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1 Introduction

By April 8, 2020, 80% of US counties were covered by stay-at-home orders issued in response to the

COVID-19 pandemic. Yet 50% of US counties had experienced five or fewer documented cases of the

disease, and 72% of counties had experienced no deaths attributable to COVID-19. What is the source

of heterogeneity in cases and deaths across US counties? Should policies be sensitive to such spatial

variation? There are, we think, two legitimate views on these questions.

Under the first view, spatial variation in disease severity only reflects differences in timing. As the

disease spreads, ultimately every location in the US will have similar infection rates, similar death

rates, and similar rates of hospitalization. This view would justify uniform lockdown policies. Such

policies would slow down disease spread to allow the health care infrastructure to cope with the disease

burden.

Under the second view, spatial variation in cases and deaths reflects underlying fundamental dif-

ferences across locations - population density, modes of transportation, housing arrangements, the age

distribution, health conditions, weather, etc. At any point in time, locations will continue to differ

according to these characteristics. They will differ no matter the number of days since onset, and the

differences will persist, perhaps even increase over time. This provides a foundation for policies that

are sensitive to local specificities, where less affected places can have less stringent lockdowns or earlier

reopenings because their health care systems are less likely to become overwhelmed.

In this paper, we pinpoint the determinants of heterogeneity in COVID-19 cases and deaths,

and provide evidence strongly consistent with the second view. We document substantial spatial

heterogeneity across US counties, and identify novel and interesting correlates of variation in the

number of cases and the number of deaths across US counties. We also analyze the persistence of

these effects over time, finding that many of them have stable or even increasing effects as the disease

spreads.1

We examine a broad set of correlates of disease severity. We pay particular attention to population

density, using a variety of approaches to carefully measure dimensions of population density that have

been hypothesized to affect the spread and severity of COVID-19. For instance, we look at the role

of public transportation, living arrangements, housing density, and the distribution of the population

at a high level of spatial resolution. We also consider the age distribution, racial composition, under-

lying health conditions, inequality and poverty, political orientation, among many other variables. A

strength of our approach, unlike others that study putative determinants of COVID severity one at a

time, is that we consider many potential correlates all at once.

Our analysis examines the role of these factors at various points in time, starting on March 15,

1An emerging literature examines the determinants of local variation in COVID-19 severity, also uncovering substantial

spatial heterogeneity. Knittel and Ozaltun (2020) exploit cross-county variation in the US, like us, but only look at deaths

and do not correct for differential timing in disease onset. Leamer (2020) studies cross-county variation within California,

finding a significant effect of population density. McLaren (2020) looks more specifically at the relationship between

COVID severity and racial composition, arguing that racial differences are partly related to differential prevalence of

public transit at the county level in the US. Other papers study spatial variation for other countries, such as Belgium

(Verwimp, 2020), France (Ginsburgh, Magerman and Natali, 2020) and England and Wales (Sá, 2020).
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2020 and ending on June 29, 2020. We examine variation in COVID-19 cases and deaths on a daily

basis using two approaches. The first approach looks at the cross-section of US counties at a given

date, providing snapshots of the correlates of disease severity at particular moments in time. The

second approach looks at the cross-section putting all counties at the same stage in terms of days since

cases and deaths reached a certain threshold per capita. This allows us to correct for differences in the

timing of disease onset, to better assess if spatial variation reflects variation in the timing of disease

onset or fundamental differences between locations.

Our paper documents five major sets of facts. First, there is substantial variation in cases and

deaths across counties. Second, this variation is associated with differences in a range of variables that

capture population density, modes of transportation, urbanicity, the age structure of the population,

the proportion of the population living in nursing homes, and distance to major airports with direct

flights to countries where COVID-19 was prevalent early on. Third, the effects of these correlates

persist through time, especially for variables that capture density, the presence of elderly individuals

and nursing home population. Fourth, a deeper analysis uncovers additional correlates of disease

severity: counties with many members of minority groups (especially African-Americans and Hispanics)

are disproportionately impacted, as are counties with many poor people and a higher proportion of

people with a bachelor’s degree or more. Counties that imposed stay-at-home orders early on tend to

have fewer deaths.

Fifth and finally, we document interesting facts when it comes to the political orientation of counties

differentially affected by the disease. We find that the severity of the disease is politically patterned:

in a simple specification controlling only for log population, counties with a high proportion of Trump

voters in the 2016 general election have lower cases and deaths. These results may help explain the

growing political divide over policies to ease stay-at-home orders. At the same time, the Trump effect

on severity weakens and is even reversed when including additional controls for the shares of minority

groups. Taking into account these factors, Trump’s vote share in 2016 positively predicts cases and

deaths. This could reflect differences in attitudes, policies and behaviors across counties on either side

of the political divide.

2 The Correlates of COVID-19 Severity

In this section, we relate our empirical specification to standard epidemiological models, provide a

brief overview of the data, and report our findings on the correlates of COVID-19 cases and deaths

across U.S. counties.

2.1 Specification

Specification consistent with the SIRD model. Standard epidemiological models, such as the

SIRD model, posit laws of motion of the number of susceptible people, infectious people, recovered

people and deceased people for a given population and a given infectious disease. These laws of

motion are governed by a few key parameters: the rate of infection, the rate of recovery and the rate

of mortality. Together, they determine, for a given population, the evolution of the number of cases

and deaths over time.
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To fix ideas, denote by  the cumulative number of cases and by  the cumulative number of

deaths from COVID-19 in county  at time . The rate of infection, , and the rate of death, ,

are likely to be, to an extent, county-specific. For example, we would expect counties with higher

population density, where individuals are more likely to run into each other, to have a higher rate of

infection . Similarly, we would expect counties with a larger share of elderly to experience higher

death rates . Differences in these parameter values across counties imply differences in the paths

of  and  across counties. For example, a county with a higher  will have higher cumulative

cases and deaths at any point time, compared to a similar county with a lower . This is related

to the well-known result that a higher expected number of infections from an infected individual

(i.e., a higher basic reproduction number 0) generates in the limit more cumulative cases and more

cumulative deaths. Some of these insights are illustrated with simulations in the recent work by

Fernández-Villaverde and Jones (2020).

The objective of this paper is to explore the importance of county-specific factors that affect  and

. These parameters affect the dynamic paths of  and , and therefore their levels at every point

in time. We are interested in accounting for differences in levels of cumulative cases and deaths at a

given point in time in the cross-section of counties. Hence we run, for each time period , county-level

regressions of the logarithm of cases or deaths on a set of potential determinants of  and :

log() = 0 +

X
=1

 +  (1)

and

log() = 0 +

X
=1

 +  (2)

where  are county-level regressors that potentially affect  and  (and hence  and ) and 

and  are county-level disturbance terms. These  regressors, indexed by , include variables such as

a county’s density, age structure and health conditions.

Note that these period-by-period regressions are able to capture any functional form for the path of

the number of cumulative cases and deaths over time. As such, they are consistent with the functional

forms generated by standard epidemiological models. Indeed, to allow for maximum flexibility in

the changing relation between the county-level determinants and the disease severity, we choose a

parsimonious period-by-period cross-sectional regression framework over a more structural empirical

model that explicitly estimates the SIRD model.

The standard SIRD model assumes that individuals have equal probabilities of interacting with

each other. In that sense, it does not really capture spatial features that make some individuals (or

groups) more or less likely to interact with others. Bisin and Moro (2020) introduce a spatial SIR

model with behavioral responses that explicitly incorporates these spatial concerns. When people are

no longer matched randomly with the entire population, but are more likely to interact with people

in their vicinity, local herd immunity becomes a possibility. In this model, spatial heterogeneity in

disease severity can be magnified due to differences in modes of interaction and the spatial scale of

interaction. As such, this model suggests that differences in population density are not sufficient to
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predict variation in disease severity, and that a proper analysis should take into account both modes

of interaction as well as local effective density. This is precisely what we do below, by measuring a

range of variables that capture the intensity of local interactions.

Timing and the definition of cross-sectional samples. We take two approaches to define the

sample used in the cross-county analysis. The first approach is to carry out the analysis date by date.

In this case, a time period  refers to a calendar date , and we simply run regressions (1) and (2) day

by day, from March 15, 2020 to June 29, 2020. A potential issue with this approach is that part of the

cross-county variation in disease severity may be related to timing factors. To address this concern,

we control for certain factors that could affect the timing of the arrival of COVID-19 to a particular

county. For instance, we control for the distance to an airport with direct international flights to

high-severity countries.

The second approach more directly addresses differential timing of onset by considering each county

at the same time elapsed since onset. Here we refer to onset as the day when a county reached a certain

threshold, either in terms of cases per capita or deaths per capita. To formally define days elapsed

since onset, start by denoting, for each county , an indicator variable  that takes a value of 1 if

county  has reached at least 1 case per 100 000 population on day . For each county  and day ,

the number of days since it reached that threshold is then:

 =

X
=1

 

For the choice of each cross-county sample, we then set  to a fixed number .
2 That is, the first

sample consists of all counties one day after reaching the threshold, the second sample consists of all

counties two days after reaching the threshold, and so on. Since each regression compares counties

that all have passed the same threshold of per capita cases a fixed number of days before, this limits

the effect of differential timing of onset across locations.

Similarly, we define the time elapsed since reaching the threshold of 05 deaths per 100 000 popula-

tion. For each county  and day , the number of days since it reached that threshold is  =
P

=1 

 ,

where  is an indicator variable taking a value of 1 if county  has reached at least 05 deaths per

100 000 population on day . Here as well, each regression compares counties that have passed the

deaths per capita threshold a fixed number of days before.

