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1 Introduction

The COVID-19 pandemic took the world by surprise, driving many governments to take pre-

ventive measures. As a result, they imposed “lockdown” policies with heterogeneous degrees

of intensity. These policies reduce or cease certain activities, with a high cost in terms of

foregone production. The key element giving rise to lockdowns is the governments’ inability

to identify the virus carriers. If the problem is the lack of information, wouldn’t it be more

efficient to spend resources on gathering information and avoid lockdowns? This paper stud-

ies how testing can substitute for or complement lockdowns. We analyze the optimal joint

time paths of quarantine and testing policies and argue that, although imprecise, widespread

random testing policies can eliminate the need for lockdowns.

To analyze this problem, we build on the SEIR framework by Atkeson (2020).1 In this en-

vironment, there is an outbreak of an infectious disease, which spreads through interactions

between virus carriers and susceptible subjects. We extend the setting in several aspects.

First, to model the information friction, we assume that exposed individuals are initially

asymptomatic carriers who can also transmit it. Second, we introduce the possibility of a

critical mass such that, if the number of carriers is above it, the virus reproduces; otherwise,

it vanishes. To reflect that hospitals can be overwhelmed, we impose a healthcare capacity

constraint limiting the number of patients that can be treated at a given time. An indi-

vidual requiring medical care dies with a higher probability without proper care. Moreover,

following Eichenbaum et al. (2020a), we incorporate endogenous social distancing measures

undertaken by each individual besides the government policies. As the population learns

about the virus spread, they restrain from engaging in social and economic activities.

The information friction plays a fundamental role in shaping containment measures. If the

infectious state were fully observable, containing the virus would not be a problem. A social

planner would simply isolate (quarantine) all infected individuals until the illness recedes

while letting the unaffected population unrestricted. Without information, the government

can only force “indiscriminate” quarantines: both the infected and the healthy must be

isolated. Thus, information has value and can be obtained by testing. However, the testing

technology is imperfect, flagging as infected some people who are not (false positives) and

flagging as uninfected some who carry the virus (false negatives). Since testing is costly and

provides imprecise information, its usefulness is not guaranteed.

The critical mass is specific to our setting and may initially appear arbitrary, so further

explanations are in order. It is a sensible assumption that rather than being a driver of

1In two contemporaneous papers, Eichenbaum et al. (2020a) and Alvarez et al. (2021) rely on the classical
SIR model, which does not distinguish between symptomatic and asymptomatic individuals.
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the results, it makes them stronger: with or without the critical mass, widespread random

testing dominates lockdowns. The SIR paradigm assumes divisible (continuous) humans. In

general this assumption is innocuous and renders tractable a complex problem. However,

the subjects’ indivisibility, together with proportional reproduction rates, imply that the

virus cannot be eliminated. No matter how small the “infected mass” is, it is never zero,

and it eventually grows back. Hence, suppression strategies directed to eliminate the virus

irrevocably are (implicitly) assumed futile. Nevertheless, many countries, perhaps based on

the success story after the 2002 SARS-CoV-1 crisis, tried suppression.2 Given this previous

success and that suppression may render testing obsolete, it is nothing but fair to give it a

chance. Last but not least, we also show that the expectation of the potential arrival of a

medical innovation generates analogous effects to the critical mass. We term this effect the

“hope-for-the-cure” induced suppression.

We analyze the problem quantitatively and in sequential order. We first study the optimal

intervention without testing and then the optimal joint paths of quarantines and testing. We

start characterizing how much and for how long activities should be restricted. Using this

as a benchmark, we then analyze how testing changes the lockdown patterns and how it is

used, arguing that testing can substitute and is more efficient than lockdowns. Finally, we

incorporate the expectation that a medical innovation could arrive. We show that for many

relevant scenarios, this expectation leaves the results unaffected, although it can generate

sudden changes in the types of lockdowns.

To quantitatively assess the policies, we calibrate the model to the Italian COVID-19

outbreak. To deal with widespread underreporting of cases and fatalities, we target the

fatalities path using the total excess deaths relative to previous years. To discipline the

population’s endogenous reaction, we use the cellphone movement index constructed by

Durante et al. (2021). Finally, for the scenarios with a critical mass, we calibrate it to be

one individual. This is consistent with our interpretation that the critical mass is a way to

undo the human divisibility assumption. Nevertheless, we present detailed results varying

every main component determining the optimal intervention.

First, suppose that testing is either not possible or not used, then three types of optimal

policies arise: suppression, mitigation, and no intervention. The preferred policy type

depends on the aversion to output variation, the statistical value of life, the critical mass size,

and the vaccine’s expected arrival. However, conditional on following one of these strategies,

the intensity and the duration of lockdown are barely affected by the properties of the welfare

2The draconian measures imposed in Wuhan resembled those after the reaction to SARS-CoV-1. Also,
during the initial outbreak, the government isolated 11 municipalities in Italy, even preventing the citizens
from leaving their homes. Many researchers were wondering whether an approach as the one used with
SARS-CoV-1 would work with COVID-19; see, for instance, Wilder-Smith et al. (2020).
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function or the value of life.

In broad terms, when the value of life is below a threshold no intervention is optimal. Only

individuals’ self-imposed precautions control the spread. For higher life values intervening

becomes optimal, but the chosen strategy depends on whether there is critical mass and the

vaccine’s expected arrival time, i.e., there is hope for a cure. When there is no “hope,” the

planner always appeals to mitigation strategies: it “flattens the curve” to avoid overwhelming

the hospitals until herd immunity arrives. Instead, if there is hope for a cure, the planner

may choose a suppression strategy consisting in a decisive intervention, shutting down a

large share of activities until the virus is eliminated, either because it falls below the critical

mass or a medical innovation arrives.3

It is worth mentioning that the expectation of a vaccine not always generates strategy

switches; it does so only when its option value is large enough. But, the option value is

not monotone. On one extreme, if the vaccine (or cure) is expected to arrive far enough in

the future, it has minor consequences for current decisions with almost no effect on optimal

policies. On the other extreme, if the vaccine is expected to arrive immediately, then the virus

does not pose a threat, so its option value is also zero; thus, the planner never intervenes. For

intermediate values of the arrival rate (in our quantitative results between 1 and 2 years),

the option value is maximized and can generate relevant strategy jumps.

This finding rationalizes the observed heterogeneity in responses among countries. One

could think that most of this heterogeneity is driven by the trade-off between lives and output

cost. However, without the hope for the cure, only mitigation policies are optimal, which

depends only on the virus dynamic. The different beliefs about the possibility of a cure

drive the bulk of disparate responses, by generating jumps to suppression strategies. For

instance, some countries that are smaller, or more isolated, or have better control over their

borders may intent to suppress, hoping to hit the critical mass. In other countries, instead,

even if the authorities believe that the critical mass is not reachable, they may be optimistic

about the arrival of a vaccine. This optimism is not only linked to the medical discovery

alone but also to early access and implementation. In any case, this heterogeneity is likely

to be observed only on the outbreak’s initial stages. As the information settle, beliefs should

converge and so should the implemented policies.

These policies have significant output costs, which can fall by more than 60% at the

intervention’s peak. This brings about the possibility of complementing the quarantine with

testing to simultaneously slow down the reproduction and avoid the output cost. By testing,

3Technically, when there is the possibility of ending the disease, the welfare function is convex. In our
case, there are two local maxima, one corresponding to the optimal suppression and the other to optimal
mitigation. Their relative level depends on the value of life, discounting, aversion to variation, etc. This also
warns those using a first-order approach, which we do not.
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the government can identify exposed individuals. Once identified as positive, a subject must

endure a (personal) quarantine. Testing is done by randomly selecting individuals for whom

there is no information yet: those who have never tested positive before. Identifying a

positive case has two beneficial effects. First, it becomes possible to quarantine him/her,

even in a stricter way than the rest of the population. Second, it identifies immunity: once

recovered, the individual can return to work without restrictions. Given the different types of

intervention, it is unclear under which strategy testing could be helpful, if any. For instance,

if the government is seeking suppression, testing could be useless. Moreover, we consider

only random testing, which is simple and easy to implement, but perhaps it is the least

efficient. Thus, it could be discarded just on those grounds.

To evaluate the contribution of testing, we follow Atkeson et al. (2020) and calibrate

its marginal cost to around $55 for relatively small testing intensities but increasing in the

number of tests. The speed at which the marginal cost grows is chosen in such a way that

it would be economically infeasible to test the entire population at once.4

We find that testing is intensively used as a substitute for indiscriminate quar-

antines and generates substantial welfare gains. The output gains are so large that

lockdowns could be completely avoided, even though they are still used moderately. In our

favorite mitigation scenario, testing is used intensively. On average, 20% of the unidentified

population is tested every day the first month and then continues with lower intensity for

about a year, averaging 8% of the population per day.5 This policy is very costly, amounting

to 1.3% of annual GDP. But this cost is easily compensated for by eliminating the lockdown.

This strong substitutability is also present when the government follows a suppression strat-

egy. With testing, instead of shutting down 60% of the economic activities, it shuts down

only 17%, and instead of doing it for 80 days, the shutdown lasts for only three weeks. Here,

the total cost is just 1.1% of annual GDP.

In short, whether the government chooses mitigation or suppression depends on a com-

bination of factors, but either way, testing is used extensively, well beyond the magnitudes

observed in most countries, and the lockdowns are either reduced or eliminated.6

4We do not know how much and how fast the testing capacity can be expanded, especially at the initial
moment of an outbreak. We conjecture that if the population is sufficiently big, expanding the capacity on
the spot to test the whole population would be infeasible.

5In Italy, the testing intensity barely reached 1 million people a day, while the optimal policy requires 12
million tests per day during the first month and 4.8 million after that.

6China is an exception in this regard. After experimenting with lockdowns as in Wuhan, when the city
of Qingdao appeared to be affected in October 2020, the government decided to test the entire city.
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1.1 Literature review

The literature on epidemiology control dates back to the framework proposed by Kermack

and McKendrick (1927), also known as the SIR epidemiology model. Until COVID-19, the

economic literature on epidemics was scarce, with some exceptions mostly related to HIV,

as Greenwood et al. (2019).

The large wave of papers on COVID-19 was triggered by Atkeson (2020) and Eichen-

baum et al. (2020a). Atkeson (2020) is a simple exercise to compute the disease’s projected

paths and evaluate its expected economic impact. We build on this work by deepening the

information structure. The author assumes that only symptomatically infected subjects are

contagious. We instead assume that the symptomatically infected are isolated and, thus,

do not infect others. The asymptomatic individuals are the ones fueling the spread of the

disease. This extension allows us (1) to better fit the dynamics of the disease and (2) to

incorporate a well-defined information friction generating the need for testing.

The closest paper to ours is Alvarez et al. (2021), who study optimal interventions in a

SIR framework. They assume a linear welfare function, weighting output and the statisti-

cal value of life, and solve an optimal control problem on the unrestricted quarantine policy

space while constraining the “test-tracing.”7 We differ in several dimensions. We use a differ-

ent meeting technology (theirs exhibits increasing returns, while ours is scale independent),

different information structure (SEIR vs. SIR), alternative welfare functions (non-linear)

and we consider the possibility of additional population’s responses. These differences imply

contrasting messages regarding testing. They find, in a quantitative example, that random

testing would never be optimal, while we argue that even random testing is a better technol-

ogy than indiscriminate quarantines. Their simplifying assumption allows them, though, to

study the unrestricted space of policies while we restrict the space of policies and consider a

simple form of endogenous population reaction.

