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1 Introduction

Early literature on repeated moral hazard with a risk-averse agent — for instance Roger-
son (1985) and Fudenberg, Holmstrom, and Milgrom (1990) — highlighted the value to the
principal of controlling the agent’s consumption or savings through formal contracts. Op-
timal dynamic contracts as studied by Rogerson force the agent to consume more than he
would like early in the relationship (the agent would gain by secretly saving and deferring
some consumption to a later date).1 Fudenberg, Holmstrom, and Milgrom show that a se-
quence of short-term contracts can often implement the outcome of a long-term contract if the
short-term contracts can stipulate agent consumption or savings. Yet, in modern employment
relationships, workers’ consumption expenditures are largely at their discretion and free from
formal agreements.

Nonetheless, some employers may be able to monitor, at least to a degree, the consump-
tion and savings decisions of workers. “Conspicuous consumption” decisions by workers include
choices of clothes, car, or leisure activities.2 Some savings decisions (such as pension contri-
butions, student loan repayments or repayments of employer-offered mortgages) might be
observed as direct deductions from employee paychecks.

In this paper, we ask how the evolution of employment relationships can be expected to
depend on the observability of consumption and savings decisions when formal agreements on
these decisions are ruled out, but where relational incentives might nonetheless exist. The idea
that many productive relationships rest on goodwill and implicit agreements, together with the
implicit threat of future punishments for deviations, has been developed following work such
as Bull (1987), MacLeod and Malcomson (1989) and Levin (2003). While such agreements
often concern both the level of output delivered to the principal, as well as agent pay (or
bonuses), we introduce the possibility that they also concern the level of agent consumption,
to the extent this is jointly observed. Implicit understandings on appropriate consumption
levels could reflect part of a workplace’s culture, sustained through repeated interaction with
the employer. For instance, one possibility is that an employee with an insufficiently frivolous
lifestyle (say in terms of car, dress, and leisure activities) is dismissed, having been deemed a
“poor fit” with the firm’s culture.

We consider a simple relational contracting model in which the agent exerts costly effort
and has concave utility from consumption in each period. Concave utility implies a preference
for smooth consumption. We study two polar opposite cases: one where consumption is

1Other papers where the principal controls the level of agent consumption include Lambert (1983), Spear
and Srivastava (1987), Rey and Salanie (1990), Phelan and Townsend (1991), Sannikov (2008) and Garrett
and Pavan (2015).

2The term “conspicuous consumption” was introduced by Veblen (1899).
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perfectly jointly observed, and the other where consumption is unobservable to the principal.
Although reality might often lie between these two extremes, studying each separately is
illuminative and simplifies the analysis. Note that both of these cases are new to the literature:
existing literature has not sought to characterize optimal relational contracts when agents have
consumption-smoothing preferences and can save.

Our simple setting is deterministic, with the output enjoyed by the principal equal to
the agent’s effort. In each period, first the agent chooses effort and consumption, then the
principal makes a (bonus) payment to the agent. The initial balance on the agent’s savings
account is common knowledge, and the evolution of these savings are determined by pay
and consumption. A relational contract can be understood as an agreed stream of effort,
consumption and pay.

As elsewhere in the relational contracting literature, we focus on agreements that are “self-
enforcing”. We thus impose two key sets of constraints that ensure neither party wishes to
publicly breach the contract, given that any such breach results in termination of a productive
relationship (i.e., no further effort by the agent, and no further payments from the principal).3

One set of constraints ensures willingness of the agent never to quit the relationship by devi-
ating from the agreed effort and consumption, if observed, and then continuing to optimally
consume his savings. The other ensures credibility of the principal’s payments to the agent.
That is, it ensures that the principal’s discounted future profits from continuing the rela-
tionship always exceed the payments promised to the agent. We investigate self-enforcing
agreements that maximize the principal’s discounted profits.

We begin by studying the problem with unobservable consumption. In this case, any
relational contract must involve constant consumption over time, as constant consumption
maximizes the agent’s payoff. If the agent plans to deviate in effort at a given date, he
optimally smooths his reduced lifetime income from the beginning by choosing constant con-
sumption. Since lifetime earnings accumulate the longer the agent obediently exerts effort,
and since agent utility is concave, the pay needed to keep the agent from deviating from a
given level of effort increases with time.

When the principal and agent are sufficiently patient, the effort in an optimal contract is
constant over time. For lower levels of patience, the agent’s effort is eventually decreasing with
time. The reason is that the payment required to compensate a given level of effort gradually
increases, for the reason explained above. This means that the contract becomes gradually
less profitable, making it more difficult to sustain agreement at later dates. We thus show
that the payments that the principal can credibly promise eventually decline, and so effort

3Termination of a productive relationship represents an optimal punishment in the sense that it is as severe
on both players as possible.
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decreases as well.
The above dynamics stand in contrast to the case when consumption is instead jointly

observed. Note that the possibility for the informal agreement to condition on consumption
enlarges the set of sustainable outcomes for two reasons. One is that non-constant consumption
paths become possible, due to relational incentives on the level of consumption. The other is
that, if the agent plans to deviate from the specified effort at a given date, he cannot lower his
consumption at earlier dates without this being detected, triggering premature termination of
his pay. This effectively reduces the profitability for the agent of deviations from the agreed
effort (compared to what he could obtain were he able to reduce consumption at earlier dates
and continue being paid).

In terms of the dynamics of an optimal relational contract when consumption is jointly
observed, we find the following. When the players are sufficiently patient, the optimal policy
again involves constant effort. For lower discount factors, agent effort strictly increases with
time. The reason can be understood by noting that the optimal contract stipulates high
consumption for the agent early in the relationship, which drives down the balance on his
account. Since the balance on his savings decreases, the agent needs to be paid less at later
dates to keep him willing to work. Since the principal’s profits in the relationship grow with
time, the pay she can credibly offer increases, and so the contract can call for higher effort.

The key to understanding why such dynamics are optimal in the setting with observed
consumption lies in recognizing the value of increasing the profitability of the relationship at
later dates, which in turn relaxes the principal’s credibility constraint and permits high pay
early on. As noted, the channel for increasing future profits is to induce high consumption
by the agent, reducing the balance on his account and making him more willing to work. We
show that this process continues indefinitely, with the contract approaching stationarity in
the long run. While these dynamics might be thought of as a form of “immiseration” (the
agent’s payoff falls throughout the relationship), they are borne out of the principal’s inability
to commit, rather than being sourced in information frictions as with the immiseration results
of Thomas and Worrall (1990) and Atkeson and Lucas Jr (1992).4

As mentioned above, in real-world relationships, not all of an agent’s consumption expendi-
tures are likely to be observable to the principal. Nonetheless, our analysis of fully observable
consumption suggests a force that could perhaps be relevant in some settings. In particular,
our results suggest a theory of high consumption and low savings that favors the profits of
the principal. The idea could be relevant in certain industries such as banking, where high
remuneration (often through discretionary bonuses) is accompanied by a propensity for high
spending. Such a propensity seems widely acknowledged: Former British banker Geraint An-

4See also Williams (2011).
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derson has commented that bankers are essentially trapped in a culture of high consumption,
adding that life as a banker is “like a gilded cage”.5 Gary Goldstein, co-founder of executive
search firm Whitney Partners, has commented in the context of high-spending high earners
that:6

“It’s really not that unusual to find Wall Street bankers who are close to declaring
themselves bankrupt.... Some people are really struggling.”

An article at Huffpost Business explains that bankers “are under constant social pressure
to spend and spend some more”.7 This kind of behavior would increase the willingness of
bankers to continue devoting long hours, which seems advantagenous to firms and might
even be encouraged by them. The idea that the behavior reflects cultural norms, that may
be sustained through repeated interaction, offers an alternative to the possibility that high
consumption is simply about signaling.

A further source of evidence on pressure to spend may come from supply arrangements,
especially those managed by large firms. One possibility is that larger firms push for expendi-
tures by suppliers that harm their financial positions, perhaps making them more financially
dependent. A possible example comes from the US poultry industry, where chicken farmers
supply to a few large firms that dominate the industry. An article at The Guardian docu-
mented the situation of a farmer that contracted with the chicken producer Tyson Foods.8

The farmer in question entered an exclusive agreement with Tyson. After some time, Tyson
began demanding additional expenditures on equipment such as extra feed bins and chicken
houses the farmer believed unnecessary. The farmer commented: “If we are independent
contractors, then why does the company have the right to tell us what equipment to use?”
Having failed to comply with the demands, the relationship deteriorated and, in the end, it
was terminated. Our theory seems consistent with this kind of story, although in our model
the agent’s expenditures are on consumption rather than improving productivity.

The rest of this paper is as follows. Next, in Section 1.1, we provide a summary of relevant
literature. Section 2 introduces a model, Section 3 considers first-best contracts, Section 4
considers relational contracts when consumption is unobservable to the principal, and Section

5‘The perils of earning a £100,000 salary’ by Jon Kelly, BBC News Magazine, 22 September 2010,
https://www.bbc.com/news/magazine-11382591.

6‘When a million isn’t enough: why top bankers are struggling to get by’ by Sarah Butcher, efinancialca-
reers, 29 April 2013, https://news.efinancialcareers.com/uk-en/140070/when-a-million-isnt-enough-why-top-
bankers-are-struggling-to-get-by/.

7‘Bankers Explain How They Cannot Possibly Live On $1 Million Pay’ by Mark Gongloff, Huffpost Business,
1 May 2013, https://www.huffpost.com/entry/bankers-1-million-pay_n_3188177.

8‘Fowl play: the chicken farmers being bullied by big poultry’, by Alison Moodie, The Guardian, 22 April
2017, https://www.theguardian.com/sustainable-business/2017/apr/22/chicken-farmers-big-poultry-rules.
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5 considers relational contracts where consumption is observable. While the results in Sections
3 to 5 suppose the agent can save, Section 6 determines the optimal relational contract when
the agent cannot save and so consumes what he is paid in every period. Section 7 concludes.

1.1 Other literature

This paper contributes to the literature on relational contracts, reviewed in MacLeod (2007)
and Malcomson (2015). While much of this literature is interested in settings with moral
hazard, the players most often have linear preferences over money and savings plays no role.
Some examples include Levin (2003), Fuchs (2007), Chassang (2010), Halac (2012), Li and
Matouschek (2013), Yang (2013), Malcomson (2016) and Fong and Li (2017). Also unlike our
paper, much of the interest in these works lies in the role of exogenous uncertainty, which is
often a source of private information for one of the parties.

Our model features concave agent utility over payments, giving the agent a preference for
smooth consumption. We also allow the agent to save and dissave. The role of consumption-
smoothing preferences and saving has been given little attention in the relational contracting
literature to date. Pearce and Stacchetti (1998) consider a relational contracting model with
a risk-averse agent, but there is no scope for the agent to save. Bull (1987) considers a model
with overlapping generations of agents with concave utility of consumption and a long-lived
principal where the agents can privately save. Yet his concern is only with the conditions
under which the first-best outcome can be sustained.

Apart from models with productive effort, there are settings with lending and insurance.
Thomas and Worrall (1990) consider a model where the principal insures a risk-averse agent.
The paper devotes some attention to self-enforcing insurance arrangements (thus relaxing
insurer commitment in the spirit of relational contracting); however, the agent is not permitted
to save by himself. Thomas and Worrall (1994) study the problem of an investor in an agent
(country) that can steal the invested capital and walk away from the relationship. The setting
is relational (neither party can commit), and they consider separately cases where the capital
of the agent can accumulate (arguably akin to saving), and where the agent is risk averse.

An important driver of dynamics in our model is evolution of the agent’s outside option
of ceasing productive effort and “living off” the balance on his account. The role of the
value of the agent’s outside option in repeated relationships has been emphasized in work
such as Baker, Gibbons, and Murphy (1994) and McAdams (2011). In Baker, Gibbons, and
Murphy, the outside option is endogenously determined by the possibility of contracting on
objective performance measures, while in McAdams (2011) it is endogenously determined by
the opportunities of partners to a relationship to rematch. In general, the higher the outside
options of the parties to a relationship, the harder it is for a productive relationship to be
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sustained. In some papers, as in ours, the outside option evolves dynamically. One example
is Thomas and Worrall (1994) model of capital accumulation mentioned above, where the
value to the agent of departing with the accumulated capital increases with time. Another is
Garicano and Rayo (2017), where the agent is paid by increments in productive knowledge
which increases the value of his outside option.9

Our paper is also related to work on dynamic moral hazard where the agent can privately
save. Examples include Edmans, Gabaix, Sadzik, and Sannikov (2012), Abraham, Koehne,
and Pavoni (2011), He (2012), and Di Tella and Sannikov (2016). In this work, the principal
has full commitment power. While these papers often focus on contracts that give the agent
no incentive to privately save, there are many ways to time payments in an optimal contract.
The timing of payments plays a more important role in our model where (given that the
principal cannot commit) it affects whether the principal is willing to continue abiding by the
contract. For this reason, our theory more readily generates predictions on how payments are
optimally spread across time (this is true in both the public and private savings versions of
our model).

2 Setting

Environment and preferences. A principal and agent meet in discrete time at dates
t = 1, 2, . . . . Letting r > 0 be the interest rate that will apply to the balance on the agent’s
savings account, we suppose the players have a common discount factor δ = 1

1+r
. In every

period t, first the agent exerts an effort et and consumes an amount ct. Then, the principal
makes a discretionary payment wt to the agent. These variables are all restricted to be non-
negative.

The agent has initial savings balance b1 > 0 as well as access to a savings technology (with
the interest rate r as specified above). The initial balance will be common knowledge between
the principal and agent, including in our model of private savings in Section 4. The agent’s
balance at time t+ 1 > 1 then satisfies

bt+1 =
bt + wt − ct

δ
= b1δ

−t +
t∑

s=1

δs−t−1 (ws − cs) . (1)

Balances can, in principle, be negative (i.e., the agent can borrow). We say that the agent’s
9Also related is Fudenberg and Rayo (2019); the agent’s outside option improves over time also due to the

accumulation of knowledge, but the paper focuses on the case where the principal can commit to a long-term
contract.
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intertemporal budget constraint is satisfied in case
∞∑
t=1

δt−1ct ≤ b1 +
∞∑
t=1

δt−1wt. (2)

The agent’s felicity from consumption ct in any period t is denoted v(ct), where v : R+ →
R ∪ {−∞}. We assume that v (c) is real-valued for c > 0, and takes value −∞ at c = 0. We
further assume that v, when evaluated on positive consumption values, is twice continuously
differentiable, strictly increasing and strictly concave. In addition, v is onto all of R, implying
limc↘0 v (c) = −∞.

The agent’s disutility of effort et is ψ(et). We assume that ψ is continuously differentiable,
strictly increasing, strictly convex, and such that ψ(0) = ψ′(0) = 0, and that lime→∞ ψ

′(e) =

∞.
The agent’s period-t payoff will be v (ct)−ψ(et), while the principal’s will be et−wt; hence,

we interpret effort as equal to the output enjoyed by the principal.

Relational contracts. We focus for tractability on deterministic relational contracts.10 We
identify relational contracts with their outcomes; denote them (ẽt, w̃t, c̃t, b̃t)t≥1. We restrict
attention to contracts that satisfy the following feasibility constraints.

Definition 2.1. A feasible relational contract is a sequence (ẽt, w̃t, c̃t, b̃t)t≥1 satisfying the
following conditions:

1. Positivity: ẽt, w̃t, c̃t ≥ 0 for all t.

2. Balance dynamics and constraint: Conditions (1) and (2) hold.

3. Bounded consumption: The sequences of consumption, pay and effort ((c̃t)t≥1, (w̃t)t≥1,
and (ẽt)t≥1) are bounded.

While the first and second conditions reflect features of the environment introduced above,
the third condition guarantees that the players’ payoffs are well-defined in a feasible contract.

3 First best and principal full commitment

Consider first the problem of maximizing the principal’s payoff by choice of a feasible relational
contract subject only to the constraint that the agent is initially willing to participate. If the

10This assumption is in common with some other work such as Ray (2002). In examining contracts that
are optimal for the principal, whether random contracts can improve on deterministic ones might be expected
to depend on the nature of risk aversion (e.g., whether v exhibits increasing or decreasing risk aversion). Our
results below, however, will hold irrespective of how risk preferences change with the level of consumption.
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agent does not participate, a possibility we describe as “autarky”, we stipulate that he consumes
(1−δ)b1 per period. This is the optimal consumption for the agent among consumption streams
satisfying the intertemporal budget constraint in Equation (2) given that all payments are set
to zero. Therefore, we consider maximizing the principal’s payoff over feasible relational
contracts (ẽt, w̃t, c̃t, b̃t)t≥1 such that the payoff of the agent

∞∑
t=1

δt−1 (v(c̃t)− ψ (ẽt)) (3)

is no lower than his autarky value, 1
1−δv((1− δ)b1).

Proposition 3.1. Consider maximizing the principal’s discounted payoff by choice of feasible
contracts (ẽt, w̃t, c̃t, b̃t)t≥1, subject to ensuring the agent a payoff at least his autarky value

1
1−δv((1 − δ)b1). In any optimal feasible contract, effort and consumption are constant at
eFB(b1) > 0 and cFB(b1) > (1− δ) b1, respectively, being the unique solutions to:

1. First order condition: ψ′(eFB(b1)) = v′(cFB(b1)), and

2. Agent’s indifference condition: v(cFB(b1))− ψ(eFB(b1)) = v((1− δ)b1).

Furthermore, the payoff of the principal is V FB(b1) ≡ 1
1−δ (e

FB(b1) − (cFB(b1) − (1 − δ)b1)),
which is a strictly decreasing function of b1.

The results in the proposition are easily anticipated. Given that v is concave, it is optimal
to prescribe constant consumption. Similarly, the convexity of the disutility of effort implies
the optimality of constant effort. At an optimum, the agent is indifferent between participating
in the contract and autarky.

It is worth observing that the first-best policies depend on both b1 and δ, although we
reduce the notational burden by making dependence only on b1 explicit. More specifically,
they depend on the value of autarky consumption (1 − δ)b1, as is clear from Condition 2 of
Proposition 3.1.

Note that the proposition does not specify the timing of payments. These payments must
be chosen to be feasible and to satisfy the agent’s budget constraint (2) with equality, but
these are the only requirements. Payments may be constant over time, in which case they are
equal to cFB(b1)− (1− δ)b1 in each period.

4 Unobservable consumption

This section studies the case where, at each date t, the principal can observe the previous
and current effort choices of the agent (es)

t
s=1, but not the consumption choices nor the
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agent’s balance. Given that players cannot commit to future actions, the relational contracting
literature has studied agreements termed “self-enforcing”. In our setting, we consider feasible
relational contracts (ẽt, w̃t, c̃t, b̃t)t≥1 which coincide with the outcomes of a perfect Bayesian
equilibrium (PBE) of a dynamic game. Our aim will be to characterize the relational contracts
among these that maximize the principal’s payoff.

We begin by defining the histories in our game. For t ≥ 0, a t-history for the agent is
hAt = (es, ws, cs)1≤s<t, which gives the observed effort, payments and consumption up until
time t− 1. The set of such histories at date t ≥ 1 is HA

t = R3(t−1)
+ (with the convention that

R0
+ = ∅). Note that, given hAt and the agent’s initial balance b1, we can completely determine

the evolution of the balance up to date t using Equation (1). We denote the date-t balance
by b(hAt ). A t-history for the principal is hPt = (es, ws)1≤s<t. The set of such histories at date
t ≥ 1 is HP

t = R2(t−1)
+ .

A strategy for the agent is then a collection of functions

αt : HA
t → R2

+, t ≥ 1,

and a strategy for the principal is a collection of functions

σt : HP
t × R+ → R+, t ≥ 1.

Here, αt maps the t-history of the agent to a pair (et, ct) of effort and consumption. Also, σt
maps the t-history of the principal, together with the agent’s effort choice et, to a payment
wt.

As noted above, we will restrict attention to equilibria whose outcomes coincide with a
feasible relational contract. However, we do not restrict the strategies that are available to
the players. Certain strategies imply, for instance, the violation of the agent’s intertempo-
ral budget constraint in Equation (2). To ensure that the agent finds it optimal to satisfy
this constraint, we make the following assumption on payoffs. While the principal’s pay-
off is as specified above (and so given by

∑∞
t=1 δ

t−1 (et − wt)), the agent obtains the payoff∑∞
t=1 δ

t−1 (v (ct)− ψ (et)) if the constraint in Equation (2) is satisfied, and obtains payoff −∞
otherwise.11

To obtain the set of feasible relational contracts (ẽt, w̃t, c̃t, b̃t)t≥1 that are PBE outcomes, we
consider PBE where publicly observed deviations from the agreed outcomes are punished by

11Alternative assumptions can be made which yield the same results as documented below. For instance,
another possibility involves permitting negative consumption (assigning it a value −∞ in the agent’s payoff),
but limiting the extent the agent can draw down the balance on his account (i.e., imposing a hard lower
bound on bt−ct). Allowing the agent to violate his intertemporal budget constraint, but then assigning payoff
−∞, appears the simplest assumption that ensures the agent chooses to satisfy the constraint (both on the
equilibrium path as well as after a deviation).
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“autarky”. This means that, if the agent deviates from the agreed effort ẽt, or if the principal
deviates from the agreed payment w̃t, the principal makes no payments and the agent exerts
no effort from then on; the agent perfectly smoothing the balance of his account over the
infinite future.12 If the agent’s balance is negative when autarky begins, the intertemporal
budget constraint in Equation (2) is necessarily violated (as the agent receives no further
payments), the agent must earn payoff −∞, and so we can specify for instance that the
agent consumes zero in every period. Note that deviations by the agent from the specified
consumption, provided they are not accompanied by any deviation in effort, go unpunished
(i.e., the principal continues to adhere to the payments specified by the agreement).

Note that, if the agent plans to always choose effort in accordance with the contract, he
optimally consumes

c̄∞ ≡ (1− δ)
(
b1 +

∞∑
s=1

δs−1w̃s

)
in every period. Clearly, any contract to which the agent is willing to adhere must then specify
c̃t = c̄∞ for all t. To conclude that the agent does not want to deviate from the contract, it is
then enough to show that he does not gain by planning to shirk on effort for the first time at
any given date t, while making all other choices optimally. Suppose then that the agent plans
to shirk for the first time at some date t, and so puts effort equal to ẽs for all s < t, and then
optimally sets it equal to zero at all later dates. Then the agent optimally sets consumption
equal to

c̄t−1 ≡ (1− δ)
(
b1 +

t−1∑
s=1

δs−1w̃s

)
(4)

at all dates, so as to completely smooth consumption and exhaust lifetime earnings.
Given the above, the maximum payoff the agent achieves when deviating in choice of effort

for the first time at date t is

1

1− δ
v(c̄t−1)−

t−1∑
s=1

δs−1ψ(ẽs).