Treatment of zeros. Counties with zero cases and zero deaths are particularly prevalent early in

the sample period. Taking logs of cases and deaths amounts to ignoring the extensive margin. To

address this shortcoming, we consider the log of one plus cases or deaths (resulting in a balanced

sample of 3 137 counties). For June 29, 2020, for instance, there were 3 045 counties with strictly

positive cases, and 1 934 counties with strictly positive deaths. Including the extensive margin gives

2For instance, when fixing  = 5, the sample consists of each county on the specific calendar date  when it reached

 = 5.
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us the following specifications:

log(1 + ) = 0 +

X
=1

 +  (3)

log(1 +) = 0 +

X
=1

 +  (4)

State fixed effects. Other policy choices and certain omitted variables may affect cumulative cases

and deaths. To partly address this concern, in some specifications we include state fixed effects. In

addition to picking up differences across states that go beyond the other variables we are already

controlling for, we are also interested in the magnitude of these effects per se. However, we do not

include state fixed effects in all specifications, as they absorb a lot of variation that we would prefer

to explicitly capture.

Summary of specifications. To summarize, we have eight specifications. There are two outcomes:

cases and deaths. There are two ways to construct the sample: by calendar date, using the log of

one plus cases or deaths as dependent variables; or placing each county at the same time since onset

for both deaths and cases (the latter excludes counties with zero deaths and cases by construction,

and additionally excludes counties where the threshold defining onset has not been crossed).3 Finally,

there is another specification choice: whether we include state fixed-effects or not.

2.2 Data

We use daily data on COVID-19 reported cases and deaths collected at the county level by the New

York Times. Appendix Table A1 (Panel A) contains summary statistics for various metrics of cases and

deaths constructed from these data, revealing substantial variation across counties. To our knowledge

these are the best data available at the county level, yet it is important to acknowledge several possible

data challenges. These are particularly acute for cases, and early in the period, since reported cases

depend on testing, and testing was initially far from uniformly and widely prevalent. Data issues are

not absent from deaths data either, as reporting standards vary across jurisdictions and adjudicating

whether a death was caused by COVID-19 involves an element of judgment. An alternative would be

to use data based on excess mortality, but these are not available at the county level on a daily basis.4

Regarding measurement error, we note the following: First, if errors are random, they will raise the

standard error of the regression without creating bias. However, if both testing and the reporting of

deaths are systematically correlated with the included explanatory variables, we will need to interpret

the corresponding estimates carefully as reflecting effects on both underlying severity and on reporting

3 In the Appendix, we also consider a sample based on calendar dates, using the log of cases or deaths, i.e. only the

intensive margin.

4The National Vital Statistics System of the National Center for Health Statistics reports weekly excess deaths at the

state level: https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm. For other examples of excess deaths

estimates, see New York City Department of Health and Mental Hygiene COVID-19 Response Team (2020) and Banerjee

et al. (2020).
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of cases and deaths. Second, to the extent that testing capacity varies at the state level, including

state fixed effects may in part correct for systematic measurement error due to uneven testing intensity.

Third, early in the spread of the disease, testing may also be more strongly targeted toward individuals

showing symptoms, resulting is artificially high case fatality rates ( =deaths/cases). To address

this possibility we reran our baseline regressions removing from the sample observations with  

01 - the upper tail of the distribution of , most likely to be severely affected by selection in testing

(Section 2.3 discusses the results). Fourth, testing and reporting regimes improve through time, so the

passage of time should make measurement error in cases and deaths less relevant, as locations ramp

up testing and fine tune the reporting of deaths.

We also gathered a wide range of county-level indicators to be used as independent variables. Vari-

able definitions and sources are provided in the Data Appendix, summary statistics are in Appendix

Table A1 (Panel B) and most of the variables are displayed in map form in Appendix Figure A1.

2.3 The Correlates of Spatial Variation in COVID-19 Severity

Tables 1 and 2 report estimates of all eight specifications outlined above. Table 1 considers a cross-

section of counties as of June 29, 2020 (the last date in our sample). Table 2 reports estimates

synchronizing the sample in terms of days since onset. For cases, we use 70 days since onset as the

baseline and for deaths we choose 60 days since onset. These choices are motivated by a trade-off: by

choosing a small number of days since onset, we would obtain a large cross-section of counties, less

likely to be selected, but we would consider counties very close to onset, where the effect of fundamental

determinants may not yet have emerged. Instead, by choosing a larger number of days since onset

we would limit the number of counties in the sample in ways that are potentially selected, since only

early onset counties are likely to appear. Our choice reflects this trade-off, and leads to a relatively

large sample for both cases and deaths (respectively 2 755 and 1 446 counties).

We consider a set of eleven baseline correlates. The first is log population, which acts as a scaling

variable. Its inclusion implies that the other estimates can be interpreted as the determinants of cases

and deaths in per capita terms.

Density measures. A first group of regressors relates to population density, since living in closer

proximity is likely to imply a higher infection rate . Given the potential importance of density, we use

several variables. One is simply population density as measured by the county’s population divided

by its land area. This may not adequately capture effective density, since some counties may have

extensive land areas, in spite of most people living in fairly dense areas. We therefore complement

simple density with variables that indicate whether a county is classified by the National Center for

Health Statistics as a large metro area or as a medium or small metro area. In addition, we also

include the share of the population that commutes by public transit, a factor that has been argued to

be an important spreader of the virus (Harris, 2020).

Results are consistent across all specifications in showing the importance of density as a determinant

of severity: all four density measures are jointly statistically highly significant and positively associated

with the number of cases in all specifications. Looking at variables individually, we find that counties
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with a higher proportions of individuals using public transit have significantly higher severity, with

large standardized magnitudes particularly for deaths (12−16%). Magnitudes are sometimes reduced
when including state fixed effects, but remain broadly consistent. Deaths are higher in large metro

counties than in medium or small metro counties, which in turn tend to be higher than in the excluded

category of non-urban counties. The effect of log population density itself tends to be positive, but

is not consistently significant across specifications. This finding highlights the importance of properly

measuring effective density using a variety of metrics, a task we further pursue in Section 4.1, where

we include additional measures of effective density, based on housing arrangements and on the density

experienced by an average individual in the square kilometer grid cell where they live.

Age and nursing homes. A second group of regressors relates to the age structure of the pop-

ulation. Given the much higher mortality rate among the elderly, we control for the share of the

population aged 75 and above. It is important to note that the age gradients of cases and deaths may

be quite different from each other (Hay et al., 2020, report data on the age gradient of infections rather

than deaths). As is often observed, the elderly living in nursing home may be particularly susceptible

(Barnett and Grabowski, 2020). We therefore also include a county-level measure of nursery home

residents divided by population.

We find interesting results. Cases are negatively associated with the percentage of people aged

75 and older. This may reflect differences in lifestyles between counties with different age structures.

For instance, places with a large share of retired individuals may feature fewer places (bars, stadiums)

where the disease spreads rapidly. On the other hand, we find no consistent pattern regarding the

correlation between age structure and deaths. It is well established that deaths from COVID-19

disproportionately occur among older individuals, but this does not necessarily imply that counties

with a greater proportion of elderly persons experience a higher number of deaths, after controlling

for other determinants. Indeed, as discussed, counties with a greater share of people aged 75 and

above have a lower number of cases. When it comes to the share of the population in nursing homes,

we find positive and economically large partial correlations especially for deaths, and especially when

isolating the intensive margins of the disease. For instance in columns (3) of Tables 2 and A2, the

standardized betas on the share of nursing home residents are respectively 154% and 136%. This

finding is consistent with the idea that once a county is affected by the pandemic, its nursing homes

can quickly become powder kegs, and account for large shares of county-wide deaths.

Other correlates. A third group of regressors include other factors that have been hypothesized to

affect the onset and severity of the pandemic. Early reports suggested that temperature may play a

role in the spread of the disease, so we include a county-level measure of the average temperature in

February, March and April (using data from China, Qi et al., 2020, suggested that higher temperatures

slowed the disease, but Xie and Zhu, 2020, find a flatter temperature gradient). We find evidence

that locations with higher temperatures in those months experienced more cases and deaths, with

sometimes large standardized magnitudes. The implications for the evolution of the disease in the

summer months are unclear, since both the absolute level of temperature and its spatial distribution

will change.
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The onset of the pandemic in specific locations in the US may have been related to connectivity

with high-severity countries (Wells et al., 2020). We construct a measure of the distance to any airport

with direct flights to one of the top-5 countries with coronavirus cases on March 15, 2020 (China, South

Korea, Iran, Italy and Spain). This variable bears a consistently negative relationship with cases and

deaths.

Among the remaining correlates, we first include median household income, a standard metric

to capture differences in economic well-being across counties. We do not find a robust effect of

median income across specifications. Second, a measure of social capital from Rupasingha, Goetz and

Freshwater (2006), bears a positive relationship with cases and deaths in Table 1, but this result does

not hold up when looking at the intensive margin only (Table 2).5

State fixed-effects. Tables 1 and 2 report results with or without state fixed effects. Appendix

Figures A2 and A3 graphically display estimates on the state fixed effects, ordered by size, for the

specifications of columns (2) and (4) of Table 1. These plots reveal that, after controlling for the eleven

baseline set of correlates of disease severity, some states have lower or higher cases or deaths. We find

that counties in Hawaii and California, for instance, have lower severity than expected, while counties

in Louisiana, Connecticut or New Jersey have higher severity than expected. These differences could

reveal idiosyncrasies that are hard to capture using additional regressors varying at the county level

(for instance the fact that Hawaii is an island, or that New Jersey is close and tightly integrated with

New York, a major center of the disease in the US). They could also capture some omitted factors

excluded from our parsimonious specification. At any rate the inclusion of state fixed-effects does not

seem to greatly affect the patterns uncovered regarding the measured determinants of disease severity.

