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We study bargaining with divisibility and interdependent values. A buyer and a

seller trade a durable good divided into finitely many units. The seller is privately in-

formed about the good’s quality, which can be either high or low. Gains from trade are

positive and decreasing in the number of units traded by the parties. In every period,

the buyer makes a take-it-or-leave-it offer that specifies a price and a number of units.

Divisibility introduces a new channel of competition between the buyer’s present and

future selves. The buyer’s temptation to split the purchases of the high-quality good

is detrimental to him. As bargaining frictions vanish and the good becomes arbitrarily

divisible, the high-quality good is traded smoothly over time and the buyer’s payoff

shrinks to zero.
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1. Introduction

In many economic environments, agents bargain over goods that are divisible. Negoti-

ations in financial markets typically involve both the amount of an asset and its price.

Banks and institutional investors (e.g. pension funds) routinely bargain over how much

of a securitized asset (pool of mortgages, credit-card debts, automotive loans) to trade

and at what price. Similarly, after restructuring a company, an equity firm negotiates

what fraction to sell and at what price. These negotiations are generally dynamic and

decentralized. One party, typically the seller, is better informed about the quality of the

asset.1

We study bargaining over a divisible good with asymmetric information, interdepen-

dent values and positive gains from trade. Gains from trade of a divisible good may

depend not only on the quality of the asset, but also on how much of it has already been

traded. We focus on the case of decreasing gains from trade, which leads to new insights

into bargaining. Consider a bank negotiating a sale of a pool of mortgages to a pension

fund. The quality of the asset can be either low or high, depending on its future cash flows

from homeowners. As the pension fund is more interested in owning these promises of

future cash flows, there are gains from trade. These gains are decreasing in the amount of

the asset already traded between the parties, as they reflect the pension fund’s desire to

diversify its portfolio. The bank is directly involved in the process of securitization and

hence has better information about the quality of these assets.

The main message of this paper is that divisibility introduces a new channel of compe-

tition between the buyer’s present and future selves, and that this new channel has stark

implications for the pattern of trade and for parties’ payoffs. When assets are arbitrarily

divisible and bargaining frictions vanish, high-quality assets are traded gradually. Divis-

ibility is detrimental to the buyer; the competition between his present and future selves

drives his payoffs to zero. This is in contrast to the outcome when the asset is indivisi-

ble. In that case, only the low-quality asset is traded in the beginning of the relationship.

1Consider the classic example of the synthetic CDO Hudson Mezzanine. As explained in McLean and
Nocera [2011], Goldman Sachs selected all the securities in that CDO, strived to sell it as fast as possible
and simultaneously bet against that security by taking a short position. See also Ashcraft and Schuermann
[2008], Downing, Jaffee, and Wallace [2008] and Gorton and Metrick [2013]
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A market freeze then follows, and only afterwards the high-quality asset is traded. The

buyer of an indivisible asset obtains a positive payoff.

We extend the canonical bargaining model with incomplete information (Fudenberg,

Levine, and Tirole [1985], and Gul, Sonnenschein, and Wilson [1986]) to account for inter-

dependencies in values (Deneckere and Liang [2006] — DL henceforth) and divisibility.

A buyer purchases a durable good from a seller who is privately informed about its qual-

ity. A high-type seller provides a high-quality good, while a low-type seller provides a

low-quality good. The good is divided into finitely many units. There are positive gains

from trade, which are decreasing in the number of units already traded by the parties. In

every period, the buyer makes a take-it-or-leave-it offer that specifies a price and a num-

ber of units to be traded. The bargaining process continues until the parties have traded

all available units. The buyer learns about the good’s quality only through the seller’s

behavior; owning a fraction of the good does not provide the buyer with additional in-

formation about its quality.2

We show that stationary equilibria exist and that the equilibrium outcome is generi-

cally unique. In equilibrium, the buyer employs only two types of offers: screening and

universal. Screening offers are for all remaining units at a price lower than the high-type

seller’s cost. Universal offers are for some (or all) of the remaining units, at a price equal

to the high-type seller’s cost. The buyer alternates between screening the seller and pur-

chasing some units through universal offers. The low-type seller randomizes between

accepting and rejecting screening offers, while the high-type seller always rejects them.

The rejection of screening offers makes the buyer more optimistic that the good is of high

quality. Eventually, he is optimistic enough to purchase some (or all) of the remaining

units through a universal offer. Both seller types accept this offer. After the purchase, the

units that remain (if any) are less valuable, so the buyer returns to screening the seller.

Our main result characterizes the limit equilibrium outcome when bargaining fric-

tions vanish and the good becomes arbitrarily divisible. We first let the length of each

period converge to zero and we then let the number of units grow to infinity. In the limit,

2In our example, the pension fund does not learn about the quality of the securitized asset by owning
an additional unit of it. This information only becomes available in the future, when the asset cash flows
materialize.
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the buyer continuously makes both screening offers and universal offers for infinitesimal

fractions of the good. At each point in time, he breaks even with either type of offer, so

he obtains a payoff equal to zero. The high-type seller only accepts universal offers and

thus sells the good smoothly over time. The low-type seller is indifferent between the two

offers (screening and universal). He sells the good smoothly (pooling with the high-type

seller) until a certain random time, and then concedes by selling the remaining fraction of

the good at once.

In order to understand the driving forces behind our main result, we first describe the

pattern of trade when parties bargain over an indivisible good, as in DL. When bargaining

frictions vanish, if the buyer can obtain a positive payoff, the usual Coasean forces imply

that trade occurs without delay. In one of their main contributions, DL show that if the

buyer must screen the seller, he does it through an impasse. During an impasse the market

freezes: trade occurs with probability zero. After the impasse, the buyer is optimistic

enough to pay the cost of the high-quality good. The impasse introduces delay, which is

necessary to lower the price of screening offers before the impasse. In their path-breaking

double delay result, DL show that the delay is twice the time necessary to make the low-

type seller indifferent between the price after the impasse (which is the low-type seller’s

continuation payoff then) and the buyer’s valuation of the low-quality good. This result

has two important implications. First, before the impasse, the price of screening offers is

strictly lower than the buyer’s valuation of the low-quality good, so the buyer obtains a

strictly positive payoff. Second, the larger the price after the impasse, the lower the price

of screening offers before the impasse.

The driving force behind the gradual sale of the high-quality good when the good is

divisible is that the buyer benefits from splitting his purchases. To see this, consider a

simple example with ten remaining units. Suppose that the buyer is optimistic enough

so that by making a universal offer, he obtains a positive payoff from the first five units

(which are more valuable), a negative payoff from the last five units (which are less valu-

able), and overall, obtains a positive payoff from purchasing all ten units. If the buyer

could only make offers for ten units, then he would purchase all of them through a uni-

versal offer. When the good is divisible, the buyer can instead purchase the more valuable
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units through a universal offer and by doing so essentially commit to pay a low price for

the less valuable ones. Intuitively, when only the less valuable units remain, the buyer

obtains a negative payoff from a universal offer, and so he must screen the seller. As

in DL, screening occurs through impasses when the good is divisible. We extend their

double delay result and show that the buyer obtains a strictly positive payoff before im-

passes. The buyer thus prefers to split the purchases of the high-quality good, instead of

purchasing all remaining units through one transaction.

The temptation to split the purchases of the high-quality good generates a new chan-

nel of competition between the buyer’s present and future selves. This new channel of

competition is the driving force behind the buyer’s zero payoff from trading an arbi-

trarily divisible good. To see this, consider again the simple example from the previous

paragraph. Suppose now that the buyer is so pessimistic that he suffers a loss from a uni-

versal offer even for the most valuable of the ten remaining units. He must then screen

the seller through an impasse. After this impasse, the buyer splits the purchases of the

high-quality good, and so the low-type seller’s payoff is lower than the one he would ob-

tain if the buyer could only make offers for ten units. As the low-type seller’s payoff after

the impasse is lower, then the delay is shorter, which means that the price of the screening

offers for ten units before the impasse must be larger. To sum up, since the buyer splits

the purchases of the high-quality good after the impasse is resolved, then he must pay a

higher price for screening offers before the impasse.

We show that the competition between the buyer’s present and future selves is fierce

when the good becomes arbitrarily divisible. Formally, as the good becomes arbitrarily

divisible, the number of impasses goes to infinity but each of them becomes short: the

price of screening offers before and after each impasse are close to each other, and thus

screening does not take long. Between two consecutive impasses, the buyer purchases a

vanishing fraction of the good through a universal offer. The driving forces described in

the previous paragraphs lead to stark results: the high-quality good is traded smoothly

over time and the buyer’s payoff is zero.

Our analysis highlights the importance of the shape of gains from trade. If gains from

trade are constant in the number of units already traded, the buyer cannot benefit from
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splitting the purchases of the high-quality good. Intuitively, the buyer cannot commit to

pay a lower price for the last units by purchasing the first ones through a universal offer.

All units are equally valuable, so if the buyer is willing to pay the cost of the high-quality

good for the first ones, he must also be willing to pay that price for the last ones. Thus,

with constant gains from trade all units are traded at the same time. The same result holds

for increasing gains from trade.

1.1 Related literature

There is a large literature that studies bilateral bargaining with interdependent values

(Samuelson [1984], Evans [1989], Vincent [1989], DL, Fuchs and Skrzypacz [2013] and

Gerardi, Hörner, and Maestri [2014]). Our paper is closely related to DL and Fuchs and

Skrzypacz [2013]. DL solves the one-unit version of the model in our paper. We take DL’s

construction as a stepping stone and extend the analysis to multiple units when there are

two types of sellers.3 In DL, the gains from trade are bounded away from zero. Fuchs

and Skrzypacz bridge the gap between the value of the good to the buyer and the cost to

the seller. We find that trade happens gradually over time when the good is arbitrarily

divisible. This finding is reminiscent of Fuchs and Skrzypacz [2013]. In a model with

indivisibility, Fuchs and Skrzypacz show that, as the gains from trade from the good of

highest quality vanish, the bursts of trade found in DL disappear. Like in Fuchs and

Skrzypacz [2013], in our model the buyer slowly learns the seller’s type. Unlike in Fuchs

and Skrzypacz [2013], however, in our model the buyer makes two kinds of offers as he

learns the seller’s type. On the one hand, he gradually makes universally accepted offers

for small pieces of the good at large per-unit prices. On the other, he makes offers for all

remaining units at large discounts. Finally, also unlike in Fuchs and Skrzypacz [2013], the

gains from trade are bounded away from zero in our model.

Our paper is also related to the burgeoning body of literature that studies the effects of

adverse selection in dynamic markets. An important stream of this literature focuses on

markets in which one of the players is short-run. Inderst [2005] and Moreno and Wood-

3We present a model with interdependent values because if instead values are private, divisibility plays
no role; the Coase conjecture holds.
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ers [2010] pioneered the study of adverse-selection in decentralized dynamic markets.

Camargo and Lester [2014] and Moreno and Wooders [2016] focus on the effect of policy

interventions on liquidity in such markets. A question that has drawn much attention is

how different transparency regimes affect the bargaining outcome (see Hörner and Vieille

[2009] and Fuchs, Öry, and Skrzypacz [2016] for a comparison of public and private of-

fers, and Kim [2017] for the role of time-on-the-market information). Finally, Fuchs and

Skrzypacz [2019] characterize optimal market design policies. Beyond the issue of divisi-

bility, our paper differs from the above studies by analyzing the strategic effects that arise

when two long-run players bargain under adverse selection.

A third related strand of the literature analyzes the effect of exogenous learning in the

market for lemons. In the pioneering work of Daley and Green [2012], noisy information

about the value of a good is revealed to the market. In Kaya and Kim [2018], the buyer

observes a noisy and private signal about the quality of the good held by the seller. Da-

ley and Green [Forthcoming] analyze the advent of exogenous news when two long-run

players bargain over an indivisible good. Our model differs from these contributions as

we assume that the good is divisible and abstract from exogenous learning.

The rest of the paper is organized as follows. We describe the model in Section 2. In

Section 3 we present equilibrium existence and uniqueness (for generic parameters). We

also describe the pattern of trade when the good is divided into a finite number of units

and there are bargaining frictions. In Section 4 we present our main result. We character-

ize the pattern of trade when bargaining frictions vanish and the good becomes arbitrarily

divisible. Section 5 presents a detailed argument behind our main result and intermediate

results leading to it. In Section 6 we present comparative statics and extensions. Section 7

concludes. Most proofs are relegated to the appendix.

2. The model

A buyer and a seller bargain over a good of size one. The seller is of one of two types

i ∈ {L, H}. A seller of high type (i = H) provides a high-quality good, while a low-type

seller (i = L) provides a low-quality good. The seller knows his own type, but the buyer
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does not. The seller is of high type with prior probability β̂ that satisfies 0 < β̂ < 1.

The buyer and the seller can trade fractions of the good. Let z ∈ [0, 1] denote an

infinitesimal unit of the good. We index units in reverse order. The buyer’s first purchase

consists of units z ∈ [z, 1], for some 0 ≤ z ≤ 1. A buyer who has already acquired units

z ∈ [z, 1] can then buy subsequent units z ∈ [z, z] from the seller, with 0 ≤ z ≤ z.

2.1 Parties’ valuations

The buyer’s valuation for the units z ∈ [z, z] when the seller is of type i is equal to∫ z
z λ(z)vi dz, where λ(z) is a smooth function and λ(z) > 0 for all z ∈ [0, 1]. This val-

uation is higher if the seller is of high type: 0 < vL < vH. The cost of the units z ∈ [z, z] to

the seller of type i is equal to (z− z)ci. The constant marginal cost of providing the good

is higher for the high-type seller: 0 = cL < cH = c.

We focus on the case with decreasing gains from trade. Since we index units in reverse

order, this corresponds to a strictly increasing function λ(z).4 Without loss of generality

we assume that minz∈[0,1] λ(z) = λ(0) = 1. We also assume that 0 < vL < c < vH, so

there are always gains from trade. Furthermore, we assume that

[β̂vH + (1− β̂)vL]λ(1) < c. (1)

The buyer’s expected valuation from the first infinitesimal unit is lower than the high-

type seller’s cost. This assumption allows us to focus on the most interesting case: the

buyer must screen the seller even to purchase the most valuable unit.5

We study the equilibrium behavior of the buyer and the seller as the good becomes

arbitrarily divisible. We divide the good into m equally sized units and study the equilib-

rium behavior as m grows large. As with z ∈ [0, 1], we also index units in reverse order,

by s ∈ {1, . . . , m}: s = 1 indicates the last unit, while s = m indicates the first unit. The

cost of each unit to the seller of type i is simply ci/m. The buyer’s valuation for the s’th

4There are two natural alternative environments: λ(z) constant and λ(z) strictly decreasing. In Sec-
tion 6.2 we describe how divisibility plays no role in those cases.

5In Section 6.2 we extend our analysis to cases where equation (1) does not hold.
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unit when the seller is of type i is Λm
s vi with

Λm
s ≡

∫ s/m

(s−1)/m
λ(z)dz.

Figure 1 illustrates the buyer’s valuation coefficients Λm
s of successive units of the

good. In Figure 1(a) the good is divided into 3 units. Assume that the seller is of type i.

The buyer’s valuation for the first unit is Λ3
3vi. The second unit gives the buyer interme-

diate valuation Λ3
2vi. The last unit is the one with the lowest valuation to the buyer: Λ3

1vi.

Figure 1(b) illustrates the valuation coefficients of successive units of the good when it is

divided into 6 units.

0 z

λ(z) Λ3
3

Λ3
2

Λ3
1

1

12
3

1
3

(a) Good divided into m = 3 units

0 z

λ(z)

1

15
6

4
6

3
6

2
6

1
6

Λ6
6

Λ6
5

Λ6
4

Λ6
3

Λ6
2

Λ6
1

(b) Good divided into m = 6 units

Figure 1: Valuation coefficients of successive units of a divided good

2.2 Timing, payoffs and strategies

The buyer and the seller trade sequentially over time. Time is discrete and periods are in-

dexed by t = 0, 1, . . . . In each period the buyer makes an offer ϕt = (k, p), where k ∈ Z+

is the number of units requested and p ∈ R+ is the total payment offered. Without loss

of generality, we assume that the number of units requested cannot exceed the number

of remaining units. The seller can either accept (at = A) or reject (at = R) the offer. If
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the seller accepts, k units are traded and the buyer pays p to the seller. The buyer does

not learn the quality of the good upon purchasing fractions of it. Therefore, all learning is

strategic; the buyer only updates his belief based on the seller’s behavior. The game ends

when all m units are traded.

The buyer and the seller share a discount factor δ = e−r∆ where ∆ > 0 represents the

length of each period and r > 0 represents the discount rate. Suppose that the buyer and

the seller of type i agree on trading a total of D times, indexed by d ∈ {1, . . . , D}. In the

first trade (d = 1), which takes place at time t1, the buyer pays the seller p1, in exchange

for k1 units, so the set of traded units is S1 = {m, . . . , m− k1 + 1}. A generic trade d > 1

takes place at time td and involves a total payment pd in exchange for kd units. The set

of traded units is Sd = {m− k1 − . . .− kd−1, . . . , m− k1 − . . .− kd + 1}. Then, the total

payoff to the buyer is:
D

∑
d=1

δtd

[
∑

s∈Sd

Λm
s vi − pd

]

The seller, in turn, obtains
D

∑
d=1

δtd
[

pd −
ci

m
kd

]
.

The public history ht, with t ≥ 1, lists all offers made, together with all responses

by the seller, from period 0 through period t − 1: ht = ((ϕ0, a0) , . . . , (ϕt−1, at−1)). We

let h0 = ∅ denote the initial public history and we let Ht denote the set of all possible

histories ht at the beginning of period t. Intermediate histories
(
ht, ϕt

)
include the offer

made after history ht, but not the subsequent action chosen by the seller.

A buyer’s (behavior) strategy σB =
(
σt

B
)∞

t=0 assigns a random offer to every public

history ht, with σt
B(h

t) ∈ ∆Φ(ht), where Φ(ht) is the set of available offers at ht. A seller’s

(behavior) strategy (σL, σH) =
(
σt

L, σt
H
)∞

t=0 assigns a random decision (A or R) to each

intermediate history
(
ht, ϕt

)
, so σt

i
(
ht, ϕt

)
∈ ∆{A, R} for every i ∈ {L, H}. The system of

beliefs β(·) is as follows. We let β(ht) and β(ht, ϕt) denote the buyer’s belief that the seller

is of high type after an arbitrary public history ht, and an arbitrary intermediate history(
ht, ϕt

)
, respectively.
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2.3 Discussion of the equilibrium concept and preliminary results

We work with Stationary Perfect Bayesian Equilibria.6 In this model, at any public history

ht there are two state variables: the number of remaining units K(ht) and the buyer’s

belief β(ht). A strict notion of stationarity would require strategies and value functions

to depend only on the two state variables K(ht) and β(ht). As is standard in bargaining,

there is no equilibrium that satisfies this strict notion. We then use a notion that places

restrictions only on the seller’s strategy. We require the seller’s strategy to be a supply

function and to depend only on state variables. In what follows we describe our definition

in detail.

We present some preliminary results before presenting formally our notion of station-

arity. In any Perfect Bayesian Equilibrium (PBE), the buyer’s system of beliefs β(·) must

satisfy the following properties. Beliefs β
(
ht, ϕt, at

)
are derived from β(ht) according to

Bayes’ rule whenever action at occurs with positive probability after intermediate history

(ht, ϕt). Moreover, beliefs after intermediate histories are not affected by the buyer’s offer:

β(ht, ϕt) = β(ht).

Lemma 1 provides a partial characterization of equilibria whenever the seller’s strat-

egy depends only on state variables. Let VH(ht), VL(ht) and VB(ht) denote the continua-

tion payoffs for, respectively, a seller of high type, a seller of low type and the buyer.

LEMMA 1. PARTIAL CHARACTERIZATION. Let
(

σB, (σL, σH), β
)

be an arbitrary PBE. As-

sume that whenever histories ht and h̃t′ have the same state variables: β(ht) = β(h̃t′) and K(ht) =

K(h̃t′), then σi
(
ht, ϕ

)
= σi

(
h̃t′ , ϕ

)
for all ϕ ∈ Φ(ht) = Φ

(
h̃t′) and for both i ∈ {L, H}. Then,

(a) Whenever β(ht) = 0, the low-type seller gets zero payoffs: VL(ht) = 0.

(b) The buyer’s continuation payoff VB(ht) depends only on β(ht) and on K(ht).

(c) The high-type seller gets zero payoffs: VH(ht) = 0 for all ht.

(d) The low-type seller’s payoffs are bounded: VL(ht) ≤ c
m K(ht) for all ht.

See Appendix A.1 for the proof.

6Our definition extends the notion of stationary equilibrium (see Gul and Sonnenschein [1988], Ausubel
and Deneckere [1992], DL and Fuchs and Skrzypacz [2010]) to our setting.
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Lemma 1(a) states that the low-type seller cannot obtain positive payoffs after his type

has been revealed. This result holds true in any PBE, so does not rely on stationarity.7

Lemma 1(b) and (c) are direct results of the seller’s strategy depending only on state vari-

ables. Lemma 1(b) states that the buyer’s continuation payoff must depend only on beliefs

and on the number of remaining units. Lemma 1(c) states that the high type seller always

obtains zero profits. Hence, any offer of a payment larger than c
m K(ht) would be accepted

with probability one by the high-type seller, and so also by the low type. This implies

Lemma 1(d): the low-type seller continuation payoff is bounded above by c
m K(ht).

Our definition of stationary PBE incorporates the results from Lemma 1. The behavior

of both types of sellers must be consistent with the payoffs that they obtain in a stationary

environment. Following Lemma 1(c), a high-type seller accepts any offer that leads to

non-negative payoffs. Similarly, following Lemma 1(d), a low-type seller accepts any offer

that the high-type seller also accepts.8 But, does the low-type seller ever accept offers that

the high-type seller rejects? If he does so, he immediately reveals his own type to the

buyer. Moreover, if the low-type seller mixes, then a rejection increases the belief that the

seller is of high type. Then, the behavior of the low-type seller is more subtle than that

of the high-type seller. We impose that the acceptance decision of the low-type seller be

governed by a function VL (K, β) that depends on the number of remaining units K and

on the beliefs β induced by a rejection.

DEFINITION. STATIONARY PERFECT BAYESIAN EQUILIBRIUM. A PBE is stationary if

there exists a (left-continuous) function VL (K, β) : {1, . . . , m} ×
[
β̂, 1
]
→ R such that

1. The high-type seller accepts with probability one any payment greater or equal than c
m k in

exchange for any number of remaining units k ≤ K(ht). The high-type seller rejects any

other offer with probability one.

2. The behavior of the low-type seller is as follows. Take any history ht where the remaining

number of units is K(ht) and the belief is β(ht) ≥ β̂. Assume that the buyer offers a total

payment p in exchange for k ≤ K(ht) remaining units. Then,

7This standard result is analogous to that in a model with common knowledge of types and a buyer who
always makes the offer.

8This in turn implies that beliefs never decrease over time, and so they are bounded below by β̂.
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a. If p ≥ c
m k, then the low-type seller accepts the offer with probability one.

b. If p < c
m k and p < δVL

(
K(ht), β

)
for all β ≥ β(ht), then the low-type seller rejects

the offer with probability one.

c. If p < c
m k and there exists β ≥ β(ht) with p ≥ δVL

(
K(ht), β

)
, then the low-

type seller randomizes so that β′ = max
{

β : δVL(K(ht), β) ≤ p
}

is the next-period

posterior after rejection.

The function δVL (K, ·) acts as a stationary supply when there are K units left. First,

it acts as a supply function because when the buyer offers a higher price p, he induces

a (weakly) higher posterior β′ after rejection. Therefore, the probability of acceptance of

the low-type seller is (weakly) increasing in the price offered by the buyer. Second, the

function δVL (K, ·) acts as a stationary supply because the price that the buyer needs to

pay to induce a posterior belief β′ ≥ β(ht) is independent of the current belief β(ht).

The concept of stationary PBE (equilibrium henceforth), together with Lemma 1, allow

for a characterization of the offers that can occur with positive probability in equilibrium.

In particular, consider the family of partial offers. The buyer makes a partial offer when

he requests less than the total number of remaining units and offers a payment that does

not cover the costs of the high-type seller. These offers cannot be made and accepted

with positive probability in equilibrium. The intuitive reason behind this is simple. A

high-type seller never accepts a partial offer, since, by definition, a partial offer does not

cover his costs. Then, only the low-type seller may accept partial offers with positive

probability. The acceptance of a partial offers reveals that the seller is of low type, so

remaining units are traded immediately, and the low-type seller gets no payoff from that

trade. Instead of making a partial offer, the buyer could offer to buy all remaining units at

the same (total) price. The low-type seller would get the same payoff from this alternative

offer, so he would accept it, and with the same probability.9 Trade would then speed up,

with the buyer obtaining the additional surplus. Thus, the buyer could obtain a strictly

9Our definition of stationary PBE implies that the randomization probability of the low-type seller de-
pends on the number of units remaining, but not on the number of units requested by the buyer. This
assumption is without loss of generality. In Section T.1.1 of the Technical Addendum we allow VL to de-
pend also on the number of units requested by the buyer. For generic values of the parameters, we obtain
the same equilibrium outcome as with our definition of stationary PBE.
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higher payoff by making this alternative offer, i.e. asking for all remaining units, and

offering the same payment. Lemma 2 formalizes this.

LEMMA 2. NO PARTIAL OFFERS. Fix an equilibrium. Take any history ht with K(ht) > 1.

Trades (k, p) with k < K(ht) and p < c
m k occur with zero probability.

See Appendix A.2 for the proof.

Consider the two remaining families of offers:

DEFINITION. UNIVERSAL AND SCREENING OFFERS. The buyer makes a universal offer

for k ≤ K(ht) units when he offers a payment p = c
m k. Universal offers are then of the form(

k, c
m k
)

and both types accept them. The buyer makes a screening offer for all remaining units

K(ht) when he offers a payment p < c
m K(ht). Screening offers are then of the form

(
K(ht), p

)
and the high-type seller never accepts them.

