1.62 0.36 0.14 4.02 0.29 1.32 1.31 0.23 NaN NaN 2.2
W 10.97 5.44 0.89 0.38 15.03 0.66 4.85 3.83 0.45 NaN NaN 8.79(*)

CapU 12.52 5.15 1.14 0.46 12.75 0.91 4.18 4.14 22.5 NaN NaN 6.99
pi 0.38 0.25 0.13 0.06 0.53 0.1 0.17 0.27 0.08 NaN NaN 0.32(*)
R 0.5 0.36 0.22 0.21 0.71 0.14 0.21 0.4 0.06 NaN NaN 0.45(*)

Factor 4.53 1.82 0.54 0.27 4.58 0.43 1.51 1.72 4.38 NaN NaN 2.64

Notes: POLY is polynomial detrending, HP is Hodrick and Prescott filtering, FOD is first order differencing,

LD is 24th order differencing, UC is unobservable component component, BP is band pass filtering,

Ham is local projection detrending, BN and BQ are bivariate Beveridge and Nelson and Blanchard

and Quah decompositions, BW is Butterworth filtering. Y is output, C consumption, I investment,

H hours, RK the real rate, W the real wage, CapU capacity utilization, R the nominal rate, and

π the inflation rate. Factor is the first principal component of the nine series. The variability is

computed averaging over 100 data replications. In bold the best approach. A (*) in the last column

indicates that the BW filter improves over or is comparable to the best approach.
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Table A.13: Number of turning points, average durations, average amplitudes, T=150

Variable True POLY HP FOD LD BP Wa Ham UC BN BQ BW
Output Gap and filtered output

Number of TP 19.97 20.44 20.56 17.9 19.66 20.36 21.63 19.47 20.07 22.12 17.18 21.08
DurE 5.94 5.75 5.75 6.91 6.19 5.64 5.34 6 5.64 5.33 6.81 5.61
DurR 5.75 5.61 5.57 6.35 5.66 5.51 5.24 5.83 5.64 5.31 6.9 5.38
AmpE -2.47 -3.58 -3.55 -4.7 -5.12 -1.41 -1.48 -5.29 -1.83 -11.88 -5.9 -2.66(*)
AmpR 2.46 3.59 3.55 4.72 5.1 1.4 1.47 5.27 1.81 11.86 5.92 2.67(*)

factor Gap and filtered factor
Number of TP 19.37 19.08 19.23 17.73 19.71 20.23 18.5 21.48 21.68 NaN NaN 19.89

DurE 6.06 6.01 6.02 6.77 6.15 5.66 6.32 5.37 5.24 5.8
DurR 5.92 6.13 5.94 6.55 5.79 5.54 6.26 5.25 5.69 NaN NaN 5.84
AmpE -1.53 -1.21 -1.19 -1.55 -1.68 -0.46 -1.82 -0.48 -0.46 NaN NaN -0.89
AmpR 1.53 1.21 1.19 1.55 1.68 0.46 1.83 0.48 0.46 NaN NaN 0.89

Output Transitory and filtered output
Number of TP 21.05 19.99 20.11 17.67 19.6 20.47 22.04 19.0520.44 22.77 17.87 19.85

DurE 5.47 5.66 5.63 6.85 5.98 5.48 5.08 6.34 5.82 4.7 6.73 5.72
DurR 5.57 6.01 5.84 6.38 5.85 5.61 5.18 6.16 5.61 5.63 6.8 6.06
AmpE -3.42 -3.6 -3.56 -4.75 -5.18 -1.42 -1.47 -5.25 -1.84 -15.51 -5.46 -3.61
AmpR 3.42 3.61 3.57 4.74 5.17 1.42 1.46 5.24 1.81 15.46 5.48 3.61

Factor transitory and filtered factor
Number of TP 19.97 19.07 19.1 17.85 19.59 20.33 19.02 21.68 21.84 NaN NaN 18.98

DurE 5.91 6.14 6.14 6.62 6.04 5.58 6.05 5.28 5.24 NaN NaN 6.2
DurR 5.73 6.02 5.97 6.44 5.71 5.61 6.26 5.26 5.39 NaN NaN 6.03
AmpE -1.34 -1.27 -1.26 -1.66 -1.8 -0.49 -1.87 -0.5 -1.41 NaN NaN -1.28(*)
AmpR 1.34 1.27 1.26 1.67 1.81 0.5 1.88 0.5 1.41 NaN NaN 1.28(*)

Notes: POLY is polynomial detrending, HP is Hodrick and Prescott filtering, FOD is first order differencing,

LD is 24th order differencing, UC is unobservable component filtering, BP is band pass filtering,

Ham is local projection detrending, BN and BQ are bivariate Beveridge and Nelson and Blanchard

and Quah decompositions, BW is Butterworth filtering. Y is output and Factor is the first principal

component of the nine series. DurE and DurR are the durations of expansions and recessions; AmpE

and AmpR the amplitude of expansions and recessions. Statistics are computed averaging over 100

data replications. In bold the best approach. A (*) in the last column indicates that the BW filter

improves over or is comparable to the best approach.
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Table A.14: Phillips curve and Okun law predictions, T=150

Step ahead POLY HP FOD LD BP Wa Ham UC BN BQ BW
Phillips curve prediction: Output Gap

1 0.46 0.6 0.43 0.48 0.64 0.44 0.49 0.36 0.42 0.52 0.35(*)
4 2.49 2.76 2.06 2.75 3.92 2.5 2.55 2.08 2.8 2.93 1.65(*)

Phillips curve prediction: Transitory Output
1 0.58 0.64 0.53 0.45 0.53 0.5 0.55 0.61 0.49 0.52 0.57
4 2.52 2.33 2.22 2.16 3.26 2.39 2.24 2.6 2.28 2.21 2.45

Okun law prediction: Output Gap
1 0.79 1.21 0.75 0.71 3.26 0.68 0.69 0.7 0.84 0.69 0.84
4 12.92 26.59 7.96 8.98 39.17 8.92 8.25 8.31 14.3 11.56 9.36

Okun law prediction: transitory Output
1 1.46 1.44 1.53 1.39 1.45 1.38 1.53 1.45 1.51 1.45 1.48
4 13.94 13.6912.89 13.54 15.62 15.03 15.63 16.69 15.78 13.5 15.48

Notes: POLY is polynomial detrending, HP is Hodrick and Prescott filtering, FOD is first order differencing,

LD is 24th order differencing, UC is unobservable component filtering, BP is band pass filtering,

Ham is local projection detrending, BN and BQ are bivariate Beveridge and Nelson and Blanchard

and Quah decompositions, BW is Butterworth filtering. The Phillips curve and the Okun law

predictions are regression of the form ; xt+m = α0 + α1xt +
∑3

j=1 βjyt−j where yt−j is the true

gap ( transitory) or the estimated one, xt = πt (inflation) or Ht (hours) and m=1,4. Reported the

difference in variance of the prediction error between each procedure and the true prediction error,

averaged over 100 data replications. In bold the best approach. A (*) in the last column indicates

that the BW filter improves over or is comparable to the best approach.
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Figure A.1: Log spectra of gaps and of Butterworth filtered data
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Figure A.2: Time series of gaps and of Butterworth filtered data
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Figure A.3: Log spectra of transitory components and of Butterworth filtered data
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Figure A.4: Time series of transitory data and of Butterworth filtered data
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