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The seminal work of Hansen and Sargent posits that economic agents with an aversion to

uncertainty seek robustness by entertaining a family of models constructed as a neighborhood

around a benchmark model and optimize against the worst-case within this family.1 In a Bayesian

interpretation the worst-case model that the decision-maker guards against can be viewed as

representing endogenously distorted pessimistic beliefs.2 A crucial modeling assumption throughout

the entire literature on Hansen and Sargent robustness is the use of relative entropy, also known

as Kullback and Leibler (1951) entropy, to measure the discrepancy between models. Hansen and

Sargent (2008) discuss several reasons why relative entropy is appealing. For example, relative entropy

is particularly tractable in a continuous-time setting where alternative models are represented by

exponential martingales reflecting the drift distortions applied to the state variables of interest to the

decision maker. As a consequence, relative entropy often allows for closed-form solutions of difficult

dynamic problems. Little is known, however, about the “robustness” of these robust decision rules

and corresponding equilibrium quantities and prices to the use of relative entropy. In addition to

facilitating analytical tractability, the assumption of relative entropy might not be innocuous, nor

without loss of generality. While relative entropy has strong foundations in information theory, work

in econometric theory, statistical decision-making, and empirical model selection also considers

alternative measures of model discrepancy. In this paper, we consider the family of Cressie-

Read divergences (Cressie and Read, 1984), a one-parameter generalization of relative entropy with

parameter η, and study deviations from the entropy case and its implications for asset prices in

a general equilibrium setting.3 More specifically, we show that our extension of robustness offers

an important generalization of stochastic differential utility. In particular, we derive the conditions

under which the agent’s pessimistically distorted beliefs form a state variable, which generates

endogenous time-variation in pessimism and stochastic effective risk aversion, unlike in the case of

entropy, and helps match salient features in equity markets.

We summarize our main contributions as follows. We first carefully construct a generalization of

Hansen and Sargent robustness that is designed to be recursive and homothetic. Relative entropy

is nested as a special case, when the Cressie-Read parameter η tends to unity. Our generalization

of Hansen and Sargent relative-entropy multiplier preferences is based on a novel and carefully

constructed discounted divergence measure, used as a penalty or cost function when minimizing

distorted expected utility. The penalty is an expected integral of suitably scaled and appropriately

weighted discounted Cressie-Read divergence measures. By design, our measure permits a recursive

1Notable contributions include Hansen and Sargent (2001), Anderson, Hansen, and Sargent (2003), and Hansen, Sargent,
Turmuhambetova, and Williams (2006), among many others, or Hansen and Sargent (2008) for a textbook treatment.

2Alternatively, the family of models being considered by the decision-maker can be viewed as the set of non-
unique priors in the max-min expected utility of Gilboa and Schmeidler (1989). The work of Chen and Epstein (2002),
Epstein and Schneider (2003) and related papers offers another approach to modeling ambiguity aversion in a dynamic
setting motivated by the work of Gilboa and Schmeidler (1989). Maccheroni, Marinacci, and Rustichini (2006a) and
Maccheroni, Marinacci, and Rustichini (2006b) show that the framework of variational preferences nests these different
approaches. Strzalecki (2011) characterizes multiplier preferences axiomatically, extending in an important way the findings
in Maccheroni, Marinacci, and Rustichini (2006a). Most recently, Hansen and Sargent (2019) construct a continuous-time
extension of variational preferences that combines ambiguity aversion in the sense of Chen and Epstein (2002) with model
uncertainty aversion in the sense of Anderson, Hansen, and Sargent (2003).

3The family of Cressie-Read divergences nests relative entropy as a limiting case, as well as several other interesting cases
such as Hellinger, χ2, Burg entropy, and others.
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formulation, constituting a recursive ambiguity index in the sense of Maccheroni, Marinacci, and

Rustichini (2006b), and preserves homotheticity of the resulting preferences, see, e.g., Maenhout

(2004). Using the theory of backward stochastic differential equations of El Karoui, Peng, and

Quenez (1997) and Kobylanski (2000), we show that these preferences lead to a form of generalized

stochastic differential utility of Lazrak and Quenez (2003), which extends Duffie and Epstein (1992),

the continuous-time version of the well-known recursive preferences of Epstein and Zin (1989). In

particular, the variance multiplier of the utility process is a nonlinear function of the belief distortion

state variable. Intuitively, we obtain belief- and state-dependent risk aversion, except when η = 1,

i.e., in the special case of entropy. We show that for η < 1, risk aversion is countercyclical and

declines following positive shocks, while η > 1 generates procyclical risk aversion. Intuitively, the

parameter η governs the desire for intertemporal smoothness reflected in the Cressie-Read penalty

that intertemporally aggregates all drift distortions. Low values of η indicate a high desire for

intertemporal smoothing of drift distortions by the malevolent agent, or similarly a low willingness

to substitute intertemporally inside the Cressie-Read penalty function.

Second, to gain further intuition about the effects at work, we examine a simplified two-stage

model, where the belief distortion state variable is frozen at the start of each stage. Solving backwards,

we find that in the second stage, the Cressie-Read investor with fixed belief state variable can be

interpreted as an entropy investor, but where effective risk aversion depends on the temporarily

fixed state variable, i.e., on the state of the economy that prevails at the time when the state variable

was frozen. In the first stage, the investor anticipates the fact that future effective risk aversion

will be determined by the (from her vantage point) future state of the economy. This gives rise to

an endogenous hedging demand against future random market conditions and associated effective

risk aversion. Using this intuition, we then illustrate the consequences of these rich dynamics

in a simple partial equilibrium portfolio problem. More specifically, we show that generalized

robustness produces intertemporal hedging and therefore state- and horizon-dependent portfolios,

despite return dynamics being i.i.d. This stands in sharp contrast to the findings for relative

entropy, where optimal portfolios are constant and myopic whenever investment opportunities are

constant. Intuitively, because of time-varying sentiment, investment opportunities are perceived

by the investor fearing misspecification as time-varying, even when returns are truly i.i.d. and

investment opportunities are constant under the benchmark model.

Third, before delving into a general equilibrium analysis, we examine the dynamics of

optimism/pessimism in the data. To this end, we hand collect survey data on macroeconomic

aggregates from a large cross-section of professional forecasters using Blue Chip Economic

Indicators. In our model, ambiguity averse or robustness seeking agents imply pessimistically

distorted beliefs relative to a rational benchmark. To test this hypothesis, we construct belief wedges,

i.e., the difference between the agent’s subjective (from the survey) and objective beliefs. To measure

the latter, we estimate “rational” forecasts using a macroeconomic vector autoregressive model. In

line with our theory, we find strong evidence for time-variation in pessimism in the data: wedges

are negative on average, indicating pessimism, and contract sharply during recessions, in line with

sharply increased pessimism. Since our theory predicts a unique mapping between these wedges
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and the agent’s distorted beliefs, we extract time-varying proxies of distorted beliefs from the data

which we use in our calibration exercise.

Finally our fourth contribution concerns the effect of stochastic risk aversion on asset prices in

a general equilibrium setting. To this end, we extend our set-up to generalized robustness based

on the Cressie-Read penalty introduced earlier, but for an investor with stochastic differential utility

or recursive preferences, allowing us to disentangle risk aversion and elasticity of intertemporal

substitution even without robustness. This extension plays an important role in the general

equilibrium asset pricing analysis with distorted beliefs, see, e.g., Li and Liu (2019), Jin and Sui

(2019) and Nagel and Xu (2019) in the case of extrapolative expectations. We show that generalized

robustness has several interesting effects. Not surprisingly, the unconditional increase in effective risk

aversion helps to generate high risk premia and low risk-free rates due to a stronger precautionary

savings motive. This mirrors existing results in the literature for robustness. Additionally, we also

obtain endogenous time-variation in risk premia, with Sharpe ratios and equity premia increasing

in bad times, along with stochastic volatility. Interestingly, Monte Carlo simulations reveal that the

distribution of the state variable is skewed and heavy tailed in bad states of nature, reflecting the

higher instantaneous volatility of beliefs in those states of the world.