It is without loss of generality to restrict attention only to universal and screening of-

fers. To see this, suppose that in equilibrium, at history ht, the buyer makes a partial offer

(k, p), which the seller rejects (by Lemma 2). Replace this offer with the screening offer

(K(ht), p). Stationarity implies that this offer is also rejected by the seller. By replacing all

partial offers this way, we obtain an outcome equivalent equilibrium in which no partial

offer is ever made. In this sense, there is no equilibrium with partial offers.10

3. Equilibrium existence and pattern of trade

We perform a convenient change of variables. We work with the transformed beliefs

q(β) : [β̂, 1]→ [0, 1− β̂] given by the continuous and strictly increasing mapping

q (β) = 1− β̂

β
.

For convenience we write q̂ = 1− β̂ and, with a slight abuse of notation, we let q
(
ht) =

q
(

β
(
ht)). This transformation allows for a simple expression for the probability that the

low-type seller accepts screening offers. Assume that after the rejection of a screening

10In fact, in the proof of Proposition 1 we show a stronger result: for generic values of the parameters,
partial offers are never made in equilibrium.
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offer, the buyer updates his transformed belief from q to q′. This means that the low-

type seller accepts such offer with probability (q′ − q)/(q̂− q). Moreover, as we show in

Appendix A.3, the buyer’s value function is linear in transformed beliefs q
(
ht).11

We show that an equilibrium exists and is generically unique.

PROPOSITION 1. EQUILIBRIUM EXISTENCE. There exists an equilibrium. Moreover, for

generic parameters, all stationary equilibria are outcome equivalent.

See Appendix A.3 for the proof.

We show equilibrium existence by construction. Moreover, we show that, for generic

values of the parameters, any equilibrium induces the same outcome as our construction.

Within our construction, we introduce the function P(K, q) : {1, . . . , m} × [0, q̂] → R,

which plays a key role in the description and the analysis of the equilibrium. We derive

this function from VL(·, ·), and show that P(K, ·) is an increasing and left-continuous step

function for every K ∈ {1, . . . , m}. The function P(·, ·) describes the relevant screening

offers available to the buyer in equilibrium. Its interpretation is as follows. Suppose that

there are K units left and that the current belief is q ∈ [0, q̂]. Consider any discontinuity

point q′ of the function P(K, ·) with q′ ≥ q. Then, if the buyer makes a screening offer

(K, P(K, q′)) and it is rejected, his posterior belief is q′.

We solve the buyer’s dynamic optimization problem. For any state (K, q), we let

W(K, q) : {1, . . . , m} × [0, q̂] → R denote the (normalized) buyer’s continuation pay-

off.12 When it is optimal for the buyer to make a screening offer (K, P(K, q′)) for some

discontinuity point q′, the low-type seller accepts it with probability (q′− q)/(1− q). The

buyer’s continuation payoff satisfies

W(K, q) =
(
q′ − q

) ( K

∑
s=1

Λm
s vL − P(K, q′)

)
+ δW

(
K, q′

)
.

If instead it is optimal for the buyer to make a universal offer
(
k, c

m k
)
, the buyer’s contin-

11This change of variables is also explored in several papers in bargaining with incomplete information.
Some readers may find useful the following interpretation for the variable q. Assume that the sellers’s type
q is uniformly distributed in the unit interval. Whenever q ∈ [0, q̂) then the seller is of low type. If instead
q ∈ [q̂, 1], the seller is of high type. Under this interpretation for q, the function P(K, ·) that we introduce in
Appendix A.3 and describe below represents the reservation price P(K, q) for type q ∈ [0, q̂).

12W(K, q) is normalized in the sense that we multiply the buyer’s continuation payoff by 1− q.
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uation payoff satisfies

W(K, q) =

(
K

∑
s=K−k+1

Λm
s

)
[(q̂− q)vL + (1− q̂)vH]− (1− q)

c
m

k + δW(K− k, q).

We show that the low-type seller is indifferent between accepting and rejecting all

screening offers that he receives in equilibrium. Assume that in equilibrium the buyer

makes a screening offer (K, P(K, q)). If the low-type seller accepts it, he obtains a contin-

uation payoff of P(K, q). If he instead rejects it, the number of units left stays at K and the

buyer’s posterior is q. The buyer’s subsequent offer can be either screening or universal. If

the buyer makes a screening offer (K, P(K, q′)), then the low-type seller’s indifference re-

quires that the prices of these consecutive screening offers be linked: P(K, q) = δP(K, q′).

Assume instead that the buyer makes a universal offer (k, c
m k) after the rejection of the

screening offer (K, P(K, q)). This universal offer must be followed by a screening offer

(K− k, P(K− k, q′′)).13 The low-type seller’s indifference then requires that P(K, q) =

δ c
m k + δ2P(K− k, q′′).

3.1 Pattern of trade

In this subsection we introduce the functions K̃(·) and q̃(·), which describe the evo-

lution of the number of remaining units and of beliefs over time in equilibrium. To-

gether with P(·, ·), these functions completely characterize the pattern of trade. The

proof of Proposition 1 shows that the game ends after finitely many periods. Let h∗ =

((ϕ0, a0), . . . , (ϕT∗−1, aT∗−1)) denote the longest on-path history. Along the history h∗,

that lasts for T∗ periods, the seller rejects all screening offers. The last offer ϕT∗−1 is uni-

versal, so the seller accepts it. For any t ≤ T∗, let q̃(t) denote the transformed beliefs

at the beginning of period t along the history h∗. Similarly, K̃(t) denotes the number of

units left at the beginning of period t along the history h∗. Transformed beliefs q̃(t) are

non-decreasing: the acceptance of a universal offer does not change beliefs, while the re-

13We show this result in the proof of Proposition 1. The intuition behind it is simple. In equilibrium,
the buyer’s continuation payoff is positive at every state. Thus, he has an incentive to combine any two
consecutive universal offers.
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jection of a screening offer strictly increases them. Similarly, the number of units left K̃(t)

is non-increasing in t.

Figure 2 depicts a possible pattern of trade over time when the good is divided into

five units. Figure 2(a) presents the number of remaining units over time, while Figure 2(b)

shows the evolution of transformed beliefs. In this example, the buyer makes a universal

offer for two units in period zero. The seller accepts it, and beliefs do not change. In

period one, the buyer makes a screening offer which is rejected, prompting an increase

in transformed beliefs. A universal offer follows suit in period two, and a screening offer

in period three. The rejection of the screening offer in period three makes the buyer opti-

mistic enough to make a universal offer for all remaining units in period four. This offer

is accepted, and thus the game ends and beliefs do not change.

K̃(t)

0 t1 2 3 4 5

5

3

2

(a) Units left K̃(t)

q̃(t)

0 t1 2 3 4 5

q̂

(b) Transformed beliefs q̃(t)

Figure 2: Pattern of trade
(
K̃(t), q̃(t)

)
for fixed ∆ and m

The functions K̃(·), q̃(·) and P(·, ·) characterize the equilibrium outcome. Consider

two consecutive periods t and t + 1. Whenever K̃(t + 1) < K̃(t), it means that the

buyer makes a universal offer
(

K̃(t)− K̃(t + 1), c
m

(
K̃(t)− K̃(t + 1)

))
in period t. Both

the low-type and the high-type seller accept this offer, so the belief does not change:

q̃(t+ 1) = q̃(t). If instead K̃(t+ 1) = K̃(t), it means that the buyer makes a screening offer(
K̃(t), P

(
K̃(t), q̃(t + 1)

))
in period t. The high-type seller always rejects screening offers.
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The transformed beliefs q̃(t) and q̃(t + 1) pin down the probability of acceptance for the

low-type seller. He accepts the screening offer with probability [q̃(t+ 1)− q̃(t)]/[q̂− q̃(t)].

4. Limit equilibrium outcome

We study the limit equilibrium outcome when bargaining frictions vanish and the good

becomes arbitrarily divisible.14 We first let the time between offers ∆ converge to zero,

so that the discount factor δ = e−r∆ converges to one, and we then let the number of

units m grow to infinity. With this order of limits, we first solve a game where the good

is divided into finitely many units. This allows us to use an inductive argument on the

number of remaining units to characterize the limit equilibrium outcome as bargaining

frictions vanish (Proposition 2).15

In order to keep track of the level of bargaining frictions and of the number of units,

we index the functions defined in Section 3 by m and ∆, and write P∆
m(K, q), W∆

m(K, q),

K̃∆
m(t) and q̃∆

m(t). We also index the length of the longest history T∗∆m by m and ∆.

We characterize the equilibrium outcome as a function of time elapsed τ ∈ R+. In a

game with period-length ∆, the time elapsed τ after t periods is τ = t∆. In order to make

meaningful comparisons between games with different period-lengths ∆, we express the

number of remaining units and the transformed beliefs as functions of time elapsed τ ≥ 0:

K∆
m(τ) = K̃∆

m

(
min

{
bτ/∆c, T∗∆m

})
q∆

m(τ) = q̃∆
m

(
min

{
bτ/∆c, T∗∆m

})
To examine the limit equilibrium outcome as bargaining frictions vanish, we take a se-

quence {∆n}∞
n=1 → 0 and study the limit of its associated sequence

{(
K∆n

m (·), q∆n
m (·)

)}∞

n=1
.

In Lemma 3 (Appendix A.4) we show that for any {∆n}∞
n=1 → 0, the associated sequence{(

K∆n
m (·), q∆n

m (·)
)}∞

n=1
converges pointwise to the same limit functions (Km(·), qm(·)).

14Our results hold for generic values of the parameters. We describe the genericity conditions in the
proofs of Propositions 1 and 2. To ease the exposition, hereafter we omit the genericity conditions in the
statement of the results.

15We provide a brief discussion of the implications of a different order of limits in the conclusion.
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Similarly, for any {∆n}∞
n=1 → 0, the associated sequence

{(
P∆n

m (K, ·), W∆n
m (K, ·)

)}∞

n=1
,

with K ∈ {1, . . . , m}, converges pointwise to the same limit functions (Pm(K, ·), Wm(K, ·)).

The functions (Km(·), qm(·)) describe the limit equilibrium outcome as bargaining fric-

tions vanish.

The pattern of trade that emerges as bargaining frictions vanish is simple: there is a

sequence of phases of fast trade, mediated by impasses. We show this in Proposition 2

(Section 5.1) but first we provide a formal definition of this pattern of trade.

DEFINITION. PHASES OF FAST TRADE AND IMPASSES. We say that the limit equilibrium

outcome as bargaining frictions vanish consists of a sequence of phases of fast trade, mediated by

impasses whenever Km(·) and qm(·) are (left-continuous) step functions that are discontinuous at

the same points in time. Moreover, we say that the collection of quantities and beliefs {(k j, qj)}J
j=1

characterizes this limit equilibrium outcome as bargaining frictions vanish whenever there exist

times τ1 > . . . > τJ+1 = 0 such that

(Km(τ), qm(τ)) =


(m, 0) if τ = 0

(k j, qj) if τ ∈ (τj+1, τj] for j ∈ {1, . . . , J}

(0, q̂) if τ > τ1.

The phases of fast trade correspond to jumps in Km (·) and qm (·), while Km (·) and

qm (·) are constant during each impasse. Each pair (k j, qj) describes quantities and beliefs

during an impasse. The total number of impasses is J ≤ m. We index impasses in reverse

order, so j = 1 corresponds to the last impasse (k1, q1), while j = J corresponds to the

impasse (k J , qJ) that occurs first. Therefore, k j+1 > k j for all j and qj+1 < qj.

Figure 3 depicts an example of the limit equilibrium outcome as bargaining frictions

vanish. At the beginning of the game, there is a phase of fast trade. The transformed

belief qm (·) jumps to q3 at time elapsed τ = 0, which reflects that the buyer makes (a

sequence of) screening offers. The low-type seller accepts with total probability q3/q̂. The

number of units left Km (·) jumps to k3 at time elapsed τ = 0, which reflects that the buyer

makes a universal offer for m− k3 units. Although for any given ∆ > 0 these offers occur

in different periods, as ∆ → 0 the total time it takes to jump to k3 and q3 converges to
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zero.

Km(τ)

0 τ

m

τ3 τ2 τ1

k3

k2

k1

(a) Units left Km(τ)

qm(τ)

0 ττ3 τ2 τ1

q3

q2

q1

q̂

(b) Transformed beliefs qm(τ)

Figure 3: Pattern of trade (Km(τ), qm(τ)) as bargaining frictions vanish

After the first phase of fast trade, an impasse follows. Intuitively, an impasse is an

interval of time elapsed in which no trade occurs. The first impasse depicted in Figure 3

takes place in the interval (0, τ3]. Within this interval, Km (·) remains constant at k3 and

qm (·) remains constant at q3. First, the fact that the number of units left is constant reflects

that, in the limit, the buyer makes a sequence of screening offers after the first universal

offer. As ∆ → 0 the total number of such screening offers goes to infinity. Crucially, it

does so sufficiently fast so that the total time elapsed while making these offers converges

to τ3 > 0. Second, the fact that the belief qm(·) is constant reflects that, in the limit, the

low-type seller accepts these screening offers with total probability zero. This is possible

because as ∆ → 0, the probability of acceptance of each screening offer goes to zero fast

enough to overcome that the total number of screening offers goes to infinity. Finally, Fig-

ure 3 illustrates that after the first impasse, there are three phases of fast trade, mediated

by impasses.

Proposition 2 characterizes the sequence of phases of fast trade and impasses that

emerges as bargaining frictions vanish. An impasse introduces delay, which is the only

way for a buyer to screen the seller. After the delay, the buyer is optimistic enough to

offer a high price to the seller. The delay is necessary to lower the price that the buyer
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must offer before the impasse. In fact, as in DL, there is double delay. The length of

the impasse is twice the time necessary to make the low-type seller indifferent between

his continuation payoff after the impasse and receiving the buyer’s valuation for (the

remaining units of) the low-quality good immediately. Because of double delay, the price

before the impasse is lower than the buyer’s valuation for the low-quality good. Thus,

the buyer obtains a strictly positive continuation payoff before the impasse. Whenever

the buyer can obtain a positive payoff, he has an incentive to speed up trade, so the usual

Coasean forces kick in as bargaining frictions vanish. Trade must occur without delay, and

a phase of fast trade occurs. Before developing this explanation in detail (in Section 5.1),

we present the limit equilibrium outcome as the good becomes arbitrarily divisible.

4.1 Main result: characterization of the limit equilibrium outcome

How does the pattern of trade of an arbitrarily divisible good look like? Is there a finite or

infinite number of phases of fast trade, mediated by impasses? Is the high-quality good

traded in large portions or is it instead traded in dribs and drabs? How are the parties’

payoffs affected by the good becoming arbitrarily divisible? Our main result (Theorem 1)

characterizes the limit equilibrium outcome as the good becomes arbitrarily divisible.

We show that the high-quality good is traded smoothly over time, the buyer’s equilib-

rium payoff converges to zero, and the low-type seller’s equilibrium payoff converges to(∫ 1
0 λ(z)dz

)
vL.

Two simple functions characterize the equilibrium outcome as the good becomes ar-

bitrarily divisible. The function z∗ : R+ → [0, 1] describes the fraction of the good left

for trade and the function q∗ : R+ → [0, q̂] describes the evolution of beliefs. In order

to describe these functions, we first let q̄(z) denote the belief that makes the buyer break

even when he makes a universal offer for the infinitesimal unit z:

[q̂− q̄(z)] [λ(z)vL − c] + [1− q̂] [λ(z)vH − c] = 0

The function q̄ : [0, 1]→ [0, q̂) is strictly decreasing. We let ψ(·) denote its inverse.

The construction of the functions q∗(·) and z∗(·) is simple, and can be better under-
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stood through the following artificial pattern of trade. At time τ = 0, the buyer makes

a screening offer and breaks even. The low-type seller accepts this offer with probability

q̄(1)/q̂, so the belief at time τ = 0 satisfies q∗(0) = q̄(1). From that point on, the buyer

continuously makes both screening offers and universal offers for infinitesimal units. At

any point in time τ ∈ R+, the buyer breaks even with either type of offer. Finally, the

low-type seller is indifferent between accepting and rejecting any screening offer. The

functions q∗(·) and z∗(·) are the results of this artificial pattern of trade.

In the artificial pattern of trade, the buyer breaks even every time he makes a universal

offer for the infinitesimal unit z. Thus, at any point in time τ ∈ R+, the belief q∗(τ) and

the fraction of remaining units z∗(τ) must satisfy q∗(τ) = q̄ (z∗(τ)). Furthermore, since

the buyer also breaks even whenever he makes a screening offer, at any point in time

τ ∈ R+ he offers to purchase the fraction z∗(τ) at the price vL
∫ z∗(τ)

0 λ(z)dz. Finally, the

low-type seller is indifferent between accepting a screening offer at time τ or mimicking

the high-type seller’s behavior from τ to τ + ∆τ and then accepting a screening offer at

time τ + ∆τ:

vL

∫ z∗(τ)

0
λ(z)dz =

∫ τ+∆τ

τ
e−r(s−τ)c(−z∗′(s))ds + e−r∆τvL

∫ z∗(τ+∆τ)

0
λ(z)dz (2)

We next take advantage of the fact that q∗(τ) = q̄ (z∗(τ)), we let ∆τ → 0, and through a

first order approximation of the right hand side of equation (2) we show that:

q∗′(τ) =
rvL
∫ ψ(q∗(τ))

0 λ(z)dz
ψ′ (q∗(τ)) [vLλ (ψ (q∗(τ)))− c]

and z∗′(τ) = ψ′ (q∗(τ)) q∗′(τ). (3)

This, together with the initial conditions q∗(0) = q̄(1) and z∗(0) = 1 pins down the

functions q∗(·) and z∗(·).

For any m, we define the function zm(τ) : R+ → [0, 1] by setting zm(τ) = Km(τ)/m.

THEOREM 1. LIMIT EQUILIBRIUM OUTCOME. The sequence {(zm(·), qm(·))}∞
m=1 con-

verges pointwise to (z∗(·), q∗(·)). Thus, in the limit equilibrium outcome, the high-quality good

is traded smoothly over time, the low-type seller’s payoff is
(∫ 1

0 λ(z)dz
)
vL and the buyer’s payoff

is zero.
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Theorem 1 follows immediately from Proposition 3 in Section 5 (and the low-type seller’s

indifference between accepting and rejecting screening offers).

Figure 4 illustrates the limit equilibrium outcome (z∗(·), q∗(·)). The number of im-

passes grows without bound and the length of each shrinks to zero. The buyer’s belief

evolves smoothly and the high-quality good is sold gradually over time. The functions

z∗(·) and q∗(·) are such that, at any point in time, the buyer’s continuation payoff is zero

and the low-type seller is indifferent between selling the remaining fraction of the good

at the buyer’s valuation or mimicking the high-type seller’s behavior.

z∗(τ)

0 τ

1

250 500 750 1000

z∗(τ)

(a) Fraction of the good left z∗(·)

q∗(τ)

0 τ

q̂

250 500 750 1000

q∗(τ)

(b) Transformed beliefs q∗(·)
Note: These figures depict the limit equilibrium outcome for the following primitives: vH =
35, vL = 1, c = 30, r = 0.1 and q̂ = 0.9. Finally, λ(z) = 1 + 0.1z + 15z2 − 10z3 (this is the
function shown in Figure 1).

Figure 4: Limit equilibrium outcome (z∗(·), q∗(·)): Pattern of trade as bargaining frictions
vanish and the good becomes arbitrarily divisible

Divisibility enriches the set of offers available to the buyer. When the good is divisi-

ble the buyer does not need to wait until he is optimistic enough to purchase the whole

good. Instead, he can act fast and make offers for the most valuable fractions of it. The

buyer’s ability to purchase fractions of the good introduces a novel channel of competi-

tion between his present and future selves. The intuition behind this competition is as

follows. The double delay result guarantees that the buyer obtains a positive payoff from

screening offers before each impasse. Then, he is tempted to purchase small fractions of
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the good whenever, by doing so, he can reach an impasse faster and then enjoy earlier the

positive payoff before the impasse. However, this temptation reduces the positive payoffs

from screening offers before previous impasses. In the next paragraphs we describe this

intuition in detail and explain how this brings the buyer’s payoff to zero. We present the

formal analysis behind this result in Section 5.

First, for any fixed m, in the limit equilibrium outcome as bargaining frictions vanish

the last impasse must occur when only one unit remains. To see why, let q1 denote the

belief that makes the buyer break even when he makes a universal offer for the last unit.

Whenever one unit remains and the buyer’s belief is lower than q1, he must screen the

seller through delay, and so an impasse occurs at (1, q1). At beliefs lower than q1, the

buyer makes screening offers at a price lower than his valuation of the low-quality good,

and so obtains a positive payoff. Moreover, this impasse must be on-path. If it were not,

there would be a last impasse, with a quantity larger than one, and after this last impasse

the buyer would make a universal offer and break even.16 Because of decreasing gains for

trade, this last impasse would occur at a belief lower than q1. But whenever the belief is

lower than q1, the buyer is always better off by making a screening offer for the last unit,

instead of making a universal offer.

Next, as m grows large, the penultimate impasse must be close to the last. To see why,

assume that a small fraction of the good remains and the belief is such that the buyer

makes a loss if he purchases all but the last unit with a universal offer. As m grows large,

the profit from screening offers before the last impasse shrinks to zero. Then, the profit

from the last unit is not enough to recoup the loss from the universal offer. The buyer

must then screen the seller through delay, and so there is an impasse with a small fraction

left for trade and a belief lower but close to q1. This impasse lowers the price of the

screening offers for the small fraction of the good, and so the buyer takes advantage of it.

Similarly to the last impasse, the buyer’s payoff before the penultimate impasse must

shrink as m grows large. The fraction traded between the penultimate and the last im-

passe is small. Moreover, the buyer pays a price close to his valuation for the low-quality

16There must be at least one impasse. Otherwise, as bargaining frictions vanish, the buyer would pay c
to purchase the whole good and thus obtain a negative payoff.
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good in the screening offers before the last impasse. As a result, after the penultimate

impasse is resolved, the low-type seller’s continuation payoff is close to the buyer’s val-

uation for the low-quality good. Then, because of double delay, it does not take long for

the buyer to screen the low-type seller during the penultimate impasse. Therefore, the

price of the screening offer before the impasse is also close to the buyer’s valuation for

the low-quality good.

The logic from the previous paragraphs extends recursively. Whenever the buyer’s

profit from screening offers before an impasse is low, another impasse must occur close

to it, and this previous impasse must also be associated to low profits. In the limit, this

generates an infinite sequence of impasses, each with length that shrinks to zero.

The buyer’s inability to commit to make universal offers for large fractions is detri-

mental to him. He always trades small quantities of the high-quality good. As a result,

the price of the screening offers after the impasse is close to the buyer’s valuation of the

low-quality good. The buyer can screen the seller fast, and so the price of the screening

offers before the impasse is also close to the buyer’s valuation, and yields a low profit to

the buyer. As the good becomes arbitrarily divisible, this drives the buyer’s continuation

payoff to zero.

5. Mechanism behind the limit equilibrium outcome

The proof of Theorem 1 consists of two parts. In the first one we fix the number of units m

and construct an algorithm that characterizes the equilibrium outcome as bargaining fric-

tions vanish (∆→ 0). Proposition 2 highlights the key properties of this equilibrium out-

come. In the second one we present Proposition 3, which characterizes the outcome un-

covered by the algorithm in the previous part as the number of units m grows to infinity.

This proposition immediately implies that the sequence of functions {(qm(·), zm(·))}m∈N

converges to (q∗(·), z∗(·)) as m grows to infinity.
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5.1 Vanishing bargaining frictions: the algorithm

We construct an algorithm that pins down the phases of fast trade and the impasses that

take place as bargaining frictions vanish. This algorithm also identifies some key prop-

erties of the limit functions Pm(·, ·) and Wm(·, ·). In order to state these properties, we

define the belief q̄m(K) for any K ∈ {1, . . . , m} as follows. Assume that the buyer makes

an offer ϕ = (1, c
m ) when there are K units left; that is, he offers to pay the high-type’s

cost in exchange of one unit. Then, q̄m(K) ∈ (0, q̂) is the transformed belief that makes

the buyer break even:

[q̂− q̄m(K)]
(

Λm
K vL −

c
m

)
+ (1− q̂)

(
Λm

K vH −
c
m

)
= 0

Note that q̄m(m) < . . . < q̄m(1), as gains from trade are decreasing.17 Finally, for any

(K, q) let P−m (K, q) = limq′↑q Pm(K, q) and P+
m (K, q) = limq′↓q Pm(K, q).

PROPOSITION 2. EQUILIBRIUM OUTCOME AS BARGAINING FRICTIONS VANISH. Fix

m. The limit equilibrium outcome as bargaining frictions vanish consists of a sequence of phases

of fast trade and impasses characterized by a collection of quantities and beliefs
{
(k j, qj)

}J
j=1 with

1 ≤ J ≤ m, (k1, q1) = (1, q̄m(1)) and q̄m(k j + 1) < qj < q̄m(k j) for all j > 1.

Moreover, Wm(k j, qj) = 0 for every j ∈ {1, . . . J}. Finally,

P+
m (k1, q1) = P+

m (1, q̄m(1)) =
c
m

, (4a)

P−m (k j, qj) =

vL ∑
kj
s=1 Λm

s

P+
m (k j, qj)

2

P+
m (k j, qj) ∀ j ∈ {1, . . . , J} and (4b)

P+
m (k j+1, qj+1) = (k j+1 − k j)

c
m

+ P−m (k j, qj) ∀ j ∈ {1, . . . , J − 1}. (4c)

See Appendix A.5 for the proof.

Proposition 2 shows that there is at least one impasse. The last impasse always occurs

at (1, q̄m(1)), that is, when one unit remains left and the belief is q̄m(1). The buyer’s con-

tinuation payoff is zero at all impasses. Finally, Proposition 2 describes the limit functions

17For convenience, we set q̄m(m + 1) = 0.
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Pm(·, ·) around each impasse (k j, qj).

Equation (4c) links the limit functions Pm(·, ·) between two consecutive impasses. Af-

ter the impasse (k j+1, qj+1) is resolved, the state shifts without delay to (k j, qj). To fix

ideas, suppose that the shift consists of one universal offer for k j+1 − k j units followed

by a screening offer
(
k j, P−m (k j, qj)

)
.18 The low-type seller obtains a continuation payoff(

k j+1 − k j
) c

m + P−m (k j, qj), which must be equal to the price P+
m (k j+1, qj+1) that the buyer

has to pay in the limit to induce a belief q > qj+1 close to qj+1. Equation (4a) follows the

same logic as equation (4c): after the last impasse is resolved the buyer purchases without

delay the last unit at the price c
m .