Hence, the agent does not want to deviate from the agreement if and only if, for all t ≥ 1,

1

1− δ
v(c̄t−1)−

t−1∑
s=1

δs−1ψ(ẽs) ≤
1

1− δ
v(c̄∞)−

∞∑
s=1

δs−1ψ(ẽs). (ACun
t )

12The reason we can consider autarky punishments is that they deliver the lowest possible individually
rational payoffs for the players. For instance, if the agent has a positive balance on his account, then he can
always secure the autarky payoff simply by exerting no effort and consuming a constant amount in each period
that exhausts his budget, i.e. which ensures that (2) holds with equality. The principal can always obtain a
continuation payoff zero simply by making no payments.
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The principal remains willing to continue abiding by the agreement if and only if, at each
time t, the payment w̃t that is due is less than her continuation payoff in the agreement. The
exact requirement is that, for all t ≥ 1,

w̃t ≤
∞∑

s=t+1

δs−t(ẽs − w̃s). (PCt)

The following result states that the above constraints determine whether a feasible rela-
tional contract is the outcome of a PBE.

Proposition 4.1. Fix a feasible contract (ẽt, w̃t, c̃t, b̃t)t≥1. It is the outcome of a PBE if and
only if, for all t ≥ 1, Conditions (ACun

t ) and (PCt) are satisfied, and c̃t = c̄∞.

From now on, inspired by the terminology of the literature, we refer to a contract (ẽt, w̃t, c̃t, b̃t)t≥1

that satisfies the conditions of Proposition 4.1 as self-enforceable.13 Our task reduces to char-
acterizing feasible contracts (ẽt, w̃t, c̃t, b̃t)t≥1 that maximize the principal’s payoff subject to
the requirement of being self-enforceable. We term such contracts optimal.

To determine the properties of optimal contracts, we first show that we can restrict at-
tention to contracts with a particular pattern of payments over time. This pattern involves
paying the agent as early as possible, subject to satisfying the agent’s incentive constraints.
This requires that the agent’s obedience constraints in Condition (ACun

t ) hold with equality
for all t ≥ 1. Inspired by the terminology of Board (2011), we refer to this condition as “fastest
payments”. We show the following.

Lemma 4.1. If there is an optimal relational contract, then there is another optimal contract
(ẽt, w̃t, c̃t, b̃t)t≥1 with the same sequence of efforts and consumption such that, for all t ≥ 1,

v (c̄t−1)

1− δ
−

t−1∑
s=1

δs−1ψ(ẽs) =
v ((1− δ) b1)

1− δ
. (FPun

t )

An explanation for the result is as follows. First, note that it is optimal to hold the agent
to his outside option, and hence

v (c̄∞)

1− δ
−
∞∑
t=1

δt−1ψ(ẽt) =
v ((1− δ) b1)

1− δ
. (5)

If Condition (5) does not hold, ẽ1 can be slightly increased (keeping the rest of the contract
the same) so that the constraints (ACun

t ) and (PCt) continue to hold for all t. Second, when
13We think this terminology is appropriate since we identify a contract with the equilibrium outcomes, rather

than the complete specification of strategies (and beliefs). Outcomes being self-enforceable simply means that
they can be supported in equilibrium.

11



(FPun
t ) holds for all t, the agent is paid as early as possible while preserving the constraints

(ACun
t ). The agent cannot be paid earlier, otherwise he will prefer to work obediently for a

certain number of periods, save his income at a higher rate than specified in the agreement,
and then quit by exerting no effort. It is easily seen that moving payments earlier in time
only relaxes the “principal’s constraints” (PCt).

Concerning “fastest payments”, we have the following result.

Lemma 4.2. Consider a feasible relational contract (ẽt, w̃t, c̃t, b̃t)t≥1 that satisfies Condition
(FPun

t ) at all dates. For any t, if ẽt > 0, then

w̃t ∈
(

ψ (ẽt)

v′ (c̄t−1)
,
ψ (ẽt)

v′ (c̄t)

)
. (6)

This lemma implies that (assuming effort remains strictly positive) the ratio w̃t

ψ(ẽt)
increases

with t. The implication is immediate after noticing that c̄t increases with t. One way to
intuitively explain the observation is that, the longer the agent obediently works, the more
he is paid in total. Since he can smooth his consumption of these payments over his entire
lifetime, and since he has concave utility of consumption, he values additional payments less.
Therefore, the payments needed to keep the agent obediently in the relationship, relative
to the disutility of effort incurred, increase with time. This observation will be useful for
understanding the shape of optimal relational contracts below.

Apart from the observation in Lemma 4.2, the usefulness of Lemma 4.1 is that it permits
the design of the relational contract to be reduced to the choice of an effort sequence (ẽt)t≥1.
From (ẽt)t≥1 we can obtain (c̄t)t≥1 using (FPun

t ) (so the corresponding consumption c̃t = c̄∞

is also pinned down). Then (w̃t)t≥1 is obtained from Equation (4), and (b̃t)t≥1 from Equation
(1). We next discuss the implementation of first-best contracts (Section 4.1), before moving to
consider optimal contracts when there is no first-best contract that is self-enforceable (Section
4.2).

4.1 Implementation a first-best contract

Lemma 4.1 is also useful for understanding the conditions under which the principal obtains
the first-best payoff. For instance, we can observe that the first-best effort and consumption,
which is constant over time and equal to eFB(b1) and cFB(b1), can be implemented when
the principal can commit to the agreement, but the agent cannot commit. For this, we
simply suppose the principal agrees to payments satisfying the conditions in Equation (FPun

t ),
provided the agent chooses effort obediently. Any deviation by the agent from the required
effort is met with zero payments from then on.

12



Now consider whether the principal can attain the first-best payoff when neither the prin-
cipal nor agent can commit; i.e., whether there is a first-best contract that is self-enforceable.
According to Lemma 4.2, payments to the agent increase over time. In the long run, payments
approach

ψ
(
eFB(b1)

)
v′ (cFB(b1))

.

Because the principal’s constraints (PCt) tighten over time, verifying they are always satisfied
amounts to verifying that

ψ
(
eFB(b1)

)
v′ (cFB(b1))

≤ δ

1− δ

(
eFB(b1)−

ψ
(
eFB(b1)

)
v′ (cFB(b1))

)
. (7)

The right-hand side is the limiting value of the principal’s future discounted profits in the
agreement, while the left-hand side is the limiting value of the payment to the agent. Because
there is no loss in restricting attention to “fastest payments” (due to Lemma 4.1), this condition
is also necessary, and so we have the following result.

Proposition 4.2. Suppose that neither the principal nor agent can commit to the terms of
the agreement and that consumption is unobservable. Then the principal attains the first-best
payoff in an optimal contract if and only if Condition (7) is satisfied.

While understanding the parameter range for which Condition (7) holds is clearly im-
portant for understanding optimal contracts, this is complicated by the dependence of the
first-best policy on both b1 and δ. Nonetheless, if we vary δ while allowing b1 to adjust, hold-
ing b1 (1− δ) constant, then the first-best consumption and effort remain constant. There is
then a threshold value of δ above which Condition (7) is satisfied, and below which it fails.

4.2 Main characterization for unobservable consumption

We now state our main result for the unobservable consumption case, which is a characteri-
zation of optimal effort when the first-best effort cannot be sustained.

Proposition 4.3. An optimal relational contract exists. Suppose the principal cannot attain
the first-best payoff in a self-enforceable contract (i.e., Condition (7) is not satisfied). Then,
for any optimal contract, there is a date t̄ ≥ 1 such that effort is constant up to this date, and
is subsequently strictly decreasing. Effort converges to a value ẽ∞ > 0 in the long run. There
exist b1 and δ such that, for any optimal contract, the value t̄ is strictly greater than one; in
particular, effort can indeed be constant in the initial periods.14

14The proof shows that effort is initially constant in an optimal contract for values of b1 and δ close to those
for which the principal can attain the first-best payoff.
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The dynamics of optimal effort when the principal cannot attain the first-best payoff can
be explained as follows. There may be some initial periods when the effort is constant. This
occurs if the principal’s constraint (PCt) is initially slack. Given that we consider “fastest pay-
ments”, the payments rise over these periods for the reasons discussed in relation to Lemma
4.2. Given the principal cannot achieve the first-best payoff, it turns out that the princi-
pal’s constraint eventually binds, and so payments must be reduced. This is only possible by
reducing the level of effort. Note that how much effort can be asked without violating the
principal’s constraint depends on the future profitability of the relationship. Profitability de-
clines over time, both because higher payments must be made relative to the agent’s disutility
of effort (see Lemma 4.2), and because the effort that can be requested is less. The fact that
profitability declines contributes to the decline in effort, which creates a feedback loop.

Our approach to proving Proposition 4.3 relies on variational arguments. For contracts
that fail to exhibit the dynamics described in the proposition, we are able to construct more
profitable contracts satisfying all the constraints in Proposition 4.1. We demonstrate some of
these arguments below.

One central result links the dynamics of effort to the dates at which the principal’s con-
straint (PCt) is slack (rather than holding with equality). We can show the following.

Lemma 4.3. Suppose that (ẽt, c̃t, w̃t, b̃t)t≥1 is an optimal relational contract. Suppose that
the principal’s constraint is slack at t∗, i.e. w̃t∗ <

∑∞
s=t∗+1 δ

s−t∗ (ẽs − w̃s). Then, ẽt∗+1 ≤ ẽt∗;
also, if t∗ > 1, then ẽt∗−1 ≤ ẽt∗.

Proof. Proof that ẽt∗+1 ≤ ẽt∗. Suppose, for the sake of contradiction, that ẽt∗+1 > ẽt∗ .
We can choose a new contract with efforts (ẽ′t)t≥1, and payments (w̃′t)t≥1 chosen to satisfy
Equation (FPun

t ), such that they coincide with the original policy except in periods t∗ and
t∗ + 1. In these periods, ẽ′t∗ and ẽ′t∗+1 are such that ẽt∗ < ẽ′t∗ ≤ ẽ′t∗+1 < ẽt∗+1 and

ψ (ẽ′t∗) + δψ
(
ẽ′t∗+1

)
= ψ (ẽt∗) + δψ (ẽt∗+1) ,

which implies (by convexity of ψ) that ẽ′t∗ + δẽ′t∗+1 > ẽt∗ + δẽt∗+1. We then have also that
w̃t∗ < w̃′t∗ and w̃′t∗ + δw̃′t∗+1 = w̃t∗ + δw̃t∗+1 (since the NPV of payments does not change,
equilibrium consumption does not change in any period t; so the balance at date t∗+1 is larger
under the new contract). Provided the changes are small, the principal’s constraint (PCt) at
t∗ remains satisfied. The above observations regarding payments imply that w̃′t∗+1 < w̃t∗+1,
so the principal’s constraint is relaxed at date t∗ + 1. Since the NPV of output goes up, the
principal’s constraint is relaxed at all periods before t∗.15 The contract after date t∗ + 1 is

15Note that, for the new contract, the principal’s constraint at any date t̂ may be written as
∑∞
t=t̂ δ

t−t̂w̃′t ≤∑∞
t=t̂+1 δ

t−t̂ẽ′t. For t̂ < t∗ this inequality is satisfied strictly since
∑∞
t=t̂ δ

t−t̂w̃′t =
∑∞
t=t̂ δ

t−t̂w̃t, while∑∞
t=t̂+1 δ

t−t̂ẽ′t >
∑∞
t=t̂+1 δ

t−t̂ẽt.
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unaffected. The modified contract is thus self-enforceable, and it is strictly more profitable
than the original, establishing a contradiction.

Proof that ẽt∗−1 ≤ ẽt∗. Consider now t∗ > 1, and suppose for the sake of contradiction
that ẽt∗−1 > ẽt∗ . We can choose again a new contract, this time with efforts (ẽ′t)t≥1 that
coincide with (ẽt)t≥1 except in periods t∗ − 1 and t∗. We specify ẽ′t∗−1 and ẽ′t∗ so that ẽt∗ <
ẽ′t∗ ≤ ẽ′t∗−1 < ẽt∗−1 and

ψ
(
ẽ′t∗−1

)
+ δψ (ẽ′t∗) = ψ (ẽt∗−1) + δψ (ẽt∗) ,

which implies that ẽ′t∗−1 + δẽ′t∗ > ẽt∗−1 + δẽt∗ . We take the new payments (w̃′t)t≥1 to satisfy
Equation (FPun

t ).
Note then that

w̃′t∗−1 + δw̃′t∗ = w̃t∗−1 + δw̃t∗ .

Also, w̃′t∗−1 < w̃t∗−1 and w̃′t∗ > w̃t∗ . Provided the changes are small, the principal’s constraint
(PCt) at t∗ remains satisfied. Moreover, the principal’s constraints are relaxed at date t∗ − 1,
and because the NPV of effort increases, also at all earlier dates. Therefore, the principal’s
constraints are satisfied at all dates and the principal’s payoff strictly increases. Again, this
establishes a contradiction.

An immediate implication is that effort is constant over any sequence of periods for which
the principal’s constraint is slack. To see why, suppose that the constraint (PCt) is slack on
adjacent dates t∗ and t∗ + 1 say. Because the constraint is slack at t∗, ẽt∗+1 ≤ ẽt∗ . Because
the constraint is slack at t∗ + 1, ẽt∗ ≤ ẽt∗+1. Therefore, ẽt∗ = ẽt∗+1.

The explanation for constant effort over the initial periods is thus as follows. If the prin-
cipal’s constraints (PCt) are slack in the initial periods, and effort is not constant over these
periods, then effort can be smoothed over time, yielding a more profitable contract that still
satisfies the constraints in Proposition 4.1. Such smoothing is profitable given that the disu-
tility of effort is strictly convex (so that differences in effort across periods are inefficient).

A further key part of the proof of Proposition 4.3 is to show that effort strictly decreases
from a finite date t̄ onwards. The main steps of this argument can be explained as follows.
Building on Lemma 4.3, we are able to show (in Lemma A.5 in the Appendix) that effort is
weakly decreasing with time. Lemma A.6 then establishes that, if the principal’s constraint
(PCt) holds with equality at some date t̂, then ẽt̂+1 < ẽt̂ and the constraint holds with equality
also at t̂+ 1. Hence effort strictly decreases from t̂ onwards.

The argument for Lemma A.6 can be summarized as follows. By assumption, the princi-
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pal’s constraint (PCt) at date t̂ holds as an equality, i.e.

w̃t̂ =
∞∑

s=t̂+1

δs−t̂ (ẽs − w̃s) .

We are able to show that ẽt̂+1 − w̃t̂+1 > ẽs − w̃s for all s > t̂ + 1. This follows because
ψ′ (ẽt) ≤ v′ (c̄∞) for all t (as established in Lemma A.1), because effort is weakly decreasing
over time (as noted above), and making use of Lemma 4.2 (which recall implies that the ratio
of payments to disutility of effort increases with time). Therefore,

w̃t̂ =
∞∑

s=t̂+1

δs−t̂ (ẽs − w̃s) >
∞∑

s=t̂+2

δs−t̂−1 (ẽs − w̃s) ≥ w̃t̂+1

where the second inequality is the principal’s constraint (PCt) at date t̂ + 1. Hence, (again
using Lemma 4.2) effort is strictly lower in period t̂+ 1 (i.e., ẽt̂+1 < ẽt̂). In turn, using Lemma
4.3, the principal’s constraint must hold again with equality at t̂+ 1. So we have shown that,
if the principal’s constraint holds with equality at a given date, it must hold with equality
from then on, and so effort strictly decreases with time.

The above argument assumes that the principal’s constraint (PCt) holds with equality at
some date. To show this must in fact be the case when the principal cannot attain the first-
best payoff, we assume the contrary. Then Lemma 4.3 implies that optimal effort is constant
at all dates, say at a value ẽ∞ (using the notation of the proposition). Letting the payments
and the equilibrium consumption c̄∞ be determined by Equation (FPun

t ), payments increase
over time, and converge to ψ(ẽ∞)

v′(c̄∞)
. The principal’s constraint (PCt) is then satisfied at all dates

if and only if
ψ (ẽ∞)

v′ (c̄∞)
≤ δ

1− δ

(
ẽ∞ −

ψ (ẽ∞)

v′ (c̄∞)

)
,

where the left-hand side can be read as the limiting payment to the agent, while the right-hand
side is the limiting NPV of future profits to the principal. For the most profitable choice of a
constant effort ẽ∗∞, this inequality holds as equality. The principal’s constraints (PCt) tighten
over time, but never hold with equality.

Because effort is below the first-best level, we have ψ′ (ẽ∗∞) < v′ (c̄∗∞), with c̄∗∞ the level
of agent consumption that corresponds to a contract with constant effort ẽ∗∞. It follows that
any sufficiently small adjustment to the effort policy that raises the NPV of effort, together
with a change in payments that leaves the agent’s payoff in the contract unchanged, raises
profits. We therefore suggest a perturbation to the constant-effort contract (see Lemma A.7
in the Appendix) that increases the NPV of effort, but (assuming that payments continue
to satisfy (FPun

t )) leaves the principal’s constraints (PCt) intact. To be more precise, we
consider increasing effort by a little at date one and lowering it by a constant amount in
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future periods. If we only raise effort at date one, leaving other effort values unchanged and
assuming that payments are adjusted to satisfy (FPun

t ) at all dates, the principal’s constraint
(PCt) is eventually violated (since v is strictly concave and total pay increases, it becomes
more costly to compensate the agent for his effort; in particular, payments must increase in all
periods). Therefore the reduction in effort at future dates is a “correction” intended to relax
the principal’s constraint (PCt) when it is tightest. This part of the proof is illuminative,
for it highlights the value in reducing effort at later dates when the principal’s constraint is
tightest and increasing effort early on when the principal’s constraint is most slack.

We have established then that, when the first-best payoff is not attainable, the principal’s
constraint (PCt) holds with equality from some date onwards. At these dates, the principal
is indifferent between paying the agent and reneging. This feature is the same as in the
optimal contracts of Ray (2002) who provides, in a quite general (though distinct) relational
contracting environment, a sense in which agent payoffs are backloaded.16

We would like to translate the findings of Proposition 4.3 into predictions for payments
and the agent’s balance. This is complicated by a potential multiplicity of optimal payment
paths (w̃t)t≥1. In particular, while Lemma 4.1 tells us that it is optimal for Condition (FPun

t )
to hold at all dates, this is not the only possibility. We therefore provide a partial converse for
Lemma 4.1. The following result has the implication that, when the principal cannot obtain
her first-best payoff, payments in any optimal contract are uniquely determined after enough
time.

Proposition 4.4. Suppose the principal cannot attain the first-best payoff in a self-enforceable
contract. Fix any optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1 and let t̄ be the date from which effort
is strictly decreasing (see Proposition 4.3). Then, Condition (FPun

t ) holds for all t > t̄.
Payments to the agent strictly decrease from date t̄ + 1 onwards, while the agent’s balances
strictly increase.

The intuitive reason why payments are strictly decreasing from date t̄ + 1 is explained
above. The fact that the agent’s balance increases over time then follows straightforwardly
from Equation (1) and from Equation (2) taken to hold with equality. These observations,
together with the fact that the agent consumes a constant c̄∞ per period, yield in particular
that

b̃t =
c̄∞

1− δ
−
∑
τ≥t

δτ−tw̃τ

which strictly increases with t when payments to the agent fall over time.
16Ray considers settings where enforceability constraints prevent the implementation of an efficient contract.

His main result is that, after enough time, continuation contracts maximize agent payoffs over constrained
efficient continuation contracts that satisfy enforceability constraints.
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Note that, when t̄ > 1, the principal’s constraint (PCt) is initially slack. In this case,
Condition (FPun

t ) need not hold at t < t̄, and so payments before date t̄ are not uniquely
determined. When this “fastest payments” condition is nonetheless taken to hold, payments
in fact increase over time up to date t̄ (as was mentioned above).

5 Observed consumption

We now study the case where, at each time t, before making the payment wt, the principal
can observe the agent’s past and present-period effort choices (es)

t
s=1 as well as past and

present-period consumption choices (cs)
t
s=1. Since payments and consumption are commonly

observed, the balance bt at the beginning of each period t is also commonly known (as deduced
from Equation (1)).

The game is now one of complete information, and the relevant solution concept sub-
game perfect Nash equilibrium (SPNE). Both players observe at date t the history ht =

(es, ws, cs)1≤s<t. The set of such histories at each date t is Ht = R3(t−1)
+ . Re-using notation

from Section 4 introduces no confusion, so we describe a strategy for the agent as a collection
of functions

αt : Ht → R2
+, t ≥ 1,

and a strategy for the principal as a collection of functions

σt : Ht × R2
+ → R+, t ≥ 1.

Here, αt maps the public t-history to a pair (et, ct) of effort and consumption. Also, σt maps
the public t-history, together with the observed effort and consumption choices (et, ct) of the
agent, to a payment wt. We assume that payoffs are as specified in Section 4 (i.e., the agent
earns a payoff −∞ in case his intertemporal budget constraint (2) is violated).

Again we identify a relational contract with the equilibrium outcomes, and we want to
characterize contracts that maximize the principal’s payoff. A first step is then to determine
equilibrium outcomes (ẽt, c̃t, w̃t, b̃t)t≥1 that are feasible relational contracts. Analogous to
the arguments made in the previous section, we begin supposing deviations from the agreed
outcomes are punished by “autarky”. That is, when either player deviates from the contract,
all future effort and payments cease, and the agent perfectly smooths his balance over time.
In autarky, the agent consumes bt (1− δ) when his balance is bt > 0, and we specify zero
consumption in case the balance is bt ≤ 0 (in the latter case, the agent can only obtain a
payoff of −∞ since violating the intertemporal budget constraint in Equation (2) implies
this payoff; hence we might as well set consumption to zero). Now, autarky follows not only
deviations in effort and payments, but also in consumption.
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Suppose that the agreed contract is (ẽt, c̃t, w̃t, b̃t)t≥1, and deviations are punished by au-
tarky. The agent’s payoff, if complying until date t− 1 and optimally failing to comply from
t onwards, is now

t−1∑
s=1

δs−1(v(c̃s)− ψ(ẽs)) + δt−1v(max{0, (1− δ)b̃t})
1− δ

.

This takes into account that the agent who deviates at date t optimally exerts no effort from
then on, and consumes max

{
0, (1− δ)b̃t

}
per period as explained above. Thus, the agent is

willing to follow the prescription of the contract if and only if, at all dates t,

v({0, (1− δ)b̃t})
1− δ

≤
∞∑
s=t

δs−t(v(c̃s)− ψ(ẽs)). (ACob
t )

The reason for the difference to Condition (ACun
t ) is that publicly honoring the agreement up

to date t−1 ensures that the agent begins period t with the specified balance b̃t, which in turn
determines the wealth he has available to spend in autarky. Condition (ACun

t ), on the other
hand, takes into account that the agent who plans to publicly deviate at date t (by shirking
on effort) can save in advance for this event, because consumption is not observed.

We can characterize equilibrium outcomes as follows.

Proposition 5.1. Fix a feasible contract (ẽt, w̃t, c̃t, b̃t)t≥1. It is the outcome of an SPNE in the
environment where consumption is observed if and only if, for all t ≥ 1, Conditions (ACob

t )
and (PCt) are satisfied.

Notice here that the principal’s constraint (PCt) is the one in Section 4. A feasible contract
(ẽt, w̃t, c̃t, b̃t)t≥1 satisfying the conditions in the proposition is again termed self-enforceable and
a self-enforceable contract that maximizes the principal’s payoff is optimal. We can now state a
result similar to Lemma 4.1: it is without loss of optimality to restrict attention to relational
contracts where the agent is indifferent to quitting the relationship at any period (i.e., to
consider contracts with the “fastest payments”).

