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1 Introduction

If a payoff function is flat in the neighborhood of the optimum, little is lost by not choosing

that optimum. The more quickly payoffs decrease when moving away from the optimum, the

higher the incentive to choose that optimum ceteris paribus. In the class of twice-continuously-

differentiable payoff functions with an interior optimum, the (monetary) incentive to optimize a

certain payoff function manifests itself in the concavity of that function.1 This logic underlies

models that incorporate decision costs (e.g., Wilcox, 1993), as well as probabilistic choice models

in which the probability that an action is chosen increases with the payoff from that action

relative to the payoff from other actions (e.g., McFadden, 1976; McKelvey and Palfrey, 1995,

for individual and strategic choice, respectively). In line with the logic, laboratory experiments

using games that fit within the above class of payoff functions have shown that higher concavity

of the payoff function leads to play closer to or faster converging to the equilibrium (Harrison,

1989; Chen and Plott, 1996; Davis, Reilly, and Wilson, 2003; Chen and Gazzale, 2004). This

paper presents novel results on the role of concavity of payoffs in the context of repeated dilemma

games which fit within the class of games with a twice-continuously-differentiable payoff function.

Dilemma games are characterized by a tension between individual and joint payoff maxi-

mization, and are in their continuous form a paradigm for interactions like, for example, team

production and behavior of firms in oligopoly. If repeated, even finitely, dilemma games are the-

oretically conducive to cooperation; cooperation until almost the end can be supported in a Nash

equilibrium, in a subgame perfect Nash equilibrium if noise is allowed for, or in a sequential equi-

librium in the case there is incomplete information about the partner’s type (Kreps, Milgrom,

Roberts, and Wilson, 1982; Fudenberg and Maskin, 1986; Benoit and Krishna, 1986; Radner,

1984). Behaviorally, dilemma games are particularly conducive to cooperation if played among

pairs of players (Andreoni and Miller, 1993; Dufwenberg and Gneezy, 2000; Huck, Normann, and

Oechssler, 2004). Increasing the concavity of a player’s payoff function in these games not only

affects the player’s incentives near the payoff maximum of the stage game, it also affects marginal

incentives at all other points in the strategy space. For example, incentives near the joint-payoff

maximum are affected as well; the joint-payoff function also becomes more concave. A possible

consequence is that a cooperative equilibrium is reached more easily, and it is not obvious that a

more concave payoff function will lead to more frequent play of the stage-game equilibrium. Our

experiment is designed to explore the effect of an increase in concavity (optimization incentives)

1Twice continuously differentiable payoff functions are commonly used in economics.
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on behavior in a long finitely repeated dilemma game.

The main challenge is to study the effect of optimization incentives in a ceteris paribus

manner. By changing optimization incentives, other important features of the game change

as well. To illustrate, consider a two-player team-production game in which effort levels are

complements and effort costs are convex. With zi denoting the effort of player i the payoff

function is, for example, equal to zi(A + θzj) − dz2i . In this setting optimization incentives are

captured by d: the higher d, the higher is the second derivative, and the more costly it is to move

away from the optimal effort level. It would seem natural to vary d in order to study the effects

of a change in optimization incentives. However, doing so would not give a ‘clean’ test of the

effect of the optimization incentive, as other important features of the game change with d as

well. For example, as d changes, equilibrium effort levels and Pareto-optimal effort levels change

as do the corresponding payoffs. Also the slope of the best-response (BR) curve changes with d.

Given that such changes potentially affect behavior, it could be misleading to attribute an effect

of a change in d on observed effort levels exclusively to a change in optimization incentives. Our

design prevents such confounds as much as possible.

We compare behavior across games which vary in optimization incentives, but which have

the same benchmark outcomes. We use two-player dilemma games with strategic complements.2

We run treatments that have the same (interior) stage-game Nash equilibrium (SNE), the same

joint-payoff-maximizing choice, the same SNE payoffs, and the same payoffs from joint-payoff

maximization (i.e. mutual cooperation).3 Two additional features of the payoff function that

may affect behavior are payoffs on the BR curve and the slope of the BR curve. Payoffs on

the BR curve potentially affect behavior because they influence the incentive to defect from

mutual cooperation. The slope of the BR curve can also affect behavior because its absolute

value influences the number of steps of iterated deletion of dominated strategies needed to arrive

at the SNE (Van Huyck, Wildenthal, and Battalio, 2002), and, potentially, how easy players find

it to cooperate in repeated games (Rotemberg, 1994; Bester and Güth, 1998; Boone, Declerck,

and Suetens, 2008; Potters and Suetens, 2009; Davis, 2011; Embrey, Mengel, and Peeters, 2018).

2Games characterized by strategic complementarity constitute an important class of social dilemmas (Milgrom

and Roberts, 1990; Eaton, 2004; Vives, 2005). Examples include team production with complementarity in skills,

price competition with substitute goods, quantity competition with complementary goods, public goods with

economies of scale, tax competition with mobile capital, R&D competition with spillovers, and arms races between

enemy countries.

3Payoffs along the diagonal (i.e., payoffs associated with symmetric strategies) do not differ between the different

treatments either.
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If one implements a linear BR curve (which we do), it is impossible to control for these two

features at the same time. As we show in the next section, increasing optimization incentives

while keeping the slope of the BR curve constant, changes the payoffs on the BR curve, and thus

increases the incentive to deviate from mutual cooperation. Increasing optimization incentives

keeping constant the payoffs on the BR curve, increases the slope of the BR curve. The first

effect, an increase in incentive to deviate from mutual cooperation, may weaken the scope for

cooperation and thus confound the effect of optimization incentives. The second effect, a higher

degree of strategic complementarity, may increase cooperation and overshadow a potential effect

of optimization incentives on cooperation. That is why in our design we vary optimization

incentives in both ways.

We find that an increase in optimization incentives accompanied by an increase in the incen-

tive to deviate from mutual cooperation does not have effect on the average choice nor on the

mutual cooperation rate. It does lead to more frequent myopic best-response play and stage-

game equilibrium play though. If the increase in optimization incentives is accompanied by an

increase in the degree of strategic complementarity, we find that average choices and mutual co-

operation rates increase, and that there is no effect on myopic best-response play or stage-game

equilibrium play. These results suggest that an increase in optimization incentives can help to

coordinate on a non-cooperative equilibrium (i.e. the stage-game equilibrium) as well as on a

cooperative equilibrium (i.e. a repeated-game equilibrium).