Equation (4b) shows that the limit function Pm(k j, ·) is discontinuous at qj. The jump

between P−m (k j, qj) and P+
m (k j, qj) pins down the length of the impasse (k j, qj). Let τ̃ be the

necessary time elapsed for the buyer’s valuation for the low-quality good vL ∑
kj
s=1 Λm

s to

be equal to the discounted value of P+
m (k j, qj): vL ∑

kj
s=1 Λm

s = e−rτ̃P+
m (k j, qj). Equation (4b)

shows that the delay is of length 2τ̃:

P−m (k j, qj) = e−2rτ̃P+
m (k j, qj) =

vL ∑
kj
s=1 Λm

s

P+
m (k j, qj)

2

P+
m (k j, qj)

This finding is in line with DL’s double delay result, which characterizes the length of

each impasse. We extend this result to the case of a divisible good.

In the next two subsections we describe the construction of the algorithm that charac-

terizes the limit equilibrium outcome as bargaining frictions vanish. We explain the main

steps of the algorithm and the intuition behind it (see Appendix A.5 for the remaining

details). The algorithm follows an inductive approach. In the base step, we identify the

last impasse. We show that it occurs when only one unit remains, and pin down both the

length of the impasse, and the belief at which it occurs. In the inductive step we take an

impasse and construct the previous one.

18This discussion holds regardless of the particular sequence of offers that characterizes the shift from
(k j+1, qj+1) to (k j, qj).
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5.1.1 The base step: the last impasse

We first focus on the case when only one unit remains and revisit the results from DL.

Whenever the belief is higher than q̄m(1), the buyer can guarantee a positive continuation

payoff by making a universal offer for the last unit. Since his continuation payoff is strictly

positive, the usual Coasean forces imply that the buyer has an incentive to speed up

trade. Thus, the buyer purchases the remaining unit without delay. The next paragraphs

formalize this intuition.

Suppose that starting at state (1, q), it is optimal for the buyer to make two consecutive

screening offers (1, P(1, q′)) and (1, P(1, q′′)). The buyer prefers this to making instead the

offer (1, P(1, q′′)) right away:

W∆
m(1, q) = (q′ − q)

[
Λm

1 vL − P(1, q′)
]
+ δW∆

m(1, q′)

≥ (q′′ − q)
[
Λm

1 vL − P(1, q′′)
]
+ δW∆

m(1, q′′)

= (q′ − q)
[
Λm

1 vL − P(1, q′′)
]
+ (q′′ − q′)

[
Λm

1 vL − P(1, q′′)
]
+ δW∆

m(1, q′′)︸ ︷︷ ︸
W∆

m(1,q′)

The low-type seller is indifferent between accepting any of these two offers, so P(1, q′) =

δP(1, q′′). Combining this with the inequality above (second and fourth term) implies

q′ − q ≥ W∆
m(1, q′)

P(1, q′′)
≥ W∆

m(1, q′)
c/m

,

where the last inequality results from the price P(1, ·) being bounded above by c/m. Fi-

nally, suppose that there exists q̃ < q̂ and η > 0 such that W∆
m(1, q) ≥ η for all q ≥ q̂. Then,

starting at any state (1, q), with q ≥ q̃ the buyer makes at most d(c/m)(q̂− q̃)/ηe screen-

ing offers. Thus, a strictly positive continuation value for the buyer implies an upper

bound on the number of offers.

The buyer in fact obtains a continuation payoff bounded away from zero when the

belief exceeds q̄m(1). To see this, fix q̃ > q̄m(1). For any q ≥ q̃, the buyer’s continuation
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payoff is bounded below by that from making a universal offer when the belief is q̃:

W∆
m(1, q) ≥ (q̂− q̃) [Λm

1 vL − c/m] + (1− q̂) [Λm
1 vH − c/m] > 0

This lower bound is independent of ∆, and therefore in the limit, when the state is (1, q̃),

with q̃ > q̄m(1), trade occurs without delay.

As trade occurs immediately at states (1, q) with q > q̄m(1), then Pm(1, q) = c/m.

Moreover, Pm(1, ·) must be discontinuous at q̄m(1), with Pm(1, q) ≤ Λm
1 vL for beliefs q <

q̄m(1). If this were not the case, the buyer’s continuation payoff at q < q̄m(1) would be

negative, as Wm(1, q̄m(1)) = 0. The discrete jump in Pm(1, ·) at q̄m(1) implies that there

must be delay, so that the low-type seller is indifferent between accepting offers lower

than vLΛm
1 or waiting for the offer c/m.

DL show that the length of the impasse is 2τ̃ (where, as before, τ̃ is given by vLΛm
1 =

e−rτ̃c/m). The intuition behind the double delay result from DL is as follows. Fix ∆ > 0

and assume that P∆
m(1, ·) = Λm

1 vL for an interval of beliefs. DL show that the function

P∆
m(1, ·) must be symmetric around this interval in the following sense. The length of the

interval with P∆
m(1, ·) = Λm

1 vL must be equal to the length of the interval with P∆
m(1, q) =

δΛm
1 vL. Similarly, the intervals with P∆

m(1, ·) = δ−1Λm
1 vL and with P∆

m(1, q) = δ2Λm
1 vL are

also of the same length. This symmetry extends as we move away from the segment with

P∆
m(1, ·) = Λm

1 vL. As ∆ → 0, the function P∆
m(1, ·) takes values which are arbitrarily close

to Λm
1 vL. Therefore, in the limit, for any small ε > 0 it takes as much time to move from

q̄m(1)− ε to q̄m(1) as it takes to move from q̄m(1) to q̄m(1) + ε.

Pinning down the length of the impasse allows for the following simple expression

for P−m (1, q̄m(1)):

P−m (1, q̄m(1)) =
(

vLΛm
1

c/m

)2

c/m =

(
vLΛm

1
c/m

)
vLΛm

1 < vLΛm
1 .

The last inequality implies that in the limit the buyer’s continuation payoff at any state

(1, q) with q < q̄m(1) must be strictly positive. Intuitively, for ∆ small, the buyer can

make a screening offer with a price close to P−m (1, q̄m(1)) that the low-type seller accepts
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with strictly positive probability. Since the buyer has a positive continuation payoff, the

usual Coasean forces kick in, and the state (1, q̄m(1)) is reached without delay. Therefore

Pm(1, q) = P−m (1, q̄m(1)) for any q < q̄m(1). This concludes the explanation of the one-unit

case from DL.

We next explain why there must be at least one impasse in our multi-unit model. If

there were none, then in the limit the buyer would buy all units without delay, pay c/m

for each of them, and obtain a negative payoff. Then, by continuity, for ∆ sufficiently

close to zero, the buyer’s payoff would be negative, which cannot happen in equilibrium.

Following a similar continuity argument, throughout this section we focus directly on the

“limit game” in the sense that the low-type seller’s behavior is given by the limit function

Pm(·, ·).

We finally describe why the last impasse occurs at state (1, q̄m(1)). Assume instead

that it occurs at state (K, q), with K > 1. First, notice that q must be strictly smaller than

q̄m(1). This is because for any q ≥ q̄m(1) the buyer can obtain a strictly positive contin-

uation payoff by making a universal offer for all remaining units, and so there cannot

be delay. Second, after the impasse (K, q) is resolved, the buyer purchases all remain-

ing units without delay and therefore pays c/m for each of them. However, because of

divisibility, there exists an alternative course of action that gives the buyer a higher con-

tinuation payoff. The buyer can instead first make a universal offer for K− 1 units. Then,

he can make a screening offer (1, P−m (1, q̄m(1))), which is accepted by the low-type seller

with probability (q̄m(1)− q)/(q̂− q) > 0. If instead the offer is rejected, the buyer pays

c/m for the remaining unit. Divisibility allows the buyer to take advantage of the posi-

tive profits from the screening offer before the impasse (1, q̄m(1)). He then has a profitable

deviation for ∆ sufficiently close to zero.

5.1.2 The inductive step: from one impasse to the previous one

In this subsection we show in detail whether the penultimate impasse occurs when two

units remain. We also explain how to identify previous impasses.

As before, we consider a simple course of action that allows the buyer to take advan-

tage of the positive profits from a screening offer before the last impasse. This course of
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action brings the buyer from any state (K, q) with K > 1 and q < q̄m(1) to the last im-

passe (1, q̄m(1)), where the buyer’s continuation payoff is zero. The buyer first makes the

universal offer
(
K− 1, c

m (K− 1)
)

and then the screening offer (1, P−m (1, q̄m(1))). Let q̌(K)

be the belief that makes the buyer break even when he follows this course of action:19

[[
[q̂− q̌(K)] vL + (1− q̂) vH

] K

∑
s=2

Λm
s − [1− q̌(K)] (K− 1)

c
m

]
+ (5)

[q̄m(1)− q̌(K)]
[
Λm

1 vL − P−m (1, q̄m(1))
]
= 0

As the buyer breaks even at state (2, q̌(2)), this is a natural candidate for an impasse.

In fact, we show next that whenever q̌(2) > q̄m(3), the penultimate impasse must occur at

(2, q̌(2)). To do this, we characterize the function Pm(2, ·). Note first that q̌(2) < q̄m(2).20

Consider any state (2, q) with q̌(2) < q < q̄m(2). As q < q̄m(2), the game cannot end

without delay (if the buyer were to acquire both remaining units without delay, he would

obtain a negative payoff). Moreover, as q > q̌(2), the buyer’s continuation payoff is

positive, so an impasse cannot occur at state (2, q). Thus, the state transitions without

delay to (1, q̄m(1)) and Pm(2, q) = c
m + P−m (1, q̄m(1)) for all q ∈ (q̌(2), q̄m(2)).

The function Pm(2, ·) must be discontinuous at q̌(2). To see this, note that the definition

of q̌(2) in equation (5), together with the fact that q̌(2) > q̄m(3) > 0 imply that

P+
m (2, q̌(2)) =

c
m

+ P−m (1, q̄m(1)) > (Λm
2 + Λm

1 ) vL.

This in turn implies that if P−m (2, q̌(2)) = P+
m (2, q̌(2)), the buyer would obtain strictly

negative payoffs at states (2, q) with q close and lower than q̌(2). The buyer would pay

more than his valuation to reach (2, q̌(2)) through screening offers, and then would get a

zero continuation payoff there. Universal offers would also lead to negative continuation

payoffs, since q < q̌(2) < q̄m(2).

The limit function Pm(2, ·) can be discontinuous only if there is an impasse associated

19If this course of action leads to a positive payoff for every belief q ∈ [0, q̄m(1)) then we set q̌(K) = 0.
20When the buyer follows the simple course of action, he obtains a positive payoff from the last unit.

Then, since he breaks even at q̌(2), he must obtain a negative payoff from the second to last unit.
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to the state (2, q̌(2)).21 As is the case for (1, q̄m(1)), this impasse also requires double

delay:

P−m (2, q̌(2)) =
(

vL(Λm
2 + Λm

1 )

P+
m (2, q̌(2))

)2

P+
m (2, q̌(2)) < vL(Λm

2 + Λm
1 )

Since P−m (2, q̌(2)) < vL(Λm
2 +Λm

1 ), the buyer can guarantee a positive continuation payoff

at any state (2, q) with q < q̌(2) by making the screening offer (2, P−m (2, q̌(2))). Therefore,

the state (2, q̌(2)) is reached without delay, so Pm(2, q) = P−m (2, q̌(2)) for any q < q̌(2).

We next show that the condition q̌(2) > q̄m(3) guarantees that the buyer is again

tempted to take advantage of the positive profits from the screening offer before the im-

passe (2, q̌(2)) and so the penultimate impasse must occur at (2, q̌(2)). Assume towards

a contradiction that it occurs at (K, q) with K > 2.22 Since q̌(2) > q̄m(3) > q̄m(4) > . . .,

then it must be the case that q̌(K) < q̌(2). Whenever q > q̌(K), the buyer can obtain a

positive continuation payoff by following the simple course of action described before.

Then, no impasse can occur at (K, q) with q > q̌(K). Thus, the penultimate impasse must

occur at (K, q) with q ≤ q̌(K) < q̌(2). After this impasse is resolved, the state moves

without delay to (1, q̄m(1)). Consider next the following course of action, which is in

the spirit of the one defined before, but instead takes advantage of the profits before the

impasse (2, q̌(2)). The buyer first purchases K − 2 units, then makes the screening offer

(2, P−m (2, q̌(2))) and finally follows the optimal course of action at state (2, q̌(2)). This al-

ternative course of action is more profitable than moving without delay to (1, q̄m(1)). The

difference in payoffs is (q̌(2)− q)
[ c

m + P−m (1, q̄m(1))− P−m (2, q̌(2))
]
> 0. Thus, we have

reached a contradiction.

In Appendix A.5 we show that if instead q̌(2) < q̄m(3), then the penultimate impasse

cannot occur when two units remain. We characterize Pm(3, ·) and show that there is a

(potentially off-path) impasse when three units remain. The buyer prefers to take advan-

tage of it and skip the impasse with two remaining units. We then move to any number

of remaining units K > 2 and compare q̌(K) with q̄m(K + 1). The penultimate impasse

occurs at (k2, q̌(k2)), where k2 = min {K ∈ {2, . . . , m} : q̄m(K + 1) < q̌(K) < q̄m(K)}. If in-

21This impasse may not be part of the limit equilibrium outcome as bargaining frictions vanish, since the
state (2, q̌(2)) may never be reached.

22The case without a penultimate impasse follows a similar logic.
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stead the minimum does not exist, (1, q̄m(1)) is the unique impasse: this state is reached

without delay.

Our algorithm proceeds by induction by taking the impasse (k j, qj) and identifying

the previous impasse (k j+1, qj+1). To do this, we construct a simple course of action, anal-

ogous to the ones before, where the buyer takes advantage of the positive profits from

screening offers before the impasse (k j, qj). This course of action brings the buyer from

any state (K, q) with K > k j and q < qj to the impasse (k j, qj), where the buyer’s contin-

uation payoff is zero. We use properties of the continuation payoff from this alternative

course of action to identify the previous impasse(k j+1, qj+1). The algorithm then ends in

finitely many steps and there are at most m impasses.

5.2 Arbitrarily divisible good

In this subsection we describe the limit of the equilibrium outcome identified in Proposi-

tion 2 as the number of units m grows to infinity. In order to keep track of the number of

units, we index impasses by m and write
{(

km
j , qm

j

)}Jm

j=1
, where Jm denotes the number of

impasses when the good is divided into m units. We also let zm
j = km

j /m represent the frac-

tion of the good left for trade at impasse j. Thus, we denote impasses by
{(

zm
j , qm

j

)}Jm

j=1
in this subsection.

PROPOSITION 3. IMPASSES FOR AN ARBITRARILY DIVISIBLE GOOD. The limit equilib-

rium outcome satisfies

lim
m→∞

(
max

{
zm

j − zm
j−1

}Jm

j=2

)
= 0 (6a)

lim
m→∞

(
max

{
qm

j−1 − qm
j

}Jm

j=2

)
= 0 (6b)

lim
m→∞

zm
Jm

= 1 (6c)

lim
m→∞

(
max

{∣∣∣qm
j − q̄

(
zm

j

)∣∣∣}Jm

j=1

)
= 0 (6d)

lim
m→∞

(
max

{∣∣∣∣P−m (mzm
j , qm

j

)
− vL

∫ zm
j

0
λ(z)dz

∣∣∣∣}Jm

j=1

)
= 0 (6e)
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lim
m→∞

(
max

{∣∣∣∣P+
m

(
mzm

j , qm
j

)
− vL

∫ zm
j

0
λ(z)dz

∣∣∣∣}Jm

j=1

)
= 0 (6f)

See Appendix A.6 for the proof.

Proposition 3 directly leads to Theorem 1. As the good becomes arbitrarily divisible,

the number of impasses goes to infinity. The fraction that the buyer purchases through

each universal offer shrinks to zero (equation (6a)). The change in the buyer’s belief be-

tween two consecutive impasses also shrinks to zero (equation (6b)). Thus, in the limit,

the high-quality good is traded smoothly over time, and beliefs also evolve continuously.

The first impasse takes place with the whole good left for trade (equation (6c)). Let

z(τ) = limm→∞ zm(τ) and q(τ) = limm→∞ qm(τ) denote respectively the limit fraction

of the good left and the limit belief at time elapsed τ. Equation (6d) shows that these

functions are linked: q(τ) = q̄ (z(τ)). Furthermore, at any screening offer for a fraction

z(τ) of the good, the buyer offers a price vL
∫ z(τ)

0 λ(z)dz, and so he breaks even (equa-

tions (6e) and (6f)).

The limit equilibrium outcome then coincides with the artificial pattern of trade de-

scribed in Section 4.1. At time zero the buyer makes a screening offer for the whole good

at price vL
∫ 1

0 λ(z)dz. The low-type seller accepts this offer with probability q̄m(1)/q̂.

Then, the buyer continuously makes both universal and screening offers. The low-type

seller’s indifference between accepting different screening offers implies that the frac-

tion z(τ) must satisfy equation (2). This pins down the pattern of trade in the limit:

z(τ) = z∗(τ) and q(τ) = q∗(τ), as stated in Theorem 1.

We next describe the intuition behind the proof of Proposition 3, which relies on the

key properties identified in Proposition 2. First, equation (6d) directly results from the

condition q̄m(km
j + 1) < qm

j < q̄m(km
j ) in Proposition 2. As m goes to infinity,

km
j +1
m →

km
j

m = zm
j . Next, we explain, through a unified argument, why equations (6a), (6b), (6e)

and (6f) hold true.

We say that an impasse (zm
j , qm

j ) is short whenever P−m
(

mzm
j , qm

j

)
and P+

m

(
mzm

j , qm
j

)
are close (and so both are close to the valuation vL

∫ zm
j

0 λ(z)dz).23 The buyer makes a

23Proposition 2 guarantees that P−m
(

mzm
j , qm

j

)
< vL

∫ zm
j

0 λ(z)dz < P+
m

(
mzm

j , qm
j

)
for every impasse
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profit with a screening offer before each impasse. Whenever an impasse is short, this

profit is low. The driving force behind Proposition 3 is that whenever m is large, if

an impasse (zm
j , qm

j ) is short, then the previous impasse (zm
j+1, qm

j+1) must also be short.

Moreover, the fraction zm
j+1 − zm

j that the buyer purchases between these two impasses

must be small. To show this, we link two consecutive impasses (zm
j+1, qm

j+1) and (zm
j , qm

j ).

The buyer obtains a zero continuation payoff at every impasse. Thus, the difference

Wm(mzm
j+1, qm

j+1)−Wm(mzm
j , qm

j ), which we express in equation (7), is also zero:

(∗)︷ ︸︸ ︷(
q̂− qm

j+1

) [∫ zm
j+1

zm
j

[λ(z)vL − c] dz

]
+ (1− q̂)

[∫ zm
j+1

zm
j

[λ(z)vH − c] dz

]

+
(

qm
j − qm

j+1

) [∫ zm
j

0
λ(z)vLdz− P−m

(
mzm

j , qm
j

)]
︸ ︷︷ ︸

(∗∗)

= 0 (7)

From one impasse to the next one, the buyer makes a loss with a universal offer (∗), and a

profit with a screening offer (∗∗). This profit is close to zero since the price P−m
(

mzm
j , qm

j

)
of the screening offer is close to the buyer’s valuation. Therefore, the loss associated to the

universal offer must also be close to zero, which can only happen if zm
j is close to zm

j+1.24

We next show that the previous impasse (zm
j+1, qm

j+1) must also be short. Equations (4b)

and (4c) in Proposition 2 imply that:

P−m
(

mzm
j+1, qm

j+1

)
=

 vL
∫ zm

j+1
0 λ(z)dz(

zm
j+1 − zm

j

)
c + P−m

(
mzm

j , qm
j

)
2

P+
m

(
mzm

j+1, qm
j+1

)

Since zm
j and zm

j+1 are close and the price P−m
(

mzm
j , qm

j

)
is close to the buyer’s valuation,

then the first term on the right hand side is close to one.

(zm
j , qm

j ). Whenever P−m
(

mzm
j , qm

j

)
and P+

m

(
mzm

j , qm
j

)
are close and different from zero, their ratio is close

to one. This implies that it takes a short time for the price to go from P−m
(

mzm
j , qm

j

)
to P+

m

(
mzm

j , qm
j

)
and in

this sense the impasse is short.
24Equation (6d) implies that for m large, the buyer is close to breaking even if he makes a universal offer

for an arbitrarily small unit at state
(

mzm
j+1, qm

j+1

)
. Since gains from trade are decreasing, any non-negligible

universal offer would lead to a loss bounded away from zero.
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We argue next that the last impasse must be short as m grows large. The last impasse

occurs when only one unit remains. Equations (4a) and (4b) in Proposition 2 imply that

P−m (1, q̄m(1)) and P+
m (1, q̄m(1)) both converge to zero as m grows large.

To complete the argument it remains to be shown that there are no cumulative effects

in the sense that if one impasse is short, all previous ones must also be short. We relegate

the proof of this technical result to Appendix A.6.

Finally, the intuition behind equation (6c) is simple. If it does not hold, then for large

m the buyer reaches the first impasse after purchasing a strictly positive fraction of the

good though a universal offer. This offer yields a loss to the buyer. At each impasse the

price of the screening offer is close to the buyer’s valuation, so the buyer’s profit from

this offer is negligible. Therefore, if equation (6c) is violated, the buyer obtains a negative

continuation payoff at the beginning, which can never happen.

6. Comparative statics and extensions

6.1 Comparative statics

In this subsection we show how the primitives of the model affect the speed of trade

for both the high-quality and the low-quality good. We start with a configuration of the

primitives
(

β̂, λ(·), c, vL, vH, r
)
, modify one of them (resulting in a new configuration that

also satisfies the assumptions of our model) and compare the resulting limit equilibrium

outcomes.

PROPOSITION 4. SPEED OF TRADE OF THE HIGH-QUALITY GOOD. Let (z∗(·), q∗(·))

denote the limit equilibrium outcome associated to the primitives
(

β̂, λ(·), c, vL, vH, r
)
. Con-

sider next an alternative configuration of primitives with associated limit equilibrium outcome

(z̃∗(·), q̃∗(·)). For any of the following alternative configurations of primitives, the high-quality

good is traded faster, i.e. z̃∗(τ) < z∗(τ) for every τ > 0:

(a)
(

β̂, λ̃(·), c, vL, vH, r
)

with λ̃(z) > λ(z) for all z ∈ (0, 1].

(b)
(

β̂, λ(·), c̃, vL, vH, r
)

with c̃ < c.
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(c)
(

β̂, λ(·), c, ṽL, vH, r
)

with ṽL > vL.

(d)
(

β̂, λ(·), c, vL, vH, r̃
)

with r̃ > r.

Finally, the parameters vH and β̂ do not affect the speed of trade of the high-quality good.

Proof. We present here the proof for (a). The cases (b), (c) and (d) follow the same

argument. Assume towards a contradiction that the result does not hold for (a). Equa-

tion (3) implies that

z̃∗′(0) =
rvL
∫ 1

0 λ̃(z)dz
vLλ̃ (1)− c

<
rvL
∫ 1

0 λ(z)dz
vLλ (1)− c

= z∗′(0).

Let τ = min {τ > 0 : z̃∗(τ) = z∗(τ)}. It follows again from equation (3) that

z̃∗′ (τ) =
rvL
∫ z̃∗(τ)

0 λ̃(z)dz
vLλ̃ (z̃∗ (τ))− c

<
rvL
∫ z∗(τ)

0 λ(z)dz
vLλ (z∗ (τ))− c

= z∗′ (τ) .

But then there exists τ′ ∈ (0, τ) with z̃∗′ (τ′) = z∗′ (τ′), reaching a contradiction. Finally,

notice that z∗(0) = 1 and that z∗′(·) does not depend on vH or β̂. �

The intuition behind Proposition 4 is simple. The speed of trade of the high-quality

good is such that the low-type seller is always indifferent between accepting the current

screening offer or rejecting all screening offers and obtaining the discounted value of fu-

ture universal offers. An increase in either vL or in the function λ(·) makes each screening

offer more attractive. Similarly, a decrease in c or an increase in r lower the value of fu-

ture universal offers. In all these four cases the high-quality good must be traded faster

to keep the low-type seller indifferent.

Unlike the high-quality good, the low-quality good is not always traded smoothly.

Trade occurs smoothly while the low-type seller mimics the high-type seller’s behavior.

However, the buyer purchases the whole remaining fraction of the good as soon as the

low-type seller accepts a screening offer. Therefore, the fraction of the low-quality good

remaining at time elapsed τ is a random variable that takes a value of zero with probabil-

ity q∗(τ)
q̂ and a value of z∗(τ) with the remaining probability. Then g∗(τ) = q̂−q∗(τ)

q̂ z∗(τ)
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is the expected remaining fraction of the low-quality good at time elapsed τ and reflects

the speed of trade of the low-quality good.

We next study how changes in the parameters r, vH and β̂ affect the speed of trade of

the low-quality good. Consider first an increase in r, so both parties become less patient.

Proposition 4 guarantees that z∗(·) decreases (for all τ > 0). This, and the fact that q∗(τ) =

q̄ (z∗(τ)), imply that q∗(·) increases. Thus, the low-quality good is traded faster, i.e. g∗(·)

decreases. Second, consider a decrease in either vH or in β̂. Proposition 4 shows that

z∗(·) does not change in either case. It follows from the fact that q∗(τ) = q̄ (z∗(τ)) and

the definition of q̄(·) that q∗(·) increases (if vH decreases) and that q̂− q∗(·) decreases (if

β̂ decreases). Thus, in either case, g∗(·) decreases. The following corollary summarizes

these results.

COROLLARY 1. SPEED OF TRADE OF THE LOW-QUALITY GOOD. Whenever either r in-

creases, or vH decreases, or β̂ decreases, then the low-quality good is traded faster, i.e. g∗(τ)

decreases for every τ > 0.