The economic literature contributed to the epidemiological one by introducing non-

mechanic responsive individuals. Eichenbaum et al. (2020a) were the first to point the

relevance of the endogenous agents’ reactions. They build a SIR model adding standard

macroeconomic features. Even though agents take preventive measures, the competitive

equilibrium is suboptimal because agents do not internalize the effect of their actions on

others. They then analyze the optimal Pigouvian tax correcting the externality. Focusing

on this externality, Farboodi et al. (2021) retain the SIR framework and put additional struc-

ture on the way in which interactions (matches) take place. Using location data, they are

able to quantify the individual responses to the COVID-19 arrival and the optimal interven-

7They also explicitly consider the possibility that in some countries the lockdown could be less effective or
harder to implement. For implications about lack of government commitment, see Moser and Yared (2020).
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tion’s value. Assenza et al. (2020) go deeper into characterizing social interactions as the

outcome of a game, which provides a deep interpretation of the nature of the inefficiencies.

None of these papers analyzes testing policies, which is our main focus. As Atkeson (2020),

we study a SEIR rather than a SIR model.8 As Eichenbaum et al. (2020a), we incorporate

endogenous population’s reactions, although without all their richness. As Farboodi et al.

(2021), we use the estimations of Durante et al. (2021) to quantify the population’s response.

While lockdowns attracted much attention from researchers, testing has been less studied.

To the best of our knowledge, the first pointing out the substitutability between quarantines

and testing was Dewatripont et al. (2020), who argue that testing was essential to “restart

the economy.” Later, with different degrees of complexity and focus, several authors develop

this insight in some dimension or another. For instance, Berger et al. (2020) fixes the

quarantine and testing policies, estimate a SEIR model, and show that testing is instrumental

in softening the economic effects of the quarantine. Chari et al. (2021) introduce a noisy

signal about the agent’s infectious status and study targeted testing. They conclude that

targeted testing is more cost-effective than mere isolation. Atkeson et al. (2020) emphasize

the cost-effectiveness by comparing alternative scenarios using the, by then known, testing

marginal costs. Eichenbaum et al. (2020b) incorporate testing into a version of Eichenbaum

et al. (2020a) and study how alternative testing strategies affect individual behavior by

changing their information sets.9 Brotherhood et al. (2020) consider a richer age structure

and endogenous meeting decisions and argue that testing dominates stay-at-home policies.10

The main difference between our approach and the previous papers is that rather than

comparing a few, even though relevant, scenarios, we do not take the policies as given, but

we study the optimal joint paths of quarantine and testing. In this regard, through additional

simplifying assumptions, Pollinger (2020) can provide some analytical characterizations.

We abstract from heterogeneity. Since our main findings are related to mass testing as

substitutes for quarantines, including additional dimensions would not change the results.

In any case, there is no doubt that heterogeneity is relevant for many questions. Among the

many papers incorporating it and studying the distributional effects of policies are Brother-

hood et al. (2020), Favero et al. (2020), Glover et al. (2020), and Kaplan et al. (2020).

8Bar-On et al. (2021) study the implications of using SEIR vs. SIR models. They show that the latent
variable E is key to match the virus dynamics, with important implications for optimal policy.

9In their SIR model, agents do not know their health status. Hence, testing strategies change their
information sets and therefore their behavior. In our paper, the government needs the information to design
a fine-tuned quarantine policy. When an asymptomatic agent learns that she is infected, her response is
restricted to zero interactions, while if symptomatic, both the agent and the government know it and act
accordingly. In this sense, testing allows for “targeted lockdowns,” as in Acemoglu et al. (2021).

10Their argument depends on the accuracy of the testing technology. We consider this fact in our calibra-
tion. For the relevance of antibody testing, see Guimarães (2021).
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Figure 1: SEIR Model Transition
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2 A SEIR model of disease contagion

Time is continuous and runs indefinitely, t ∈ [0,∞). At time 0, the economy is hit by a

disease caused by a deadly virus that starts to spread. To capture the fast-moving dynamics,

we use the convention that one unit of time is one day. The agents discount the future at

rate ρ > 0. At each period t, there is population Nt, with an initial mass: N0 = 1.

Each individual can be one of 5 types: susceptible, exposed, infected, identified recovered,

or unidentified recovered. We denote by S the number of individuals still unaffected but

susceptible to the virus. There are two types of contagious carriers: exposed asymptomatic

E and infected symptomatic I. When an individual first contracts the virus, it always starts

in group E. The asymptomatic E could become symptomatic I after an incubation period

or may never show symptoms, in which case they remain in E until recovery.

When subjects recover, they become immune permanently.11 Depending on the symp-

tomatic history, an immune agent may not be identified. Let R denote the number of

immune recovered agents who were previously symptomatically infected, and Ru the im-

mune recovered subjects who never displayed symptoms. The former group has observable

signals that make them identifiable, while the latter could remain unidentified without addi-

tional information. For this reason, the distinction between R and Ru is important. Figure

1 summarizes the transitions across different groups. It must be that:

Nt = St + Et + It +Rt +Ru
t .

If the exposed population is above a critical mass, i.e., Et > E ≥ 0, the virus

spreads through meetings between exposed and susceptible individuals. Otherwise, it is

11There is consensus that most individuals who recover from COVID-19 would retain immunity for at
least some time. Hansen et al. (2021) find that immunity would be around 80% after six months.
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self-contained, and all patients gradually recover. This mass is specific to our setting, so

some explanations are in order. It serves two purposes. 1) Without it, interventions aiming

to eliminate the virus are pointless. Thus, successful strategies, as those used by China

against SARS CoV-1, would be outright discarded. 2) We show in Section 5 that it has a

“hope for the cure” effect akin to an early arriving vaccine.

Our SEIR framework assumes divisible (continuous) humans. In general, this assumption

is innocuous and renders tractable a complex problem. However, subjects’ indivisibility and

proportional reproduction rates imply that the virus cannot be eliminated. No matter how

small the “infected mass” is, it is never zero, and it eventually grows back. Hence, trying to

eliminate the virus irrevocably would be impossible. Following this interpretation, we later

calibrate E to be equivalent to one person. This makes sure that whenever less than an

(entire) person is infected, the disease disappears.

To avoid the spread, the government can impose quarantines, either indiscriminate (lock-

downs) or targeted. In a lockdown, the government simply shuts down a proportion qt of all

economic and social activities. Instead, with directed quarantines, the government singles

out targeted groups and forces some or all of them to isolation. Targeted quarantines require

information to identify the targeted groups. Since the symptomatic individuals It can be

identified by their symptoms, it is optimal to force them into a full quarantine.12 Hence,

the virus spreads only through meetings between the exposed asymptomatic and unaffected

individuals. Similarly, the recovered individuals R are known to be immune based on their

symptomatic history and thus are not subject to restrictions.13 In this section, we maintain

the assumption that the government has no information about the identity of St, Et or R
u
t

individuals; hence, they are all subject to the lockdown qt. In what follows we refer to inter-

actions as economic activities, but the reader should bear in mind that our interpretation is

also inclusive of social interactions that are not necessarily measured in the GDP.

Meetings are reduced due to the population’s social distancing and government measures

limiting human activities. The number of meetings could depend on how individuals respond

to the risk implied by the virus and the restrictions imposed by the authorities. In addition,

we assume that agents do not directly observe the death rate, so they must infer the death

12This assumption is in line with the preventive measures taken by all the governments as soon as they
detect an positive case. However, there could be compliance issues. The infected could disregard government
directives and still engage in social interactions, which seems common in the U.S. and U.K., see Atkeson
et al. (2020) and Smith et al. (2021). Finally, the state of the spread may affect the optimality of quarantines
for known infected cases. If, for instance, the mass of infected individuals is sufficiently high, or they are
concentrated in strategic tasks, quarantining them could have significant adverse effects in production, with
worse consequences than the virus.

13The introduction of a “green pass” in Europe has this feature. Vaccinated individuals are subject to few
or no restrictions. Proof of recovery is considered equivalent to a complete vaccination cycle.
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risk from the observed fatalities. To implement these ideas, we rely on a statistical model

determining the fraction of meetings that each individual avoids after learning the number

of fatalities and the restrictions imposed by the authorities. We denote by bt(qt, Dt) ∈ [0, 1]

such fraction, representing the intensity of interactions. If bt = 1, individuals avoid every

type of social interaction, and thus, there are no meetings; if bt = 0, individuals do not

constraint themselves. For simplicity, in what follows, we skip the explicit dependency of bt

on its arguments whenever no confusion arises, but the reader should bear it in mind.

The number of infections depends on the number of individuals interacting adjusted by

the intensity of the interaction: ιt. Since identified recovered agents interact freely and the

infected individuals are forced to isolate, the total measure of individuals interacting is:

ιt = (1− bt)(St + Et +Ru
t ) +Rt. (1)

The voluntary reaction of the population is a key element to account for when designing

the containment policy. There is ample evidence that in many countries, including Italy, the

population reacted by taking precautionary measures when it was evident that COVID-19

was present and dangerous. This reduces the need for government intervention, and it could

imply that no intervention is optimal.

Let λm(ιt, Et(1 − bt)) be the meeting function between virus carriers and the rest of

the population. Because the symptomatic are fully quarantined, the total number of virus

spreaders is just Et, hence the second term in the meeting function. Not all meetings gen-

erate an infection. Since only St

ιt
of workers are susceptible, and individuals are socially

distanced, there are only λSt(1−bt)
ιt

m(ιt, Et(1 − bt)) meetings generating newly affected (ex-

posed) individuals.14

Once exposed, an individual becomes symptomatically infected at rate γ and can recover

at rate σ without ever being symptomatic. Thus, the exposed population follows the law of

motion:

dEt =


[
λSt(1−bt)

ιt
m(ιt, Et(1− bt))− (σ + γ)Et

]
dt, if Et ≥ E

−(σ + γ)Etdt, if Et < E.
(2)

The symptom’s appearance and the asymptomatic’s recovery rates, γ and σ, are independent

of the state of the economy. They just reflect the individual’s strength to fight the virus

inside their biological system. The same is true for the contagion intensity rate λ, which is

14In Atkeson (2020), only the infected individuals can transmit the virus. Thus the infectious meetings are
m(ιt, It). The author does not distinguish between symptomatic and asymptomatic carriers, however. We
borrow his notation and give it a different interpretation. In our setting, this distinction clarifies production
effects and is instrumental when analyzing the information friction. Otherwise, we could merge them into
the standard SIR model as a single type.
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a scale parameter capturing the level of interactions among agents in their daily activities.

The speed at which the illness spreads is state-dependent, increasing in the number

of exposed Et and susceptible. The function m(ιt, Et(1 − bt)) could incorporate potential

“congestion” effects. For instance, one may think that, when most of the population is

already affected, most meetings would be between immune and infected individuals and

thus would generate fewer infections.

We emphasize the relevance of the critical mass E for policy interventions. If E > 0, it is

possible to take drastic measures to force the affected population below the critical mass so

that the virus disappears and the infection is definitively defeated. In contrast, if E = 0, the

virus never dies out. Even when the exposed population is reduced to a negligible measure,

the virus can always resurface and spread again.

As a result, the government could intervene with two alternative approaches, or types of

strategies, that we term: mitigation and suppression. Mitigation is a strategy directed

to slow down the spread until herd immunity. The policymaker only regulates the speed at

which the number of exposed and infected subjects arrive; it “flattens the curve” until herd

immunity puts an end to the problem. For this strategy, the spare hospital capacity is a first-

order concern. In contrast, suppression is a strategy directed to stop the virus rather than

slowing down the spread. It can be characterized by decisive interventions preventing a large

proportion of interactions. The government aims to solve the problem without resorting to

herd immunity; maybe eliminating the virus before is too widespread or due to an exogenous

medical innovation.

