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Abstract

In this paper, we argue that endogenous shifts in private consumption behavior across sectors of
the economy can act as a potent mitigation mechanism during an epidemic or when the economy
is re-opened after a temporary lockdown. We introduce a SIR epidemiological model into a
neoclassical production economy in which goods are distinguished by the degree to which they
can be consumed at home rather than in a social, possibly contagious context. We demonstrate
within the model, that the “Swedish solution” of letting the epidemic play out without much
government intervention and allowing agents to reduce their overall consumption as well as shift
their consumption behavior towards relatively safe sectors can lead to substantial mitigation of the
economic and human costs of the COVID-19 crisis. We argue that significant seasonal variation in
the infection risk is needed to account for the two-wave nature of the pandemic. We estimate the
model on Swedish health data and show that it predicts the dynamics of weekly deaths, aggregate
as well as sectoral consumption, that accord well with the empirical record and the two-waves for
Sweden for 2020 and early 2021. We also characterize the allocation a social planner would
choose and how it would dictate sectoral consumption patterns. In so doing, we demonstrate that
the laissez-faire outcome with sectoral reallocation mitigates the economic and health crisis but
possibly at the expense of unnecessary deaths and too massive a decline in economic activity. 
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1 Introduction

The COVID-19 pandemic of 2020-21 has the world in its grip. Policymakers wrestle to find the optimal

balance between economic activity to permit and the corresponding risk of death. The policy response

to the disease outbreak in the early spring of 2020 was swift but varied, with many countries around the

world effectively shutting down their economies for extended periods of time. On the other hand, other

countries adopted policies that let the pandemic run its course without much government intervention.

Perhaps the most pointed example in the latter group is Sweden, which has largely avoided government

restrictions on economic activity and allowed people to make their own choices instead. One can rea-

sonably argue that Sweden was not as extremely laissez-faire as just described: the Swedish government

provided many guidelines and recommendations to its citizens. The Swedish population largely followed

these to mitigate the COVID-19 spread. Nonetheless, the Swedish approach differed significantly from

the lockdowns and restrictions imposed by most other countries. As such, we will interpret our analysis

of Swedish data as the laissez-faire extreme, in which the pandemic does not move the government to

intervene in the economic adjustments of private behavior and in the economy as a whole. For the

purposes of this paper, we will refer to the laissez-faire model as the “Swedish Solution”

In this paper, we evaluate the extent to which consumers concerned about their health, even in the

absence of government intervention, will seek to mitigate economic interactions that carry the risk of

infection, given the potentially disastrous consequences to their health. We then deduce the macroe-

conomic and public health consequences from the “Swedish Solution”. We pay particular attention to

quantitatively matching the data on COVID-19 deaths in Sweden to the model predictions.

We conduct our analysis within a simple macroeconomic model, where agents consume and work,

combined with a standard epidemiological SIR (“Susceptible-Infected-Recovered”) model modified by

Eichenbaum et al. (2020), (ERT) who assumed that infections are more likely when agents are consuming

or working together1. Individuals participating in these market activities are aware of the resulting

infection- and death-risks, and thus may alter their consumption and work patterns as the epidemic

unfolds, but do not take into account the externality of their behavior on the infection risks of others.

Like them, we view the endogenous response in the behavior of people, motivated by their own interest in

preserving their life as key in understanding the spread of a pandemic and, ultimately, its economic costs.

Such a model is a significant advance from the purely epidemiological models succinctly summarized in

Atkeson (2020).

We depart from ERT in two crucial dimensions, by altering the economic as well as the epidemiological

mechanism. For the first dimension, i.e., regarding the economic mechanism and in contrast to ERT, we

1See Atkeson (2020) for an introduction to SIR models for economists.
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assume that the economy is composed of several heterogeneous sectors that differ technologically in their

infection probabilities. There are two interpretations of this assumption. One is, that very similar goods

(e.g. pizza) can be consumed in the privacy of the home rather than in the marketplace (restaurant).

Alternatively, very similar work may also be performed remotely rather than in an office, e.g., writing a

report online. In both cases, the re-allocation of labor is fairly simple: it is the resulting goods generated

and the implication for social and contagious interaction that matters. Our model’s key mechanism is

the endogenous, privately optimal reallocation of individuals towards less contagious economic activities

and away from sectors in which consumption (or production) is subject to larger COVID-19 infection

risk.

To support the empirical relevance of this mechanism, we point to Leibovici et al. (2020) who provide

evidence for substantial heterogeneity across sectors of the U.S. in the degree of social interaction to

facilitate the production of goods and services. Dingel and Neimann (2020), as well as Mongey and

Weinberg (2020), assess what share of jobs can be performed at home, and Toxvaerd (2020) provides

an equilibrium model in which social distancing is an endogenous outcome emerging from individually

rational behavior. Consistent with our main mechanism, Farboodi et al. (2020) provide evidence from US

micro-data for a large reduction in social activity by private households even prior to the implementation

of public stay-at-home-orders and lockdowns of economic activity.

Fig. 1 displays seasonally adjusted Swedish monthly consumption expenditures on restaurants and

groceries, together with total consumption. At the onset of the epidemic in March of 2020, there is clear

evidence of reallocation of consumption activities away from food consumption in restaurants to food

consumption at home. Aggregate consumption fell by 10% between February and April 2020, whereas

consumption in restaurants collapsed by 50%. In contrast, expenditure on groceries - a proxy for food

consumption at home - actually increased 5% between February and March and held steady thereafter.

Similarly, when the second wave of infections and deaths commenced in late October, restaurant con-

sumption again plummeted, whereas expenditure on groceries mildly increased and overall consumption

slightly declined. It is this reallocation between sectors or modes of consumption that is at the heart of

our quantitative dynamic equilibrium model.

The quantitative potency of this reallocation mechanism depends crucially on the degree to which

goods in different sectors can be substituted, as measured by the elasticity of substitution across goods (or

work activities), which we denote by η in our paper. If different sectors are interpreted simply as different

modes (e.g. food at home, food in restaurants) in which otherwise similar goods are consumed, then

this elasticity can be assumed to be high. An alternative interpretation is that these sectors represent

rather distinct goods or distinct lines or work and that substitution among them may be lower. We

initially followed this interpretation and chose η = 3, following Adhmad and Riker (2019). We also
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Figure 1: Comparing two different consumption sectors in Sweden.

considered a higher value, η = 10 as our benchmark, following Fernandez-Villaverde (2010). In both

cases, we assumed that the economy comprises two equally sized sectors that simply differ in their

infection risk. Our parameter implies that the infection probability in the most infectious sector (for the

same consumption or work intensity) is nine times as high as in the least infectious sector.

Note that we interpret the term “consumption” in this paper broadly, to include non-market social

activities as well. The substitution discussion above is also applicable, for example,to talking online

instead of partying with friends, or staying at home instead of congregating in parks or even sending

email petitions to advocate for some cause instead of demonstrating in the street. Viewed from this

perspective, infection is inexorably linked to consumption or workplace interaction, and we shall assume

as much in our analysis.

The second departure from ERT concerns the epidemiological mechanism. It arises from the challenge

of matching both the shape and the magnitude of the first and second wave of infections and deaths

in March and April of 2020 and the winter of 2020, respectively. The observed second wave in the fall

and winter of 2020 is incompatible with the mechanics of a basic SIR model, which assumes constant

parameters for infections, deaths, and recovery, as we discuss in Section 5.1. That insight is not changed

by allowing for the economic forces introduced here or in ERT or related models in the literature.

Something else has to give. Closer examination of the quantitative properties of our model leads us
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to assume an exogenous seasonal change in the infection parameter of the SIR portion of the model,

allowing it to be high in the “winter” season (October to March) and low in the “summer” season (April

to September).

We estimate the key model parameters on Swedish weekly data on deaths for 2020 and early 2021 by

minimizing the root mean square error (RMSE) between model predictions and the data. We compare the

predictions of our model to that of a basic SIR model without economic mechanisms but likewise modified

to allow for the exogenous seasonal change in the infection parameter. To facilitate the comparison, we

use two versions. For the first, we use our benchmark model estimates and merely “turn off” the economic

forces. For the second, we fit the SIR model to the first wave2. Fig. 2 shows the results, comparing the

model simulations to the weekly COVID-19 deaths rates in Sweden. It shows that our model captures

the empirical record in Sweden well, both the initially small number of deaths, its explosion in late Match

and early April, the slower decline in May and June, as well as the second wave in the late fall and winter

of 2020. By contrast, the seasonal SIR epidemiological model will either capture that first wave and then

massively miss the second, or miss both.

The logic is easy to understand and most clearly comes through in the top panel of Figure 2. Con-

fronted with the rise of the death toll in both the first and the second waves, susceptible agents in our

model endogenously choose consumption patterns that reduce their infection risk, thus mitigating the

forces predicted by a basic or seasonal SIR model. They consume and work less (as already pointed out

by ERT), and crucially, shift their consumption in both waves towards the less infectious sectors. One

can interpret the comparison of the solid line and the dashed line in the top panel as quantifying the

force of our economic mechanism, which displays the power of individual choice in mitigating the number

of lives lost in a pandemic. The lower panel shows that if the basic SIR model is to fit the first wave, the

basic infection risk has to be tempered down relative to our model with its operative economic mitigation

mechanism. But then the SIR economy enters the fall with many more individuals still susceptible to the

disease, and when the infection rate increases in the fall, infections, and deaths explode. In contrast, in

our model, individuals facing the onset of the second wave massively reduce and reallocate consumption,

thereby lowering the chance of infection and the magnitude of the second wave in the winter of 2020.

Remarkably, our model not only captures the health dynamics in Sweden well but also predicts

fairly accurately the size of the initial economic crisis induced by the pandemic. In the data, aggregate

consumption falls by ca. 10% in the second quarter of 2020. Our benchmark model predicts a decline

of about 8% in measured consumption. Importantly, in the absence of sectoral reallocation, the model

would predict a collapse in measured consumption of about 23%, again demonstrating how potent the

2We also tried fitting the seasonal SIR model to both waves. Visually, it is worse than the two SIR versions presented
here, as it undershoots the first wave, overshoots the second, and does not get the dynamics right.
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Figure 2: Comparison of KUX and SIR models. Top panel: the SIR model uses the same parameters as
our benchmark “KUX” model. Bottom panel: the SIR model is fit to the first wave.
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sectoral reallocation mechanism is for mitigating the health-induced economic crisis.

Our results are stark, partly because our analysis assumes smoothly functioning labor markets where

workers can quickly reallocate to the sectors now in demand: waiters at restaurants deliver food instead,

for example. It is easy to argue that the world is not as frictionless as assumed here and that the message

of our paper is perhaps overly optimistic. While matters may be more complicated in practice, the key

insight of our analysis is likely to remain: substitution possibilities and private incentives of agents facing

infection risks are important factors when thinking about the COVID-19 epidemic, both at the onset

and during its evolution.

Our analysis relates to other recent work that has emphasized the need to think about a multisector

economy for the purpose of analyzing the economic effect of the recent epidemic, such as Alvarez et al.