The intuition behind Corollary 1 is as follows. In the limit equilibrium outcome, at

time elapsed τ the buyer’s belief q∗(τ) is such that he breaks even when he makes a uni-

versal offer for the next infinitesimal unit: q∗(τ) = q̄ (z∗(τ)). When the parties become

less patient, the remaining fraction of the good z∗(τ) decreases. Therefore, decreasing

gains from trade imply that the buyer’s belief q∗(τ) must increase. This is possible only

if the low-type seller becomes more likely to accept screening-offers, so trade of the low-

quality good occurs faster. The intuition for the other two cases is similar. A decrease in

vH or in β̂ requires that the low-type seller accepts screening offers with a higher proba-

bility to guarantee that, at any time τ, the buyer breaks even with the universal offer.

The remaining primitives (λ(·), vL and c) have ambiguous effects on the speed of

trade of the low-quality good. It is easy to construct examples where changes in these

primitives can either increase or decrease g∗(τ) for some τ.

We finally study the limit as gains from trade from different units become arbitrarily

close to each other. Formally, we fix the parameters
(

β̂, c, vL, vH, r
)

and consider a se-

quence of strictly increasing functions {λn(·)}∞
n=1 converging uniformly to the constant

function λ(·) = 1. We assume that for every n, the configuration of primitives satisfies
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the assumptions of our model. Let (z∗n(·), q∗n(·)) denote the limit equilibrium outcome

associated to configuration n. We derive the limit of (z∗n(·), q∗n(·)) using the characteriza-

tion of the limit equilibrium outcome from Section 4.1 – see equation (2). As n goes to

infinity, q∗n(·) converges uniformly to a constant function with value q̄(0).25 Furthermore

z∗n(·) converges uniformly to the function e−
rvL

c−vL
τ. In the limit as λn(·) becomes flat, the

belief jumps to q̄(0) at time zero and then remains constant. This means that the low-

type seller accepts the screening offer at time zero with positive probability. From that

point on, although he is always indifferent, the low-type seller accepts all screening offers

with zero probability. Finally, the high-quality good is traded gradually at a constant rate:

z′(τ)/z(τ) = −(rvL)/(c− vL).26

6.2 Extensions

In our first extension, we study the limit equilibrium outcome when equation (1) does not

hold. Equation (1) reflects an extreme form of adverse selection: under the prior belief, the

buyer’s expected valuation from any fraction of the good exceeds the high-type seller’s

cost. Therefore, the buyer needs to screen the seller even to purchase the most valuable

fraction of the good.

We first assume that
[
β̂vH + (1− β̂)vL

]
λ (z̄) = c for some z̄ ∈ (0, 1], so the buyer

obtains a positive payoff if he buys any infinitesimal unit z ∈ [z̄, 1] through a universal

offer. Our analysis directly extends to this case.27 In the limit equilibrium outcome, the

buyer purchases the first fraction 1− z̄ from both types without delay, paying c(1− z̄).

The environment after the units z ∈ [z̄, 1] are traded resembles that from our baseline

model. Theorem 1 pins down the pattern of trade for the remaining fraction z̄. Similarly

to the case when equation (1) holds, divisibility is detrimental to the buyer. Although

he obtains a profit from the units z ∈ [z̄, 1], he must pay the high-type seller’s cost for

25Recall that the belief q̄(0) makes the buyer break even when he makes a universal offer for the least
valuable unit. As λn(0) = 1 for all n, this belief does not depend on n.

26This pattern of trade differs from the pattern of trade with constant gains from trade that we describe
in the next subsection. As discussed in the conclusion, this difference also arises if we invert the order of
limits, first letting the number of units grow to infinity and then lettting bargaining frictions vanish.

27The proof of the characterization of the limit equilibrium outcome in this case is analogous to the proof
of Theorem 1 so we omit it.
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them. He then obtains a zero profit from the remaining units. Furthermore, like in the

benchmark model, the high-quality good is traded smoothly, but only for the units z ∈

[0, z̄].

We next assume that
[
β̂vH + (1− β̂)vL

]
λ (0) ≥ 0. In this case, the buyer obtains a

positive payoff if he buys any fraction through a universal offer, so the standard Coasean

forces apply. For any m, as bargaining frictions vanish, the buyer purchases the whole

good from both types without delay and pays c.

In our second extension we assume that λ(·) is either constant or strictly decreasing,

which correspond, respectively, to constant gains from trade or increasing gains from

trade. In either of these cases divisibility plays no role: for any m the buyer only makes

offers (m, p) with p ≤ c in equilibrium. The equilibrium outcome is identical to the one in

DL. Intuitively, whenever the buyer is happy to pay the high-type seller’s cost for some

units, then he is also happy to pay that cost for subsequent units. As gains from trade

are constant or increasing, those subsequent units are at least as valuable as the previous

ones.

Consider the case with constant gains from trade: λ(z) = 1. Fix the number of units

m and the period length ∆. Let W(1, ·) and P(1, ·) be respectively the buyer’s normalized

payoff and the price function when one unit remains. These functions are as in DL, so

W(1, q) > 0 for every q ∈ [0, q̂]. Suppose that for every K ∈ {1, . . . , m} and for every

q ∈ [0, q̂], W(K, q) = KW(1, q) and P(K, q) = KP(1, q). Finally consider a belief q′ ∈ [0, q̂]

such that the buyer makes a screening offer at state (1, q′). Next, we show that it is not

optimal for the buyer to make a universal offer at any state (K, q′) with K ∈ {2, . . . , m}.

Assume towards a contradiction that it is optimal to make a universal offer for K− k units.

Then,

W(K, q′) = KW(1, q′) ≤ K− k
m

[(
q̂− q′

)
vL + (1− q̂) vH − (1− q′)c

]
+ δkW(1, q′)

<
K− k

m
[(

q̂− q′
)

vL + (1− q̂) vH − (1− q′)c
]
+ kW(1, q′)
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This in turn, implies that

W(1, q′) <
1
m
[(

q̂− q′
)

vL + (1− q̂) vH − (1− q′)c
]

which violates the assumption that a screening offer is optimal at state (1, q′). This argu-

ment directly implies Proposition 5.

PROPOSITION 5. CONSTANT GAINS FROM TRADE. When gains from trade are constant,

the buyer only makes screening offers in equilibrium.

An argument analogous to the one in the previous paragraphs extends the result in

Proposition 5 to the case of increasing gains from trade. We omit the proof here.28

7. Conclusion

In this paper we study bargaining over a divisible good. We characterize the limit equilib-

rium outcome as bargaining frictions vanish and the good becomes arbitrarily divisible.

Our model generates novel and testable predictions for dynamic markets with adverse

selection. When gains from trade are constant or increasing, the pattern of trade is identi-

cal to that of parties negotiating over an indivisible good. Time on the market is the main

signaling device and the buyer keeps some of his bargaining power. On the other hand,

when there are decreasing gains from trade, the high-quality good is traded smoothly

over time and the buyer loses all the bargaining power in the limit.

In this paper we first let the time between offers shrink to zero and we then let the

number of units grow to infinity. With this order of limits we can use an inductive ar-

gument on the number of remaining units and develop an algorithm that characterizes

the limit equilibrium outcome as bargaining frictions vanish. The tools developed in this

paper do not allow for a complete characterization of the pattern of trade if we instead in-

vert the order of limits. However, one of our main findings extends to that environment.

If we invert the order of limits, the number of transactions of the high-quality good must

28Further details on the cases of constant and increasing returns from trade can be found in an earlier
version of our paper available at https://www.carloalberto.org/wp-content/uploads/2018/11/no.312.pdf.
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also grow without bound. The intuition behind this is simple. Assume instead that in the

limit there is a finite number of transactions, and take the last transaction for a positive

fraction of the good. Consider the last impasse before this transaction.29 At this impasse,

the buyer’s payoff is zero and his belief is such that he breaks even if he makes a uni-

versal offer for the remaining fraction of the good. But then the buyer has a profitable

deviation; because of decreasing gains from trade, he obtains a positive payoff by making

a universal offer for less than the remaining fraction of the good.

Our model relies on some simplifying assumptions that make the analysis tractable.

First, we assume that the quality of the good can take only two values. Our results extend

to a model with finitely many types provided that the buyer’s valuation for a good of

any intermediate quality is sufficiently close to his valuation for the good of the highest

quality. Future research can shed further light on bargaining with divisibility and many

types.

Second, we assume that the buyer learns about the quality of the good only through

the seller’s behavior. This assumption is reasonable in a number of important applica-

tions. Moreover, our model represents a useful theoretical benchmark to study bargain-

ing over divisible objects. However, it would be interesting to extend the model to allow

for additional forms of learning: endogenous, for example, in the form of learning via the

consumption of parts of the good, or exogenous (as in Daley and Green [2012] and Da-

ley and Green [Forthcoming]). We leave the study of bargaining with learning for future

work, but conjecture that the driving forces behind our results would emerge even with

learning, leading to the gradual sale of the high-quality good.
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A. Proofs

A.1 Proof of Lemma 1

Proof. We show that (a) holds for the weaker solution concept of PBE. For any K ∈
{1, . . . , m} and for any PBE (σB, (σL, σH) , β), let HK (σB, (σL, σH) , β) denote the set of his-
tories ht with K(ht) = K and β(ht) = 0.

We show first that (a) holds when only one unit remains. Let ūL denote the supremum,
over all PBE (σB, (σL, σH) , β), of the low-type seller’s continuation payoff at histories ht ∈
H1 (σB, (σL, σH) , β). Assume towards a contradiction that ūL > 0 and take ε =

(
1−δ

2

)
ūL.

There must exist a PBE (σB, (σL, σH) , β) and a history h̄t ∈ H1 (σB, (σL, σH) , β) at which
the buyer offers ϕt = (1, p) for some p ∈ [ūL − ε, ūL]. The low-type seller must accept
this offer with probability one. To see why, notice that if the low-type seller rejects this
offer with positive probability, then

(
h̄t, (ϕt, R)

)
∈ H1 (σB, (σL, σH) , β) and therefore the

low-type seller’s continuation payoff is at most ūL. But then, since ūL − ε > δūL, it is not
optimal for the low-type seller to reject ϕt. For the same reason, the low-type seller must
accept the offer ϕ′t =

(
1, ūL − 3

2 ε
)

with probability one. Thus, the buyer has a profitable
deviation at h̄t since he strictly prefers the offer ϕ′t to ϕt.

We show next that (a) holds for any number of remaining units K. We proceed by
induction. Fix K ∈ {2, . . . , m} and assume that for any PBE (σB, (σL, σH) , β) and for
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any ht ∈ H1 (σB, (σL, σH) , β) ∪ . . . ∪ HK−1 (σB, (σL, σH) , β), the low-type seller”s continu-
ation payoff is zero. Again, let ūL denote the supremum, over all PBE (σB, (σL, σH) , β),
of the low-type seller’s continuation payoff at histories ht ∈ HK (σB, (σL, σH) , β). To-
wards a contradiction, assume that ūL > 0 and take ε =

(
1−δ

2

)
ūL. There must exist

a PBE (σB, (σL, σH) , β) and a history h̄t ∈ HK (σB, (σL, σH) , β) at which the buyer offers
ϕt = (k, p) for some p ∈ [ūL − ε, ūL] and some k ≤ K. Using the induction hypothesis
and an argument similar to the one presented in the previous paragraph, we conclude
that the low-type seller must accept this offer with probability one. However, the same is
true for the offer ϕ′t =

(
k, ūL − 3

2 ε
)

which is, therefore, strictly preferred to ϕt. Again, this
shows that the buyer has a profitable deviation at h̄t and concludes the proof of part (a)
of Lemma 1.

We show (b) by contradiction. Assume that there exist two histories ht and h̃t′ with
the same state variables but with VB(ht) < VB

(
h̃t′
)

. The buyer then has a profitable

deviation after history ht. He can choose the same actions as he chooses after history h̃t′ .
Since the seller’s strategy depends only on state variables, then he reacts as he does after
history h̃t′ , and so the buyer’s continuation payoff increases.

We show (c) by contradiction. Assume instead that there is a history ht where the
high-type seller obtains a positive continuation payoff: VH(ht) > 0. Over all histories
with positive continuation payoffs, pick those with the smallest number of remaining
units K = min

{
K(ht) : VH(ht) > 0

}
. Let α = sup

{
VH(ht) : K(ht) = K

}
denote an upper

bound for the high-type seller’s continuation payoff when only K units remain. Finally,
let ε ≡ (1− δ)α/3.

There must exist a history ht with K(ht) = K at which the buyer makes an offer (k, p)
that the high-type seller accepts, and the offer satisfies 1 ≤ k ≤ K and p > c

m k+ α− ε. This
in turn implies that the low-type seller also accepts this offer (otherwise, by Lemma 1(a),
he gets a total payoff of zero). Consider instead the following deviation by the buyer; he
offers

(
k, c

m k + α− ε
)
. If the high-type seller rejects this offer, he obtains a continuation

payoff of at most δα < α− ε, so he accepts it. For the same reason as above, the low-type
seller also accepts this offer. Both the original offer and the deviation lead to the same
state variables, and therefore to the same continuation payoff to the buyer, as shown in
Lemma 1(b). This implies that the deviation is profitable. This shows part (c) of Lemma 1.

Consider next part (d) of Lemma 1. Whenever β(ht) = 0, the result follows imme-
diately from Lemma 1(a). Otherwise, the zero bound on the continuation payoff for the
high type seller directly implies a c

m K(ht) upper bound for the continuation payoff for the
low-type seller. �

A.2 Proof of Lemma 2

Proof. In the case β(ht) = 0 all units are traded in the first period (this follows immediately
from Lemma 1(a)). Assume instead that β(ht) > 0 and consider an offer ϕt = (k, p)
with k < K(ht) and p < c

m k. We show that such an offer is not accepted with positive
probability. By contradiction, assume that this offer is accepted with positive probability.
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A high-type seller would never accept such an offer, so it must be the low-type seller who
accepts this offer with probability σt

L(h
t, ϕt) > 0.

A rejection then leads to a posterior β′ ∈
(

β(ht), 1
)
. Whenever the low-type seller

accepts, the buyer immediately learns that the seller is of low type. Then, in the following
period all remaining units are traded, at zero cost. The buyer obtains the following payoff
from this offer:

[1− β(ht)]σt
L(h

t, ϕt)

 K(ht)

∑
s=K(ht)−k+1

Λm
s vL − p + δ

K(ht)−k

∑
s=1

Λm
s vL


+
[
1− β(ht)

(
1− σt

L(h
t, ϕt)

)]
VL(β′, K)

Consider instead an offer to pay p in exchange for all remaining units. If the low-type
seller accepts, he obtains the same payoff as from accepting the previous offer. Moreover,
because of stationarity, a rejection leads to the same belief β′ as before. Then, the low-
type seller accepts this offer with the same probability as the previous offer. The buyer,
however, obtains the following higher payoff from this offer:

[1− β(ht)]σt
L(h

t, ϕt)

 K(ht)

∑
s=K(ht)−k+1

Λm
s vL − p +

K(ht)−k

∑
s=1

Λm
s vL


+
[
1− β(ht)

(
1− σt

L(h
t, ϕt)

)]
VL(β′, K)

Then, if an offer for k < K(ht) remaining units was accepted with positive probabil-
ity, the buyer would rather make an offer for all remaining units, so there would be a
profitable deviation. �

A.3 Proof of Proposition 1

The proof is divided in three parts. In Part A we define the notion of a consistent quadru-
plet (VL, P, W, y) of intertwined functions. We show that whenever a consistent quadru-
plet (VL, P, W, y) exists, then a stationary PBE must exist. Our proof is constructive: we
derive equilibrium strategies and beliefs from the consistent quadruplet. In Part B we
construct a consistent quadruplet (VL, P, W, y). In Part C we show that for generic pa-
rameters all equilibria are outcome equivalent to the one constructed in Parts A and B.
We present Part C in Section T.1 of the Technical Addendum.

Part A. The consistent quadruplet (VL, P, W, y)

We first describe the components of the quadruplet (VL, P, W, y). The function VL(K, q) :
{1, . . . , m} × [0, q̂]→ R determines the strategy of the low-type seller, as described in the
definition of stationary PBE. The function P(K, q) : {1, . . . , m}× [0, q̂]→ R pins down the
screening offer (K, P(K, q)) that induces (transformed) posterior belief q if rejected. The
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function W(K, q) : {1, . . . , m} × [0, q̂] → R represents the buyer’s (normalized) continua-
tion payoff. Finally, the function y(K, q) : {1, . . . , m}× [0, q̂]→ {1, . . . , m} ∪ [0, q̂] specifies
the offers that the buyer makes on the equilibrium path.

Part A contains four steps. The first three define the notion of a consistent quadruplet
(VL, P, W, y). In step 1 we derive the function P from the function VL. In step 2 we turn to
the buyer’s optimization problem. We take as given the behavior of the low-type seller,
which is summarized by P. We define the buyer’s value function W and his best response
correspondence. From this best response correspondence, in step 3 we select the offer
y(K, q) that the buyer makes in state (K, q). We construct a candidate value function V ′L
for the low-type seller from the functions y and P. Finally, we say that the quadruplet
(VL, P, W, y) is consistent if V ′L = VL.

In step 4 we construct strategies from the consistent quadruplet (VL, P, W, y) and show
that these strategies (together with appropriate beliefs) form a stationary PBE.

Step 1. From VL to P. Consider a (left-continuous) candidate function VL with 0 ≤
VL(K, q) ≤ c

m K for all (K, q). This function determines the low-type seller’s behavior,
following the definition of stationary PBE.30 This same definition also pins down the high-
type seller behavior: he accepts any offer for k units if and only if he receives in exchange
a payment greater or equal than c

m k.
We study the buyer’s best response to the seller’s behavior implied by VL(K, q). We

can restrict attention to two types of offers: universal and screening. Universal offers
are simple: the buyer offers a payment c

m k for some (or all) remaining units k ≤ K, both
sellers accept and beliefs do not change.

Screening offers involve both a price and a transformed posterior belief. A price in-
duces a probability of acceptance, which in turn leads to a transformed posterior belief af-
ter the offer is rejected. As we show below, different prices may induce the same posterior.
Moreover, there may be some posteriors that no price can induce. We define a modified
problem where the buyer who starts a period with a (transformed) belief q ∈ [0, q̂] can in-
duce any (transformed) posterior belief q′ ∈ [q, q̂] by choosing a unique price P (K, q′). We
show in step 4 that solutions to the modified problem coincide with those of the original
one.

We first illustrate how we derive P(K, q) from VL(K, q) and then provide the formal
definition of P(K, q). Consider the function δVL(K, q) shown in Figure 5(a). It is simple to
see that the price P1 = δVL(K, q1) induces posterior belief q1. This is because the function
δVL(K, q) lies above P1 for posteriors greater than q1. In fact, obtaining P(K, q) would
be straightforward if VL(K, q) was continuous and strictly increasing. However, consider
for example posterior belief q2, which is induced by all prices in the range [P2, P3]. The
buyer’s preferred price in that range is the lowest: P2; and thus we set P(K, q2) = P2.

The set of induced beliefs may be non-convex. The price P4 induces posterior belief
q4, but no price induces posterior beliefs on the range [q3, q4). To restore convexity, in the
modified problem we allow the buyer to induce any belief q ∈ [q3, q4) by paying the price
P(K, q) = P4. Similarly, the buyer cannot induce posterior beliefs in the range (q4, q6).
We allow the buyer to induce any belief q ∈ (q4, q6) by paying the price P(K, q) = P5.

30The function VL(K, q) maps one-to-one to a function VL(K, β) : m × [β̂, 1] → R. The definition of
stationary PBE pins down the behavior of the low-type seller through the function VL(K, β).
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(b) The function P(K, q)

Figure 5: Derivation of P(K, q) from V(K, q)

Differently than before, P(K, q) < δVL(K, q) for the interval q ∈ (q4, q5].
Formally, we let P(K, q) be the largest weakly increasing function below δVL(K, q).

As an example, the dashed line in Figure 5(b) depicts the function P(K, q) derived from
δVL(K, q) in Figure 5(a). Whenever the buyer can induce a posterior q but cannot induce
posteriors in some range (q− η, q), our definition implies that P(k, q′) = δVL(K, q) for all
q′ ∈ (q− η, q). By doing so, the function P(K, q) becomes flat in some region. Claim 1 in
step 4 shows that the buyer never chooses interior points in flat regions, which guarantees
that the solutions to the modified problem coincide with those of the original one.

Step 2. From P to W. The buyer’s modified problem. We now formalize the buyer’s
(modified) dynamic optimization problem. With a slight abuse of notation, let VB(K, q)
denote the buyer’s continuation payoff when the state is (K, q). For convenience, we work
directly with the buyer’s normalized continuation payoff

W(K, q) ≡ (1− q)VB(K, q).

We set W(0, q) = 0 and

W(K, q̂) = (1− q̂)

[(
K

∑
s=1

Λm
s

)
vH −

c
m

K

]
.
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For all other cases, we define W(K, q) recursively by:

W(K, q) = max

{
max

q′∈[q,q̂]

(∗) Screening. Offer P(K, q′) for K units. If rejected, induced belief is q′︷ ︸︸ ︷(
q′ − q

) [( K

∑
s=1

Λm
s

)
vL − P(K, q′)

]
+ δW(K, q′) ,

max
0≤k≤K−1

{(
K

∑
s=k+1

Λm
s

)
[(q̂− q) vL + (1− q̂) vH]− (1− q)

c
m
(K− k) + δW(k, q)

}
︸ ︷︷ ︸

(∗∗) Universal offer. Request next K− k units in exchange for payment c
m (K− k)

}
(8)

The first component (∗) of equation (8) provides the continuation payoff when the
buyer induces belief q′ through a screening offer. The second component (∗∗) of equa-
tion (8) provides the continuation payoff when the buyer makes a universal offer for K− k
units. The buyer compares the value of the best screening offer (optimal q′) with the value
of the best universal offer (optimal k) to choose which kind of offer to make.31

Equation (8) defines the buyer’s modified problem. When the state is (K, q) with q ∈
[0, q̂) we allow the buyer to induce any state (K, q′) with q′ ≥ q by making the screening
offer (K, P (K, q′)). This includes states that cannot be reached in the original game, like
(K, q5) in Figure 5.

Let Y(K, q) denote the set of solutions to the problem in equation (8). A screening offer
that induces posterior q′ is of the form (K, P(K, q′)). When such offer is optimal, we let
q′ ∈ Y(K, q). A universal offer for K − k units is of the form

(
K− k, c

m (K− k)
)
. When

such offer is optimal, we let k ∈ Y(K, q).
Step 3. From P and W to y and V ′L. The notion of consistent quadruplet. We com-

bine the low-type seller’s behavior, implicit in P, with the buyer’s optimal behavior to
construct a candidate value function V ′L(K, q) for the low-type seller. Let V ′L(K, q) be de-
fined recursively by:

V ′L(K, q) = min
{

min
q′∈Y(K,q)

P
(
K, q′

)
, min

k∈Y(K,q)

c
m
(K− k) + δV ′L(k, q)

}
(9)

As equation (9) shows, we construct V ′L by always selecting the offer that minimizes
the low-type seller’s continuation payoff from all of the buyer’s optimal choices Y(K, q).
Let y(K, q) ∈ Y(K, q) denote the buyer’s choice that solves (9). There may be many so-
lutions to (9), but if so, one of them is universal.32 In such case, we let y(K, q) be the
universal offer associated to the lowest k.

Finally, we say that a quadruplet (VL, P, W, y) is consistent if its components are linked
as described in steps 1 to 3 and if the derived V ′L satisfies V ′L = VL.

Step 4. From the consistent quadruplet (VL, P, W, y) to a stationary PBE.

31The buyer’s continuation payoff is always positive, so his individual rationality constraint is satisfied.
To see this, note that the buyer can always choose q′ = q in equation (8).

32To see why, assume that P(K, q′) = P(K, q̃′) for q′ ∈ Y(K, q) and q̃′ ∈ Y(K, q). Since P(K, q) is weakly
increasing, then P(K, q) is constant between q′ and q̃′. But this cannot happen; Claim 1 shows that the buyer
never chooses interior points in flat regions of P(k, q).
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a. Definition of strategies and beliefs. Fix a consistent quadruplet (VL, P, W, y). Our
definition of stationary PBE, together with VL, fully pin down the seller’s strategy. Both
types accept with probability one any offer (k, p) with p ≥ c

m k. The high-type seller
rejects offers (k, p) with p < c

m k with probability one, while the low-type seller accepts
them with probability pinned down by VL.

We next specify the buyer’s strategy and beliefs. We first define for each t a set of
histories Ĥt that is not reached on the equilibrium path. We say that ht ∈ Ĥt whenever
ht contains either 1) a rejected offer (k, p) with p ≥ c

m k, or 2) an accepted partial offer.
Whenever ht ∈ Ĥt, we let the buyer assign probability zero to the seller being of high
type. Also, we let the buyer offer a payment of zero for all remaining units after any
history ht ∈ Ĥt.33

If instead ht 6∈ Ĥt, the buyer’s offer depends on the state
(
K(ht), q(ht)

)
and on the

actions (ϕt−1, at−1) in t− 1. The buyer’s strategy and beliefs are as follows:

1. If (ϕt−1, at−1) = ((k, p) , A) with p ≥ c
m k, then the belief is unchanged: q(ht) =

q(ht−1). The buyer makes the offer implied by y(K(ht), q(ht)).

2. If (ϕt−1, at−1) = ((k, p) , R) with p < c
m k, then

a. If p ≤ P
(
K(ht−1), q(ht−1)

)
, then the belief is unchanged: q(ht) = q(ht−1). The

buyer makes the offer implied by y(K(ht), q(ht)).

b. If p > P
(
K(ht−1), q(ht−1)

)
and p = P

(
K(ht−1), q)

)
for some q > q(ht−1), then

the belief q(ht) is given by the probability of acceptance implied in the defini-
tion of stationary PBE. The buyer makes the offer implied by y(K(ht), q(ht)).

c. If p > P
(
K(ht−1), q(ht−1)

)
and p 6= P

(
K(ht−1), q)

)
for all q > q(ht−1), then the

belief q(ht) is given by the probability of acceptance implied in the definition of
stationary PBE. The buyer randomizes among the elements of Y(K(ht), q(ht))
to rationalize the probability of acceptance of the low-type seller in t− 1.34

b. Verification that strategies and beliefs form a stationary PBE. The strategy of the
high-type seller is optimal. On-path, the buyer never pays more than c

m k for any k. Then,
it is optimal to accept any offer greater or equal than c

m k for any k and to reject otherwise.
The optimality of the low-type seller’s strategy follows from VL = V ′L. Assume that

the buyer and the seller follow the equilibrium strategies specified above. Then, in any

33The set Ĥt contains some but not all off-path histories. Below we specify the buyer’s strategy and
beliefs for all histories on path, and also for the remaining off-path histories.