Isolating the intensive margin. In Table A2, we consider the determinants of log cases and log

deaths as of June 29, 2020, i.e. counties with zero cases or deaths drop from the sample. The results

confirm the findings discussed above, indeed Table A2 resembles Table 1. Results differ a little more

for deaths than for cases, because by June 29 most counties in the US reported positive cases, whereas

over 1 000 counties still did not report a single death. Differences between Tables 1 and A2 are

expected to fade as time goes by as the samples will overlap more and more.

Incidence of high CFR counties. Some counties in our sample exhibit very high case fatality rates

(CFR), especially early in the period. This is perhaps because testing was limited, and selected to apply

mostly to individuals showing severe COVID-19 symptoms. As testing became more widespread, this

source of bias was likely reduced. To examine the robustness of the results to the inclusion of counties

where testing was biased in this manner, we rerun our baseline regressions removing observations with

  10%. This also implies removing counties with zero cases. Comparing Tables A2 and 2 to

Tables A3 and A4 (the sample restriction applies to the latter), we find only very minor differences in

the estimates. These results mitigate the concern that bias in testing only symptomatic individuals

5For a further investigation of the ambiguous role of social capital as a determinant of social distancing, see Ding et

al. (2020), who find a negative effect of community activities but a positive effect of voter turnout. Durante, Guiso and

Gulino (2020), across Italian provinces, find that mobility declined more in areas with higher civic capital.
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drives our results. Moreover, as time goes by and testing becomes less and less selected, the concern

should also be alleviated.

3 Persistence in the Determinants of COVID-19 Heterogeneity

The foregoing discussion concerned the cross-section of disease severity at a specific date (June 29) or

at a constant time since onset. These effects offer a snapshot of spatial variation, but do not describe

how the partial correlations that we calculated evolve over time. As the disease progresses, do these

sources of heterogeneity in severity persist?

To examine this question, we estimate our model daily and plot estimated coefficients and their

confidence bounds through time. It is important to emphasize that this also represents a time-slice

of the effects. Indeed, we do not know how they will further change past the last date in our dataset

(currently June 29) but we will update the results as more data becomes available.

Evolution between March and June 2020. Figure 1 displays coefficient estimates from the

specifications of equations (3) and (4), with 95% confidence intervals. The sample of counties is the

same over time (3 137 counties) and the dates run from March 15 to June 29, 2020. In most cases, we

see an initial period where coefficient magnitudes move away from zero. This is natural since there is

not much variation to explain early on, and there is randomness in locations that got the virus early.

One important exception is the variable capturing distance to international airports with connections

to the top-5 COVID incidence countries as of March 15, 2020. This variable predicts the cross-section

of cases from the get-go, as we would expect.

Many of the 11 regressors display increasing absolute effects over time. When focusing on the effect

of density on cases, it grew over time until about day 80, and has been slightly weakening since. The

other three measures of density display weakening effects. Public transit usage and urban categories

display persistent positive effects of deaths. Looking at all four measures of density jointly, we see

that there is so far no indication that density is disappearing as a predictor of the cumulative number

of cases and deaths.

Turning to the elderly population, our results echo what we found previously: the share of the

population aged 75 and above is negatively and persistently correlated with cases, but the earlier

positive correlation with deaths has faded since early May. As for the share of the population living

in nursing homes, its impact is positive and rising over time, both for cases and for deaths.

Other correlates deserve a brief mention. The distance to the closest international airport with

direct flight connections to high-incidence countries is negatively correlated with both cases and deaths,

and those correlations are stable over time, showing the persistent effect of initial conditions. Median

household income initially bore a slight positive correlation with cases, which disappeared gradually

since early May, but it is uncorrelated with deaths. A last correlate worth discussing is log population.

We observe that the elasticity of cases to population rises over time and reaches one by late June,

suggesting no scale effects. For deaths, the elasticity does not reach one by the end of the period,

suggesting that there still exists a negative scale effect on per capita deaths.
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Overall, many of the location-specific characteristics that affect the rate of infection and the rate

of death, such as population density and age composition, display persistent and sometimes increasing

(absolute) correlations with cumulative cases and deaths. As such, the evidence so far suggests that

the severity of COVID-19 is unlikely to equalize across space. Whether these findings hold up as the

pandemic further unfolds remains an open question.

Evolution since onset. One possible issue with Figure 1 is that the coefficients may partly pick up

the differential timing of onset across different types of counties. For example, if low-density counties

are hit later by COVID-19 than high-density counties, then their cumulative cases or deaths will tend

to be lower on any given date. Of course, if timing were the main difference between low and high

density counties, then the coefficient on density should be declining over time, as disease severity in low

density counties catches up with high density counties. Since many of the regressors display increasing

absolute effects over time, it is unlikely that differential timing is an important driver of our results.

However, to limit any impact of differential timing, we fix the sample in terms of days since onset.

Figure A4 displays how coefficient estimates evolve as a function of days since onset. To grasp how

to read these graphs, a concrete example may help. The public transit graph in Figure A4A plots the

coefficients on public transportation from 90 different regressions, one for each of the different time

lags since a county reached the threshold of 1 case per 100 000. Increasing the number of days since

onset decreases the sample size because fewer counties meet the criterion for passing the threshold

early on. We illustrate this changing sample size among the graphs displayed in Figure A4. As can be

seen, there are over 3 000 counties in the sample of counties one day after passing the case threshold,

but there are about 2 200 in the sample of counties 90 days after onset.

As before, we find strong evidence of persistence regarding many determinants of cases and deaths.

For example, the importance of density for cases grows as the pandemic runs its course in a given

location, and public transit shows a persistent effect on both cases and deaths. As for nursing home

residents, its correlation with cases and deaths is also persistent and increasing in the days since

onset. The only determinants of both cases and deaths that seem persistently insignificant are median

income (a variable that did not bear a robust relationship with cases and deaths in Section 2) and

social capital. As we would expect, in the early days since onset coefficients on the different regressors

tend to be close to zero.6 In sum, whether defining the sample by calendar dates or by days since

onset, we find substantial persistence in the determinants of spatial variation in disease severity.

4 Further Investigation of Specific Correlates

4.1 Effective Density

Our baseline results indicate an important role for density in determining the severity of COVID-19.

This should come as no surprise: as with any other infectious disease, contact between susceptible and

6In the limit, on the first day of reaching the threshold, we are comparing counties that are identical in terms of

the variable we are trying to explain. In the absence of any cross-sectional variation, we would not expect any of the

regressors to explain anything.
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infected individuals is a key determinant of the spread of the disease. However, the actual degree of

contact between people is not straightforward to measure. The four indicators already included in the

baseline specification may not fully capture relevant dimensions of density.

In Table A5, we continue to control for the baseline set of 11 determinants, but add three additional

measures aimed at better capturing the likely intensity of contact between people. Two of these relate

to housing and living arrangements: the share of individuals living in multi-unit housing structures and

the number of people per household. A third measures the average density a random individual of a

county experiences in the square kilometer around him. We refer to this variable as a county’s "effective

local density". Columns (1) and (4) of Table A5 report coefficient estimates for specifications where

we add the controls for living arrangements. We see that multi-unit housing and the size of households

are positively associated with both cases and deaths.7 Columns (2) and (5) add effective local density:

its correlation with cases is statistically insignificant, whereas its correlation with deaths is negative

and significant. For reasons of further comparison, columns (3) and (6) drop housing arrangements

and public transportation, and only maintain simple density and effective local density. As can be

seen, effective local density now displays a positive and statistically very significant relation with both

cases and deaths. Overall, this suggests that a county’s effective local density matters, but that its

effect may operates through dense housing and public transit.

4.2 Other Factors

Race. Table A6 explores the possible role of race. It reports four different specifications: columns

(1) and (3) report regressions for cases and deaths, based on a cross-section of counties as of June

29, whereas columns (2) and (4) also report regressions for cases and deaths, but now based on a

cross-section of counties 70 days after onset (for cases) and 40 days after onset (for deaths). To the

baseline regressors, we add measures of the racial composition of a county by controlling for the shares

of African Americans, Hispanics, American Indians and Asians, with the excluded category being the

share of Whites and others. The results display a strong and consistent positive correlation between

the share of African Americans and the share of Hispanics with both the number of cases and the

number of deaths. The share of American Indians exhibits a positive correlation with deaths, but

not with cases, whereas the share of Asians shows a weaker correlation with COVID-19 incidence. In

terms of magnitudes, the share of African Americans stands out with large standardized  coefficients

between 25% and 33%. Overall these results confirm concerns that the COVID-19 pandemic has a

disparate effect on various racial groups.

Education. Table A7 analyzes whether the level of education may be a source of heterogeneity in

disease severity across counties. We take the same four specifications as in the previous table with

the same baseline regressors, and add two controls for the level of education: the share of a county’s

population that has a high school degree or more and the share of a county’s population that has a

bachelor’s degree or more (the excluded variable is the share of people with less than a high school

7Public transit continues to be highly significant for log(1+deaths), but its coefficient in the regression for log(1+cases)

is sensitive to the inclusion of the percentage of housing units in multi-unit structures. Indeed, the percentage of people

who use public transportation to commute is highly correlated with dense housing arrangements ( = 06).
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degree). We find a non-monotonic relationship between average educational attainment, and disease

severity. Counties with large proportions of high school graduates fare best, followed by counties with

a large share of individuals without a high school degree. Places with many college graduates fare the

worst. Hence, we find little evidence that more disadvantaged locations (measured by education) fare

worse. These correlations, while informative, remain open for interpretation.