Related Literature: We contribute to several strands of the literature. Our paper builds on the

literature studying pessimistic subjective beliefs such as Hansen and Sargent (2001), Anderson,

Hansen, and Sargent (2003), and Hansen, Sargent, Turmuhambetova, and Williams (2006), among

many others. Different from this literature, which imposes an entropy penalty, we show that for values

of η 6= 1, we generate time-varying beliefs and risk aversion. Moreover, our model calibration shows

that time-varying pessimism induces rich dynamics in asset prices.

Two very recent papers consider extensions of entropy-based robustness in portfolio choice.

Chamberlain (forthcoming) offers an excellent survey on empirical methods for robust portfolio

choice as an example of econometric issues in decision making. He shows how dynamic

φ−divergence preferences can be used for purposes of sensitivity analysis when an investor fears

misspecification. φ−divergence measures nest Cressie-Read divergence measures. Balter, Horvath,

and Maenhout (2019) show that robustness with a Cressie-Read penalty jettisons the intertemporally

myopic behavior of Nature that is imposed by entropy-based robustness. Our work extends theirs by

solving explicitly for optimal portfolio choice and dynamic general equilibrium, as well as calibrating

the model based on empirical estimates of pessimism in survey data.

A large literature in asset pricing studies time-varying risk aversion. Most prominently, in the

habit models of Constantinides (1990), Detemple and Zapatero (1991), and Campbell and Cochrane

(1999) time-varying risk aversion is tightly linked to the level of consumption relative to its recent past

history. Similarly, Bekaert, Engstrom, and Xing (2009) underscores the importance of time-varying

risk aversion to explain the size of the equity premium, variation in equity returns, and long-horizon

predictability of equity returns. While in these models time-varying risk aversion is exogenously

imposed on the utility function of the representative agent, in our setting, stochastic risk aversion

arises endogenously due to the agent’s concern for model misspecification.
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Another related strand of the literature studies Cressie-Read divergence measures to derive and

estimate minimum-dispersion stochastic discount factor (SDF) bounds. In particular, these papers

show duality between the optimal portfolios of asset returns and minimum dispersion SDFs, see, e.g.,

Almeida and Garcia (2017) and Orlowski, Sali, and Trojani (2019). Different from this literature, which

does not impose any preference structure to derive SDFs and does not study optimal portfolios in

general equilibrium, we derive optimal portfolios in a Merton (1969) setting and study the effect of

time-varying risk aversion on equilibrium quantities.

We also contribute to the empirical literature that extracts proxies of optimism and pessimism

from survey data. For example, Bhandari, Borovička, and Ho (2019) also model time-varying

worst-case drift distortions and argue that macroeconomic survey data comes from the worst-case

model. The authors document that US households indeed display pessimism when forecasting

unemployment and inflation. This pessimism is then shown to be a major driver of movements

in macroeconomic aggregates, in particular in the labor market. Szőke (2019) studies an economy

where the agent is concerned about the persistence properties of her baseline model of consumption

and inflation are misspecified. Using survey data on interest rates, he then documents that forecasts

line up with those predicted from the model. Adam, Matveev, and Nagel (2019) ask whether survey

expectations of stock returns reflect ambiguity aversion. To this end, the authors use several different

surveys of individual investors, professional investors, and chief financial officers, and find that

survey forecasts are often overly optimistic, not pessimistic. We extend this literature along several

dimensions. First, we propose a theoretical asset pricing model in which dynamic pessimism is

an endogenous outcome. Second, we estimate such pessimism in the data to inform our model

calibration and we find that our model matches moments in equity markets well.

Outline of the paper: The rest of the paper is organized as follows. Section 1 provides the

theoretical framework and studies the robust utility index. Section 2 examines the partial equilibrium

portfolio problem. Section 3 develops a general equilibrium model with an Epstein and Zin (1989)

representative agent with Cressie-Read generalized robustness. Section 4 estimates empirical proxies

of pessimism that we use in Section 5 for model calibration. Finally, Section 6 concludes. To save

space, we collect all proofs and further technical details in a separate appendix.

1 The Model

1.1 The Cressie-Read Penalty Function

The basis of our analysis is the Cressie-Read cost (or penalty) function. We fix a reference probability

space (Ω, (Ft)t∈[0,T ],B) and a standard d-dimensional Brownian motion BB. Given a bounded d-

dimensional vector-valued process u, an alternative model U parameterized by u is defined as follows.

Let

Zt = exp
(
−
∫ t

0

1
2 |us|

2ds−
∫ t

0
u′sdB

B
s

)
, t ∈ [0, T ], (1)
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be the Radon-Nikodym derivative. Because u is bounded, EB[ZT ] = 1, and we define U via

dU
dB

∣∣∣
FT

= ZT . (2)

For each random outcome ω ∈ Ω, ZT (w) describes the adjustment of the probability for this outcome

under U compared to B. In particular, for an eventA ∈ FT , its probability under U is given by PU(A) =

EB[ZT 1A]. The larger Z(ω) is, the more weight is put on ω under the adjustment. The process Z also

fixes the conditional probabilities. For A ∈ Fs,

PU(A|Ft) = EB
t [Zt,s1A], for any t ≤ s.

Here EB
t [·] denotes the conditional expectation EB[·|Ft] and Zt,s = Zs/Zt.

Given a parameter θ > 0 and two positive processes Ψ and Φ, we define the (conditional) Cressie-

Read divergence between U and B on [t, T ] as

RU
t =

1

θΦt
EB
t

[ ∫ T

t
e−δ(s−t)ΨsdDt,s

]
, (3)

where δ is a constant discount rate,

Dt,s = φ(Zt,s) and φ(z) =
1− η + ηz − zη

η(1− η)
, η ∈ R \ {0, 1}. (4)

Here φ(·) is the Cressie-Read divergence function (Cressie and Read (1984)). It is convex and satisfies

φ(1) = 0. For η ∈ {0, 1}, the function φ(z) is defined as the corresponding limit, with η = 1 being

the Kullback and Leibler (1951) divergence (relative entropy), and η = 0 is known as Burg entropy

(Burg (1972)) The class of Cressie-Read divergence functions also includes several other well-known

cases, e.g., η = 1/2 corresponds to the Hellinger (1909) distance and η = 2 describes the modified

χ2-divergence. Figure 1 plots the Cressie-Read divergence function for a range of different values of η

that we consider in this paper.

[Insert Figure 1 here]

In equation (4), Dt,s measures the realized divergence between U and B on [t, s]. Its increment,

Dt,s+∆s −Dt,s, is weighted by Ψs and discounted, before being integrated. The parameter θ describes

the strength of the preference for robustness. As we shall see next, Φ is chosen to ensure that RU

has a recursive structure and is thus time-consistent. Moreover, the process Ψ is fixed to ensure the

problem remains homothetic and scale-invariant as in Maenhout (2004). In the case when Ψ = Φ = 1,

we can rewrite equation (3) using integration-by-parts as

RU
t =

1

θ
EB
t

[ ∫ T

t
δe−δ(s−t)Dt,sds+ e−δ(T−t)Dt,T

]
.4 (5)

When η = 1, RU in (5) is exactly the entropy divergence introduced by Hansen and Sargent (2001).

The Cressie-Read divergence in (3) may not be time-consistent for arbitrarily chosen Φt, because

Dt,s depends on t, i.e., the time at which the conditional expectation is computed. For our

applications, we need RU to satisfy a recursive structure. The following lemma characterizes a Φ that

ensures the desired recursivity.
4Equation (5) shows that it is without loss of generality to restrict alternative models U to be absolutely continuous with

respect to B, otherwise, both Zt,s and Dt,s could be infinite with positive probability, hence RU is ill-defined.
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Lemma 1. When Φt = Z1−η
t and EB[ ∫ T

0 e−δs|Ψs|pds
]
<∞ for some p > 2, then RU in (3) becomes

RU
t =

1

2θ
EU
t

[ ∫ T

t
e−δ(s−t)ΨsZ

η−1
s |us|2ds

]
(6)

and it satisfies

RU
t = EU

t

[ ∫ t̃

t
e−δ(s−t)

1

2θ
ΨsZ

η−1
s |us|2ds+ e−δ(t̃−t)RU

t̃

]
, for any t̃ ≥ t.