34Supoose that p > P
(
K(ht−1), q(ht−1)

)
, p 6= P

(
K(ht−1), q)

)
for all q > q(ht−1) and that the new belief

is q(ht). Then, δVL
(
K(ht), q(ht)

)
< p < δ limq↓q(ht) VL

(
K(ht), q

)
. One element of Y

(
K(ht), q(ht)

)
yields

a continuation payoff of VL
(
K(ht), q(ht)

)
to the low-type seller, while another one yields a continuation

payoff of limq↓q(ht) VL
(
K(ht), q

)
to the low-type seller. In period t the buyer randomizes between these two

elements of Y
(
K(ht), q(ht)

)
so that the low-type seller’s continuation payoff in period t − 1 (if he rejects

the screening offer) is exactly p. Note that this implies that off-the-equilibrium path the low-type seller’s
continuation payoff may depend not only on the state but also on the offer in the previous period.
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on-path history ht with state (K, q) =
(
K(ht), q(ht)

)
the function VL(K, q) satisfies:

VL(K, q) =

{
c
m (K− k) + δVL(k, q) if y(K, q) = k
P (K, q′) = δVL (K, q′) if y(K, q) = q′

(10)

Equation (10) follows from the definition of V ′L in equation (9), the equality V ′L = VL,
the definition of P(K, q) and the fact that the buyer never chooses an induced posterior
in a flat region of P(K, q). Therefore, VL(K, q) is the on-path continuation payoff of the
low-type seller.

The low-type seller obtains a continuation payoff of zero if he rejects a universal offer.
The first line of equation (10) shows that he obtains a strictly positive payoff if he instead
accepts it. Then, it is optimal for the low-type seller to accept a universal offer.35 The sec-
ond line of equation (10) shows that the low-type seller is indifferent between accepting
and rejecting the screening offers that the buyer makes on path. Consider instead a buyer
who deviates and makes a partial offer (k, P(K, q′)) with k < K. If the low-type seller
accepts, he obtains P(K, q′) in the current period and zero from then on. If he instead
rejects, his continuation payoff is δVL (K, q′). Thus, the low-type seller is also willing to
randomize in this case.36

We construct the strategy of the buyer by choosing for every history ht elements from
the set Y

(
K(ht), q(ht)

)
of best responses in the modified problem. The difference between

the original and modified problem lies in the set of posteriors that screening offers can
induce. While in the modified problem the buyer can induce the whole set of posteriors
[q, q̂] at any state (K, q), the set of posteriors that he can induce in the original game may
be limited. Claim 1 shows that the best response correspondence Y (K, q) in the modified
problem only induces posteriors that are feasible in the original game.
CLAIM 1. THE BUYER NEVER CHOOSES A POSTERIOR IN A FLAT REGION OF P(K, ·). If
q′ ∈ Y(K, q), then P(K, q′′) > P(K, q′) for every q′′ > q′.
See Section T.2 of the Technical Addendum for the proof.

This proves that the strategy of the buyer is optimal.

Part B. Construction of the consistent quadruplet (VL, P, W, y)

We construct a consistent quadruplet (VL, P, W, y) through two processes of induction
(and a fixed point argument). In the base step of the first process of induction we construct
the quadruplet (VL(1, ·), P(1, ·), W(1, ·), y(1, ·)), which deals with the case when only one
unit remains. In the inductive step there are K units left, with 1 < K ≤ m. We assume
that the quadruplet (VL(k, ·), P(k, ·), W(k, ·), y(k, ·)) has already been constructed for all
k ∈ {1, . . . , K− 1} and construct the quadruplet (VL(K, ·), P(K, ·), W(K, ·), y(K, ·)).

The second process of induction is nested within the first one. We explain this process
in detail in steps 1 to 3 below. Let K be the number of remaining units and assume that
the quadruplet (VL(k, ·), P(k, ·), W(k, ·), y(k, ·)) has already been constructed for all k ∈

35For this same reason it is optimal for the low-type seller to accept any offer (k, p) with p > c
m k.

36The buyer could also deviate by making an offer (k, p) with k ≤ K and p 6= P(K, q′). The equilibrium
strategies that we define also guarantee that the low-type seller behaves optimally. We omit the details.
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{1, . . . , K − 1}. In the base step, we construct (VL(K, ·), P(K, ·), W(K, ·), y(K, ·)) for q ∈
[q, q̂] for some q̄ < q̂ (see step 1 below). In the inductive step (indexed by n), we assume
that the quadruplet (VL(K, ·), P(K, ·), W(K, ·), y(K, ·)) has already been constructed for
q ∈ [qn, q̂]. We extend (VL(K, ·), P(K, ·), W(K, ·), y(K, ·)) to q ∈ [qn+1, q̂] with qn+1 < qn
(we explain this in step 2a below). This inductive step involves a fixed point argument
that we describe in detail in step 2b. Finally, we show that in a finite number (ñ) of steps
qñ = 0 (step 3 below).

Step 1. Quadruplet in interval q ∈ [q, q̂]. Claim 2 describes the simple form that the
quadruplet (VL, P, W, y) takes when transformed beliefs are sufficiently close to q̂. The
intuition behind Claim 2 is simple. If the buyer is sufficiently convinced that the seller
is of high type, he is better off trading right away. He offers to pay the high type’s cost
in exchange for all remaining units. Both types accept and the game ends. This leads
directly to the quadruplet’s form in Claim 2.
CLAIM 2. There exists q < q̂, such that any consistent quadruplet (VL, P, W, y) must satisfy

VL(K, q) =
c
m

K,

P(K, q) = δ
c
m

K,

W(K, q) =
K

∑
s=1

Λm
s [(q̂− q) vL + (1− q̂) vH]− (1− q)

c
m

K > 0 and

y(K, q) = K

for every q ∈ [q, q̂] and for every K ∈ {1, . . . , m}.
Proof. Assume that there are K remaining units. A buyer who makes a screening offer

obtains a (normalized) continuation payoff bounded above by

(q̂− q)
K

∑
s=1

Λm
s vL + (1− q̂) δ

(
K

∑
s=1

Λm
s vH −

c
m

K

)
.

Moreover, for a sufficiently high q < q̂, the expression above is strictly smaller than

K

∑
s=1

Λm
s [(q̂− q) vL + (1− q̂) vH]− (1− q)

c
m

K

which represents the continuation payoff for the buyer when he makes a universal offer
for all remaining units. This continuation payoff is strictly positive for sufficiently high
q < q̂. This, in turn, implies that there exists q̄ < q̂ such that for any q ∈ [q̄, q̂] and for
any K ∈ {1, . . . , m}, screening offers are strictly dominated by a universal offer for all
remaining units, and this universal offer leads to strictly positive payoffs. Therefore, the
best universal offer is to buy all units immediately, which leads to the expressions for W
and y outlined above. These expressions, in turn, imply that VL and P are as above. �

Step 2. Extension of quadruplet from interval [qn, q̂] to interval q ∈ [qn+1, q̂]. The ex-
tension of the quadruplet consists of two sub-steps. In the first one (a), we only allow the
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buyer to make screening offers. We find an interval [qn+1, qn] where the optimal screening
offer induces posterior belief above qn. If universal offers were not allowed (i.e., if there
were only one unit left, as in DL), this would conclude the extension to [qn+1, qn]. In the
second sub-step (b), we give the buyer the possibility of making universal offers. This
modifies the low-type seller’s continuation payoff – and therefore the function P(K, ·) –
in the interval [qn+1, qn]. We allow the buyer to re-optimize, given the modified function
P(K, ·), which in turn changes the low-type seller’s continuation payoff. We continue this
process until we reach a fixed point.

a. Only screening offers. Fix the number of remaining units K. Assume that the
quadruplet (VL(k, ·), P(k, ·), W(k, ·), y(k, ·)) is already defined for all 1 ≤ k ≤ K − 1 and
that the quadruplet (VL(K, ·), P(K, ·), W(K, ·), y(K, ·)) is defined for q ∈ [qn, q̂].

We define two auxiliary value functions for the buyer that represent continuation pay-
offs from making screening offers. First, for q ∈ [0, qn] we let W I(K, q) represent the
buyer’s payoff from making a screening offer that leads to posterior q′ ≥ qn:

W I(K, q) = max
q′≥qn

(
q′ − q

) ( K

∑
s=1

Λm
s vL − P

(
K, q′

))
+ δW

(
K, q′

)
(11)

Let X(K, q) ∈ [qn, q̂] denote the set of solutions to the above maximization prob-
lem, and let x(K, q) and x(K, q) denote respectively the smallest and largest elements of
X(K, q).

Second, let PI(K, q) = δP (K, x(K, q)) denote an auxiliary pricing function for q ∈
[0, qn]. The function W I I(K, q) represents the buyer’s payoff from making a screening
offer

(
K, PI(K, q)

)
that leads to posterior q′ ∈ [q, qn] (and to a continuation payoff W I

afterwards):

W I I (K, q) = max
q′∈[q,qn]

(
q′ − q

) ( K

∑
s=1

Λm
s vL − PI (K, q′

))
+ δW I (K, q′

)
for q ∈ [0, qn]

Let the endpoint qn+1 be defined by qn+1 = max
{

q ∈ [0, qn] : W I(K, q) ≤W I I(K, q)
}

if the set is non-empty and qn+1 = 0 otherwise.
CLAIM 3. Endpoints are strictly decreasing: qn+1 < qn. Moreover, the continuation payoff
W I(K, q) is continuous and satisfies W I(K, q) > 0 for all q ∈ [qn+1, qn].

Proof. The continuation payoff W I(K, qn) is strictly positive because it is bounded
below by δW(K, qn) > 0. By definition, W I I(K, qn) = δW I(K, qn), and so W I I(K, qn) <
W I(K, qn). Finally, the theorem of the maximum guarantees that the functions W I(K, ·)
and W I I(K, ·) are continuous. Therefore, qn+1 < qn. Next, by definition, for any q ∈
(qn+1, qn], we have W I(K, q) > W I I(K, q) ≥ δW I(K, q). Thus, for any q ∈ (qn+1, qn], we
have W I(K, q) > 0. It only remains to be shown that W I(K, qn+1) > 0, which we do in
Section T.3 of the Technical Addendum. �

b. Fixed Point. We define a sequence of quadruplets{(
V `L(K, ·), P`(K, ·), W`(K, ·), y`(K, ·)

)}
`=1,2,...

for the interval [qn+1, q̂].
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The first element of the sequence is as follows. For q ∈ (qn, q̂], we set(
V1

L(K, q), P1(K, q), W1(K, q), y1(K, q)
)
=
(
VL(K, q), P(K, q), W(K, q), y(K, q)

)
.

For q ∈ [qn+1, qn] we instead set

W1(K, q) = max

{
W I(K, q),

max
0≤k≤K−1

{
K

∑
s=k+1

Λm
s [(q̂− q) vL + (1− q̂) vH]− (1− q)

c
m
(K− k) + δW(k, q)

}}

and we let y1 (K, q) be the solution that gives the lowest continuation payoff to the low-
type seller.37 The screening offer in W I leads to a state (K, q′) with q′ ≥ qn. The contin-
uation payoff VL(K, q′) is already defined for this state. Similarly, a universal offer leads
to a state (k, q) with k < K, for which the continuation payoff VL(k, q) is already defined.
Thus, we extend V1

L(K, ·) to the interval [qn+1, qn] as follows:

V1
L(K, q) =

{
δVL (K, q′) if y1(K, q) = q′
c
m (K− k) + δVL (k, q) if y1(K, q) = k

Finally, in the interval [qn+1, qn], we define P1(K, ·) to be the largest weakly increasing
function below δV1

L (K, ·).
We define the remaining elements of the sequence of quadruplets recursively. For any

` ≥ 1, we define the `+ 1’th element of the sequence as follows. First, we set

W`+1(K, q) = max

{
max

q′∈[q,q̂]

(
q′ − q

) [( K

∑
s=1

Λm
s

)
vL − P`(K, q′)

]
+ δW`(K, q′),

max
0≤k≤K−1

{(
K

∑
s=k+1

Λm
s

)
[(q̂− q) vL + (1− q̂) vH]− (1− q)

c
m
(K− k) + δW(k, q)

}}
.

Next, we let y`+1 (K, q) be the solution to the above problem that gives the lowest
continuation payoff to the low-type seller. Denote that continuation payoff by V `+1

L (K, q).
Finally, let P`+1 (k, ·) be the largest weakly increasing function below δV`+1

L (K, ·).
CLAIM 4. There exists `∗ such that(

V `∗L (K, ·), P`∗(K, ·), W`∗(K, ·), y`
∗
(K, ·)

)
=
(
V `∗+1

L (K, ·), P`∗+1(K, ·), W`∗+1(K, ·), y`
∗+1(K, ·)

)
.

37As in Step 3 of Part A, whenever there are many solutions with the same continuation payoff, then
there must exist at least one that implies a universal offer

(
K− k, c

m (K− k)
)
. Of all such universal offers,

we pick the one with the lowest k.
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Proof. For every q ≥ qn+1 and for every ` > 1, W`(k, q) ≥ W1(k, q) > 0. Then, there
exists η > 0 such that for q ∈ [qn+1, qn] and for every ` > 1, W`(k, q) > η.

If the claim fails, for any positive integer T there exist `, q ∈ [qn+1, qn), and a sequence
{qτ}T

τ=0 with q0 = q, qT < q + 1
T and y`(K, qτ−1) = qτ for all τ ∈ {1, . . . , T}. The buyer’s

continuation payoff W`(K, q) is bounded above:

W`(K, q) <
(

1
T
+ δT

) K

∑
s=1

Λm
s vH

Finally, pick T so that (
1
T
+ δT

) K

∑
s=1

Λm
s vH < η.

But W`(K, q) > η, so we have reached a contradiction. �

At the end of the n’th inductive step, the quadruplet is already defined for q ≥ qn.
We extend the quadruplet to q ∈ [qn+1, qn) by setting it equal to the fixed point defined
above:

(VL(K, q), P(K, q), W(K, q), y(K, q)) =
(
V `∗L (K, q), P`∗(K, q), W`∗(K, q), y`

∗
(K, q)

)
.

Step 3. Extension to interval [0, q̂] takes finitely many steps. In the last step of the
construction, we show that it takes finitely many steps to extend the quadruplet to the
whole interval [0, q̂].
CLAIM 5. There exists ñ so that qñ = 0.
See Section T.4 of the Technical Addendum for the proof.

Finally, note that W(K, q) > 0 for every (K, q). Thus it is never optimal for the buyer
to make two consecutive universal offers. Formally, if k ∈ Y(K, q) for some (K, q), then
k′ 6∈ Y(k, q). Assume towards a contradiction that k ∈ Y(K, q) and k′ ∈ Y(k, q). Then,

W(K, q) =

(
K

∑
s=k+1

Λm
s

)
[(q̂− q) vL + (1− q̂) vH]− (1− q)

c
m
(K− k) + δW(k, q)

<

(
K

∑
s=k+1

Λm
s

)
[(q̂− q) vL + (1− q̂) vH]− (1− q)

c
m
(K− k) + W(k, q)

=

(
K

∑
s=k′+1

Λm
s

)
[(q̂− q) vL + (1− q̂) vH]− (1− q)

c
m
(K− k′) + δW(k′, q)

This shows that, at state (K, q), the buyer strictly prefers to make a universal offer for
K− k′ units, instead of making one for K− k units. Thus, k 6∈ Y(K, q). �
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A.4 Convergence as bargaining frictions vanish

LEMMA 3. CONVERGENCE AS BARGAINING FRICTIONS VANISH. Fix m.

(a) Consider an arbitrary sequence of vanishing frictions {∆n}∞
n=1 → 0. The associated se-

quences
{

K∆n
m (·)

}∞

n=1
,
{

q∆n
m (·)

}∞

n=1
,
{{

P∆n
m (K, ·)

}m

K=1

}∞

n=1
and

{{
W∆n

m (K, ·)
}m

K=1

}∞

n=1
have subsequences that converge pointwise.

(b) There exist functions Km(·), qm(·), {Pm(K, ·)}m
K=1 and {Wm(K, ·)}m

K=1 such that for any

sequence of vanishing frictions {∆n}∞
n=1 → 0, the associated sequences

{
K∆n

m (·)
}∞

n=1
,{

q∆n
m (·)

}∞

n=1
,
{{

P∆n
m (K, ·)

}m

K=1

}∞

n=1
and

{{
W∆n

m (K, ·)
}m

K=1

}∞

n=1
converge pointwise to

Km(·), qm(·), {Pm(K, ·)}m
K=1 and {Wm(K, ·)}m

K=1, respectively, except for finitely many
points.38

Proof of part (a). For any ∆ > 0, the functions K∆
m(·) and q∆

m(·) are monotonic in time
elapsed τ and the function P∆

m(K, ·) is monotonic in q for all K ∈ {1, . . . , m}. Therefore,
they all have bounded variation. Moreover, all these functions are bounded above and
below by bounds that do not depend on ∆. By Helly’s First Theorem (Theorem 6.1.18

in Kannan and Krueger [1996]),
{

K∆n
m (·)

}∞

n=1
,
{

q∆n
m (·)

}∞

n=1
and

{{
P∆n

m (K, ·)
}m

K=1

}∞

n=1
all

have subsequences that converge pointwise.

Fix K ∈ {1, . . . , m}. The functions
{

W∆n
m (K, ·)

}∞

n=1
are uniformly equicontinuous since

they all have the same Lipschitz constant vH ∑K
s=1 Λm

s . They are also uniformly bounded.

Then, the Arzelà-Ascoli Theorem guarantees that
{

W∆n
m (K, ·)

}∞

n=1
has a subsequence that

converges uniformly. �

Proof of part (b). In Proposition 2 we show that all convergent sequences
{

K∆n
m (·)

}∞

n=1
,{

q∆n
m (·)

}∞

n=1
,
{{

P∆n
m (K, ·)

}m

K=1

}∞

n=1
and

{{
W∆n

m (K, ·)
}m

K=1

}∞

n=1
have the same limit. �

A.5 Proof of Proposition 2

In this proof we introduce an algorithm that characterizes the limit equilibrium outcome
as bargaining frictions vanish.39 Proposition 2 follows immediately from this characteri-
zation.

We consider a sequence of vanishing bargaining frictions {∆n}∞
n=1 → 0 with associ-

ated sequences
{{

P∆n
m (K, ·)

}m

K=1

}∞

n=1
,
{{

W∆n
m (K, ·)

}m

K=1

}∞

n=1
and

{(
K∆n

m (·), q∆n
m (·)

)}∞

n=1

38The finitely many points where pointwise convergence may not occur correspond to impasses. At any
impasse at state (K, q), P−m (K, q) and P+

m (K, q) are well defined. We set Pm(K, q) = P+
m (K, q). This is without

loss of generality, as the limit equilibrium outcome as bargaining frictions vanish does not depend on this
choice.

39We do this for generic values of the parameters (see Remark 1 for details).
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that converge pointwise, by Lemma 3(a). We characterize the limits of these associated
sequences, which we denote by {Pm(K, ·)}m

K=1, {Wm(K, ·)}m
K=1 and (Km(·), qm(·)).

We describe both on-path and off-path behavior: we specify how quantities and be-
liefs evolve starting from any state (K, q). We let Km (τ; (K, q)) and qm (τ; (K, q)) denote
respectively the number of remaining units and the belief at time elapsed τ if the starting
state at time elapsed zero is (K, q).40 The on-path limit equilibrium outcome as bargaining
frictions vanish (Km (τ) , qm (τ)) then corresponds to (Km (τ; (m, 0)) , qm (τ; (m, 0))).

Our algorithm proceeds by induction. In each step we characterize the limit functions
{Pm(K, ·)}m

K=1, {Wm(K, ·)}m
K=1 and (Km(·), qm(·)) for different subsets of the state space

{1, . . . , m} × [0, q̂]. In the base step (j = 0), we identify a candidate impasse (k1, q1) =
(1, q̄m(1)). We characterize the limit functions for all states (1, q) with q < q1 (Claim 6)
and for all states (K, q) with q ≥ q1 (Claim 7). At each (non-final) step j ≥ 1 of the
inductive process we identify a candidate impasse (k j+1, qj+1) with k j+1 > k j and qj+1 <
qj. Claims 8, 9 and 10 characterize the limit functions for all states (K, q) with either 1)
K ∈ {k j + 1, . . . , k j+1} and q ∈ [0, qj), or 2) K ∈ {k j+1 + 1, . . . , m} and q ∈ [qj+1, qj).
In particular, these claims show that the candidate impasse (k j, qj) is reached from the
candidate impasse (k j+1, qj+1).

The algorithm ends after finitely many steps with a characterization of the limit func-
tions for the whole state space {1, . . . , m} × [0, q̂] and with a collection

{
(k j, qj)

}J
j=1 of J

candidate impasses. All candidate impasses are on-path: the limit equilibrium outcome
as bargaining frictions vanish consists of a sequence of phases of fast trade and impasses
summarized by

{
(k j, qj)

}J
j=1.

The base step (j = 0)

In the base step we obtain the first candidate impasse (k1, q1) = (1, q̄m(1)). Claim 6
shows that the candidate impasse (1, q̄m(1)) is reached without delay starting from any
state (1, q) with q < q̄m(1).
CLAIM 6. For all q < q̄m(1), we have

Pm(1, q) =
(
Λm

1 vL
)2

c/m
,

Wm(1, q) = (q̄m(1)− q) (Λm
1 vL)

(
1−

Λm
1 vL

c/m

)
and

(Km (τ; (1, q)) , qm (τ; (1, q))) =

{
(1, q̄m(1)) if τ ≤ τ1

(0, q̂) if τ > τ1
with τ1 =

2
r

ln
(

c/m
Λm

1 vL

)
.

The proof of Claim 6 is in DL, so we omit it.
Claim 7 shows that starting at any state (K, q) with K ∈ {1, . . . , m} and q ∈ [q̄m(1), q̂],

the game ends without delay.

40As in the main body of the paper, these functions are left-continuous in τ. These functions are uniquely
identified at all states, except at finitely many states, which correspond to (on- and off-path) impasses. For
these states, the functions Km (τ; (K, q)) and qm (τ; (K, q)) reflect the evolution after the impasse is resolved.
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CLAIM 7. For all (K, q) with K ∈ {1, . . . , m} and q ∈ [q̄m(1), q̂] we have

Pm(K, q) = K
c
m

,

Wm(K, q) = (q̂− q)

(
K

∑
s=1

Λm
s vL − K

c
m

)
+ (1− q̂)

(
K

∑
s=1

Λm
s vH − K

c
m

)
and

(Km (τ; (K, q)) , qm (τ; (K, q))) = (0, q̂) ∀τ ≥ 0.

Proof. At all states (K, q) with K ∈ {1, . . . , m} and q ∈ [q̄m(1), q̂], except for (1, q̄m(1)),
the buyer can guarantee a strictly positive continuation payoff by making a universal offer
for K units. Thus, as described in section 5.1.1, the game ends without delay. The low-type
seller can always mimic the high-type seller’s behavior. Therefore, as bargaining frictions
vanish, the price that the low-type seller is willing to accept for K units must converge to
K c

m . Then, the function Pm(1, ·) is discontinuous at (1, q̄m(1)). We assign Pm(1, q̄m(1)) =
P+

m (1, q̄m(1)). We do the same with the outcome (Km (τ; (1, q̄m(1))) , qm (τ; (1, q̄m(1)))), i.e.
we take the limit from the right. In this way, these functions evaluated at (1, q̄m(1)) reflect
what happens right after the impasse (1, q̄m(1)) is resolved. We follow this convention
also for the next impasses. �

The algorithm then continues to the first inductive step (j = 1).

The inductive step (j ≥ 1)

The previous step j− 1 provides a (candidate) impasse (k j, qj) of length τj. The impasse
(k j, qj) satisfies q̄m(k j + 1) < qj and k j < m. All previous steps together provide a char-
acterization of the limit functions for all states (K, q) with either K ≤ k j, or q ≥ qj, or
both.

As we do in the main body of the paper, throughout this proof we focus on the “limit
game” in the sense that the low-type seller’s behavior is summarized by the limit function
Pm(·, ·). We consider a simple course of action that brings the buyer from any state (K, q)
with K ∈ {k j + 1, . . . , m} and q ∈ [0, qj] to the impasse (k j, qj). The buyer first makes
the universal offer

(
K− k j, c

m (K− k j)
)

and then the screening offer
(
K, P−m (k j, qj)

)
. The

function W(K, q) : {k j + 1, . . . , m} × [0, qj] → R, defined in equation (12), denotes the
buyer’s (normalized) payoff from following this simple course of action.

W(K, q) ≡ (q̂− q)

 K

∑
s=kj+1

Λm
s vL − (K− k j)

c
m

+ (1− q̂)

 K

∑
s=kj+1

Λm
s vH − (K− k j)

c
m


+
(
qj − q

)  kj

∑
s=1

Λm
s vL − P−m

(
k j, qj

) (12)

58



REMARK 1. The following two conditions hold for generic values of the parameters:

W (K, 0) 6= 0 for all K ∈ {k j + 1, . . . , m} (13a)

W (K, q̄m(K)) 6= 0 for all K ∈ {k j + 1, . . . , m} (13b)

Throughout this proof we restrict attention to parameters that satisfy these two condi-
tions.

The function W(·, ·) satisfies W(K, qj) > 0 because q̄m(K) ≤ q̄m(k j + 1) < qj. More-
over, W(·, 0) is strictly decreasing in K. Given the genericity condition (13a), we next
let

k =

{
max

{
K ∈ {k j + 1, . . . , m} :W(K, 0) > 0

}
ifW(k j + 1, 0) > 0

k j ifW(k j + 1, 0) < 0

We split the remainder of the inductive step into two parts, a and b. If k = m, the
algorithm proceeds with part a and then ends. If k j < k < m, the algorithm proceeds first
with part a and then with part b. If k = k j, the algorithm skips part a and moves directly
to part b. Throughout the description of these two parts, we refer to Figure 6 to facilitate
their exposition.

q̂

1

q̄m(1)qj

...

k j

k j + 1

...

k
k + 1

...

k = k j+1

k + 1

...

m

q̌(k + 1) . . . q̌(k) = qj+1

Notes: The green circle at state (k j, qj) denotes the candidate impasse from the previous
step j − 1. Thick green lines represent states (K, q) with W(K, q) > 0, while thick blue
lines represent states (K, q) with W(K, q) < 0. Dashed black arrows illustrate transitions
without delay. Filled circles represent on-path impasses, while empty circles represent off-
path impasses.