(2020), Glover et al. (2020), Guerrieri et al. (2020) or Kaplan et al. (2020). However, these authors

do not feature the feedback from the differential infection probabilities across sectors into the private

reallocation made by agents. A second very active literature evaluates the impact of publicly enforced

mobility restrictions and social distancing measures on the dynamics of the COVID-19 epidemic, see

e.g. Correia et al. (2020), Fang et al. (2020) or Greenstone and Nigam (2020), which in turn build on

Adda (2016). Complementary to this work we emphasize that private incentives to redirect consumption

behavior might go a long way towards mitigating or even averting the epidemic, even in the absence of

mobility restrictions or publicly enforced social distancing measures. Our paper complements the work

by Barrero et al. (2020a) (or Barrero et al. (2020b),) who document that the COVID-19 crisis is also a

reallocation shock, when examining data from the U.S. economy. For the U.S., however, these sectoral

reallocations may have mainly been driven by government restrictions. By contrast, our reallocation

results from private concerns about infection risks only.

Ultimately, the purpose of this paper is meant to clarify the key forces rather than paint a complete,

detailed, and accurate quantitative picture of the Swedish experience with the epidemic.

We, therefore, focus first, in the model developed in Section 2, on the infection risk in the consumption

sector only. In Section 3, we provide theoretical results that demonstrate the importance of the elasticity

of substitution across sectors. We also argue that the same mechanism is at work whether the risk of

infection is located in the labor market or in the consumption goods market; in such a case, one may

contend that the effect is to lower the elasticity of substitution. In Section 4, we set up the problem

of a social planner who can observe which agents are infected and which are not, akin to the planning

problem studied by Alvarez et al. (2020) One may visualise this as a strong government with wide

testing capabilities3 of individuals, or with powerful moral appeal to influence infected agents to do what

is good for society at large. Section 5 discusses the computation, calibration, and estimation of the model.

3In this sense our social planner analysis is akin in spirit to the focus on testing in Berger et al. (2020).
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The results for the baseline economy are contained in Section 6, which shows how individually rational

reallocation of economic activity across sectors is a strong mitigating force of the crisis even in the absence

of explicit government intervention. Section 7 conducts a sensitivity analysis, thereby providing a deeper

understanding of the forces at work as well as of the similarities and differences compared to a one-sector

economy. Section 8 contrasts the outcomes of the laissez-faire economy with that of a planned economy.

We show that the social planner can stop the pandemic more decisively. This should not be all that

surprising: the social planner simply prevents infected agents from interacting with the susceptible part

of the population (by separating the consumption of both groups across sectors), even if this imposes

considerable, additional pain on the infected agents, which the social planner, of course, takes into

account. More surprising, though, is that the decentralized solution with its substitution possibilities

across sectors goes a long way towards the private economy achieving a fairly similar outcome relative

to an economy where these substitution opportunities are absent.

2 Model

2.1 The macroeconomic environment

Our framework builds on Eichenbaum-Rebelo-Trabandt (2020) (ERT) and shares some key model com-

ponents. Time is discrete, t = 0, 1, 2, . . ., measuring weeks. There is a continuum j ∈ [0, 1] of individuals,

maximizing the objective function

U = E0

∞∑
t=0

βtu(cjt , n
j
t )

where β denotes the discount factor, cjt denotes consumption of agent j and njt denotes hours worked.

Expectations E0 are taken with respect to stochastic health transitions described below in detail. Like

ERT, we assume that preferences are given by

u(c, n) = ln c− θn
2

2

In contrast to ERT, we assume that consumption cjt takes the form of a bundle across a continuum of

sectors k ∈ [0, 1],

cjt =

(∫
(cjtk)1−1/ηdk

)η/(η−1)

(1)
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where η ≥ 0 denotes the elasticity of substitution across goods and cjtk is the consumption of individuals

j at date t of sector k goods. Workers can split their work across all sectors and earn a wage Wt in units

of a numeraire good4 for a unit of labor, regardless of where they work. As the choice of the numeraire

is arbitrary, we let a unit of labor denote that numeraire: thus, wages are equal to unity, Wt = 1.

Goods of sector k are priced at Ptk in terms of the numeraire, i.e., in units of labor. We suppose

that production of goods in sector k is linear in labor, i.e., total output of goods in sector k equals the

total number of hours worked there times some aggregate productivity factor A, and that pricing in each

sector is competitive. Thus, prices equal marginal costs and are the same across all sectors,

Ptk = Pt = 1/A

The date-t budget constraint of the household is therefore5

∫
cjtkdk = Anjt (2)

2.2 The epidemic

As in ERT, we assume that the population will be divided into four groups: the “susceptible” people

of mass St, who are not immune and may still contract the disease but are not currently infected, the

“infected” people of mass It, the “recovered” people of mass Rt and the dead of mass Dt. We assume

that the risk of becoming infected and the rate of death or recovery does not depend on the sector of

work but depends exclusively on consumption interactions. Our focus here is on the sectoral shift in

consumption: for simplicity and in contrast to ERT, we assume that infected individuals continue to

work at full productivity but that the disease can only spread due to interacting consumers. We show

in subsection 3.3, that this is similar to a model, where the infection can only spread via the workplace.

Different goods or, perhaps better, different ways of consuming rather similar goods vary in their

degree of contagiousness. To that end, we assume that there is an increasing function φ : [0, 1]→ [0, 1],

where φ(k) measures the degree of social interaction or relative contagiousness of consumption in sector

k (or variety k of a consumption good). We normalize this function to integrate to unity,

∫
φ(k)dk = 1 (3)

Consider an agent j, who is still “susceptible”: we denote this agent therefore with “s” rather than

4The presentation of the model is easier assuming a numeraire rather than payment in a bundle of consumption goods.
We will not examine sticky prices or sticky wages in this model.

5Different from ERT, we do not feature a tax-like general consumption discouragement and thus no government transfers.
We also abstract from capital and thus from intertemporal savings decisions, as they do.
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j. This agent is consuming the bundle (cstk)k∈[0,1] at date t. Symmetrically, let (citk)k∈[0,1] denote the

consumption bundle of infected people. Extending ERT, we assume that the probability τt for an agent

of type s to become infected depends on his own consumption bundle, on the total mass of infected

people and their consumption choices, and the degree φ(k) to which infection can be spread per unit of

consumption in sector k,

τt = πs,tIt

∫
φ(k)cstkc

i
tkdk (4)

where πs,t is a parameter for the social-interaction infection risk, and which we allow to exogenously

vary over time. In our quantitative exercise in Section 5, we restrict this variation to conform to a

“winter-summer” pattern. With (4), the total number of newly infected people is given by

Tt = τtSt (5)

The dynamics of the four groups now evolves as in a standard SIR epidemiological model,

St+1 = St − Tt (6)

It+1 = It + Tt − (πr + πd)It (7)

Rt+1 = Rt + πrIt (8)

Dt+1 = Dt + πdIt (9)

Popt+1 = Popt −Dt (10)

where πr is the recovery rate and πd is the death rate, and where Popt denotes the mass of the total

population at date t. As in ERT, we assume that the epidemic starts from initial conditions I0 = ε and

S0 = 1− ε, as well as R0 = D0 = 0.

2.3 Choices

We proceed to analyze the choices of the individuals.

Susceptible people: Denote as Ust (U it ) the lifetime utility, from period t onwards, of a currently

susceptible (infected) individual. As in ERT, the lifetime utility Ust follows the recursion

Ust = u(cst , n
s
t ) + β[(1− τt)Ust+1 + τtU

i
t+1] (11)

10



where the probability τt is given in equation (4) and depends on the choice of the consumption bundle

(cstk)k∈[0,1]. An s-person maximizes the right hand side of (11) subject to the budget constraint (2) and

the infection probability constraint (4), by choosing labor nst , the consumption bundle (cstk)k∈[0,1] and

the infection probability τt.

The first-order condition for consumption of cstk is

u1(cst , n
s
t ) ·
(
cst
cstk

)1/η

= λsbt + λτtπs,tItφ(k)citk (12)

where λsbt and λτt are the Lagrange multipliers associated with the constraints (2) and (4). This equation

can be rewritten as

u1(cst , n
s
t ) ·
(
cst
cstk

)1/η

= λsbt + νtφ(k)citk (13)

where

νt = πs,tItλτt (14)

Equation (13) reveals that the risk of becoming infected induces an additional goods-specific component,

scaled with the aggregate multiplicator νt, compared to the usual first-order conditions for Dixit-Stiglitz

consumption aggregators (at constant prices across goods). In the absence of the impact of consumption

on infection λrt = νt = 0 and there is no consumption heterogeneity across sectors, cstk = cst for all k, as

in the standard model. In the presence of this effect, then susceptible households shift their consumption

to sectors with a low risk of infection (i.e., those with a low φ(k)citk).

Taking the consumption profile of infected households (citk) as given, by choosing her consumption

portfolio a susceptible individual effectively chooses her infection probability τt. As in ERT, the first-order

condition for τt reads as

β(Ust+1 − U it+1) = λτt (15)

The first-order condition with respect to labor is completely standard and reads as

u2(cst , n
s
t ) +Aλsbt = 0 (16)

Note that we have excluded the workplace infection, in contrast to ERT. We examine this possibility in

11



subsection 3.3 below. With the chosen utility function, this first-order condition simplifies to:

θnst = Aλsbt (17)

Infected people and recovered people: As in ERT, the lifetime utility of an infected person is

U it = u(cit, n
i
t) + β[(1− πr − πd)U it+1 + πrU

r
t+1 + πd × 0] (18)

Taking first-order conditions with respect to the consumption choices and labor results in

u1(cst , n
s
t ) ·
(
cit
citk

)1/η

= λibt, (19)

where λibt is the Lagrange multiplier on (2) for an infected person. This is the usual Dixit-Stiglitz CES

first-order condition at constant prices, with the solution

citk ≡ cit (20)

That is, as long as η ∈ (0,∞), infected individuals find it optimal to spread their consumption evenly

across sectors, given that all sector goods have the same price, are imperfect substitutes, and differential

infection probabilities across sectors are irrelevant for already infected individuals. Exploiting this result

and the specific form of the period utility function (which implies u1(c, n) = 1/c) in equation (19) yields

1/cit = λibt. For labor, we obtain the standard first-order condition

θnit = Aλibt =
A

cit
(21)

Finally, exploiting the budget constraint (2), we arrive at the equilibrium allocations for infected people

given by

nit =
1√
θ
, cit =

A√
θ

(22)

Likewise, the lifetime utility for a recovered person is

Urt = u(crt , n
r
t ) + βUrt+1 (23)

Given our assumptions, the optimal decision for both the i group and r group is the same6: we will

6Note here that we implicitly assume that infected people will be fully at work. One might alternatively wish to assume
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therefore use cit, c
i
t,k, nit and λibt to also denote the choices of recovered individuals.