The trade-off between these strategies depends on the effects of the virus on the popula-

tion and the hospital capacity. We assume that the body’s ability to dispose of the virus is

independent of the health system. This reflects in a state independent recovery rate η. In

contrast, the death rate could depend on the capacity of the health system to treat patients.

Patients with severe cases could require medical assistance and potential hospitalization.

However, in any given period t hospitals can only treat Ht patients. Once that capacity

is exceeded, i.e., It > Ht, the treatment received by each patient is diluted. Those who

are properly treated die at rate θ, while those untreated due to lack of capacity die at rate

δ > θ. As a result, the average (state-dependent) daily death rate ∆t for the infected agents

satisfies:

∆t = θ min

{
1,

Ht

It

}
︸ ︷︷ ︸
fraction treated

+ δ max

{
1− Ht

It
, 0

}
︸ ︷︷ ︸

fraction untreated

, (3)

and the law of motion of infected individuals is:

dIt = [γEt − (η +∆t)It]dt. (4)
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The previous relations imply that the laws of motion for the recovered and the total

population satisfy:

dRu
t = σEtdt, (5)

dRt = ηItdt, (6)

dNt = −∆tItdt. (7)

Indiscriminate quarantines qt directly impact economic activity while social distancing is

less damaging, reducing production in a proportion o(bt) ≤ 1−qt. It is unclear how significant

the effect of social distancing is on production. One can think that social distancing has

no output cost. For instance, individuals still shop and buy the same value in goods, but

they do it less often and with less direct physical contact, which would imply o(bt) = 0.

However, other economic activities could be affected. For example, agents could stop dining

in restaurants, even when they remain open.

For simplicity, we assume a linear production technology in the active labor force: Yt = Lt.

Infected individuals cannot produce because they are sick and fully quarantined. Only the

susceptible, the undetected exposed, and the fully recovered can produce. Indiscriminate

quarantines prevent a fraction qt ∈ [0, 1] of the individuals with an unknown status from

engaging in any economic activity. Then, the total production is:15

Yt = (1− qt)(St + Et +Ru
t ) +Rt.

As a benchmark, the undistorted output would be Yt = St + Et + Ru
t + Rt. The only

good produced is nonstorable, and there is no possibility of borrowing or saving. Hence,

consumption must equal production in every period: Ct = Yt.

2.1 Welfare evaluation

We now turn to the decisions of the policymakers. As a relevant benchmark, we start

characterizing the optimal policy without the possibility of testing. Then, in Section 4, we

show how testing alters and improves the results.

When intervening, the government considers the impact of its policies on the virus dy-

namics and the possibility of a future medical innovation. It could be a vaccine or an effective

treatment. We follow Alvarez et al. (2021)’s and Shimer and Wu (2021)’s approaches. It

consists in assuming that with Poisson arrival rate ϕ ≥ 0, a medical innovation arrives.

Shimer and Wu (2021) assume that a perfect vaccine arrives, preventing any future spread

but not curing the already infected. Alternatively, Alvarez et al. (2021) assume that a per-

15We allow the recovered whose status is observable to return to work, which is optimal.
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fect cure arrives. As a result, the economy enters a new state without the disease upon the

innovation’s arrival. We denote this value with V (It, Et, Nt).

Formally, the policymaker chooses a path {qt : t ≥ 0} to maximize social welfare,

max
{qt}

∫ ∞

0

e−(ρ+ϕ)t [u ((1− qt)(St + Et +Ru
t ) +Rt)− v (∆tIt) + ϕV (It, Et, Nt)] dt, (P)

subject to equations (1) to (6).

The function u(·) captures society’s preferences for consumption. It must not be inter-

preted as just the private individuals’ utility but as a composite encompassing potential

externalities. Such possibility has been discussed in the literature, with a wide range of ef-

fects. Some authors, such as Assenza et al. (2020), Eichenbaum et al. (2020a), and Farboodi

et al. (2021), strongly argue in favor of too many meetings, while others, as Rachel (2020),

support the view that there could be too much social distancing. The presence and strength

of externality are clearly model-dependent and can significantly vary with the details. Thus,

we chose to model it in a general reduced form. This allows us to evaluate the effect of its

curvature on the optimal intervention. Indeed, in Section 3.3, we show that conditional on

the type of intervention, the optimal policy is mostly invariant to it.

The function v(·) captures the trade-off between output losses and human lives. This is

a controversial component that could play an important role. To isolate its impact, we first

compute the optimal paths assuming v(·) = 0 so that only the output cost matters. Then,

we assume a linear function, and we follow the standard in the literature of calibrating its

value to replicate the statistical value of life.

Finally, the value V (It, Et, Nt) would depend on the type of innovation. For instance,

with a perfect cure, as in Alvarez et al. (2021), V (·) would only depend on Nt, while if

there is no cure but just a vaccine, as in Shimer and Wu (2021), all three arguments are

necessary. Nevertheless, as it is evident from problem (P), as long as ϕ is small, the impact

of the vaccine is minimal and akin to discounting. We show later that this is indeed the case

for empirical relevant values. However, for sufficiently large values of ϕ, it has a non-trivial

non-monotonic impact. We argue in Section 5 that it can trigger a “hope for the cure” effect

akin to the critical mass: even if E = 0, the government can switch to a suppression strategy

to keep agents alive until the imminent cure arrival and solves the problem once and for all.

It is worth stressing that problem (P) entails solving for the entire optimal path of qt,

allowing for a variety of possibilities. This contrasts with other approaches in the literature

consisting of comparing alternative scenarios, e.g., no intervention vs. a given fixed quaran-

tine q, or fixing the value of q and comparing the effects of different durations. With our

approach, these scenarios would be particular cases.
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3 Quantitative implications

This section calibrates the model, explains the calibration strategy and data measurement

issues, and uses the calibrated model to assess the optimal quarantine policies.

3.1 Functional forms

We start by specifying the model’s functional forms. One of our goals is to analyze how

optimal policies change with different degrees of tolerance to output variation. If the welfare

function is linear, a complete economy’s shutdown could be optimal whenever the cost of

doing so is compensated later once the virus is no longer a problem. Instead, when the

welfare function has a low intertemporal elasticity of substitution (IES), it is more costly to

reduce current economic activity to reap future benefits. We adopt the following function:

u(c) =
c1−ε − 1

1− ε
, if ε ̸= 1 and u(c) = log(c), if ε = 1.

This functional form is mathematically tractable and meaningful in one dimension or another,

allowing for a wide range of interpretations. Section 3.3 computes the optimal policy for a

wide range of ε, varying it from zero to 4.

The choice of v(·) is contentious. One may think that a quadratic loss function could

be appropriate so that the cost rapidly grows with the number of fatalities. However, this

function also embodies the unappealing feature that the planner prefers many fatalities if

they are sufficiently spread out over time, versus a few concentrated in a short interval. An

alternative is a linear function v(x) = dx, where d reflects the statistical value of life. In

this case, the total number of deaths matters more than when they occur.16 As Alvarez

et al. (2021) and Farboodi et al. (2021), we follow this approach. However, instead of fixing

a specific value for d, we consider a wide range, ranging from 0 to 100 years of per capita

output. We do this because (1) the literature on the statistical value of life is not yet

settled, see Cutler and Summers (2020), and (2) society may value lives beyond their purely

statistical value.

We assume m(ι, E) = E following the current economic literature. Still, because we

use the term S
ι
, our functional form allows for some congestion, a feature that is absent in

Alvarez et al. (2021), Farboodi et al. (2021), and Berger et al. (2020), among others.

Finally, considering the empirical literature on COVID-19, we allow the behavioral re-

sponse to depend not only on the intensity of the government intervention but also on the

16With ρ = 0, time becomes irrelevant, and only the total matters. Otherwise, the planner prefers later
deaths. We thank an anonymous referee for this clarification.
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threat that the virus poses to society. We assume a linear reaction that satisfies

bt = β0qt + β1Dt + β2{∃ COVID-19}t. (8)

Equation (8) contains three coefficients. The first and easiest to interpret is β0, which cap-

tures the effectiveness of the government intervention. One could expect a coefficient around

1, i.e., any intervention translates one-to-one into reduced social interactions. Nevertheless,

it could be either smaller than 1 when the intervention substitutes other social interactions

or larger than 1 when there are complementarities. β1 captures the continuous response of

the population to the virus spread. If there were no deaths, agents would not be concerned

and would continue their normal activities. As the prevalence of the virus increases, the

population becomes increasingly concerned and interacts less.

Some recent empirical studies, e.g., Durante et al. (2021), have also found that awareness

of COVID-19 can cause a discontinuous and persistent change in habits. To allow for this

possibility, we introduce the indicator {∃ COVID-19}t, which takes the value 1, if it is

known that COVID-19 is present at time t, and zero otherwise. Thus, the last coefficient,

β2, captures the population’s sudden change in behavior when they learn about the outbreak:

it is a permanent increase in social distancing. As a result, absent government interventions,

social distancing would be β1Dt + β2 at time t. This component will play an important role

in our no-intervention scenario and in shaping the optimal policy.

3.2 Fitting the virus dynamics

We calibrate the model economy to Italy at a daily frequency. We set t = 0 to January 1,

2020. The daily discount rate ρ is set to 0.05/365 to match an annual interest rate of 5%.

Appendix B provides an extensive and detailed explanation of our approach to estimating

the model. In general terms, we use clinical data to pin down γ and η. Ferguson et al. (2020)

and Chen et al. (2020) provide abundant information about successive illness stages.

To estimate equation (8), we use the movement index developed by Durante et al. (2021),

which we complement with a proxy for qt constructed by Guiso and Terlizzese (2020). Table 1

summarizes the estimated coefficients for equation (8), while the details appear in Appendix

B.2. All the coefficients have the expected sign and are highly significant. The awareness

coefficient is 0.25: as soon as the population became aware of the virus, they reduced their

movements by almost 25%. Then, people took additional precautions as the number of

deaths increased. For instance, 1, 000 daily deaths reduced their movements by an extra

11%. This means that movements and social interactions were drastically reduced even

before the government took any measures.
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Table 1: Social Distancing Equation

Variable Coefficient Std. Dev. t-Stat

β0: government policy q 1.225 0.0822 14.89
β1: reaction to deaths 0.00011 0.000034 3.29
β2: awareness 0.246 0.0312 7.87

The lockdown seems to be very effective: a coefficient of 1.22 implies that the quarantine

had an effect beyond the reduction in production, which could be due to complementarities.

Policy enforcement could have increased the population’s compliance, perhaps feeling that

it was their “civic duty,” as most of society was enduring the same problems. It could also

reflect changes in habits. For instance, shoppers buy more goods on fewer trips.

There are four parameters for which there is ample uncertainty: θ, σ, λ, and t̂I0: the initial

day of the outbreak. We estimate them to match the observed dynamics of COVID-19 in

Italy. One approach would be to fit the dynamics of infected cases, but this is problematic:

the official reported number of “cases” captures only the individuals who were tested and

generated a positive result.17 Since our model features a one-to-one mapping between infec-

tions and fatalities, we target the fatalities path. But also these measures are controversial.

Since many fatalities, especially at the peak of the infection, may have been reported as

unrelated to COVID-19. To deal with this caveat, following Rinaldi and Paradisi (2020), we

use the Italian excess fatalities relative to the five previous years instead. Additional details

and the uncovered patterns can be seen in Figure 8 of Appendix B.