The remainder of the paper is organized as follows. section 2 introduces dilemma games with

strategic complementarity. section 3 presents the experimental design, procedures, and research

questions. section 4 talks about the results. section 6 concludes.

2 Dilemma Games with Strategic Complementarity

We employ a two-player game with a Pareto-dominated SNE. The stage game is characterized

by the following general quadratic payoff function:

πi(xi, xj) = a+ bxi + cxj − dx2i + ex2j + fxixj i, j = 1, 2, j 6= i, (1)

with xi, xj ≥ 0. From the first-order condition the following BR function is obtained for player

i:

xBRi (xj) =
b

2d
+

f

2d
xj i, j = 1, 2, j 6= i. (2)
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The second-order condition specifies that
∂2πi
∂x2i

= −2d < 0, i.e., d > 0. A necessary condition for

the game to be a dilemma game is that the BR curve represented by xBRi (xj) has a slope strictly

smaller than one:
f

2d
< 1, or 2d > f . A necessary condition for the game to be characterized by

strategic complementarities is that f ≥ 0.4

Solving the first-order condition for i, j = 1, 2, j 6= i leads to a SNE action equal to xN =
b

2d− f
with associated payoff π(xN, xN) = a +

b2(d+ e) + bc(2d− f)

(2d− f)2
. Maximizing the sum of

payoffs of both players for i, j = 1, 2, j 6= i leads to a mutually cooperative action of xC =
b+ c

2(d− e− f)
with associated payoff π(xC, xC) = a+

(b+ c)2

4(d− e− f)
.5

We define the optimization incentives as the absolute value of
∂2πi
∂x2i

. Optimization incentives

fully hinge on parameter d, measuring the concavity of the payoff function. It can be seen that

the SNE (xN) and the joint-payoff-maximizing choice (xC) as well as payoffs change as d changes.

In order to come as close as possible to a ceteris paribus change in optimization incentives, we

vary d across treatments while keeping the values of xN and xC as well as corresponding payoffs

π(xN, xN) and π(xC, xC) constant.

Define the payoff function of player i in game k as

πki (xi, xj) = ak + bkxi + ckxj − dkx2i + ekx
2
j + fkxixj , (3)

with xi, xj ≥ 0, i, j = 1, 2, j 6= i, and k ∈ (F,S) where F and S refer to ‘flat’ and ‘steep’,

respectively. The function is of the type of eq. 1 and we assume that the necessary requirements

to guarantee that the game is a twice-continuously-differentiable dilemma game with strategic

complementarity are fulfilled. In order to ensure that the payoff function in game ‘steep’ is

steeper than the one in game ‘flat’, we take that dS = ldF with l > 1.

The payoff function has six free parameters and holding constant the above-mentioned theo-

retical benchmarks as well as the requirement that dS = ldF leads to five requirements that need

to be satisfied when varying parameters between games with a flat and a steep payoff function.

The sixth degree of freedom can be used to vary optimization incentives in one of the follow-

ing ways: (1) by holding constant the BR curve’s slope and varying payoffs on the BR curve,

4A game exhibits strategic complementarity (or increasing differences) if the marginal returns to increases in

one’s action increase with increases in the other players’ actions, that is if in the two-player case
∂2πi

∂xixj
≥ 0 with

i, j = 1, 2 and j 6= i (Fudenberg and Tirole, 1984; Bulow, Geanakoplos, and Klemperer, 1985). This condition is

satisfied if f ≥ 0.

5The mutually cooperative action is unique and symmetric if and only if d > e− f (see Appendix A.3).
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and (2) by holding constant the payoffs on the BR curve and varying its slope. Variation (1)

leads to the following parameters in the ‘steep’ game as a function of those in the ‘flat’ game:

aS = aF; bS = lbF; cS = (1 − l)bF + cF; dS = ldF; eS = eF − (1 − l)(dF − fF); fS = lfF. Variation

(2) leads to the following parameters in the ‘steep’ game as a function of those in the ‘flat’ game:

aS = aF; bS =
√
lbF; cS = (1−

√
l)bF +cF; dS = ldF; eS = −(1+ l)dF +eF +fF +

√
l(2dF−fF); fS =

2ldF −
√
l(2dF − fF). Variation (1) increases the temptation payoff (that is, the payoff when

best-responding to mutual cooperation) keeping constant the degree of strategic complemen-

tarity. Variation (2) increases the degree of strategic complementarity keeping constant the

temptation payoff.

3 Experimental design, procedures, and research questions

3.1 Experimental design

The key treatments in our experiment are a treatment with a flat payoff function (Flat) and two

treatments with a steep payoff function (SteepTemp and SteepComp). The parameters of the

payoff function in Flat are aF = 45, bF = 3.2, cF = 14.88, dF = 1, eF = −0.53, and fF = 0.4. The

parameters of the payoff function in SteepTemp are calculated from those in Flat using variation

(1), and the parameters in SteepComp are calculated from those in Flat using variation (2). So in

both Steep treatments, the payoff function is four times steeper than the payoff function in Flat

(l = 4). In SteepTemp the BR curve has the same slope (equal to 0.2) as in Flat, but the payoffs on

the BR curve (including the temptation payoff) are different. To illustrate, the temptation payoff

π(xBR
i (xCj ), xCj ) is 209.5 in SteepTemp as compared to 140.4 in Flat. In SteepComp the degree of

strategic complementarity is higher—the slope of the BR curve is equal to 0.6 compared to 0.2

in Flat and SteepTemp—but the payoffs on the BR curve are the same. Table 1 gives an overview

of the theoretical benchmarks in the three treatments.As shown in the table, all treatments

have the same SNE and the same joint-payoff-maximizing choice, and associated payoffs. The

table includes the payoff if one chooses the joint-payoff maximizing choice and the partner best-

responds to it, denoted as π(xCi , x
BR
j (xCi )), similar to the ‘sucker’ payoff in a prisoner’s dilemma.