Figure 6: The inductive step (j ≥ 1) of the algorithm
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Part a. In this part we characterize the equilibrium outcome for all states (K, q) with
K ∈

{
k j + 1, . . . , k

}
and q ∈ [0, qj). At any such state, the buyer can guarantee a positive

continuation payoff by following the simple course of action described above. We repre-
sent this area of the state space with thick green lines in Figure 6. We show in Claim 8
how starting an any state (K, q) with K ∈

{
k j + 1, . . . , k

}
and q ∈ [0, qj), the state (k j, qj) is

reached without delay. The state remains there for time elapsed τj, i.e. there is an impasse
of length τj at state (k j, qj). After the impasse is resolved, the evolution of the number of
remaining units and of beliefs is as specified in the previous step of the induction process.
CLAIM 8. For all K ∈ {k j + 1, . . . , k} and for all q ∈ [0, qj) we have:

Pm(K, q) = (K− k j)
c
m

+ P−m
(
k j, qj

)
Wm(K, q) =W(K, q)

(Km (τ; (K, q)) , qm (τ; (K, q))) =

{(
k j, qj

)
if τ ≤ τj(

Km
(
τ − τj; (k j, qj)

)
, qm

(
τ − τj; (k j, qj)

))
if τ > τj

See Section T.5 of the Technical Addendum for the proof.
If k = m, then (k j, qj) is the first impasse and the algorithm ends. Otherwise, the

algorithm proceeds to part b.
Part b. We first let41

k = max {K ∈ {k + 1, . . . , m} :W (K, q̄m(K)) > 0} .

Furthermore, for all K ≥ k + 1 we let q̌(K) ∈ (0, qj) be defined byW(K, q̌(K)) = 0. In this
part we derive the functions of interest for all states (K, q) with either 1) K ∈ {k+ 1, . . . , k}
and q < qj or 2) K > k and q ∈ [q̌(k), qj). To do so, we first prove the following fact.
FACT 1. The following inequalities hold:

∂W(K, q)
∂q

= (K− k j)
c
m

+ P−m
(
k j, qj

)
−

K

∑
s=1

Λm
s vL > 0 ∀ K > k (14a)

q̄m(k + 1) < q̌(k) < q̄m(k) (14b)

q̌(k + 1) < q̌(k + 2) < · · · < q̌(k− 1) < q̌(k) (14c)

where if k = m, replace (14b) by q̌(k) < q̄m(k).
Proof. First, for (14a), note thatW(K, 0) < 0 andW(K, qj) > 0 for all K > k. Moreover,

W(K, q) is linear in q. Thus,W(K, q) is strictly increasing in q for all K > k.42 Second, for
(14b), note that by the definition of k,W

(
k, q̄m(k)

)
> 0. SinceW(K, q) is strictly increas-

41This definition of k is equivalent to the one suggested in Section 5.1.2: k is the lowest K such that
q̄m (K + 1) < q̌(K) < q̄m(K).

42The strict monotonicity ofW(K, q) together with the equalityW (K, q̄m(K)) =W (K− 1, q̄m(K)) imply
thatW (K, q̄m(K)) > 0 for all K ∈ {k + 1, . . . , k}. Furthermore, q̌(K) < q̄m(K + 1) for all K ∈ {k + 1, . . . , k−
1}.
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ing, then q̌(k) < q̄m(k). If k = m, this finishes the proof of (14b). Otherwise, note that the
definition of k (and the genericity condition (13b)) imply thatW

(
k + 1, q̄m(k + 1)

)
< 0.

SinceW
(

k + 1, q̄m(k + 1)
)
=W

(
k, q̄m(k + 1)

)
, then q̄m(k+ 1) < q̌(k). Finally, regarding

equation (14c), note that:

W(K, q) =W(K− 1, q) + (q̂− q)
[
Λm

K vL −
c
m

]
+ (1− q̂)

[
Λm

K vH −
c
m

]
Then, W(K, q) ≥ W(K − 1, q) ⇔ q ≥ q̄m(K). Suppose that q̌(K) < q̄m(K). Then, 0 =
W(K, q̌(K)) <W(K− 1, q̌(K)) and so q̌(K− 1) < q̌(K). Since, q̌(k) < q̄m(k), an inductive
argument shows equation (14c). �

The buyer can guarantee a positive continuation payoff at any state (K, q) with K ∈
{k + 1, . . . , k} and q ∈ (q̌(K), qj). This follows directly from the definition of q̌(·). The
buyer can also guarantee a positive continuation payoff at any state (K, q) with K ∈ {k +
1, . . . , m} and q ∈ [q̌(k), qj). This follows from the first inequality in equation (14b) and
the fact that q̄m(·) is strictly decreasing in K. We represent these areas of the state space
with thick green lines in Figure 6. As in Claim 8, starting from any state (K, q) with
W(K, q) > 0, the state (k j, qj) is reached without delay and an impasse of length τj occurs.
Claim 9 summarizes these findings.43 We omit the proof of Claim 9 since it is analogous
to that of Claim 8.
CLAIM 9. For all (K, q) with either 1) K ∈

{
k + 1, . . . , k

}
and q ∈

[
q̌(K), qj

)
or 2) K ∈{

k + 1, . . . , m
}

and q ∈
[
q̌(k), qj

)
we have

Pm(K, q) = (K− k j)
c
m

+ P−m
(
k j, qj

)
,

Wm(K, q) =W(K, q) and

(Km (τ; (K, q)) , qm (τ; (K, q))) =

{(
k j, qj

)
if τ ≤ τj(

Km
(
τ − τj; (k j, qj)

)
, qm

(
τ − τj; (k j, qj)

))
if τ > τj.

Claim 10 completes the description of the limit functions in the inductive step. States
(K, q) with K ∈ {k + 1, . . . , k} and q < q̌(K) have W(K, q) < 0. We represent these
states with thick blue lines in Figure 6. Claim 10 shows that starting from any such (K, q),
the state shifts without delay to (K, q̌(K)), where an impasse of length ρ(K) occurs. The
reason behind this impasse is that the function Pm(K, ·) must be discontinuous at q̌(K)
for any K ∈ {k + 1, . . . , k}. If it were continuous, the buyer’s continuation payoff would
be negative at states (K, q) with q close (and to the left) of q̌(K). This impasse makes the
price P−m (K, q̌(K)) low enough so that the buyer finds it optimal to move to state (K, q̌(K))
without delay.

43In Claim 10 we show that there is a (potentially off-path) impasse at every state (K, q̌(K)) with K ∈{
k + 1, . . . , k

}
. Following the convention established in Claim 7, the limit functions evaluated at (K, q̌(K))

reflect the outcome after the impasse is resolved.
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CLAIM 10. For all (K, q) with K ∈ {k + 1, . . . , k} and q ∈ [0, q̌(K)) we have:

Pm(K, q) =

(
∑K

s=1 Λm
s vL

)2

(K− k j)
c
m + P−m

(
k j, qj

) ,

Wm(K, q) = (q̌(K)− q)

(
K

∑
s=1

Λm
s vL

)(
1− ∑K

s=1 Λm
s vL

(K− k j)
c
m + P−m

(
k j, qj

))

and

(Km (τ; (K, q)) , qm (τ; (K, q))) =


(K, q̌(K)) if τ ≤ ρ(K)(

Km (τ − ρ(K); (K, q̌(K))) ,

qm (τ − ρ(K); (K, q̌(K)))
) if τ > ρ(K)

with ρ(K) =
2
r

log

 (K− k j)
c
m + P−m (k j, qj)(

∑K
s=1 Λm

s

)
vL

 .

We finally describe how the inductive step concludes. We let
(
k j+1, qj+1

)
=
(

k, q̌
(

k
))

and τj+1 = ρ
(
k
)
. If k < m, then the algorithm proceeds to the next inductive step. If

k = m, then the algorithm ends. Since m is finite, the algorithm ends in finitely many
steps.

When the algorithm ends, it provides a collection
{
(k j, qj)

}J
j=1 of candidate impasses

and a complete characterization of the limit functions. The last inductive step shows that
starting at the initial state (m, 0), the state (k J , qJ) is reached without delay and an impasse
of length τJ ensues. Each inductive step shows how after the impasse in state (k j, qj)
is resolved, the state shifts without delay to (k j−1, qj−1), where an additional impasse
of length τj−1 occurs. The base step shows that the game ends after the last impasse
(1, q̄m(1)) is reached.

To sum up, all impasses in
{
(k j, qj)

}J
j=1 occur on-path.44 Thus, the limit equilibrium

outcome as bargaining frictions vanish consists of a sequence of phases of fast trade an
impasses characterized by

{
(k j, qj)

}J
j=1. �

A.6 Proof of Proposition 3

We first show equation (6d). We then proceed with the proof of equation (6b), which is
the most involved part of the proof of Proposition 3 and includes several steps. We finally
show how the remaining equations in Proposition 3 follow from equations (6b) and (6d).

Proof of equation (6d). Any impasse (km
j , qm

j ) must satisfy q̄m(km
j + 1) < qm

j < q̄m(km
j )

(see Proposition 2). Together with the definitions of q̄(·) and q̄m(·), and replacing zm
j =

44All other impasses identified in Claim 10 in each inductive step are off-path.

62



km
j /m when needed, this implies

q̄
(

zm
j +

1
m

)
= q̄

(
km

j + 1

m

)
< q̄m(km

j + 1) < qm
j < q̄m(km

j ) < q̄

(
km

j − 1

m

)
= q̄

(
zm

j −
1
m

)

Notice that
∣∣∣ dq̄(z)

dz

∣∣∣ is bounded by some constant ρ̌ < ∞ (because dλ(·)
dz is continuous). Thus,∣∣∣qm

j − q̄(zm
j )
∣∣∣ < max

{∣∣∣q̄ (zm
j − 1/m

)
− q̄(zm

j )
∣∣∣ ;
∣∣∣q̄ (zm

j + 1/m
)
− q̄(zm

j )
∣∣∣} < ρ̌/m.

The bound ρ̌ is independent of j, so max
{∣∣∣qm

j − q̄(zm
j )
∣∣∣}Jm

j=1
< ρ̌/m, which leads to equa-

tion (6d):

lim
m→∞

max
{∣∣∣qm

j − q̄(zm
j )
∣∣∣}Jm

j=1
= 0

Proof of equation (6b). We split this proof in two parts. In the first one we construct
a sequence of limits of consecutive impasses and show how to link these limits. In the
second one we use this construction to show that limits of consecutive impasses must be
arbitrarily close.

Construction of the sequence of limits of consecutive impasses. Assume towards a
contradiction that

lim sup
m→∞

(
max

{
qm

j−1 − qm
j

}Jm

j=2

)
> 0.

Then, by taking a subsequence if necessary, we may assume that a sequence of consecu-

tive impasses
{(

zm
jm , qm

jm

)
,
(

zm
jm−1, qm

jm−1

)}∞

m=1
that converges to ((z0, q0) , (z−1, q−1)) with

q0 > q−1 exists. Equation (6d) guarantees that q0 = q̄(z0) and q−1 = q̄(z−1)
The buyer obtains a zero continuation payoff at every impasse. Thus, the difference

Wm(mzm
jm , qm

jm)−Wm(mzm
jm−1, qm

jm−1), which we express in equation (15), is also zero:45

(
qm

jm−1 − qm
jm

) [∫ zm
jm

0
λ(z)vLdz− P+

m

(
mzm

jm , qm
jm

)]
(15)

+
(

q̂− qm
jm−1

) ∫ zm
jm

zm
jm−1

[λ(z)vL − c] dz + (1− q̂)
∫ zm

jm

zm
jm−1

[λ(z)vH − c] dz = 0

The left hand side of equation (15) is continuous in
(

zm
jm , qm

jm

)
,
(

zm
jm−1, qm

jm−1

)
and

P+
m

(
mzm

jm , qm
jm

)
. Moreover it strictly decreases in P+

m

(
mzm

jm , qm
jm

)
, with derivative bounded

away from zero. Hence, since
{(

zm
jm , qm

jm

)}∞

m=1
and

{(
zm

jm−1, qm
jm−1

)}∞

m=1
converge, then{

P+
m

(
mzm

jm , qm
jm

)}∞

m=1
must also converge. We let P+

0 denote its limit. Equation (16) ex-

45We use equation (4c) to obtain equation (15).
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presses equation (15) in the limit:

(q−1 − q0)

[∫ ψ(q0)

0
λ(z)vLdz− P+

0

]
(16)

+ (q̂− q−1)
∫ ψ(q0)

ψ(q−1)
[λ(z)vL − c] dz + (1− q̂)

∫ ψ(q0)

ψ(q−1)
[λ(z)vH − c] dz = 0

with a change of variables taking advantage of z` = ψ(q`) for ` ∈ {0,−1}, where ψ(·) is
the inverse of q̄(·). Equation (16) links the limits (z0, q0) and (z−1, q−1).

We show next that q−1 < q̄(0) (and so z−1 > 0). Assume towards a contradiction that
q−1 = q̄(0) and z−1 = 0. This implies that P+

0 = z0c.46 Using this, we rewrite the left
hand side of equation (16) as

(q̂− q0)

[∫ ψ(q0)

0
[λ(z)vL − c] dz

]
+ (1− q̂)

∫ ψ(q0)

0
[λ(z)vH − c] dz < 0

where the inequality follows from the definition of ψ(·). This leads to a contradiction.
For every (large enough) m there exists an impasse

(
zm

jm−2, qm
jm−2

)
that occurs after(

zm
jm−1, qm

jm−1

)
is resolved. This is because the last impasse occurs at z = 1

m and z−1 > 0.

Assume, by taking a subsequence if necessary, that the sequence
{(

zm
jm−2, qm

jm−2

)}∞

m=1
converges to (z−2, q−2). By an argument like the one for q−1, then also q−2 < q̄(0).

We show next that q−1 < q−2. Assume instead that q−1 = q−2 (so z−1 = z−2). Equa-
tion (4c) then implies limm→∞ P+

m

(
mzm

jm−1, qm
jm−1

)
− P−m

(
mzm

jm−2, qm
jm−2

)
= 0. Proposi-

tion 2 guarantees that in general

P−m
(

mzm
jm−2, qm

jm−2

)
< vL

∫ zm
jm−2

0
λ(z)dz < vL

∫ zm
jm−1

0
λ(z)dz < P+

m

(
mzm

jm−1, qm
jm−1

)
.

Thus, q−1 = q−2 implies limm→∞ P+
m

(
mzm

jm−1, qm
jm−1

)
= limm→∞ P−m

(
mzm

jm−2, qm
jm−2

)
=

vL
∫ z−1

0 λ(z)dz. Finally, we link P+
m

(
mzm

jm , qm
jm

)
and P+

m

(
mzm

jm−1, qm
jm−1

)
using equations

(4b) and (4c) and take limits to obtain

P+
0 = (z0 − z−1) c + vL

∫ z−1

0
λ(z)dz.

We plug this expression for P+
0 in the left hand side of equation (16) and obtain the fol-

46Equation (4b) implies that P−m
(

mzm
jm−1, qm

jm−1

)
< vL

∫ zm
jm−1

0 λ(z)dz, which converges to zero as m → ∞.

This and equation (4c) imply that P+
m

(
mzm

jm , qm
jm

)
becomes arbitrarily close to (zm

jm − zm
jm−1)c as m→ ∞.
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lowing contradiction:

(q̂− q0)
∫ ψ(q0)

ψ(q−1)
[λ(z)vL − c] dz + (1− q̂)

∫ ψ(q0)

ψ(q−1)
[λ(z)vH − c] dz < 0

The same argument that shows that the sequence
{

P+
m

(
mzm

jm , qm
jm

)}∞

m=1
must converge

to P+
0 also guarantees that the sequence

{
P+

m

(
mzm

jm−1, qm
jm−1

)}∞

m=1
must converge, and its

limit, which we denote by P+
−1 must satisfy an equation like (16):

(q−2 − q−1)

[∫ ψ(q−1)

0
λ(z)vLdz− P+

−1

]
+ (q̂− q−2)

∫ ψ(q−1)

ψ(q−2)
[λ(z)vL − c] dz + (1− q̂)

∫ ψ(q−1)

ψ(q−2)
[λ(z)vH − c] dz = 0

The previous equation links the limits (z−1, q−1) and (z−2, q−2) of the sequences of con-

secutive impasses
{(

zm
jm−1, qm

jm−1

)}∞

m=1
and

{(
zm

jm−2, qm
jm−2

)}∞

m=1
.

We next link the limit prices P+
0 and P+

−1 using equations (4b) and (4c). Equation (4c)

links P+
m

(
mzm

jm , qm
jm

)
and P−m

(
mzm

jm−1, qm
jm−1

)
. Equation (4b) links P−m

(
mzm

jm−1, qm
jm−1

)
and

P+
m

(
mzm

jm−1, qm
jm−1

)
. Using these equations together, and taking limits, we obtain

P+
0 = [ψ(q0)− ψ(q−1)] c +

(
vL
∫ ψ(q−1)

0 λzdz
)2

P+
−1

. (17)

We proceed recursively and construct, taking subsequences if necessary, a collection

of sequences of impasses
{{(

zm
jm−`, qm

jm−`

)}∞

m=1

}∞

`=0
, where, for every `, the sequence{(

zm
jm−`, qm

jm−`

)}∞

m=1
converges to (z−`, q−`) as m grows to infinity. Furthermore, for ev-

ery `, the sequence
{

P+
m

(
mzm

jm−`, qm
jm−`

)}∞

m=1
converges to P+

−`.
For every ` = 0, 1, . . . the limits of consecutive impasses must satisfy equations (18)

and (19).(
q−(`+1) − q−`

) [∫ ψ(q−`)

0
λ(z)vLdz− P+

−`

]
(18)

+
(

q̂− q−(`+1)

) ∫ ψ(q−`)

ψ(q−(`+1))
[λ(z)vL − c] dz + (1− q̂)

∫ ψ(q−`)

ψ(q−(`+1))
[λ(z)vH − c] dz = 0

P+
−` =

[
ψ(q−`)− ψ(q−(`+1))

]
c +

(
vL
∫ ψ(q−(`+1))

0 λ(z)dz
)2

P+
−(`+1)

(19)
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These conditions mirror equations (16) and (17). Finally, limit beliefs satisfy

q0 < q−1 < . . . < q−` < . . . < q̄(0). (20)

Bounding the distance between limits of consecutive impasses. In the remainder of

the proof we focus on the collection
{(

q−`, P+
−`

)}∞

`=0
which satisfies equations (18), (19),

and (20). We show that the limit beliefs {q−`}∞
`=0 are arbitrarily close to each other. To do

this, we obtain explicit bounds that link successive limit impasses by using equations (18)
and (19). These bounds link differences between consecutive beliefs and also differences
between prices and valuations. Facts 2 and 3 state the first bounds (see Section T.6 of the
Technical Addendum for their proof).
FACT 2. There exists η∗ > 0 such that for every ` ≥ 1, if q−(`+1) − q−` < η∗, then q−` −
q−(`−1) <

4
3

(
q−(`+1) − q−`

)
.

FACT 3. There exists constants b1 > 0 and b2 > 0 such that for every ` = 0, 1, . . ., we have:[
P+
−` −

∫ ψ(q−`)
0 λ(z)vLdz

]
−
[

P+
−(`+1) −

∫ ψ(q−(`+1))

0 λ(z)vLdz
]

q−(`+1) − q−`
≤ b1

(
q−(`+1) − q−`

)
(21)

q−(`+1) − q−` ≤ b2

[
P+
−` −

∫ ψ(q−`)

0
λ(z)vLdz

]
(22)

Using Facts 2 and 3 we prove Claims 11 and 12, which provide further bounds. Claim
11 links successive differences between prices and valuations and Claim 12 links differ-
ences between successive beliefs.
CLAIM 11. Consider `′ and `′′ with 0 ≤ `′ < `′′. Let ε > 0 and η > 0 be such that q−(`+1) −
q−` < ε for all ` ∈ {`′, . . . , `′′ − 1} and q−`′′ − q−`′ < η. Then, for every ` ∈ {`′, . . . , `′′ − 1},
we have:

P+
−` −

∫ ψ(q−`)

0
λ(z)vLdz < P+

−`′′ −
∫ ψ(q−`′′ )

0
λ(z)vLdz + εηb1

Proof. For every ` ∈ {`′, . . . , `′′ − 1} we have

P+
−` −

∫ ψ(q−`)

0
λ(z)vLdz = P+

−(`+1) −
∫ ψ(q−(`+1))

0
λ(z)vLdz

+
(

q−(`+1) − q−`
) P+
−` −

∫ ψ(q−`)
0 λ(z)vLdz−

(
P+
−(`+1) −

∫ ψ(q−(`+1))
0 λ(z)vLdz

)
q−(`+1) − q−`

< P+
−(`+1) −

∫ ψ(q−(`+1))

0
λ(z)vLdz + εb1

(
q−(`+1) − q−`

)
where the inequality follows from q−(`+1)− q−` < ε and equation (21) in Fact 3. Applying
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the same argument recursively leads to

P+
−` −

∫ ψ(q−`)

0
λ(z)vLdz < P+

−`′′ −
∫ ψ(q−`′′ )

0
λ(z)vLdz + εb1

`′′−1

∑̃
`=`

(
q−( ˜̀+1) − q− ˜̀

)
< P+

−`′′ −
∫ ψ(q−`′′ )

0
λ(z)vLdz + εηb1 �

CLAIM 12. Consider `′ and `′′ with 1 ≤ `′ < `′′. Let 0 < ε < η∗ and 0 < η < (3b1b2)
−1

be such that q−(`+1) − q−` < ε for all ` ∈ {`′, . . . , `′′ − 1}, q−`′′ − q−`′ < η and P+
−`′′ −∫ ψ(q−`′′ )

0 λ(z)vLdz < (3b2)
−1ε. Then, q−`′ − q−(`′−1) < ε.

Proof. We have

q−(`′+1) − q−`′ ≤ b2

[
P+
−`′ −

∫ ψ(q−`′ )

0
λ(z)vLdz

]
< b2

(
P+
−`′′ −

∫ ψ(q−`′′ )

0
λ(z)vLdz + εηb1

)
< b2

(
(3b2)

−1ε + ε(3b1b2)
−1b1

)
<

2
3

ε

where the first inequality follows from equation (22) in Fact 3 and the second one from
Claim 11. This, together with Fact 2, implies that

q−`′ − q−(`′−1) <
4
3

(
q−(`′+1) − q−`′

)
<

(
4
3

)(
2
3

)
ε < ε �

Claim 12 provides the last intermediate result to complete the proof of equation (6b).
The sequence {q−`}∞

`=0 is strictly increasing and bounded above by q̄(0). Then, it has a
limit, which we denote by q−∞. With this, applying L’Hôpital’s rule to equation (18) we
obtain

lim
`→∞

P+
−` −

∫ ψ(q−`)

0
λ(z)vLdz = 0.

We focus on elements of the sequence {q−`}∞
`=0 which are sufficiently close to q−∞. Let

`′ = min
{
` : q−` ≥ q−∞ − (6b1b2)

−1}. Fix ε = 1
2 min {q−`′ − q−`′+1; η∗} > 0 and pick `′′

such that:

max
{

q−(`′′+1) − q−`′′ ; P+
−`′′ −

∫ ψ(q−`′′ )

0
λ(z)vLdz

}
< min

{
ε, (3b2)

−1ε
}

Then, applying Claim 12 recursively, we obtain q−`′ − q−`′+1 < ε, which is a contradiction
and completes the proof of equation (6b).

Proof of equations (6a), (6c), (6e) and (6f). Equations (6b) and (6d) together imply
equation (6a). Equation (15) links any sequence of consecutive impasses. We take the
limit of equation (15) as m grows large, use equations (6b) and (6d) and apply L’Hôpital’s
rule to obtain equation (6f). Equation (6e) follows from equation (6f) and equation (4b)
in Proposition 2. Finally, we show equation (6c) by contradiction. Assume instead that,
taking subsequences if necessary, limm→∞ zm

Jm
= z̄ < 1. This, together with equation (6e),
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implies that, in the limit, the buyer’s continuation payoff at the beginning of the game is
negative:

lim
m→∞

Wm(m, 0) = q̂
[∫ 1

z̄
[λ(z)vL − c] dz

]
+ (1− q̂)

[∫ 1

z̄
[λ(z)vH − c] dz

]
< 0

This can never happen, so we have reached a contradiction. �
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Technical Addendum to “Bargaining over a Divisible Good
in the Market for Lemons”

T.1 Part C of the proof of Proposition 1. Generic uniqueness

Throughout this proof, we fix arbitrary values for the parameters {Λm
s }m

s=1 and vH and
show that for generic values of the parameters

(
δ, vL, c, β̂

)
the equilibrium outcome is

unique. We present this proof through two claims. In Claim T1 we show that for a generic
set G of parameters, our consistent quadruplet satisfies some uniqueness properties. In
Claim T2 we use these properties to show that the equilibrium outcome is unique.
CLAIM T1. There exists a generic set G of the parameters

(
δ, vL, c, β̂

)
such that the correspon-

dence Y(·, ·) associated to the consistent quadruplet (VL, P, W, y) constructed in Part B (of the
proof of Proposition 1) is a singleton everywhere except for finitely many (K, q). Furthermore,
Y(K, 0) is a singleton for every K ∈ {1, . . . , m}. Finally, even at states (K, q) where Y(K, q)
is not a singleton, y(K, q) is the unique element of Y(K, q) that minimizes the low-type seller’s
payoff.

Proof. Consider the consistent quadruplet (VL, P, W, y) constructed in Part B and fix
the number of remaining units K ∈ {1, . . . , m}. There are finitely many possible uni-
versal offers. Also, Claim 1 guarantees that the buyer never chooses in a flat region of
P (K, ·). Then, the buyer needs to compare only finitely many screening offers. Thus, the
set ∪q∈[0,q̂]Y(K, q) is finite.