To be precise, we target the path of daily fatalities from March 8 to May 31, 2020. We

exclude the dates before the first intervention on March 8 (the first reported COVID-19

death was on February 22) because the relevance of COVID-19 for causing excess deaths is

almost irrelevant. We are confident, though, that most of the excess deaths in March are

COVID-19 related. We choose {t̂I0, θ, σ, λ} to minimize the following loss function:

L = −
T∑

t=t0

(
Dmodel

t −Ddata
t

Ddata
t

)2

, (9)

where Dmodel
t is daily fatalities generated by the model and Ddata

t is the daily death number

in the data. Loosely speaking, the initial fatalities between March 1 and March 8 are mainly

determined by the outbreak day and λ, the scale parameter in the meetings function. The

outcomes after the consecutive government interventions and the population’s reaction shed

17See Hortaçsu et al. (2021) for an estimation of underreporting in the United States.
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Table 2: Parameter Values

Parameter Symbol Value Moment

Preset
Daily discount rate ρ 0.05/365 Interest rate
Initial exposed E0 2/60mn Two individuals in population
Critical mass E {0,1/60mn} Minimum possible number
Hospital capacity h 0.0067 5,343 ICUs for 60 million
Exposed-to-infected rate γ 0.143 7-day incubation period
Recovery rate for I η 0.058 17 days to recovery for I

Jointly calibrated
Contagion rate λ 0.400 Fit fatality’s path
Recovery rate for E σ 0.016 Fit fatality’s path
Daily death rate if treated θ 0.06% Fit fatality’s path
Daily death rate if untreated δ 0.12% Fit fatality’s path

Implied moments
Basic reproduction number R0 2.53

light on the number of asymptomatic agents, determined by σ and the fatality rate θ.18

The variation generated by successive government interventions is instrumental in iden-

tifying the parameters (see Figure 3). Three important changes in the intensity of the

intervention, plus the initial information on fatalities, provide four moments for the remain-

ing four parameters. The impact of interventions is mainly determined by σ, controlling

the speed at which asymptomatic subjects recover. Table 2 shows the calibrated parameter

values. We obtain that λ = 0.4, θ = 0.06%, η = 0.058, σ = 0.016, and the day of the out-

break is January 5, 2020. A few points are worth mentioning. First, our calibrated model’s

implied initial reproduction factor is R0 = 2.53, which is in line with most of the literature.19

Second, σ is small compared to η, implying that most E types transition to I and remain

asymptomatic for a long time. Because of the E’s slow recovery, quarantines can take some

time before they have an effect. Finally, the estimated daily death rate implies an average

fatality rate of 1.0% for appropriately treated patients.

The comparison between model generated and observed fatalities are plotted in Figure

2. Panel A are the daily flows, while in Panel B the cumulative numbers. Excess deaths are

depicted with a red “+” mark and the reported COVID-19 deaths with a blue “x” mark.

Each mark is one observation. The solid blue line corresponds to the model-generated deaths.

18It is key for this argument that most of the symptomatic were quarantined. If there were no asymptomatic
(σ = ∞), the virus would have died out rapidly, while with many asymptomatic (σ = 0), the infection would
have kept spreading quickly.

19See Billah et al. (2020) for an extensive review of estimated R0’s worldwide.
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Figure 2: Infections and Fatalities: Model vs. Data

Panel A: Daily Panel B: Cumulative

Notes: The vertical axis is in log scale in both panels.

Panel A suggests that the model generated path of daily deaths fits well the measured excess

deaths. We also show the infections. The reported infected cases are plotted with burgundy

circles, and the model-implied new cases are plotted with a dashed burgundy line. The

model-implied cases are substantially above the actual measured cases. To put it in context,

at the peak of the spread, the number of officially reported new infections was around

6, 550, while the model suggests that there were about 100, 000 new infections on the same

day. The underreporting is also well captured in Panel B with cumulative measures. There

are sizeable distances between the model-generated fatalities and cases and their officially

reported numbers. For example, on May 3, 2020, the model generated cumulative fatalities

is twice the officially reported one. Regarding cases, the discrepancy is more pronounced.

The model estimates that by May 3, 2020, more than 2 million people had or have had the

virus, while the analogous official number was around 300, 000.

In Appendix C, we present the counterfactual predictions absent policy inventions for

completeness. We skip those details to move to our primary focus: optimal policy. Yet, it is

worth mentioning two main features of the no-intervention scenario. First, the endogenous

behavioral responses imply substantially lower fatalities than those predicted by SIR models

abstracting from it. Initial estimates in Walker et al. (2020) projected around 645, 000

fatalities for Italy without intervention, while we obtain 215, 000. Second, the outbreak is so

explosive that the economy reached herd immunity by the end of the summer.
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3.3 Optimal indiscriminate quarantines without testing

To better understand the consequences of each moving part, we start analyzing the optimal

quarantine policy, leaving testing for the next section. We also set ϕ = 0 so that a vaccine

is not expected. We delay its implications for Sections 4 and 5 because, as we then explain,

it is either inconsequential shaping qt or generates relevant strategy switches that deserve

detailed explanations. As a reference, if the vaccine is expected to arrive in two years, the

arrival rate is ϕ = (1/2)/365 ≈ 0.0014.

The optimal policy is an infinite-dimensional object, stating the intensity of the interven-

tion for all future periods. Let Zt be a variable encompassing all the information related to

the economy’s state. We assume a three-parameter flexible functional form of Zt to simplify

the optimization problem. To be precise, qt is a three-parameter step function such that, for

some q̃ ∈ [0, 1], ϖ ∈ R, and τ ≥ 0, the optimal intervention satisfies:20

qt =

q̃ +ϖ × Zt, if t ≤ τ

0, if t > τ.
(10)

For instance, a complete shutdown of all economic activities for two weeks would be

represented by q̃ = 1, ϖ = 0, and τ = 14; policies with ϖ = 0 would characterize any fixed-

intensity intervention. The parameter ϖ captures the time-varying intensity component

resembling Zt’s shape. A fitting example can be found in the Italian response to the second

wave. The government implemented a “traffic lights” system resembling equation (10). The

system considers three-zone colors, white, yellow, and red, with increasing restrictions and

minimum transiting times across lights. So, q̃ would reflect the restrictions in the white zone,

ϖ > 0 the increased restrictions due to a worsening Zt, and τ the minimum time the region

must spend in each light.

Since all variables are linearly related, Ht, Et, or It would capture the shape of Zt in a

similar way, except perhaps, by the nonlinearities introduced by the hospital capacity. Still,

although small, the different shapes of the variables could provide important information

and help approximate the optimal unrestricted policy better. To address this concern, we

estimate the optimal policy assuming the dependency of qt on Ht, Et, It, and ∆tIt. We find

that a policy that depends on It generates the highest welfare and therefore set Zt = It in

equation (10). Nevertheless, the differences among the alternatives are minor.21

20We started experimenting with a function depending only on time. This time dependency captured
the planner’s reaction to the state of the economy, such as “health state,” e.g., number of cases, number of
fatalities, and hospital capacity. Thus, we decided to make the dependency on the state explicit.

21This is the same choice as the Italian health authorities for the traffic lights system. It is worth mentioning
that we wrote our first draft before this system was implemented.
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Figure 3: Optimal Quarantines

Panel A: Suppression E > 0 Panel B: Mitigation E = 0

Suppression vs. mitigation

Now, in addition to characterizing the optimal policy without testing, we show the relevance

of the critical mass E. The role of this mass is to undo the “human divisibility assumption,”

so we set it to the equivalent of one person: E = 1/60million. If the exposed number is

reduced to less than one individual, the virus disappears. To compare with the observed in-

terventions, we assume that the optimal quarantine is implemented on day 48, corresponding

to March 8, 2020: when the Italian lockdown started.

Figure 3 depicts the main takeaway from this section: there are two types of intervention,

suppression and mitigation, and conditional of the type of intervention, the path is

mostly invariant to the parameterization of the welfare function. In Panel A, we

plot two representative optimal suppression policies and compare them with the calibrated

intensity of the observed lockdown. Suppression consists of a strict lockdown with an approx-

imately constant intensity for a determined time span. Interestingly, the welfare function

curvature affects neither the intensity nor the duration. Similarly, in Panel B, we show two

representative mitigation policies. Mitigation is less intense than suppression and more re-

sponsive to the state of the economy. It starts at moderate levels and slowly decreases over

time. Again, the intervention’s path is unaffected by the welfare function’s curvature.

Figure 3 shows representative optimal paths; under which combination of parameters

are they optimal? We find sharp switches between the two policy regimes depending on

the underlying model parameters. Since the optimal quarantine q is barely affected by the

parameters, conditional on the strategy, we focus instead on total fatalities. Figure 4, plots

how total deaths vary with the curvature parameter ε and the statistical value of life d,
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Figure 4: Optimal Quarantine Strategies

Panel A: Potential Suppression E > 0
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Panel B: Only Mitigation E = 0
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conditional on E > 0, in Panel A, and E = 0, in Panel B. The high-mortality outcomes

result from mitigation policies, while the low-mortality outcomes result from suppression.

Again, conditional on the policy, neither the value of life nor the curvature of the welfare

function is important in shaping the dynamics. Different combinations of d and ε determine

whether the planner wants to follow a no-intervention, suppression, or mitigation strategy.

Consider Panel A, where E > 0. When the value of life is d < 2, the government does

not intervene independently of ε. As d increases, it is optimal to intervene, but depending

on the combination of d and ε, the type of the intervention jumps to either mitigation

or suppression. When the welfare function is linear, the optimal policy quickly jumps to

suppression. If it is logarithmic, there is no intervention for d < 13 and an intermediate area

13 < d < 16 where mitigation is optimal, jumping to suppression for d > 16. Interestingly,

the suppression policy under the logarithmic and linear welfare functions coincide. Similarly,

for ε = 2, there is a larger area where mitigation is optimal, 13 < d < 36. Still, in the

suppression area, all policies are similar. In contrast, Panel B shows that when E = 0,

suppression is never optimal, no matter how much value society assigns to lives.

Table 3 reports the outcomes under these strategies. Column (2) reports the optimal

suppression and column (3) the optimal mitigation policy. As a benchmark, column

(1) reports the analogous statistics for the scenario without intervention. Note that absent

any intervention, the model predicts 313, 000 fatalities, around a third of the projection

without behavioral response. The suppression strategy takes the form of a roughly constant

intensity around 0.6 for 80 days, which resembles the policy implemented in many countries.

This policy effectively reduces the number of symptomatic cases from 41.4% to 2.4% of the

population and fatalities from 0.52% to 0.03%.
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Table 3: Optimal Quarantine Policies

No Intervention Suppression Mitigation
(1) (2) (3)

Quarantine:
Initial day - Mar 8 Mar 8
Duration (days) - 80 128
Maximum q - 0.61 0.18
Average q - 0.59 0.11

Symptomatic rate (per person) 41.4% 2.4% 41.5%
Symptomatic people (million) 24.9 1.5 24.9
Immunity rate (per person) 45.4% 2.7% 45.5%
Immune people (million) 27.2 1.6 27.3
Death rate (per person) 0.52% 0.03% 0.46%
Total fatalities (thousand) 313 18 275
Welfare gain (consumption equiv.) - 2.4% 0.21%

Notes: Columns (2) and (3) report the welfare gains for linear utility. With log utility, the welfare gains are

2.1% and 0.20%, respectively.