This payoff is substantially lower in SteepTemp than in the other treatments, and is almost equal

in Flat and SteepComp. Figure A3 in the Appendix illustrates the BR curves and the iso-payoff

contours calculated at the SNE for each of the treatments. As can be seen in the figure, the

range of outcomes that Pareto-dominate the SNE is much larger in Flat than in the other two
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treatments.6

Table 1: Treatments and parameters

Flat SteepTemp SteepComp

xmin 0.0 0.0 0.0

xmax 10.0 10.0 10.0

xN 2.0 2.0 2.0

xC 8.0 8.0 8.0

π(xN, xN) 76.6 76.6 76.6

π(xC, xC) 117.3 117.3 117.3

concavity payoff function (2d) 2 8 8

slope BR curve ( f
2d ) 0.20 0.20 0.60

xBR
i (xCj ) 3.2 3.2 5.6

π(xBR
i (xCj ), xCj ) 140.4 209.5 140.4

π(xCi , x
BR
j (xCi )) 59.0 -37.7 60.1

Notes: xmin and xmax respectively refer to the lower and upper bound of the stage-game strategy space, xN

(π(xN, xN)) and xC (π(xC, xC)) to the stage-game NE and the fully cooperative choice (payoff), π(xBR
i (xCj ), xCj )

to the payoff from best-responding to full cooperation (temptation payoff), and π(xCi , x
BR
j (xCi )) to the payoff from

fully cooperating with a partner who best-responds to full cooperation (sucker payoff).

3.2 Experimental Procedures

The experiment has been conducted at the Laboratory for Experimental Economics of the Uni-

versity of Copenhagen.7 The three treatments were run in three sessions covering 74 participants

in total. The numbers of participants per treatment are 26 in Flat, 20 in SteepTemp, and 28 in

SteepComp.

All participants received the same instructions (see section A.1 of the Appendix). The treat-

ments differed only with respect to the payoff function. The subjects were explained that their

earnings depended on their own choices and on the choices of one other participant in the session,

6In an experiment that studies the effect of strategic complementarity on imitation of best-performers, Gaz-

zale (2009) includes treatments that control for the number of Pareto-superior outcomes. In his experiment the

frequency of Pareto-superior outcomes is not influenced by the theoretical range of such outcomes, but rather by

the extent to which the range includes best-responses.

7The experimental software toolkit z-Tree was used to program the experiment (see Fischbacher, 2007) and

ORSEE to recruit participants (see Greiner, 2015).
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which remained the same during the entire experiment. They were asked to choose a number be-

tween 0.0 and 10.0 in each round.8 Subjects could calculate their earnings in points by means of a

payoff table and by means of an earnings calculator on the computer screen for any combination

of hypothetical choices.9

The same (static) game was repeated 30 times with the same pairs of players excluding a

trial round which did not count to calculate earnings. After each round, subjects were informed

about the choice of the paired participant and their own and the opponent’s payoff. Earnings

were denoted in points and transferred to cash at a rate of 250 points = 10 DKK. Subjects

were informed about the number of rounds. The sessions lasted about 50 minutes including the

reading of instructions. Average earnings were 120.3 DKK (16.2 EUR).10

3.3 Hypotheses

We start from the premise that the repeated games in our experiment may be conducive to

behavior that is more cooperative than the SNE prescribes. The question is thus one of identifying

conditions under which cooperation is more likely to occur. Given that optimization incentives

are basically the marginal costs of a deviation from a best-response, it is intuitive to expect that

players are more inclined to best-respond and less likely to stay in a cooperative equilibrium as

these increase. The intuition can be formalized by appealing to quantal-response equilibrium,

which assumes that the likelihood of deviating from the payoff-maximizing choice is inversely

related to the cost of doing so (McKelvey and Palfrey, 1995).11 We therefore formulate our

research hypothesis as follows:

Main hypothesis. An increase in optimization incentives leads to a decrease in cooperation:

Flat > SteepTemp ≈ SteepComp.

If we take into account other forces that have been identified to play a role in repeated dilemma

games predictions are different. A factor that may be particularly relevant is the degree of

8The number of possible decimal points was limited to one.

9Earnings in points were rounded at one decimal. Payoff tables are in section A.2 of the Appendix.

10In the context of another study, subjects played a one-shot prisoner’s dilemma with a different partner before

they played the repeated dilemma game. This part had between-subjects treatment variation in terms of ‘sucker’

payoff, and no differences in cooperation rates were found between the treatments. The outcomes were only

communicated to the subjects after they had finished the repeated dilemma games. It is thus highly unlikely that

including this first part has had a systematic effect on behavior in the dilemma games.

11See section A.3 of the Appendix.
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strategic complementarity, measured by the (absolute value of the) slope of the BR curve. More

steps of iterated dominance are required, the higher the (absolute value of the) slope of the

BR curve, and Van Huyck, Wildenthal, and Battalio (2002) have shown that players are less

likely to play the SNE in dilemma games, the higher the number of steps of iterated dominance.

Moreover, given that repeated games with strategic complementarity have been found to be

more conducive to cooperation than games with strategic substitutability if opportunities to

revise repeated-game strategies are flexible (Potters and Suetens, 2009; Embrey, Mengel, and

Peeters, 2018), it may very well be that the degree of strategic complementarity could have a

positive effect on the degree of cooperation (see also Davis, 2011).

Both of these mechanisms can be formalized by a level-k model that assumes players differ

in the level of strategic sophistication (Stahl and Wilson, 1984; Nagel, 1995): level-0 players

select a choice that is more cooperative than the SNE strategy because they randomize (or

naively cooperate), level-1 players best-respond to the belief that the other player is a level-0

player, level-2 players best-respond to the belief that the other player is a level-1 player, and

so on. Since the BR curves are upward sloping, if a level-k player selects a choice above the

SNE, all players with a higher level will also do so. Responses by higher-level players deviate

more from the SNE the steeper the BR curve.12 An alternative prediction is thus that there is

more cooperation in SteepComp than in Flat and SteepTemp. This leads to the first alternative

hypothesis:

Alternative hypothesis 1. An increase in the degree of strategic complementarity leads to an

increase in cooperation: SteepComp > Flat ≈ SteepTemp.

A second set of possible determinants of behavior are the incentive to best-respond to mutual

cooperation, equivalent to the temptation payoff in a prisoner’s dilemma game, and the payoff

from mutual cooperation being best-responded to, equivalent to the sucker payoff.It has been

shown that an increase in the temptation payoff decreases the cooperation rate in finitely repeated

prisoner’s dilemma games (Mengel, 2018). If this force is dominant, no difference should be seen

in cooperation between Flat and SteepComp, and in line with the above-included hypothesis, less

cooperation should be seen in SteepTemp than in Flat. The same comparative-static prediction

holds if one considers the sucker payoff, which influences the riskiness of cooperation. Both

predictions can be integrated by appealing to the basin of attraction of repeated-game strategies,

12section A.3 of the Appendix provides an application of the level-k model. A cognitive hierarchy model à la

Camerer, Ho, and Chong (2004) gives the same comparative-static predictions.
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which has been shown to be helpful for organizing much of the empirical evidence on finitely

repeated prisoner’s dilemma games (see Embrey, Fréchette, and Yuksel, 2018). The general

prediction is that a player prefers to use a cooperative strategy in the repeated game instead of a

defective strategy for a wider range of beliefs about the strategy of the partner if the temptation

payoff is relatively low or the sucker payoff relatively high. For example, it can be shown that

if strategies are defined so that payoffs on the BR curve influence the trade-off, a cooperative

strategy is least attractive in SteepTemp, and basically equally attractive in Flat and SteepComp

(see section A.3 of the Appendix). We formulate the second alternative hypothesis as follows:

Alternative hypothesis 2. An increase in the temptation payoff or a decrease in the sucker

payoff lead to a decrease in cooperation: SteepComp ≈ Flat > SteepTemp.