Our construction of RU satisfies Theorem 2 (b) in Maccheroni, Marinacci, and Rustichini (2006b)

with γt(U) = 1
2θE

U
t

[ ∫ t+1
t e−δ(s−t)ΨsZ

η−1
s |us|2ds

]
as the one-period-ambiguity index. Theorem 2 in

Maccheroni, Marinacci, and Rustichini (2006b) implies that {RU
t } is a recursive ambiguity index.

Equation (6) shows that the Cressie-Read divergence not only depends on the preference

parameter θ, but also on the state-dependent weight Zη−1 when η 6= 1. Importantly, notice that Z is

the agent’s Radon-Nikodym derivative or cumulative distorted belief process. Therefore the Cressie-

Read divergence criterion crucially embeds a nonlinear function Zη−1 of the agent’s distorted beliefs.

As can easily be seen, when η = 1, the Cressie-Read divergence becomes the entropy divergence

and loses its state-dependence. Beyond the special case of relative entropy, Z therefore matters.

When Zη−1 is large for some states, deviating from the reference model B is costly for these states.

This state-dependence of the penalty function is the key driver of our results and represents the

main generalization due to the Cressie-Read specification. We demonstrate below that this is the

mechanism generating endogenous time-variation in risk aversion. In particular, depending on the

sign of (η−1), the nonlinear functionZη−1 of the agent’s distorted beliefs either increases or decreases

following a favorable shock, which endogenously affects sentiment and thereby the agent’s effective

risk aversion, as well as the instantaneous volatility of the agent’s beliefs.

For the numerical analysis of our portfolio choice and general equilibrium problems we will

consider an approximation of (6)

RU
t =

1

2θ
EU
t

[ ∫ T

t
e−δ(s−t)ΨsZ

η−1
s∧τ |us|2ds

]
, (7)

where 0 < z < z are constants and

τ = inf{t ≥ 0 : Zt ≤ z or Zt ≥ z}. (8)

The interval [z, z] contains all plausible adjustments, so thatZ < z (Z > z) is regarded as unreasonably

underweighted (overweighted) in our model. The constant z (z) is fixed to be sufficiently close to zero

(large) so that only extreme weights are excluded and the probability of τ < T can be made arbitrarily

small. When t > τ ,

RU
t =

Zη−1
τ

2θ
EU
t

[ ∫ T

t
e−δ(s−t)Ψs|us|2ds

]
,

which can be viewed as an entropy penalty, but with preference for robustness given by θZ1−η
τ rather

than by θ. This specification helps to pin down boundary conditions for portfolio choice and general

equilibrium problems studied later.
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1.2 The Utility Index Process with Generalized Robustness: Understanding the
Mechanism

The main mechanism generating dynamic pessimism and belief- and state-dependent effective risk

aversion that drive the key results in the paper can already be understood from an analysis of the

utility index process.

To this end, consider a consumption process c and an intertemporal utility function U . We then

define a utility index Uc for c as

Uct = inf
u
EU
t

[ ∫ T

t
e−δ(s−t)δU(cs)ds+RU

t + e−δ(T−t)εU(cT )
]
, (9)

where εU , with a positive constant ε, is the bequest utility and RU is given in (7). The utility index

reflects the alternative measure U, based on an endogenous belief distortion u. The infimization

with respect to u addresses the agent’s concern of model misspecification and the role of {RU
t } is

to constrain the choice of u by penalizing distortions that are too large and deemed unreasonable.

In order to derive the dynamics of Uc and the associated optimal measure U, consider now for any

fixed u the associated utility index

Uc,ut = EU
t

[ ∫ T

t
e−δ(s−t)δU(cs)ds+RU

t + e−δ(T−t)εU(cT )
]
.

The martingale representation theorem ensures the existence of a vector-valued process Γ such that

dUc,ut =
[
δUc,ut − δU(ct)

]
dt−

{
1
2θΨtZ

η−1
t∧τ |ut|2 − Γ′tut

}
dt+ Γ′tdB

B
t .

Because Uc,u is subject to the terminal condition Uc,uT = εU(cT ), Uc,u satisfies a backward stochastic

differential equation (BSDE). The comparison theorem for BSDEs of El Karoui, Peng, and Quenez

(1997) implies that Uct = infu Uc,ut satisfies

dUct =
[
δUct − δU(ct)

]
dt− inf

u

{
1
2θΨtZ

η−1
t∧τ |ut|2 − Γ′tut

}
dt+ Γ′tdB

B
t , UcT = εU(cT ). (10)

The first-order condition in u yields the optimal distortion

u∗t =
θΓt

ΨtZ
η−1
t∧τ

. (11)

Finally, combining (10) and (11), we get that

dUct =
[
δUc − δU(ct) +

θ

2

1

ΨtZ
η−1
t∧τ
|Γt|2

]
dt+ Γ′tdB

B
t , UcT = εU(cT ). (12)

This is a so-called quadratic BSDE and can be seen as a new form of generalized stochastic differential

utility introduced by Lazrak and Quenez (2003). When U(c) is bounded and Ψ is bounded away from

zero, existence and uniqueness of Uc is ensured by Kobylanski (2000).5

5The boundedness assumption is not generally satisfied in our portfolio and general equilibrium problems. Existence of
the generalized stochastic differential utility is treated individually there.
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In the terminology of Duffie and Epstein (1992), |Γt|2 enters the utility index via a variance

multiplier, which represents a utility penalty as a multiple of the utility volatility. This can be seen

from the integral form of (12)

Uct = EU
t

[
e−δ(T−t)εU(cT ) +

∫ T

t
e−δ(s−t)δU(cs) ds−

∫ T

t
e−δ(s−t)

θ

2

1

ΨsZ
η−1
s∧τ
|Γs|2 ds

]
, (13)

where the penalty is determined by the variance multiplier θ
2

1
ΨZη−1 . Economically speaking, this

factor captures risk aversion, i.e. the desire to smooth across states of nature. The Cressie-Read

generalization of robustness makes this variance multiplier belief-dependent and state-dependent,

through Zη−1. To build intuition, we discuss the properties of Uc in the following proposition.

Proposition 1.

1. If Zη−1 ≥ Z̃η−1, then Uc ≥ Ũc.

2. A component of u∗ is positive if and only if the corresponding component of Γ is positive. For a

fixed and positive Γ, all components of u∗ decrease as Zη−1 increases.

3. When a component of u∗ is positive, positive shocks to the corresponding component in BB

decrease Z, hence increase Zη−1 when η < 1, or decrease Zη−1 when η > 1.

The first result in the proposition shows that larger Zη−1 implies a smaller variance multiplier

and therefore an increase in the agent’s utility. As discussed before, Zη−1 is the nonlinear function

of the agent’s distorted belief that introduces time-varying pessimism. To illustrate the intuition, let

us focus on a 1-dimensional case, i.e., d = 1. To see how we can interpret this as pessimism, we

notice from the second result that the optimal distortion u∗ is positive when Γ is positive.6 Under U,

dBB
t = −u∗tdt + dBU

t where BU is a Brownian motion under U. When u∗ > 0, the expected growth

rate of BB under U is underestimated relative to the growth rate under B. Therefore, the agent with

subjective belief U is pessimistic compared to the reference model B.

The third result explains how the dynamics of fundamental shocks affect the distorted belief,

which in turn affects the variance multiplier, risk aversion, and the volatility of log(Z). Importantly,

the effect crucially depends on whether η is greater than or smaller than 1. Consider η < 1. Positive

fundamental shocks toBB increaseZη−1 due to the third result. This decreases the variance multiplier
θ
2

1
ΨZη−1 , and thereby lowers the agent’s risk aversion as well. Furthermore, by the second result, the

instantaneous optimal u∗ decreases following increasing Zη−1, making the agent less pessimistic

following positive fundamental shocks to BB. From (1), we see that u∗ is also the volatility of the

(log) belief distortion log(Z). Therefore, another effect of the positive fundamental shock is to reduce

the volatility of log(Z). On the other hand, negative fundamental shocks to BB decrease Zη−1 and

hence increase u∗, which exacerbates the agent’s pessimism and also increases the volatility of log(Z).