2.4 Equilibrium Characterization

In equilibrium, each individual solves her or his maximization problem, and the labor and goods market

clears in every period. Let ntk be total labor employed in sector k. The market-clearing conditions then

read as:

Stc
s
tk + (It +Rt)c

i
tk = Antk (24)∫

ntkdk = Stn
s
t + (It +Rt)n

i
t (25)

Given the solution to the problem of infected and recovered people, this can be simplified to

Stc
s
tk + (It +Rt)

A√
θ

= Antk∫
ntkdk = Stn

s
t + (It +Rt)

1√
θ

The equations can be simplified further to a set of aggregate variables as well as an equation determining

the sectoral allocation; see appendix section B.

3 Theoretical Results

3.1 The Value of a Statistical Life

The calculations above allow us to calculate the implied value of a statistical life or VSL, using the

following thought experiment. Suppose that there is no epidemic but that an agent may be exposed to

some small probability δ > 0 of not surviving to the next period. How much would current consumption

have to be increased in order to compensate the agent for this additional risk? That is, when would a

riskless scenario and a risky scenario compensated through increased current consumption be equal in

the eyes of an agent?

Without the epidemic, the consumption of all agents is given by (22) or

c∗ =
A√
θ

and n∗ =
1√
θ
,

that only a fraction of them are at work instead. Given our assumptions about excluding infections in the workplace, this
does not affect the infection rate via that channel. However, lowering the amount of income of infected people lowers their
consumption and thus lowers their ability to infect others in the consumption market. We do not wish to emphasize this
channel, although in a somewhat richer model, people will have a buffer stock of savings, and an infected person would then
draw on these savings to finance consumption rather than respond to the temporary decline in labor income. Alternatively,
income may fall considerably less in practice than the model would otherwise imply here, due to various social insurance
policies.
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implying current utility and lifetime utility

u∗ = log

(
A√
θ

)
− 1

2
and U∗ =

u∗

1− β
u∗

In the riskless scenario, the agent receives lifetime utility

U∗ = u∗ + βU∗

In the risky scenario, the agent receives the expected lifetime utility

log

(
eγ

A√
θ

)
− 1

2
+ (1− δ)βU∗

where γ is the compensating increase of current consumption, expressed in % (and divided by 100).

Equating these two expressions, solving for γ and with the value of a statistical life expressed as the

% increase in the consumption of one period required to compensate for a 1% increase in the death

probability,

VSL :=
γ

δ
, (26)

we find

VSL =
β

1− β

(
log

(
A√
θ

)
− 1

2

)
(27)

One now needs to keep in mind that the length of the period matters: for example, that percentage

increase would need to be four times as large when calculated for weekly rather than monthly consump-

tion. To calculate the actual value of a statistical life, say, in Dollars, one needs to multiply VSL with

the Dollar amount of consumption of one period.

With the epidemic as described in the model, one can thus consider susceptible agents thinking of

reducing the current consumption aggregate by VSL percent, if this allows them to increase their survival

chances by one percent in the next period: the larger VSL, the more the agent is willing to endure a

reduction in consumption. It is this trade-off that gives rise to the implied consumption dynamics in

our model. Equation (27) shows that these calculations regarding the value of a statistical value of life

depend on the preference and productivity parameters via β as well as the ratio A/
√
θ or steady-state

consumption c∗. Furthermore, (27) shows, that this value can be negative in principle, if A/
√
θ is smaller

than exp(0.5) ≈ 1.65. We will avoid that in setting our parameters, as it would imply a desire for agents
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to die.

3.2 Two extreme values of the elasticity of substitution η

It is instructive to consider extreme values for the elasticity of substitution η. We obtain rather tight

predictions as these extremes, which turn out to be useful for understanding the quantitative results and

the impact of parameter variations for the calibrated version, see subsection 7.2.

The first extreme is an elasticity of substitution of zero such that the consumption aggregator is of

the Leontief form.

Proposition 1. Suppose that η = 0, i.e. that the consumption aggregation in (1) is Leontief. In this

case, the multisector economy is equivalent to a multisector economy with a φ-function, which is constant

and equal to 1,

Proof. With Leontieff consumption aggregation, consumption is sector independent, cjtk ≡ c
j
t . Equations

(4) and (5) now become

τt = πs,tIt

∫
φ(k)cstc

i
tdk = πs,tItc

s
tc
i
t

∫
φ(k)dk = πs,tItc

s
tc
i
t (28)

and

Tt = πs,tStIt

∫
φ(k)cstkc

i
tkdk = πs,tStItc

s
tc
i
t (29)

Equations (28) and (29) furthermore show that the Leontief version is equivalent to the one-sector

economy in ERT. The other extreme is the case where goods are perfect substitutes.

Proposition 2. Suppose that η → ∞, i.e. that the sector-level consumption goods in (1) are perfect

substitutes in the limit, Let k = supk{k | φ(k) = φ(0)}. Assume that k > 0, i.e. that there is a non-zero

mass of sectors with the lowest level of infection interaction. Suppose that I0 > 0. Then there is a limit

consumption cjtk for j ∈ {s, i, r} as η →∞, satisfying

cstk =

 cst/k for k < k

0 for k > k
(30)

and

cjtk ≡ c
j
t for j ∈ {i, r} (31)
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Equations (4) and (5) are replaced by

τt = πs,tφ(0)Itc
s
tc
i
t (32)

and

Tt = πs,tφ(0)StItc
s
tc
i
t (33)

That is, susceptible individuals only consume in the lowest infection-prone sectors with φ(k) = φ(0),

and infected (as well as recovered) individuals consume uniformly across all sectors.

Proof. Eq. (31) is just Eq. (20), which also holds for recovered agents: it will therefore also hold, when

taking7 the limit η →∞. Equation (30) follows from (14) together with (1), taking η →∞. Define the

consumption distribution of type j ∈ {s, i, r} as κjt (k) = cjtk/c
j
t and note that

∫
κjt (k)dk = 1 (34)

and that

κjt (k) ≥ 0, all k (35)

Rewrite (4) and (5) as

τt = πs,tItc
s
tc
i
t

∫
φ(k)κst (k)κit(k)dk (36)

Therefore, and analogously to ERT, the total number of newly infected people is given by

Tt = πs,tStIt

∫
φ(k)κst (k)κit(k)dk (37)

Equations (32) and (33) now follow from observing that κit(k) ≡ 1 and κst (k) = 1/k for k ∈ [0, k] and

zero elsewhere as well as noting that φ(k) = φ(0) for k ∈ [0, k].

The result of this proposition is depicted in figure 3. Equations (32) and (33) also show, that the

limit is equivalent to the one-sector economy in ERT, with πs,t replaced by πs,tφ(0). Infection only takes

place in the sector with the lowest infection hazard, thus introducing the extra factor φ(0). The size of

7Note that it does not necessarily hold at the limit, as infected and recovered agents in that case are indifferent as to
which goods to consume
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k1k

φ

ci

cs

Figure 3: When η →∞.

the sector, however, does not factor into the expression. The reason is that with an equal distribution of

infected agents across all sectors, susceptible agents in a smaller sector meet a smaller fraction of infected

agents - a mitigating force. At the same time, the consumption activity of susceptible agents in these

sectors rises - an enhancing force. These two forces cancel each other out. Since the size of the sector

with the lowest infection hazard does not matter at both extremes given in propositions 1 and 2, one

might conjecture that it is never relevant. However, numerical simulations indicate that larger rates of

infection occur, if that sector is smaller, for substitution elasticities 0 < η <∞.

Proposition 2 above exploits the fact that infected agents wish to spread their consumption equally

across all sectors for any finite value of η. However, at the limit η = ∞, infected agents are entirely

indifferent. At one extreme, they might consume rather large portions of the low-k goods. At the other

extreme, they stick to each other in the high-infection-risk segments and do not consume the k-goods at

all. In the latter case, the infection probabilities become zero, and the spread of the disease is stopped

entirely. The following proposition provides the resulting range for the infection probabilities.

Proposition 3. Suppose that η = ∞, i.e. that the sector-level consumption goods in (1) are perfect

substitutes. Let µt be any function of time satisfying

0 ≤ µt ≤ µ̄

where µ̄ is defined as

µ̄ =
1∫
1

φ(k)dk
(38)
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and note that it satisfies

φ(0) ≤ µ̄ ≤ 1 (39)

Then there is an equilibrium with equations (4) and (5) replaced by

τt = πs,tµtItc
s
tc
i
t (40)

and

Tt = πs,tµtStItc
s
tc
i
t (41)

Proof. We first show (39). For the lower bound, note that.

∫
1

φ(k)
≤
∫

1

φ(0)
=

1

φ(0)

The upper bound follows from Jensen’s inequality and (3). We next shall show that there is an equilibrium

when µt equals one of the two bounds. Given the consumption distribution function κit, the problem of

the susceptible agents is to choose their own consumption distribution function κst so as to minimize (36),

subject to the constraints (34) and (35). The Kuhn-Tucker first-order condition implies that κst (k) = 0,

unless

k ∈ {k | φ(k)κit(k) = minφ(k)κit(k)}

For µt = 0, let infected agents consume zero, κit(k) = 0 for all k in some subset K of [0, 1]. In this case

and following the argument just provided, susceptible people choose κst (k) > 0 only if k ∈ K. Conversely,

the worst case scenario, in terms of infection, arises if φ(k)κit(k) is constant. Given (34), this yields

κit(k) =
µ̄

φ(k)
(42)

Given this κit function, susceptible agents are now indifferent in their consumption choice. Any κst

function satisfying (34) and (35) then results in

∫
κstφ(k)κit(k)dk = µ̄

and thus (40) and (41) at µt = µ̄, i.e. the upper bound. Finally, let 0 < µt < µ̄ and let λ = µt/µ̄. Let K
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be a measurable subset of [0, 1] with mass strictly between 0 and 1. Set

κit(k) =

 λ µ̄
φ(k) , for k ∈ K

λ̃ µ̄
φ(k) , for k ∈ [0, 1]\K

where λ̃ is chosen such that (34) holds. Then, susceptible agents will choose κst (k) = 0 for all k ∈ [0, 1]\K,

are indifferent between k ∈ K, and (40) and (41) hold true for the chosen µt.

Best case scenario:

k1k

φ

ci

cs

Worst case scenario:

k1k

φ

ci

cs

Figure 4: When η =∞.

The result of this proposition is depicted in figure 4. The top graph depicts the best-case scenario

when susceptible and infected agents consume entirely different bundles of goods. The bottom graph

depicts the worst-case scenario when φ(k)ci(k) is constant: in that case, a constant cs(k) is the best
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solution for susceptible agents. The bottom graph and the proposition show that perfect substitutability

may be nearly as bad as the Leontief case, if infected people behave particularly badly and distribute

their consumption according to (42). Equations (40) and (41) are then the same equations as in the

ERT model with πs,t replaced by πs,tµ̄. On the other hand, perfect substitutability can also result in the

most benign scenario of a zero spread of consumption, if infected and susceptible people simply consume

different goods.

There are fascinating policy lessons here. Given that infected people will end up seeking services and

consumption, it might be best to encourage them to seek out those where the degree of interaction is

high, rather than forcing all agents, including the infected agents, into the low infection transmission

segments. The model here shows that this can have dramatic consequences for the spread of the disease.