Health. Table A8 investigates whether underlying health conditions or the quality of health care have

an impact on outcomes. As measures of underlying health issues, we take the share of the population

that smokes and the share of the population that is obese. As measures of quality of health care,

we take the risk-adjusted 30-day mortality rates for heart attacks, heart failure and pneumonia. The

share of smokers and obese people does not seem to be a consistent driver of heterogeneity in COVID-

19 incidence across counties, though we find some evidence that the share of smokers is associated

with lower cases and the share of obese persons is positively correlated with deaths. Turning to

risk-adjusted mortality rates, we find some evidence that risk-adjusted mortality from pneumonia is

positively correlated with deaths, suggesting a role for the quality of the health infrastructure (on

the other hand the signs of the correlations on risk-adjusted mortality from heart attacks and heart

failures often have the opposite signs from what is expected, and are small in magnitude). These

results tend to be sensitive to the inclusion of more controls, as we show using a more comprehensive

specification discussed below. In sum, we find only weak evidence that often-hypothesized health

drivers of COVID-19 severity - either the prevalence of underlying health conditions or the quality

of the health care infrastructure - are first-order determinants of cross-county variation in cases and

deaths.

Inequality and Poverty. Table A9 reports results of an in-depth investigation of the role of in-

equality and poverty. In the baseline regressions we already included median household income. We

add three measures that capture inequality and poverty: the Gini index within the bottom 99%, the

poverty rate, and the top 1% income share. The share of top incomes is insignificant, the Gini index

among the lower 99% is positive in column (1) but not in the other specifications, and poverty posi-

tively predicts severity measured both by deaths and cases. The results are quantitatively meaningful:

for example, the poverty rate shows standardized coefficients in the range of 16% to 28% when consid-

ering its impact on deaths. In sum, we find evidence that poverty (but not inequality) is a significant

determinant of deaths.

4.3 Comprehensive Specification

In Tables A5-A9 we entered new categories of variables one by one. Do the main results hold up

when all the putative determinants of cases and deaths are entered jointly? To answer this question

we examine results from a comprehensive specification that includes not only the baseline set of 11

correlates of disease severity, but also most of the additional regressors considered in Tables A5-A9

(two exceptions are the share of people who are obese and the share of people who smoke, because

their inclusion would result in the loss of close to one third of the sample). The results are reported

in Table A10. The estimates broadly conform to the results obtained earlier: our various measures of
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density are positively related to severity, as are the share of county residents living in nursing homes

and the shares of African-Americans and Hispanics.

4.4 Stay-At-Home Orders

So far, we focused on time-invariant county determinants of the incidence of COVID-19. Some de-

terminants may change over time. The prime example here is stay-at-home orders. These are aimed

at reducing the rate of infection, and hence slowing down the increase in cases and deaths. Needless

to say, identifying the causal effect of stay-at-home orders is fraught with difficulty, since the local

severity of the disease is likely to prompt earlier policy intervention.8 Arguably, such endogeneity

concerns are somewhat mitigated when fixing the sample in terms of days since onset.9 In that case,

we are comparing counties with identical initial conditions in terms of cases or deaths per capita,

but possibly different dates at which stay-at-home orders were imposed. Table A11 focuses only on

specifications where the sample is chosen based on reaching a specific threshold of cases and deaths,

as defined previously. We consider specifications with or without state fixed-effects, to exploit within-

state variation in the timing of stay-at-home orders. We include a variable describing the number

of days since the first stay-at-home order applied to a particular county. As of April 30, all but 631

counties were under stay-at-home orders. Among those, the average number of days since the order

was issued was 26, and extended up to 44 days. We find no significant effect of this variable on cases,

but a statistically significant and economically meaningful negative effect on deaths.10

Figure A5 depicts the coefficient estimates of the stay-at-home orders, defined as the number of

days since the first stay-at-home order was implemented in a county. The regression specifications are

identical to those in Figure A4, the difference being that we control for stay-at-home orders. There is

a slight positive correlation between the length of stay-at-home orders and the number of cases, but

it is only statistically significant during the first ten days after reaching the threshold of 1 case per

100 000. In contrast, there is a negative correlation between the duration of stay-at-home orders and

the number of deaths, and it remains statistically significant during much of the time period. The

correlation fades to zero past day 70 or so, because the relatively small set of counties that had an

early onset of deaths also tended to adopt stay-at-home orders early on. Thus, there is not much

variation in days since stay-at-home-orders for that small and selected sample of counties.11

8 Indeed, optimal lockdown policies are likely to differ across locations. For an in-depth investigation of optimal spatial

lockdown policies, see Fajgelbaum et al. (2020).

9Of course, the concern is not eliminated. For two counties with identical days since onset, some unobserved factor

may drive both disease severity and the decision to issue stay-at-home orders. Since the policy is not randomly assigned,

the endogeneity concern is hard to fully address.

10Several studies look at the effectiveness of lockdown policies. Jinjarak et al. (2020) show that countries with stricter

policies to limit social contact had later and less pronounced disease peaks. Dave et al. (2020) adopt an event study

approach finding large effects especially among early adopters and dense locations. Kapoor et al. (2020) use rainfall

shocks to identify the effect of staying at home, finding that social distancing has a persistent negative effect on cases and

deaths across US counties. Lin and Meissner (2020) find that stay-at-home orders reduced mobility but not COVID-19

cases, looking at counties on either side of state borders.

11For instance, when the number of days since reaching 05 deaths per 100 000 population is 80, there are only 959

counties in the sample, only 90 of which have no stay-at-home orders in place.
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5 Spatial Patterns and Political Orientation

Many commentators have observed that there exists a political divide over attitudes toward the

COVID-19 pandemic (see for instance Pew Research Center, 2020). In turn, these disagreements

may reflect underlying differences in disease severity across locations with different political orienta-

tions. Weniger and Ou (2020) and Kolko (2020a, 2020b) observe that the disease is more severe in

Democratic-leaning states and counties than in Republican-leaning locations.12 Does severity indeed

vary according to local political orientation? In this subsection, we try to better understand the

political divide in disease severity.

We start by observing that indeed, locations that voted for Donald Trump in the 2016 presidential

election had lower cases and deaths on June 29, 2020. Column (1) of Table 3 Panel A reports that

the coefficient on the Trump vote share is negative, statistically significant and large in magnitude

(with a standardized beta of 11%) in a regression explaining log(1+cases), controlling only for log

county population. Column (1) of Table 3 Panel B finds the same for deaths (with a standardized

beta of 151%). The left-side panels of Figure 2 confirm these findings and extend them over time by

plotting the average residuals from regressions of log(1+cases) and log(1+deaths) on log population,

since March 15, for jurisdictions with different political orientations.13 We see a large political divide

for both cases and deaths, which persists over time and even increases when it comes to deaths.

Obviously, these patterns do not represent a causal effect of political orientation on disease severity.

Rather, they simply suggest that disease severity is geographically patterned according to political

orientation. These results may help explain the observed political fault lines over the desirability of

lockdown policies, with Republican-leaning locations seemingly much more eager to reopen early and

suspend the lockdowns as compared to Democratic-leaning locations.

What might explain this spatial pattern? The remaining columns in Panels A and B of Table 3

investigate this question using the cross-section of counties as of June 29.14 By including our baseline

set of control variables (those in Tables 1 and 2), the second column of Table 3 displays a statistically

unchanged effect of Trump vote share. However, the third column adds the shares of various racial

groups (African-Americans, Hispanics, Asians, Native Americans), leading to a sign flip in the Trump

vote share effect. Finally the fourth column adds all the variables included in the comprehensive

specification discussed in Section 4.3, leading still to a positive effect of the Trump vote share. To

further explore these patterns, the right-side panels of Figure 2 display the average residuals from

12Of course, preferences for lockdown policies are not solely determined by spatial patterns of disease severity. Ide-

ological predilections and media influence may also play a role in the emerging political divide over the response to

COVID-19. See for instance Bursztyn et al. (2020) and Allcott et al. (2020).

13Red counties are defined as those with a 2016 Trump vote share greater than 55%, blue counties are those with a

Trump vote share smaller than 45%, and purple counties represent the balance.

14Table A12 carries out similar regressions using the set of counties 70 days from onset (for cases - Panel A) and

60 days from onset (for deaths - Panel B). Column 4 of this table additionally includes a regressor representing the

number of days a stay-at-home order has been in place. We find results very similar to those in Table 3. The inclusion

of length of stay-at-home orders does not reduce the coefficient on Trump vote share, suggesting that it is not because

Trump-leaning counties put in place stay-at-home orders at different times that they experienced more cases and deaths.

Beyond policies, it could be individual behaviors to avoid infection that differ across political orientations.
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the comprehensive specification, by county political orientation (red, purple and blue). We uncover

interesting patterns. We first confirm that at the end of the sample period, Democratic counties

experience lower disease severity than Republican counties, consistent with the regressions in the

fourth column of Table 3. We also show that this lower severity is the result of a reversal: even

after controlling for an exhaustive set of determinants of disease severity, the average residual in the

regression for log(1+cases) is higher in Democratic-leaning counties than in Republican-leaning ones

until about April 15, and in the regression for log(1+deaths) until May 15. This pattern reversed

after these dates in such a way that Republican areas, controlling for other determinants of cases and

deaths, now experience worse disease severity.

We can only speculate as to why the sign of the Trump effect flipped when adding more controls, and

why the time pattern of partisan severity was also reversed over time. It is possible that public policies

and individual behaviors regarding the spread of COVID-19 in Republican-leaning areas became more

lax relative to Democratic-leaning areas, so that after controlling for major determinants of disease

severity like racial composition and effective density, areas that voted for Donald Trump actually

started to fare worse.