Lemma 5.1. For any optimal contract, there exists another optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1

with the same effort and consumption, with b̃t > 0 for all t, and where the timing of payments
ensures that agent constraints hold with equality in all periods; that is, for all t ≥ 1,

v(b̃t(1− δ))
1− δ

=
∞∑
s=t

δs−t (v (c̃s)− ψ (ẽs)) . (8)

Lemma 5.1 implies that we can focus on relational contracts where, for all t ≥ 1,

1
1−δv((1− δ)b̃t) = v(c̃t)− ψ(ẽt) + δ

1−δv((1− δ)b̃t+1). (FPob
t )
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This says that the agent is indifferent between quitting at date t (i.e., ceasing to exert effort)
and smoothing the balance b̃t optimally over the infinite future, and instead working one more
period, exerting effort ẽt and consuming c̃t, before quitting at date t + 1 and smoothing the
balance b̃t+1 over the infinite future.

5.1 Implementing a first-best contract

Let us turn now to the question of when the principal can attain the first-best payoff in a self-
enforceable relational contract. By Lemma 5.1, we can focus on payments such that Equation
(8) is satisfied at all dates. Given effort and consumption constant at the first-best levels
eFB(b1) and cFB(b1), the agent’s balance is constant and equal to b1. Therefore, the payment
is constant over time and equal to wFB (b1) ≡ cFB(b1)−(1−δ)b1. The principal’s continuation
payoff in the contract is constant and equal to

V FB (b1) =
eFB(b1)− wFB (b1)

1− δ
.

Using these observations, we have the following result.

Proposition 5.2. Suppose that consumption is observable. Then the principal attains the
first-best payoff in an optimal relational contract if and only if

wFB (b1) ≤ δ

1− δ
(
eFB(b1)− wFB (b1)

)
. (9)

Condition (9) is more easily satisfied than Condition (7) (the condition for the unob-
servable consumption case); i.e., if the first-best effort and consumption are sustained in the
unobservable consumption case, then they are sustained when consumption is observed. This
will follow immediately from showing that

wFB (b1) <
ψ
(
eFB (b1)

)
v′ (cFB (b1))

. (10)

Here, wFB (b1) is the constant payment to the agent in the observed-consumption case, as

specified above. On the other hand,
ψ(eFB(b1))
v′(cFB(b1))

is the limiting payment for the unobserved-
consumption case (assuming that payments satisfy the “fastest payments” condition in Equa-
tion (FPun

t )).
The key insight is that, in the observed-consumption case, the principal’s constraints (PCt)

are identical in every period, since payments remain constant. In contrast, in the unobserved-
consumption case, we saw that they tighten over time. After enough time, the payments in
the unobserved-consumption case exceed the constant payments in the observed-consumption
case (note that the NPV of payments in both cases is the same), which makes the principal’s
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t

w̃t

wFB(b1)

ψ(eFB(b1))
v′(cFB(b1))

Figure 1: Payments for optimal relational contracts satisfying fastest payments when Equation
(7) holds (and so the the principal obtains his first-best payoff), in the unobservable case
(crosses) and observable case (circles).

constraints more difficult to satisfy. Figure 1 illustrates the payments in optimal contracts
achieving the first-best payoff for the principal in the unobserved and observed consumption
cases.

The reason the fastest payments are later in the unobserved consumption case can be
understood as the agent having available more attractive deviations: in particular, the agent
can plan to deviate in effort at a given date, reducing consumption from the initial date
without this being detected by the principal. In the observed-consumption case, deviations in
consumption instead trigger autarky immediately.

To derive the inequality (10) formally, observe that by concavity of v, and because cFB (b1) >

(1− δ) b1, we have

v
(
cFB(b1)

)
−v ((1−δ) b1) > v′

(
cFB(b1)

)(
cFB (b1)−(1−δ) b1

)
= v′

(
cFB(b1)

)
wFB(b1).

The result then follows because the first-best effort and consumption satisfy v
(
cFB (b1)

)
−

v ((1− δ) b1) = ψ
(
eFB

(
b1

))
by Condition 2 of Proposition 3.1.

5.2 Optimal contract with observed consumption

Now consider the problem of characterizing an optimal contract when the principal’s first-best
payoff is not attainable. We can consider the “fastest payments” as given in Lemma 5.1. The
principal’s problem can now be written recursively, with the balance b̃t a state variable for
the relationship, applying the principle of optimality.17 Indeed, suppose for some date t that

17We did not make use of a recursive formulation of the principal’s problem in characterizing optimal
contracts for the unobserved-consumption case in Section 4. A recursive statement of the problem is not
possible for that case with a single state variable (convenient state variables for such a formulation are both (i)
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the continuation contract (ẽs, w̃s, c̃s, b̃s)s≥t does not maximize the continuation value of the
relationship to the principal

∑∞
s=t δ

s−t (es − ws), subject to it being self-enforceable; i.e., there
is some more profitable self-enforceable continuation contract (ẽ′s, w̃

′
s, c̃
′
s, b̃
′
s)s≥t with b̃′t = b̃t,

which can be taken to satisfy the agent’s indifference conditions (8) at all dates. Then this
contract can be substituted, increasing the continuation value

∑∞
s=t δ

s−t (es − ws) (and hence
the principal’s payoff in the contract overall), maintaining the agent indifference conditions
(8) at all dates, and continuing to satisfy the principal’s constraints (PCt).

Since an optimal contract maximizes the principal’s continuation profits, an optimal con-
tract (ẽt, w̃t, c̃t, b̃t)t≥1 must solve a sequence of sub-problems with value V (b̃t) given by

V (b̃t) = max
et,bt+1,ct∈R+

(
et − (δbt+1 − b̃t + ct) + δV (bt+1)

)
(11)

subject to the agent’s indifference condition

v(ct)− ψ(et) + δ
1−δv((1− δ)bt+1) = 1

1−δv((1− δ)b̃t). (12)

and to the principal’s constraint

δbt+1 − b̃t + ct ≤ δV (bt+1) . (13)

The left-hand side of (13) can be understood as the date-t payment wt, which is divided into
date-t consumption ct ∈ R+ and savings δbt+1 − bt ∈ R. Note that non-negativity of the
payment δbt+1− b̃t + ct is assured by the equality (12) and the concavity of v: if the payment
is negative, the agent is better off going to autarky. The same equality ensures that, given b̃t
is strictly positive, the choice of ct and bt+1 must be strictly positive as well.

We show that any optimal policy for the principal can be characterized as follows.

Proposition 5.3. An optimal contract exists. Suppose that, given the balance b1, an optimal
contract (ẽt, w̃t, c̃t, b̃t)t≥1 fails to obtain the first-best payoff V FB (b1). Then the agent’s balance
b̃t and consumption c̃t decline strictly over time, with b̃t → b̃∞ for some b̃∞ > 0. Effort ẽt
and the payments w̃t determined by the Conditions (8) increase strictly over time. We have
V (b̃t)→ V FB(b̃∞) as t→∞, and effort and consumption converge to first-best levels for the
balance b̃∞.

A heuristic account of the forces behind this result is as follows. When the principal’s
constraint ((PCt) or equivalently (13)) binds, effort is suppressed. That is, if the principal

discounted past pay, and (ii) the date of the relationship). In the present problem with observed consumption,
many of our arguments in characterizing optimal contracts do not directly exploit the recursive formulation,
although it seems helpful to describe the principal’s problem in this way.
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could increase effort and credibly increase payments to keep the agent as well off, she would
gain by doing so. However, the principal’s value function V (·) is strictly decreasing; intuitively,
because a lower balance makes the agent cheaper to compensate to keep him in the agreement.
Therefore, for any date t, reducing the balance bt+1 increases the principal’s continuation
payoff V (bt+1) and relaxes the principal’s date-t constraint (13). Therefore, the principal asks
the agent to consume earlier than he would like, driving the balance down over time. This
continues to a point where, given the revised balance, the contract is close to first best, and
so the value of continuing to distort consumption vanishes.

It is worth pointing out here that the dynamics of V (b̃t) are determinative of both the
dynamics of effort and payments. When there is no self-enforceable first-best contract, V (b̃t)

strictly increases with t, and moreover the principal’s constraint (13) binds. The latter implies
that, for all t, both w̃t = δV (b̃t+1) and V (b̃t) = ẽt − w̃t + δV (b̃t+1) = ẽt.18

It is also worth mentioning how we show V (b̃t) is strictly increasing with t. As noted above,
that V (·) is a strictly decreasing function perhaps seems intuitive given that the agent should
be easier to motivate when his balance is low. To understand this in more detail (following
the logic of Lemma A.14 in the Appendix), consider a contract that is optimal from date t,
when the balance is b̃t. Notice that, when the agent’s indifference condition (FPob

t ) holds, we
have

ẽt = ψ−1
(
v(c̃t)− 1

1−δv((1− δ)b̃t) + δ
1−δv((1− δ)b̃t+1)

)
. (14)

Consider a small decrease in the date-t balance b̃t, while all payments remain unchanged.
If date-t consumption is reduced by the same amount, the date-t + 1 balance b̃t+1 remains
unchanged and we can keep the date-t + 1 continuation contract unchanged. Determining
date-t effort by Equation (14) ensures that the condition (FPob

t ) is satisfied; hence all of the
agent’s constraints (see (ACob

t )) continue to be satisfied. Note then that (as we establish
in Lemma A.12), c̃t > (1 − δ)b̃t, so that v′ (c̃t) < v′((1 − δ)b̃t), showing that date-t effort
increases. This shows that profits to the principal increase, and also guarantees that the
principal’s constraints ((PCt) or equivalently (13)) are satisfied. The Appendix argues that
these observations imply V (·) is strictly decreasing. Finally, we have to show that b̃t strictly
decreases with t. This argument is more involved and makes use of a variational argument:
if b̃t fails to be strictly decreasing in t, it is possible to specify a strictly more profitable
self-enforceable contract (this is established in Lemma A.13 in the Appendix).

18Note that the conclusion the the principal’s constraint (13) binds is obtained under the assumption that
Conditions (FPob

t ) hold at all dates; but we establish in Proposition 5.4 below that the satisfaction of Condi-
tions (FPob

t ) is necessary for optimality.
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Another part of our analysis that is worth mentioning is an Euler equation

1− v′((1− δ)b̃t+1)

v′ (c̃t)
=
v′ (c̃t+1)

ψ′ (ẽt+1)

(
1− v′((1− δ) b̃t+1)

v′ (c̃t+1)

)

which must hold for an optimal contract at all dates t, and which we use to derive several key
properties. This condition is derived (in Lemma A.12) by fixing the contract at and before
t− 1, and from date t+ 2 onwards, and then requiring the contractual variables at t and t+ 1

to be chosen optimally. The equation captures the relationship between a static distortion in
effort and a dynamic distortion in consumption. In particular, when the principal’s first-best
payoff cannot be attained, we are able to show that ψ′ (ẽt+1) < v′ (c̃t+1) for all t (reflecting
a static (downward) distortion in effort), and correspondingly (1− δ) b̃t+1 < c̃t+1 < c̃t (i.e.,
consumption strictly decreases over time, which is a dynamic distortion). A trade-off between
the static and dynamic distortions should be anticipated, since asking the agent to consume
excessively early in the relationship increases the agent’s marginal utility of consumption later
on, which makes him easier to motivate and permits higher effort and profits at later dates.
In turn, this relaxes the principal’s credibility constraint (PCt), permitting higher payments
and therefore effort also early in the relationship. As b̃t → b̃∞, consumption falls to its lower
bound, becoming almost constant, so v′(c̃t+1)

ψ′(ẽt+1)
→ 1, which accords with convergence of effort

and consumption to first-best levels.
Finally, analogous to Proposition 4.4, we provide a result on the uniqueness of the timing

of payments.

Proposition 5.4. Suppose the principal cannot attain the first-best payoff in a self-enforceable
relational contract. Then, in any contract that is optimal for the principal, Condition (FPob

t )
holds at all dates. Hence payments to the agent strictly increase over time.

The logic of this result is that, if the Condition (FPob
t ) fails, then payments can be made

earlier in time, while maintaining the agent constraints (ACob
t ). This induces slack in the

principal’s constraint (PCt), which can then be exploited by increasing payments, consumption
and effort, increasing profits. As noted for the case of unobservable consumption, such an
observation is related to arguments in Ray (2002).

6 Optimal relational contract in the absence of savings

In this section we aim at understanding optimal relational contracts when the agent cannot
save, and so has consumption determined directly by pay. We make the same assumptions
on the agent’s utility of consumption v and disutility of effort ψ as in the model set-up, but
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now suppose the agent receives a base level of consumption c > 0 per period. The reason for
this assumption is to ensure that the agent does not obtain a payoff −∞ when he is not paid,
since this would allow the principal to obtain unbounded profits. We assume that the base
consumption c is not paid by the principal (for instance, it could be a “living wage” paid by
the government).19

In each period, the agent publicly chooses effort et ≥ 0 and the principal then makes the
public payment wt ≥ 0, with the agent consuming ct = c + wt. A deterministic relational
contract can now be described as a sequence of efforts and payments, (ẽt, w̃t)t≥1, and we
impose the feasibility requirement that these are non-negative and bounded. In this setting
with complete information, we consider feasible relational contracts to be self-enforceable if
they are outcomes of an SPNE. We can consider without loss deviations from the relational
contract being punished by autarky, where effort and pay is set to zero, and the agent therefore
consumes c per period.

A feasible relational contract (ẽt, w̃t)t≥1 is therefore self-enforceable if, for all t, the princi-
pal’s constraint (PCt) holds, and in addition the agent’s constraint

∞∑
s=t

δs−t(v(c+ w̃s)− ψ(ẽs)) ≥
1

1− δ
v (c) (15)

is satisfied. Here, the left-hand side of Equation (15) is the continuation utility of the agent at
time t. A relational contract is optimal if it is self-enforceable and maximizes the principal’s
payoff

∑∞
t=1 δ

t−1 (ẽt − w̃t). We characterize optimal relational contracts as follows.

Proposition 6.1. There is a unique optimal contract, and it is stationary. Letting (eFB, wFB)

be the unique pair satisfying ψ′(eFB) = v′(c+wFB) and v(c+wFB)−ψ(eFB) = v(c), we have

1. If wFB ≤ δeFB, then the optimal contract satisfies (ẽt, w̃t) = (eFB, wFB) for all t ≥ 1.

2. If wFB > δeFB, then the optimal contract satisfies (ẽt, w̃t) = (e∗, δe∗) for all t ≥ 1, where
e∗ is the unique strictly positive value satisfying v(c+ δe∗)− ψ(e∗) = v(c).

The result confirms a sense in which non-trivial dynamics arise in our models with concave
utility from consumption due to the possibility of agent savings. It turns out that, when
the agent cannot save, the agent is compensated for effort only through the current-period
payment; in particular, the agent’s continuation payoff is always equal to his autarky payoff.
As shown in the proof of the proposition, this insight markedly simplifies the search for an
optimal contract.

19Note that we could give the same interpretation to the value (1− δ) b1 in the previous sections, taking the
agent’s initial wealth then to equal zero. Because there are no restrictions on the agent’s saving or dissaving in
these previous sections, the model in those sections is equivalent to one where the agent has zero initial wealth
and is guaranteed to receive amounts (1− δ) b1 in each period, in addition to what is paid by the principal.
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7 Conclusions

This paper has studied optimal relational contracts in a simple deterministic setting where
the agent has consumption-smoothing preferences and is able to save. We contrasted the case
where the agent’s consumption is unobservable to the principal (the case of “private savings”)
and where consumption is observed. In the case where consumption is unobservable, we found
that the relationship eventually becomes less profitable with time, implying that the payments
the principal can credibly offer must decline. Hence effort eventually declines with time. When
consumption is instead observable, the agent consumes inefficiently early (i.e., saves too little),
the balance on his savings account gradually declines, the relationship becomes more profitable
as the agent grows easier to incentivize, payments to the agent gradually increase, and the
agent’s effort increases. It is worth remarking that the contract when the principal observes
the agent’s consumption is a Pareto improvement on the one when it is not observed. This
is in spite of the fact that there is an additional source of distortion, namely in the timing
of consumption. This distortion is more than offset by an improvement in the provision of
incentives.

We conclude with some further remarks concerning applications and some open questions.
First, the paper has focused on characterizing the dynamics of optimal relational contracts.
As we argued in the Introduction, the dynamics of consumption when it is observable to
the principal (see Section 5) suggests a theory of inefficiently high consumption spending by
workers in industries which rely on discretionary incentive pay (banking may be an example).
But the model can also be used to address other questions of applied interest. For instance,
one observation (common to both the case with unobservable consumption in Section 4 and
observable consumption in Section 5) is that the principal’s profits in an optimal relational
contract decrease with the agent’s initial wealth b1.20 The model therefore suggests a pref-
erence of employers for employees who are known to have low savings. Although this seems
at odds with US employers using credit scores to vet employees (see, e.g., Gallagher, 2005),
a firm could perhaps profit nonetheless from employees known to have high student debt
(for instance, Hancock, 2009, has suggested such individuals might be more willing to work
overtime).

Related to the above ideas, future theoretical research might examine the effects of turnover
and competition among employers. For instance, the savings of a worker when switching to
a new employer (say as the result of an exogenous shock) would depend on the contract with

20For the model in Section 5, this is simply the observation that the principal’s profits V (b1) are strictly
decreasing in b1, as we already noted. In Section 4, the result follows because, if a relational con-
tract (ẽt, w̃t, c̃t, b̃t)t≥1 is optimal, then for ε ∈ (0, b1), and for η > 0 and sufficiently small, the contract
(ẽt + η, w̃t, c̃t − ε (1− δ) , b̃t − ε)t≥1 is self-enforceable and generates strictly higher profits for the principal.
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the previous employer. Consider the case when consumption is observable and the agent can
save (as in Section 5). In this case, while we have documented how an employer can benefit
from a contract that calls for high consumption and impoverishes the worker over time, such
a distortion in consumption might increase profits for the worker’s next employer in a setting
with turnover. This suggests a positive externality from relational contracts that call for high
consumption, one that employers might be expected not to internalize.

As mentioned in the Introduction, a further possibility that we have left unexplored is
where only part of an agent’s consumption expenditures are observable to the principal. For
instance, the agent might have preferences for both “conspicuous” and “inconspicuous” con-
sumption, with diminishing marginal utility for each. An optimal relational contract might
then call for inefficient amounts of the former to impoverish the agent over time, similar to the
case of observable consumption studied in Section 5. As mentioned, however, such a model
seems less tractable than the cases of fully observable or fully unobservable consumption.

Another question left for future research is the role of exogenous uncertainty. This could
take a range of forms. For instance, the agent’s initial balance could be random and the agent’s
private information, the agent could receive taste or income shocks over time, or there could
be shocks to the principal’s willingness or ability to pay compensation. These possibilities
again would substantially complicate the analysis.
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A Appendix: Omitted proofs

A.1 Proofs of the results in Section 3

Proof of Proposition 3.1

Proof. Consider the problem of maximizing the principal’s payoff

∞∑
t=1

δt−1 (ẽt − w̃t)

over the set of feasible relational contracts (ẽt, w̃t, c̃t, b̃t)t≥1 satisfying

∞∑
t=1

δt−1 (v (c̃t)− ψ (ẽt)) ≥
v (b1 (1− δ))

1− δ
. (16)

For any feasible contract (ẽt, w̃t, c̃t, b̃t)t≥1, define

c̃ = (1− δ)
∞∑
t=1

δt−1c̃t,

ẽ = ψ−1

(
(1− δ)

∞∑
t=1

δt−1ψ (ẽt)

)
,

and

w̃ ≡ (1− δ)
∞∑
t=1

δt−1w̃t.

Note these values are all finite by feasibility.
We now show there is no loss in considering “stationary” contracts where effort, payments

and consumption are constant at the values ẽ, w̃ and c̃, and where balances are constant
at b1. To this end, we modify the arbitrary (not necessarily stationary) feasible contract
(ẽt, w̃t, c̃t, b̃t)t≥1 satisfying the inequality in Equation (16) considered above. In particular, we
modify it to a contract (ẽ′t, w̃

′
t, c̃
′
t, b̃
′
t)t≥1 with, for all t, ẽ′t = ẽ, w̃′t = w̃, c̃′t = c̃ and b̃′t = b1.

First, note the contract (ẽ′t, w̃
′
t, c̃
′
t, b̃
′
t)t≥1 satisfies Equation (1) for all t. This follows because,

for any t ≥ 1, if b̃′t = b1, then

b̃′t + w̃′t − c̃′t
δ

=
b1 + w̃ − c̃

δ

=
b1 + (1− δ)

∑∞
t=1 δ

t−1w̃t − (1− δ)
∑∞

t=1 δ
t−1c̃t

δ

= b1.
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The contract (ẽ′t, w̃
′
t, c̃
′
t, b̃
′
t)t≥1 also satisfies the inequality in Equation (2) with equality because

contract (ẽt, w̃t, c̃t, b̃t)t≥1 does so. Feasibility of the contract (ẽ′t, w̃
′
t, c̃
′
t, b̃
′
t)t≥1 is then immediate.

In addition, the inequality in Equation (16) continues to be satisfied, given the concavity of
v. Also, the principal’s payoff is (weakly) higher in the contract (ẽ′t, w̃

′
t, c̃
′
t, b̃
′
t)t≥1, because the

NPV of output is (weakly) higher, by convexity of ψ. This confirms that stationary contracts
are optimal.

The above argument can also be used to show that effort and consumption are constant
in any optimal contract. First, we see that (ẽt, w̃t, c̃t, b̃t)t≥1 is not optimal unless ẽt = ẽ for
all t. This follows by strict convexity of ψ. Further, optimality of (ẽt, w̃t, c̃t, b̃t)t≥1 requires
c̃t = c̃ for all t. If this is not the case, then the inequality in Equation (16) holds strictly for
the contract (ẽ′t, w̃

′
t, c̃
′
t, b̃
′
t)t≥1. Hence, further modifying this contract by raising effort ẽ′1 by a

small enough amount yields a feasible contract that satisfies Equation (16) and gives a strictly
higher payoff for the principal.

Now consider the optimal specification of the stationary contract (ẽ′t, w̃
′
t, c̃
′
t, b̃
′
t)t≥1. Opti-

mality requires w̃ = c̃ − (1 − δ)b1. Also, the constraint in Equation (16) can be written as
v(c̃)−ψ(ẽ) ≥ v(b1 (1− δ)), which must hold with equality for an optimum, yielding the second
condition in the proposition. Using this, we may write

c̃ = v−1 (ψ(ẽ) + v(b1 (1− δ))) . (17)

The principal’s payoff can then be written as

ẽ− (c̃− (1− δ)b1) = ẽ− v−1 (ψ(ẽ) + v(b1 (1− δ))) + (1− δ)b1.

This is strictly concave in ẽ and an optimum is attained when the first-order condition 1 −
ψ′(ẽ)
v′(c̃)

= 0 is satisfied (with c̃ given by Equation (17)). This is the first condition in the
proposition. By the assumption that ψ′ (0) = 0, we have ẽ > 0 and hence c̃ > b1 (1− δ).