Generalized robustness based on Cressie-Read divergence with η < 1 can therefore be seen as

endogenously generating expectation and belief dynamics that resemble diagnostic expectations

Bordalo, Gennaioli, and Shleifer (2018) or extrapolative expectations, where agents extrapolate from

6Γ is shown to be positive in our applications later.
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recent experience when forming expectations, see, e.g., Hong and Stein (1999), Barberis, Greenwood,

Jin, and Shleifer (2015), Barberis (2018), Jin and Sui (2019), Li and Liu (2019), and Nagel and Xu (2019).

In contrast, when η > 1, the agent can be labeled contrarian. Positive shocks to fundamentals BB

decrease Zη−1, hence increases u∗, i.e., the agent becomes more pessimistic after positive shocks to

fundamentals, while negative fundamental shocks tend to reduce pessimism.

In our applications, we use survey data to investigate empirically how pessimism evolves over the

business cycle. Recall that η < 1 leads to countercyclical risk aversion, pessimism, and volatility of

beliefs, whereas η > 1 is associated with procyclical risk aversion, pessimism, and belief volatility.

Table 1 summarizes these results.

[Insert Table 1 here]

Example: The intuition discussed above can be illustrated by the following simplified two-stage

example, which allows for an explicit closed-form solution of the BSDE. The first stage is from time 0

to 1; the second stage is from time 1 to 2. Set θ = Ψ = 1 and δ = 0 in (7). To focus on the intuition,

we also set z = 0 and z = ∞ so that τ = ∞. The agent freezes Zη−1 in both stages and only updates

it at time 1. Therefore, Zη−1
t = Zη−1

0 when t ∈ [0, 1); Zη−1
t = Zη−1

1 when t ∈ [1, 2]. This leads to the

following Cressie-Read penalty function

RU
0 = EU

[ ∫ 1

0

1

2
Zη−1

0 |us|2ds+

∫ 2

1

1

2
Zη−1

1 |us|2ds
]
. (14)

Comparing (14) to (6) with η = 1 therein, we can view (14) as a combination of two entropy

divergences with different Ψ in different stages. In the first stage, Ψ in (6) can be identified asZη−1
0 = 1;

in the second stage, Ψ can be identified as Zη−1
1 . There is no intertemporal utility and the agent

consumes only at time 2, where the utility of consumption is εU(c2) = BB
2 .

In this case, the BSDE given in (12) simplifies to

dUct = 1
2Γ2

tdt+ ΓtdB
B
t , t ∈ [0, 1),

dUct = 1
2Z

1−η
1 Γ2

tdt+ ΓtdB
B
t , t ∈ [1, 2],

with terminal condition Uc2 = BB
2 . This BSDE has the following explicit solution

Uct = BB
t − 1

2Z
1−η
1 (2− t), Γt = 1, t ∈ [1, 2],

Uct = BB
t − 1

2e
− 1

2
η(1−η)(1−t)Z1−η

t − 1
2(1− t), Γt = 1, t ∈ [0, 1).

From (11), the optimal distortion is

u∗t =1, t ∈ [0, 1),

u∗t =Z1−η
1 , t ∈ [1, 2].

(15)

This shows that u∗ is positive in this case. From the explicit solution we can make the following two

observations when η < 1 (all effects are reversed when η > 1): First, a positive shock to BB
1 decreases

Z1 and alsoZ1−η
1 (as η < 1). Therefore, a positive shock toBB

1 decreases u∗ in the second stage; in other

9



words, the agent becomes less pessimistic following positive shocks. Second, Z is a state variable for

the utility process when η 6= 1. The utility does not depend on this state variable when η = 1.

In summary, we can think of the Cressie-Read divergence as a collection of entropy divergence

functions with a dynamic belief- and state-dependent weight Zη−1. This dynamic weight depends

endogenously on the optimal u∗. When η < 1, the weight increases when fundamentals improve,

making the agent less pessimistic.

One way of understanding the intuition behind the effects at work is to view the Cressie-Read

penalty function as reflecting a preference of Nature (in this case the fictitious malevolent agent

in the max-min expected utility interpretation) for intertemporal smoothing of the process for the

instantaneous distortions u∗. The smaller η, the stronger the preference for intertemporal smoothing,

such that the decision-maker naturally expects more adverse distortions from Nature in bad times

and less adverse distortions in good times. Loosely speaking, when η < 1, the agent’s subjective

beliefs exhibit “momentum-like” dynamics, and pessimism gets worse in bad times, while beliefs

improve following positive shocks.

In contrast, when η > 1, Nature does not have a preference for intertemporal smoothing of the

distortions. In this case, the agent expects less adverse distortions in bad times and more adverse

distortions following positive shocks. In some sense, the agent could be seen as interpreting a recent

adverse shock as disguising an adverse distortion u? and as thinking that “lightning never strikes

twice” i.e., if Nature has just used its ammunition in hitting the agent with a negative shock, it will

not do so again immediately. Put differently, now the agent’s subjective beliefs exhibit reversal-like

dynamics.

The knife-edge case of η = 1 corresponds to the case where Nature allocates distortions

myopically, so that market conditions have no impact on the distortion. The agent’s belief distortion

state variable Z becomes irrelevant and pessimism is now state-independent. This is the case of

entropy. As shown in Balter, Horvath, and Maenhout (2019) the entropy penalty greatly simplifies the

analysis by reducing the general Cressie-Read power function to its logarithmic limit, which makes

Nature behave myopically. In the following portfolio choice problem, our primary focus is on η < 1,

however, we also compare it to the case where η > 1.

2 Portfolio Choice

Before solving for asset prices in equilibrium, we build intuition in a partial equilibrium setting in the

context of optimal portfolio choice.

2.1 The Consumption and Portfolio Choice Problem

Consider a capital market with a risk-free bond with a constant interest rate r and d risky assets whose

prices follow

dSt = diag(St)(µdt+ σdBB
t ),

where µ is a constant d-dimensional vector representing expected returns, σ is a constant d × d-

matrix describing the return volatilities, and diag(S) is a d-dimensional diagonal matrix with elements

10



{S1, . . . , Sd}.
When the agent invests her wealth in the risky assets based on a vector of portfolio weights π and

consumes at a rate c, her wealth evolves according to the following stochastic differential equation

dWt =
[
rWt +Wtπ

′
t(µ− r)− ct

]
dt+Wtπ

′
tσdB

B
t . (16)

The agent chooses her optimal strategy (π, c) to maximize the expected utility of consumption

plus the Cressie-Read cost, but Nature chooses u to minimize the same objective function. The

optimization problem is a stochastic differential game

inf
u

sup
π,c

EU
t

[ ∫ T

t
e−δ(s−t)δU(cs)ds+ εe−δ(T−t)U(cT ) +Rt

]
, (17)

whereR is given in (7). Here, for both intertemporal and bequest utility, we choose isoelastic or CRRA

utility U(c) = c1−γ

1−γ with coefficient of relative risk aversion 0 < γ 6= 1.7 We denote the optimal value in

(17) by Vt.

To maintain homotheticity and scale-invariance of the problem (17), we follow Maenhout (2004)

and choose

Ψ = (1− γ)V. (18)

Then problem (17) can be transformed to

Vt = inf
u

sup
π,c

EU
t

[ ∫ T

t
e−δ(s−t)

(
δU(cs) +

1− γ
2θ

VsZ
η−1
s∧τ |us|2

)
ds+ εe−δ(T−t)U(cT )

]
, (19)

where τ is the stopping time from (8). Because the value V shows up on both sides of (19), it can be

considered as an optimization problem for a (generalized) stochastic differential utility.

2.2 A Two-Stage Example

To understand the impact of the Cressie-Read penalty on the agent’s portfolio choice, we again

consider a simplified two-stage problem: stage 1 starts from time 0 and ends at time 1, stage 2 starts

from time 1 until∞. The agent freezes Z in both stages and only updates Z at time 1. Then the agent

chooses the initial u0 at time 0 and keeps it constant until time 1. At time 1, the agent updates it to u1

and then keeps it constant forever. Similar to the two-stage problem discussed in Section 1.2, we set

z = 0 and z =∞ so that τ =∞.