4 Main results

We focus on studying treatment effects on cooperation. In Subsection 4.1 we report average

choices and payoffs because they indicate whether play in the repeated games is cooperative and

how cooperative it is. Average choices, however, are a rough measure of behavior and may hide

different types of behavioral tendencies. Different underlying distributions of choices may result

in the same average. For example, averages do not provide direct information on the extent to

which pairs succeed in mutually cooperating or on the extent to which subjects best-respond.

Subsections 4.2 and 4.3 report results on the latter two types of behavior.

4.1 Aggregate Choices

Figure 1 depicts the evolution of average choices by treatment. Figure 1 shows that, overall,

average choices are higher than 2 (the SNE) and lower than 8 (the joint-payoff-maximizing

choice). More importantly, the average choice is clearly higher in SteepComp than in Flat, and,

abstracting from end-game effects, this difference does not reduce over time. Overall, the effect is

statistically significant (p = 0.002, N = 27) and the difference already appears in the first period

(p = 0.002, N = 54).13 The average choice in SteepTemp, on the other hand, is close to that in

Flat (p = 0.480, N = 25 across all periods and p = 0.440, N = 50 across first periods) and well

13The statistical tests reported throughout the results section are Mann-Whitney-U tests based on independent

observations. If averages across periods are compared, each pair of players is taken as an independent observation.

If choices in period 1 are compared, each subject is counted as an independent observation.
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Figure 1: Average Choice by Treatment
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Notes: The figure shows the evolution of the average choice across subjects by treatment.

below that in SteepComp (p = 0.001, N = 26 across all periods and p = 0.001, N = 52 across

first periods).14 Significant treatment effects in the action space do not necessarily translate into

significant differences in payoffs (Harrison, 1989). However, if we look at treatment effects on

payoffs, then a similar picture emerges. To illustrate, the average payoff in SteepComp is about

11% higher than that in Flat (p = 0.065, N = 27) and about 16% higher than that in SteepTemp

(p = 0.006, N = 26).

The patterns in the data are generally supportive of alternative hypothesis 1. If an increase

in the optimization incentive is combined with an increase in the slope of the BR curve, behavior

gets more cooperative. An increase in the optimization incentive combined with a change in

payoffs on the BR curve does not have much of an effect on the average choice. These results are

a first indication that the positive effect of the degree of strategic complementarity on cooperation

tends to dominate the negative effect of payoffs on the BR curve.

4.2 Mutual Cooperation

Figure 2 depicts the evolution of the percentage of mutual cooperation and ε-mutual cooperation

of pairs by treatment, where ε-mutual cooperation refers to the average choice of a pair being

in the interval [7, 9] (so ε = ±1).15 The figure shows that subjects are more successful in

14A detailed overview of choices and other outcome variables averaged across all periods and across first periods

is shown in Table A6 in the Appendix.

15We keep ε fixed across treatments for simplicity. Because optimization incentives differ between the treatment,

one may argue that ε should depend on the treatment. Given that patterns of mutual cooperation and ε-mutual
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Figure 2: Percentage of (ε-)Mutual Cooperation by Treatment
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Notes: The figure shows the evolution of the percentage of (ε-)mutual cooperation by treatment.

reaching mutual cooperation in SteepComp than in Flat (p = 0.060, N = 27) and than in

SteepTemp (p = 0.060, N = 26), and that there is not much of a difference between Flat and

SteepTemp (p = 1, N = 27). To illustrate, 25% of the subjects in SteepComp earn the joint-

payoff-maximizing payoff of about 117 points whereas in Flat and SteepTemp only 7% and 3%

respectively earn such payoff. Comparative statics in ε-mutual cooperation are qualitatively

similar and generally reach higher statistical significance (e.g. p = 0.015 for SteepComp versus

Flat and p = 0.018 for SteepTemp versus Flat). The results show that a high degree of strategic

complementarity is a catalyst for a high level of cooperation.

The higher tendency to cooperate already appears in the first round. In SteepComp 32%

of the subjects choose the joint-payoff-maximizing choice of 8 versus 12% in Flat and 4% in

SteepTemp (p = 0.018 in a χ2-test, N = 78). The percentages for ε-cooperation are equal to

54%, 23%, and 13%, respectively (p = 0.003 in a χ2-test, N = 78).16 We conclude that games

with high optimization incentives are not by definition less conducive to cooperation. If high

optimization incentives imply a high degree of complementarity, they are instead more conducive

to cooperation, as summarized in alternative hypothesis 1.

cooperation are largely similar across treatments, we do not consider this a problem.

16Relatedly, if we classify initial choices into ε-cooperation, ε-SNE, ε-best-response-to-cooperation and other, we

find that the distribution is significantly different between treatments (p = 0.008 in a χ2-test, N = 78).
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Figure 3: Percentage of (ε-)Best-Response Play by Treatment

(a) Best-Response
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Notes: The figure shows the evolution of the percentage of (ε-)best-response play by treatment.

4.3 Best-Response and Static Nash Play

We study whether there are treatment effects on the extent to which subjects play BR. As a

proxy for BR play we use the percentage of times subjects choose a BR to the matched partner’s

choice from the previous period (cf. myopic BR). Figure 3 depicts the percentages of BR and

ε-BR play by treatment. We say that a subject plays an ε-BR if he/she plays a BR ± 1.