In contrast, the mitigation policy is costly in terms of lives and output. The fatalities

are slightly below the no-intervention case, 275, 000, vs. 313, 000. But there is a significant

buildup of immune individuals, around 27 million, preventing future waves’ arrival.22

Taking stock, the intensity and the duration of interventions are mostly determined by

the dynamics of the virus. This does not mean that the welfare function is irrelevant: it de-

termines the type of intervention. In Appendix D.1, we show that this is due to the convexity

of the welfare function. Loosely speaking, E > 0 generates a “hope for the cure” effect,

driving governments to save as many lives as they can until the virus is eradicated. Here,

the critical mass generates the effect; we show in Section 5 that the same patterns emerges

even when E = 0, but a “cure” is expected to arrive soon enough. This could explain why

there is large observed heterogeneity in the approaches taken by different countries, but not

so much when these different approaches are grouped into the three potential characteristics:

no-intervention, mitigation, and suppression.

22See Appendix D for the dynamics of the remaining variables and Figure 12 for the dynamics without
government intervention and without behavioral response.
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4 Combining testing and quarantines

The main reason giving rise to indiscriminate quarantines is the inability of the policymaker

to distinguish exposed from susceptible subjects. If the government knew who the carri-

ers were, it could simply quarantine the exposed and leave everyone else unrestricted. The

technology to obtain information through testing is certainly available, but it could be pro-

hibitively expensive to test a vast proportion of the population. Since the immediate output

cost of quarantine also appears considerable, it is worth evaluating how much the planner

would be willing to spend on testing to reduce the quarantine cost.23

Testing has always been considered a fundamental component in controlling pandemics.

However, the standard approach by epidemiologists is to rely on contact tracing. This

approach is useful at the onset of a pandemic, but it quickly becomes unfeasible when the

spread gains speed. For this reason, we focus on random testing. Though it may appear

foolish to test blindly without precise direction, it is the simplest mass-testing technology

that can be implemented, and we show below that it generates considerable welfare gains.

We divide the exposed population into two groups: the unidentified exposed and the

identified exposed, i.e., those designated as positive carriers. We maintain the notation E

for the unidentified. As before, these individuals are indistinguishable from the susceptible

S, as are individuals in the Ru group who recovered without ever exhibiting symptoms.

Thus, ex-ante, all individuals in the set S + E + Ru look alike to the planner. To separate

them, the government randomly tests subjects in this set. Subjects who test positive are

placed in a new group, denoted by Ep, and forced into mandatory quarantine. Since we

consider a testing technology that cannot detect antibodies, whether the individual is in S

or Ru remains unknown to the tester. To summarize, the total population becomes:

Nt = St + Et +Ru
t︸ ︷︷ ︸

unidentified

+ Ep
t + It +Rt︸ ︷︷ ︸
identified

.

To understand the relevance of testing, we analyze the new laws of motion. Suppose

a fraction αt of the unidentified individuals is randomly tested, then αtEt individuals are

identified as positive carriers. The laws of motion for the two exposed groups are:

dEt =


[
λSt(1−bt)

ιt
m(ιt, Et(1− bt))− (γ + σ + αt)Et

]
dt, if Et ≥ E

− (γ + σ + αt)Etdt, if Et < E
(11)

dEp
t = αtEtdt− (γ + σ)Ep

t dt. (12)

23We abstract from antibody testing. This technology is available and in use in many countries. However,
Obiols-Homs (2020) shows that this testing minimally reduces the spread of the virus.
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Equations (11) and (12) capture the first contribution of testing to welfare. Recall that only

the group Et can spread the disease, so the more contained this group is, the lower the

contagion rate. Comparing (11) with (2), it is evident that testing adds a downward drift αt

to the unidentified exposed group. Absent testing, in equation (2), the E group shrinks only

when individuals either become symptomatic, at rate γ, or recover, at rate σ. Now, some

individuals are also exiting the E group at rate αt, when they are identified as contagious

and enter the positively exposed group in equation (12).

Unlike the unidentified exposed E, when an identified case Ep recovers, she is known to

be immune. Then she joins the recovered group R rather than Ru. While the law of motion

for unidentified recovered Ru remains the same, the one for identified recovered R is now

modified to:

dRt = (ηIt + σEp
t ) dt. (13)

Equation (13) reveals the second contribution of testing. Comparing equation (13) to (6),

there is an extra inflow of agents with known immunity at rate σEp
t . Since the recovered Ep

are known to be immune, they rejoin the labor force, reducing the quarantine output costs.

In short, the group of positively tested individuals generates a bulk that reduces the

speed of contagion and increases the resources available to cope with the quarantine. This

is especially important when the exposed individuals may never be symptomatic. Without

testing, they would always be treated as the susceptible population subject to quarantines.

The law of motion for the infected is slightly modified to:

dIt = [γ (Et + Ep
t )− (η +∆t) It] dt, (14)

which differs from the previous law of motion (4) by accounting for the inflow of positively-

tested exposed subjects. The law of motion for the total population remains identical to

equation (7) since only the symptomatically infected are subject to the risk of death.

The production-feasibility set remains unaltered, with the mass Et + St +Ru
t subject to

quarantines qt are Rt allowed to work. However, some resources must be used to pay the

testing costs. Let x be individuals tested at a given instant, then the flow cost is governed

by the convex cost function Φ (x), with Φ (0) = 0, Φ′ (x) > 0, and Φ′′ (x) > 0. Accounting

for the cost of tests xt = αt (St + Et +Ru
t ), the feasibility constraint becomes:

Yt = (1− qt) (St + Et +Ru
t ) +Rt − Φ (αt (St + Et +Ru

t )) .

Formally, the planner’s problem (P) is modified by choosing the join path of quarantine and

testing {qt, αt : t ≥ 0}, subject to the new laws of motion and feasibility constraint.
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4.1 Testing technology

Since the fundamental dynamics of the economy are not affected by testing, we maintain the

previous parametrization (Table 2) and let the quarantine policy qt take the form specified

in equation (10). Two additional objects need to be addressed: the testing policy αt and

the testing cost function Φ(·). Regarding the testing policy, we assume a structure similar

to the quarantine function:

αt =

α̃ +ϖα × It, if t ≤ τ

0, if t > τ.
(15)

The testing cost function deserves additional considerations. Ample evidence exists about

the unit cost for testing, ranging from $5 to $50 per test. These costs are estimated around

“normal” levels of testing, but we consider a wide range of possibilities, including testing all

the population simultaneously. To capture the fact that the cost could significantly increase

due to stretched capacity, we assume that the cost function has linear and exponential

components: Φ(x) = ϱ0x+e
ϱ1
1−x −eϱ1 so that testing the whole population is infinitely costly.

If ϱ1 is sufficiently small, the marginal cost is approximately ϱ0 for low values of x.

We follow Atkeson et al. (2020) in calibrating the linear component of the cost function

and considering potential testing errors. The testing technology embodies two test types.

First, the population is screened with a fast antigenic test that costs $5 per unit. This test

is not 100% accurate: false positives and negatives will arise. Specifically, 2.79% of subjects

who are not infected generate a positive result, while 1.5% of those who are infected generate

a negative result. Those who tested positive on the first test take a second confirmation

(molecular) test that costs $50. If both tests deliver positive results, the subject is forced

into quarantine.24 We then convert the cost to units of daily output. The GDP per capita

in Italy is roughly e34,000 per year, a roughly daily output per capita of $100. As a result,

the linear cost is:

ϱ0 =
$5

$100
(S + E +Ru) +

$50

$100
(0.0279 (S +Ru) + 0.985E) .

Note that the marginal cost depends not only on the number of tests but also on the compo-

24We could also consider only the molecular test. This would be a suboptimal implementation of the
testing technology, substantially increasing the cost. Unlike Atkeson et al. (2020), we do not consider the
possibility that subjects who tested positive do not comply with the quarantine. Enforcement is a relevant
problem in many countries, especially the U.S., but not in Italy. Still, there is the test specificity problem;
even if it were possible to test 100% of the population, 1.5% would be wrongly categorized as “negative.”
Hence, some individuals would still be moving freely and spreading the virus. This caveat becomes relevant
only if the policy were aiming to screen the entire population.
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sition of the testing pool. We specify the exponential parameter to ϱ1 = 0.1. In Appendix F,

we consider a steeper exponential cost with ϱ1 = 0.5, reflecting a more constrained testing

capacity. With the baseline cost function, the exponential cost grows to the equivalent of

the entire daily output if we test 86% of the population and just 49% of the population with

the steeper cost function.

4.2 Testing as a substitute for quarantines

As we show in detail in Section 5, there are many combinations of parameters for which the

potential arrival of a vaccine does not affect the optimal policy. There are, however, some

cases in which it does so. For this reason, we present results mostly for the case in which

the vaccine is not expected to arrive, and we stress when it matters. We follow the approach

by Alvarez et al. (2021) and assume that the vaccine is also a perfect cure. Thus, when it is

discovered, all the people still alive remain so. We experimented with the approach of just

a vaccine, with no cure for the already infected, but this only makes it even less likely that

the vaccine can impact the optimal policy.

In Table 4, we present the main results. We compare the optimal combination of quar-

antine and testing policies in columns (3), (4), and (6). To contrast with Section 3.3, we

reproduce the (only) indiscriminate quarantine results in columns (1) and (2). In column

(5), we present a combination of parameters for which the vaccine’s expected arrival in two

years has a large impact. Unlike the previous section, the curvature parameter is relevant

in shaping the optimal policy, but only when following a suppression strategy. Conditional

on mitigation, the optimal policy is still invariant to the curvature. For this reason, we have

included two alternative computations for the optimal suppression with testing in columns

(3) and (4) while presenting only a representative result for mitigation.

Testing is used intensively in all scenarios; average testing during interventions ranges

from 8% to 90% of the unidentified population per day. How testing is distributed over

time depends on the planner’s aversion to output variation. When output variation is not

a concern, the interventions are short-lived but very intense. In contrast, when smoothing

is a concern, the interventions are long-lasting and less intense. It is also clear from Table

4 that the intense testing is compensating a major reduction in quarantines, either on their

intensity or duration. Thus, testing is substituting indiscriminate quarantines. 25

The significant substitution between quarantines and testing can be seen all across the

board. When mitigation is intended, the intensity of the quarantine drops down to zero.

25Alvarez et al. (2021) find that random testing would never be optimal. In their computation, they bound
testing: it is not possible to test “at a speed such that the entire population will be tested in a year.” This
bound discards all the paths that we find optimal.
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Table 4: Optimal Quarantine and Testing Policies

Quarantine Only Quarantine & Testing

Suppress. Mitiga. Suppression Mitigation

Lin. Util Log Util Log Util
(1) (2) (3) (4) (5) (6)

Critical mass E 1 person 0 1 person 1 person 0 0
Vax. arrival ϕ, annual 0 0 0 0 0.5 0

Intervention:
Initial day Mar 8 Mar 8 Mar 8 Mar 8 Mar 8 Mar 8
Duration (days) 80 128 1 18 1016 362

Quarantine:
Maximum q 0.61 0.18 0.58 0.17 0 0
Average q 0.59 0.11 0.58 0.09 0 0

Testing:
Maximum α - - 0.90 0.63 0.52 0.26
Average α - - 0.90 0.63 0.13 0.08
Total cost (% of GDP) - - 0.4% 1.1% 6.9% 1.3%

Sym. rate (per person) 2.4% 41.5% 2.4% 3.0% 3.8% 41.4%
Sym. people (million) 1.5 24.9 1.5 1.8 2.3 24.8
Asym. rate (per person) - - 0.13% 0.12% 0.2% 0.8%
Asym. people (thousand) - - 72 99 124 480
Immune rate (per person) 2.7% 45.5% 2.7% 3.3% 4.2% 45.4%
Immune people (million) 1.6 27.3 1.6 1.9 2.5 27.2
Death rate (per person) 0.03% 0.46% 0.03% 0.038% 0.05% 0.44%
Tot. fatalities (thousand) 18 275 18 23 29 266
Welfare gain (c. equiv.) 2.4% 0.21% 3.0% 2.9% 2.1% 0.46%

Notes: Columns (1) and (2) report the welfare gains for linear utility. With log utility, the welfare gains are

2.1% and 0.20%, respectively.