We solve the two-stage problem by backward induction. In the second stage, the agent’s optimal

consumption and investment problem is

Vt = inf
u1

sup
π,c

EU
t

[ ∫ ∞
t

e−δ(s−t)
(
δU(cs) + 1−γ

2θ VsZ
η−1
1 |u1|2

)
ds
]
, t ≥ 1, (20)

subject to (16).

In the problem above, the agent does not update her belief after time 1. The process Z in the

Cressie-Read cost function is frozen at Z1. Problem (20) is equivalent to Maenhout (2004) for an

7The case of log utility is discussed in Appendix B.
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entropy penalty, but with robustness preference parameter θZ1−η
1 instead of θ. The reason for the

equivalence is that even though u is allowed to be stochastic there, and not fixed as here, the optimal

u turns out to be constant. Defining Σ = σσ′ , the optimal portfolio weight and belief distortion are

π1 =
µ− r

Σ

1

γ + θZ1−η
1

, (21)

u1 =
µ− r
σ

θ

γZη−1
1 + θ

. (22)

We can see from (21) that the agent’s implicit risk aversion is γ + θZ1−η
1 , where Z1 = exp(−1

2 |u0|2−
u0B

B
1 ). Suppose that u0 > 0, we first consider the case η < 1. After positive return shocks to BB

1 , Z1

decreases, hence Z1−η
1 decreases as well (due to η < 1). As a result, the agent’s implicit risk aversion

γ + θZ1−η
1 decreases, which in turn increases the agent’s optimal portfolio weight π1. Meanwhile, the

agent’s belief distortion u1 decreases, generating a less pessimistic expected return µ− σu1 under the

subjective measure U. In summary, after a favorable return shock, the agent becomes less pessimistic

and less risk-averse. Negative return shocks lead to the opposite phenomenon: the investor becomes

more pessimistic and more risk-averse.

Under extremely good market conditions, Z1−η
1 tends to zero in the limit. The agent’s effective

risk aversion gets close to its minimal value γ and the optimal u1 converges to 0. This implies that

the agent is no longer pessimistic in the limit. This can also be seen from (20) where the Cressie-

Read penalty becomes extremely large for nonzero u, due to the large weight Zη−1
1 , so that it is very

costly for the agent to deviate from the reference measure B. Under extremely unfavorable market

conditions, Z1−η
1 explodes to infinity, resulting in an infinitely risk-averse investor who completely

shuns the risky asset. In this case u1 = µ−r
σ , which means the equity premium is zero under the

agent’s extremely pessimistic subjective view.

When η > 1, but u0 is still positive, the agent’s implicit risk aversion γ + θZ1−η
1 increases after

positive return shocks, with the investor reducing her portfolio weight in the risky asset. Meanwhile,

u1 increases and the agent becomes more pessimistic after positive return shocks.

We calculate the value for the agent at time 1 to be

V1 =
W 1−γ

1

1− γ
ef1(Z1−η

1 ),

where

f1(Z1−η
1 ) = γ log(γδ

1

γ )− γ log
(
δ + (γ − 1)r +

γ − 1

2

(µ− r)2

Σ

1

γ + θZ1−η
1

)
.

Now we turn to the agent’s problem in the first stage. Given the agent’s continuation utility V1, the

agent’s problem in the first stage is

Vt = inf
u0

sup
π,c

EU
t

[ ∫ 1

t
e−δ(s−t)

(
δu(cs)+

1− γ
2θ

VsZ
η−1
0 |u0|2

)
ds+e−δ(1−t)

W 1−γ
1

1− γ
ef1(Z1−η

1 )
]
, 0 ≤ t ≤ 1. (23)

Here Zη−1
0 = 1 and f1(Z1−η

1 ) indicates the dependence of the constant f1 on Z1−η
1 . If η = 1, the

continuation utility is state-independent, then problem (23) is again equivalent to a problem with
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the entropy cost and the optimal solution is myopic. When η 6= 1, the continuation utility is state-

dependent, making problem (23) state-dependent as well. The agent has an intertemporal hedging

demand in the first stage against market condition fluctuation and her changing belief at time 1.

The intuition gained from this two-stage model survives in the fully dynamic model developed in

the next subsection.

2.3 Dynamic Optimal Consumption and Portfolio Choice

We have seen that Z should be the state variable for the problem (19). For ease of interpretation and

exposition we now introduce a monotone transformation

xt = − logZt. (24)

We call x the market sentiment variable and take it as the state variable for problem (19). Because of

(1) the dynamics of x are described by the following stochastic differential equation

dxt = 1
2 |ut|

2dt+ u′tdB
B
t = −1

2 |ut|
2dt+ u′tdB

U
t . (25)

We put a negative sign on the right-hand side of (24) so that positive fundamental shocks to BB

increase the market sentiment variable x, when u is a vector with positive components.8 The stopping

time τ in (8) is reformulated as τ = inf{t ≥ 0 : xt ≤ x or xt ≥ x}, where x = − log z and x = − log z.

The choice of Ψ ensures the following decomposition of the optimal value function

Vt =
W 1−γ
t

1− γ
ef(t,xt). (26)

We obtain the Hamilton-Jacobi-Bellman (HJB) equation satisfied by f using dynamic programming

and summarize the agent’s optimal investment and consumption strategies in proposition 2.

Proposition 2. When γ ∈ (0, 1), the function f defined in (26) satisfies

0 = inf
u

sup
π,c̃

{
∂tf + 1

2 |u|
2
(
∂2
xxf − ∂xf + (∂xf)2

)
+ (1− γ)∂xfπ

′σu+ δc̃1−γe−f

+ (1− γ)
[
r + π′(µ− r − σu)− c̃− 1

2γπ
′Σπ
]
− δ + 1−γ

2θ e
(1−η)x|u|2

}
,

(27)

for (t, x) ∈ [0, T )× (x, x), with the boundary conditions

f(t, x) = f ent
x (t), f(t, x) = f ent

x (t), and f(T, x) = log ε. (28)

When γ > 1, the infimum and supremum in (27) are changed to supu infπ,c̃. If Σ = σσ′ is positive

definite and ∂2
xxf − ∂xf + (∂xf)2 + 1−γ

θ e(1−η)x > 0 when γ ∈ (0, 1) (resp. < 0 when γ > 1), for any

(t, x) ∈ [0, T )× (x, x), then the agent’s optimal belief and strategies are given by

π∗ =
1

γ
Σ−1

(
µ− r − (1− ∂xf)σu∗

)
, (29)

u∗ =
(1− γ)(1− ∂xf)

∂2
xxf − ∂xf + (∂xf)2 + 1−γ

θ e(1−η)x
σ′π∗, (30)

c̃∗ = δψe−
1

γ
f . (31)

8As we see later, u has positive components in our applications.
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The function f ent
x in (28) is the value for the problem with an entropy penalty and the robustness

parameter θe(η−1)x, as specified in Proposition 5 in Appendix A.

The optimal portfolio weight in (29) generalizes our finding for the two-stage example, and shows

the impact of the Cressie-Read penalty function. Without a preference for robustness, CRRA utility

as well as Epstein-Zin preferences in combination with i.i.d. returns lead to the well-known myopic

portfolio, as first shown by Samuelson (1969) and Merton (1969), namely π∗ = 1
γΣ−1(µ − r). For

entropy-based robustness, the main effect in this context is to increase the effective risk aversion,

replacing γ by γ + θ (Maenhout (2004)). We obtain two important new effects by considering

the Cressie-Read penalty function. First, the investor anticipates future changes in beliefs and

the corresponding changes in perceived investment opportunities. This induces a Merton-type

intertemporal hedging demand, which is captured by the term 1
γΣ−1∂xfσu

∗, added to the mean-

variance optimal portfolio 1
γΣ−1(µ − r − σu∗) under U. Second, importantly, effective risk aversion

becomes belief- and state-dependent, driven by the endogenous sentiment state variable. Combining

(29) and (30), we obtain

π∗ =
1

γeff
Σ−1(µ− r), where γeff = γ +

(1− γ)(1− ∂xf)2

∂2
xxf − ∂xf + (∂xf)2 + 1−γ

θ e(1−η)x
(32)

which represents the investor’s effective risk aversion. This effective risk aversion is belief- and state-

dependent, in line with the discussion of the BSDE for the utility index process in section 1.2 earlier.