We show next that for generic values of the parameters (δ, vL, c), two arbitrary ele-
ments of ∪q∈[0,q̂]Y(K, q) can both be optimal at most at one state (K, q). In particular,
assume that q′′ ∈ Y (K, q′) and k ∈ Y (K, q′) for some (K, q′). If the buyer makes the
screening offer (K, P(K, q′′)) when the state is (K, q) with q < q′′, he obtains the continu-
ation payoff (

q′′ − q
) [( K

∑
s=1

Λm
s

)
vL − P

(
K, q′′

)]
+ δW

(
K, q′′

)
. (T1)

This continuation payoff is linear in the starting belief q, with derivative

P
(
K, q′′

)
−
(

K

∑
s=1

Λm
s

)
vL =

K

∑
s=1

δT1(s) c
m
−
(

K

∑
s=1

Λm
s

)
vL, (T2)

where
(
T1(1), . . . , T1(K)

)
are K integers that satisfy T1(1) ≥ . . . ≥ T1(K) ≥ 1. We use

two facts to establish equation (T2). First, P (K, q′′) = δVL (K, q′′). Second, since the low-
type seller is always indifferent between accepting or rejecting any screening offer, his
continuation payoff can be computed by assuming that he rejects all screening offers (and
accepts all universal offers). We let T1(s) represent the time it takes the buyer to make a
universal offer for unit s.

Consider next the universal offer
(
K− k, c

m (K− k)
)
. It is never optimal for the buyer

to make two consecutive universal offers, so this offer is followed by a screening offer
(k, P (k, q′′′)) for some q′′′ > q′. Thus, if the buyer makes the offer

(
K− k, c

m (K− k)
)

1



when the state is (K, q) with q < q′′′, he obtains the continuation payoff(
K

∑
s=k+1

Λm
s

)
[(q̂− q) vL + (1− q̂) vH]− (1− q)

c
m
(K− k)

+ δ

[(
q′′′ − q

) [( k

∑
s=1

Λm
s

)
vL − P

(
k, q′′′

)]
+ δW

(
k, q′′′

)]
. (T3)

This continuation payoff is linear in the starting belief q, with derivative

c
m
(K− k) + δP

(
k, q′′′

)
−
[

δ
k

∑
s=1

Λm
s +

K

∑
s=k+1

Λm
s

]
vL

=
c
m
(K− k) +

k

∑
s=1

δT2(s)+1 c
m
−
[

δ
k

∑
s=1

Λm
s +

K

∑
s=k+1

Λm
s

]
vL, (T4)

where
(
T2(1), . . . , T2(k)

)
are k integers that satisfy T2(1) ≥ . . . ≥ T2(k) ≥ 1. As before,

T2(s) represents the time it takes the buyer to make a universal offer for unit s.
For generic values of the parameters (δ, vL, c), the right hand side of equation (T2)

is different from the right hand side of equation (T4). Thus, the continuation payoff in
equation (T1) is equal to the continuation payoff in equation (T3) if and only if the starting
belief is q′. The cases where either two universal offers or two screening offers are optimal
for some (K, q′) are analogous. Therefore, since ∪q∈[0,q̂]Y(K, q) is a finite set, for a generic
set of the parameters (δ, vL, c) there are finitely many states (K, q) where Y(K, q) is not a
singleton.

Next, fix a triple (δ, vL, c) from the generic set defined in the previous paragraph. Con-
sider a prior β̆ and compute the quadruplet (VL, P, W, y) with associated Y(K, q). The
set OK = {(K, q) : Y(K, q) is not a singleton} is finite. Fix a small ε > 0. For any prior

β̂ ∈
[
β̆, β̆ + ε

]
\
(
∪(K,q)∈OK

{
β̆

1−q

})
, Y(K, 0) is a singleton. Thus, for generic values of the

prior β̂, Y(K, 0) is a singleton.
Finally, consider states (K, q′) such that Y (K, q′) is not a singleton. First, if Y (K, q′)

contains multiple screening offers, then their prices must be different. So at most one
screening offer can minimize the low-type seller’s continuation payoff. Second, assume
that q′′ ∈ Y (K, q′) and k ∈ Y (K, q′). If the buyer makes the screening offer (K, P(K, q′′)),
then the low-type seller obtains the continuation payoff P (K, q′′) = ∑K

s=1 δT3(s) c
m .47 If

instead the buyer makes the universal offer
(
K− k, c

m (K− k)
)
, then the low-type seller

obtains a continuation payoff c
m (K− k) + ∑k

s=1 δT4(s)+1 c
m . Both offers yield the same con-

tinuation payoff to the low-type seller only if

K

∑
s=1

δT3(s) = (K− k) +
k

∑
s=1

δT4(s)+1,

47As before,
(
T3(1), . . . , T3(k)

)
are k integers that satisfy T3(1) ≥ . . . ≥ T3(k) ≥ 1 and represent the time

it takes the buyer to make a universal offer for unit s. The mapping T4 below plays an analogous role.
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which holds only for finitely many values of δ, by the fundamental theorem of algebra.
In a similar way, if Y (K, q′) contains multiple universal offers, they yield the same con-
tinuation payoff to the low-type seller only for finitely many values of δ.

To sum up, for a generic set GK of the parameters (δ, vL, c, β̂) there are finitely many
states (K, q) such that Y(K, q) is not a singleton. Next, Y(K, 0) is not a singleton. Moreover,
even in states in which Y(K, q) is not a singleton, only one element of Y(K, q) minimizes
the continuation payoff of the low-type seller. Finally by letting G = ∩m

K=1GK we com-
plete the proof of Claim T1. �

CLAIM T2. For every element of G the equilibrium outcome is unique.
Proof. Fix an element of G and compute the quadruplet (VL, P, W, y) with associated

Y(K, q) from Part B. Consider next an arbitrary (stationary Perfect Bayesian) equilibrium(
σ̃B, (σ̃L, σ̃H), β̃

)
and let ṼL be the (left-continuous) function that governs the acceptance

decision of the low-type seller in that equilibrium. Following step 1 from Part A (of the
proof of Proposition 1), we obtain P̃ from ṼL and following step 2 from Part A, we com-
pute W̃ and Ỹ from P̃.

The remainder of the proof is divided into two parts. In the first one, we show that(
ṼL, P̃, W̃, Ỹ

)
= (VL, P, W, Y). In the second one, we show that the on-path equilibrium

behavior under
(

σ̃B, (σ̃L, σ̃H), β̃
)

coincides with the one from the consistent quadruplet.
In any equilibrium, when the belief is sufficiently high, the buyer makes a universal

offer for all remaining units. Formally, it follows from Claim 2 that there exists q < q̂,
such that for every q ∈ [q, q̂] and for every K ∈ {1, . . . , m}, ṼL(K, q) = VL(K, q), P̃(K, q) =
P(K, q), W̃(K, q) = W(K, q), and Ỹ(K, q) = Y(K, q) = {K}.

Assume towards a contradiction that
(
ṼL, P̃, W̃, Ỹ

)
6= (VL, P, W, Y) and let

K = max
{

K ∈ {1, . . . , m} :
(
ṼL(k, ·), P̃(k, ·), W̃(k, ·), Ỹ(k, ·)

)
=(

VL(k, ·), P(k, ·), W(k, ·), Y(k, ·)
)

for all k < K
}

and

q = inf
{

q′ ∈ [0, q̂] :
(
ṼL(K, q), P̃(K, q), W̃(K, q), Ỹ(K, q)

)
=
(
VL(K, q), P(K, q), W(K, q), Y(K, q)

)
for all q > q′

}
.

Note that by definition, q ∈ (0, q̄].

The function W̃(K, ·) is Lipschitz with coefficient less than v ≡ ∑K
s=1 Λm

s vH + K c
m .

Moreover, W̃
(

K, q
)

= W
(

K, q
)

= ξ for some ξ > 0 (since W (K, ·) is bounded away

from zero). Then, there exists ε1 > 0 such that W̃ (K, q) > ξ/2 for all q ∈
[
q− ε1, q

]
. Fix

0 < ε2 ≤ min {ε1, ξ(1− δ)/8v} such that for any q ∈
(

q− ε2, q
)

, Y (K, q) is a singleton.
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For any q ∈
(

q− ε2, q
]

with q′ ∈ Ỹ (K, q) we have

ξ

2
< W̃ (K, q) ≤

(
q′ − q

)
v+ δW̃

(
K, q′

)
≤
(
q′ − q

)
v+

(
q′ − q

)
v+ δW̃ (K, q) .

Then, ξ
2 < W̃ (K, q) ≤ 2(q′−q)v

1−δ , which implies q′ > q + ε2. This, together, with the left-

continuity of VL and ṼL implies that for all q ∈
(

q− ε2, q
]
,(

ṼL(K, q), P̃(K, q), W̃(K, q), Ỹ(K, q)
)
=
(
VL(K, q), P(K, q), W(K, q), Y(K, q)

)
which contradicts the definition of q and proves that

(
ṼL, P̃, W̃, Ỹ

)
= (VL, P, W, Y).

We proceed next with the second part of the proof. Let
(
K
(
ht) , q

(
ht)) denote the state

at the history ht under the equilibrium
(

σ̃B, (σ̃L, σ̃H), β̃
)

. Consider the consistent quadru-

plet (VL, P, W, y). We say that σ̃B agrees with y at the history ht if the following two con-
ditions hold. First, whenever y

(
K
(
ht) , q

(
ht)) = q′ then σ̃B(ht) =

(
K
(
ht) , P(K

(
ht) , q′)

)
.

Second, whenever y
(
K
(
ht) , q

(
ht)) = k then σ̃B(ht) =

(
K
(
ht)− k, c

m
(
K
(
ht)− k

))
.

To conclude the proof, we show that if σ̃B does not agree with y at the history ht, then

the history ht is off-the-equilibrium path under the equilibrium
(

σ̃B, (σ̃L, σ̃H), β̃
)

. Assume
towards a contradiction that there exist on-path histories at which σ̃B does not agree with
y and let ht be the shortest of those histories. Thus, σ̃B agrees with y at all sub-histories hτ

of ht.
As σ̃B does not agree with y at the history ht, our genericity condition guarantees that

VL(ht) > VL(K
(
ht) , q

(
ht)), (T5)

where VL(ht) denotes the low-type seller’s continuation payoff at history ht under the

equilibrium
(

σ̃B, (σ̃L, σ̃H), β̃
)

.

Since σ̃B does not agree with y at the history ht, then Y
(
K
(
ht) , q

(
ht)) cannot be a

singleton, and so 0 < q(ht) < q̄. The first inequality holds since the parameters belong to
the set G identified in Claim T1. Since q(ht) > 0, then the buyer makes a screening offer at
some point along the history ht. Under the consistent quadruplet, the buyer never makes
two universal offers in a row. Moreover, σ̃B and y agree up to ht−1. Then, the buyer makes
at least one screening offer in the periods {t− 1, t− 2}. Let t′ ∈ {t− 1, t− 2} denote the
period of the last screening offer which is equal to

(
K(ht′), P

(
K(ht′), q(ht)

))
. Note that

q
(

ht′
)

< q
(
ht) and therefore in equilibrium the low-type seller accepts this offer with

positive probability at ht′ .
Assume first that t′ = t− 1. Then,

P
(

K
(

ht−1
)

, q
(
ht)) = δVL

(
K
(
ht) , q

(
ht)) < δVL(ht),

4



where the equality follows from the definition of consistent quadruplet, and the inequal-
ity follows from equation (T5). Thus, it is not optimal for the low-type seller to accept the
screening offer at ht−1.

Similarly, if t′ = t− 2 we have

P
(

K
(

ht−2
)

, q
(
ht)) = δ

c
m

(
K
(

ht−1
)
− K

(
ht))+ δ2VL

(
K
(
ht) , q

(
ht))

< δ
c
m

(
K
(

ht−1
)
− K

(
ht))+ δ2VL

(
ht)

which, again implies that it is not optimal for the low-type seller to accept the screening
offer at ht−2. �

T.1.1 Alternative definition of stationarity

In this subsection, we let the VL depend not only on the number of remaining units but
also on the number of units requested by the buyer. As a result, the randomization prob-
ability of the low-type seller may depend on the number of units requested by the buyer.
DEFINITION. STATIONARY* PERFECT BAYESIAN EQUILIBRIUM. A PBE is stationary* if
for each K ∈ {1, . . . , m} and for each k ∈ {1, . . . , K}, there exists a (left-continuous) function
VL (K, k, ·) :

[
β̂, 1
]
→ R such that

1. The high-type seller accepts with probability one any payment greater or equal than c
m k in

exchange for any number of remaining units k ≤ K(ht). The high-type seller rejects any
other offer with probability one.

2. The behavior of the low-type seller is as follows. Take any history ht where the remaining
number of units is K(ht) and the belief is β(ht) ≥ β. Assume that the buyer offers a total
payment p in exchange for k ≤ K(ht) remaining units. Then,

a. If p ≥ c
m k, then the low-type accepts with probability one.

b. If p < c
m k and p < δVL

(
K(ht), k, β

)
for all β ≥ β(ht), then the low-type rejects with

probability one.

c. If p < c
m k and there exists β ≥ β(ht) with p ≥ δVL

(
K(ht), k, β

)
, then the low-type

seller randomizes so that β′ = max
{

β : δVL
(
K(ht), k, β

)
≤ p

}
is the next-period

posterior after rejection

CLAIM T3. For every element of G, any stationary* PBE is outcome equivalent to a stationary
PBE.

Proof. This proof follows the same logic as the one of Claim T2. Fix an element of G
and compute the quadruplet (VL, P, W, y) with associated Y(K, q) from Part B. Consider
next an arbitrary stationary* equilibrium and let ṼL(·, ·, ·) be the function that governs
the acceptance decision of the low-type seller in that equilibrium. For each (K, k) with
K ∈ {1, . . . , m} and k ∈ {1, . . . , K}, we derive P̃(K, k, ·) from ṼL(K, k, ·) following the
same logic as in step 1 from Part A. Consider next the buyer’s optimization problem,
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given P̃(·, ·, ·). The buyer now has the option to make partial offers. If the low-type seller
accepts a partial offer, we let the buyer obtain all remaining units in the following period
in exchange for a payment of zero. We let W̃ denote the buyer’s normalized continuation
payoff. We also let Ỹ denote the set of solutions to the buyer’s optimization problem.

The same argument as in the first part of the proof of Claim T2 guarantees that for
every K ∈ {1, . . . , m} and for every k ∈ {1, . . . , K}, ṼL(K, k, ·) = VL(K, ·). This implies
that the buyer never makes partial offers in equilibrium. The outcome of the stationary*
PBE is equivalent to the outcome of the stationary PBE constructed in Part B. �

T.2 Proof of Claim 1

Proof. By contradiction. Assume that q′ ∈ Y(K, q) and that P(K, q′′) = P(K, q′) for some
q′′ > q′ and consider the course of action started by choosing q′. We show that there
exists an alternative course of action that leads to a strictly higher payoff than that from
the course of action started by choosing q′. To simplify the algebra, in what follows we
focus on a specific (optimal) course of action started by choosing q′. Assume that in the
two periods following the screening offer (P(K, q′), q′), the buyer makes offers implied
by y (K, q′) = k and y (k, q′) = q′′′ with q′′′ > q′′. The alternative course of action involves
inducing the belief q′′ in the first period. In the following two periods, the buyer mimics
the behavior from the first course of action. He makes a universal offer for K− k units in
the second period and induces belief q′′′ in the third period.

The difference in payoffs between the alternative course of action and the original one
is given by:

(q′′ − q′)

[ >0︷ ︸︸ ︷
vL

[
(1− δ)

K

∑
j=k

Λj + (1− δ2)
k

∑
j=1

Λj

]
+

≥0︷ ︸︸ ︷[
δ

c
m
(K− k) + δ2P

(
k, q′′′

)
− P(K, q′)

]]
> 0

The weak inequality in the second term is a direct consequence of the definitions of P
and V ′L, together with the equality VL = V ′L.48 �

T.3 Details of the proof of Claim 3

Proof. In what follows we show, by contradiction, that W I(K, qn+1) > 0. Take ε > 0 with
qn+1 + ε < qn. Then, the buyer’s continuation payoff W I(K, qn+1 + ε) is bounded below

48In general, consider an arbitrary optimal course of action started by choosing q′ in period t. Let t + T
denote the first period in which the buyer makes a screening offer that leads to a posterior q′′′ > q′′. The
behavior in periods t′ ∈ {t + 1, . . . , t + T − 1} encompasses screening and universal offers. Let T1 be the
subset of {t + 1, . . . , t + T− 1} at which the buyer makes screening offers and T2 be those periods at which
the buyer makes universal offers. We define an alternative course of action as follows. First, the buyer
induces posterior q′′ in period t. Second, the buyer makes no offers in periods t′ ∈ T1. Third, the buyer
makes the same universal offers as in the optimal course of action in periods t′ ∈ T2. Finally, the buyer
induces belief q′′′ in period t + T. The definitions of P and V ′L, together with the equality VL = V ′L imply
that the alternative course of action leads to a strictly higher payoff.
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by the value of choosing the posterior x(K, qn+1):

W I(K, qn+1 + ε) ≥ [x(K, qn+1)− qn+1 − ε]

(
K

∑
j=1

Λm
j vL − P (K, x(K, qn+1))

)
+ δW (K, x(K, qn+1))

= W I(K, qn+1)− ε

(
K

∑
j=1

Λm
j vL − P (K, x(K, qn+1))

)
(T6)

Similarly, the buyer’s continuation payoff W I I(K, qn+1) is bounded below by the value
of choosing the posterior qn+1 + ε:

W I I(K, qn+1) ≥ ε

(
K

∑
j=1

Λm
j vL − PI (K, qn+1 + ε)

)
+ δW I (K, qn+1 + ε) (T7)

Assume towards a contradiction that W I(K, qn+1) = W I I(K, qn+1) = 0. This, together
with equations (T6) and (T7) leads to:

0 ≥ ε

[
(1− δ)

K

∑
j=1

Λm
j vL − δ [P (K, x(K, qn+1 + ε))− P (K, x(K, qn+1))]

]

We show next that limε↓0 P (K, x (K, qn+1 + ε)) = P (K, x(K, qn+1)). This implies that
the right hand side is strictly positive for ε > 0 low enough, which implies a contradiction.
To show this, note that the objective function in (11) has strictly increasing differences in
q at all maximizers. Thus, X(K, ·) is a nondecreasing correspondence: if q′ > q, then
x (K, q′) ≥ x (K, q). Moreover, the theorem of the maximum guarantees that X(K, ·) is
upper hemicontinuous.

First, since X(K, ·) is a non-decreasing upper hemicontinuous correspondence, then
limε↓0 x (K, qn+1 + ε) = x(K, qn+1). If P (K, ·) is continuous at x(K, qn+1), then this im-
plies that limε↓0 P (K, x (K, qn+1 + ε)) = P (K, x(K, qn+1)). Second, if instead P (K, ·) is
discontinuous at x(K, qn+1), then x(K, qn+1 + ε) = x(K, qn+1) for ε sufficiently small. This
guarantees that limε→0 P (K, x (K, qn+1 + ε))− P (K, x(K, qn+1)) = 0, so W I(K, qn+1) > 0.
�

T.4 Proof of Claim 5

Proof. We show by contradiction that qñ = 0 for some ñ. Assume instead that limn→∞ qn =
q∗ > 0. We split this proof in two exhaustive cases.

Case 1. Assume that there exists a sequence of transformed beliefs
{

qj
}∞

j=1 with
qj > q∗ for all j, with limj→∞ qj = q∗, and such that at all those beliefs, the buyer
makes screening offers: y(K, qj) = q′j. This implies that for any η > 0, there exists j
with q′j − qj < η. Take a subsequence

{
qjr
}∞

r=1 with qjr < q′jr < qjr−1 . The function
P(K, ·) is non-decreasing and satisfies P(K, q) ≤ δVL(K, q) for all q. Moreover, whenever
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the buyer makes a screening offer y(K, q) = q′, it must be true that VL(K, q) = P(K, q′).
Then P(K, qjr) ≤ δP(K, q′jr) ≤ δP(K, qjr−1). This implies that limq→q∗ P(K, q) = 0, and so
infq∈(q∗,q̂] W(K, q) > 0.

Fix ε > 0 so that [
K

∑
j=1

Λm
j vH + δ

]
ε < (1− δ) inf

q∈(q∗,q̂]
W(K, q). (T8)

Uniform continuity of W(K, ·) guarantees that there exists η̃ ∈ (0, ε) such that for every
(q, q̃) ∈ (q∗, q̂] × (q∗, q̂], whenever |q− q̃| < η̃, then |W(K, q)−W(K, q̃)| < ε. Pick q ̂ ∈{

qj
}∞

j=1 such that q′̂ − q ̂ < η̃. Then,

min
{

W(K, q ̂), W(K, q′̂)
}
≤W(K, q ̂) ≤

K

∑
j=1

Λm
j vHε + δW(K, q′̂) ≤

K

∑
j=1

Λm
j vHε + δ

(
min

{
W(K, q ̂), W(K, q′̂)

}
+ ε
)
< min

{
W(K, q ̂), W(K, q′̂)

}
where the last inequality follows from equation (T8). We have reached a contradiction.
If there is only one unit left (K = 1), case 1 covers all possibilities (as in DL). If there is
more than one unit left (K ≥ 2), the buyer may make no screening offers close to q∗. The
following case covers this remaining possibility.

Case 2. Assume there exists an interval (q∗, q∗ + η′) where the buyer only makes
universal offers for some number K − k of remaining units: y(K, q) = k for all q ∈
(q∗, q∗ + η′).

W(k, ·) is bounded away from zero for all k < K. Thus, any universal offer for K − k
units must be followed by a screening offer. Furthermore, the low-type seller accepts the
screening offer that the buyer makes with probability bounded away from zero. These
two facts together imply that there exist n′ and q̃ > qn′ such that for all n ≥ n′ we have
that y(K, qn) = k and y(k, qn) = q̃. In what follows we show that limn→∞ W(K, qn) = 0.

Consider a small ε > 0. Uniform continuity of W I(K, ·) guarantees that there ex-
ists η ∈ (0, ε) such that for every (q, q̃) ∈ (q∗, q̂] × (q∗, q̂], whenever |q− q̃| < η, then∣∣W I(K, q)−W I(K, q̃)

∣∣ < ε. Furthermore, there exists n′′ such that qn − qn+1 < η for every
n ≥ n′′. Therefore, for every n ≥ n ≡ max{n′, n′′} we have

W I(K, qn+1) = W I I(K, qn+1)

= max
q′∈[qn+1,qn]

(
q′ − qn+1

) ( K

∑
j=1

ΛjvL − PI (K, q′
))

+ δW I (K, q′
)

≤ ε
K

∑
j=1

ΛjvL + δ max
q′∈[qn+1,qn]

W I (K, q′
)

≤ ε
K

∑
j=1

ΛjvL + δ
(

W I (K, qn+1) + ε
)
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Then,

W I(K, qn+1) ≤
ε

1− δ

(
K

∑
j=1

ΛjvL + δ

)
This implies that limn→∞ W I(K, qn) = 0. Moreover, for all n ≥ n we have

W I
B(K, qn+1) ≥ −ε

c
m

K + δW(K, qn+1)

which in turn implies that limn→∞ W(K, qn) = 0.
We have

P(K, qn) ≤ δVL(K, qn) = δ
[ c

m
(K− k) + δP(k, q̃)

]
. (T9)

Suppose that the state is (K, qn) and consider a screening offer (K, P(K, qn)). Then,

W(K, qn) ≥ (qn − qn)

[
K

∑
j=1

Λm
j vL − P(K, qn)

]

≥ (qn − qn)

[
K

∑
j=1

Λm
j vL − δ

[ c
m
(K− k) + δP(k, q̃)

]]

Since limn→∞ W(K, qn) = 0 and qn − qn is positive and bounded away from zero, then it
must be true that

δ
[ c

m
(K− k) + δP(k, q̃)

]
≥

K

∑
j=1

Λm
j vL.

In what follows we describe a course of action for the buyer that, when started in
state (K, q) with q < qn̄ provides the buyer with continuation payoff of at least R(q). We
show next that limn→∞ R(qn) is positive and bounded away from zero. This contradicts
our previous result that limn→∞ W(K, qn) = 0. The course of action is as follows. In
the first period, the buyer makes the screening offer (K, P (K, qn̄)). In the second period,
the buyer makes the universal offer

(
K− k, c

m (K− k)
)
. In the third period the buyer is

in state (k, qn̄). From that period on, he follows the optimal strategy. The continuation
payoff from this alternative course of action at state (K, q) with q < qn̄ is bounded below
by R(q), given by:49

R(q) = (qn̄ − q)

(
K

∑
j=1

Λm
j vL − δ

[ c
m
(K− k) + δP(k, q̃)

])

+ δ

[
[(q̂− qn̄) vL + (1− q̂) vH]

K

∑
j=k+1

Λm
j − (1− qn̄)

c
m
(K− k)

]

+ δ2 (q̃− qn̄)

(
k

∑
j=1

Λm
j vL − P (k, q̃)

)
+ δ3W(k, q̃)

49The bound is a direct consequence of equation (T9).
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For all states (K, q) with q ∈ (q∗, qn̄] the buyers’s continuation payoff is given by:

W(K, q) = (qn̄ − q) vL

K

∑
j=k

Λm
j − (qn̄ − q)

c
m
(K− k)

+ [(q̂− qn̄) vL + (1− q̂) vH]
K

∑
j=k+1

Λm
j − (1− qn̄)

c
m
(K− k)

+ δ

[
(qn̄ − q)

(
k

∑
j=1

Λm
j vL − P (k, q̃)

)
+ (q̃− qn̄)

(
k

∑
j=1

Λm
j vL − P (k, q̃)

)]
+ δ2W(k, q̃)

Let q̄ ≤ qn̄ be such that R(q̄) = W(K, q̄). Such q̄ is well defined since it solves:

(qn̄ − q)

(
k

∑
j=1

Λm
j vL +

[ c
m
(K− k) + δP(k, q̃)

])

= [(q̂− qn̄) vL + (1− q̂) vH]
K

∑
j=k+1

Λm
j − (1− qn̄)

c
m
(K− k)

+ δ

[
(q̃− qn̄)

(
k

∑
j=1

Λm
j vL − P (k, q̃)

)]
+ δ2W(k, q̃) (T10)

The right hand side of equation (T10) exceeds the left hand side for all q ∈ (q∗, qn̂] because
W(K, q) is the value from following the optimal course of action. As q→ −∞ the left hand
side increases continuously without bound, while the right hand side is constant. Thus,
there exists q̄ ≤ q∗ with R (q̄) = W (K, q̄). Moreover, from the definition of R(q) and
equation (T10), we obtain

R(q̄) = V(q̄) ≥ (qn̄ − q̄)
k

∑
j=1

Λm
j vL > 0.