6 Conclusion

In this paper, we study heterogeneity in the severity of the COVID-19 pandemic across counties of

the United States. We explore a wide range of correlates of severity jointly, in a unified estimation

framework that allows for the inclusion of state fixed effects, controls for the differential timing of

disease onset in various locations, and accommodates variation on both the intensive and extensive

margins of cases and deaths. We document a strong and persistent role for population density, captured

using a variety of metrics, as a correlate of cases and deaths. We argue that it is important to measure

density correctly, using indicators of urbanicity, prevalent modes of transportation, household size

and housing arrangements, and local effective density. We also show that the age structure and the

proportion of people living in nursing homes are powerful and persistent predictors of disease severity,

particularly the number of deaths. We explore correlations with a wide range of additional variables,

finding for instance that minorities are more severely affected by the pandemic. Controlling for the

timing of disease onset, more days spent under stay-at-home orders negatively predicts the number of

deaths across counties. Finally, we find that areas with a large share of Trump voters are less severely

affected by COVID-19, but that this effect is reversed when controlling for variables that are correlated

with both Trump support and disease severity, in particular the shares of different minority groups.

Once controlling for these, Trump-oriented counties are actually more severely affected by the disease.

Many of these effects rise between March 15 and June 29, and remain statistically significant as of the

end of our sample period. Time will tell whether this persistence persists.

Overall, our results suggest that policymakers should be sensitive to the specificities of different

locations when designing policy responses to the spread of COVID-19, and their unwinding.
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Table 1 - OLS Regressions for log 1+Cases and log 1+Deaths, June 29, 2020 
(Dependent variable listed in second row) 

 
 (1) (2) (3) (4) 
 Log 1+Cases Log 1+Cases, 

State FE 
Log 1+Deaths Log 1+Deaths, 

State FE 
Log population 1.005 1.033 0.694 0.725 
 (0.026)*** (0.029)*** (0.026)*** (0.031)*** 
 [0.704] [0.723] [0.627] [0.656] 
Log population density 0.106 0.065 0.005 -0.044 
 (0.022)*** (0.028)** (0.022) (0.029) 
 [0.088] [0.054] [0.006] [-0.048] 
Large central metro county or  0.048 0.011 0.671 0.603 
large fringe metro county (0.072) (0.065) (0.075)*** (0.067)*** 
 [0.008] [0.002] [0.141] [0.127] 
Medium metro county or  0.056 0.006 0.180 0.166 
small metro county (0.051) (0.045) (0.052)*** (0.047)*** 
 [0.011] [0.001] [0.046] [0.042] 
% people who commute by  0.029 0.024 0.083 0.070 
public transportation (0.006)*** (0.006)*** (0.007)*** (0.007)*** 
 [0.042] [0.035] [0.155] [0.130] 
Share of people aged  -12.061 -10.896 -0.199 1.098 
75 & above (0.974)*** (0.955)*** (1.003) (0.991) 
 [-0.132] [-0.119] [-0.003] [0.016] 
% nursing home residents  0.208 0.077 0.186 0.068 
in pop. (0.045)*** (0.043)* (0.046)*** (0.044) 
 [0.044] [0.016] [0.050] [0.018] 
Log km to closest airport w/  -0.059 -0.059 -0.062 -0.093 
flights from top 5 COVID countries (0.019)*** (0.019)*** (0.020)*** (0.019)*** 
 [-0.031] [-0.032] [-0.043] [-0.065] 
Average temperature, Feb., Mar. & Apr. 0.025 0.026 0.012 0.016 
 (0.002)*** (0.005)*** (0.002)*** (0.005)*** 
 [0.123] [0.126] [0.075] [0.104] 
Log household median income -0.008 -0.044 -0.082 -0.159 
 (0.099) (0.100) (0.102) (0.103) 
 [-0.001] [-0.005] [-0.012] [-0.023] 
Social Capital Index, 2014 0.045 -0.010 0.054 0.055 
 (0.019)** (0.019) (0.020)*** (0.020)*** 
 [0.026] [-0.006] [0.041] [0.042] 
Constant -6.284 -5.361 -5.358 -4.534 
 (1.105)*** (1.146)*** (1.138)*** (1.188)*** 
R2 0.79 0.84 0.62 0.71 
N 3,137 3,137 3,137 3,137 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets.  
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Table 2 - OLS Regressions for log Cases and log Deaths, Synchronized Days from Onset at 70 days from 
Onset (for log cases) and 60 days from Onset (for deaths) 

 (1) (2) (3) (4) 
 Log Cases Log Cases, 

State FE 
Log Deaths Log Deaths, 

State FE 
Log population 0.861 0.957 0.787 0.882 
 (0.030)*** (0.036)*** (0.044)*** (0.053)*** 
 [0.605] [0.673] [0.605] [0.678] 
Log population density 0.175 0.059 0.071 -0.014 
 (0.026)*** (0.034)* (0.040)* (0.050) 
 [0.144] [0.049] [0.061] [-0.012] 
Large central metro county or  0.166 0.144 0.484 0.447 
large fringe metro county (0.082)** (0.074)* (0.112)*** (0.101)*** 
 [0.031] [0.027] [0.120] [0.111] 
Medium metro county or  0.040 0.012 0.042 0.020 
small metro county (0.058) (0.052) (0.083) (0.075) 
 [0.009] [0.003] [0.011] [0.006] 
% people who commute by  0.042 0.035 0.063 0.048 
public transportation (0.007)*** (0.007)*** (0.008)*** (0.008)*** 
 [0.071] [0.059] [0.158] [0.121] 
Share of people aged  -10.662 -9.726 -0.112 0.372 
75 & above (1.204)*** (1.195)*** (1.675) (1.745) 
 [-0.118] [-0.107] [-0.001] [0.004] 
% nursing home residents  0.292 0.099 0.877 0.553 
in pop. (0.062)*** (0.061) (0.114)*** (0.114)*** 
 [0.059] [0.020] [0.154] [0.097] 
Log km to closest airport w/ flights  -0.072 -0.065 -0.048 -0.058 
from top 5 COVID countries (0.021)*** (0.021)*** (0.024)** (0.024)** 
 [-0.044] [-0.040] [-0.041] [-0.048] 
Average temperature, Feb.,  0.013 0.018 0.001 0.031 
Mar. & Apr. (0.002)*** (0.006)*** (0.003) (0.009)*** 
 [0.070] [0.098] [0.009] [0.180] 
Log household median income -0.109 -0.238 -0.223 -0.346 
 (0.118) (0.119)** (0.164) (0.166)** 
 [-0.014] [-0.030] [-0.034] [-0.052] 
Social Capital Index, 2014 0.034 -0.007 -0.051 -0.014 
 (0.024) (0.025) (0.035) (0.035) 
 [0.020] [-0.004] [-0.028] [-0.008] 
Constant -4.039 -2.908 -5.032 -5.631 
 (1.313)*** (1.373)** (1.839)*** (1.932)*** 
R2 0.69 0.76 0.58 0.69 
N 2,755 2,755 1,446 1,446 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets. 
Onset day is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 
per 100,000 (for deaths).  
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Table 3 - An Investigation of Donald Trump Effects – Log(1+Cases), June 29 

 (1) (2) (3) (4) 
 Short Spec. Baseline 

Controls 
Adding Race 

Shares 
Comprehensive 

Spec. 
Panel A: Dependent Variable: Log (1+Cases), June 29 

Trump vote share, 2016  -1.489 -1.576 1.129 0.700 
general election (0.138)*** (0.140)*** (0.182)*** (0.203)*** 
 [-0.110] [-0.116] [0.083] [0.053] 
R2 0.76 0.79 0.83 0.83 
N 3,111 3,109 3,109 3,007 

Panel B: Dependent Variable: Log (1+Deaths), June 29 
Trump vote share,  -1.589 -1.333 1.318 1.473 
2016 general election (0.140)*** (0.145)*** (0.192)*** (0.217)*** 
 [-0.151] [-0.126] [0.125] [0.138] 
R2 0.59 0.63 0.68 0.70 
N 3,111 3,109 3,109 3,007 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets.  
All columns contain an intercept. 
Column 1 (the short specification) includes only a control for log population. 
Column 2 adds controls for the baseline set of variables in Tables 1 and 2. 
Column 3 adds variables measuring the % Black or African American, % Hispanic or Latino, % American 
Indian and Alaska Native and % Asian. 
Column 4 adds controls for % high school graduate or higher (among persons age 25+), % with 
bachelor's degree or higher (among persons age 25+), 30-day mortality for heart attacks, 30-day 
mortality for heart failure, 30-day mortality for pneumonia, Gini index within bottom 99%, poverty rate, 
top 1% income share, % housing units in multi-unit structures, persons per household and log effective 
local density (i.e. the variables explored in Tables A5-A9, except share obese and share smoking). 
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This Appendix contains: A) Description and sources of the data used in the analysis. B)

Additional tables and �gures mentioned in the main text.



A. Data Sources

A1. Dependent Variables

COVID-19 cases and deaths. Daily county-level data on COVID-19 cases and deaths. Source: New

York Times, https://github.com/nytimes/covid-19-data. We adjusted the data in the following

ways:

1. The source reports data cumulated for New York City overall (all 5 boroughs/counties together).

We apportioned cases and deaths to each of the 5 boroughs/counties by county population shares.

2. The source reports data for all of Kansas City, which is made up of parts of several counties,

each independent entries with their own cases and deaths (exclusive of Kansas City). Most of Kansas

City is in Jackson County MO, so we added all Kansas City cases and deaths to that county�s tally.