Figure 3 shows that there is more BR and ε-BR play in SteepTemp than in the two other

treatments, and that the percentage of BR and ε-BR play increases over the course of the

experiment in SteepTemp. The differences in BR and ε-BR play between SteepTemp and Flat

are marginally significant if all periods are taken into consideration (resp. p = 0.082 and 0.057,

N = 25 for BR and ε-BR play), and are strongly significant if only the last five periods are

considered (resp. p = 0.005 and 0.025, N = 25). If we compare SteepTemp and SteepComp, we

get p-values of resp. p = 0.007 and 0.045 across all periods and p-values of resp. p = 0.023 and

0.027 across the last five rounds (N = 26).17

In our games this adjusted dynamic converges to the SNE, and the speed of convergence is

higher the higher the slope of the BR curve (Milgrom and Roberts, 1991). With respect to (ε-

)SNE play we find that the (ε-)SNE is played most frequently in SteepTemp and least frequently

in SteepComp (see Figure A4 in the Appendix). Flat lies in between the two.

We conclude from the results that although optimization incentives do not have an effect on

17With respect to the comparison between SteepComp and Flat we find that p = 0.056 for BR-play and p = 0.544

for ε-BR play (N = 27).
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the rate of cooperation, they have some influence on the extent of BR and SNE play. Provided

that the degree of strategic complementarity is low, higher optimization incentives lead to more

BR and SNE play.

5 High complementarity and low optimization incentives

In order to further study the role of strategic complementarity on cooperative behavior in a

repeated game, we ran another treatment with a high degree of complementarity. In this treat-

ment, which we label FlatComp, the SNE, the joint-payoff-maximizing choice and associated

payoffs are the same as in the other treatments, the slope of the best-response curve is as high as

in SteepComp ( f2d = 0.6) and optimization incentives (i.e. costs of deviation from best-response

play) are as low as in Flat (d = 1). In the payoff function there are no free parameters left to

also control to what we have referred to as the temptation payoff and the sucker payoff. Con-

sequently, the temptation payoff in FlatComp and other payoffs on the BR curve are lower than

in any of the other treatments (equal to 123.1), and the sucker payoff is higher (equal to 98.1),

leading to a higher basin of attraction of a grim trigger strategy. FlatComp thus differs from the

other treatments in at least two respects. Since FlatComp and SteepTemp differ in three respects

— different optimization incentives, different degree of strategic complementarity and different

basin of attraction of a grim trigger strategy — we focus in what follows on comparing FlatComp

to Flat and SteepComp.

The main hypothesis, which predicts that an increase in optimization incentives leads to a

decrease in cooperation, still stands. Consistent with optimization incentives having most in-

fluence, a QRE model predicts that choices in FlatComp are of the same order of magnitude as

in Flat, and substantially higher than in SteepComp (see section A.3 in the Appendix). Conse-

quently, comparative statics in terms of cooperativeness are predicted to be as follows: FlatComp

≈ Flat > SteepComp. Alternative hypothesis 1 states that strategic complementarity drives co-

operation so that FlatComp ≈ SteepComp > Flat. Alternative hypothesis 2 builds upon the basin

of attraction of a cooperative strategy, and implies that FlatComp > Flat ≈ SteepComp.

Figure 4 shows the evolution of the average choice in FlatComp as compared to the relevant

benchmark treatments as well as that of the mutual cooperation rate and the ε-mutual coopera-

tion rate. It can clearly be seen that the average choice and the ε-mutual cooperation rate are at

a similar level in SteepComp (resp. P = 0.907 and P = 0.217, N = 23) and substantially higher

than in Flat (resp. P = 0.047 and P = 0.004, N = 24). A similar conclusion holds for the mutual
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Figure 4: Behavior in FlatComp

(a) Average choice

1
2

3
4

5
6

7
8

Av
er

ag
e 

ch
oi

ce

Period

Flat
FlatComp
SteepComp

(b) Mutual Cooperation

0
.1

.2
.3

.4
.5

.6
.7

Pe
rc

en
ta

ge

Period

Flat
FlatComp
SteepComp

(c) ε-Mutual Cooperation

0
.1

.2
.3

.4
.5

.6
.7

Pe
rc

en
ta

ge

Period

Flat
FlatComp
SteepComp

cooperation rate, albeit less pronounced and without statistical significance (P > 0.325). With

respect to (ε-)BR play and (ε-)SNE play, levels are not significantly different between treatments

and patterns over time are very similar in the three treatments (see Figure A5 and Figure A6

in the Appendix). We conclude that data from FlatComp confirm that the degree of strategic

complementarity is the main driving force of cooperativeness, which implies that we reject the

main hypothesis in favor of alternative hypothesis 1.

6 Conclusion and discussion

We have studied whether and how optimization incentives influence behavior in repeated dilemma

games with strategic complementarity characterized by a twice-continuously-differentiable payoff

function. To do so, we varied the concavity of the payoff function. The steeper the payoff function,

the higher the penalty for not playing a static best response; hence the lower the extent of

cooperation one should observe. Our aim was to test this prediction in a ceteris paribus manner,

that is, by controlling for the location and payoff of several benchmark outcomes. It turns out

that this can be done only by allowing either the payoffs on the best-response function or the

slope of the best-response function to vary alongside the optimization incentives. In particular,

in terms of a quadratic model, if one would increase concavity, one either increases the payoffs

on the best-response curve (including the temptation payoff) or the slope of the best-response

function. Our experiment varies both components, which allows us to disentangle their effect.

The results show that stronger optimization incentives do not generally decrease cooperation.
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In the case that payoffs on the best-response curve increase alongside the optimization incentives,

we find that although the frequency of best-response play increases, and so does the frequency of

static equilibrium play, the effect does not reveal itself in the aggregate level of cooperation. In

the case that the slope of the best-response curve increases alongside the optimization incentives,

the results reveal an increase in the degree of cooperation rather than a decrease. The stronger

incentives to best-respond are overshadowed by the best-response curve’s slope being higher,

which has a facilitating effect on cooperation. The results fit well in a literature that shows that

strategic complementarity generates an amplifying effect of boundedly rational behavior (Halti-

wanger and Waldman, 1989; Fehr and Tyran, 2005). A move in a certain (e.g., cooperative)

direction by one player induces a move in the same direction by a best-responding other player.

The amplifying effect is stronger, the steeper is the best-response function. Unlike equilibrium

notions such as static Nash or quantal-response equilibrium, recursive models of bounded ratio-

nality like level-k and cognitive hierarchy predict that this affects the final outcome (Camerer

and Fehr, 2006).