When instead suppression is the goal, either the quarantine’s intensity or duration are sub-

stantially reduced, and testing is significantly scaled up. In any case, rather than enacting

indiscriminate and inefficient quarantines, the planner prefers to use massive testing to iden-

tify the virus’ carriers and restrict them, and only them. As expected, the cost is not

negligible, with a minimum amounting to 0.4% of GDP, depending on the parameters con-

figuration. Nevertheless, it is definitively smaller than reducing daily production by 60%

for over 80 days (around 13% of annual GDP) under the optimal suppression strategy, or

reducing daily production by 11% for over 128 days (around 4% of annual GDP) under the

optimal mitigation strategy.

These numbers are far larger than the observed testing intensities by many countries,
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Figure 5: Optimal Quarantine and Testing

Panel A: Quarantine: suppression Panel B: Testing: suppression

Panel C: Quarantine: mitigation Panel D: Testing: mitigation

except for China. In all cases, sizeable welfare gains accrue compared to no testing scenarios.

With the logarithmic function, the consumption-equivalent welfare gain is 2.9%, compared

to only 0.21% without testing. The important takeaway from this result is that testing is a

substitute for, not a complement of, quarantines, reducing either the intensity or the duration

of quarantines. Looking at overall fatalities and infections, it is evident that the outcomes

are very similar to those in which testing is not allowed. The main difference lies in the

path for output, which generates larger welfare gains.

The quarantine and testing paths are depicted in Figure 5. The top panels, A and

B, correspond to the suppression strategies in columns (3) and (4) of Table 4. The bottom

panels, C and D, depict the mitigation strategy referred in column (6) of Table 4. In all cases,

the solid blue line represents the case with a linear welfare function, while the dashed brown

line represents the logarithmic welfare function. Two things are fairly evident from this

figure. 1) When mitigation is the intended strategy, independently of the welfare function’s
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curvature, indiscriminate quarantines are eliminated and substituted by massive testing. 2)

If suppression is possible, there is still a large substitution of lockdowns for testing, but the

extent of it depends on the aversion to output variation. For instance, if the welfare function

is linear (blue line in panels A and B), both the quarantine and testing spike for one day,

testing the entire unidentified population.26 To summarize, when testing is not possible,

a mitigation strategy is characterized by a long-lasting, low-intensity quarantine, while the

suppression strategy is consists in shorted duration by higher intensity intervention. When

testing is possible, all the intensity is loaded to testing rather than quarantines.

The implied output, number of unidentified asymptomatic individuals, and the identified

asymptomatic individuals by each optimal testing strategy can be found, respectively, in

Panels A, B, and C of Figures 14 and 15 in Appendix E. Panel C presents an additional

measure that exists only with testing: asymptomatic individuals previously identified as

positive and then recovered. Because now it is known that they are immune, they can work.

This measure becomes particularly relevant with long quarantines. After three months, it

amounts to almost 2% of the labor force.

It is worth noting that the mitigation strategy, due to its smoothing features, implies a

long-lasting prevalence of the virus. The second wave of testing observed in Panel D of Figure

5 mirrors the future increase in cases due to yet unachieved herd immunity. Note also that

the Italian implemented quarantine reaches suppression levels, but without the necessary

testing to eliminate the virus once and for all, it falls short of an optimal suppression and

log of optimal mitigation.

Finally, in column (5) can be seen that the expected arrival of a vaccine (when it matters)

may have a significant impact reshaping the optimal policy. To understand why, it is useful

to compare it with columns (4) and (6), where all parameters are the same except ϕ. When

ϕ = 0, since E = 0, the government follows a long-lasting intervention consisting of very

intense testing without quarantines. As with all standard mitigation policies, these policies

generate sizeable fatalities. When ϕ > 0, the government scales up significantly the testing

efforts while still not using quarantines. The effort significantly reduces the number of

fatalities and the immunity rate by an order of magnitude. Indeed, comparing it with

column (4), this strategy, rather than pursuing mitigation, is following suppression despite

E = 0: eliminating the virus without resorting to herd immunity. Suppression is achieved

by completely substituting quarantines with testing.

26We want to emphasize that the percentage is with respect to the unidentified S + E + Ru, not with
respect to the entire population, so that the number of tests is continuously decreasing over time.
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5 Medical innovations: hoping for the cure

At the moment of the outbreak, there was a major debate about the vaccine timeline. Based

on previous experiences, many specialists argued that it was too optimistic to think about

it as a possibility before three years. Others argue that something could be done with

significant investment in just a year. Ex-post, the vaccine arrived in the lower end of the

estimates.27 How do these ex-ante expectations affect the optimal policy? If different health

authorities have different expectations, would they react differently?

Given the previous results, one may wonder whether the illustrative example we showed

Section 4 represents a general pattern or just a particular case that we cherry-picked. We

argue in this section that for intermediate values of ϕ, the expectation of a potential future

vaccine creates an option value akin to the critical mass: a hope for the cure. In turn, the

hope that the disease can be eradicated adds value to those policies that preserve lives during

the vaccine waiting time.

However, the option value is non-monotonic in ϕ. Thus, it may either generate significant

changes on the optimal policy or being innocuous. The non-monotonicity of the option value

is fairly intuitive. On the one hand, suppose that ϕ → ∞ so that the cure is expected to

arrive immediately, then the illness does to pose a threat and the option value is zero. On

the other hand, suppose that ϕ = 0 so that the cure will never arrive, then even though

it would be valuable, since the vaccine would not arrive its value is again zero. It is for

high uncertainty configurations (intermediate ϕ) that this effect kicks in. Then, how does it

translate into policies? We show here that when there is no critical mass (E = 0), there is

a non-monotonic relationship between the intervention’s intensity and ϕ; the optimal policy

may jump from mitigation to suppression. Instead, when the critical mass is already present

(E > 0) the effect is monotonic. Since a “hope” with option value is already present, the

intervention’s intensity is mostly unaffected by ϕ, as long as it is not too large.

To understand these arguments consider Figure 6, which plots the optimal lockdown

policies when testing is not available for different values of ϕ. These values range from

ϕ = 0, so that the vaccine never arrives as in Section 3.3, to an annual rate of 365, in which

case the vaccine is expected to arrive the next day. In all cases, the welfare function is linear.

Panel A displays the average intensity of the quarantine, Panel B the duration, and Panel C

resumes this information depicting the number of fatalities conditional on the cure never

arriving. In each panel, the continuous blue line represents an economy with a critical mass

equivalent to 1 person, while the dashed brown line an economy without critical mass.

27Arrival must be interpreted carefully. One thing is the discovery and another the implementation. Many
countries are still literally vaccine-less.
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Figure 6: Only quarantines: hope for the cure effect
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Note: The horizontal axis is in log scale in the three panels.

When the vaccine is expected to arrive almost immediately, it is never optimal to intervene

irrespective of the critical mass. Since the vaccine is on the way and the virus takes time

to reproduce, it is better to let it spread and avoid the output cost. Even though expected,

the vaccine may never arrive, in which case the number of fatalities is large (Panel C).

Technically speaking, the vaccine (or cure), has zero option value. As the expected time

of arrival increases (ϕ decreases), the option value becomes positive, then it is optimal to

intervene preserving lives until the cure solves the problem once and for all. Intuitively,

for sufficiently short expected arrival times, the intervention is not expected to last long,

implying a small output cost. Hence, the interventions with and without the critical mass

coincide: the policy is intended to suppress the virus.

Note, however, that as ϕ decreases the paths conditional on E diverge. If E > 0, the

policies quickly converge (for an expected arrival larger than two months) to the analogous

with ϕ = 0 as in Section 3.3, while if E = 0 the policies follow a non-monotonic pattern.

In this last case, the option value is sufficiently large that it creates an effect similar to a

critical mass, deepening the intervention and saving more life. In one case, the hope is in the

hands of the government (belief in critical mass), while in the other depends on innovators

(belief in science). This effect eventually fades out; for very low values of ϕ, the cure is no

longer expected, so the option value is again zero, converging to the results in Section 3.3.28

The switch from mitigation to suppression is more striking when testing is possible, as

depicted in Figure 7, illustrating the optimal quarantine and testing policies conditional on

E = 0. The panels’ interpretation is similar to Figure 6, but there is an extra panel depicting

the testing intensity. Moreover, the continuous blue line now corresponds to a linear welfare

function, while the brown dashed line is a logarithmic one. The non-monotonic effect of the

option value is very clear. Also, the switch to the suppression strategy for intermediate values

28Few papers have taken a deeper look at these vaccine implications. See Garriga et al. (2020) and van
Wijnbergen (2021).
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Figure 7: Testing and quarantines: hope for the cure effect: E = 0
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Note: The horizontal axis is in log scale in all panels. Deaths are computed conditional on the vaccine not
arriving and are the equivalent to excess deaths in data rather than the officially reported COVID fatalities.
See Figure 16 for the case with E > 0

of ϕ. Recall that since E = 0 suppression is never optimal when ϕ = 0. As in Section 4,

the suppression strategy manifests in massive testing rather than a harsh lockdown. Indeed,

when the welfare function is logarithmic, the quarantine is minimal, loading the weight of the

intervention on intense testing. In Appendix G, Figure 16, we show the analogous patterns

when E > 0. There it is clear that, because of the hope-for-the-cure effect is always present,

the optimal policies are monotone in ϕ: there is always the option to eliminate the virus.

5.1 Heterogeneous responses and beliefs about the cure

One important takeaway from the last two sections is that minor parameter variations can

generate drastic changes in the optimal implemented policies. It is widely believed that some

countries choose “soft” (or non at all) lockdowns because the authorities, or the society, put

a higher weight on the economic activity rather than lives. Our analysis shows that this

intuition is in some way correct. However, this tradeoff can rationalize only a few cases
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where countries with a very low valuation of life would decide not to intervene, while the

other would most likely follow some form of mitigation strategy. If the expectation is that

the only definitive solution lies in herd immunity, then the government needs to make sure

that hospitals are not saturated. After this is taken care of, the necessary fatalities to obtain

herd immunity are already determined and are unavoidable. Moreover, since quarantine

paths are determined by the virus’ dynamics, one should observe a large cluster of countries

following similar mitigation strategies.

Instead, there has been a wider range of observed heterogeneity in the responses. There

are some emblematic examples like China and New Zealand with very strict lockdowns,

compared with the light measures imposed in Sweden and many U.S. states. Although it

is possible to argue in favor of no-intervention appealing to the lives-output trade-off alone,

strict lockdowns can only be rationalized if hope for a cure exists. This hope can manifest

in two alternative ways. The government may believe that it could eliminate the virus by

stopping all human interactions for a determined time span. Once the last person infected

is either recovered or dead, the virus is gone for good. This interpretation could suit well in

countries that can control their borders or have a legal system more amicable with restrictions

to free movements.