3. We did not make any modi�cations regarding any of the additional geographic speci�cities

as described in the source data: "Counts for Alameda County (CA) include cases and deaths from

Berkeley and the Grand Princess cruise ship; counts for Douglas County (NE) include cases brought to

the state from the Diamond Princess cruise ship; all cases and deaths for Chicago are reported as part

of Cook County (IL); counts for Guam include cases reported from the USS Theodore Roosevelt."

4. The source reports non-monotonic evolutions of cumulative cases and deaths for a very small

set of counties, at the very beginning of the pandemic, when there were very few cases and deaths.

The reason is unknown. We recoded cases and deaths that subsequently became lower to the level of

the later lower number to ensure monotonic cumulative series for all counties.

A2. Independent Variables

Population and age. Age structure of population by county. Source: U.S. Census Bureau. 2018

American Community Survey 5-Year Estimates. https://data.census.gov/cedsci/.

Population density. Population divided by land in square miles. Source: U.S. Census Bureau.

Metro county. Classi�cation as large central metro county, large fringe metro country, medium

metro county or small metro county. Source: National Center for Health Statistics (NCHS). Urban-

Rural Classi�cation Scheme for Counties 2013. https://www.cdc.gov/nchs/data_access/urban_

rural.htm#Data_Files_and_Documentation

Public transportation. Share of population that goes to work by public transportation. Source:

U.S. Census Bureau. 2018 American Community Survey 5-Year Estimates. https://data.census.

gov/cedsci/.
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Nursing home residents. Percentage of population who are residents in nursing homes. Source:

Centers for Medicare & Medicaid Services. Nursing Home Compare Datasets: Provider Info. https:

//data.medicare.gov/data/nursing-home-compare.

Temperature. Average temperature in February, March and April, 2009 to 2019. Source: National

Oceanic and Atmospheric Administration. NOAA�s Gridded Climate Divisional Dataset (CLIMDIV).

ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/.

Distance to airport. Data on all international �ights to the U.S. in 2019 come from Table T-100

from the Bureau of Transportation Statistics. For each U.S. airport, we take the average number of

monthly passengers on direct �ights from the top-5 countries in terms of COVID-19 cases on March

15, 2020 (China, Italy, Iran, South Korea and Spain). For each county in the U.S., we then compute

the geodesic distance to the closest airport that received at least 250 passengers per month on direct

�ights from one of these 5 countries. https://www.transtats.bts.gov/

Household income. Log of median household income, 2009-2013. Source: U.S. Census Bureau.

Social capital. Social capital index created using principal component analysis using number of

associations and organizations (including non-pro�ts), voter turnout and census response rate in 2014

(variable sk14). Source: Rupasingha, A., S. J. Goetz and D. Freshwater (2006, with updates). https:

//aese.psu.edu/nercrd/community/social-capital-resources

Race. Black or African American alone, Hispanic or Latino, American Indian and Alaska Native

alone, percentage 2014. Source: U.S. Census Bureau.

Education. High school graduate or higher, percentage of persons age 25+, 2009-2013, and bachelor�s

degree or higher, percentage of persons age 25+, 2009-2013. Source: U.S. Census Bureau.

Housing arrangements. Percent of housing units in multi-unit structures, 2009-2013, and persons

per household, 2009-2013. Source: U.S. Census Bureau.

Smokers and obese. Percentage of the population that smokes and percentage of population that

is obese. Source: Bergeron et al. (2016). https://opportunityinsights.org/data/.

Risk-adjusted mortality. 30-day risk adjusted mortality for heart attacks, heart failure and pneu-

monia. Source: Bergeron et al. (2016). https://opportunityinsights.org/data/.

E¤ective local density. Expected density in a one square kilometer around a randomly drawn

individual from each county. If all county inhabitants are uniformly distributed across space, this

measure is identical to standard population density. If the population is concentrated in a small

subset of the county territory, this measure will be larger than standard population density. Own
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calculations based on 2020 population data from GPW. Source: Center for International Earth Science

Information Network, Gridded Population of the World, Version 4: Population Count, Revision 11,

Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC) (2018). https://

sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-rev11.

Trump vote share in the 2016 general election. Source: Dave Leip�s Atlas of U.S. Presidential

Elections. https://uselectionatlas.org/.

Stay-at-home orders. Days since �rst stay-at-home order. https://commons.wikimedia.org/

wiki/Data:Stay-at-home_orders_in_the_United_States.map#/map/0.
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B. Additional Tables and Figures 

Table A1 – Summary Statistics  

Panel A - Summary Statistics for Various Indicators of Disease Severity (June 29, 2020) 
 

Variable # Obs. Mean Std. Dev. Min Max 
Total cases 3,142 822.580 4010.340 0  100,772  
Cases per capita 3,142 501.226 762.467 0  15,481  
Indicator for any case 3,142 0.969 0.173 0 1 
Log 1 + Cases 3,142 4.380 2.132 0 11.521 
Log Cases 3,045 4.461 2.097 0 11.521 
Total Deaths 3,142 39.964 260.886 0  6,723  
Deaths per capita 3,142 16.996 34.080 0  375  
Indicator for any death 3,142 0.616 0.487 0 1 
Log 1 + deaths 3,142 1.408 1.648 0 8.813 
Log Deaths 1,934 2.025 1.758 0 8.813 

 

Panel B - Summary Statistics for the Baseline Set of 11 Regressors 

Variable # Obs. Mean Std. Dev. Min Max 
Log Population 
 3,142 10.275 1.494 4.317 16.129 

Log Density 
 3,140 3.786 1.784 -3.291 11.175 

Large central or fringe metro county 
 3,142 0.139 0.346 0 1 

Medium or small metro county 
 3,142 0.232 0.422 0 1 

% people who commute by public 
transportation 3,141 0.902 3.066 0 60.700 

Share of people aged 75 or older 
 3,142 0.079 0.023 0.013 0.241 

% nursing home residents in pop. 
 3,142 0.603 0.448 0 5.047 

Log km to closest airport w/  
flights from top 5 COVID countries 3,142 5.562 1.144 -4.605 8.264 

Average temperature,  
Feb., Mar. & Apr. 3,141 45.126 10.453 -0.317 73.067 

Log household median  
Income 3,140 10.705 0.242 9.903 11.714 

Social Capital Index, 2014 
 3,139 0.001 1.260 -3.183 21.809 
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Table A2 - OLS Regressions for log Cases and log Deaths, June 29, 2020 
(Dependent variable listed in second row) 

 
 (1) (2) (3) (4) 
 Log Cases Log Cases, 

State FE 
Log Deaths Log Deaths, 

State FE 
Log population 1.030 1.056 0.806 0.881 
 (0.027)*** (0.031)*** (0.039)*** (0.047)*** 
 [0.701] [0.719] [0.605] [0.661] 
Log population density 0.110 0.076 0.105 0.027 
 (0.023)*** (0.030)** (0.035)*** (0.045) 
 [0.089] [0.062] [0.089] [0.023] 
Large central metro county or  0.041 -0.007 0.398 0.381 
large fringe metro county (0.075) (0.067) (0.100)*** (0.091)*** 
 [0.007] [-0.001] [0.091] [0.088] 
Medium metro county or  0.056 -0.003 0.016 0.022 
small metro county (0.053) (0.047) (0.072) (0.066) 
 [0.011] [-0.001] [0.004] [0.006] 
% people who commute by  0.028 0.021 0.066 0.052 
public transportation (0.007)*** (0.007)*** (0.008)*** (0.008)*** 
 [0.041] [0.032] [0.145] [0.112] 
Share of people aged  -13.250 -11.843 -1.229 -0.576 
75 & above (1.043)*** (1.027)*** (1.514) (1.545) 
 [-0.142] [-0.127] [-0.014] [-0.007] 
% nursing home residents in pop. 0.252 0.100 0.731 0.503 
 (0.050)*** (0.048)** (0.093)*** (0.094)*** 
 [0.051] [0.020] [0.136] [0.094] 
Log km to closest airport w/ flights  -0.059 -0.056 -0.041 -0.055 
from top 5 COVID countries (0.020)*** (0.019)*** (0.023)* (0.023)** 
 [-0.032] [-0.031] [-0.031] [-0.042] 
Average temperature, Feb.,  0.025 0.028 0.007 0.021 
Mar. & Apr. (0.002)*** (0.005)*** (0.003)** (0.008)** 
 [0.125] [0.138] [0.043] [0.118] 
Log household median income -0.082 -0.115 -0.268 -0.383 
 (0.104) (0.105) (0.148)* (0.151)** 
 [-0.010] [-0.013] [-0.039] [-0.056] 
Social Capital Index, 2014 0.055 -0.003 -0.050 -0.017 
 (0.021)*** (0.021) (0.032) (0.033) 
 [0.032] [-0.002] [-0.027] [-0.009] 
Constant -5.725 -4.974 -5.024 -4.704 
 (1.162)*** (1.205)*** (1.645)*** (1.749)*** 
R2 0.77 0.83 0.58 0.67 
N 3,042 3,042 1,933 1,933 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets.  
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Table A3 - OLS Regressions for log Cases and log Deaths, June 29, 2020, CFR<0.1 
(Dependent variable listed in second row) 