The results have implications for the design of incentive schemes in the context of team

production in long relationships. In particular, if the aim is to increase cooperation among the

team members, then this can be achieved by increasing the degree of strategic complementarity

between team members, even if this goes along with a sharpening of the individual incentives

to best-respond. For practical purposes, it would be relevant to have information about the

boundaries of the effect of strategic complementarity, that is, about the sensitivity of the effect

to a further increase in payoffs on the best-response curve.18 It is an open question whether

at some point the incentive to be on the best-response curve starts to dominate so that the

cooperation-inducing effect of a high slope is reduced. Another interesting question is whether

strategic complementarity would have a similarly strong effect if there would be no scope for

repeated-game effects. The result that an increase in strategic complementarity not only increases

the average choice but also the rate of mutual cooperation suggests that such effects may be

important.

18This can for example be studied by adding a treatment in which the slope of the BR curve is the same as in

SteepComp and the temptation payoff and other payoffs on the best-response curve are as in SteepTemp.
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A Appendix (for online publication)

A.1 Instructions

You are participating in an experiment on economic decision making and will be asked to make a

number of decisions. If you follow the instructions carefully, you can earn a considerable amount

of money. At the end of the experiment, you will be paid your earnings in private and in cash.

During the experiment you are not allowed to talk to other participants. If something is not

clear, please raise your hand and one of us will help you.

Your earnings depend on your own decisions and on the decisions of one other participant,

different from the matched participant from experiment 1. The identity of the other participant

will not be revealed. The other participant remains the same during the experiment and will be

referred to by ‘the other’ in what follows.

The experiment consists of 30 periods. In each period you have to choose a number between

0.0 and 10.0. The other also chooses a number between 0.0 and 10.0 (one digit behind the comma

is allowed). Your earnings in points depend on your choice and the other’s choice. The table

attached to these instructions gives information about your earnings for integer combinations of

your choice and the other’s choice. The other gets the same table.

By using the EARNINGS CALCULATOR on your screen, you can calculate your and the

other’s earnings for all possible combinations of choices. By filling in a hypothetical value for

your own choice and a hypothetical value for the other’s choice you can calculate your and the

other’s earnings for this combination of choices.

You enter your decision under DECISION ENTRY by clicking on ‘Enter’.

After each period you are informed about the other’s choice and your and the other’s earnings

in that period. A history of your and the other’s past choices and earnings is available at the

bottom right of your computer screen.

You receive 250 points and the number of points you earn on top of that is equal to the sum

of your earnings in points over the 30 periods. Your total earnings in points will be converted

into DKK according to the following rate: 250 points = 10 DKK.

The first period is a trial period and does not count when calculating your earnings. It is

intended for you to try out the earnings calculator and to see how the computer screen works.
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A.2 Payoff tables

Table A1: Payoff table in Flat

The other’s choice →
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

0.0 45.0 59.4 72.6 84.9 96.0 106.2 115.2 123.2 130.1 136.0 140.8

1.0 47.2 62.0 75.6 88.3 99.8 110.4 119.8 128.2 135.5 141.8 147.0

2.0 47.4 62.6 76.6 89.7 101.6 112.6 122.4 131.2 138.9 145.6 151.2

Your 3.0 45.6 61.2 75.6 89.1 101.4 112.8 123.0 132.2 140.3 147.4 153.4

Choice 4.0 41.8 57.8 72.6 86.5 99.2 111.0 121.6 131.2 139.7 147.2 153.6

↓ 5.0 36.0 52.4 67.6 81.9 95.0 107.2 118.2 128.2 137.1 145.0 151.8

6.0 28.2 45.0 60.6 75.3 88.8 101.4 112.8 123.2 132.5 140.8 148.0

7.0 18.4 35.6 51.6 66.7 80.6 93.6 105.4 116.2 125.9 134.6 142.2

8.0 6.6 24.2 40.6 56.1 70.4 83.8 96.0 107.2 117.3 126.4 134.4

9.0 -7.2 10.8 27.6 43.5 58.2 72.0 84.6 96.2 106.7 116.2 124.6

10.0 -23.0 -4.7 12.6 28.9 44.0 58.2 71.2 83.2 94.1 104.0 112.8

Table A2: Payoff table in SteepTemp

The other’s choice →
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

0.0 45.0 51.6 60.6 72.3 86.4 103.2 122.4 144.2 168.5 195.4 224.8

1.0 53.8 62.0 72.6 85.9 101.6 120.0 140.8 164.2 190.1 218.6 249.6

2.0 54.6 64.4 76.6 91.5 108.8 128.8 151.2 176.2 203.7 233.8 266.4

Your 3.0 47.4 58.8 72.6 89.1 108.0 129.6 153.6 180.2 209.3 241.0 275.2

Choice 4.0 32.2 45.2 60.6 78.7 99.2 122.4 148.0 176.2 206.9 240.2 276.0

↓ 5.0 9.0 23.6 40.6 60.3 82.4 107.2 134.4 164.2 196.5 231.4 268.8

6.0 -22.2 -6.0 12.6 33.9 57.6 84.0 112.8 144.2 178.1 214.6 253.6

7.0 -61.4 -43.7 -23.4 -0.5 24.8 52.8 83.2 116.2 151.7 189.8 230.4

8.0 -108.6 -89.3 -67.4 -42.9 -16.0 13.6 45.6 80.2 117.3 157.0 199.2

9.0 -163.8 -142.9 -119.4 -93.3 -64.8 -33.7 0.0 36.2 74.9 116.2 160.0

10.0 -227.0 -204.5 -179.4 -151.7 -121.6 -88.9 -53.6 -15.8 24.5 67.4 112.8
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Table A3: Payoff table in SteepComp