It remains to show that the principal’s payoff is strictly decreasing in b1. Consider the opti-
mal (stationary) contract specified above for an initial balance b1, and consider any reduction
ε ∈ (0, b1) in this balance. If consumption is also reduced in each period by ε (1− δ), while
payments remain unchanged, then the agent’s balance remains constant at b1 − ε. Equation
(2) continues to hold with equality. Hence, the adjusted contract is feasible. The inequality in
Equation (16) holds strictly. Therefore, a further adjustment to the contract that comprises
increasing date-1 effort by a small amount yields a feasible contract that satisfies Equation
(16) and generates a strictly higher profit for the principal than the optimal contract when
the agent’s initial balance is b1.
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A.2 Proofs of the results in Section 4

Proof of Proposition 4.1

Proof. Necessity. Fix a PBE with outcome given by some feasible contract (ẽt, c̃t, w̃t, b̃t)t≥1.
Suppose first it is not true that c̃t = c̄∞ for all t. Then the agent can choose a strategy which
specifies obedient (on-path) effort and specifies consumption given in each period by c̄∞. Note
that

b1 +
∞∑
s=1

δs−1 (w̃s − c̄∞) = 0.

Hence, the feasibility constraint (2) is satisfied on the path of play under the new strategy,
and by strict concavity of v the agent obtains a strictly higher payoff.

If (ACun
t ) is not satisfied for some t, then the agent can consume c̄t−1 ≤ c̄∞ in every period

and exert the specified effort es = ẽs up to date t− 1, and zero effort from then on, attaining
a higher payoff.

If (PCt) is not satisfied at date t, the principal can pay zero from then on. The principal
then attains a non-negative continuation payoff, while by continuing to make the payments
(w̃s)s≥t, the principal obtains a negative continuation payoff

∞∑
s=t+1

δs−t(ẽs − w̃s)− w̃t.

Therefore, the principal has a profitable deviation at date t.

Sufficiency. We fix some feasible contract (ẽt, c̃t, w̃t, b̃t)t≥1 satisfying the conditions of the
proposition and we provide strategies and beliefs that constitute a PBE with outcome (ẽt, c̃t, w̃t, b̃t)t≥1.

We specify a PBE as follows. On the principal’s side, put σt
(
hPt , et

)
= w̃t if (es, ws) =

(ẽs, w̃s) for all s ≤ t− 1 and et = ẽt, and put σt
(
hPt , ẽt

)
= 0 otherwise.

For the agent’s strategy, put αt(hAt ) = (ẽt, c̃t) if (es, cs, ws) = (ẽs, c̃s, w̃s) for all s < t. Put
αt(h

A
t ) =

(
0,max{0, (1− δ)b(hAt ))}

)
whenever (es, ws) 6= (ẽs, w̃s) for some s ≤ t − 1. Note

that this specification of the agent’s strategy will guarantee its sequential optimality at date-t
histories where (es, ws) 6= (ẽs, w̃s) for some s < t. This is because, at time t after a public
deviation, there are two possibilities. If b(hAt ) < 0 then the agent’s payoff is −∞ independently
of the strategy he uses, because the feasibility constraint (2) is violated (as he no receives any
further payment by the principal). If, instead, b(hAt ) ≥ 0, the agent smooths consumption by
consuming (1− δ)b(hAt ) in all subsequent periods (given that he does not expect the principal
to make a positive payment in the future).

Determining the agent’s equilibrium strategy for the remaining possible histories, where
(es, ws) = (ẽs, w̃s) for all s ≤ t − 1, and yet cs 6= c̃s for some values s ≤ t − 1, is then more
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involved. Consider a history hAt for the agent with (es, ws) = (ẽs, w̃s) for all s ≤ t− 1, and yet
cs 6= c̃s for some values. First note that, if

b
(
hAt
)

+
∞∑
τ=t

δτ−tw̃τ (18)

is non-positive, then the continuation payoff of the agent at history hAt is −∞ under any
continuation strategy. In this case we might as well specify that et = ẽt and ct = 0. Assume
then that the expression (18) is strictly positive. In this case, an optimal continuation strategy
for the agent, given the principal’s strategy, should induce a continuation outcome of the
following form. There should be some t′ ≥ t (possibly +∞) so that effort is es = ẽs for all
s ∈ {t, t+ 1, . . . , t′ − 1}, and so that effort is es = 0 for s ≥ t′. Consumption should be
specified optimally. Given the concavity of v, the highest continuation payoff the agent can
achieve at date t, given that he works obediently until date t′− 1, is that obtained by putting

cs = max

{
0, (1− δ)

(
b
(
hAt
)

+
t′−1∑
τ=t

δτ−tw̃τ

)}
for all s ≥ t.

We can now consider the problem of choosing the optimal “public deviation” time t′, given
optimal consumption as specified above. The existence of a solution to this problem follows
from “continuity at infinity” of the agent’s payoff in the public deviation date t′; i.e., because,
for all t, all histories hAt for which there is, as yet, no public deviation (es = ẽs and ws = w̃s

for all s < t),

v
(

max
{

0, (1− δ)
(
b(hAt ) +

∑t′−1
τ=t δ

τ−tw̃τ
)} )

1− δ
−

t′−1∑
τ=t

δτ−tψ(ẽτ )

−−−→
v
(
(1− δ)

(
b(hAt ) +

∑∞
τ=t δ

τ−tw̃τ
))

1− δ
−
∞∑
τ=t

δτ−tψ(ẽτ )

as t′ →∞. This follows by continuity of v.
In determining the agent’s continuation strategy at date t and private history hAt , we take

t′ to be the largest value that attains the optimal payoff for the agent (again, continuity at
infinity implies that such a largest value exists, and it could be +∞). Hence, the strategy
specifies that, at private history hAt for the agent, effort is et = ẽt if t′ > t and et = 0 if t′ = t,
and consumption is ct = (1− δ)

(
b(hAt ) +

∑t′−1
τ=t δ

τ−tw̃τ
)
.

Finally, let us specify the principal’s beliefs on the agent’s previous consumption choices.
Let these beliefs be degenerate sequences, and denote the believed consumption up to date t
by (ĉs)

t
s=1. If date t is such that there has not been a public deviation (i.e., (es, ws) = (ẽs, w̃s)
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for all s ≤ t−1 and if et = ẽt), then the principal believes that the agent has consumed as the
strategy specifies; that is, ĉs = c̃s at each date s ≤ t. If instead (es, ws) 6= (ẽs, w̃s) for some
s ≤ t − 1, or if et 6= ẽt, let t′ be the first date of such a public deviation (i.e. the first date
s ≤ t− 1 at which (es, ws) 6= (ẽs, w̃s), or if there is no such date, then date t). If et′ 6= ẽt′ (so
the agent is first to publicly deviate), we let the principal’s belief be given by

ĉs = (1− δ)
(
b1 +

t′−1∑
τ=1

δτ−1w̃τ

)
for all s ∈ {1, . . . , t′ − 1} (i.e., the principal believes that the agent optimally consumed from
time 1 given the deviation and the principal’s specified strategy), while, for all s ∈ {t′, . . . , t},
the principal believes that the agent consumes

ĉs = (1− δ)b̂s,

where b̂s are beliefs on the agent’s balance determined recursively from the principal’s pay-
ments and the agent’s believed consumption (i.e., b̂s = (b̂s−1 + ws−1 − ĉs−1)/δ, with b̂1 = b1).
If et′ = ẽt′ (so the principal is first to publicly deviate), then the principal believes that the
agent consumes ĉs = c̃s for all s ≤ t′ and ĉs = max

{
0, (1− δ)b̂s

}
for all s = t′+ 1, ..., t (again,

the values of b̂s are determined recursively by b̂s = (b̂s−1 +ws−1− ĉs−1)/δ, with b̂1 = b1). These
beliefs are consistent with updating of the principal’s prior beliefs according to the specified
strategy of the agent whenever there is no public evidence the agent’s strategy has not been
followed.

We now want to verify the sequential optimality of the above strategies, given the beliefs.
First, note that at any information set at which the principal has not yet observed a deviation,
the fact that (ẽt, c̃t, w̃t, b̃t)t≥1 satisfies Condition (PCt) implies that the principal optimally sets
wt = w̃t (if wt 6= w̃t, then the principal’s continuation profits are no greater than zero). If
instead the principal has observed a deviation, then the principal can obtain at most zero,
since the agent exerts no effort, and hence paying wt = 0 is optimal.

Finally observe that the agent’s strategy is constructed to be sequentially optimal.

Proof of Lemma 4.1

Proof. Fix an optimal relational contract (ẽt, c̃t, w̃t, b̃t)t≥1; that is, a feasible contract that
maximizes the principal’s discounted payoff subject to the conditions of Proposition 4.1. We
show first that

v (c̄∞)

1− δ
−
∞∑
s=1

δs−1ψ(ẽs) (19)
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is equal to v(b1(1−δ))
1−δ . Clearly the only way this can fail in a self-enforceable relational contract

is if (19) strictly exceeds v(b1(1−δ))
1−δ . However, in this case, there is a more profitable feasible

contract for which the conditions of Proposition 4.1 still hold, and in which ẽ1 increases by a
small amount.

Next, the previous observation implies that, if

v (c̄t−1)

1− δ
−

t−1∑
s=1

δs−1ψ(ẽs) (20)

exceeds v(b1(1−δ))
1−δ at any date t, then the inequality (ACun

t ) must not be satisfied; i.e., the
conditions of Proposition 4.1 are not satisfied (there can be no PBE with contractual outcomes
(ẽt, c̃t, w̃t, b̃t)t≥1).

Finally, suppose that the expression (20) is strictly less than v(b1(1−δ))
1−δ at some increasing

sequence of dates (tn)Nn=1, where N may be finite or infinite. For each n, there is εn > 0 such
that

1

1− δ
v(c̄tn−1 + δtn−2εn(1− δ))−

tn−1∑
s=1

δs−1ψ(ẽs) =
v (b1 (1− δ))

1− δ
.

Increase w̃tn−1 by εn, and reduce w̃tn by εn
δ
; note that this leads to a change in c̄tn−1, but does

not affect c̄t for t 6= tn. After this adjustment has been made for each n, we have a relational
contract for which the expression (20) is equal to v(b1(1−δ))

1−δ at all dates t. Also, because ψ is
non-negative, c̄t must be a non-decreasing sequence, and hence all payments w̃t in the new
relational contract are non-negative. Hence, the new contract is feasible, and we have observed
that the agent’s constraints (ACun

t ) are satisfied. Also, the principal’s constraints (PCt) are
satisfied. To see the latter, note that these constraints are affected by the adjustments to the
original contract only at dates satisfying t = tn for some n. At such dates the principal’s
constraint is slackened by the amount εn

δ
.

Proof of Lemma 4.2

Proof. Observe from Condition (FPun
t ) evaluated at consecutive dates, we have

v (c̄t−1 + (1− δ) δt−1w̃t)− v (c̄t−1)

1− δ
= δt−1ψ (ẽt) .

By the Fundamental Theorem of Calculus, we have∫ w̃t

0

v′
(
c̄t−1 + (1− δ) δt−1x

)
dx = ψ (ẽt)

and hence
kw̃t = ψ (ẽt)

for k ∈ (v′ (c̄t) , v
′ (c̄t−1)), which proves the result.
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Proof of Propositions 4.2 and 4.3

Proof. The remaining steps in the proof of the Proposition 4.3 are divided into nine lemmas.
The proof of Proposition 4.2 is provided in the process, in Lemma A.7. Throughout, we restrict
attention to payments determined under the restriction to “fastest payments”, i.e. satisfying
Condition (FPun

t ).

1. Lemma A.1 bounds effort and hence payments.

2. Lemma A.2 shows that an optimal relational contract exists.

3. Lemma A.3 shows that the principal achieves a strictly positive payoff and that effort
remains strictly positive in any optimal relational contract.

4. Lemma A.4 shows that the contract becomes (approximately) stationary in the long
run.

5. Lemma A.5 shows that effort is weakly decreasing.

6. Lemma A.6 establishes that, if the principal’s constraint (PCt) binds at date t, then it
continues to bind at all future dates. Also effort strictly decreases over these dates.

7. Lemma A.7 establishes the condition for a first-best policy to be self-enforceable. Also,
when this condition is not satisfied, for any optimal contract, there exists a date t̄
satisfying the properties in the proposition (i.e., effort is constant up to date t̄, and
subsequently strictly decreasing).

8. Lemma A.8 shows that the limiting effort is strictly positive.

9. Lemma A.9 establishes that the date t̄ in the proposition can be strictly greater than
one for some specification of model primitives.

The following lemma argues that we can restrict attention to contracts such that the
marginal disutility of effort is bounded by the marginal utility of consumption.

Lemma A.1. There is no loss of optimality in restricting to self-enforceable contracts such
that ψ′ (ẽt) ≤ v′ (c̄∞) for all t.

Proof. Take a contract satisfying Condition (FPun
t ) for all t, and let t∗ be the first date at

which ψ′ (ẽt∗) > v′ (c̄∞). We can adjust such a contract by reducing date t∗ effort by some
η ∈ (0, ẽt∗) (holding effort at other dates fixed). This determines a new contract, with adjusted
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consumption and payments, again satisfying (FPun
t ) for all t. Let us index the revised effort

policy by the date-t∗ adjustment η, writing ẽt (η) for all t. Correspondingly, write

c̄∞ (η) ≡ (1− δ)
(
b1 +

∞∑
s=1

δs−1w̃s (η)

)
where (w̃s (η))s≥1 are the payments determined from the adjusted effort policy. Then

v (c̄∞ (0))− v (c̄∞ (η))

1− δ
= δt

∗−1
(
ψ(ẽt∗ (0))− ψ(ẽt∗ (η))

)
.

Differentiating with respect to η,

c̄′∞ (η)

1− δ
=
−δt∗−1ψ′(ẽt∗ (η))

v′ (c̄∞ (η))
.

This expression coincides with the derivative of the NPV of payments to the agent with respect
to η. The derivative of the principal’s profits is therefore

−δt∗−1 +
δt
∗−1ψ′(ẽt∗ (η))

v′ (c̄∞ (η))

which is strictly positive for η ∈ [0, η̄), with η̄ satisfying ψ′ (ẽt∗ (η̄)) = v′ (c̄∞ (η̄)). The effect
on profit from reducing date t∗ effort by η̄ is therefore to increase it by∫ η̄

0

(
−δt∗−1 +

δt
∗−1ψ′(ẽt∗ (η))

v′ (c̄∞ (η))

)
dη > 0.

Note (from (FPun
t )) that payments w̃t (η̄) are reduced for all t ≥ t∗, with the implication that

the principal’s constraints (PCt) are relaxed for all t (note that the principal’s constraints are
relaxed for t < t∗). Hence, the new contract is self-enforceable. Note then that ψ′ (ẽt (η̄)) <

v′ (c̄∞ (η̄)) for all t < t∗. We can therefore continue iteratively, by proceeding to the next
date t > t∗ at which v′ (c̄∞ (η̄)) < ψ′ (ẽt (η̄)), if any, and reducing effort precisely as for at t∗.
Proceeding sequentially, we obtain a self-enforceable contract for which ψ′ (ẽt) ≤ v′ (c̄∞) at all
dates t, and which is strictly more profitable than the original.

The above result establishes that the marginal disutility of effort ψ′ (ẽt) in an optimal con-
tract is bounded by v′ (c̄∞), which is certainly no greater than v′ (b1 (1− δ)), given payments
w̃t are non-negative. Also, given any bounded effort policy, payments are also bounded, which
can be seen from Lemma 4.2.
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Lemma A.2. An optimal relational contract exists.

Proof. As we already observed, under the condition “fastest payments” given in (FPun
t ), the

relational contract is determined solely by the effort policy (ẽt)t≥1. Hence, the payoff obtained
by the principal can be written

W ((ẽt)
∞
t=1) =

∞∑
t=1

δt−1ẽt −
∞∑
t=1

δt−1w̃t

where each w̃t is recursively obtained from (FPun
t ). Note that, from Lemma A.1, we can

restrict attention to effort policies in [0, z (v′ (b1 (1− δ)))]∞, where z denotes the inverse of ψ′.
Now, letW sup be the supremum ofW (·) over effort policies (ẽt)t≥1 in [0, z (v′ (b1 (1− δ)))]∞

for which the implied contract (ẽt, c̃t, w̃t, b̃t)t≥1 (i.e., the one implied by (FPun
t )) satisfies the

principal’s constraints (PCt) (such contracts are feasible and satisfy all the conditions of
Proposition 4.1). Note the set is non-empty; for instance, because effort constant at zero is in
the set.

Consider then a sequence of policies ((ẽnt )∞t=1)
∞
n=1 in [0, z (v′ (b1 (1− δ)))]∞ and with

W ((ẽnt )∞t=1) > W sup − 1/n

for all n, and for which the contract defined by each effort policy (using (FPun
t )) satisfies the

principal’s constraints (PCt). There then exists a sequence (ẽ∞t )t≥1 ∈ [0, z (v′ (b1 (1− δ)))]∞

and a subsequence
(
(ẽnk
t )t≥1

)
k≥1

convergent pointwise to (ẽ∞t )t≥1. Let (w̃∞t )t≥1 be the pay-
ments corresponding to (ẽ∞t )t≥1 determined using (FPun

t ).
Note that, for any policy (ẽt)t≥1 in [0, z (v′ (b1 (1− δ)))]∞, using that the payments (w̃t)t≥1

determined by (FPun
t ) are bounded, as well as continuity of v,

v ((1− δ) b1 + (1− δ)
∑∞

s=1 δ
s−1w̃s)

1− δ
−
∞∑
t=1

δt−1ψ (ẽt) =
v (b1 (1− δ))

1− δ
. (21)

Notice also that
∞∑
t=1

δt−1ψ (ẽnk
t )→

∞∑
t=1

δt−1ψ (ẽ∞t )

as k →∞ (by continuity of ψ and discounting). Therefore, we have (by Equation (21), using
that v is strictly increasing) that

∞∑
t=1

δt−1w̃nk
t →

∞∑
t=1

δt−1w̃∞t .

Since, also,
∞∑
t=1

δt−1ẽnk
t →

∞∑
t=1

δt−1ẽ∞t ,
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we can conclude that W
(
(ẽ∞t )t≥1

)
= W sup.

Our result will then follow if we can show that the contract defined by (ẽ∞t )t≥1 satisfies
the principal’s constraints (PCt). Suppose with a view to contradiction that there is some t∗

at which the principal’s constraint does not hold, and so

w̃∞t∗ >

∞∑
s=t∗+1

δs−t
∗
(ẽ∞s − w̃∞s ).

It is easily verified, from (FPun
t ) and the pointwise convergence of (ẽnk

t )t≥1 to (ẽ∞t )t≥1 and
(w̃nk

t )t≥1 to (w̃∞t )t≥1, that for large enough k

w̃nk
t∗ >

∞∑
s=t∗+1

δs−t
nk (ẽnk

s − w̃nk
s )

contradicting that the contract determined by (ẽnk
t )t≥1 satisfies the principal’s constraints

(PCt).

We now establish the following regarding the non-degeneracy of optimal contracts.

Lemma A.3. The principal obtains a strictly positive payoff in any optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1.
Moreover, ẽt and w̃t are strictly positive at all dates t.

Proof. Consider effort set constant to some level ẽ > 0. Let g (ẽ) =
∑∞

t=1 δ
t−1w̃t be the NPV of

payments that must be made to the agent when satisfying the indifference conditions (FPun
t ),

given that effort is constant at ẽ. Recall from Equation (21) that this satisfies

v ((1− δ) b1 + (1− δ) g (ẽ)) = ψ (ẽ) + v ((1− δ) b1) .

Differentiating with respect to ẽ yields

g′ (ẽ) =
ψ′ (ẽ)

(1− δ) v′ ((1− δ) b1 + (1− δ) g (ẽ))
.

Since the principal’s payoff is 1
1−δ ẽ− g(ẽ), and since ψ′(0) = 0, it follows that the principal’s

payoff is strictly positive for small positive ẽ. Moreover, by Lemma 4.2, payments determined
by the conditions (FPun

t ) rise over time approaching

ψ (ẽ)

v′ ((1− δ) b1 + (1− δ) g (ẽ))

which is o(ẽ) as ẽ→ 0 (i.e., vanishes much faster than ẽ). It is then easy to see that, when ẽ is
small enough, all the principal constraints (PCt) are satisfied. Hence the contract determined
from specifying constant effort ẽ, for small ẽ, is self-enforceable and generates a strictly positive
payoff.
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Now we show that, in an optimal contract, effort is strictly positive in every period.
Suppose that payments w̃t are determined from effort using (FPun

t ). First note that the
principal’s continuation profits

∞∑
s=t

δs−t (ẽs − w̃s)

must be strictly positive at all dates. Otherwise, this expression is zero at some date t, and
so w̃t−1 = 0. Condition (FPun

t ) then implies that ẽt−1 = 0. Iterating backwards, we find the
optimal profit is zero in contradiction with the previous claim. Suppose then that effort is zero
at some date, and consider a date t such that effort is zero at this date but strictly positive
at the subsequent date. Then w̃t = 0 and so the principal’s constraint (PCt) is slack at date
t. However, this contradicts Lemma 4.3. It then follows immediately from the restriction to
“fastest payments” that all payments are also strictly positive, as stated in the lemma.

We now establish an important property of relational contracts: they become (approxi-
mately) stationary in the long run.

Lemma A.4. Suppose that (ẽt, c̃t, w̃t, b̃t)t≥1 is an optimal relational contract satisfying (FPun
t ).

Then, there exists an effort/payment pair (ẽ∞, w̃∞) such that limt→∞ (ẽt, w̃t) = (ẽ∞, w̃∞).

Proof. Step 0. In this step we observe that, for an optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1 satisfying
(FPun

t ),

lim
t→∞

(
w̃t −

ψ (ẽt)

v′ (c̄∞)

)
= 0.

This follows from Lemma 4.2, after noticing that (ẽt)t≥1 is bounded in an optimal contract.

Step 1. Define ē ≡ lim supt→∞ ẽt, which we know from Lemma A.1 is no greater than
z (v′ (c̄∞)) (recall that z is the inverse of ψ′). We now show that, for any e ∈ [0, ē],

ψ (e)

v′ (c̄∞)
≤ δ

1− δ

(
e− ψ (e)

v′ (c̄∞)

)
. (22)

That is, the principal’s constraints (PCt) would be satisfied if paying a constant wage ψ(e)
v′(c̄∞)

per period, in return for effort e ≤ ē. Note that, if the inequality (22) is satisfied at ē, then it
is satisfied for all e ∈ [0, ē]; this follows because the left-hand side of (22) is convex, and equal
to zero at zero, while the right hand side is concave, and also equal to zero at zero.
Assume now for the sake of contradiction that the inequality (22) is not satisfied for some
e ∈ [0, ē]. Then we must have

ψ (ē)

v′ (c̄∞)
>

δ

1− δ

(
ē− ψ (ē)

v′ (c̄∞)

)
. (23)
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Observe then that there is a sequence (εt)
∞
t=1 convergent to zero such that, for all t ≥ 1,

ẽt − w̃t ≤ ē− ψ (ē)

v′ (c̄∞)
+ εt.

This follows because w̃t − ψ(ẽt)
v′(c̄∞)

→ 0 as t → ∞ (by Step 0), because e − ψ(e)
v′(c̄∞)

increases
over effort levels e in [0, ē] (since ψ′ (ē) ≤ v′ (c̄∞) by Lemma A.1), and by definition of ē as
lim supt→∞ ẽt.
We therefore have that

lim sup
t→∞

∞∑
s=t+1

δs−t (ẽs − w̃s) ≤
δ

1− δ

(
ē− ψ (ē)

v′ (c̄∞)

)
<

ψ (ē)

v′ (c̄∞)
,

where the last inequality holds by Equation (23). However, Step 0 implies that the superior
limit of payments to the agent must be ψ(ē)

v′(c̄∞)
, which implies that the principal’s constraint

(PCt) is not satisfied at some time t. This contradicts the definition of ē as lim supt→∞ ẽt

(with (ẽt)t≥1 the effort profile in a self-enforceable relational contract).