3.3 Infections in the Labor Market

Thus far, we have assumed that infections can take place when acquiring consumption goods. We could

have similarly allowed for heterogeneity in labor and assumed that it is at work in the labor market

where individuals face the risk of contracting the virus. We explore this possibility in this section,

offering two alternative approaches. We shall show that the formal analysis is conceptually similar and,

that the first approach is actually equivalent to the model analyzed above. In economic terms and

interpretation, the key distinction is arguably less in the formal differences between both versions of

the model, than in the empirically plausible choice for the elasticity of substitution η: while it may

be possible to easily substitute among different types of similar consumption goods (“Pizza at home”

versus “Pizza in a restaurant”), the same may not be true for work (restaurants will still have to produce

the to-be-delivered pizza in the restaurant kitchen, rather than having their workers stay at home and

produce in their own kitchens). Our results for the lower elasticity of substitution η = 3 may thus be

more appropriate for the analysis of infection-at-the-work-place. In the extreme without substitution

possibilities, we are back at the homogeneous sector case.

The formal analysis maintains the assumption that the period utility function is given by

u(c, n) = log(c)− θn
2

2
(43)

but now assumes that consumption c is a homogeneous good, while household labor n is a composite of

differentiated sector-specific labor nk, k ∈ [0, 1]. For the former, production-based approach to aggrega-

tion, we assume that labor supplied by the household to the market is a CES composite of sector-specific
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labor, i.e., that n =
∫
nkdk as far as preferences are concerned, but that the budget constraint reads

c = A

(∫
n

1−(1/α)
k dk

)α/(α−1

(44)

Assume now that infections occur in the labor market instead of through joint consumption, i.e., assume

that the probability of a susceptible individual to become infected is given by

τt = π̃sIt

∫
φ(k)nitkn

s
tkdk (45)

In appendix C, we establish the following result.

Proposition 4. Suppose that π̃s = A2πs,t and that α = η. In this case, the production-based labor ag-

gregation with infection in the labor market is equivalent to the consumption-infection economy described

above, i.e. all aggregates remain the same, while nstk/n
s
t = cstk/c

s
t , when comparing the ratio of sector-

specific labor to the labor aggregate in the labor-market-infection economy to the ratio of sector-specific

consumption to the consumption aggregate in the consumption-infection economy.

For this formal equivalence, it is important that the aggregation (44) takes place at the household level

and not at the firm level, i.e., in firms hiring labor from different households. The latter would provide

an interesting alternative environment for studying the sectoral shift issues raised here but requires

additional restrictions to preclude complete separation of infected and susceptible agents in equilibrium.

The household-level labor aggregation described above may be be hard to envision as an environment

for sector-specific contagion risk. We therefore offer a second, preference-based approach. For this, think

of the household as composed of individual workers, each specialized to work in sector k, and that total

household leisure, described by ` = f(n) for some strictly decreasing and differentiable function8 f is a

CES-aggregate of worker-specific leisure,

f(n) =

(∫
f(nk)1−1/αdk

)α/(α−1)

(46)

for some elasticity of substitution α ≥ 0. The household budget constraint is c = A
∫
nkdk. The prob-

ability of infection is given by (45). This economy shares the same basic forces as the heterogeneous

consumption sector economy, although its analysis is not exactly equivalent. In appendix C, we demon-

strate this more formally. The remarks here are simply meant to show that the mechanisms in both types

of labor-infection-based models are quite similar to our baseline consumption-based-infection economy

indeed.

8Useful specifications are f(n) = L̄− n for some time endowment L̄ or f(n) = 1/n.

21



A richer treatment would recognize that matters are surely more complicated than our rather stylized

treatment. It is beyond the scope of this paper to investigate these issues empirically and theoretically

with considerable depth. Consider our baseline example of eating Pizza at home or in a restaurant.

Casual observation suggests that there has been little to no relative price shift here, which then would be

indicative of the linear production and labor mobility assumption used in the paper. This also applies to,

say, books purchased in a bookstore as compared to purchases by an online retailer such as Amazon, etc.

However, it is possible that the linear production and labor mobility assumption is not fully justified:

in theory, one would then observe relative price movements between these two types of consumption

possibilities as well as corresponding movements in wages on free labor markets, but they may not have

been present. This may have been true perhaps for the same reason that shortages of certain goods early

on in the pandemic (“toilet paper”) did not lead to price shifts either and that labor contracts tend to

be long-term and that statutory wages do correspond to short-term productivies. We, therefore, skip a

full quantitative analysis and do not integrate these features into the ensuing analysis.

4 Social Planning Problem

The laissez-faire solution examined implies, that externalities are still present, as agents do not take into

account their action on the increased infection risk of others. Therefore, it is instructive to compare our

results to that of a social planner “on the same footing,” i.e., with full knowledge of who is susceptible,

infected, or recovered. Indeed, the increasingly prevalent opportunities for COVID-19 testing make this

perhaps a more reasonable assumption rather than forcing the social planner to act behind the “veil of

ignorance”. However, like the agents in our model, the planner cannot separate the infected from the

susceptible (and recovered) when they consume. That is, the planner cannot change the consumption

technology. Put differently, we do not allow for the “Chinese solution,” of cordoning off entire cities,

where COVID-19 cases have been observed or even separating infected and susceptible agents entirely.

Therefore, as in the decentralized economy, the spread of the disease while consuming can at best

be mitigated, by allocating consumers to low-infectious sectors. The social planner maximizes date-0

aggregate social welfare W0, where

W0 =

∞∑
t=0

βt
[
Stu (cst , n

s
t ) + Itu

(
cit, n

i
t

)
+Rtu (crt , n

r
t )
]
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subject to the following constraints, and with the respective Lagrangian multipliers, after substituting

the infection risk for susceptible people, τt, and the number of newly infected people, Tt:

µf,t :
∫
Stc

s
tk + Itc

i
tk +Rtc

r
tkdk = A

(
Stn

s
t + Itn

i
t +Rtn

r
t

)
(47)

µS,t : St = St−1 − It + (1− πr − πd) It−1 (48)

µI,t : It = πs,tSt−1It−1

∫
φ(k)cst−1,kc

i
t−1,kdk + (1− πr − πd) It−1 (49)

µR,t : Rt = Rt−1 + πrIt−1 (50)

The social planner takes S0, I0 and R0 as given. It chooses the time paths of consumption for susceptible,

infected and recovered people cxkt for x ∈ {s, i, r}, the path for labor supply nxt , x ∈ {s, i, r}, and the

paths for the mass of agents in the four groups St, It, and Rt. The first order conditions of the social

planner’s problem are presented in Appendix D.

5 Computation, Calibration, and Estimation

In this section, we discuss the numerical solution, the calibration, and the estimation of the model.

5.1 SIR mechanics

Prior to the discussion of the calibration of our model we now describe the basic thought process that

led us to augment the basic SIR model by seasonal infection rates, i.e. let πs,t vary between the summer

and the winter. We seek to match our model reasonably closely to the evolution of the pandemic and

macroeconomic data in Sweden. As shown in Figure 2, Sweden has been hit by two waves of infections

and deaths from COVID-19, one in April and May of 2020 and then a second wave starting sometime in

October 2020. For the purposes of crafting a quantitatively plausible model, these observations present

two challenges, with the second following from the first. We now describe these challenges and how

we have resolved them by augmenting the basic SIR model, combined with our economic mechanism of

sectoral reallocation.

The first challenge emerges from the mere existence of that second wave. The standard SIR model

with fixed rates of infection, recovery and death when multiplied with the appropriate population frac-

tions, cannot by itself produce such a second wave. The additional economic choices considered here,

when combined with the SIR epidemiological model will not produce a second wave either9. Therefore,

capturing the second wave successfully in the model requires a modification of the standard SIR mechan-

ics: for some reason, the infection rate parameter or the death rate parameter must have increased in the

9We suspect that extreme values of SIR model parameters may produce oscillating infection patterns. We have not
investigated this possibility further
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fall. We resolve this challenge by introducing seasonality in the infection risk parameter πs,t, which rises

in late September 2020. This modeling choice can be supported by arguing that there is a seasonality to

the biological infection risk, as is generally the case for influenza viruses10.

That second wave creates an additional and more subtle challenge to the standard SIR dynamics:

the number of deaths in that second wave is roughly of the same order of magnitude as the number

of deaths in the first wave. This implies, that the susceptible fraction of the population must still

have been reasonably high at the beginning of fall of 2020. Explorations of a simple SIR model with a

seasonal increase in the infection risk in October suggests that a rough quantitative match of the death

dynamics in the second wave is impossible to obtain unless the susceptible fraction is well above 50% at

the beginning of October 2020. We will now argue that without a seasonal fall in infection rates in the

spring of 2020, it is hard to avoid the conclusion, based on standard SIR logic, that Sweden must have

been approaching herd immunity in the fall of 2020.

To see this, consider then the dynamics of the first wave in the data. Compare, say, the week

beginning March 28th with 282 COVID-19 deaths, followed by a week with 634 COVID-19 deaths (call

this the “first phase”) to the week beginning May 30th with 267 COVID-19 deaths, followed by a week

with 252 COVID-19 deaths (call this the “second phase”) . In the standard SIR model, these numbers

are proportional to the number of those infected in these weeks. These numbers therefore imply that

the number of infected individuals was approximately the same at the beginning of each phase, but that

the fraction of infected agents increased by a replication rate of 634/282 = 2.25 during that phase and

declined at the rate of 252/267 = 0.94 during the second episode. The standard SIR model implies,

that this change in the replication rate is mostly driven by a change in the susceptible fraction of the

population: in that model, the fraction of newly infected persons is proportional to the product of the

fractions of infected and susceptible agents in the economy. As a back-of-the-envelope calculation, the

fraction of susceptible agents must have therefore declined roughly by the factor 0.94/2.25 = 0.42, i.e.

the share of the population that is still susceptible should be below 50% of the population by the end of

the second phase of the first wave, given the observed dynamics of weekly deaths in Sweden. As argued

before, this is impossible to reconcile with the size and shape of the second wave. Indeed, with the

standard SIR mechanics, it would be hard to avoid the conclusion that Sweden was approaching herd

immunity as of early fall. Clearly, that did not happen.11

There are broadly two ways to resolve this second challenge. One is to not only model a seasonal

10Since in the fall and winter seasons, social interactions predominantly take place indoors, and infection probabilities
are higher for indoor than for outdoor interactions, we can then deduce that infection rates will rise in the colder half of
the year, as we model here.

11In a November 24, 2020 briefing Anders Tegnell, Sweden’s top state epidemiologist, stated “We see no signs of immunity
in the population that are slowing down the infection right now.” Of course, the massive second wave of deaths in the
winter of 2020 is the most direct evidence that herd immunity was not achieved by the fall of 2020 in Sweden.
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increase in infection rates in the fall to start the second wave, but also a seasonal decline in the infection

risk parameter (or death parameter) in the late spring. This is the route we pursue in our benchmark

calibration: we assume a step function, with πs,t at a high “winter” value until March 27th, then a low

“summer” value until September 25th, 2020, and then a reversion back to the high “winter” value from

September 26th onwards12.