The other’s choice →
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

0.0 45.0 54.8 60.6 62.7 60.8 55.2 45.6 32.2 14.9 -6.2 -31.2

1.0 47.4 62.0 72.6 79.5 82.4 81.6 76.8 68.2 55.7 39.4 19.2

2.0 41.8 61.2 76.6 88.3 96.0 100.0 100.0 96.2 88.5 77.0 61.6

Your 3.0 28.2 52.4 72.6 89.1 101.6 110.4 115.2 116.2 113.3 106.6 96.0

Choice 4.0 6.6 35.6 60.6 81.9 99.2 112.8 122.4 128.2 130.1 128.2 122.4

↓ 5.0 -23.0 10.8 40.6 66.7 88.8 107.2 121.6 132.2 138.9 141.8 140.8

6.0 -60.6 -22.1 12.6 43.5 70.4 93.6 112.8 128.2 139.7 147.4 151.2

7.0 -106.2 -62.9 -23.4 12.3 44.0 72.0 96.0 116.2 132.5 145.0 153.6

8.0 -159.8 -111.7 -67.4 -26.9 9.6 42.4 71.2 96.2 117.3 134.6 148.0

9.0 -221.4 -168.5 -119.4 -74.1 -32.8 4.7 38.4 68.2 94.1 116.2 134.4

10.0 -291.0 -233.3 -179.4 -129.3 -83.2 -40.9 -2.4 32.2 62.9 89.8 112.8

Table A4: Payoff table in FlatComp

The other’s choice →
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

0.0 45.0 60.2 72.6 82.5 89.6 94.2 96.0 95.2 91.7 85.6 76.8

1.0 45.6 62.0 75.6 86.7 95.0 100.8 103.8 104.2 101.9 97.0 89.4

2.0 44.2 61.8 76.6 88.9 98.4 105.4 109.6 111.2 110.1 106.4 100.0

Your 3.0 40.8 59.6 75.6 89.1 99.8 108.0 113.4 116.2 116.3 113.8 108.6

Choice 4.0 35.4 55.4 72.6 87.3 99.2 108.6 115.2 119.2 120.5 119.2 115.2

↓ 5.0 28.0 49.2 67.6 83.5 96.6 107.2 115.0 120.2 122.7 122.6 119.8

6.0 18.6 41.0 60.6 77.7 92.0 103.8 112.8 119.2 122.9 124.0 122.4

7.0 7.2 30.8 51.6 69.9 85.4 98.4 108.6 116.2 121.1 123.4 123.0

8.0 -6.2 18.6 40.6 60.1 76.8 91.0 102.4 111.2 117.3 120.8 121.6

9.0 -21.6 4.3 27.6 48.3 66.2 81.6 94.2 104.2 111.5 116.2 118.2

10.0 -39.0 -11.9 12.6 34.5 53.6 70.2 84.0 95.2 103.7 109.6 112.8
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A.3 Supplement on theory

Proof that xC is unique and symmetric

We show that xC that maximizes
∑

i πi(xi, xj) with πi(xi, xj) defined according to eq. 1 and

i, j = 1, 2 and i 6= j is unique and symmetric. If in the expression for joint payoffs
∑

i πi xj is

replaced by m− xi where l > 0, the following expression is obtained for joint payoffs:

m2(e− d) +m (b+ c+ 2xi(d− e+ f)) + 2
(
a− x2i (d− e+ f)

)
. (4)

The second derivative of this expression with respect to xi is equal to −4(d − e + f), and is

strictly negative when d > e− f . Under this condition joint payoffs are thus strictly concave in

the action of one player if the choice of the other player is changed so as to obtain the same sum

of payoffs. Hence, xC is unique and symmetric if d > e− f .

Predictions quantal-response equilibrium

In a quantal-response equilibrium (QRE) it is assumed that the probability that a player chooses k

is equal to Pk =
eλEπk∑
k e

λEπk
with expected payoff Eπk calculated on the basis of choice probability

Pk. Parameter λ ∈ (0,∞) stands for the degree of precision of decision-making, so is inversely

related to the degree of noise. We calculate the QRE predictions in Gambit using the payoff

tables given in section A.2 of the Appendix, so k ∈ [1, 10] (McKelvey, McLennan, and Turocy,

2014). Figure A1 shows the choice predicted in QRE as a function of λ for the three main

treatments. Figure A2 adds the additional treatment.

Figure A1: Choice predicted in QRE
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Figure A2: Choice predicted in QRE including additional treatment
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Predictions level-k model

The level-k model assumes that players are heterogeneous and can be classified into different

types (cognition levels): L0, L1, L2, L3, etc. A player of type Lk (with k > 0) plays a best

response to the belief that the other player is of type Lk−1. Type L0 acts non-strategically and

is typically assumed to play randomly.

Here we show that the level-k model predicts higher actions (i.e., more cooperative choices)

in SteepComp than in Flat and SteepTemp. This follows from the following two features of our

design:

• the Nash equilibrium is the same in each treatment and located in the lower half of the

strategy space: xN = 2 < xmin + 0.5(xmax − xmin) = 5;

• the best response functions have a constant positive slope which is larger in SteepComp

than in Flat and SteepTemp: ∂BRCompi (xj)/∂xj > ∂BRFlat
i (xj)/∂xj = ∂BRTempi (xj)/∂xj .

These two features imply that the best response to a given choice above the Nash Equilibrium

is higher in SteepComp than in Flat and SteepTemp:

BRCompi (xj) > BRFlat
i (xj) = BRTempi (xj) for any xj > xN . (5)

Assuming a player of type L0 chooses randomly the expected choice will be in the middle

of the strategy space (x = 5) which is above the Nash equilibrium (xN = 2). A player of type

L1 best responds to this choice and this best response will be higher in SteepComp (x = 3.8)
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than in Flat (x = 2.6) and SteepTemp (x = 2.6). Type L2 best responds to the strategy of type

L1, and again this best response will be higher in SteepComp (x = 3.1) than in Flat (x = 1.9)

and SteepTemp (x = 1.9). This pattern repeats itself for higher types Lk (k > 2). Hence, the

strategies of all types above L0 are higher in SteepComp than in Flat and SteepTemp.

Two remarks are in order. First, note that it is not necessary that type L0 chooses randomly.

Any choice above the Nash equilibrium will lead to the predicted ordering. For instance, if a

type L0 chooses the fully cooperative strategy (xC = 8) the same ordering of the treatments is

predicted by the level-k model. Second, the Cognitive Hierarchy (CH) model predicts the same

ordering of the treatments as the level-k model. The CH model assumes that a player of type

Ck best responds to the belief that the other player is a mixture of types of lower levels: C0,

C1, ..., Ck− 1. Since type C0 is assumed to choose randomly and type C1 best responds to C0,

the strategies of C0 and C1 correspond to those of L0 and L1 in the level-k model. Since type

C1 chooses a higher action in SteepComp than in Flat and in SteepTemp, all higher types (C2,

C3, ....) inherit this ordering.