 (1) (2) (3) (4) 
 Log Cases Log Cases, 

State FE 
Log Deaths Log Deaths, 

State FE 
Log population 1.031 1.058 0.858 0.959 
 (0.028)*** (0.032)*** (0.040)*** (0.048)*** 
 [0.702] [0.720] [0.635] [0.709] 
Log population density 0.108 0.074 0.100 0.016 
 (0.024)*** (0.031)** (0.036)*** (0.046) 
 [0.087] [0.060] [0.083] [0.014] 
Large central metro county or  0.023 -0.005 0.360 0.359 
large fringe metro county (0.078) (0.070) (0.101)*** (0.091)*** 
 [0.004] [-0.001] [0.084] [0.084] 
Medium metro county or  0.062 0.002 0.014 -0.003 
small metro county (0.055) (0.049) (0.073) (0.066) 
 [0.013] [0.000] [0.004] [-0.001] 
% people who commute by  0.028 0.023 0.066 0.050 
public transportation (0.007)*** (0.007)*** (0.008)*** (0.008)*** 
 [0.042] [0.035] [0.148] [0.114] 
Share of people aged 75 & above -13.405 -12.117 -2.627 -2.146 
 (1.084)*** (1.062)*** (1.544)* (1.562) 
 [-0.144] [-0.130] [-0.030] [-0.024] 
% nursing home residents in pop. 0.219 0.070 0.613 0.414 
 (0.052)*** (0.050) (0.100)*** (0.100)*** 
 [0.044] [0.014] [0.110] [0.074] 
Log km to closest airport w/  -0.055 -0.054 -0.027 -0.044 
flights from top 5 COVID countries (0.020)*** (0.020)*** (0.023) (0.023)* 
 [-0.030] [-0.030] [-0.021] [-0.034] 
Average temperature,  0.024 0.026 0.009 0.014 
Feb., Mar. & Apr. (0.002)*** (0.005)*** (0.003)*** (0.008)* 
 [0.121] [0.129] [0.052] [0.083] 
Log household median  -0.111 -0.120 -0.403 -0.467 
Income (0.109) (0.109) (0.151)*** (0.153)*** 
 [-0.013] [-0.014] [-0.059] [-0.069] 
Social Capital Index, 2014 0.059 -0.002 -0.044 -0.025 
 (0.021)*** (0.021) (0.033) (0.032) 
 [0.034] [-0.001] [-0.024] [-0.014] 
Constant -5.394 -4.823 -4.220 -4.182 
 (1.212)*** (1.245)*** (1.687)** (1.760)** 
R2 0.77 0.83 0.60 0.70 
N 2,847 2,847 1,738 1,738 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets.  
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Table A4 - OLS Regressions for Log Cases and Log Deaths, Synchronized Days from Onset at 70 days 
from Onset (for Cases) and 60 days from Onset (for Deaths), Sample with CFR<0.1 

 (1) (2) (3) (4) 
 Log Cases Log Cases, 

State FE 
Log Deaths Log Deaths, 

State FE 
Log population 0.864 0.968 0.833 0.950 
 (0.032)*** (0.037)*** (0.046)*** (0.055)*** 
 [0.612] [0.685] [0.635] [0.724] 
Log population density 0.165 0.043 0.053 -0.030 
 (0.027)*** (0.036) (0.042) (0.052) 
 [0.136] [0.035] [0.045] [-0.025] 
Large central metro county or  0.155 0.132 0.491 0.445 
large fringe metro county (0.087)* (0.078)* (0.118)*** (0.105)*** 
 [0.029] [0.025] [0.125] [0.113] 
Medium metro county or  0.042 0.005 0.052 -0.006 
small metro county (0.061) (0.055) (0.089) (0.078) 
 [0.010] [0.001] [0.014] [-0.002] 
% people who commute by  0.059 0.051 0.085 0.054 
public transportation (0.010)*** (0.011)*** (0.011)*** (0.011)*** 
 [0.075] [0.064] [0.164] [0.105] 
Share of people aged 75  -10.497 -10.137 -1.368 -2.180 
& above (1.280)*** (1.266)*** (1.809) (1.844) 
 [-0.116] [-0.112] [-0.015] [-0.025] 
% nursing home residents in pop. 0.261 0.069 0.774 0.421 
 (0.065)*** (0.064) (0.127)*** (0.123)*** 
 [0.053] [0.014] [0.131] [0.071] 
Log km to closest airport w/ flights  -0.058 -0.051 -0.026 -0.038 
from top 5 COVID countries (0.022)*** (0.022)** (0.025) (0.024) 
 [-0.035] [-0.031] [-0.022] [-0.033] 
Average temperature,  0.013 0.017 0.003 0.029 
Feb., Mar. & Apr. (0.003)*** (0.006)*** (0.004) (0.010)*** 
 [0.067] [0.090] [0.019] [0.168] 
Log household median income -0.113 -0.249 -0.318 -0.477 
 (0.124) (0.124)** (0.173)* (0.168)*** 
 [-0.014] [-0.032] [-0.050] [-0.075] 
Social Capital Index, 2014 0.030 -0.013 -0.057 -0.030 
 (0.025) (0.025) (0.036) (0.034) 
 [0.018] [-0.007] [-0.032] [-0.017] 
Constant -4.061 -2.814 -4.653 -4.694 
 (1.376)*** (1.424)** (1.924)** (1.951)** 
R2 0.68 0.76 0.59 0.71 
N 2,498 2,498 1,233 1,233 
* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets. 
Onset day is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 
per 100,000 (for deaths).  
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Table A6 - An Investigation of Race Effects 

 (1) (2) (3) (4) 
 Log 1+Cases, 

June 29 
Log Cases, 70 

days since onset 
Log 1+Deaths, 

June 29 
Log Deaths, 60 

days since onset 
% Black or  0.037 0.041 0.035 0.034 
African American (0.001)*** (0.002)*** (0.002)*** (0.002)*** 
 [0.253] [0.317] [0.303] [0.328] 
% Hispanic or Latino 0.020 0.020 0.013 0.012 
 (0.001)*** (0.002)*** (0.002)*** (0.003)*** 
 [0.124] [0.132] [0.102] [0.082] 
% American Indian  0.011 0.008 0.014 0.034 
and Alaska Native (0.002)*** (0.003)** (0.003)*** (0.006)*** 
 [0.039] [0.027] [0.062] [0.093] 
% Asian -0.034 -0.025 0.006 -0.018 
 (0.007)*** (0.009)*** (0.008) (0.012) 
 [-0.043] [-0.035] [0.010] [-0.035] 
R2 0.83 0.74 0.68 0.64 
N 3,137 2,755 3,137 1,446 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets. 
Onset is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 per 
100,000 (for deaths). All specifications contain an intercept and controls for the baseline set of variables 
in Tables 1 and 2. 
 

Table A7 - An Investigation of Education Effects 

 (1) (2) (3) (4) 
 Log 1+Cases, 

June 29 
Log Cases, 70 

days since 
onset 

Log 1+Deaths, 
June 29 

Log Deaths, 
60 days since 

onset 
High school graduate or higher,  -0.053 -0.065 -0.038 -0.056 
percent of persons age 25+ (0.004)*** (0.005)*** (0.005)*** (0.008)*** 
 [-0.172] [-0.228] [-0.160] [-0.211] 
Bachelor's degree or higher,  0.007 0.007 0.018 0.016 
percent of persons age 25+ (0.003)** (0.004)* (0.003)*** (0.005)*** 
 [0.030] [0.031] [0.096] [0.097] 
R2 0.80 0.70 0.63 0.59 
N 3,137 2,755 3,137 1,446 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets. 
Onset is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 per 
100,000 (for deaths). All columns contain an intercept and controls for the baseline set of variables in 
Tables 1 and 2. 
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Table A8 - An Investigation of Health Effects 

 (1) (2) (3) (4) 
 Log 1+Cases, 

June 29 
Log Cases, 70 

days since 
onset 

Log 1+Deaths, 
June 29 

Log Deaths, 60 
days since 

onset 
Percentage of the  -1.686 -1.110 -0.442 0.022 
population that smokes (0.343)*** (0.395)*** (0.383) (0.655) 
 [-0.054] [-0.036] [-0.015] [0.001] 
Percentage of the  0.404 0.577 0.669 0.200 
population that is obese (0.289) (0.337)* (0.322)** (0.547) 
 [0.016] [0.024] [0.029] [0.008] 
30-day Mortality for  -1.991 -2.133 -1.395 -0.460 
Heart Attacks (0.750)*** (0.908)** (0.838)* (1.462) 
 [-0.031] [-0.032] [-0.023] [-0.006] 
30-day Mortality for  -0.154 -1.342 -3.630 -8.035 
Heart Failure (1.251) (1.481) (1.397)*** (2.318)*** 
 [-0.001] [-0.013] [-0.037] [-0.073] 
30-day Mortality for  1.089 3.075 2.558 4.170 
Pneumonia (1.128) (1.324)** (1.260)** (2.009)** 
 [0.012] [0.033] [0.029] [0.044] 
R2 0.75 0.66 0.63 0.59 
N 2,334 2,250 2,334 1,334 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets. 
Onset is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 per 
100,000 (for deaths). All columns contain an intercept and controls for the baseline set of variables in 
Tables 1 and 2. Note the smaller number of observations due to lack of availability of data on obesity 
and smoking. 30-day mortality measures are risk-adjusted so are likely to capture mostly the quality of 
the health infrastructure / health care system in the county. 
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Table A9 - An Investigation of Inequality and Poverty Effects 

 (1) (2) (3) (4) 
 Log 1+Cases, 

June 29 
Log Cases, 70 

days since onset 
Log 1+Deaths, 

June 29 
Log Deaths, 60 

days since onset 
Gini Index Within  0.874 0.536 0.615 0.984 
Bottom 99% (0.442)** (0.520) (0.445) (0.721) 
 [0.037] [0.024] [0.032] [0.050] 
Poverty Rate 1.151 1.735 4.166 7.509 
 (0.558)** (0.666)*** (0.562)*** (0.982)*** 
 [0.036] [0.058] [0.162] [0.282] 
Top 1% Income  -0.102 -0.021 0.235 -0.872 
Share (0.593) (0.686) (0.597) (0.922) 
 [-0.003] [-0.001] [0.007] [-0.027] 
Log household  0.279 0.273 0.673 1.299 
median income (0.144)* (0.169) (0.145)*** (0.234)*** 
 [0.033] [0.035] [0.099] [0.197] 
R2 0.77 0.68 0.65 0.60 
N 3,026 2,728 3,026 1,441 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets. 
Onset is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 per 
100,000 (for deaths). All columns contain an intercept and controls for the remaining baseline set of 
variables in Tables 1 and 2. There is collinearity between poverty rate and median income (ρ = - 0.75). 
The coefficient on median income is robust but the coefficient on the poverty rate is sensitive to the 
inclusion of median income (it becomes zero without median income included). 
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Table A10 - Comprehensive Specification 