As an alternative to this baseline scenario, we examine the power of the economic forces by turning

them off until March 27th in Appendix F. Essentially, this makes our susceptible agents ignorant, myopic

or irrational in the face of the initial rise of death rates during the first wave. The first phase of the first

wave then evolves according to the standard SIR model (with the moderate infection rates underlying

the lower panel of Figure 2), and the reversal of infections and (with a lag) weekly deaths in the first wave

occurs once individuals understand the pandemic and adjust their consumption behavior accordingly.

One can debate, whether the assumption of temporary myopia (or ignorance) when confronted with an

entirely novel pandemic threat is reasonable or not, in the same way one can question the fully forward-

looking manner individuals behave in the benchmark. What we want to stress in both incarnations of

the model is the force of the endogenous consumption choice and its power to turn a pandemic around

when susceptible agents are highly aware of the infection risks associated with unchanged patterns of

behavior.

5.2 Computation of the Model

The unknown sequences of variables to be computed (aside from the sector-specific consumption) are

Ust , c
s
t , n

s
t , λ

s
bt, νt, τt. The dynamic equations determining these variables are the Bellman equation

Eq. (11), the budget constraint (Eq. (2)), the infection constraint (Eq. B.8), the share constraint

(Eq. (B.5)) replacing the original first order condition with respect to consumption, the first order

condition with respect to labor (Eq. (16)) and the first order condition with respect to τ (Eq. (15)) com-

bined with Eq. (14). One can easily eliminate λbt and nst , using Eqs. (2) and (16), as well as eliminate νt

with Eqs. (14) and (15): what remains is then a system in three unknowns Ust , c
s
t , τt and three equations,

two of which are nonlinear integral equations that need to be solved. The way to proceed is working

backwards from a distant horizon. Knowing Ust+1 allows one to compute νt with Eqs. (14) and (15).

Using the two integral equations (having substituted out λsbt and nst ) allows one to compute cst and τt.

From there we can compute nt with Eq. (2) and Ust .

We use Dynare 4.6 to perform the calculations. We assume that the economy is initially in a steady-

state and is then hit by a zero probability, MIT shock that increases the infected population from 0 to ε.

12It is worth noting that the observed death dynamics can be matched perfectly with a standard SIR model and an
appropriately chosen time variation in πs,t. Our two-value winter-summer-winter step function for πs,t puts considerable
restriction on that choice.
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There are no further aggregate shocks, and we compute a perfect foresight solution with 100 periods. In

order to facilitate finding a solution, a good initial guess is helpful. We first set the exogenous πs,t to a

very small and constant value. With this value, the economy is close to one without a disease outbreak,

and using this solution as the initial guess makes it easy for Dynare to find a solution to the economy

with the disease outbreak and an incrementally increased πs,t, restricted to the same value π
s,“winter”

in the “winter” months, October to March, and a lower value π
s,“summer” in the “summer” months,

from the last week of March to September. Proceeding in steps, using the solution for the previous πs,t

value as the initial state, a new solution is computed. The initial state is updated once a solution at the

new πs.t value is found. This process is repeated until πs,t reaches the desired value in our calibration

and estimation procedure.

5.3 Calibration and Estimation

Our quantification focuses on a two-sector economy, where both sectors are of equal size denoted by υ.

This results in υ = 0.5. Sector 1 has infection intensity φ satisfying 0 < φ(k) = φ < 1 for k ∈ [0, 0.5].

Given the maintained assumption that the average φ(k) is equal to one, this implies the infection intensity

for k ∈ (0.5, 1] is calculated as 2− φ. Accordingly, sector 1 is named the low-infection sector, and sector

2 is the high-infection sector. The one-sector economy of ERT emerges when φ = 1. For the elasticity

of substitution across goods, we set η = 3 and investigate, as sensitivity analysis, η = 10, in which

case the two goods are close to perfect substitutes, and thus the equilibrium allocation approaches the

characterization in Proposition 2.

We choose the remaining parameters of our model in two steps. In the first step and for the “eco-

nomics” side, we choose the preference parameters (θ, β) and the productivity parameter A in accordance

with Eichenbaum et al. (2020) which employ a one-sector version of the model we use here to study the

joint dynamics of health and economic activity during the COVID-19 crisis in the U.S. We summarize

these parameter choices in table Table 1. To further assess the plausibility of these choices, recall from

Section 3.1 that given these parameters, Eq. (27) can be used to calculate the model-implied value of

a statistical life VSL, measured as the percentage change in one-week consumption to compensate for

a one-percent change in the probability of death. Given the parameters in table Table 1, we compute

VSL = 8298, which, with weekly per-capita consumption in Sweden of about $500, implies a value of

a statistical life in Sweden of ca. $4 million. This value strikes us as plausible and is in the ballpark of

numbers often used in the economics literature13

13For example, Greenstone and Nigam (2020) set the VSL to $11.5 million, a figure based on work by the Environmental
Protection Agency (EPA). Hall and Jones (2007) discuss the empirical literature on the VSL and report numbers (in 2000
dollars) between $2 million and $9 million, with substantial heterogeneity by age. In our infinite horizon economy, the VSL
corresponds most closely to that of a young- to a middle-aged individual with a substantial remaining lifetime.
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Table 1: Economic Parameters.

Parameter Value Description

η 3.000 Elasticity of substitution
υ 0.500 Size of the low-interaction sector
A 39.835 Productivity
θ 1.275× 10−3 Labor supply parameter
β 0.961/52 Discount factor

In a second step, we estimate the parameters governing the epidemic dynamics. Due to the probability

of a significant measurement error for the number of infected individuals, especially at the beginning of

the pandemic, we chose the number of weekly deaths as the most reliable target for the calibration. A

time series plot of the Swedish data shows a clear seasonal pattern. As argued in subsection 5.1, this

led us to impose that πs,t switches from a high value π
s,“winter” to a low value π

s,“summer” in the last

week of March and then back to π
s,“winter” in October.

The πr and πd parameters are associated with the number of days an infected individual stays infected

(before recovering or dying) and the case fatality rate, by using the following equations14:

πr = (1− “case fatality rate”)× 7

“days to recover or die”
(51)

and

πd = “case fatality rate”× 7

“days to recover or die”
(52)

where the constant 7 transforms daily to weekly statistics. We set the number of days that one stays

infected to be 14, which is consistent with prevailing quarantine periods worldwide.

We then estimate the remaining health parameters, the case fatality rate (which directly determines

πd), the initial fraction ε of infected people, the infection risk parameter πs,t, the seasonal summer effect,

and the infection intensity φ of sector 1 by searching over a grid of possible values to minimize the root

mean square error (RMSE) between the simulated and actual weekly death counts between February

2020 and January 2021. The data on weekly deaths is obtained from the World Health Organization. We

search within a range of the two values of 0.2% and 0.5% for the case fatality rate. For the initially infected

population (per 100,000 people), the range is given by {1, 5, 10, 50, 100}. The range of possible values

for the infection probability πs,t is informed by the plausible range of values for the basic reproduction

number R0 at time t. As reported by Flaxman and et al. (2020), R0 is estimated to lie between 1.4 and

4.18. In our model and absent the endogenous reduction and sectoral shift of consumption by susceptible

14Recall that our model is solved at weekly frequency
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agents, the basic reproduction number R0,t is related to the epidemiological parameters according to

R0 =
πs,tA

2θ−1

πr + πd
(53)

Given the observed range of R0 and the economic and health parameter values chosen above, the

range of πs,“winter” values associated with values for R0 in the interval (1.4, 4, 18) is πs,“winter” ∈(
(πr+πd)×1.4

A2/θ , (πr+πd)×4.18
A2/θ

)
which also depends on the value for the case fatality rate. We set the range

of π
s,“winter” to be

[
0, 5× 10−6

]
, in steps of 2 × 10−8, leading to a slightly wider range of possible

values for R0 than reported by Flaxman and et al. (2020). The seasonal effect lowers the value of πs,t in

the summer. We search in a grid for the reduction factor π
s,“summer”/πs,“winter”,in between 5% and

95%, in increments of 5 percentage points. Finally, the grid for the potential values of φ ranges from

φ = 0.1 to φ = 1, with an increment of 0.1. We also conduct the exercise for an epidemiological SIR

model, which is triggered by setting ωt = 1 in Appendix F for all t. The search grid for case fatality

rate, I0, π
s,“winter”, the summer reduction factor π

s,“summer”/πs,“winter”, φ, and the epidemiological

SIR setup therefore implies 2× 5× 251× 19× 11 = 524, 590 iterations in solving the model.

Table 2: Results from grid search

φ Case fatality (%) π
s,“winter”

(
×10−6

)
I0 (per 100k people) Summer RMSE R0

0.1 0.2 2.44 1 -0.85 1.12 6.07
0.2 0.2 1.88 5 -0.80 0.92 4.68
0.3 0.2 1.84 5 -0.80 0.75 4.58
0.4 0.2 1.72 5 -0.75 0.61 4.28
0.5 0.2 1.50 10 -0.70 0.57 3.73
0.6 0.2 1.48 10 -0.70 0.52 3.68
0.7 0.2 1.46 10 -0.70 0.56 3.63
0.8 0.2 1.46 10 -0.70 0.62 3.63
0.9 0.2 1.46 10 -0.70 0.66 3.63
1 0.2 1.46 10 -0.70 0.68 3.63

SIR 0.2 1.00 50 -0.55 1.31 3.20

Note: Summer is the change in the value π
s,“summer”/πs,“winter” − 1 from the last week of

March to September for πs,t, compared to π
s,“winter”. R0 is the basic reproduction num-

ber. The grid is defined as follows. Case fatality rate ∈ {0.2%, 0.5%}; πs ∈
[
0, 5× 10−6

]
;

I0 ∈ {10−5, 5 × 10−5, 10−4, 5 × 10−4, 10−3}; Summer ∈ [−0.05,−0.95]. The RMSE is calculated
from the simulated and actual deaths per 100k people. The grid search for the SIR model is done
by setting ωt = 1 described in Appendix F throughout the sample period.

In each iteration, the simulated time series for weekly deaths, in the number of deaths per 100,000

people, is compared with the actual data to obtain the RMSE. The parameter values producing the best

fit to the data on weekly deaths, conditional on a choice for φ value, are presented in Table 2. We see

that a choice of φ = 0.6 minimizes the RMSE between the model and the data. We, therefore, choose it

as our benchmark. Note that at this value for φ = 0.6, the model implies a basic reproduction number
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Figure 5: Weekly Deaths: Swedish Data and Models.

at the beginning of the pandemic of R0 = 3.68.

6 Results for the Benchmark Economy

We now present our results, starting with the findings for our benchmark economy with two sectors

calibrated to the Swedish health data as described above. To clarify the quantitative importance of our

mechanism, we also contrast the results from the benchmark economy to that of a one-sector economy

inspired by the work of Eichenbaum et al. (2020) where, by construction, the sectoral reallocation channel

is absent. In this section, to facilitate the comparison between both model variants, we keep the health

parameters fixed; the only difference is φ which takes the value φ = 0.6 for our benchmark φ = 1 for the

representative sector economy.