We now study the optimal portfolio weight in more detail numerically. We numerically solve

the HJB equation (27) together with the associated boundary conditions (28) using finite difference

methods with implicit schemes. We focus on a single risky asset (d = 1) and use the parameters listed

in Table 2.

[Insert Table 2 here]

We start by considering a short horizon T of one year in order to focus on the effect of the

Cressie-Read penalty on the myopic portfolio component. Following the logic above, we expect

a portfolio allocation close to the entropy case when the state variable x equals 0. In the limit

when the investor’s horizon shrinks to zero, the intertemporal hedging component vanishes and only

the myopic component remains. When the sentiment state variable x is zero, Figure 2 shows that

generalized robustness with Cressie-Read divergence produces the same optimal distortion u∗ and

the same portfolio weight π∗, for any value of η. This corresponds to what we find in the second stage

of the two-stage example with Z = 1 for u1 in (22) and for π1 in (21). Figure 2 panel (a) illustrates

the effects when both risk aversion, γ, and preference for robustness, θ, are set to 2. To put the

quantitative results in perspective, assuming an equity premium of µ− r = 0.07 and volatility σ = 0.2,

CRRA expected utility (θ = 0) generates a portfolio weight π = 0.775. Entropy-based robustness

(η = 1) reduces this equity allocation to exactly half, reflecting a pessimistically distorted belief that

the equity premium is half its observed value.

[Insert Figures 2, 3 and 4 here]
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For η < 1, when x increases and sentiment improves, effective risk aversion shrinks, as discussed

above. Moreover, risk aversion shrinks faster the smaller is η, which explains the steeper slope for

η = 0 than for η = 0.5. When η > 1, on the other hand, risk aversion is procyclical, as is apparent

from the negatively sloped portfolio rule for η = 1.5 and a fortiori for η = 2. All optimal portfolio

allocations are supported by the optimal distortions in the left panels of Figure 2. The larger the

optimal distortion, the more pessimistic the agent’s subjective beliefs and therefore the more cautious

the corresponding portfolio allocation.

For higher risk aversion and robustness parameters γ = θ = 5, the effects and patterns remain

the same as illustrated in Figure 2 panel (b). As can be shown analytically for the entropy case, and

as argued in the two-stage example in (22), the optimal distortion does not change when both γ and

θ increase by the same factor. This explains why the left panel is unchanged compared to the left

panel in panel (a). The portfolio allocation, however, is evidently shifted down when risk aversion and

preference for robustness both increase. It is interesting to also study the implications of an increase

in the robustness parameter θ without changing risk aversion γ. Figure 2 panel (c) demonstrates that

the optimal distortion increases and as a result the portfolio allocation shrinks.

We now turn to a long horizon with T up to 100 years in order to study intertemporal hedging

and resulting horizon effects. The seminal work of Merton (1973) explains how non-myopic investors

tilt their portfolio in order to hedge against future changes in the investment opportunity set. For

example, if returns on a risky asset are contemporaneously negatively correlated with expected

returns on that asset, it becomes less risky to hold over longer horizons, inducing investors with

longer horizons to increase their holdings. Despite returns being i.i.d. in our setting, so that expected

returns are constant, intertemporal hedging appears because of the investor’s distorted beliefs. Even

though expected returns are constant under the reference measure B, they are not constant under

U when η 6= 1. In particular, because of time-varying sentiment, belief distortion u reacts to return

innovations. When pessimism is countercyclical (η < 1), positive return shocks are associated with

improvements in sentiment, which reduces pessimism and increases the expected return on the risky

asset. In other words, for η < 1, returns and expected returns under U are positively correlated, which

leads to negative intertemporal hedging demands that grow with the horizon. This effect is clear and

quite pronounced in Figure 3 for η = 0.5, and especially for η = 0 (Note that all results are reported

for x = 0). With the same logic, and remembering that for η > 1 an increase in the state variable x as a

result of a positive return shock leads to an increase in the optimal distortion (see left panel of Figure

3) and therefore a reduction in the (distorted) expected return, we now have a negative correlation

between returns and expected returns. This explains the positive intertemporal hedging demand for

η > 1, which naturally grows with the horizon. The fact that the hedging demand is negative for η < 1

can also be understood from (29), by observing numerically that the partial derivative ∂xf < 0 for

η < 1, and vice versa for η > 1.

Figure 4 reports the economically relevant range of the sentiment variable. The top left panel

presents the distribution of the sentiment variable at 30 years. The distribution displays a heavy

left tail which reflects increased sentiment volatility in an adverse market environment (see Table

1). All other panels in Figure 4 are centered at the mean of sentiment and range from two standard
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deviations below to two standard deviations above.

3 General Equilibrium

We now extend our analysis to equilibrium asset pricing. To this end, we consider an economy with a

single Lucas tree. Its dividend, which must be consumed by the representative agent, is given by the

following dynamics
dct
ct

= µcdt+ σcdBB
t , (33)

where µc and σc are constants. We first establish the equilibrium price P of this Lucas tree, which

follows
dPt + ctdt

Pt
= µPt dt+ σPt dB

B
t . (34)

The expected return µP , the volatility σP , and the interest rate r will be determined endogenously. We

take x as the state variable and conjecture µP , σP and r are all functions of time and the state.

Given P and r, the representative agent, with generalized robustness based on a Cressie-Read

penalty, invests and consumes with the optimal investment strategy π∗ and the optimal consumption

strategy c∗. In an attempt to match empirical asset pricing evidence quantitatively, we extend our

earlier analysis and endow the representative agent with Epstein-Zin preferences in addition to

Cressie-Read generalized robustness.9 We denote the agent’s elasticity of intertemporal substitution

by 0 < ψ 6= 1 and define ν = 1−γ
1− 1

ψ

.

Definition 1. (r, µP , σP , π∗, c∗) is an equilibrium if

1. The financial market clears, i.e., π∗ ≡ 1;

2. the aggregate resource constraint holds, i.e., c∗ ≡ c.

We can now calculate equilibrium quantities which are presented in the following proposition.

Proposition 3. Let f be a solution of the following equation

0 =∂tf + 1
2 |u
∗|2
(
∂xxf − ∂xf + ψ(∂xf)2

)
+ (1− γ)∂xfu

∗σc − δ νψ

+ 1−γ
ψ

(
µc − u∗σc − 1

2γ(σc)2
)

+ δψ νψe
−ψν f + 1−γ

2ψθ e
(1−η)x|u∗|2,

(35)

for (t, x) ∈ [0, T )× (x, x), with boundary conditions

f(t, x) = F ent
x (t), f(t, x) = F ent

x (t), f(T, x) = log ε. (36)

Moreover u∗ in (35) is given by

u∗ =
(1− γ)(1− ∂xf)σc

∂2
xxf − ψ∂xf + ψ(∂xf)2 + 1−γ

θ e(1−η)x
. (37)

9The details of the preferences and the associated optimal consumption-investment problem can be found in Appendix
A.
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In (36), F ent
x is the value in an equilibrium where the representative agent has an entropy-based

preference for robustness with robustness parameter θe(η−1)x and F ent
x satisfies an ODE in (A.18). Then

the equilibrium expected return, volatility, and risk-free interest rate are given by

µP − r = γeff(σP )2, (38)

σP = σc + ψ
ν ∂xfu

∗, (39)

r = δ + 1
ψµ

c − 1
2γ

ent(1 + 1
ψ

)
(σc)2 + DA, (40)

where

γeff = γ +
(1− γ)(1− ∂xf)2

∂2
xxf − ∂xf + (∂xf)2 + 1−γ

θ e(1−η)x

is the effective state-dependent risk aversion and γent = γ + θe(η−1)x is the effective risk aversion in the

entropy case with the parameter for robustness frozen at θe(η−1)x. DA is the dynamic adjustment,

DA =− γdyn(σc)2 + ψγ
ν ∂xfu

∗σc + (1− 1
ψ )udynσc

+
[ψ
ν ∂xf + ψ2

2ν2

(
1− ν − 2γimp

)
(∂xf)2

]
|u∗|2

−
1− 1

ψ

2θ e
(1−η)x

[
2uentudyn + (udyn)2

]
,

where

γeff =γent + γdyn,

u∗ =uent + udyn = θe(η−1)xσc + udyn.