Step 2. We complete the proof by showing that lim inft→∞ ẽt = ē. This is immediate if
ē = 0, so assume ē > 0. Assume, for the sake of contradiction, that lim inft→∞ ẽt < ē. In this
case, there exists some t′ > 1 such that ẽt′ < min {ē, ẽt′+1}.

Step 2a. We have

w̃t′ ≤
δ

1− δ

(
ẽt′+1 −

ψ (ẽt′+1)

v′ (c̄∞)

)
. (24)

This follows because (i) w̃t′ ≤ ψ(ẽt′ )
v′(c̄∞)

by Lemma 4.2 and the assumption that payments satisfy

condition (FPun
t ); (ii) ψ(ẽt′ )

v′(c̄∞)
≤ δ

1−δ

(
ẽt′ − ψ(ẽt′ )

v′(c̄∞)

)
, by assumption that ẽt′ < ē and by Step 1;

and (iii) ẽt′− ψ(ẽt′ )
v′(c̄∞)

≤ et′+1−
ψ(ẽt′+1)

v′(c̄∞)
because z (v′ (c̄∞)) ≥ ẽt′+1 > ẽt′ (recall that the inequality

z (v′ (c̄∞)) ≥ ẽt′+1 is established in Lemma A.1).

Step 2b. We now show that the principal’s constraint (PCt) is slack at t′. Note first that,
for any t ≥ 1, we have

w̃t+1 − w̃t =
c̄t+1 − c̄t
δt(1− δ)

− c̄t − c̄t−1

δt−1(1− δ)

≥ v(c̄t+1)− v(c̄t)

δt(1− δ)v′(c̄t)
− v(c̄t)− v(c̄t−1)

δt−1(1− δ)v′(c̄t)

=
ψ(ẽt+1)− ψ(ẽt)

v′(c̄t)
,

where we used that v is concave and Lemma 4.2. Hence, we have that ẽt+1 > ẽt implies
w̃t+1 > w̃t.
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Since t′ was chosen so that ẽt′+1 > ẽt′ , we have w̃t′+1 > w̃t′ . Hence,

w̃t′ < (1− δ) w̃t′ + δw̃t′+1

≤ δ

(
ẽt′+1 −

ψ (ẽt′+1)

v′ (c̄∞)

)
+ δ

∞∑
s=t′+2

δs−t
′−1 (ẽs − w̃s)

≤
∞∑

s=t′+1

δs−t
′
(ẽs − w̃s) ,

where the second inequality uses (i) Equation (24) from Step 2a, and (ii) the principal’s
constraint (PCt) in period t′ + 1. The third inequality uses that w̃t′+1 ≤

ψ(ẽt′+1)

v′(c̄∞)
, which

follows from Lemma 4.2.

Step 2c. We finish the proof with the following observation. The fact the principal’s
constraint (PCt) is slack at time t′ (proven in Step 2b) contradicts Lemma 4.3, since effort is
strictly higher at t′ + 1 than at t′.

The following lemma determines that, in an optimal contract, effort is weakly decreasing.

Lemma A.5. In an optimal contract, the effort policy (ẽt)t≥1 is a weakly decreasing sequence.
Therefore, for all t, ẽt ≥ ẽ∞ ≡ lims→∞ ẽs.

Proof. By Lemma A.4, (ẽt)
∞
t=1 is a convergent sequence, so using the notation in its proof,

we have ẽ∞ = ē. Step 2 in the proof of Lemma A.4 proves that there is no time t′ such that
ẽt′ < min {ē, ẽt′+1}. Hence, there is no t′ such that ẽt′ < ẽ∞.

Now suppose, for the sake of contradiction, that (ẽt)
∞
t=1 is not a weakly decreasing sequence.

Thus, there exists a date t′ where maxt>t′ ẽt > ẽt′ (the maximum exists by the first part of this
proof, and because limt→∞ ẽt = ẽ∞ by Lemma A.4). Let t∗ (t′) be the smallest value t > t′

where the maximum is attained, that is, ẽt∗(t′) = maxt>t′ ẽt.
For any s > t∗(t′),

ẽt∗(t′) − w̃t∗(t′) > ẽt∗(t′) −
ψ(ẽt∗(t′))

v′(c̄t∗(t′))
≥ ẽt∗(t′) −

ψ(ẽt∗(t′))

v′(c̄s−1)
≥ ẽs −

ψ(ẽs)

v′(c̄s−1)
> ẽs − w̃s. (25)

The first inequality follows from Lemma 4.2; the second inequality follows because c̄s−1 ≥
c̄t∗(t′). The third inequality follows because e − ψ(e)

v′(c̄s−1)
is increasing in e over [0, z (v′ (c̄∞))],

and because ẽs ≤ ẽt∗(t′) for s > t∗ (t′) by definition of t∗ (t′). The fourth inequality follows
because w̃s > ψ(ẽs)

v′(c̄s−1)
by Lemma 4.2 and because ẽs > 0 by Lemma A.3.

Equation (25) implies that

ẽt∗(t′) − w̃t∗(t′) > (1− δ)
∞∑

s=t∗(t′)+1

δs−t
∗(t′)−1 (ẽs − w̃s) ,
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so that
∞∑

s=t∗(t′)

δs−t
∗(t′) (ẽs − w̃s) = ẽt∗(t′) − w̃t∗(t′) + δ

∞∑
s=t∗(t′)+1

δs−t
∗(t′)−1 (ẽs − w̃s)

> (1− δ)
∞∑

s=t∗(t′)+1

δs−t
∗(t′)−1 (ẽs − w̃s) + δ

∞∑
s=t∗(t′)+1

δs−t
∗(t′)−1 (ẽs − w̃s)

=
∞∑

s=t∗(t′)+1

δs−t
∗(t′)−1 (ẽs − w̃s) . (26)

Recall from Lemma 4.3 that the principal’s constraint must hold with equality at t∗ (t′) − 1

(since ẽt∗(t′) > ẽt∗(t′)−1 by the definition of t∗ (t′)). The inequality (26), then implies (given
satisfaction of the principal’s constraint (PCt)) that w̃t∗(t′)−1 > w̃t∗(t′). But then, recalling
Lemma 4.2 (as well as Lemma A.3), we have

ψ
(
ẽt∗(t′)−1

)
v′
(
c̄t∗(t′)−1

) > w̃t∗(t′)−1 > w̃t∗(t′) >
ψ(ẽt∗(t′))

v′
(
c̄t∗(t′)−1

) .
Hence, ẽt∗(t′)−1 > ẽt∗(t′), contradicting the definition of t∗(t′).

Having shown that the effort is weakly decreasing in an optimal relational contract (Lemma
A.5) we now show that, in fact, it is strictly decreasing when the principal’s constraint holds
with equality.

Lemma A.6. If the principal’s constraint (PCt) holds with equality at some date t∗, then
ẽt∗ > ẽt∗+1. Hence, by Lemma 4.3, the principal’s constraint also holds with equality at t∗+1.

Proof. The same arguments we used in Lemma A.5 to establish the inequalities in (25) imply
that ẽt∗+1 − w̃t∗+1 > ẽs − w̃s for all s > t∗ + 1 (the only requirement there was that, relative
to the date under consideration, the future dates s have weakly lower effort; that indeed
ẽs ≤ ẽt∗+1 for all s > t∗ + 1 follows from Lemma A.5). In turn, this means that, if the
principal’s constraint (PCt) holds with equality at t∗, then w̃t∗ > w̃t∗+1. Indeed, because the
principal’s constraint holds with equality at t∗,

w̃t∗ = δ

(
ẽt∗+1 − w̃t∗+1 + δ

∞∑
s=t∗+2

δs−t
∗−2(ẽs − w̃s)

)

> δ

(
(1− δ)

∞∑
s=t∗+2

δs−t
∗−2(ẽs − w̃s) + δ

∞∑
s=t∗+2

δs−t
∗−2(ẽs − w̃s)

)

=
∞∑

s=t∗+2

δs−t
∗−1(ẽs − w̃s)

≥ w̃t∗+1.
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The final inequality follows from the principal’s constraint (PCt) at date t∗+1. Using Lemma
4.2, we have ẽt∗+1 < ẽt∗ . Hence, by Lemma 4.3, the principal’s constraint holds with equality
at t∗ + 1.

Lemma A.6 implies that, given payments satisfy condition (FPun
t ), if the principal’s con-

straint (PCt) holds with equality at some date, then effort is strictly decreasing forever after
(and the principal’s constraints (PCt) hold with equality forever after). Our next goal is
therefore to establish the condition under which the principal attains the first-best payoff,
and, when this condition fails, establish that there is necessarily a date at which the princi-
pal’s constraint is satisfied with equality.

Lemma A.7. An optimal contract achieves the first-best payoff of the principal if and only
if Condition (7) holds. If this condition is not satisfied, then there is a time t∗ ∈ N such that
the principal’s constraint is slack if and only if t < t∗. Hence, effort is constant up to date
t∗ − 1 and strictly decreases from date t∗.21

Proof. Consider payments satisfying (FPun
t ), for all t, and determined given the first-best

effort (this is eFB(b1) in Proposition 3.1). Lemma 4.2 shows that the payments increase over
time and tend to ψ(eFB(b1))

v′(cFB(b1))
. Hence, the upper limit of payments is given by ψ(eFB(b1))

v′(cFB(b1))
while the

lower limit of per-period profits is given by eFB(b1) − ψ(eFB(b1))
v′(cFB(b1))

, which establishes Condition
(7) is both necessary and sufficent for implementation of the first best.

Assume now that Condition (7) fails, and fix an optimal contract that is not first best.
Lemma A.6 established that there are two possibilities. First, we might have a finite date
t∗ ∈ N, with the principal’s constraint (PCt) holding with equality at t∗, and every subsequent
date, but slack at dates t∗− 1 and earlier. In this case, effort is constant from the initial date
up to t∗ − 1 (by Lemma 4.3) and strictly decreases from date t∗. Second, we might have that
the principal’s constraint (PCt) is slack at all dates. Effort is then constant over all periods
(by Lemma 4.3), but not first-best. The result in the lemma is established if we can show
this second case does not occur; so assume for a contradiction that it does. Letting ẽ∞ be
the constant effort level and c̄∞ equilibrium consumption, Proposition 3.1 then implies that
v′ (c̄∞) 6= ψ′ (ẽ∞). By Lemma A.1, we have v′ (c̄∞) > ψ′ (ẽ∞). By Lemma A.3, we have
ẽ∞ > 0.

Assuming that payments to the agent satisfy Condition (FPun
t ) for all t, we have w̃t in-

creasing over time and converging to ψ(ẽ∞)
v′(c̄∞)

from below (from Lemma 4.2). We claim then
that

ψ (ẽ∞)

v′ (c̄∞)
=

δ

1− δ

(
ẽ∞ −

ψ (ẽ∞)

v′ (c̄∞)

)
. (27)

21We leave open the possibility that effort could either be constant up to date t∗, or instead only up to t∗−1

(i.e., that ẽt∗ < ẽt∗−1).
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If instead ψ(ẽ∞)
v′(c̄∞)

> δ
1−δ

(
ẽ∞ − ψ(ẽ∞)

v′(c̄∞)

)
, then, for large enough t we must have

w̃t >

∞∑
s=t+1

δs−t (ẽ∞ − w̃t) ,

so the principal’s constraint is violated at t. If instead ψ(ẽ∞)
v′(c̄∞)

< δ
1−δ

(
ẽ∞ − ψ(ẽ∞)

v′(c̄∞)

)
, we have

w̃t remains bounded below
∑∞

s=t+1 δ
s−t (ẽ∞ − w̃t). Without violating (PCt), effort can then

be increased by a small constant amount across all periods, with payments determined via
condition (FPun

t ). This increases profits (see the proof of Lemma A.3 for a similar argument).
Note then that Condition (27) can be written as

ψ(ẽ∞)

v′(c̄∞)
= δẽ∞.

Because ψ is strictly convex, we have

ψ′ (ẽ∞)

v′ (c̄∞)
> δ.

We will now consider an adjusted contract in which effort increases at date 1 by ε > 0,
raising the disutility of effort at date 1 by ψ(ẽ∞+ ε)−ψ(ẽ∞). Because payments to the agent
increase at all dates under condition (FPun

t ), the new policy will not satisfy the principal’s
constraint (PCt) if this is the only adjustment. We therefore simultaneously reduce effort from
some fixed date 2 onwards by κ (ε) > 0 to be determined (i.e., effort is given by et = ẽ∞−κ (ε)

for t ≥ 2).
We let c̄∞(ε, κ(ε)) denote equilibrium consumption under the new plan (naturally, c̄∞ (0, 0)

is consumption under the original plan). The new consumption satisfies

v (c̄∞ (ε, κ (ε)))

1− δ
− v (c̄∞ (0, 0))

1− δ
=ψ (ẽ∞ + ε)− ψ (ẽ∞)

− δ

1− δ
(ψ (ẽ∞)− ψ (ẽ∞ − κ (ε)))

or

c̄∞(ε, κ(ε)) = v−1

(
(1− δ)(ψ(ẽ∞ + ε)− ψ(ẽ∞))

−δ(ψ(ẽ∞)− ψ(ẽ∞ − κ(ε))) + v(c̄∞(0, 0))

)
To determine the value for κ(ε), define the following function

f(ε, k) ≡ ψ (ẽ∞ − k)

v′(c̄∞(ε, k))
− δ (ẽ∞ − k) . (28)

We then define κ(ε) by f(ε, κ(ε)) = 0 for positive ε in a neighborhood of 0. We will use the
implicit function theorem to show that such a local solution κ(ε) exists.
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To apply the implicit function theorem, note that f (ε, k) is continuously differentiable in
a neighborhood of (ε, k) = (0, 0). The derivative of f(ε, k) with respect to k, evaluated at
(ε, k) = (0, 0), is

f2 (0, 0) =δ − ψ′ (ẽ∞)

v′ (c̄∞ (0, 0))
+ v′′ (c̄∞ (0, 0))

(
δψ′ (ẽ∞)

v′ (c̄∞ (0, 0))3

)
ψ (ẽ∞) .

This is strictly negative, using that ψ′(ẽ∞)
v′(c̄∞(0,0))

> δ. The derivative f(ε, k) instead with respect
to ε, evaluated at (ε, k) = (0, 0), is

f1 (0, 0) = −v′′ (c̄∞ (0, 0))

(
(1− δ)ψ′ (ẽ∞)

v′ (c̄∞ (0, 0))3

)
ψ (ẽ∞) .

The implicit function theorem then gives us that κ is locally well-defined by f(ε, κ(ε)) = 0 on
some interval around 0, unique, and continuously differentiable, with derivative approaching

κ′ (0) = −f1 (0, 0)

f2 (0, 0)

=
v′′ (c̄∞ (0, 0))

(
(1−δ)ψ′(ẽ∞)

v′(c̄∞(0,0))3

)
ψ (ẽ∞)

δ − ψ′(ẽ∞)
v′(c̄∞(0,0))

+ v′′ (c̄∞ (0, 0))
(

δψ′(ẽ∞)

v′(c̄∞(0,0))3

)
ψ (ẽ∞)

<
1− δ
δ

(29)

as ε→ 0 (the strict inequality follows because ψ′(ẽ∞)
v′(c̄∞(0,0))

> δ).
For small enough ε, the new effort policy and payments defined by condition (FPun

t ) satisfy
the principal’s constraints (PCt). This can be seen, for instance, by observing that, when ε is
small, the constraint (PCt) remains slack at date t = 1. For all other dates, the satisfaction
of the constraint (PCt) follows from f (ε, κ (ε)) = 0, and by Lemma 4.2.

It remains to show that, for small enough positive ε, the principal’s profits strictly increase.
The NPV of effort increases by

ε− δ

1− δ
κ (ε) =

(
1− δ

1− δ
κ′ (0)

)
ε+ o (ε) .

From the inequality (29) we have 1 − δ
1−δκ

′ (0) > 0, and so the increase in effort is strictly
positive for ε small enough. Using that payments continue to satisfy Condition (FPun

t ), a
marginal increase in the NPV of effort is compensated by an increase in the NPV of payments
to the agent by ψ′(ẽ∞)

v′(c̄∞(0,0))
. Therefore, the principal’s payoff under the new policy increases by(
1− ψ′ (ẽ∞)

v′ (c̄∞ (0, 0))

)(
1− δ

1− δ
κ′ (0)

)
ε+ o (ε)

which is strictly positive for small enough ε, recalling that v′(c̄∞(0, 0)) > ψ′(ẽ∞).
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We have established that, for any optimal contract that does not attain the first-best
payoff of the principal, there is a date t̄ ≥ 1 such that effort is constant up to this date, and
subsequently strictly decreasing to a value ẽ∞, as stated in the proposition. Let us now show
that ẽ∞ > 0, which requires only ruling out ẽ∞ = 0.

Lemma A.8. Suppose the principal cannot attain the first-best payoff. In any optimal con-
tract, the limiting value of effort ẽ∞ ≡ limt→∞ ẽt is strictly positive.

Proof. Consider any optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1 that does not achieve the principal’s
first-best payoff, and suppose for a contradiction that ẽ∞ ≡ limt→∞ ẽt is equal to zero.

Because ψ′ (0) = 0, there exists a value ê ∈ (0, ẽ1) satisfying ψ(ê)
v′(c̄∞)

≤ δê. Note that
limt→∞ (ẽt − w̃t) = 0. Hence, there is T satisfying that (i) δT−1

1−δ ψ (ê) < ψ (ẽ1) − ψ (ê), (ii)
ẽt < ê for all t ≥ T , and (iii) ẽt − w̃t < ê− ψ(ê)

v′(c̄∞)
for all t ≥ T .

Now, let m ≡
∑∞

t=T δ
t−1 (ψ (ê)− ψ (ẽt)) > 0, and define a new contract (ẽ′t, c̃

′
t, w̃

′
t, b̃
′
t)t≥1 by

specifying ẽ′1 to satisfy
ψ (ẽ′1) = ψ (ẽ1)−m,

ẽ′t = ẽt for all t ∈ {2, ..., T − 1}, as well as ẽ′t = ê for all t ≥ T . Then let this effort specification
determine the other variables, assuming the condition (FPun

t ) is satisfied.
Note we have

∞∑
t=1

δt−1ψ (ẽ′t) =
∞∑
t=1

δt−1ψ (ẽt)

and hence the value of c̄∞ and the NPV of the payments are the same in the new contract.
In addition, ψ (ẽ′1) = ψ (ẽ1) − m > ψ (ẽ1) − δT−1

1−δ ψ (ê) > ψ (ê) . Hence, ẽ′1 > ê. Using the
strict convexity of ψ, the principal’s payoff is strictly higher in the new contract. To obtain
a contradiction, we therefore need only show that the new contract is self-enforceable, which
requires showing that it satisfies the principal’s constraints (PCt).

Consider now the per-period profits ẽ′t − w̃′t at each date t under the new contract. Note
that w̃′t < w̃t for all t < T by concavity of v. This shows that per-period profits satisfy
ẽ′t − w̃′t > ẽt − w̃t for t ∈ {2, ..., T − 1}. In addition, per-period profits at each date t ≥ T are
greater than ê− ψ(ê)

v′(c̄∞)
> et−wt, since w̃′t <

ψ(ê)
v′(c̄∞)

for t ≥ T (this follows by Lemma 4.2). This
immediately implies the satisfaction of the principal’s constraint (PCt) at all dates t < T . For
t ≥ T , we have

w̃′t <
ψ (ê)

v′ (c̄∞)
≤ δ

1− δ

(
ê− ψ (ê)

v′ (c̄∞)

)
<

∞∑
s=t+1

δs−t (ẽ′s − w̃′s) .

Hence, the principal’s constraint is satisfied at these dates as well.
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We now establish that, for some configuations of the problem, t̄ > 1. In this case effort is
constant in the initial periods, before strictly decreasing.

Lemma A.9. For any v and ψ admitted in the model set-up, there exists a discount factor
δ and initial balance b1 such that (i) the principal’s payoff in an optimal contract is less than
the first-best payoff, and (ii) for any optimal contract, the principal’s constraint (PCt) is slack
for at least t = 1, 2.

Proof. Fix v and ψ satisfying the properties in the model set-up, and fix a scalar γ > 0.
Define the function b1(δ) = γ

1−δ . As explained in Section 4.1, there is then a threshold value
δ∗ ∈ (0, 1) such that δ ≥ δ∗ and b1 = b1(δ) implies the principal can attain the first-best payoff
in a self-enforceable contract, while δ < δ∗ and b1 = b1(δ) implies this is not the case. We
aim to show that the principal’s constraint (PCt) is slack over some initial periods when δ is
below, but close enough to, δ∗, and when b1 = b1(δ). We do so in three steps. In these steps,
we let δ parameterize the environment, leaving b1 = b1(δ) implicit.

Step 1. First, by considering constant effort policies, it is easily seen that the principal’s
payoff in an optimal contract approaches that for parameter δ∗ as δ → δ∗ from below.

Step 2. Next, let e∗ be the first-best effort for parameter δ∗. We show that, for any ε > 0

and period T , there exists δ̂ (T, ε) such that, for δ ∈ (δ̂(T, ε), δ∗), maxt≤T
∣∣ẽt − e∗| < ε, where

(ẽt)t≥1 is any optimal effort policy for parameter δ.
By Lemma A.1, any optimal effort policy is contained in [0, z (v′ (γ))]∞. The principal’s

payoff under a self-enforceable relational contract with arbitrary effort policy (ẽt)
∞
t=1 (and

satisfying Condition (FPun
t )) is

∞∑
t=1

δt−1ẽt −
v−1 ((1− δ)

∑∞
t=1 δ

t−1ψ (ẽt) + v (γ))

1− δ
+ b1 (δ)

which varies continuously in δ, with the continuity uniform over δ ≤ δ∗ and effort policies
contained in [0, z (v′ (γ))]∞.

Fix δ = δ∗, and fix any ε > 0 and T ∈ N. There is then ν > 0 such that the following
is true. For any effort policy (ẽt)t≥1 contained in [0, z (v′ (γ))]∞ and satisfying maxt≤T

∣∣ẽt −
eFB(b1)| ≥ ε, and for payments satisfying Condition (FPun

t ), the principal’s payoff is less than
that sustained by the first-best contract by at least ν. This follows from uniqueness of the
first-best policy and continuity of the principal’s objective in the effort policy (ẽt)t≥1. However,
the aforementioned continuity of the principal’s payoff in δ, together with Step 1, implies that,
when δ is close enough to (but below) δ∗, any effort policy satisfying maxt≤T

∣∣ẽt−eFB(b1)| ≥ ε

cannot be optimal.
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Step 3. Notice that, for δ = δ∗, under the first-best policy, the principal’s constraint (PCt)
is slack at both dates t = 1 and t = 2. It then follows that, provided ε is taken small
enough, and T large enough, these constraints must also be slack under an optimal policy
when δ ∈ (δ̂ (T, ε) , δ∗).