The hope can also stem from believing that either a vaccine or effective treatment would

soon arrive and solve the problem. Unlike the mitigation case, now the country can achieve

immunity without paying a stiff price in human lives: deaths are avoidable. Thus, the

government can have incentives to implement strict measures to wait out for the vaccine to

arrive. This process could save many lives that, after the cure’s arrival, would be permanently

safe. One country that could fit this profile would be Norway. Of course, for this strategy to

succeed and make sense, the expected arrival time must not be too distant into the future.

As a result, if one groups countries according to their initial beliefs about the possibil-

ity of reaching the critical mass and their beliefs about the expected waiting time for the

vaccine, each group would be very different from the other. Moreover, once quarantines are

combined with testing, the heterogeneity of suppression strategies grows considerably (see

Table 4). Unlike mitigation strategies, the suppression strategy paths do depend on the

trade-off between lives and output when testing is possible. However, one should expect

that as the virus spreads across locations, the belief that it could be eliminated should fade

away. Similarly, as the outcomes of medical research efforts become public, the beliefs about

the vaccine should become more homogeneous.
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6 Conclusions

In this paper, we have extended the standard epidemiological SIR model allowing for asymp-

tomatic subjects to be tested, considering the trade-off with output losses. Our results are

twofold. First, we show that the specification of the welfare function has little impact on

the optimal lockdown path policy. Slight alterations in the trade-off between fatalities and

output may generate jumps in the government’s strategies. However, it does not change the

optimal path once the strategy is chosen. The jumps are due to the policymaker’s believes

about the possibility that the virus could be eliminated or that a cure would eventually arrive

and do the job. This finding could explain the widely diverse policies followed by different

countries. Some, such as China, New Zealand, and Australia, chose strict lockdowns. In

contrast, others, such as the United States, Sweden, and Brazil, have relied on mitigation

strategies, with higher implied costs in terms of lives but lower output costs.

Second, we find that strong reliance on lockdowns alone is inefficient. Random mass

testing may appear untenable and extremely costly initially, but it is a feasible, vastly supe-

rior alternative to the even more expensive indiscriminate restrictions on economic activity.

Pandemics are not new to humanity, and the risk of future ones remains. When they happen,

they can be devastating. An important takeaway from our paper is that if the friction is

the lack of information, policies should be directed to overcoming it. Testing is superior to

lockdowns, not just a complementary policy but a tool that can eliminate the output costs.
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Appendix

A Model moments

For an infected patient, if treated, the density function of dying after s units of time is:

f t (s) = θe−(η+θ)s.

The death rate is: ∫ ∞

0

f t (s) ds =

∫ ∞

0

θe−(η+θ)tds =
θ

η + θ
.

The density function of recovering after s units of time is

gt (s) = ηe−(η+θ)s.

The average recovery duration is:∫ ∞

0

gt (s) sds =

∫ ∞

0

ηe−(η+θ)ssds =
η

(η + θ)2
.

Similarly, if untreated, the death rate is δ
η+δ

. The average recovery duration is η

(η+δ)2
.

B Parameters estimation

We first calibrate the parameters that have a direct medical interpretation and for which

there is clinical information. The transition rate γ, from exposed to infected, directly maps

to the incubation period, which is 6.5 days according to Ferguson et al. (2020). Thus, we

set 1/γ = 7. The recovery rate of symptomatic subjects, η, is related to the recovery time.

This moment, however, falls into a wide range. Ferguson et al. (2020) state that it takes

nine days on average for a subject to recover. In contrast, the data on active cases in Italy

implies that it takes an average of 48 days. The latter number appears exaggerated, probably

reflecting delays in the administrative process to “officially” declare a subject as recovered.29

The experience for the European outbreak shows that nine days seems to be on the low end;

many studies suggest somewhere around 14 days (see Chen et al. (2020)). For this reason,

we target an average recovery time of 17 days.

29An individual is declared recovered after two consecutive tests with negative results. Thus, delays in
testing could lead to the delayed resolution of the active cases. Also, some regions take longer than others
to process the patients’ paperwork.
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Specifically, in our model the recovery time is coupled with the death rate and depends

on whether the infected patients are treated or not. When treated, a patient recovers in
η

(η+θ)2
days, and a fraction θ

η+θ
of patients die. When left untreated, a patient recovers in

η
(η+δ)2

days, and a fraction δ
η+δ

of patients die. Details for the computation are included in

Appendix A. Knowing the daily death rate θ, we can then back out the recovery rate η to

target a recovery time of 17 days.

There are four parameters for which there is ample uncertainty: θ, σ, λ, and t̂I0: the initial

day of the outbreak. The daily death rate is also needed to pin down the recovery time. σ

determines how long an asymptomatic agent can be contagious and therefore is important

shaping the dynamics. Finally, λ, determines the reproduction factor of the virus R0, which

has been the subject of considerable debate. One may think that σ is a fundamental property

of the virus, in the sense that it should be the same across countries. However, both θ and λ

can be specific to each country. For instance, the age structure of the population can affect

average death rates, while the nature of the social interactions would determine λ.

To address these issues, we estimate {t̂I0, θ, σ, λ} to match the observed dynamics of

COVID-19 in Italy. One approach would be to fit the dynamics of infected cases, but this

is problematic: the official reported number of “cases” captures only the individuals who

were tested and generated a positive result. There are many reasons to believe that this

measure underrepresents the true cases. First, those asymptomatic are rarely tested and

therefore not recorded. Second, as is well known, test kits were scarce during the onset

of the pandemic, which forced the authorities to test only subjects who were likely to be

infected or vulnerable. Thus, many mildly symptomatic individuals were left untested.

Our model features a one-to-one mapping between infections and fatalities, so we target

the fatalities path. But also these measures are controversial. Since many fatalities, especially

at the peak of the infection, may have been reported as unrelated to COVID-19, this statistic

could be underestimated. To deal with this caveat, and following Rinaldi and Paradisi (2020),

we compute the excess daily fatalities in Italy relative to the previous years. In Panel A of

Figure 8, we show the daily excess number of deaths and the daily official deaths due to

COVID-19. It is evident that the steep increase in excess deaths at the peak of the first

wave, in March 2020, is not reflected in the official death number. This pattern remains for

most of the sample, albeit with a reduced gap after the initial peak. For this reason, we are

confident that the excess death number provides a more accurate measurement.

To be precise, we target the path of daily fatalities from March 8 to May 31, 2020. We

exclude the dates before the first intervention on March 8 (the first reported COVID-19

death was on February 22) because the relevance of COVID-19 for causing excess deaths is

lower. We are confident, though, that most of the excess deaths in March are COVID-19
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Figure 8: Data on Fatality and Movements

Panel A: Fatalities Panel B: Movements

Notes: In Panel A, daily excess deaths are computed as the number of deaths relative to the average of the

same day in the previous five years, based on the information released by Instituto Nazionale di Statistica:

found at https://www.istat.it/it/archivio/240401. The plotted data series ends on November 30, 2020.

Since the number of deaths in January 2020 is relatively smaller than the previous years, we normalized the

series such that the average for January is zero. In Panel B, the movement series is normalized such that

the average movement before the arrival of COVID-19 is 1. For further details, see Durante et al. (2021).

related. This leads to the choice of {t̂I0, θ, σ, λ} to minimize the loss function in equation (9).

To implement this calibration strategy, we need three additional pieces of information.

First, for a given number of initially recorded fatalities, many combinations of outbreak date

and initially exposed mass are consistent with the observed initial deaths. To avoid this

ambiguity, we set the initial infection to two persons, i.e., E0 = 2/60million.30

Second, as we specify in equation (8), the extent of social distancing depends on gov-

ernment interventions and the population’s behavioral response. To measure government

intervention, we appeal to some estimates of the effect of lockdown policies on economic

activity using information from Guiso and Terlizzese (2020). They estimate that the initial

intervention, on March 8, affected 16% of sectors and the second intervention, on March 22,

reached 40% of sectors. We adjust these values upward, because these estimations do not

consider the effect of school closings. As stated by Barrot et al. (2021), the fact that workers

remained home to take care of their children had an important impact on GDP. Thus, we

impose that the initial intervention is q = 1/4 and the second is q = 1/2.31

We measure social distancing using the movement index by Durante et al. (2021), based

30The Italian population is around 60 million people. The initial reports in Italy estimated that there
were two independent outbreaks, the “Lombardia” and “Veneto” clusters.

31We could directly use the ex-post measured GDP. However, the resulting output would be endoge-
nous to the behavioral responses. Our measured q, which uses the ex-ante shares of each affected sector,
instrumentalizes the intensity of the intervention.
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on cellphone information. The observed mobility pattern is plotted in Panel B of Figure 8

with the blue curve. For comparison, the black line represents the implemented lockdown

measures qt. A couple of features are worth noting. First, it is evident that individuals

started reducing their movements before the restrictions were imposed (also documented

by Farboodi et al. (2021) in the U.S.). The initial endogenous reaction prior to March 8

is measured by the distance between the blue and black lines. Second, restrictions further

reduced mobility. The initial mild lockdown introduced on March 8 is accompanied by a

sizable reduction in movements; the more intense lockdown introduced on March 22 led to a

further decline. This approach delivers the results in Appendix B.2 summarized in Table 1.

Finally, we assume that hospital capacity started to bind on February 24, 2020 and

continued to do so until March 31, 2020. As hospital capacity binds, for the untreated

patients, we assume that the daily death rate is double of those treated, i.e., δ = 2 × θ. In

Appendix B.1, we describe in detail the rationales leading to this assumption. This implies

that initially the number of fatalities was larger because some patients were left untreated.

Our setting does not explicitly distinguish between patients who require critical care

versus those who don’t. Thus, we scale the observed hospital capacity to compensate for

this feature. At the time of the outbreak, there were 5, 343 beds in intensive care units (ICU)

for a population of 60 million.32 Since only 1.32% of infections need critical care, the country

can treat no more than 5, 343/0.0132 infected individuals at a time.33 Thus, the country

is prepared to treat only (5, 343/0.0132)/60million = 0.67% of the population. To capture

the observed increase in capacity, we assume a quadratic function for the ratio Ht/It such

that Ht < It before February 24 and after March 31, with the series reaching a minimum on

March 14 (greatest excess demand for ICU beds). This choice makes sure that the excess

capacity pastes smoothly in the corners and that the dates exactly pin down the parameters

of the quadratic function. The dates are chosen to match the sharp increase in deaths during

March and the subsequent fall in April (see Panel A of Figure 8). Given It, we can recover

the implicit series for hospital capacity Ht.

B.1 Estimating fatality rates

There is much controversy about the “true” value of the fatality rate, especially when all

the available data is too raw to provide a concrete answer. Most studies tend to state that

on average 1% of the infected die. However, this value could significantly change with the

32At the time of the outbreak, this was announced by the Italian prime minister and confirmed later by
data releases. Since October 2020, the Italian government has been posting daily figures about ICU capacity,
but for the time frame of our calibration, this information is not readily available.