The equilibrium equity premium in (38) is given by a Consumption CAPM relationship, where

the key innovation is the time-varying price of risk. γeff is precisely the belief- and state-dependent

effective risk aversion that determines the optimal portfolios in the partial-equilibrium analysis. The

term simplifies to γ when the agent has no preference for robustness (θ = 0) and becomes γ + θ

when η = 1, i.e. in the entropy case, since all spatial derivatives are zero in this case. Generalized

robustness instead allows us to produce rich dynamics, despite the extremely stylized and simple

underlying dynamics in this lognormal i.i.d. economy. Applying the insights from Table 1, we expect

a countercyclical price of risk for η < 1, since this is the situation where the investor’s risk aversion is

countercyclical, due to increases in pessimism following adverse shocks. This mechanism is driven

entirely by time-varying pessimism and the stochastic beliefs it generates endogenously. The increase

in risk aversion in bad states of nature bears some resemblance to models of habit formation such as

Campbell and Cochrane (1999).

The second key contribution of generalized robustness to equilibrium asset pricing is that we

obtain excess volatility, driven by time-varying sentiment. With entropy, σP = σc and the well-known

excess volatility puzzle emerges, as is common in standard asset pricing models with lognormal

dynamics. Inspection of equation (39) reveals that our model is able to generate excess volatility

when 1
ν∂xf > 0 given that u∗ > 0. For η < 1, which is needed for a countercyclical price of risk,

∂xf < 0, so that ν < 0 (or ψ > 1 when γ > 1) is required. This explains why we extended our

analysis to Epstein-Zin preferences, as clearly this condition would be violated for CRRA utility.10 It
10The necessity of Epstein-Zin preferences was also pointed out by Jin and Sui (2019) in their model of asset pricing with

extrapolative expectations. These preference parameter restrictions are also common in the long-run-risk literature.
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is also intuitive that the excess volatility generated in our model is proportional to u∗, since this is

the instantaneous volatility of the (log) state variable Z capturing belief distortions. Because u∗ is

stochastic and increases in bad times, we also expect equilibrium stock price volatility to be stochastic

and to increase in bad times, although this cannot be concluded decisively from (39) without solving

the PDE for f .

Finally, for the equilibrium risk-free rate we present a decomposition to facilitate comparison

with existing results in the literature so as to flesh out our contributions most clearly. We find that

Cressie-Read generalized robustness adds a rich dynamic adjustment to the equilibrium risk-free rate

that obtains in an economy with entropy-based robustness. The first three terms in (40) represent

the effect of the usual determinants of savings behavior on equilibrium interest rates, namely the

rate of time preference δ, intertemporal substitution based on the investor’s EIS ψ and expected

consumption growth µc, and precautionary savings. Our Cressie-Read robustness adds a dynamic

adjustment to these standard determinants. These additional terms are all related to precautionary

savings reflecting the higher effective risk aversion and the higher volatility in the economy due to

time-varying sentiment. For the entropy case with the parameter for robustness set to θe(η−1)x, all

these additional terms vanish because udyn = γdyn = ∂xf = 0, reduces (40) exactly to the case in

Maenhout (2004). Signing the additional terms requires solving the HJB (35), which we do in the

calibration later.

Before turning to the calibration, we show how to use these equilibrium results to price the

stock market, i.e., a risky asset with dividends that are not necessarily perfectly correlated with the

representative agent’s consumption. Consider dividend dynamics given by

dDt

Dt
= µDdt+ σD(ρdBB

t +
√

1− ρ2dB⊥t ), (41)

where µD and σD are constants representing the dividend growth rate and volatility respectively, and

B⊥ is a Brownian motion independent ofBB. The constant ρ is the instantaneous correlation between

consumption growth and the dividend growth.

We consider the stock as an asset in zero net supply with a shadow price determined in

equilibrium. To find its equilibrium (shadow) price, we first identify the state price density M for

the representative agent. Because markets are complete, M follows a stochastic differential equation

of the form
dMt

Mt
= −rtdt− ξtdBU

t , M0 = 1, (42)

where r is the equilibrium risk-free rate in the Lucas tree economy. To determine the market price of

risk ξ, the sum of discounted wealth and consumption (i.e. the process MtWt +
∫ t

0 csMsds) must be a

PU-martingale. This leads to the following market price of risk

ξt = λt − ut. (43)

where λt = µPt −rt
σPt

is the equilibrium Sharpe ratio of the Lucas tree. Combining (42) and (43), we have

Mt = e−
∫ t
0
rsdsE

(
−
∫ (

λs − us
)
dBU

s

)
t
, (44)
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where E
(
−
∫
ξsdB

U
s

)
t

= exp
(
−
∫ t

0
1
2 |ξs|

2ds −
∫ t

0 ξsdB
U
s

)
is a stochastic exponential. Define a measure

Q via
dQ
dPU

∣∣∣
FT

= E
(
−
∫ (

λs − us
)
dBU

s

)
T
.

Then BQ, defined via

BQ
t = BU

t +

∫ t

0
λs − usds = BB

t +

∫ t

0
λsds,

is a Brownian motion under Q. The previous dynamics indicate that Q is the risk-neutral measure.

Using the state price density, the stock can be priced as follows

St =
1

Mt
EU
t

[ ∫ T

t
MsDsds

]
. (45)

Suppose that S follows the dynamics

dSt +Dtdt

St
= µSt dt+ σSt dB

B
t + σS,⊥t dB⊥t . (46)

Define ` = S/D as the price-dividend ratio. The following result presents the equilibrium stock return

and volatility.

Proposition 4. Let ` be the solution to the following equation

∂t`+
1

2
|u∗|2∂2

xx`+
(1

2
|u∗|2 − u∗λ+ ρσDu∗

)
∂x`+

(
µD − ρσDλ− r

)
`+ 1 = 0, (47)

with the terminal condition `(T, ·) ≡ 0 and u∗ coming from (37). Then

µSt =
∂t`

`
+

1

2
|u∗|2∂

2
xx`

`
+

1

2
|u∗|2∂x`

`
+ µD + u∗σDρ

∂x`

`
+

1

`
,

σSt =u∗
∂x`

`
+ σρ,

σS,⊥t =σ
√

1− ρ2.

(48)

Moreover, the following CAPM relation is satisfied:

µSt = rt + λtσ
S .

The results are intuitive and extend our earlier findings to the case of an asset that pays dividends

that are less than perfectly correlated with the consumption stream of the representative agent. The

risk premium on the stock is given by the standard Consumption CAPM, but with a time-varying price

of risk generated by our model. We also obtain excess volatility. Without robustness consideration or

with entropy-based robustness, the price-dividend ratio is trivially constant in a lognormal economy,

resulting in the equilibrium stock volatility being equal to the dividend volatility. The Cressie-

Read divergence measure injects time-varying pessimism, inducing a dynamic price-dividend ratio.

Equation (48) shows that excess volatility emerges when the price-dividend ratio is procyclical. This

condition will be verified numerically in our model calibration later for the case η < 1.
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4 Estimating Pessimism

In the following, we estimate a measure of time-varying sentiment from the data. In particular, we

would like a proxy for the time variation in the worst-case drift distortion. To measure subjective

beliefs, we make use of an extensive survey on several macroeconomic quantities. In addition to

subjective beliefs, we also need a measure of objective beliefs since the wedge between the subjective

and objective beliefs will help us back out the optimal distortion. Objective beliefs are calculated from

a vector autoregression (VAR) from which we infer realized macroeconomic variables.

SUBJECTIVE BELIEFS: We hand collect survey data from Blue Chip Economic Indicators. Blue Chip

is a survey of panelists from around 40 major financial institutions. The names of institutions and

forecasters are disclosed. The survey is conducted around the beginning of each month and is

released on the tenth of each month for responses based on information for the previous month.