(End of the proof of Proposition 4.3.)

Proof of Proposition 4.4

Proof. Fix an optimal relational contract (ẽt, w̃t, c̃t, b̃t)t≥1. We want to show that Condition
(FPun

t ) holds at all dates t > t̄ (with t̄ identified in the proposition). Suppose for a contradic-
tion this is not the case, and so the condition fails at some t′ > t̄. Since the contract is optimal,
the condition in Equation (5) holds (by the arguments in the main text). We therefore have

v
(

(1− δ)
(
b1 +

∑t′−1
s=1 δ

s−1w̃s

))
1− δ

−
t′−1∑
s=1

δs−1ψ(ẽs)

<
v ((1− δ) (b1 +

∑∞
s=1 δ

s−1w̃s))

1− δ
−
∞∑
t=1

δt−1ψ(ẽt)

=
v ((1− δ) b1)

1− δ
.

Now consider the relational contract with the same effort and consumption but where pay-
ments ensure the satisfaction of Condition (FPun

t ) at all dates. Denote the payments by w̃′t
for all t. We have

v
(

(1− δ)
(
b1 +

∑t′−1
s=1 δ

s−1w̃′s

))
1− δ

−
t′−1∑
s=1

δs−1ψ(ẽs)

=
v ((1− δ) (b1 +

∑∞
s=1 δ

s−1w̃′s))

1− δ
−
∞∑
t=1

δt−1ψ(ẽt).

=
v ((1− δ) b1)

1− δ
.

Therefore,
∞∑
s=t′

δs−t
′
w̃′s <

∞∑
s=t′

δs−t
′
w̃s

and hence the principal’s constraint (PCt) is slack at t′. Because t′ > t̄, we have ẽt′ < ẽt′−1.
This contradicts Lemma 4.3.

The final part of the proposition concerns the observation that payments are strictly de-
creasing from t̄+ 1 onwards. Considering the principal’s constraint (PCt) holds with equality
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at these dates, it is enough to observe that profits ẽt − w̃t are strictly decreasing in t after
date t̄ + 1. This follows by the same arguments that establish the inequalities in Equation
(25). That the agent’s balances are strictly increasing from date t̄ + 1 is established in the
main text.

A.3 Proofs of the results in Section 5

Proof of Proposition 5.1

Proof. Necessity. Consider supposed equilibrium strategies (αt)t≥1 and (σt)t≥1 inducing
outcomes that coincide with a feasible relational contract. Suppose Condition (ACob

t ) fails at
some date, and let t be the earliest such date. Then the agent obtains a strictly higher payoff
by abiding by the contract to date t− 1 and then consuming b̃t (1− δ) from date t onwards,
as opposed to following the putative equilibrium strategy. That is, the agent has a profitable
deviation. If instead (PCt) fails at some date, then there is a first date t at which it is violated.
The principal has a profitable deviation by ceasing all payments from then on.

Sufficiency. Let (ẽt, c̃t, w̃t, b̃t)t≥1 be a feasible contract satisfying conditions (ACob
t ) and

(PCt). Specify strategies (αt)t≥1 and (σt)t≥1 for the agent and principal as follows. Pro-
vided that (es, cs, ws) = (ẽs, c̃s, w̃s) for all s < t, the agent consumes c̃t and chooses effort
ẽt. Otherwise, the agent consumes max {0, (1− δ) b (ht)}, with b (ht) the balance determined
recursively from b1, given the history ht = (es, cs, ws)

t−1
s=1 and chooses effort zero (if b (ht) < 0,

the agent violates his intertemporal budget constraint and earns payoff −∞; but this is the
highest payoff that can be obtained). Provided that (es, cs, ws) = (ẽs, c̃s, w̃s) for all s < t, and
(et, ct) = (ẽt, c̃t), the principal pays w̃t. Otherwise, she pays zero.

Now, we can check that the players do not want to deviate at any history. Consider a
date-t history at which (es, cs, ws) = (ẽs, c̃s, w̃s) for all s < t. Given the principal’s strategy,
the agent obtains continuation payoff

∑∞
s=t δ

s−t(v(c̃s) − ψ(ẽs)) by remaining faithful to the
specified strategy. If the agent deviates, then he is paid zero from t onwards. The agent’s
optimal per-period consumption if he deviates is max{0, (1 − δ)b̃t}. Therefore, the highest
payoff the agent can obtain under a deviation is v(max{0,(1−δ)b̃t})

1−δ ∈ [−∞,+∞). The inequality
(ACob

t ) states that this is less than
∑∞

s=t δ
s−t (v (c̃s)− ψ(ẽs)). At any other history (i.e., if

(es, cs, ws) 6= (ẽs, c̃s, w̃s) for some s < t) the agent will never be paid again and so consuming
max{0, (1− δ)b (ht)} and putting no effort is optimal.

On the principal’s side, for a date-t history at which (es, cs, ws) = (ẽs, c̃s, w̃s) for all s < t,
and given (et, ct) = (ẽt, c̃t), the principal’s continuation payoff from following the specified
strategy is

∑∞
s=t+1 δ

s−t(ẽs − w̃s) which is larger than the date-t payment w̃t by Condition
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(PCt). Hence, the principal prefers to follow the specified strategy. Following any deviation,
given the agent’s strategy, the principal clearly finds paying zero optimal.

Proof of Lemma 5.1

Proof. Fix an optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1 and suppose that Condition (8) is not satisfied
for some t. Since the contract is self-enforceable, we have, for all t, the inequality in Equation
(ACob

t ) holds. First note that, because the contract is optimal, the inequality in Equation
(ACob

t ) cannot hold as a strict inequality at date t = 1. Otherwise, both c̃1 and w̃1 can be
reduced by the same small amount ε > 0, leaving b̃2 unchanged. The rest of the relational
contract can also be kept the same. This adjustment leaves unchanged the constraints of the
principal (PCt) in all periods t > 1, and slackens the principal’s constraint at t = 1. It also
leaves the constraints of the agent (ACob

t ) unaffected in all periods t > 1, and if ε > 0 is small
enough, the agent’s date-1 constraint is still satisfied. The principal’s payoff strictly increases,
showing that the original contract was not optimal.

Now suppose that the inequality in Equation (ACob
t ) is strict at any t > 1. Then we can

consider a new contract with payment reduced at date t by ε > 0, and with payment increased
at date t − 1 by δε (we show below that the new payment at time t is non-negative). We
can also hold the consumption and effort profile the same. The change increases b̃t by ε and,
for appropriately chosen ε, the constraint (ACob

t ) holds with equality. All the other agent
constraints (ACob

t ) are unaffected. The principal’s constraint (PCt) is slackened at date t,
and the principal’s constraints for all other dates are unaffected. The principal’s payoff in the
contract remains unchanged. Therefore, the adjusted contract remains optimal.

Now note that the above adjustments can be applied sequentially at the dates for which
(ACob

t ) holds as a strict inequality starting with the earliest one (which is at least t = 2 by
the argument in the first paragraph), yielding a contract for which (ACob

t ) holds at all dates.
Finally, note that when Condition (FPob

t ) is satisfied for all t, all payments to the agent are
non-negative given that the disutility of effort is non-negative. This ensures that the above
adjustments also yield a contract that is feasible. Also, balances b̃t remain strictly positive at
all t, as the agent’s constraint (ACob

t ) for date 1 guarantees the agent earns a strictly positive
payoff.

Proof of Proposition 5.2

Proof. Suppose that condition (9) is satisfied and recall that, by Lemma 5.1, we can restrict
the focus to contracts satisfying Equation (FPob

t ). As in the main text, consider the contract
where the agent puts effort eFB (b1) per period, is paid wFB (b1) in each period, and where
the agent consumes cFB (b1) in each period.
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The agent’s balance remains constant at b1, and by the agent’s indifference condition
in Proposition 3.1, the agent’s constraint (ACob

t ) is satisfied. Condition (9) is simply the
principal’s constraint (PCt). Hence, the first-best contract is self-enforceable.

The converse result is proved analogously: if the principal attains the first-best payoff in
an optimal relational contract (ẽt, c̃t, w̃t, b̃t)t≥1, such contract should satisfy ẽt = eFB (b1) and
c̃t = cFB (b1) for all t (by the uniqueness of the first-best effort and consumption established
in Proposition 3.1). By the arguments in the main text, the agent is paid wFB (b1) in each
period in a contract satisfying Equation (8) for all dates t. The principal’s constraint is then
satisfied only if the inequality in Equation (9) holds.

Proof of Proposition 5.3

Proof. It will be useful to write the recursive problem in the main text by substituting out
agent effort. To this end, define a function ê by

ê(ct, bt, bt+1) ≡ ψ−1
(
v(ct) + δ

1−δv ((1− δ) bt+1)− 1
1−δv((1− δ)bt)

)
(30)

for ct, bt, bt+1 > 0 and v(ct)+ δ
1−δv ((1− δ) bt+1)− 1

1−δv((1−δ)bt) ≥ 0. We will focus throughout
on relational contracts that satisfy the “fastest payments” condition (FPob

t ). Hence, given
contractual variables c̃t, b̃t and b̃t+1, the date-t effort must be given by ẽt = ê(c̃t, b̃t, b̃t+1).

We can then write the principal’s optimal payoff given balance b̃t > 0 (which we establish
below can be attained by a self-enforceable contract) as follows:

V (b̃t) = max
ct,bt+1>0

(
ê(ct, b̃t, bt+1)− (δbt+1 − b̃t + ct) + δV (bt+1)

)
(31)

subject to the principal’s constraint

δbt+1 − b̃t + ct ≤ δV (bt+1) (32)

and to the requirement that the implied effort is non-negative, i.e.

v(ct) + δ
1−δv ((1− δ) bt+1)− 1

1−δv((1− δ)b̃t) ≥ 0. (33)

The proof of Proposition 5.3 will now consist of eight lemmas.

1. Lemma A.10 shows that the principal’s payoff is strictly positive for all b1 > 0.

2. Lemma A.11 shows that all contractual variables remain strictly positive. Also, analo-
gously to Lemma A.1, it bounds the marginal disutility of effort by the marginal utility
of consumption in any optimal contract.

3. Lemma A.12 proves the validity of the Euler equation for any optimal contract and
shows that consumption in an optimal contract is weakly decreasing in time.
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4. Lemma A.13 shows that any optimal contract either gives the principal his first-best
payoff and the balance is constant over time, or the balance is strictly decreasing towards
some b̃∞ > 0.

5. Lemma A.14 shows that if an optimal contract does not achieve the first best, then the
continuation payoff of the principal strictly increases over time.

6. Lemma A.15 shows that if an optimal contract does not achieve the first best, then the
principal’s constraint (PCt) holds with equality in every period.

7. Lemma A.16 shows that if an optimal contract does not achieve the first best, effort and
payments strictly increase over time, while consumption strictly decreases.

8. Lemma A.17 shows that an optimal contract exists.

Lemma A.10. Fix an optimal relational contract (ẽt, c̃t, w̃t, b̃t)t≥1. For all t and b̃t > 0,
V (b̃t) ∈ (0, V FB(b̃t)].

Proof. The principal can never do better than offering the first-best contract: i.e., V (b̃) ≤
V FB(b̃) for all b̃ > 0. Let us therefore show that V (b̃) > 0 irrespective of the value b̃ > 0.
For this, let us state the conditions for a stationary contract (i.e., (ẽτ , c̃τ , w̃τ , b̃τ )τ≥t with
(ẽτ , c̃τ , w̃τ , b̃τ ) = (ẽ, c̃, w̃, b̃) for all τ ≥ t) to be self-enforceable. The principal’s constraint
(PCt) at any date may be written

δẽ ≥ w̃ = c̃− (1− δ)b̃.

The agent’s constraint (ACob
t ) is

v(c̃)− ψ(ẽ) ≥ v((1− δ)b̃).

Taking the latter to hold with equality, we have ẽ = ě(c̃, b̃), where

ě(c, b) ≡ ψ−1(v(c)− v((1− δ)b)).

From ě((1−δ)b̃, b̃) = 0 and limc↓(1−δ)b̃ ě1(c, b̃) = +∞,22 it follows that the principal’s constraint
above is satisfied when c̃ is above but close enough to (1− δ)b̃. Hence, if c̃ is above but close
enough to (1− δ)b̃, and if ẽ = ě(c̃, b̃), we have δẽ > w̃ > 0, which confirms that the principal’s
payoff ẽ−w̃

1−δ is strictly positive. That is, V (b̃) > 0.

22Here, ě1 denotes the derivative with respect to the first argument of ě.
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Lemma A.11. In any optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1 that satisfies the conditions (FPob
t ),

we have ẽt, c̃t, w̃t, b̃t > 0 for all t. Furthermore, ψ′(ẽt) ≤ v′(c̃t) for all t, and ψ′(ẽt) < v′(c̃t)

only if w̃t = δV (b̃t+1).

Proof. Proof that ẽt, c̃t, w̃t, b̃t > 0 for all t. We first prove that w̃t > 0 for all t. To show this,
assume for the sake of contradiction, that w̃t = 0 for some t. Then we have δb̃t+1− b̃t + c̃t = 0.
This implies that c̃t = (1 − δ)b̃t and b̃t+1 = b̃t (this is the only possibility for Condition (33)
to be satisfied), and so ẽt = ê((1− δ)b̃t, b̃t, b̃t) = 0. Hence, V (b̃t) = δV (b̃t); that is, V (b̃t) = 0.
But this contradicts Lemma A.10.

To prove that ẽt > 0 for all t, suppose to the contrary that ẽt = 0 for some t. If w̃t <
δV (b̃t+1), we can raise effort to ět = ε at date t for ε > 0; raise date-t consumption to

čt = v−1
(
ψ(ε)− δ

1−δv((1− δ)b̃t+1) + 1
1−δv((1− δ)b̃t)

)
;

and raise the date-t payment to w̌t = w̃t + čt − c̃t. Thus, the agent’s balance at t+ 1 remains
unchanged, and the only adjustments to the contract are at date t. For ε sufficiently small,
we have w̌t < δV (b̃t+1), so the principal’s constraints (PCt) are satisfied. By construction,
the agent’s constraints (ACob

t ) are satisfied. The principal’s payoff strictly increases, so the
original contract with effort ẽt = 0 was not optimal, a contradiction. The remaining case is
where w̃t = δV (b̃t+1). In this case, we have V (b̃t) = 0, but this contradicts Lemma A.10.

That c̃t, b̃t > 0 for all t follows immediately from our assumption that the Conditions
(FPob

t ) hold at all dates t, and because b1 > 0.

Proof that ψ′(ẽt) ≤ v′(c̃t) for all t, and ψ′(ẽt) < v′(c̃t) only if w̃t = δV (b̃t+1). Define

c(b̃t, b̃t+1) ≡ v−1
(

1
1−δv((1− δ)b̃t)− δ

1−δv ((1− δ) b̃t+1)
)
,

interpreted as the lowest consumption level that permits the constraint (33) to be satisfied,
for fixed values of b̃t and b̃t+1. Consider the problem of maximizing

ê(ct, b̃t, b̃t+1)− (δb̃t+1 − b̃t + ct) + δV (b̃t+1) (34)

with respect to ct on [c(b̃t, b̃t+1),+∞). Given that ê(·, b̃t, b̃t+1) is a continuous and strictly
concave function, and that limc→+∞ ê1(c, b̃t, b̃t+1) = 0,23 there is a unique solution of the
maximization problem, denoted c∗(b̃t, b̃t+1). Furthermore, since ψ′(0) = 0, we have that
c∗(b̃t, b̃t+1) > c(b̃t, b̃t+1), and the first-order condition establishes

ψ′(ê(c∗(b̃t, b̃t+1), b̃t, b̃t+1)) = v′(c∗(b̃t, b̃t+1)).

23Here, ê1 denotes the derivative of ê with respect to the first argument.
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If we have δb̃t+1 − b̃t + c∗(b̃t, b̃t+1) ≤ δV (b̃t+1) then it is clear that optimality requires
c̃t = c∗(b̃t, b̃t+1), and so ẽt = ê(c∗(b̃t, b̃t+1), b̃t, b̃t+1). In this case, we have w̃t = δb̃t+1− b̃t + c̃t ≤
δV (b̃t+1) and ψ′(ẽt) = v′(c̃t).

If instead δb̃t+1 − b̃t + c∗(b̃t, b̃t+1) > δV (b̃t+1), given the concavity of (34) in ct, we must
have

c̃t = δV (b̃t+1)− δb̃t+1 + b̃t < c∗(b̃t, b̃t+1).

Note that in this case, w̃t = δb̃t+1 − b̃t + c̃t = δV
(
b̃t+1

)
. Moreover,

ẽt = ê(c̃t, b̃t, b̃t+1) < ê(c∗(b̃t, b̃t+1), b̃t, b̃t+1),

and so we have ψ′ (ẽt) < v′(c∗(b̃t, b̃t+1)) < v′ (c̃t).

The following result establishes the Euler equation given in the main text as well as the
monotonicity of the consumption plan.

Lemma A.12. Any optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1 satisfies the Euler equation

1− v′((1− δ) b̃t+1)

v′ (c̃t)
=
v′ (c̃t+1)

ψ′ (ẽt+1)

(
1− v′((1− δ) b̃t+1)

v′ (c̃t+1)

)
(35)

in all periods. Furthermore, c̃t ≥ c̃t+1 > (1− δ)b̃t+1 for all t.

Proof. We divide the proof in 3 steps:

Step 1: Fix an optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1. Consider a contract (ět, čt, w̌t, b̌t)t≥1, coin-
ciding with the original contract in all periods except for periods t and t+ 1 (so, also, b̌t = b̃t).
We specify that the new contract keeps the agent indifferent between being obedient and
optimally deviating in all periods. This requires

v(čt)− ψ(ět) + δ
1−δv

(
1−δ
δ

(b̃t + w̌t − čt)
)

= 1
1−δv((1− δ)b̃t), (36)

v
(

1
δ
(b̃t+w̌t−čt)+w̌t+1−δb̃t+2

)
−ψ(ět+1) + δ

1−δv((1−δ)b̃t+2) = 1
1−δv

(
1−δ
δ

(b̃t+w̌t−čt)
)
, (37)

which uses that consumption in period t+ 1 under the new contract is čt+1 = 1
δ
(b̃t + w̌t− čt) +

w̌t+1 − δb̃t+2 (guaranteeing the agent has savings b̃t+2 at date t+ 2).
Fix ět = ẽt and w̌t+1 = w̃t+1. Equations (36) and (37) implicitly define ět+1 and w̌t as

functions of čt. Let these functions be denoted êt+1(·) and ŵt(·), respectively. We can use the
implicit function theorem to compute the derivatives at čt = c̃t:

ê′t+1(c̃t) =
v′(c̃t)

(
v′((1− δ)b̃t+1)− v′(c̃t+1)

)
δψ′ (êt+1(c̃t)) v′((1− δ)b̃t+1)

and ŵ′t(c̃t) = 1− v′(c̃t)

v′((1− δ)b̃t+1)
.
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Note that the original contract is obtained by setting čt = c̃t. If čt is changed from c̃t to
c̃t+ε, for some (positive or negative) ε small, the total effect on the continuation payoff of the
principal at time t is (−ŵ′t(c̃t)+δê′t+1(c̃t))ε+o(ε) (where o(ε) represents terms that vanish faster
than ε as ε→ 0). Hence, a necessary condition for optimality is that −ŵ′t(c̃t) + δê′t+1(c̃t) = 0,
which is equivalent the Euler equation (35).

The Euler equation implies that if v′(c̃t+1) = ψ′(ẽt+1) we have c̃t = c̃t+1. From Lemma
A.11 we have that, if instead v′(c̃t+1) 6= ψ′(ẽt+1), then v′(c̃t+1) > ψ′(ẽt+1). In this second case,
there are three possibilities:

1. If both sides of the Euler equation are strictly positive, then c̃t < c̃t+1 < (1− δ)b̃t+1.

2. If both sides of the Euler equation are zero, then c̃t = c̃t+1 = (1− δ)b̃t+1.

3. If both sides of the Euler equation are strictly negative, then c̃t > c̃t+1 > (1− δ)b̃t+1.

Step 2: We now prove that if c̃t ≤ (1− δ)b̃t then c̃s ≤ c̃s+1 < (1− δ)b̃s+1 for all s ≥ t. Assume
first that there is a period t such that c̃t ≤ (1−δ)b̃t. Hence, since ẽt = ê(c̃t, b̃t, b̃t+1) > 0 (recall
Lemma A.11) we have b̃t+1 > b̃t. This shows that each side of the Euler equation is strictly
positive, i.e.

1− v′((1− δ) b̃t+1)

v′ (c̃t)
=
v′ (c̃t+1)

ψ′ (ẽt+1)

(
1− v′((1− δ) b̃t+1)

v′ (c̃t+1)

)
> 0.

Since v′ (c̃t+1) /ψ′ (ẽt+1) ≥ 1 (from Lemma A.11), (1 − δ)b̃t+1 > c̃t+1 ≥ c̃t. The result then
follows by induction.

Step 3: We prove that c̃t > (1 − δ)b̃t for all t > 1; it then follows immediately from Step
1 that consumption is (weakly) decreasing in t. Assume then, for the sake of contradiction,
that there is a t′ > 1 such that c̃t′ ≤ (1 − δ)b̃t′ . We will construct a self-enforceable contract
that is strictly more profitable than the original, contradicting the optimality of the original.

We first make some preliminary observations. From Step 2, we have that c̃s ≤ c̃s+1 <

(1− δ)b̃s+1 for all s ≥ t′. Also, since effort is strictly positive at all times (from Lemma A.11),
we have

∞∑
s=t′

δs−t
′
v(c̃s) >

1
1−δv((1− δ)b̃t′).

Hence, there must be a period s ≥ t′ where c̃s+1 > c̃t′ . Let t′′ be the earliest such period, and
note that it satisfies c̃t′′+1 > c̃t′′ . Additionally, we can observe that, for all t,

b̃t +
∞∑
τ=t

δτ−tw̃τ =
∞∑
τ=t

δτ−tc̃τ . (38)
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If this is not the case (the right-hand side is strictly smaller), then, applying Equation (1)
repeatedly, we have b̃t →∞ and so the agent’s constraint (ACob

t ) must be violated for large t
(given that (c̃t)

∞
t=1 is bounded, as the contract is feasible).

Now let us construct the more profitable contract for the principal, given our assumption
that c̃t′ ≤ (1 − δ)b̃t′ . We first construct a self-enforceable contract

(
ẽnewt , c̃newt , w̃newt , b̃newt

)
t≥1

in which the agent obtains a strictly higher payoff than in the original, while the principal
obtains the same payoff. We then show how that contract can be further adjusted to obtain
one which is strictly better for the principal. In the new contract that is better for the agent,
we maintain w̃newt = w̃t and ẽnewt = ẽt for all t, but specify a different agreed consumption
sequence c̃newt (and hence different balances b̃newt ).