33This calculation is based on facts provided by Ferguson et al. (2020): 4.4% of those infected with
COVID-19 become hospitalized and 30% of hospitalized patients would require critical care.
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Table 5: Fatality Rates: South Korea and Italy

Weight Lethality Weight

Number (%) Number (%) Rate (%)
age 

group
Number (%) Number (%) (%)

age 
group

9,137 100 126 100 1.38 1 35,731 100 3,047 100 8.5 1

Above 80 406 4.4 55 43.65 13.55 0.0342 5,352 15 1,243 50.2 23.2 0.0717

70–79 611 6.7 39 30.95 6.38 0.0672 7,121 19.9 1,090 35.8 15.3 0.0988

60–69 1154 12.6 20 15.87 1.73 0.1198 6,337 17.7 312 10.2 4.9 0.1216

50–59 1724 18.9 10 7.94 0.58 0.1648 6,834 19.1 83 2.7 1.2 0.1549

40–49 1246 13.6 1 0.79 0.08 0.1626 4,396 12.3 25 0.8 0.6 0.1531

30–39 943 10.3 1 0.79 0.11 0.1405 2,525 7.1 9 0.3 0.4 0.1172

20–29 2473 27.1 0 0 0 0.1327 1,374 3.8 0 0 0 0.1027

10–19 475 5.2 0 0 0 0.0954 270 0.8 0 0 0 0.0956

0–9 105 1.2 0 0 0 0.0828 205 0.6 0 0 0 0.0843

All

Age

South Korea Italy

Classification
Cases Fatal cases Cases Deaths

demographic structure of the population. In particular, the fatality rate appears to sharply

increase with age and the lack of proper treatment. Given our focus on the outbreak in Italy,

both factors are first-order issues for our estimation.

The study by Ferguson et al. (2020) estimates that the average fatality rate in Wuhan is

around 0.99%. They also state that around 4.4% of the infected subjects require hospital-

ization and that 30% of the hospitalized cases require critical care; even with proper critical

care, a patient dies with 50% chance. If we assume that without critical care the subject

dies with certainty, it implies that the fatality rate for the untreated is twice the analogous

for the treated. This indicates that δ ≈ 2× θ, providing the first support for our calibration.

Another approach to determine the difference between θ and δ is to compare fatality rates

in a country loose healthcare capacity with another that was constrained. A candidate for the

former is South Korea, while Italy is a clear case of the latter. Table 5 presents the detailed

rates by age for the two countries. To compute the average, we add across the age-specific

rates weighted by the corresponding weights of the age groups in the population. We obtain

that the average rate is 1.22% for South Korea and significantly higher, at 4.09% for Italy.

But, how much of the gap is due to older demographics in Italy and how much is due to the

overwhelmed Italian healthcare system? To address this question, we made an intermediate

calculation: we recompute the average death rate for South Korea using the population

weights of Italy, which delivers 1.92%. We interpret the difference 1.92%− 1.22% = 0.7% as

the pure age composition effect. This number is by itself substantial and informative about

the significant risk that COVID-19 presents for an “old” country like Italy.

Still, the case fatality rate in Italy is around 4% and, if our adjustment is correct, the

residual two percentage points are not explained by the age composition. If we were to

attribute the residual difference to the shortage of proper medical care, we would obtain

again that δ ≈ 2 × θ. Since these two independent sources deliver consistent estimates, we
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Table 6: Estimated Coefficients for Social Distancing

Variable Coefficient Std. Dev. t-Stat

β̂0: government policy q 1.225 0.0822 14.90

β̂1: reaction to deaths 0.00011 0.000034 3.29

β̂2: awareness 0.246 0.0312 7.87
Intercept 0.141 0.0305 4.62
Monday -0.149 0.0394 -3.79
Tuesday -0.167 0.0394 -4.24
Wednesday -0.162 0.0394 -4.11
Thursday -0.172 0.0394 -4.37
Friday -0.195 0.0388 -5.02
Saturday -0.115 0.0388 -2.96

calibrate our model with δ = 2× θ.

B.2 Empirical model for social distancing

We estimate equation (8) using the following empirical specification:

bt = α̂ + β̂0qt + β̂1D
data
t + β̂2Awarenesst +

6∑
i=1

β̂2+i day
i
t, (16)

where bt is social distancing measured as 1−movement index, Ddata
t is the observed number

of fatalities on day t, Awarenesst is an indicator function that takes the value 1 starting on

February 20, 2020, when it became widely known that the virus was in the country, and dayit

captures the day effect from Monday to Saturday. As discussed in Section 2, equation (16)

contains three important coefficients. First, β2 captures the break in behavior due to the

outbreak of the virus. It is a permanent and constant increase in social distancing.34 Second,

the parameter β1 captures the additional reaction of the population as the virus spreads.

Thus, absent any government intervention, mobility will reduce by β1Dt+β2 at day t. Third,

β0 captures the effectiveness of the intervention. With full compliance, β0 should be around

1. But it could be β0 < 1, when there is substitution of other social interactions, or bigger

than 1 when there are complementarities.

34Following Durante et al. (2021), we set the initial “awareness” day as February 20, 2020.
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C Simulation without intervention

We can estimate the evolution of the illness, and its economic impact, absent any government

intervention, i.e., with qt = 0 for all t. Figure 9 shows the main variables dynamics. In the

top panel, we show the endogenous social distancing measures. Even without intervention,

social distancing is still reduced with qst falling sharply. This is the blue curve vs. the

observed red ∗ data points. Mobility reduces by more than 50%, even without a quarantine.

This happens because of voluntary social distancing: without an indiscriminate quarantine,

more people are infected, which in turn strengthens the individual reactions (β1 > 0).

In the second panel, we plot the proportion of infected and exposed subjects and the

hospital capacity at each day. The economy starts with an initial mass of 2/60million

of exposed individuals and 0 infected. Initially, the exposed move around and engage in

economic activities without necessarily knowing that they are carriers. Soon after, some

“confirmed” infected start to arise, but still those numbers are very small, and definitively

smaller than the number of exposed individuals. In this period, the growth rate of the

infection is high, around 100% per day, but the quantities do not seem alarming due to the

still small number of affected individuals. After 45 days, the number of infected is about

the same as the number of exposed. At this point, if a policymaker takes a picture of the

situation, she can see only the type I individuals, but the number of carriers is 2× I.

Nevertheless, the number of infected cases is still small, although growing over time. The

initial slope is steep, with the growth in the number of total cases on an explosive path.

The situation deteriorates after around 40 days when the hospital capacity is reached. The

fatality rate that was low at the beginning starts to rise due to the infected people who are

either untreated or badly treated (third panel). After 90 days, the number of infected is at

its maximum, with around 5% of the population symptomatically infected, and 4% infected

but not showing symptoms yet.

At this point, the growth rate of the infected starts to decrease. The main reason for this

is that the number of susceptible people reached a point, such that the reproduction rate of

the virus λ(S/N) is lower than its death rate, given by η +∆t. After that, the virus starts

to die by itself. The cost of lives lost is high—without intervention, 0.36% of the population

dies, with an analogous effect on total production and consumption.

These simulations yield two important takeaways. First, the virus needs unaffected indi-

viduals to reproduce. As the infection spreads, the number of susceptible subjects decreases.

More meetings start to happen between exposed and already immune individuals. It is true

that still some new subjects become infected, but every period fewer individuals are becom-

ing infected than the people who are either recovering or dying. In addition, the population
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Figure 9: Potential Path: No-Intervention Scenario
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changes its behavior. As the prevalence explodes, agents start to adjust their behavior which

significantly slows down the reproduction of the virus. This additional uncoordinated social

reaction is key to determining the necessity of further public intervention.

D Supplementary figures: quarantines without testing

In Figures 10 and 11, we plot the effect of the optimal interventions described in Table 3 over

output (Panel A), infected cases (Panel B), and fatalities (Panel C). All the patterns are

intuitive. The optimal suppression policy generates a large drop in output but also quickly

reduces the number of cases and fatalities. In contrast, mitigation has a smaller impact

on production but accumulates more infected cases and generates more fatalities; it also

achieves the goal of delaying the number of cases and fatalities until the hospital capacity is

increased.

Figure 10: Intervention and Effects: Suppression

Panel A: Output

Panel B: Cases

Panel C: Fatalities
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Figure 11: Intervention and Effects: Mitigation

Panel A: Output

Panel B: Cases

Panel c): Fatalities
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Figure 12: No intervention and no behavioral response
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D.1 A convex welfare function

Figure 13 illustrates the lack of concavity in the welfare function depicting a scenario in which

the optimal policy is about to switch from mitigation to suppression (the black dot in Figure

4). It plots in three dimensions the welfare outcomes for different combinations of average

quarantine intensity and its duration. The welfare function has two peaks, corresponding to

the two potential strategies. The mitigation peak corresponds to an intervention with low

intensity (11%) and a longer duration (128 days) than the suppression peak, with higher

average intensity (59%) and a shorter duration (80 days). The resulting welfare gains are

very similar. Changes in the parameters described in Figure 4 change the relative level of

the peaks, but not their positions in the figure. That is what generates sudden jumps in

strategies with small effects in the implied dynamics. Figure 13 also stresses the difficulty of

finding the optimal policy in this kind of setting. Since the problem is not concave, we can

not rely on first-order conditions, which can lead to a local maximum. Instead, a grid-search

algorithm is guaranteed not to fail, and it delivers the correct global maximum. Moreover,

since the exact parametric values lead to either one strategy or the other, it is impossible to

state which strategy is better without a good assessment of the cost of lives lost. For this

reason, in what follows, we present both types of optimal policies.

Figure 13: Switch between Mitigation and Suppression: Two Peaks in Welfare

Notes: The changes in welfare are under ε = 2 and E = 1/60million. The cost of life is 36 years of per capita

output, which corresponds to the switching point of the optimal policy from mitigation to suppression as

depicted in Panel A of Figure 4.
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E Supplementary figures with testing

Figure 14: Intervention and Effects: Suppression with Testing

Panel A: Output

Panel B: Unidentified Exposed

Panel C: Identified Recovered

50



Figure 15: Intervention and Effects: Mitigation with Testing

Panel A: Output

Panel B: Unidentified Exposed

Panel C: Identified Recovered
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F Higher cost of testing

Table 7: Optimal Quarantine and Testing Policies: High Cost

Quarantine Only Quarantine & Testing

Suppression Mitigation Suppression Mitigation

Lin. Util Log. Util
(1) (2) (3) (4) (5)

Intervention:
Initial day Mar 8 Mar 8 Mar 8 Mar 8 Mar 8
Duration (days) 80 128 15 46 321

Quarantine:
Maximum q 0.61 0.18 0.58 0.22 0
Average q 0.59 0.11 0.56 0.21 0

Testing:
Maximum α - - 0.44 0.28 0.13
Average α - - 0.44 0.27 0.04
Total cost (% of GDP) - - 3.2% 4.2% 3%

Symptomatic rate (per person) 2.4% 41.5% 2.4% 3.3% 40.9%
Symptomatic people (million) 1.5 24.9 1.5 2.0 24.6
Asymptomatic rate (per person) - - 0.11% 0.14% 0.81%
Asymptomatic people (thousand) - - 63 90 484
Immunity rate (per person) 2.7% 45.5% 2.7% 3.6% 44.9%
Immune people (million) 1.6 27.3 1.6 2.2 26.9
Death rate (per person) 0.03% 0.46% 0.03% 0.04% 0.46%
Total fatalities (thousand) 18 275 18 25 274
Welfare gain (consumption equiv.) 2.4% 0.21% 2.7% 2.5% 0.25%

Notes: Columns (1) and (2) report the welfare gains for linear utility. With log utility, the welfare gains are

2.1% and 0.20% respectively.
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G Vaccines and critical mass together: E = 1/60mn

This figure is analogous to Figure 7 but with E > 0 equivalent to 1 individual in the

population. The main take away is that the intensity of the intervention is monotone in ϕ.

Figure 16: Testing and quarantines: hope for the cure effect
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Panel D

0.5 1 5 10 100 365

Vaccine arrival rate (annual)

0

0.2

0.4

0.6

0.8

T
e

s
ti
n

g
 i
n

te
n

s
it
y

0

Note: The horizontal axis is in log scale in all panels.

53