 (1) (2) (3) (4) 
 Log 1+Cases, 

June 29 
Log Cases, 70 

days since onset 
Log 1+Deaths, 

June 29 
Log Deaths, 60 

days since onset 
Log population 1.035 0.897 0.773 0.842 
 (0.028)*** (0.033)*** (0.030)*** (0.051)*** 
 [0.704] [0.624] [0.650] [0.645] 
Log population density 0.066 0.140 0.031 0.091 
 (0.024)*** (0.028)*** (0.025) (0.047)* 
 [0.053] [0.114] [0.031] [0.078] 
Large central metro county or  -0.142 -0.043 0.405 0.245 
large fringe metro county (0.065)** (0.074) (0.070)*** (0.106)** 
 [-0.024] [-0.008] [0.086] [0.061] 
Medium metro county or  0.023 0.013 0.093 -0.008 
small metro county (0.045) (0.051) (0.049)* (0.078) 
 [0.005] [0.003] [0.024] [-0.002] 
% people who commute by public  0.003 0.017 0.044 0.034 
transportation (0.007) (0.008)** (0.007)*** (0.010)*** 
 [0.004] [0.030] [0.083] [0.087] 
Share of people aged 75 & above -0.280 2.700 10.342 11.514 
 (1.134) (1.355)** (1.216)*** (1.951)*** 
 [-0.003] [0.030] [0.139] [0.132] 
% nursing home residents in pop. 0.277 0.192 0.336 0.719 
 (0.046)*** (0.059)*** (0.050)*** (0.112)*** 
 [0.056] [0.038] [0.084] [0.126] 
Log km to closest airport w/  -0.023 -0.026 -0.016 -0.036 
flights fr. top 5 COVID countries (0.018) (0.020) (0.019) (0.025) 
 [-0.013] [-0.016] [-0.011] [-0.030] 
Average temperature,  -0.002 -0.019 -0.013 -0.030 
Feb., Mar. & Apr. (0.003) (0.003)*** (0.003)*** (0.004)*** 
 [-0.008] [-0.100] [-0.078] [-0.178] 
Log household median income 0.556 0.704 0.843 1.750 
 (0.160)*** (0.191)*** (0.171)*** (0.301)*** 
 [0.066] [0.090] [0.123] [0.265] 
Social Capital Index, 2014 -0.024 -0.047 -0.025 -0.080 
 (0.021) (0.025)* (0.022) (0.036)** 
 [-0.014] [-0.026] [-0.018] [-0.043] 
% Black or African American 0.039 0.044 0.033 0.029 
 (0.002)*** (0.002)*** (0.002)*** (0.003)*** 
 [0.276] [0.344] [0.294] [0.281] 
% Hispanic or Latino 0.007 0.009 0.005 0.001 
 (0.002)*** (0.002)*** (0.002)** (0.004) 
 [0.048] [0.061] [0.040] [0.004] 
% American Indian and  0.015 0.013 0.015 0.022 
Alaska Native (0.003)*** (0.004)*** (0.003)*** (0.007)*** 
 [0.050] [0.042] [0.060] [0.061] 
% Asian -0.044 -0.029 -0.010 -0.024 
 (0.009)*** (0.010)*** (0.009) (0.012)** 
 [-0.056] [-0.041] [-0.016] [-0.048] 
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 (1) (2) (3) (4) 
 Log 1+Cases, 

June 29 
Log Cases, 70 

days since onset 
Log 1+Deaths, 

June 29 
Log Deaths, 60 

days since onset 
High school graduate or higher,  -0.060 -0.065 -0.035 -0.044 
percent of persons age 25+ (0.005)*** (0.006)*** (0.006)*** (0.010)*** 
 [-0.201] [-0.229] [-0.145] [-0.166] 
Bachelor's degree or higher,  0.010 0.007 0.008 0.004 
percent of persons age 25+ (0.004)*** (0.004) (0.004)** (0.006) 
 [0.044] [0.032] [0.043] [0.023] 
30-day Mortality for  -0.742 -0.976 0.091 0.734 
Heart Attacks (0.489) (0.626) (0.524) (1.173) 
 [-0.012] [-0.016] [0.002] [0.011] 
30-day Mortality for  2.500 2.332 -0.815 -2.317 
Heart Failure (0.858)*** (1.074)** (0.920) (1.997) 
 [0.024] [0.023] [-0.010] [-0.022] 
30-day Mortality for  -1.500 -0.943 -0.859 0.016 
Pneumonia (0.798)* (0.986) (0.856) (1.687) 
 [-0.016] [-0.010] [-0.011] [0.000] 
Gini Index Within  -1.444 -1.659 -1.307 -0.010 
Bottom 99% (0.414)*** (0.487)*** (0.443)*** (0.734) 
 [-0.061] [-0.075] [-0.068] [-0.000] 
Poverty Rate -4.333 -4.348 -0.011 2.593 
 (0.572)*** (0.681)*** (0.613) (1.114)** 
 [-0.137] [-0.146] [-0.000] [0.097] 
Top 1% Income Share 1.826 1.723 1.872 0.037 
 (0.536)*** (0.622)*** (0.575)*** (0.908) 
 [0.045] [0.046] [0.057] [0.001] 
Housing units in multi-unit  0.015 0.010 0.008 0.001 
structures, percent (0.004)*** (0.004)** (0.004)* (0.006) 
 [0.067] [0.050] [0.043] [0.005] 
Persons per household 0.627 0.502 0.309 0.364 
 (0.116)*** (0.142)*** (0.125)** (0.231) 
 [0.073] [0.060] [0.044] [0.046] 
Log effective local density 0.054 0.046 -0.008 -0.020 
 (0.033)* (0.039) (0.035) (0.063) 
 [0.025] [0.023] [-0.005] [-0.011] 
Days since lockdown began   -0.004  -0.005 
(0 if no or before lockdown)  (0.001)***  (0.001)*** 
  [-0.051]  [-0.074] 
Constant -8.977 -8.268 -14.125 -23.648 
 (1.748)*** (2.076)*** (1.874)*** (3.238)*** 
R2 0.83 0.76 0.70 0.65 
N 3,020 2,726 3,020 1,440 

* p<0.1; ** p<0.05; *** p<0.01. * p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and 
standardized betas in brackets. The comprehensive specification includes all control variables in Tables 1 
and 2 and A5-A9 except the percentage of obese persons and the percentage of smokers (from Table A8), 
due to the loss of observations that would result from their inclusion. 
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Table A11 - An Investigation of the Effects of Lockdowns 

 (1) (2) (3) (4) 
 Log Cases, 70 

days since 
onset 

Log Cases, 70 
days since 

onset, State FEs 

Log Deaths, 60 
days since 

onset 

Log Deaths, 60 
days since 

onset, State FEs 
Days since lockdown began  -0.002 -0.002 -0.004 -0.013 
(0 if no or before lockdown) (0.001)* (0.002) (0.001)*** (0.002)*** 
 [-0.021] [-0.027] [-0.052] [-0.179] 
R2 0.69 0.76 0.58 0.69 
N 2,755 2,755 1,446 1,446 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets. Onset 
is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 per 100,000 
(for deaths). All columns contain an intercept and controls for the baseline set of variables in Tables 1 and 
2. 

 
 

Table A12 - An Investigation of Donald Trump Effects (days-since-onset specification) 

 (1) (2) (3) (4) 
 Short Spec. Baseline 

Controls 
Adding Race 

Shares 
Comprehensive 

Spec. 
Panel A – Dependent Variable: Log Cases, 70 Days from Onset 

Trump vote share,  -1.774 -1.644 1.449 0.899 
2016 general election (0.156)*** (0.164)*** (0.214)*** (0.239)*** 
 [-0.143] [-0.133] [0.117] [0.073] 
R2 0.66 0.70 0.75 0.76 
N 2,744 2,742 2,742 2,716 

Panel B – Dependent Variable: Log Deaths, 60 Days from Onset 
Trump vote share,  -2.067 -1.743 0.866 0.735 
2016 general election (0.218)*** (0.230)*** (0.326)*** (0.380)* 
 [-0.192] [-0.162] [0.080] [0.068] 
R2 0.54 0.60 0.64 0.65 
N 1,443 1,443 1,443 1,437 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets.  
All specifications contain an intercept. 
Column 1 (the short specification) includes only a control for log population. 
Column 2 adds controls for the baseline set of variables in Tables 1 and 2. 
Column 3 adds variables measuring the % Black or African American, % Hispanic or Latino, % American 
Indian and Alaska Native and % Asian. 
Column 4 adds controls for % high school graduate or higher (among persons age 25+), % with bachelor's 
degree or higher (among persons age 25+), 30-day mortality for heart attacks, 30-day mortality for heart 
failure, 30-day mortality for pneumonia, Gini index within bottom 99%, poverty rate, top 1% income 
share, % housing units in multi-unit structures, persons per household and log effective local density (i.e. 
the variables explored in Tables A5-A9, except share obese and share smoking), plus number of days since 
the first stay-at-home order. 
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Figure A1 – Maps of the Variables Used in the Analysis 
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