The change in agent consumption is to specify constant consumption c̄ in each period from
t′′ onwards, where

c̄ = (1− δ)
∞∑
τ=t′′

δτ−t
′′
c̃τ . (39)

That is, c̃newt = c̄ for all t ≥ t′′, while c̃newt = c̃t for t < t′′. Notice that, c̄ < (1− δ)
∑∞

τ=t δ
τ−tc̃τ

for all t > t′′.
Balances are determined recursively by Equation (1). That is, they are given by b̃newt = b̃t

for t ≤ t′′, and by

b̃newt = δt
′′−tb̃t′′ +

t−1∑
τ=t′′

δτ−t (w̃τ − c̄)

for all t > t′′. Observe that

b̃newt +
∞∑
τ=t

δτ−tw̃τ = δt
′′−tb̃t′′ +

∞∑
τ=t′′

δτ−tw̃τ −
t−1∑
τ=t′′

δτ−tc̄

=
∞∑
τ=t′′

δτ−tc̃τ −
t−1∑
τ=t′′

δτ−tc̄

=
c̄

1− δ
,

where the second equality uses Equation (38) and the third equality uses Equation (39).
Therefore, for all t > t′′,

b̃newt +
∞∑
τ=t

δτ−tw̃τ =
c̄

1− δ
<
∞∑
τ=t

δτ−tc̃τ = b̃t +
∞∑
τ=t

δτ−tw̃τ ,

where the second equality follows from Equation (38). This implies that b̃newt < b̃t for all
t > t′′.

Now, we want to show that the contract
(
ẽnewt , c̃newt , w̃newt , b̃newt

)
t≥1

is self-enforceable.
Because effort and payments are unchanged relative to the original contract, the principal’s
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constraints (PCt) remain intact. Consider then the agent’s constraint (ACob
t ) for each period

t ≥ 1. For all t ≤ t′′, the agent anticipates a strictly higher continuation payoff under the new
contract, i.e.

∞∑
τ=t

δτ−t (v (c̃newτ )− ψ (ẽnewτ )) >
∞∑
τ=t

δs−t (v (c̃τ )− ψ (ẽτ )) .

The strict inequality is immediate from the strict concavity of v, and because consumption
from date t′′ onwards is constant in the new contract, but the NPV of this consumption is
the same as in the original. Since, in addition, v(b̃newt (1− δ)) = v(b̃t (1− δ)), the agent’s
constraints (ACob

t ) are satisfied at dates t ≤ t′′ as strict inequalities.
To understand how the agent’s constraints change at each t > t′′, define

c̄(t) ≡ (1− δ)
∞∑
τ=t

δτ−tc̃τ .

Consider the original contract, and suppose that the agent’s consumption is changed from
date t onwards, being set equal to c̄(t) in all such periods. The agent’s payoff increases from
the smoothing of consumption, and so

∞∑
τ=t

δτ−t(v(c̄(t))− ψ(ẽτ )) ≥
∞∑
τ=t

δτ−t (v (c̃τ )− ψ (ẽτ )) ≥
v(b̃t (1− δ))

1− δ
, (40)

where the second inequality follows because the agent’s constraints (ACob
t ) are satisfied in the

original contract.
Because ψ is non-negative, the inequalities in Equation (40) imply c̄(t) ≥ b̃t (1− δ). There-

fore, since v is concave, we have

v(c̄(t))− v(c̄(t) − (1− δ)(b̃t − b̃newt )) ≤ v(b̃t(1− δ))− v(b̃t(1− δ)− (1− δ)(b̃t − b̃newt )). (41)

Note that c̄ = c̄(t)− (1− δ) (b̃t− b̃newt ). Combining Equations (40) and (41), we therefore have
that, for all t > t′′,

∞∑
τ=t

δτ−t (v (c̄)− ψ (ẽτ )) ≥
v
(
b̃newt (1− δ)

)
1− δ

.

This shows that, for the contract
(
ẽnewt , c̃newt ,w̃newt , b̃newt

)
t≥1

, the agent’s constraints (ACob
t ) are

satisfied also at dates t > t′′.
We have thus shown that

(
ẽnewt , c̃newt , w̃newt , b̃newt

)
t≥1

is a self-enforceable contract (in par-
ticular, it satisfies all the constraints (ACob

t ) and (PCt). Moreover, we saw that the constraints
(ACob

t ) are satisfied strictly at all t ≤ t′′. We can therefore further adjust the contract by
raising effort at date t′′ by a small amount ε > 0 such that, without any other changes to the
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contract, all the agent’s constraints (ACob
t ) remain intact. The adjusted contract then satisfies

all the constraints (ACob
t ) and (PCt), and the principal obtains a strictly higher payoff than

in the original contract, contradicting the optimality of the original.

Lemma A.13. In any optimal contract, (b̃t)t≥1 is a weakly decreasing sequence. It is constant
if it attains the first-best payoff, and strictly decreasing towards some b̃∞ > 0 otherwise. Also,
V (b̃∞) = V FB(b̃∞).

Proof. Step 0. If the first-best payoff is achievable at b1, then equilibrium consumption
and effort is uniquely determined by the conditions in Proposition 3.1. Because we restrict
attention to payments timed to satisfy Equation (8), the balance is constant as claimed in
the statement of this lemma (and explained in the main text). Suppose from now on that
V (b1) < V FB(b1).

Step 1. Proof that (b̃t)t≥1 is weakly decreasing. Consider an optimal contract
(
ẽt, c̃t,

w̃t, b̃t
)
t≥1

. To show that the balance b̃t is weakly decreasing, we suppose for a contradiction
that b̃t̂+1 > b̃t̂ for some date t̂. We construct a self-enforceable contract that achieves strictly
higher profits for the principal.

Step 1a. First, denote a new contract by (ẽ′t, c̃
′
t, w̃

′
t, b̃
′
t)t≥1, which we will choose to coincide

with the original contract until t̂− 1, and with ẽ′
t̂

= ẽt̂. For dates t ≥ t̂, let

c̃′t = c̄ ≡ (1− δ)
∑
τ≥t̂

δτ−t̂w̃τ + (1− δ)b̃t̂

= (1− δ)
∑
τ≥t̂

δτ−t̂c̃τ

where the last equality is for the same reason as Equation (38). For dates t ≥ t̂+ 1, let ẽ′t = ē,
where ē is defined by

ψ(ē) = (1− δ)
∑
τ≥t̂+1

δτ−t̂−1ψ(ẽτ ).

Let also, for all t ≥ t̂, w̃′t = w̄, where w̄ = (1− δ)
∑

τ≥t̂ δ
τ−t̂w̃τ . Thus, we must have b̃′t = b̄ ≡ b̃t̂

for all t ≥ t̂.

Step 1b. We now want to show that, for the new contract, the agent’s constraint (ACob
t ) is

satisfied at all dates. Note that the new contract is stationary from date t̂+ 1 onwards. Let’s
then consider the agent’s constraint for these dates. Note first that, by the previous lemma,
we must have c̃t̂ ≥ c̄. Therefore,∑

τ≥t̂+1

δτ−t̂−1c̄ ≥
∑
τ≥t̂+1

δτ−t̂−1c̃τ .
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Also, the NPV of disutility of effort from date t̂ + 1 onwards is the same for both the orig-
inal contract and the new contract. The fact that the original contract satisfies the agent’s
constraint (ACob

t ) at date t̂+ 1, plus the observation that b̄ < bt̂+1, then implies

∑
τ≥t̂+1

δτ−t̂−1v(c̄)−
∑
τ≥t̂+1

δτ−t̂−1ψ(ē) >
v
(
(1− δ) b̄

)
1− δ

, (42)

which means that the agent’s constraint is satisfied as a strict inequality from t̂+ 1 onwards.
Note then that ∑

τ≥t̂

δτ−t̂v(c̄) ≥
∑
τ≥t̂

δτ−t̂v(c̃τ )

(with a strict inequality if the consumption levels c̃τ for τ ≥ t̂ are non-constant). Also, the
NPV of the disutility of effort is the same from t̂ onwards under both policies. Therefore, the
agent’s constraint continues to be satisfied at t̂, and by the same logic all earlier periods.

Step 1c. Now we show that the principal’s constraint (PCt) is satisfied in all periods. Because
the NPV of disutility of effort from date t̂+ 1 onwards is the same under both contracts; and
because ψ is convex, we have ē ≥ (1−δ)

∑
τ≥t̂+1 δ

τ−t̂−1ẽτ . Therefore,∑
τ≥t̂+1

δτ−t̂ẽ′τ −
∑
τ≥t̂

δτ−t̂w̃′τ =
δē

1− δ
−
∑
τ≥t̂

δτ−t̂w̃τ

≥
∑
τ≥t̂+1

δτ−t̂ẽτ −
∑
τ≥t̂

δτ−t̂w̃τ

≥ 0 (43)

where the second inequality holds because the principal’s constraint is satisfied at date t̂ under
the original contract. Hence the principal’s constraint is satisfied under the new contract at
date t̂. Because ẽ′t is constant for t ≥ t̂ + 1, and because w̃′t is constant for t ≥ t̂, the
same inequality implies the satisfaction of the principal’s constraint also from t̂+ 1 onwards.
Checking that the principal’s constraint is satisfied also at dates before t̂ follows the same
logic. For t < t̂, the principal’s constraint is

t̂∑
τ=t+1

δτ−tẽ′τ −
t̂−1∑
τ=t

δτ−tw̃′τ + δt̂−t
( ∑
τ≥t̂+1

δτ−t̂ẽ′τ −
∑
τ≥t̂

δτ−t̂w̃′τ

)
≥ 0,

which is satisfied because (i) ẽ′τ = ẽτ for τ ≤ t̂, and w̃′τ = w̃τ for τ < t̂, (ii) the first inequality
in Equation (43) holds, and (iii) the principal’s constraint is satisfied at date t under the
original policy.
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Step 1d. Finally, we show that the contract can be further (slightly) adjusted to a self-
enforceable contract with a strictly higher payoff for the principal. The original contract was
taken to satisfy

v (c̃t̂)− ψ (ẽt̂) =
v((1− δ) b̄)− δv((1− δ) b̃t̂+1)

1− δ
< v

(
(1− δ) b̄

)
.

Hence,
ψ (ẽt̂) > v (c̃t̂)− v

(
(1− δ) b̄

)
≥ v (c̄)− v

(
(1− δ) b̄

)
> ψ (ē)

where the final inequality follows from (42). Hence ẽt̂ > ē. Recall that ẽ′
t̂

= ẽt̂, and ẽ′τ = ē for
τ > t̂; so we have ẽ′

t̂
> ẽ′τ for all τ > t̂.

Now, pick ẽ′′
t̂
and ẽ′′

t̂+1
, with

ẽ′t̂+1 < ẽ′′t̂+1 < ẽ′′t̂ < ẽ′t̂

and such that

ψ
(
ẽ′′t̂
)

+
δ

1− δ
ψ
(
ẽ′′t̂+1

)
= ψ

(
ẽ′t̂
)

+
δ

1− δ
ψ
(
ẽ′t̂+1

)
.

Substitute ẽ′′
t̂
for ẽ′

t̂
and ẽ′′

t̂+1
for ẽ′τ , for all τ ≥ t̂ + 1, in the contract defined in Step 1a.

The agent’s value from remaining in the contract from t̂ onwards remains unchanged, so the
agent’s constraint (ACob

t ) remains satisfied at t̂, and at all earlier dates. Note that, due to (42),
the agent’s constraints (ACob

t ) at dates t̂+ 1 onwards are slack under the contract defined in
Step 1a, and hence continue to be satisfied under the contract with the further modification,
provided the adjustment in effort is small. Moreover, because ψ is strictly convex, the NPV
of effort from date t̂ onwards increases; so the principal’s payoff strictly increases. Also, the
principal’s constraints (PCt) clearly continue to be satisfied. Thus, we have constructed a
self-enforceable contract that is strictly more profitable for the principal than the original,
which completes Step 1.

Step 2. Proof that if V (b̃1) < V FB(b̃1) then (b̃t)t≥1 is a strictly decreasing sequence.

Step 2a. Consider an optimal contract. We first prove that if b̃t̂ = b̃t̂+1 for some t̂ ≥ 1, then
V (b̃t̂) = V FB(b̃t̂). To do this, note that if b̃t̂ = b̃t̂+1 for some t̂, then it is optimal to specify
c̃τ = c̃t̂, w̃τ = w̃t̂, and ẽτ = ẽt̂ for all τ > t̂; that is, it must be optimal for the contract to be
stationary from period t̂ onwards. The Euler equation (35) then requires that ψ′(ẽτ ) = v′(c̃τ )

for all τ ≥ t̂+1,24 and by stationarity also ψ′(ẽt̂) = v′(c̃t̂). Then, ẽτ and c̃τ satisfy, for all τ ≥ t̂,
the first-order and agent’s indifference conditions in Proposition 3.1, given initial balance b̃t̂.
Therefore they are the first-best effort and consumption given balance b̃t̂. This shows that
V (b̃t̂) = V FB(b̃t̂), as desired.

24To see this, recall from Lemma A.12 that c̃τ > b̃τ .
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Step 2b. Now we consider any optimal contract, and show the following. If V (b̃1) < V FB(b̃1),
then V (b̃t) < V FB(b̃t) for all t ≥ 1, and in addition, (b̃t)t≥1 is strictly decreasing.

Suppose that, for some t̂, V (b̃t̂) < V FB(b̃t̂), which by Step 1 and Step 2a implies b̃t̂+1 < b̃t̂.
The result will follow by induction if we can show that V (b̃t̂+1) < V FB(b̃t̂+1). Hence, suppose
for a contradiction that the contract achieves the first-best continuation payoff for the principal
at date t̂ + 1, given the balance is b̃t̂+1 (that is, suppose V (b̃t̂+1) = V FB(b̃t̂+1)). This implies
that ẽτ = eFB(b̃t̂+1) and c̃τ = cFB(b̃t̂+1) for all τ > t̂. By assumption that Equation (8) holds
in all periods, we then have b̃τ = b̃t̂+1 for all τ > t̂+ 1. Hence, the contract is stationary from
t̂+ 1 onwards; in particular, the payment is constant at w̃τ = w̄ for τ ≥ t̂+ 1, for some value
w̄.

From the Euler equation (35) and the fact that v′(c̃t̂+1) = ψ′(ẽt̂+1), we have c̃t̂ = c̃t̂+1.
Hence, using b̃t̂+2 = b̃t̂+1 < b̃t̂, we have (using (FPob

t ))

ψ(ẽt̂) = v(c̃t̂) + δ
1−δv((1− δ)b̃t̂+1)− 1

1−δv((1− δ)b̃t̂)

< v(c̃t̂+1) + δ
1−δv((1− δ)b̃t̂+2)− 1

1−δv((1− δ)b̃t̂+1) = ψ(ẽt̂+1).

Consequently, ẽt̂ < ẽt̂+1, and so ψ′(ẽt̂)

v′(c̃t̂)
<

ψ′(ẽt̂+1)

v′(c̃t̂+1)
= 1. We then know (from Lemma A.11) that

the principal’s constraint (PCt) binds at t̂, and so

∞∑
s=t̂+1

δs−t̂ẽs =
∞∑
s=t̂

δs−t̂w̃s =
∞∑
s=t̂

δs−t̂c̃s − b̃t̂,

where the second equality follows for the same reason as for Equation (38). Using that
ẽτ = eFB(b̃t̂+1) for all τ ≥ t̂+ 1, and c̃τ = cFB(b̃t̂+1) for all τ ≥ t̂, we have

δeFB(b̃t̂+1) = cFB(b̃t̂+1)− (1− δ)b̃t̂ < cFB(b̃t̂+1)− (1− δ)b̃t̂+1 = w̄ = w̃t̂+1.

That δeFB(b̃t̂+1) < w̃t̂+1 means the principal’s constraint (PCt) in period t̂ + 1 (as well as at
future dates) is violated, so we reach our contradiction. This completes Step 2.

Step 3. Proof that b̃∞ > 0 and V (b̃∞) = V FB(b̃∞).

Consider an optimal contract, and suppose that V (b̃1) < V FB(b̃1). Then (b̃t)t≥1 is a strictly
decreasing sequence, as we saw in the previous step. By Lemma 5.1, b̃t > 0 for all t, so the
limit limt→∞ b̃t exists and is non-negative. We want to show this limit, call it b̃∞, is strictly
positive and V (b̃∞) = V FB(b̃∞).

Step 3a. We first show that the function V is continuous at any b > 0. Suppose, for the
sake of contradiction, that there is a point of discontinuity b̌ > 0. Then there is ε > 0 and a
sequence (bn)∞n=1 convergent to b̌ with |V (bn)−V

(
b̌
)
| ≥ ε for all n. Denote č and b̌′ the optimal

consumption and next-period balance when the balance is b̌. Then (given our restriction to
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“fastest payments”), present-period effort is given by ê(č, b̌, b̌′). The present-period payment is
w̌ = č+ δb̌′ − b̌.

Suppose now there is a subsequence (bnk
) along which V (bnk

) ≤ V
(
b̌
)
− ε for all k. If

there is no such subsequence, then there is a subsequence (bnk
) for which V

(
b̌
)
≤ V (bnk

)− ε;
the argument will then be symmetric, and hence is omitted. Consider then a balance bnk

,
and choose present-period consumption equal to cnk

≡ č + bnk
− b̌, and next-period balance

equal to b′nk
≡ b̌′. Note this implies present-period effort is enk

≡ ê(cnk
, bnk

, b′nk
), and the

payment is wnk
≡ cnk

+ δb̌′− bnk
= w̌. Because the principal’s next-period continuation payoff

is V
(
b̌′
)
, the same as in an optimal contract following balance b̌, and because the payment

is the same (i.e., w̌), the principal’s constraint in Equation (32) is satisfied. By continuity of
ê (·, ·, ·), for large enough k, we have V (bnk

) > V
(
b̌
)
− ε. This contradicts the assumption

that V (bnk
) ≤ V

(
b̌
)
− ε.

Step 3b. We now prove that b̃∞ > 0. For this, we first show limb↘0
cFB(b)−(1−δ)b

eFB(b)
= 0 and so, by

Proposition 5.2, there exists some b̄ > 0 such that an optimal contract achieves the first-best
payoff of the principal for all b ≤ b̄. This follows after noting that v(cFB(b)) − v((1 − δ)b) =

ψ(eFB(b)) > 0, so we have that either limb↘0 c
FB(b) = 0 or limb↘0 e

FB(b) = +∞. Since
ψ′(eFB(b)) = v′(cFB(b)) we have, in fact, that both limb↘0 c

FB(b) = 0 and limb↘0 e
FB(b) =

+∞, which establishes the result. Next, recall from Step 2 that, given V (b1) < V FB (b1),
the sequence (b̃t)t≥1 of balances in the optimal contract is strictly decreasing and such that
V (b̃t) < V FB(b̃t) for all t. That is, b̃t remains above b̄, and so converges to some value b̃∞ ≥ b̄.

Step 3c. Finally, we prove that V (b̃∞) = V FB(b̃∞). Recall we assumed that V (b1) <

V FB (b1). By the continuity of V established in Step 3a, we have that limt→∞ V (b̃t) = V (b̃∞).
Because the principal’s constraint (PCt) binds for all t, we have V (b̃t) = ê(c̃t, b̃t, b̃t+1) for all t.
By continuity of ê(·, ·, ·), we have limt→∞ ê(c̃t, b̃t, b̃t+1) = ê(c̃∞, b̃∞, b̃∞), where c̃∞ ≡ limt→∞ c̃t,
which exists because c̃t is decreasing and remains above b̃∞ by Lemma A.12. Therefore,

V (b̃∞) = ê(c̃∞, b̃∞, b̃∞) = ψ−1(v(c̃∞)− v((1− δ)b̃∞)).

Since V (b̃∞) > 0 (recall Lemma A.10), c̃∞ > (1 − δ)b̃∞. Therefore, the Euler equation (35)
implies that, necessarily, limt→∞

v′(c̃t+1)
ψ′(ẽt+1)

= 1, and therefore ẽ∞ ≡ limt→∞ ẽt exists. It is then
clear that both Conditions 1 and 2 of Proposition 3.1 hold for ẽ∞, c̃∞, and b̃∞ (instead of
eFB(b1), cFB(b1), and b1). This establishes the result.
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Lemma A.14. Assume V (b1) < V FB(b1). Then (V (b̃t))t≥1 is a strictly increasing sequence.

Proof. Recall from Lemma A.13 we have that, if V (b1) < V FB(b1), then (b̃t)t≥1 is strictly
decreasing. Therefore, the result will follow if we can show V (·) is strictly decreasing.

Step 1. We show that if V (·) fails to be strictly decreasing, then there exists a value b∗ > 0

such that, for every ε > 0, there is a b̌ ∈ (b∗ − ε, b∗) satisfying V (b̌) ≤ V (b∗).
First, by Step 3a of the proof of the previous lemma, V (·) is continuous on strictly positive

values. Suppose V (·) fails to be strictly decreasing, which means that there are values b′, b′′

with 0 < b′ < b′′, and with V (b′) ≤ V (b′′). Consider maximizing V on [b′, b′′], and note that a
maximum exists by continuity of V . Because V (b′) ≤ V (b′′), there is at least one maximizer
in (b′, b′′]. We can take any such value to be b∗.

Step 2. Consider an optimal continuation contract when b̃t = b∗, and consider a change to
b̃t = b∗ − ν for ν > 0 small enough such that V (b∗ − ν) ≤ V (b∗). Then we can reduce c̃t by
the same amount ν, holding b̃t+1 and w̃t, as well as all other variables, constant. Note then
that, provided ν is small enough,

v(c̃t − ν)− 1
1−δv((1− δ)(b̃t − ν)) > v(c̃t)− 1

1−δv((1− δ)b̃t),

which follows again because c̃t > (1− δ) b̃t (by Lemma A.12) and by concavity of v. Hence,
we have

ê(c̃t − ν, b̃t − ν, b̃t+1) > ẽ(c̃t, b̃t, b̃t+1).

By construction, the agent remains indifferent to continuing in the contract at all dates (we
have that (ACob

t ) holds as an equality at all dates). The continuation of the relationship from
t+1 onwards is precisely as before, and therefore the principal’s constraint at date t is satisfied
(since w̃t is unchanged). Hence,

V (b̃t) = ẽt − w̃t + δV (b̃t+1) < ê(c̃t − ν, b̃t − ν, b̃t+1)− w̃t + δV (b̃t+1) ≤ V (b̃t − ν).

However, this contradicts V (b∗ − ν) ≤ V (b∗).

Lemma A.15. Assume V (b1) < V FB(b1). Then, in any optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1,
v′ (c̃t) > ψ′ (ẽt) for all t.

Proof. We first show that, if there is a date ť with v′ (c̃ť) = ψ′ (ẽť), then v′ (c̃ť+1) = ψ′ (ẽť+1).
To do so, assume for a contradiction that v′ (c̃ť) = ψ′ (ẽť) and v′ (c̃ť+1) 6= ψ′ (ẽť+1) for some
date ť. Then, by Lemma A.11, we have v′ (c̃ť+1) > ψ′ (ẽť+1), and therefore w̃ť+1 = δV (b̃ť+2).
In turn, this implies

ẽť+1 = ẽť+1−w̃ť+1 + δV (b̃ť+2) = V (b̃ť+1) > V (b̃ť) = ẽť−w̃ť+δV (b̃ť+1) ≥ ẽť
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where the strict inequality follows by the previous lemma, and the weak inequality follows
because the principal’s constraint is satisfied in an optimal contract at ť.