Basin of attraction of repeated-game strategies

We analyze the repeated game as a game in which players choose between a cooperative strategy

(CS) and a defective strategy (DS) at the start of the game. There are several ways in which the

strategies can be defined and focus on an approach that occurs to us as most natural because it

allows for a role for payoffs on the best-response curve (see also Mermer, Müller, and Suetens,

2019). We define CS as ‘start and stay with the joint-profit maximizing choice as long as the

partner does the same, and if the partner chooses something else switch to the SNE forever

after’. DS is defined as ‘start with best-responding to joint-profit maximization by the partner

and switch to the static NE forever after’. A player needs to determine which of these two

strategies generates the higher expected payoff given the belief that with probability p the other

player plays CS and with probability 1− p he plays DS. The basin of attraction of CS is the set

of beliefs p for which playing this strategy gives a higher expected payoff than playing DS. Given

that the joint-profit maximizing choice and the SNE are respectively 8 and 2 and associated

payoffs are 117.3 and 76.6 in all treatments, the expected payoff of CS in a 30-periods repeated

game is equal to

p [30× 117.3] + (1− p)
[
π(8, xBR

j (8)) + 29× 76.6
]
, (6)
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and the expected payoff of DS is equal to

p
[
π(xBR

i (8), 8) + 29× 76.6
]

+ (1− p)
[
π(xBR

i (8), xBR
j (8)) + 29× 76.6

]
. (7)

Expression 6 is larger than expression 7 if

p >
π(xBR

i (8), xBR
j (8))− π(8, xBR

j (8))

30× 117.3− π(BR, xBR
j (8))− 29× 76.6− π(8, xBR

j (8))− π(xBR
i (8), 8)

≡ p̂. (8)

If we look at how p̂ compares between the treatment, we find that p̂ in Flat and SteepComp

are of a similar order of magnitude (equal to 0.03 and 0.05 respectively) and substantially higher

in SteepTemp (equal to 0.12). This leads to the following predicted ordering of the treatments in

terms of cooperativeness: Flat ≈ SteepComp > SteepTemp. In the additional treatment FlatComp

it holds that p̂ = 0.01, making it most attractive to use a cooperative strategy in this treatment.
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A.4 Additional treatment

The additional treatment, which we refer to as FlatComp has the same low curvature as in

Flat and the same high degree of strategic complementarity as in SteepComp. Specifically, in

FlatComp it holds that d in the payoff function is equal to 1, as in Flat, and the slope of the best-

response curve f
2d = is equal to 0.6, as in SteepComp, resulting in f = 1.2. The parameters are

further calculated so as to keep constant the values of xN and xC , as well as the corresponding

payoffs, π(xN , xN ) and π(xC , xC). The values for the remaining parameters are as follows:

a = 45, b = 1.6, c = 16.48, and e = −1.33. Table A5 gives a full overview of the main variables

in all treatments. As can be seen, the ‘temptation’ payoff is lower than in the other treatments

(see also payoffs shown in Table A4).

Table A5: Treatments and parameters with additional treatment added

Flat SteepTemp SteepComp FlatComp

xmin 0.0 0.0 0.0 0.0

xmax 10.0 10.0 10.0 10.0

xN 2.0 2.0 2.0 2.0

xC 8.0 8.0 8.0 8.0

π(xN, xN) 76.6 76.6 76.6 76.6

π(xC, xC) 117.3 117.3 117.3 117.3

concavity payoff function (2d) 2 8 8 2

slope BR curve ( f
2d ) 0.20 0.20 0.60 0.60

xBR
i (xCj ) 3.2 3.2 5.6 5.6

π(xBR
i (xCj ), xCj ) 140.4 209.5 140.4 123.1

π(xCi , x
BR
j (xCi )) 59.0 -37.7 60.1 98.1

Notes: xmin and xmax respectively refer to the lower and upper bound of the stage-game strategy space, xN

(π(xN, xN)) and xC (π(xC, xC)) to the stage-game NE and the fully cooperative choice (payoff), and π(xTemp, xC)
to the payoff from best-responding to full cooperation (temptation payoff).
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A.5 Additional figures and tables

Figure A3: Iso-payoff contours
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Notes: The figure depicts the best-response curves and the iso-payoff contours calculated at the stage-game Nash
equilibrium for the four treatments. Best-response curves or iso-payoff contours in blue (red) color refer to player
1 (player 2).
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Table A6: Overview of outcome variables by treatment

Flat SteepTemp SteepComp FlatComp

Average choice round 1 4.6 (0.45) 4.3 (0.51) 6.6 (0.42) 5.0 (0.61)

Average choice all rounds 3.7 (0.36) 3.3 (0.31) 5.6 (0.43) 5.4 (0.60)

Average payoff round 1 96.1 (6.22) 82.4 (20.05) 91.5 (10.61) 93.4 (6.18)

Average payoff all rounds 88.5 (2.96) 83.9 (3.00) 97.9 (3.15) 97.3 (5.54)

Cooperation round 1 0.12 (0.06) 0.04 (0.04) 0.32 (0.09) 0.15 (0.08)

ε-Cooperation round 1 0.23 (0.08) 0.13 (0.07) 0.40 (0.11) 0.54 (0.10)

Mutual cooperation all rounds 0.07 (0.06) 0.03 (0.02) 0.25 (0.10) 0.15 (0.10)

ε-Mutual cooperation all rounds 0.09 (0.06) 0.05 (0.03) 0.31 (0.10) 0.42 (0.12)

Best-response play round 1 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

ε-Best-response play round 1 0.42 (0.10) 0.25 (0.09) 0.21 (0.08) 0.20 (0.09)

Best-response play all rounds 0.04 (0.01) 0.24 (0.09) 0.01 (0.00) 0.03 (0.01)

ε-Best-response play all rounds 0.40 (0.06) 0.58 (0.08) 0.34 (0.06) 0.28 (0.06)

SNE play round 1 0.04 (0.04) 0.25 (0.09) 0.00 (0.00) 0.10 (0.07)

ε-SNE play round 1 0.23 (0.08) 0.38 (0.10) 0.11 (0.06) 0.30 (0.11)

SNE play all rounds 0.14 (0.03) 0.36 (0.09) 0.01 (0.00) 0.05 (0.02)

ε-SNE play all rounds 0.42 (0.06) 0.57 (0.08) 0.13 (0.04) 0.18 (0.05)

Notes: Standard errors in parentheses. Best-response play in round 1 refers to best-response to a cooperative
choice of 8 and best-response play in other rounds refers to myopic best-response.

Figure A4: Percentage of (ε-)SNE Play by Treatment
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(b) ε-SNE
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Notes: The figure shows the evolution of the percentage of (ε-)SNE play by treatment.
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Figure A5: Percentage of (ε-)Best-Response Play in FlatComp
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(b) ε-Best-Response
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Figure A6: Percentage of (ε-)SNE Play in FlatComp
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(b) ε-SNE
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