Finally, note that R(·) is weakly increasing in q, so for all n ≥ n̄:

W(K, qn) ≥ R(qn) ≥ R(q̄) > 0

which contradicts the fact that limn→∞ W(K, qn) = 0. �

T.5 Proof of Claims 8 and 10

We briefly discuss the links between the proofs of Claims 8 and 10 before presenting
them. For the inductive step j = 1, the proof of Claim 8 only requires Claim 6 to hold. For
inductive steps j > 1, the proof of Claim 8 uses the results (including Claims 9 and 10)
from previous inductive steps. Similarly, for any inductive step j, the proofs of Claims 9
and 10 use results from previous inductive steps and Claim 8 from the current step j.
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Throughout the following proofs we proceed as follows. We first provide an explicit
characterization of the limit functions (Km(τ; (K, q)), qm(τ; (K, q))). In equilibrium, the
low-type seller is always indifferent between accepting or rejecting a screening offer.
This, together with the limit functions (Km(τ; (K, q)), qm(τ; (K, q))) pins down the func-
tion Pm(K, q). We explicitly express P−m (K, q) whenever there is an impasse at (K, q). For
all other states, the expression of Pm(K, q) is immediate. The buyer’s continuation pay-
off Wm(K, q) can be easily computed from the limit functions (Km(τ; (K, q)), qm(τ; (K, q)))
and Pm(K, q) so we omit it.

Proof of Claim 8. For ∆ sufficiently small, the buyer has a course of action with con-
tinuation payoff arbitrarily close to W(K, q). For all (K, q) with K ∈ {k j + 1, . . . , k}
and q ∈ [0, qj], W(K, q) is bounded away from zero. Then, for ∆ sufficiently small the
buyer can guarantee a strictly positive continuation payoff. This implies, as shown in
section 5.1.1, that there is no delay: Km(0; (K, q)) ≤ k j. In what follows, we show that
(Km(0; (K, q)), qm(0; (K, q))) =

(
k j, qj

)
and that inf

{
τ : qm(τ; (K, q)) > qj

}
= τj.

First, assume by contradiction that (Km(0; (K, q)), qm(0; (K, q))) = (k, q′) with k < k j.
This leads to a continuation payoff (weakly) bounded above by

(q̂− q)

 K

∑
s=kj+1

Λm
s vL − (K− k j)

c
m

+ (1− q̂)

 K

∑
s=kj+1

Λm
s vH − (K− k j)

c
m


+ (q̂− q)

 kj

∑
s=k+1

Λm
s vL − (k j − k)

c
m

+ (1− q̂)

 kj

∑
s=k+1

Λm
s vH − (k j − k)

c
m


+ Wm(k, q)

< (q̂− q)

 K

∑
s=kj+1

Λm
s vL − (K− k j)

c
m

+ (1− q̂)

 K

∑
s=kj+1

Λm
s vH − (K− k j)

c
m


+ Wm(k j, q)

In the previous induction step we show that at state (k j, q) there exists a unique course
of action that yields Wm(k j, q). This leads to the strict inequality in the expression above.
Thus, Km(0; (K, q)) = k j.

Second, assume towards a contradiction that inf
{

τ : qm(τ; (K, q)) > qj
}

= 0. If so,
the buyer’s continuation payoff results from 1) making a universal offer for K − k j units
and then 2) reaching the state (k j, q′), with q′ > qj without delay. Therefore, the buyer’s
continuation payoff is strictly bounded above by

(q̂− q)

 K

∑
s=kj+1

Λm
s vL − (K− k j)

c
m

+ (1− q̂)

 K

∑
s=kj+1

Λm
s vH − (K− k j)

c
m

+ Wm(k j, q).

Thus, inf
{

τ : qm(τ; (K, q)) > qj
}

> 0. We know from the previous inductive step that
there is no delay at any state (k j, q) with q < qj. Thus qm(0; (K, q)) = qj.

We finally show that inf
{

τ : qm(τ; (K, q)) > qj
}
= τj. The characterization of the limit

11



functions from the previous inductive step implies that inf
{

τ : qm(τ; (K, q)) > qj
}
≤ τj.

Assume by contradiction that inf
{

τ : qm(τ; (K, q)) > qj
}
∈ (0, τj). Then, in state (K, q)

the low-type seller obtains a limit continuation payoff ṼL(K, q) that satisfies:

ṼL(K, q) > (K− k j)
c
m

+ P−m (k j, qj) (T11)

The buyer obtains a continuation payoff

(q̂− q)

 K

∑
s=kj+1

Λm
s vL − (K− k j)

c
m

+ (1− q̂)

 K

∑
s=kj+1

Λm
s vH − (K− k j)

c
m


+
(
qj − q

)  kj

∑
s=1

Λm
s vL −

[
ṼL(K, q)− (K− k j)

c
m

]+ Wm(k j, qj)

< (q̂− q)

 K

∑
s=kj+1

Λm
s vL − (K− k j)

c
m

+ (1− q̂)

 K

∑
s=kj+1

Λm
s vH − (K− k j)

c
m


+
(
qj − q

)  kj

∑
s=1

Λm
s vL − P−m (k j, qj)

+ Wm(k j, qj)

=W(K, q)

where the strict inequality follows from equation (T11). Thus, we have reached a contra-
diction. �

Proof of Claim 10. We first characterize the limit functions for all states (K, q) with
K ∈ {k + 1, . . . , k}, q < q̌(K) and q ≥ q̌(K − 1) if K 6= k + 1. In particular, we show that
starting from any such state (K, q), the state (K, q̌(K)) is reached without delay. At state
(K, q̌(K)) a (potentially off-path) impasse of length ρ(K) occurs.

First, assume towards a contradiction that Km (0; (K, q)) < K. Then, the buyer’s con-
tinuation payoff is bounded above by:

(q̂− q)
[
Λm

K vL −
c
m

]
+ (1− q̂)

[
Λm

K vH −
c
m

]
+ Wm(K− 1, q) =W(K, q) < 0. (T12)

Since the continuation payoff cannot be strictly negative, we have reached a contradiction.
We next show that Pm(K, ·) is discontinuous at q̌(K). If it were not, then Pm(K, q) >

∑K
s=1 Λm

s vL for all q ∈ [q̌(K) − η, q̌(K)) for some η > 0.50 This together with equa-
tion (T12), implies that the buyer’s continuation payoff would be strictly negative at any
state (K, q) with q ∈ [q̌(K)− η, q̌(K)), leading to a contradiction.

The discontinuity of Pm(K, ·) at q̌(K) implies that an impasse occurs at (K, q̌(K)).
Because of an argument analogous to that in DL, the length of the impasse must be
ρ(K), as defined in Claim 10. The expression for P−m (K, q̌(K)) is a direct consequence

50This follows from P+
m (K, q̌(K)) = (K− k j)

c
m + P−m

(
k j, qj

)
> ∑K

s=1 Λm
s vL, see equation (14a).
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of P+
m (K, q̌(K)) and the length of the impasse:

P−m (K, q̌(K)) =

(
∑K

s=1 Λm
s vL

)2

(K− k j)
c
m + P−m

(
k j, qj

) <
K

∑
s=1

Λm
s vL

where the inequality follows from equation (14a). Since shifting to state (K, q̌(K)) gives
the buyer a positive continuation payoff, there cannot be delay at state (K, q) with K ∈
{k + 1, . . . , k}, q < q̌(K) and q ≥ q̌(K− 1) if k 6= k + 1. Together with equation (T12) this
implies that in fact the impasse (K, q̌(K)) is reached without delay. This concludes the
characterization of the limit functions for all (K, q) with K ∈ {k + 1, . . . , k}, q < q̌(K) and
q ≥ q̌(K− 1) if K 6= k + 1.

The remainder of the proof is by induction. The base step is that Claim 10 holds for
k + 1, which follows from the first part of the proof of this claim. The inductive step is as
follows. Assume that Claim 10 holds for all k ∈ {k + 1, . . . , K− 1}with k + 1 ≤ K− 1 < k.
We show next that then it must also hold for K and q < q̌(K− 1).

Consider any state (K, q) with q < q̌(K − 1). The continuation payoff of the buyer is
bounded away from zero:

Wm(K, q) ≥ [q̌(K)− q]

[
K

∑
s=1

Λm
s vL − P−m (K, q̌(K))

]
> 0

This implies that there cannot be delay at state (K, q). To conclude this proof, we show
that Km(0; (K, q)) = K. Assume towards a contradiction that Km(0; (K, q)) < K. Then the
buyer’s continuation payoff is bounded above by:51

(q̂− q)
[
Λm

K vL −
c
m

]
+ (1− q̂)

[
Λm

K vH −
c
m

]
+ Wm(K− 1, q)

= (q̂− q)
[
Λm

K vL −
c
m

]
+ (1− q̂)

[
Λm

K vH −
c
m

]
+ (q̌(K− 1)− q)

[
K−1

∑
s=1

Λm
s vL − P−m (K− 1, q̌(K− 1))

]

+ (q̂− q̌(K− 1))

 K−1

∑
s=k j+1

Λm
s vL − (K− 1− k j)

c
m


+ (1− q̂)

 K−1

∑
s=k j+1

Λm
s vH − (K− 1− k j)

c
m


+
(
qj − q̌(K− 1)

) [ k j

∑
s=1

Λm
s vL − P−m

(
k j, qj

)]
< (q̂− q)

[
Λm

K vL −
c
m

]
+ (1− q̂)

[
Λm

K vH −
c
m

]
51In the expression to the right of the equality sign, the third, fourth and fifth lines add up to zero.

Nevertheless, we include them to make the comparison between payoffs easier. We proceed in a similar
fashion in the expression for Ω2 below.
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+ (q̌(K)− q)

[
K−1

∑
s=1

Λm
s vL − P−m (K− 1, q̌(K− 1))

]

+ (q̂− q̌(K))

 K−1

∑
s=k j+1

Λm
s vL − (K− 1− k j)

c
m


+ (1− q̂)

 K−1

∑
s=k j+1

Λm
s vH − (K− 1− k j)

c
m


+
(
qj − q̌(K)

) [ k j

∑
s=1

Λm
s vL − P−m

(
k j, qj

)]
≡ Ω1

where the strict inequality follows from

P−m (K− 1, q̌(K− 1)) < P+
m (K− 1, q̌(K− 1)) = (K− 1− k j)

c
m

+ P−m (k j, qj).

Starting in state (K, q), the buyer could instead follow an alternative course of action
and reach the state (K, q̌(K)) without delay. This would lead to a continuation payoff
equal to

(q̌(K)− q)

[
K

∑
s=1

Λm
s vL − P−m (K, q̌(K))

]

= (q̌(K)− q)

[
K

∑
s=1

Λm
s vL − P−m (K, q̌(K))

]

+ (q̂− q̌(K))

 K

∑
s=kj+1

Λm
s vL − (K− k j)

c
m

+ (1− q̂)

 K

∑
s=kj+1

Λm
s vH − (K− k j)

c
m


+
(
qj − q̌(K)

)  kj

∑
s=1

Λm
s vL − P−m

(
k j, qj

)
≡ Ω2

The difference Ω2 −Ω1 takes the following form

Ω2 −Ω1 = (q̌(K)− q)
[ c

m
+ P−m (K− 1, q̌(K− 1))− P−m (K, q̌(K))

]
= (q̌(K)− q)

 c
m

+

(
∑K−1

s=1 Λm
s vL

)2

(K− 1− k j)
c
m + P−m

(
k j, qj

) −
(

∑K−1
s=1 Λm

s vL + Λm
K vL

)2

c
m + (K− 1− k j)

c
m + P−m

(
k j, qj

)
 > 0,

where the inequality holds because c
m > Λm

K vL. Thus, we have reached a contradiction.
�
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T.6 Proof of Facts 2 and 3
Proof of Fact 2. We first plug the expression for P+

−` from equation (18) for ` into equa-
tion (19). We obtain an expression for P+

−(`+1) that we plug into equation (18) for `− 1.
The resulting expression links the (limit) beliefs of three consecutive impasses q−(`−1),
q−` and q−(`+1):(

q−` − q−(`−1)

) [∫ ψ(q−(`−1))

0
λ(z)vLdz−

[
ψ(q−(`−1))− ψ(q−`)

]
c
]

(T13)

−
(

q−` − q−(`−1)

) 
(

vL
∫ ψ(q−`)

0 λ(z)dz
)2

∫ ψ(q−`)
0 λ(z)vLdz +

(q̂−q−(`+1))
∫ ψ(q−`)

ψ(q−(`+1))
[λ(z)vL−c]dz+(1−q̂)

∫ ψ(q−`)
ψ(q−(`+1))

[λ(z)vH−c]dz

q−(`+1)−q−`


+ (q̂− q−`)

∫ ψ(q−(`−1))

ψ(q−`)
[λ(z)vL − c] dz + (1− q̂)

∫ ψ(q−(`−1))

ψ(q−`)
[λ(z)vH − c] dz = 0

Rearranging terms, we obtain the following expression for the ratio of the difference of
consecutive beliefs:

q−` − q−(`−1)

q−(`+1) − q−`
=

∫ ψ(q−`)
0 λ(z)vLdz∫ ψ(q−`)

0 λ(z)vLdz +
(q̂−q−(`+1))

∫ ψ(q−`)
ψ(q−(`+1))

[λ(z)vL−c]dz+(1−q̂)
∫ ψ(q−`)

ψ(q−(`+1))
[λ(z)vH−c]dz

q−(`+1)−q−`

×

(q̂−q−(`+1))
∫ ψ(q−`)

ψ(q−(`+1))
[λ(z)vL−c]dz+(1−q̂)

∫ ψ(q−`)
ψ(q−(`+1))

[λ(z)vH−c]dz

(q−(`+1)−q−`)
2

∫ ψ(q−(`−1))

ψ(q−`)
[c−λ(z)vL]dz

q−`−q−(`−1)
−

(q̂−q−`)
∫ ψ(q−(`−1))

ψ(q−`)
[λ(z)vL−c]dz+(1−q̂)

∫ ψ(q−(`−1))

ψ(q−`)
[λ(z)vH−c]dz

(q−`−q−(`−1))
2

It follows from the definition of ψ(·) that the first term in the right hand side of previous
equation is less than one. Therefore, the ratio

q−`−q−(`−1)
q−(`+1)−q−`

is bounded above as follows:

q−` − q−(`−1)

q−(`+1) − q−`
≤

(q̂−q−(`+1))
∫ ψ(q−`)

ψ(q−(`+1))
[λ(z)vL−c]dz+(1−q̂)

∫ ψ(q−`)
ψ(q−(`+1))

[λ(z)vH−c]dz

(q−(`+1)−q−`)
2

∫ ψ(q−(`−1))

ψ(q−`)
[c−λ(z)vL]dz

q−`−q−(`−1)
−

(q̂−q−`)
∫ ψ(q−(`−1))

ψ(q−`)
[λ(z)vL−c]dz+(1−q̂)

∫ ψ(q−(`−1))

ψ(q−`)
[λ(z)vH−c]dz

(q−`−q−(`−1))
2

(T14)

We next provide convenient expressions for the terms in the right hand side of the in-
equality above. To do so, we define the function λ̂(·) by λ̂(q) = λ(ψ(q)) and the function
v(·) by

v(q) =

{
vL if q ∈ [0, q̂]
vH. if q ∈ (q̂, 1]
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Using these definitions, we express(
q̂− q−(`+1)

) ∫ ψ(q−`)

ψ(q−(`+1))
[λ(z)vL − c] dz + (1− q̂)

∫ ψ(q−`)

ψ(q−(`+1))
[λ(z)vH − c] dz

=
∫ q−(`+1)

q−`
−ψ′(q)

[∫ 1

q−(`+1)

[
λ̂(q)v(s)− c

]
ds

]
dq

=

(∫ 1

q−(`+1)

v(s)ds

) ∫ q−(`+1)

q−`
ψ′(q)

(∫ q−(`+1)

q
λ̂′(u)du

)
dq

=

(∫ 1

q−(`+1)

v(s)ds

)
ψ′
(
q′`,`+1

)
λ̂′(q′′`,`+1)

(
q−(`+1) − q−`

)2

2
, (T15)

for some
(

q′`,`+1, q′′`,`+1

)
∈
[
q−`, q−(`+1)

]2
. The first equality follows from a change of

variables. For the second we use the fact that for all q < q−(`+1), then λ̂(q) = λ̂(q−(`+1))−∫ q−(`+1)
q λ̂′(s)ds and also that

∫ 1
q−(`+1)

[
λ̂(q−(`+1))v(s)− c

]
ds = 0. The third equality fol-

lows from the mean value theorem.
In a similar way we obtain

(q̂− q−`)
∫ ψ(q−(`−1))

ψ(q−`)
[λ(z)vL − c] dz + (1− q̂)

∫ ψ(q−(`−1))

ψ(q−`)
[λ(z)vH − c] dz

=

(∫ 1

q−`
v(s)ds

)
ψ′
(
q′`−1,`

)
λ̂′(q′′`−1,`)

(
q−` − q−(`−1)

)2

2
(T16)

for some
(

q′`−1,`, q′′`−1,`

)
∈
[
q−(`−1), q−`

]2
. Finally, again with a change of variables and

using the mean value theorem, we obtain∫ ψ(q−(`−1))

ψ(q−`)
[c− λ(z)vL] dz = −ψ′(q′′′`−1,`)

[
c− λ̂(q′′′`−1,`)vL

] (
q−` − q−(`−1)

)
(T17)

for some q′′′`−1,` ∈
[
q−(`−1), q−`

]
.

We plug equations (T15), (T16) and (T17) into equation (T14) and obtain

q−` − q−(`−1)

q−(`+1) − q−`
≤

1
2

(∫ 1
q−(`+1)

v(s)ds
)

ψ′
(

q′`,`+1

)
λ̂′(q′′`,`+1)

−ψ′(q′′′`−1,`)
[
c− λ̂(q′′′`−1,`)vL

]
− 1

2

(∫ 1
q−`

v(s)ds
)

ψ′
(

q′`−1,`

)
λ̂′(q′′`−1,`)

≡ Ξ
(

q−(`−1), q−`, q−(`+1)

)
(T18)

where we do not express explicitly that q′`,`+1, q′′`,`+1, q′`−1,`, q′′`−1,`, q′′′`−1,` also depend on
q−(`−1), q−` and q−(`+1).
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Fact 2 links q−`− q−(`−1) and q−(`+1)− q−` when q−(`+1)− q−` is small. We study the
function Ξ (·, ·, ·) when this difference is small. We fix q−(`+1), let q−` = q−(`+1) − h and
define q−(`−1)(q−(`+1), h) implicitly by equation (T13). Therefore, we directly study the

function Ξ̃
(

h, q−(`+1)

)
≡ Ξ

(
q−(`−1)(q−(`+1), h), q−(`+1) − h, q−(`+1)

)
in a neighborhood

of h = 0.
First, we show that limh→0 Ξ̃

(
h, q−(`+1)

)
= 1 for every q−` < q̄(0). It follows from

equation (T13) that limh→0 q−(`−1)(q−(`+1), h) = q−(`+1). Thus,

lim
h→0

Ξ̃
(

h, q−(`+1)

)
=

1
2

(∫ 1
q−(`+1)

v(s)ds
)

ψ′
(

q−(`+1)

)
λ̂′(q−(`+1))

−ψ′(q−(`+1))
[
c− λ̂(q−(`+1))vL

]
− 1

2

(∫ 1
q−(`+1)

v(s)ds
)

ψ′
(

q−(`+1)

)
λ̂′(q−(`+1))

=

1
2

(∫ 1
q−(`+1)

v(s)ds
)

λ̂(q−(`+1))vL−c∫ 1
q−(`+1)

v(s)ds

−
[
c− λ̂(q−(`+1))vL

]
− 1

2

(∫ 1
q−(`+1)

v(s)ds
)

λ̂(q−(`+1))vL−c∫ 1
q−(`+1)

v(s)ds

= 1

where the second equality follows from λ̂′(q) = λ̂(q)vL−c∫ 1
q v(s)ds

.52

Second, it follows from the fact that λ(·) is smooth that there exists ξ > 0 and h̃ > 0

such that h′ < h̃ implies that
∣∣∣∣ ∂Ξ̃(h,q−(`+1))

∂h

∣∣∣∣
h=h′

∣∣∣∣ < ξ for every q−(`+1) < q̄(0).

Putting together the last two results, it follows that for any ε > 0 there exists h̃ such
that if h < h̃ then Ξ̃

(
h, q−(`+1)

)
< 1 + ε for every q−(`+1) < q̄(0). This directly leads to

Fact 2. �

Proof of Fact 3. It is straightforward to establish the first result in Fact 3 if q−(`+1) − q−`
is bounded away from zero. Therefore, we restrict attention to the case in which q−(`+1)−
q−` is small.

Consider the following three consecutive limit beliefs:
(

q−`, q−(`+1), q−(`+2)

)
. Equa-

tion (T18) guarantees

q−(`+2) − q−(`+1)

q−(`+1) − q−`
≥ 1

Ξ
(

q−`, q−(`+1), q−(`+2)

) .

We fix q−(`+1) and let h ≡ q−(`+1) − q−`. We define q−(`+2)

(
h, q−(`+1)

)
implicitly by

equation (T13), but linking the consecutive limit beliefs:
(

q−`, q−(`+1), q−(`+2)

)
. We also

52This, in turn, follows from
∫ 1

q
[
λ̂(q)v(s)− c

]
ds = 0 for every q in the domain of λ̂(·).
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define
Ξ̂
(

h, q−(`+1)

)
≡ 1

Ξ
(

q−(`) − h, q−(`+1), q−(`+2)

(
h, q−(`+1)

)) .

The function Ξ̂(·, ·) satisfies limh→0 Ξ̂
(

h, q−(`+1)

)
= 1. Moreover, for every h̃ > 0 there

exists ξ such that if 0 ≤ h′ < h̃ then
∣∣∣∣ ∂Ξ̂(h,q−(`+1))

∂h

∣∣∣∣
h=h′

∣∣∣∣ < ξ for every q−(`+1) < q̄(0). Thus,

through a Taylor approximation, there must exist h̃ > 0 such that for all h < h̃:

Ξ̂
(

h, q−(`+1)

)
> 1− ξh for every q−(`+1) < q̄(0)

We restrict attention to q−(`+1) − q−` < h̃, which implies

q−(`+2) − q−(`+1)

q−(`+1) − q−`
≥ 1− ξ

(
q−(`+1) − q−`

)
. (T19)

We put together equation (18) and the first equality in (T15) to express the left hand
side in (21). First, note that

P+
−` −

∫ ψ(q−`)

0
λ(z)vLdz =

∫ q−(`+1)
q−`

−ψ′(q)
[∫ 1

q−(`+1)

[
λ̂(q)v(s)− c

]
ds
]

dq(
q−(`+1) − q−`

) (T20)

and so [
P+
−` −

∫ ψ(q−`)
0 λ(z)vLdz

]
−
[

P+
−(`+1) −

∫ ψ(q−(`+1))

0 λ(z)vLdz
]

q−(`+1) − q−`

=

∫ q−(`+1)
q−`

−ψ′(q)
[∫ 1

q−(`+1)

[
λ̂(q)v(s)− c

]
ds
]

dq(
q−(`+1) − q−`

)2

−

∫ q−(`+2)
q−(`+1)

−ψ′(q)
[∫ 1

q−(`+2)

[
λ̂(q)v(s)− c

]
ds
]

dq(
q−(`+2) − q−(`+1)

)2

(
q−(`+2) − q−(`+1)

q−(`+1) − q−`

)

= R
(

q−`, q−(`+1)

)
− R

(
q−(`+1), q−(`+2)

)(q−(`+2) − q−(`+1)

q−(`+1) − q−`

)
(T21)

where for any (q, q′) ∈ [q̄(1), q̄(0)]2 with q ≤ q′, we let:

R
(
q, q′

)
≡


∫ q′

q −ψ′(u)
[∫ 1

q′ [λ̂(u)v(s)−c]ds
]
du

(q′−q)2 if q < q′

1
2 ψ′(q)λ̂′(q)

∫ 1
q v(s)ds if q = q′

18



The function R(·, ·) is continuous. We let R ≡ minq̄(1)≤q≤q′≤q̄(0) R (q, q′) > 0 and R ≡
maxq̄(1)≤q≤q′≤q̄(0) R (q, q′). If

q−(`+2)−q−(`+1)
q−(`+1)−q−`

> R/R then the right hand side of equa-
tion (T21) is negative and the first inequality in Fact 3 holds trivially. Therefore, we restrict
attention to:

q−(`+2) − q−(`+1)

q−(`+1) − q−`
≤ R/R (T22)

The function R(·, ·) has bounded partial derivatives. Then, there exist constants κ1 > 0
and κ2 > 0 such that:

R
(

q−`, q−(`+1)

)
− R

(
q−(`+1), q−(`+2)

)(q−(`+2) − q−(`+1)

q−(`+1) − q−`

)
≤ R

(
q−(`+1), q−(`+1)

)
+ κ1

(
q−(`+1) − q−`

)
−
[

R
(

q−(`+1), q−(`+1)

)
− κ2

(
q−(`+2) − q−(`+1)

)](q−(`+2) − q−(`+1)

q−(`+1) − q−`

)

≤
(

Rξ + κ1 + κ2R/R
) (

q−(`+1) − q−`
)
− κ2ξR/R

(
q−(`+1) − q−`

)2

where the second inequality follows from the inequalities in (T19) and (T22), plus the
definition of R. This directly leads to (21) in Fact 3.

Next, we obtain the following simple bound for q−(`+1)− q−` from equation (T20) and
the definition of R(·, ·):

q−(`+1) − q−` =
P+
−` −

∫ ψ(q−`)
0 λ(z)vLdz

R
(

q−`, q−(`+1)

) ≤
P+
−` −

∫ ψ(q−`)
0 λ(z)vLdz

R
.

This directly leads to (22) in Fact 3. �
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