There are two cases: either w̃ť <
∑∞

s=ť+1 δ
s−ť (ẽs − w̃s) or w̃ť =

∑∞
s=ť+1 δ

s−ť (ẽs − w̃s).
Consider the first. Define a new contract (ẽ′t, c̃

′
t, w̃

′
t, b̃
′
t)t≥1, which is identical to the original,

except that ẽ′
ť

= ẽť + ε and ẽ′
ť+1

= ẽť+1 − ν (ε), with ν (ε) defined by

ψ (ẽť + ε) + δψ (ẽť+1 − ν (ε)) = ψ (ẽť) + δψ (ẽť+1) .

Thus
ν ′ (0) =

ψ′ (ẽť)

δψ′ (ẽť+1)

and so the change in the NPV of effort is

ε− δν (ε) =

(
1− ψ′ (ẽť)

ψ′ (ẽť+1)

)
ε+ o (ε)

which is strictly positive for ε sufficiently small. It is easy to see that the agent’s constraint
(ACob

t ) is unchanged at all dates except ť+ 1, when the constraint is relaxed. The principal’s
constraint (PCt) is unchanged from date ť + 1 onwards, relaxed at date ť − 1 and earlier
(because the NPV of effort increases), but is tightened at date ť. Provided ε is small enough,
the date-ť constraint remains intact. Profits increase, contradicting the optimality of the
original contract.

Now suppose that w̃ť =
∑∞

s=ť+1 δ
s−ť (ẽs − w̃s), and note the above adjustment now leads

to a violation of the principal’s constraint (PCt) at date ť. In this case, we reduce slightly
the payment, effort and consumption at date ť, keeping the agent’s payoff unchanged, but
ensuring the principal’s constraint (PCt) is satisfied. This has a negligible effect on profits
since v′ (c̃ť) = ψ′ (ẽť). Hence, we again contradict the optimality of the original contract.

Now let us demonstrate precisely an adjustment that yields a self-enforceable contract.
We further adjust the modified contract (ẽ′t, c̃

′
t, w̃

′
t, b̃
′
t)t≥1 by reducing the date-ť payment and

consumption by an amount γ (ε), and reducing date-ť effort by an amount η (ε) to leave
agent payoffs unchanged. The date-ť principal constraint (PCt) will then hold as equality by
setting γ (ε) = δν (ε). The requirement on η (ε), that the agent’s payoff is unaffected by the
adjustment, is

v (c̃ť − γ (ε))− ψ (ẽť + ε− η (ε)) = v (c̃ť)− ψ (ẽť + ε) .

We then have
v′ (c̃ť) γ

′ (0) = ψ′ (ẽť) η
′ (0) .

Therefore, the overall increase in date-ť profits from all changes to the contract (ẽt, c̃t, w̃t, b̃t)t≥1
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is

ε− δν (ε)− (η (ε)− γ (ε)) =

(
1− ψ′ (ẽť)

ψ′ (ẽť+1)

)
ε− δν ′ (0)

(
v′ (c̃ť)

ψ′ (ẽť)
− 1

)
ε+ o (ε)

=

(
1− ψ′ (ẽť)

ψ′ (ẽť+1)

)
ε+ o (ε)

which is strictly positive for ε sufficiently small.
Hence, for small enough ε, the overall effect on profits of all changes to the original contract

(ẽt, c̃t, w̃t, b̃t)t≥1 is positive, with the continuation profits from date ť increasing. The principal’s
constraint (PCt) is relaxed at dates ť− 1 and earlier, it is satisfied by construction at ť, and
it is unchanged from date ť + 1 onwards. Again, the fact profits strictly increase contradicts
the optimality of (ẽt, c̃t, w̃t, b̃t)t≥1.

From the above, and by induction, we have that v′ (c̃ť) = ψ′ (ẽť) at some ť implies v′ (c̃t) =

ψ′ (ẽt) for all t ≥ ť. By the Euler equation (35), consumption and effort remain constant from
ť onwards. Moreover, the agent’s indifference condition in Equation (8) is presumed to hold
at all dates. This shows that the agent’s balances b̃t remains constant from date ť onwards,
which given the assumption V (b1) < V FB (b1), contradicts the finding of Lemma A.13 that
balances strictly decrease. Hence, we cannot have v′ (c̃ť) = ψ′ (ẽť) at any ť.

Lemma A.15 implies by Lemma A.11 that, if V (b1) < V FB(b1), the principal’s constraint
(PCt) holds with equality in every period. We use this to show the following.

Lemma A.16. If V (b1) < V FB(b1), then, in any optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1, effort ẽt
and payments w̃t strictly increase over time, while consumption c̃t strictly declines over time.

Proof. The fact that the principal’s constraint binds at every date, as argued above, can be
stated as w̃t = δV (b̃t+1) for all t; hence payments are strictly increasing in t by Lemma A.14.
We also have V (b̃t) = ẽt for all t, so effort is strictly increasing as well.

Now consider consumption. By Lemma A.12, we know that c̃t−1 ≥ c̃t for all t ≥ 2. Hence,
if consumption fails to be strictly decreasing, we must have c̃t−1 = c̃t for some t. We then have,
by Equation (35) (and noting that c̃t > (1− δ) b̃t, also by Lemma A.12), that ψ′ (ẽt) = v′ (c̃t).
However, this contradicts Lemma A.15.

Lemma A.17. An optimal contract exists.

Proof. If δ ≥ cFB(b1)−(1−δ)b1
eFB(b1)

∈ (0, 1) then there is a self-enforceable efficient contract (by
Proposition 5.2), and so existence is established. The remainder of the proof is needed for the
values b1 such that there is no self-enforceable first-best contract.
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We denote by Π(bt) the sequences (cs, bs+1)∞s=t which are part of self-enforceable contracts
beginning with balance bt. Assuming “fastest payments”, such a sequence completely defines
the continuation contract from date t, with effort given at each date s ≥ t by ê(cs, bs, bs+1),
and the payment given by δbs+1 − bs + cs. Note that these sequences satisfy, for all s ≥ t,

δbs+1 − bs + cs ≤
∞∑

τ=s+1

δτ−s (ê(cτ , bτ , bτ+1)− (δbτ+1 − bτ + cτ ))

as well as
v(cs) + δ

1−δv ((1− δ) bs+1)− 1
1−δv((1− δ)bs) ≥ 0.

Note also that Π(bt) is not empty: for instance, it contains the “autarky” continuation contract,
where cs = (1− δ)bt and bs = bt for all s ≥ t (recall that ê((1− δ)bt, bt, bt) = 0).

Given any bt > 0, let

V (bt) ≡ sup
(cs,bs+1)∞s=t∈Π(bt)

∞∑
s=t

δs−t (ê(cs, bs, bs+1)− (δbs+1 − bs + cs)) .

Note that V (bt) is no greater than the first-best value V FB(bt). Usual arguments imply that
the continuation payoff of the principal in an optimal contract (if it exists) is a fixed point of
the following operator

TW (bt) ≡ sup
ct>0,bt+1>0

(
ê(ct, bt, bt+1)− (δbt+1 − bt + ct) + δW (bt+1)

)
(44)

subject to the principal’s constraint

δbt+1 − bt + ct ≤ δW (bt+1) (45)

and to
v(ct) + δ

1−δv ((1− δ) bt+1)− 1
1−δv((1− δ)bt) ≥ 0. (46)

Note that the operator T is monotone: if W1 ≥ W2, then TW1 ≥ TW2. Also, we have
TV FB ≤ V FB. Applying T to both sides, we have that (T nV FB(bt))n≥1 is a decreasing
sequence for all bt > 0. Therefore there is some pointwise limit of T nV FB, call it V̄ . Straight-
forward continuity arguments show that V̄ is a fixed point of T .

Outline of Proof. We want to show that V̄ (bt) = V (bt) and that this payoff is attained
by a feasible contract (ẽs, c̃s, w̃s, b̃s)s≥t, with b̃t = bt, and which respects the principal and
agent constraints, (PCt) and (ACob

t ). Note that V̄ (bt) is an upper bound on the principal’s
continuation payoff at a date t when the balance is bt. Hence, we only need to find a contract
(ẽs, c̃s, w̃s, b̃s)s≥t satisfying the aforementioned constraints and attaining a payoff V̄ (bt) for the
principal.
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There are two steps. In Step 1, we argue that it is possible to determine, given any date-t
balance bt > 0, a sequence (cs, bs+1)∞s=t by solving the maximization in the functional equation
given by Equations (44) to (46) for W = V̄ . This sequence defines a contract that gives the
principal a continuation payoff equal to V̄ (bt). In Step 2 we argue that this contract satisfies
the principal and agent constraints, (PCt) and (ACob

t ), as well as the feasibility conditions in
Definition 2.1, and hence is self-enforceable.

Step 1. Determining a policy from V̄ : We want to show that the supremum in the
problem defined by Equations (44) to (46) for W = V̄ is attained by some values ct and bt+1

at each bt > 0. By analogous arguments to Step 3a of the proof of Lemma A.13, we have that
V̄ is continuous. Therefore, our supremum will be attained if (a) the values of bt+1 that satisfy
the constraints of the functional equation are contained in a bounded interval [lb(bt), u

b(bt)]

with lb(bt) > 0, and (b) we can additionally restrict attention to consumption in a bounded
interval [lc(bt), u

c(bt)] with lc(bt) > 0.

We begin with Part (a). Observe that

lim
bt+1→∞

δ(V̄ (bt+1)− bt+1) ≤ lim
bt+1→∞

δ(V FB(bt+1)− bt+1) = −∞ .

Hence, the satisfaction of the principal’s constraint (45) implies bt+1 must be bounded above
by some ub(bt).

We now show that, given bt, satisfaction of the constraints in Equations (45) and (46) implies
that bt+1 must be no less than some lb(bt) > 0. Assume for the sake of contradiction that,
given some bt > 0, bt+1 can be taken arbitrarily close to zero, without violating either of these
constraints. In particular, consider bt+1 < b̄, where b̄ > 0 is such that V̄ (b) = V FB(b) for all
b ∈ (0, b̄] (note that it exists by Step 3b of the proof of Lemma A.13). These constraints may
be written

v(ct) ≥ 1
1−δv((1− δ)bt)− δ

1−δv((1− δ)bt+1) and ct ≤ bt + δ(V FB(bt+1)− bt+1).

Combining these two equations we have

V FB(bt+1) ≥ Ṽ (bt+1) ≡
v−1
(

1
1−δv((1− δ)bt)− δ

1−δv((1− δ)bt+1)
)
− bt

δ
+ bt+1. (47)

Now, notice that the right-hand side of Equation (47) tends to +∞ as bt+1 → 0. Hence, if
the constraints are satisfied, we must have limbt+1→0 V

FB (bt+1) = +∞ and

lim
bt+1→0

Ṽ (bt+1)

V FB(bt+1)
≤ 1.

However, we now show that the value of this limit is instead +∞.
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First, notice that

V FB(bt+1) = 1
1−δ max

w

{
ψ−1 (v (bt+1 (1− δ) + w)− v (bt+1 (1− δ)))− w

}
.

At the optimal choice of w, we have cFB (bt+1) = bt+1 (1− δ) + w, and

eFB (bt+1) = ψ−1 (v (bt+1 (1− δ) + w)− v (bt+1 (1− δ))) .

Therefore, by the envelope theorem,

d

dbt+1

V FB (bt+1) =
v′
(
cFB (bt+1)

)
− v′ (bt+1 (1− δ))

ψ′ (eFB (bt+1))
= 1− v′ (bt+1 (1− δ))

ψ′ (eFB (bt+1))
.

On the other hand, the derivative of Ṽ (bt+1) is given by

1− v′((1− δ)bt+1)

v′
(
v−1
(

1
1−δv((1− δ)bt)− δ

1−δv((1− δ)bt+1)
)) . (48)

From l’Hôpital’s rule, we have that

lim
bt+1→0

Ṽ (bt+1)

V FB(bt+1)
= lim

bt+1→0

d
dbt+1

Ṽ (bt+1)
d

dbt+1
V FB(bt+1)

= lim
bt+1→0

d
dbt+1

Ṽ (bt+1)− 1
d

dbt+1
V FB(bt+1)− 1

= lim
bt+1→0

− v′((1−δ)bt+1)

v′
(
v−1
(

1
1−δ v((1−δ)bt)−

δ
1−δ v((1−δ)bt+1)

))
− v′((1−δ)bt+1)
v′(cFB(bt+1))

= lim
bt+1→0

v′(cFB(bt+1))

v′
(
v−1
(

1
1−δv((1− δ)bt)− δ

1−δv((1− δ)bt+1)
))

= +∞.

The second equality holds because both the numerator and the denominator tend to −∞.
The final equality holds because cFB(bt+1)→ 0 as bt+1 → 0, by Step 3b of Lemma A.13.

We have therefore shown that, given a date-t balance bt, the choices of bt+1 that are
available in the above program while satisfying the constraints Equations (45) and (46) come
from some bounded set

[
lb(bt), u

b(bt)
]
with lb(bt) > 0. It is then immediate that consumption ct

must be chosen from some bounded interval [lc(bt), u
c(bt)] as well. Hence, given the continuity

of V̄ , the problem defined by Equations (44) to (46) and W = V̄ has a solution. We can
then solve iteratively to determine an optimal (date-t) continuation policy (cs, bs+1)∞s=t. Such
a sequence defines (assuming “fastest payments”, as noted above) a contract that satisfies the
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principal’s constraints (PCt) and agent’s constraints (ACob
t ), as well as the first two feasibility

conditions in Definition 2.1.

Step 2. Showing the contract is self-enforceable. To establish that the value
V̄ (bt) can be attained in the problem of interest, we need to verify that the third feasibility
condition in Definition 2.1 (bounded consumption, payments and effort) is satisfied by the
aforementioned contract. Note first that the principal’s first-best payoff continues to be given
by V FB (bt), given any agent balance bt > 0, if we replace Condition 3 of Definition 2.1 with
the mere requirement that the NPV of consumption is finite (i.e.,

∑
s≥t δ

s−tcs < +∞). This
follows from the arguments in the proof of Proposition 3.1.25 Therefore V̄ (bt) continues to
be an upper bound on profits in a contract satisfying the principal’s constraints (PCt) and
agent’s constraints (ACob

t ), and the modified feasibility conditions.
In addition, if bs < b̄ (with b̄ as defined above and bs the balance at date s), then V̄ (bs) =

V FB (bs), as this value is attained in the maximization problem associated with TV FB (bs) in
Equations (44) to (46) (taking W = V FB) by setting cs = cFB (bs) and bs+1 = bs (so that
ê (cs, bs, bs+1) = eFB (bs)). Therefore, in the continuation policy (cs, bs+1)∞s=t generated by V̄
starting from a balance bt at date t, if bs < b̄ for any s ≥ t, then bs′ = bs for all s′ ≥ s and
consumption remains constant at value cFB (bs) (i.e., cs′ = cFB (bs) for all s′ ≥ s). Because
V̄ ≤ V FB, and because V FB (·) is decreasing (by Proposition 3.1), V̄ (bs+1) is bounded, say
by a value B > 0, over all s ≥ t. Therefore, for all s ≥ t,

cs + δbs+1 − bs ≤ δB.

Therefore, for any τ ≥ t, we have

τ∑
s=t

δs−tcs = bt − δτ−t+1bτ+1 +
τ∑
s=t

δs−t (cs + δbs+1 − bs)

≤ bt − δτ−t+1bτ+1 +
δ (1− δτ+1−t)

1− δ
B.

Because balances remain positive, we can conclude that
∑∞

s=t δ
s−tcs is no greater than bt +

δ
1−δB < +∞.

The above argument shows that the contract determined from V̄ starting at balance bt at
date t is optimal given the requirement that the contract satisfies the principal’s constraints
(PCt) and agent’s constraints (ACob

t ), the first two feasibility requirements of Defintion 2.1,
25Consider any contract for which the NPV of consumption is finite. Then the NPV of the disutility of

effort must also be finite if the inequality in Equation (16) is to be satisfied. The NPV of output is therefore
finite. It is then clear that the NPV of payments must be finite in a contract that maximizes the principal’s
payoff subject to the condition in Equation (16) and the requirement that the NPV of consumption is finite.
The arguments in the proof of Proposition 3.1 then apply directly.
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and the requirement that the NPV of consumption is finite. Note that all of the arguments in
Lemmas A.10 to A.16 apply also to contracts that are optimal with the weakened feasibility
condition. Hence, consumption, pay and effort are bounded, and so the contract is also
optimal in the more restrictive class of contracts satisfying all conditions of Definition 2.1.
This concludes Step 2.

(End of the proof of Proposition 5.3.)

Proof of Proposition 5.4

Proof. If the result does not hold, then there is a date t such that

v(b̃t (1− δ))
1− δ

<
∞∑
s=t

δs−t (v (c̃s)− ψ(ẽs)) .

If this date is t = 1, then date-t effort can be increased to obtain another self-enforceable
contract that is more profitable for the principal, so we may assume t > 1. We can then
increase the payment to the agent at date t−1 by εδ for ε > 0, and reduce the date-t payment
by ε. All other variables are unchanged. Provided ε is small enough, all constraints are
preserved. Because the date-t payment is reduced, the principal’s constraint (PCt) is then
slack at date t.

Because the contract is optimal, but not first best, we have that effort strictly increases
over time. We can then change the date-t effort to a value ẽ′t, and the date-t+ 1 effort to ẽ′t+1,
with ẽt < ẽ′t < ẽ′t+1 < ẽt+1, and with

ψ (ẽ′t) + δψ
(
ẽ′t+1

)
= ψ (ẽt) + δψ (ẽt+1) .

All other variables remain unchanged. This affects the agent constraints (ACob
t ) by increasing

the profitability of remaining in the contract from date t + 1 onwards (i.e., the date-t + 1

constraint is slackened). It relaxes the principal’s constraint at date t− 1 and earlier, because
the NPV of effort increases (by convexity of ψ). It tightens the principal’s constraint at date t,
but provided the changes are small, it remains slack. The principal’s constraints are unaffected
from date t + 1 onwards. Because the NPV of effort increases, profits strictly increase. This
contradicts the optimality of the original contract, which establishes the result.
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A.4 Proofs of the results in Section 6

Proof of Proposition 6.1

Proof. Let (ẽt, w̃t)t≥1 be an optimal contract. Define, for all t, Ut ≡
∑∞

s=t δ
s−t(v(c + w̃s) −

ψ(ẽs)). Also, for the rest of the proof, normalize v (c) ≡ 0.

Step 1. We first note that U1 = 0. Otherwise, the effort at time 1 can be increased, so the
payoff of the principal increases and, if the effort increase is small enough, all constraints are
satisfied.

Step 2. We now prove that, for all t ≥ 1, if Ut+1 > 0 then w̃t+1 ≤ w̃t and ẽt+1 ≥ ẽt. To see
the first implication we assume, for the sake of contradiction, that Ut′+1 > 0 and w̃t′+1 > w̃t′

for some t′ ≥ 1. Consider a contract (ẽ′t, w̃
′
t)t≥1 where payments at times different from t′ and

t′ + 1 remain the same, and all efforts remain the same. Slightly increase the date-t′ payment
so that w̃′t′ > w̃t′ and slightly reduce date-t′ + 1 payment so that w̃′t′+1 < w̃t′+1, maintaining
w̃′t′+1 > w̃′t′ , as well as

v(c+ w̃′t′) + δv(c+ w̃′t′+1) = v(c+ w̃t′) + δv(c+ w̃t′+1) .

The agent’s constraint (15) is affected only at date t′+1: Ut′+1 decreases, but if the modification
to the contract is small enough, we still have Ut′+1 > 0 and so the agent’s constraint is satisfied.

Since w̃′t′+1 < w̃t′+1 (while all consumption and efforts after t′ + 1 remain the same), the
principal’s constraint (PCt) is relaxed at time t′ + 1. Given that v is strictly concave, the
time-t′ present value of the payments decreases, so the principal’s constraint is relaxed at all
dates t′ and earlier. Hence, the contract (ẽ′t, w̃

′
t)t≥1 is self-enforceable and it is strictly more

profitable than the original, contradicting the optimality of the original.
We now prove that, for all t ≥ 1, if Ut+1 > 0, then ẽt+1 ≥ ẽt. To see this we assume, for

the sake of contradiction, that Ut′+1 > 0 and ẽt′+1 < ẽt′ for some t′ ≥ 1. Consider a contract
(ẽ′t, w̃

′
t)t≥1 where payments remain the same at all times, and where efforts differ only at t′

and t′ + 1. In particular, we set ẽ′t′+1 slightly higher than ẽt′+1, and choose ẽ′t′ so that

ψ(ẽ′t′) + δψ(ẽ′t′+1) = ψ(ẽt′) + δψ(ẽt′+1) .

The agent’s constraints (15) are then unaffected, except at t′ + 1 where the constraint is
tightened, but for a small enough adjustment to the contract we still have Ut′+1 > 0. Principal
constraints (PCt) remain unaffected from t′+1 onwards. Since ẽ′t′+1 > ẽt′+1 (while all payments
and efforts after t′+ 1 remain the same), the principal’s constraint is relaxed at time t′. Given
that ψ is convex, the date-t′ present value of the effort increases (provided the changes in
effort are small enough), so the principal’s constraint is relaxed at all times before t′ as well.
Again, the modified contract is more profitable, which gives our contradiction.
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Step 3. We now prove that Ut = 0 for all t. We already established in Step 1 that U1 = 0.
Now suppose for a contradiction that the result is not true, so there is a t satisfying Ut = 0

and Ut+1 > 0 (it could be that t = 1). Let then t+T be the first date after t at which Ut+T = 0

(T = +∞ means that Us > 0 for all s > t), so we have assumed T > 1. We have

Ut =
t+T−1∑
s=t

δs−t(v(c+ w̃s)− ψ(ẽs)) ≥
t+T−2∑
s=t

δs−t(v(c+ w̃s)− ψ(ẽs)) ,

where the inequality follows from the fact that (1) when T < +∞, since Ut+T−1 > 0, we have
v(c+ w̃t+T−1)−ψ(ẽt+T−1) > 0, and (2) when T = +∞, the inequality holds as equality. Note
then that, since w̃s+1 ≤ w̃s and ẽs+1 ≥ ẽs for all s ∈ {t, ..., t+ T − 2} we have

Ut ≥
t+T−2∑
s=t

δs−t(v(c+ w̃s+1)− ψ(ẽs+1)) =
t+T−1∑
s=t+1

δs−t−1(v(c+ w̃s)− ψ(ẽs)) = Ut+1 > 0 .

This is a contradiction because Ut = 0.
Note that the conclusion Ut = 0 for all t implies that the optimal contract is stationary.

For any date t the continuation of an optimal contract (ẽs, w̃s)s≥t must maximize continuation
profits

∞∑
s=t

δs−t (es − ws)

subject to v (c+ ws) = ψ (es) and to principal constraints ws ≤
∑∞

s′=s+1 δ
s′−s (es′ − ws′) for

all s ≥ t. In particular, note that maximizing continuation profits at date t only relaxes the
principal’s constraints (PCt) at dates t− 1 and earlier.

Step 4. Given that any optimal relational contract is stationary, we can now consider the
problem of maximizing by choice of effort e and payment w the per period profit e−w subject to
the agent earning zero payoff (that this must hold is established above), i.e. v(c+w)−ψ(e) = 0,
and subject to the principal’s constraint (PCt) which takes the form w ≤ δe. Case 1 in the
proposition then corresponds to the case where the principal’s constraint does not bind, while
Case 2 corresponds to the one where it binds.
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