Fig. 5 displays the number of weekly deaths in the data and the two versions of the model. It is

identical to Fig. 2 in the introduction but replaces the death dynamics implied by the purely epidemi-

ological SIR model predicted by the representative sector economy. In Fig. 6 we display the health

and economic dynamics in our benchmark model (blue solid line) and contrast it with the economy in

which the reallocation mechanism is absent since φ = 1 as in a one-sector economy (the dotted line).

Finally, the left panel of Fig. 7 plots the evolution of sectoral consumption across the two sectors of our
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Figure 6: Evolution of Health Distribution and Economic Variables: Benchmark model and
homogeneous-sector economy.

benchmark economy. The right panel does the same for Swedish data15.

We observe that, as already documented in the introduction, the baseline model with sectoral allo-

cation captures the death dynamics very well. Both the seasonality of the infection parameter πs,t as

well as the endogenous adjustment of consumption decisions (relative to the purely epidemiological SIR

model) is important in this regard. However, they play a different role in the first and the second wave.

When the virus breaks out in the spring of 2020, susceptible households optimally reduce consumption

and substitute consumption goods from the high-infection sector with goods from the low-infection sector,

see the lower middle and right panel in Fig. 6 and the left panel of Fig. 7. The resulting decline in

aggregate consumption of ca. 10% in both the benchmark economy and the economy with two sectors

accords well with the size of the economic recession in Sweden in the early part of 2020, see the right

panel of Fig. 7. Note that the economic consumption of a susceptible household in the model is defined

15In the data, rather than restricting attention to narrowly defined sectors (such as restaurants and groceries, as in the
introduction), we now use data on all final consumption sectors of the economy, rank them by their decline in the spring of
2020 relative to December 2019, and group them into two baskets according to this decline. We then plot the time series of
output for both groups relative to December 2019. The result is the right panel of Fig. 7. Appendix E contains the details
of how the right panel of Fig. 7 is constructed
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Figure 7: Sectoral dynamics: Model vs. data.

as

cst =

∑
k=1,2

0.5(cstk)1−1/η

η/(η−1)

(54)

whereas measured consumption of that same household is given by

cjt =
∑
k=1,2

0.5cjtk. (55)

since prices of all goods are identical. Infected and recovered households optimally spread their consump-

tion equally across sectors, and thus for these groups, there is no difference between both consumption

concepts. By the goods market-clearing condition, measured consumption (and thus measured GDP,

since we abstract from investment and capital accumulation) equals aggregate labor input (and thus

the last panel of Fig. 6 displays the change in both variables), which is the relevant model variable for

comparison with the empirically observed consumption decline.

The reduction of consumption by susceptible individuals, which, early in the pandemic, accounts

for most of the population, reduces infection risk and lowers the number of new infections relative to

the SIR model (see again Fig. 2). Besides, the first panel of Fig. 6 shows that the sectoral reallocation
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of consumption towards less infectious sectors reduces new infections and slows down the reduction of

not-yet infected (susceptible) and deceased agents from April through October 2020, relative to the

representative sector economy. Quantitatively, however, this effect is small relative to the seasonal

decline in the infection risk parameter πs,t in the summer of 2020. In a nutshell, this epidemiological

seasonality in infection risk temporarily halts the epidemic, with economic adjustments in total and

sectoral consumption playing a non-trivial but secondary role.

The situation is very different during the second wave in the winter of 2020. With a high seasonal

infection parameter and associated infection risk from October 2020 on, and with more than 60% of

the population still susceptible to the disease (more so in the baseline economy than in the one-sector

economy, since the spring wave was somewhat smaller in that economy, see the upper panels of Fig. 6),

reducing consumption and changing its composition is the only way for susceptible households to avoid

the strongly elevated infection risk. As the left panel of Fig. 7 shows, the model-implied consumption

recession, and especially the consumption reallocation across sectors, is much more potent in the second

wave. Fig. 8 again plots model-measured consumption in both versions of the model (as the lower middle

and right panel of Fig. 6 did) but zooms in on the second wave. Measured consumption in the second

wave displays a significantly smaller decline in the benchmark economy than in the one-sector economy

because reallocation of consumption across economic activities is an effective tool for mitigating infection

risk.

We acknowledge that although the Swedish data display a significant reduction of consumption ex-

penditures on restaurants in the second wave (see Fig. 1 again in the introduction), the right panel of

Fig. 7 does not bear out the massive second collapse of economic activity in more broad-based sectors of

the economy, as predicted by our benchmark economy, although the strong performance of other sectors

predicted by the model is clearly visible in the data. This may be due to sectors already aggregating

across low-infection-risk and high-infection-risk components and due to a richer structure of the economy

overall. It also suggests that the frictionless reallocation of consumption across sectors of the economy

envisioned by our benchmark model in light of the pandemic is perhaps too extreme an assumption. In

practice, such reallocation might take even more time or could be limited by fixed factors of production

and by a lower willingness of individuals to substitute away from valued (yet infectious) consumption

activities than we have assumed thus far.

7 Inspecting the Economic Mechanism: Sensitivity Analysis

In order to more deeply understand the economic choices and their impact, the potency of the multi-

sector possibilities, and the differences between the one-sector and the multi-sector version, we explore
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the sensitivity of our results with respect to key choices. One is the infection risk φ in the low-infection

risk sector as well as the seasonality, or lack thereof, in the exogenous parameter πs,t, see Section 7.1.

The second is to vary the elasticity of substitution, or the level of the exogenous parameter πs,t, see

Section 7.2.

7.1 Varying Infection Risks and Seasonality

The differences in Fig. 6 between the one-sector economy and the two-sector economy may be puzzlingly

small: although there are considerable sectoral reallocations in the two-sector version, the aggregate

results do not differ much, especially in the first wave.

To explore that, we first “crank up” the health benefits from consuming in the low infection risk

sector per lowering φ to φ = 0.2 from φ = 0.6, correspondingly raising the infection intensity of the

high-infection sector to 2 − φ = 1.8. The impact can be seen in the top portion of Fig. 9. The impact

on the dynamics of the infected is now considerable: it rises more sharply and is much larger both in

the first and second waves. As a result, the fraction of susceptible agents and of the deceased climb

considerably more than in our benchmark economy or the one-sector economy: we only show the latter

here for comparison. Nonetheless, the first wave’s impact on consumption and labor is still remarkably

small: larger differences only emerge in the second wave.
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To understand why this is so, it is useful to examine the first-order conditions of susceptible agents

in Eqs. (13) to (15), i.e.

u1(cst , n
s
t ) ·
(
cst
cstk

)1/η

= λsbt + νtφ(k)citk

νt = πsItλτt

β(Ust+1 − U it+1) = λτt

The difference between the first-order conditions of a susceptible agent to those of an infected or recovered

agent is the last term on the right in the first of these three equations, i.e. the shadow value of becoming

infected, characterized by νt. The second equation shows that this shadow value is a product of two

endogenous components: the fraction of the infected It as well as the Lagrange multiplier λτt.

The last equation shows λτt to be proportional to the difference in the lifetime utilities between being

susceptible and infected. There are two offsetting forces determining this difference. Consider the results

for the first wave as shown in the top portion of Fig. 9, and compare the one-sector economy to the

two-sector economy. Aggregate consumption is roughly the same, but there is an additional sectoral

shift in the two-sector economy. Flow utility for susceptible agents is lower than that of infected agents:

that flow utility difference alone would result in a negative value for λτt, and it is thus even greater for

susceptible agents in the multi-sector economy than in the one-sector economy. The difference in lifetime

utilities is ultimately positive due to the additional death risk that infected agents face. The infection

risk is higher in the one-sector economy, as the top left panel shows. This implies that it is more valuable

to be susceptible in the multi-sector economy, as infection and the death risk can be prolonged longer.

If this force alone were present, λτt would be higher in the multi-sector economy than the one-sector

economy. The first panel of the second row in Fig. 9 likely indicates that the second force is numerically

stronger than the first until late in 2020.

Returning to the calculation of νt, we now see that the lower fraction of infected It in the multi-sector

economy is offset by the higher life-time utility difference λτt in the multi-sector economy. The resulting

impact on consumption thus happens to be similar. Note that the ordering of the λτt switches towards

the end of 2020: it is then that larger differences in the aggregate economics appear.

When seasonality in πs,t is eliminated as in the bottom portion of Fig. 9, the life-time utility difference

λτt becomes smaller rather than larger when moving to the two-sector economy with φ = 0.2, i.e., the

first force of reduced flow utility becomes dominant with time. As a result, both the decrease in the

fraction of infected as well as the decrease in the life-time utility difference work in the same direction:

both lower the shadow value νt of avoiding the infection risk, thus leading to a smaller reduction in

consumption than in the one-sector economy, see the middle panel of the bottom row. We concede that
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the lower overall consumption in the one-sector economy, in turn, generates a force towards a lower flow

utility in the one-sector economy compared to the multi-sector economy: the overall net effect can be

tricky to understand fully.

The point of these calculations is to argue that the various forces interact in subtle ways. Seasonality

and the modest reduction in infection risk of consuming in sector 1, nearly offset each other during the

first wave, as can be seen in Fig. 6, but this is not necessarily so in general. They depend in subtle ways

on the numerical specifications chosen.

7.2 Varying the Substitution Elasticity Across Goods

The second crucial parameter governing the sectoral substitution mechanism’s quantitative importance

is the elasticity of substitution across sectors, as measured by η.

The top portion of figure Fig. 10 shows the impact of changing the elasticity of substitution η. As

we approach the perfect substitution case for very high values of η, the dynamics of the first wave and

“winter phase” in March/April 2020 is reduced considerably, leading to an even faster decline of infected

agents in the “summer phase” and dramatically reducing the first wave’s size. As a result, the drop in

consumption is small. However, this reduction of infections in the first wave leaves a larger portion of

susceptible agents for the second wave. When the next winter phase starts,the value for π
s,“winter” is

so high, that even a high value of η implies a positive reproduction rate of infected agents: the number

of infected agents and the size of the second wave as well as the implied drop in consumption is now

much larger. The details regarding the sectoral reallocation can be seen in figure Fig. 11. When η = 100,

the high-infection sectors practically cease operations, at the peak of the first wave as well as during the

second wave. This may correspond to, say, movie theaters and concert venues, where indeed activity

largely ceased.

The elasticity of substitution η is tightly related to the level of the infection risk parameter πs,t.

Proposition 1 shows that our model is equivalent to a one-sector economy when the elasticity of substi-

tution is zero, since then, any sectoral reallocation is eliminated. When η approaches infinity, we again

obtain a one-sector economy in the limit as proposition 2 shows, except that πs,t now needs to be scaled

down by the infection risk φ(0) of the lowest-risk sector.

The bottom portion of figure Fig. 10 therefore shows the results for the one-sector economy, as we

scale πs,t down to φ1 ∗ πs,t = 0.6πs,t, and which corresponds to η → ∞. There are differences in the

η = 100 results in the top portion. Perhaps the most interesting difference is that the onset of the second

wave takes even longer in this πs,t-scaled one-sector economy, but once it starts, it appears to take off

more ferociously. As an “in-between” scenario, we also show the results for the one-sector economy, when
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(a) Dynamics with seasonality.
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(b) Dynamics without seasonality.
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Figure 9: Two waves vs. one wave. The following parameters are unchanged from the baseline model:
case fatality = 0.2%, π

s,“winter” = 1.48× 10−6, I0 = 10. Solid lines are for φ = 0.2, while dotted lines

are for φ = 1. In panel (a), seasonality follows the baseline model, in which the π
s,“summer” value drops

by 70% of πs,“winter”. In panel (b), the πs,t value is constant throughout the period.

36



Apr Jul Oct Jan
0

2

4

6

8

10
%

 o
f i

ni
tia

l p
op

ul
at

io
n

Infected

Apr Jul Oct Jan
20

40

60

80

100

%
 o

f i
ni

tia
l p

op
ul

at
io

n

Susceptible

Apr Jul Oct Jan
0

0.05

0.1

0.15

%
 o

f i
ni

tia
l p

op
ul

at
io

n

Deceased

Apr Jul Oct Jan
2

4

6

8

10

12

Lambda

Apr Jul Oct Jan
-25

-20

-15

-10

-5

0

%
 d

ev
. f

ro
m

 S
S

Consumption

Apr Jul Oct Jan
-20

-15

-10

-5

0

%
 d

ev
. f

ro
m

 S
S

Labor
(Measured cons.)

Apr Jul Oct Jan
0

5

10

15

%
 o

f i
ni

tia
l p

op
ul

at
io

n

Infected

Apr Jul Oct Jan
20

40

60

80

100

%
 o

f i
ni

tia
l p

op
ul

at
io

n

Susceptible

Apr Jul Oct Jan
0

0.05

0.1

0.15

%
 o

f i
ni

tia
l p

op
ul

at
io

n

Deceased

Apr Jul Oct Jan

4

6

8

10

12

Lambda

Apr Jul Oct Jan
-25

-20

-15

-10

-5

0

%
 d

ev
. f

ro
m

 S
S

Consumption

Apr Jul Oct Jan
-25

-20

-15

-10

-5

0

%
 d

ev
. f

ro
m

 S
S

Labor
(Measured cons.)

Figure 10: Top portion: heterogeneous-sector economy, variations in η. Bottom portion: Homogeneous-
sector economy, scaling of πs,t.
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Figure 11: Heterogeneous-sector economy: consumption dynamics.

πs,t is scaled down only half way to 0.8πs,t, which appears to be closer to the η = 100 case than going

all way to 0.6πs,t. The key takeaway from this discussion is that parameter variations in the one-sector

economy can be of considerable aid in understanding parameter variations in the multi-sector economy

when guided by theories such as proposition 2.

8 Socially Optimal Allocations

Lastly, we explore the solution to the social planner’s problem described in Section 4. Fig. 12 shows the

outcome of the social planner solution under our baseline parameters.16 The social planner essentially

stops the outbreak dead in its tracks: the number of infected agents declines quickly and is barely

noticeable within a few weeks after the start of the outbreak (please note the extremely small scale of

the y-axes in Fig. 12). The social planner achieves this outcome by restricting consumption of infected

agents in a Draconian manner, thereby hugely mitigating the infection risk and stopping the infection at

the onset. Compared to the competitive equilibrium outcome, the solution of a planner with the power

to distinguish between the health status of infected and susceptible agents is even more successful in

16The social planner solution for the homogeneous sector case (equivalently, the η = 0 case) and the the η = 10 case are
practically identical, in terms of aggregates. Since the planner effectively stops the epidemic and thus infected individuals
are virtually absent from the economy, the consumption dynamics of susceptible individuals making up close to 100% of
the economy throughout the epidemic is close to independent of η. As far as aggregates are concerned, sector heterogeneity
plays practically no role. Therefore we only display the time series of these aggregates for the benchmark economy.
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Figure 12: Heterogeneous-sector economy: social planning solution. Note the tiny numbers on the
vertical axes.

averting the epidemic.

Fig. 13 further illustrates how the consumption of infected people is restricted and how the allocation

depends on the degree of substitutability between the two sectors. In the baseline scenario, per capita

consumption of an infected household is restricted to 5.8% of its pre-pandemic steady-state competitive

equilibrium value during winter. Consumption of infected individuals in the highly infectious sector

is effectively driven to zero, especially if the two sectors can be substituted easily (the η = 10 case).

Essentially, the planner insulates susceptible individuals facing infection risk from infected individuals

in the dangerous sector. In the benchmark case with a lower elasticity of substitution, η = 3, the social

planner does not impose quite as drastic a difference across the sectors (since this would be very costly in

terms of lifetime utility of the infected individuals, which the planner values as well). In the homogeneous

sector case (equivalent to the case for η = 0 in the two-sector economy), consumption in both sectors is

the same, as the dashed black lines show. Now, consumption for the infected is reduced to only 4.6% of

the non-infectious steady state competitive equilibrium. It is in this treatment of the infected agents that

the sectoral substitution possibilities matter considerably since, without any other means to insulate the

infected from the susceptible population, the planner finds it optimal to reduce consumption activity of

the infected population across the board to avoid the outbreak of the epidemic.
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Figure 13: Per capita consumption of infected people.

It is particularly interesting that the social planner’s restriction on infected agents’ consumption

is also contingent on the seasonal effect of the infection risk. During the summer, when the value of

π
s,“summer” is 70% lower than the winter value π

s,“winter”, infected agents are allowed to consume

about 2 times more in both sectors. The consumption in the low-infection sector increases to 37% of the

pre-pandemic competitive equilibrium, and that in the high-infection sector rises to 4.5% of the former

steady state.

One should take the social planner solution with a pinch of salt, of course, rather than as a normative

prescription of what a government should actually do in practice. Presumably, a really powerful social

planner would entirely separate the infected and recovered people from those who are susceptible (always

under the maintained assumption that infected individuals cannot pretend to be healthy in order to be

eligible for a more favorable consumption allocation). If this is technologically feasible, the disease cannot

spread any further, and no consumption decline for the infected is needed. The formulation of our social

planner problem precludes this possibility. In summary, our calculations and this remark show that the

possibility of containing the pandemic depends crucially on the tools available to the government. They

may involve imposing considerable hardship on a few (the initially infected) to rescue the many.
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9 Conclusion

In this paper, we have analyzed the economic laissez-faire approach or “Swedish” solution to the COVID-

19 pandemic. We have built on the macroeconomic-cum-SIR model of Eichenbaum et al. (2020), but

departed from their analysis in two key dimensions. Regarding the economic mechanism, we permit

substitution of consumption across sectors with different degrees of infection probabilities. Regarding

the epidemiological mechanism, we allow for exogenous seasonality in the key infection risk parameter.

After presenting theoretical results for limiting values of the elasticity of substitution between sectors,

we quantified the model by calibrating our epidemiological parameters to the Swedish death dynamics.

We found that our model fits that death dynamics substantially better than a plain-vanilla SIR model,

while also providing a reasonably good fit to the overall consumption decline in Sweden during the first

wave of the epidemic. With our sensitivity analysis, we show that the sectoral substitution possibility is

a powerful force in mitigating the speed of the epidemic and the depth of the economic decline.

As a result and while the COVID-19 death toll in Sweden was substantial and tragic, it was perhaps

not as dramatic as some observers have feared. As of March 8th, 2021 and according to the data provided

by John Hopkins University, the Swedish death toll stands at about 1264 per million, roughly the same

as similarly open Brazil or subject-to-lockdown France, but below the US with 1592 per million, Italy

with 1656 per million or, at the sad top, the Czech Republic with 2035 per million. The death toll is

higher than in, say, Germany with 866 fatalities per million or neighboring Norway with just 118 per

million. Given these numbers and given the substantial role of the change in the exogenous (and thus

difficult-to-predict) infection risk parameter πs,t, we are hesitant to judge whether Sweden could have

done better with the kinds of policies adopted in, say, Norway, Germany, France or the U.S., and what

the final death toll numbers will be when the epidemic has run its course around the world. As a warning

sign, it is worth remembering that the Czech Republic, the current COVID-19 death leader as of March

8th, 2021, had a nearly negligible death toll as late as September 2020.

Neither do we wish to argue that a laissez-faire approach is the best approach available. In the

competitive equilibrium, agents do not take the externality - that their infectious state and infection risk

impose on others - into account. We, therefore, juxtapose our laissez-fare solution with the solution of a

social planner, who knows the health status of agents and can dictate their consumption and labor choices

but cannot otherwise separate individuals. The social planner would drastically lower the consumption

of infected agents, thereby avoiding the economic decline and the pandemic dynamics almost entirely.

The planner would therefore massively reduce the number of deaths linked with COVID-19, relative to

the competitive equilibrium.
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A Two-sector simulations

9The consumer interaction indicator φ(k) is defined piece-wisely as

φ(k) =


φ k ∈ [0, υ)

2− φ k ∈ [υ, 1]

where υ is the size of the sector with lower consumer interactions. For each sector j ∈ {1, 2}, there is

a first-order condition with respect to cxjt, where x ∈ {s, i, r}. The equations for infected and recovered

people are substituted out, because their consumption and labor are constant. The following equations

consist of the system delivering the paths of key variables.

1
cst

(
cst
cs1t

)1/η

=
θ

A
nst + πs,tItλτ,tφ1

A√
θ

(A.1)

1
cst

(
cst
cs2t

)1/η

=
θ

A
nst + πs,tItλτ,tφ2

A√
θ

(A.2)

υ1c
s
1t + υ2c

s
2t = Anst (A.3)

cst =
[
υ1c

s
1t

1−1/η + υ2c
s
2t

1−1/η
] η
η−1

(A.4)

λτ,t = −β
(
U it+1 − Ust+1

)
(A.5)

Ust = u (cst , n
s
t ) + β

[
(1− τt)Ust+1 + τtU

i
t+1

]
(A.6)

U it = u
(
ci, ni

)
+ β

[
(1− πd)U it+1 + πrU

r
t+1

]
(A.7)

Urt = u
(
ci, ni

)
+ βUrt+1 (A.8)

τt =
A√
θ
πs,tIt (φ1υ1c

s
1t + φ2υ2c

s
2t) (A.9)

Tt = τtSt (A.10)

St = 1− It −Rt −Dt (A.11)

Rt = Rt−1 + πrIt−1 (A.12)

Dt = Dt−1 + πdIt−1 (A.13)

It = Tt−1 + (1− πd − πr) It−1 + 1t=1ε (A.14)

Note that the time convention of disease dynamics is modified for implementation in Dynare. An MIT

shock of size ε is added to (A.14) in period 1. The paths of aggregate consumption and labor are given
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by

Ct = Stc
s
t + (It +Rt)

A√
θ

(A.15)

Nt = Stn
s
t + (It +Rt)

1√
θ

(A.16)

B Eliminating cstk

Note that citk = A/
√
θ. Let us reexamine (13) and write it as

(
cst
cstk

)1/η

= xtk (B.1)

where we define

xtk = cst

(
λsbt + νtφ(k)A/

√
θ
)

(B.2)

Rewrite (B.1) as

cstk = x−ηtk c
s
t (B.3)

Thus

(cstk)1−1/η = x1−η
tk (cst )

1−1/η (B.4)

and integrate

∫
(cstk)1−1/ηdk =

∫
x1−η
tk dk × (cst )

1−1/η

Taking this to the power η/(η − 1) finally yields

cst =

(∫
x1−η
tk dk

)η/(η−1)

cst

or the constraint

1 =

(∫
x1−η
tk dk

)η/(η−1)
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This can be simplified to

1 =

∫
x1−η
tk dk (B.5)

or

cst =

(∫ (
λsbt + νtφ(k)A/

√
θ
)1−η

dk

)1/(1−η)

(B.6)

Thus, (4) and (5) can be rewritten as

τt = πs,tIt

∫
φ(k)xηtkc

s
tA/
√
θdk (B.7)

= πs,tIt

∫
φ(k)

(
λsbt + νtφ(k)A/

√
θ
)−η

(cst )
1−ηA/

√
θdk (B.8)

and

Tt = πs,tStIt

∫
φ(k)xηtkc

s
tA/
√
θdk (B.9)

= πs,tStIt

∫
φ(k)

(
λsbt + νtφ(k)A/

√
θ
)−η

(cst )
1−ηA/

√
θdk (B.10)

C Details for the Heterogeneous Labor Economy

Proof of Proposition 4. To see the similarities and differences between the heterogeneous consumption-

and heterogeneous labor economy more formally, observe that the first-order conditions for infected

and recovered agents are unchanged. In particular, we obtain cit = citk ≡ A/
√
θ and nit = nitk = 1/

√
θ,

regardless as to whether consumption or labor is heterogeneous and regardless of the particular approach

taken for labor heterogeneity. It, therefore, suffices to examine the first-order conditions for susceptible

agents.

For the consumption-infection baseline model, the first-order conditions can be summarized by

1

cst

(
cst
cstk

)1/η

− θ

A
nst = πs,tφkλτt

A√
θ
It (C.1)

while the aggregation constraint and budget constraint are

cst =

(∫
(cstk)

1−1/η
dk

)η/(η−1)

Anst =

∫
cstkdk
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Define nstk = cstk/A and rewrite these two equations equivalently as

cst = A

(∫
(nstk)

1−1/η
dk

)η/(η−1)

(C.2)

nst =

∫
nstkdk (C.3)

Recall that the infection probability is given by equation (4). Substituting out the solution for cit as well

as cstk with Anstk = cstk, it can be restated as

τt = πs,tIt

∫
φ(k)Anstkdk

A√
θ
. (C.4)

For the production-based heterogeneous-labor model, the first-order conditions can be summarized

by

1

cst

(
nst
nstk

)1/α

− θ

A
nst =

π̃s
A
φkλτt

1√
θ
It (C.5)

while the aggregation constraint and budget constraint are

cst = A

(∫
(nstk)

1−1/α
dk

)α/(α−1)

(C.6)

nst =

∫
nstkdk (C.7)

Recall that the infection probability is given by equation (45), which can be restated as

τt = π̃sIt

∫
φ(k)nstkdk

1√
θ
. (C.8)

For α = η, π̃s = A2πs,t and nstk/n
s
t = cstk/ct, equations (C.5) becomes (C.1), equations (C.6) become

equations (C.2) and (C.8) becomes (C.4).

For the preference-based heterogeneous-labor formulation, the first-order conditions can be summa-

rized by

1

cst
− θ

A
nst
f ′(nstk)

f ′(nst )

(
f(nst )

f(nstk)

)1/α

=
π̃s
A
φkλτt

1√
θ
It (C.9)

while the aggregation constraint and budget constraint are

cst = A

∫
nstkdk (C.10)

nst =

(∫
(nstk)

1−1/α
dk

)α/(α−1)

(C.11)
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While there is considerable formal similarity, there no longer is a formal equivalence as in proposition 4.

D First Order Conditions of the Social Planner Problem

The social planner’s problem in the main text yields the following first-order conditions:

(
∂

∂cst
:

)
us1,t

(
cst
cstk

)1/η

+ µf,t = βπs,tφµI,t+1Itc
i
tk(

∂

∂cit
:

)
ui1,t

(
cit
citk

)1/η

+ µf,t = βπs,tφµI,t+1Stc
s
tk(

∂

∂crt
:

)
ur1,t

(
crt
crtk

)1/η

+ µf,t = 0(
∂
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:

)
us2,t = µf,tA(

∂

∂nit
:

)
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∂

∂nrt
:

)
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∂

∂St
:

)
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s
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∫
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s
t

+β

[
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]
(
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)
u
(
cit, n

i
t

)
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∫
citkdk + µI,t = µf,tAn

i
t − µS,t

+β [(µS,t+1 + µI,t+1) (1− πr − πd)

+πrµR,t+1 + µI,t+1πs,tSt
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φ(k)cstkc
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(
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u (crt , n

r
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∫
crtkdk + µR,t = µf,tAn

r
t + βµR,t+1

E Replicating data

Replicating Fig. 1 Navigate to the Statistical Database module of the Statistics Sweden website and

use their GUI to extract all Fixed Price denominated rows from the Monthly Indicator for Household

Consumption17. This index details trends in retail trade, wholesale trade, and other service industries,

and spans 20 years from January 2000 to July 2020. Transpose and subset this data frame until only 3

columns remain: Total Consumption, Restaurants, and Groceries.

Control for seasonality (e.g. Christmas spending spikes) in these 3 columns by following along with

Sax and Eddelbuettel (2018) in their aptly named paper, Seasonal Adjustment by X-13ARIMA-SEATS

17www.statistikdatabasen.scb.se/pxweb/en/ssd/START HA HA0101 HA0101B/HushKonInd/
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in R, which presents a model selection framework for linear regression models with ARIMA errors. This

paper builds upon a SEATS procedure originally developed by Gómez and Maravall (1997) at the Bank

of Spain.

Once deseasonalized, rebase each of the 3 columns so that December 2019 is always equal to 100, by

dividing all the points in each series by the value of said series at 2019M12 and multiplying by 100. The

resulting deseasonalized and rebased dataset gives us a clearer picture of what is happening. Plotting

the last 12 rows of these 3 columns should now flawlessly replicate Figure 1.

Replicating Fig. 7 Extract two new data frames from the Statistics Sweden repository: GDP (Pro-

duction Approach) by Industrial Classfication18 and Turnover Index for the Service Sector19,

denoted respectively in Constant Prices (SEK Millions) and Volume (Fixed Prices). While GDP (Pro-

duction Approach) measures GDP as the sum of the values added by all sectors of the economy, the

Turnover Index is a survey tracking monthly changes in invoice sales. The turnover Index is used as

an input for national accounts statistics. Go ahead and deseasonalize/rebase each column in Turnover

Index just as in Figure 1.

A “mean response to COVID-19̈for each industry is then constructed, defined as the mean value of

the index for each sector during the first 6 months of 2020. This metric is used to ordinally rank each

sector in the Turnover Index, from those most impacted by COVID-19 (e.g. airlines/hotels) to those

least impacted (e.g. veterinarians, IT services).

Next, filter the GDP (Production Approach) data frame so that it contains only values for 2019Q1,

2019Q2, 2019Q3, and 2019Q4, then sum these 4 quarters to obtain total GDP for 2019. This nominal

amount for each sector is then divided by the entire sum for all sectors so that the weights sum to one.

We have now ascertained the relative size of each sector.

We now wish to link/merge these two data frames (GDP & Turnover); at first glance, this might

seem straightforward as they both rely on NACE (Nomenclature des Activités Économiques dans la

Communauté Européenne) classification codes. However, upon closer inspection, one realizes that the

variables in the two datasets do not match up perfectly; some miscellaneous data cleaning practices and

subjective choices are required to build our own bespoke consumption bundle, a bundle seeking to proxy

for Total Consumption in Figure 1. Many columns are dropped outright because they are contained in

one data frame but not the other; other columns are dropped because they are superfluous or do not proxy

for consumption. Other columns must be aggregated, for example, sectors 94, 95, and 96 in the Turnover

Index are averaged into one new variable dubbed 94-96, because while GDP (Production Approach) does

not contain any of 94, 95, or 96, it does contain a variable called 94-96. This aggregation is a workaround

18www.statistikdatabasen.scb.se/pxweb/en/ssd/START NR NR0103 NR0103A/NR0103ENS2010T06Kv/
19www.statistikdatabasen.scb.se/pxweb/en/ssd/START HA HA0101 HA0101B/DivtjansterM07X/
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that lets us compare the two data frames. The entire cleaning and linking process is described in detail

in our accompanying R code, and whittles our initial data frames down from 60+ miscellaneous sectors

down to a core of 14 sectors. Depending on the choices you (the replicator) make, your particular dataset

may have roughly more or less than 14 sectors, depending on how you aggregate/drop columns, and how

you choose to define Total Consumption.

Finally, classify all sectors in this newly linked data frame into those that boomed the most vs. those

that declined the most due to COVID-19. This is done simply by sorting the data frame on “mean

response to COVID-19”, as calculated two paragraphs ago. Add together all the sectors with the highest

mean response until their cumulative sum of GDP contributions gets just over 0.5, and plot the time

series. Congratulations, you have now successfully replicated Figure 2!

F Myopic Individuals and the First Wave

In this appendix, we discuss in more detail how the assumption of initially myopic (or unaware) individ-

uals in March 2020 can generate a steep rise in infections and deaths, and the recognition that there is

a pandemic that is linked to consumption behavior in early April can lead to an end of the first wave.

Formally, we turn off the economic forces until March 27th. This temporary myopia version of the model

introduces a switch to susceptible agents’ utility function as

Ust = u (cst , n
s
t ) + β

{
(1− ωt)

[
(1− τt)U it+1 + τtU

r
t+1

]
+ ωtU

s
t+1

}
where ωt = 1 when susceptible agents are unaware of the pandemic. Hence, the first-order condition

with respect to τt yields

λτ,t =


β
(
Ust+1 − U it+1

)
when ωt = 0

0 when ωt = 1

It follows that in periods when ωt = 1, the consumption demand for the susceptible agents in equation

12 resembles that for the infected agents in equation 19 . No decline in the infection parameter πs in

April is needed in this version of the model to qualitatively (but not necessarily quantitatively) capture

both waves in the data, as Figure 14 shows. While the overall fit is clearly worse than in our benchmark

analysis shown in figure 2 of the main text, the power of “turning on” the economic forces in April is

nonetheless clearly visible in the decline of deaths at the end of the first wave.
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Figure 14: Model simulation, when agents ignore the infection risks until late March 2020. φ1 = 0.1,
case fatality rate 0.5%, πs = 0.78× 10−6, I0 = 100, winter scale 2.
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