We use Blue Chip forecasts from the end-of-quarter month survey (i.e., March, June, September, and

December) and construct a consensus (mean) estimate from the cross-section of individual forecasts

on year-to-year changes of real GDP, inflation, industrial production, and unemployment.

OBJECTIVE BELIEFS: To get a proxy for objective beliefs, we estimate a VAR with two lags on real GDP,

inflation, and unemployment and use forecasts from this VAR. In our estimation, we also include the

level of the three-month Treasury bill.11

[Insert Figure 5 and Table 3 here]

The wedge is then defined as the difference between the subjective and objective beliefs about

future macroeconomic activity. In particular, it measures the amount of pessimism or optimism in

the economy. Figure 5 plots the wedge for our four macroeconomic variables and Table 3 reports

some summary statistics.12 We notice a very strong component between the four series. Indeed,

as shown in Table 3, correlations are between 50% and up to almost 100% between IP and GDP

growth. More importantly, the estimates indicate that subjective beliefs are on average pessimistic

as indicated by the negative mean in the top row of Table 3. The exception is inflation but the positive

average is entirely driven by the sharp increase after the 2008 recession. The most important finding

concerns the business cycle dynamics of the wedges: wedges peak before a recession and suffer sharp

contractions during recessions. This echoes our theoretical findings which predict that bad shocks

lead agents to become more pessimistic.

Finally, we can use our estimates of the GDP wedge to inform us about the dynamics of the optimal

distortion u?. Recall that in our model the wedge is defined as −u∗σP . Estimates of u? are therefore

estimated by dividing the wedge by the sample standard deviation of the stock.

11These variables are used in standard New Keynesian models for forecasting, see, e.g., Cogley and Sargent (2005),
Primiceri (2005) or Chauvet and Potter (2013) for a survey. Our results remain unchanged whether we include interest rates
or not.

12We multiply the wedges for inflation and unemployment by minus 1 to facilitate comparison with GDP and IP growth.
Higher unemployment and inflation indicate bad times, while the opposite holds for GDP and IP growth.
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5 Calibration

We now turn to the calibration in order to explore the ability of our equilibrium model with Cressie-

Read robustness in a stylized Lucas economy with i.i.d. consumption growth and lognormality

to qualitatively and quantitatively match salient features of asset prices together with the wedge

dynamics. To this end, we numerically solve equations (35) and (47) together with their associated

boundary conditions using finite difference methods with implicit schemes. Importantly, we impose

discipline in terms of the free parameters governing the strength of the preference for robustness by

calibrating to the empirical estimates of the wedges estimated from the data in order to have realistic

dynamics for our key new state variable related to sentiment and pessimism.

We follow Jin and Sui (2019) and use the empirical asset pricing evidence reported in Campbell

and Cochrane (1999) and in Beeler and Campbell (2012) as objectives to match. In addition, we also

match the first three moments of the empirical wedges from our empirical analysis, reported in Table

3. The rest of the model parameters used for the calibration are summarized in Panel B of Table 2.

[Insert Figure 6 here]

Figure 6 reports the equilibrium quantities produced in our model for the following preference

parameters: δ = 0.04, γ = θ = 7, ψ = 1.25 and η = 0.65. The Cressie-Read parameter is crucial and our

value lies between entropy (η = 1) and Hellinger (η = 0.5). Because the key contribution of our model

is time-varying sentiment and dynamic pessimism, we report all equilibrium quantities for a relevant

range of the sentiment state variable x, obtained from Monte Carlo simulation. In the figures, we

plot two standard deviations below and above the mean across 104 paths from a 50 year Monte Carlo

simulation.

Consistent with the results in Section 3, the optimal distortion, equilibrium Sharpe ratio,

equilibrium volatility and wedges are all countercyclical, reflecting the countercyclical pessimism

generated by the model. The price-dividend ratio is procyclical, as is the equilibrium risk-free rate.

Quantitatively, Table 4 shows that the model performs well in generating a sizeable risk premium and

a realistic Sharpe ratio. The quantitative success in producing excess volatility is more limited.

Importantly, the wedge between the objective and the subjective risk premium is reasonable and

less than one percent at the mean of the state space, while it grows to just over 150 basis points

in bad states of nature. As Chamberlain (forthcoming) and Hansen and Sargent (2019) both point

out, a central idea in robust Bayesian analysis based on classical work of Good (1952) is to judge the

plausibility of a min-max model by examining how reasonable the worst-case measure U is that is

supporting the equilibrium.

Turning to the moments for the wedges produced by the model versus the ones we estimate from

the data, our model produces excessive skewness. This is likely due to the heavy-tailed distribution

for sentiment due to increased sentiment volatility under adverse market conditions, echoing the

findings reported in Figure 4.

It is worth mentioning that the same model and same parameters, but with relative entropy

produces a higher risk-free rate of 3.59 percent, a very low and constant risk premium of 1.81 percent,

a constant return volatility equal to the volatility of dividends, and a constant Sharpe Ratio of 0.1064.
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We conclude by noting that our Cressie-Read extension improves substantially on the quantitative

front, in addition to generating meaningful time-variation at the business cycle frequency.

6 Conclusions

Our paper makes the following contributions. First, we extend the Hansen-Sargent robustness

setting to the family of Cressie-Read divergences. We show that this generalization has important

implications for the nature and source of fluctuations in risk aversion. In particular, we show that

the agent’s pessimistically distorted beliefs form a state variable that generates endogenous time-

variation in pessimism and stochastic effective risk aversion. This stands in sharp contrast to the

more standard case applied in the literature relying on entropy as a divergence measure between

models and where effective risk aversion is constant when fundamentals are i.i.d.

Second, we illustrate the implications of deviations from entropy using a simple partial

equilibrium portfolio choice framework as well as in a general equilibrium Lucas economy. Our

choice of a simple model with i.i.d. returns is very deliberate, as we seek to understand the

contribution of Cressie-Read divergences which in more complicated models may be harder to

uncover. As a first exercise, we derive parameter conditions under which beliefs are state-dependent.

We find that when the Cressie-Read parameter η is smaller than one, endogenous effective risk

aversion is countercyclical and declines following positive shocks, while the opposite happens

whenever η > 1. In our portfolio choice problem, this induces intertemporal hedging demands and

therefore both horizon- and state-dependent portfolios, despite returns being i.i.d. This example

nicely contrasts to the entropy case where optimal portfolios are constant and myopic.

Third, the premise of our model posits that the agent’s concern for model misspecification leads

to pessimistic beliefs. It is obviously an empirical question whether this is true in the data. To test

this hypothesis in the data, we collect survey responses about future economic activity. Since our

model predicts a unique mapping between the agent’s belief distortion and subjective and objective

beliefs, we can estimate those distortions from the data. With these estimates in hand, we calibrate

our general equilibrium model. We find that our simple model is able to match not only the equity

premium and Sharpe ratio, but also produces reasonable values for interest rates and especially for

the worst-case beliefs supporting this equilibrium.

It is well-known that macroeconomic fundamentals such as consumption feature fat tails, which

might be due to a small probability of a disaster, see, e.g., Barro (2006). Canonical models in asset

pricing such as the rare disaster models study the implications of these large negative shocks for

asset prices usually within the context of representative agent models with Epstein-Zin preferences,

see, e.g.,Tsai and Wachter (2015) for a review. A setting with tail risk and agents featuring robustness

concerns is a natural extension of our framework, which we leave for future research.
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Figures
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Figure 1. Cressie-Read Divergence for different values of η

Notes: This figure plots Cressie-Read divergence for different values of η. η = 0 corresponds to Burg (1972) entropy, 1/2 to
Hellinger (1909) divergence, 1 to Kullback and Leibler (1951) distance, and 2 to modified χ2 distance.
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Figure 2. Optimal distortions and portfolios for different values of η

Notes: This figure plots optimal distortions and portfolios for different values of risk aversion (γ) and preference for
robustness (θ). Parameters used are summarized in Panel A of Table 2 and the time horizon is T = 1 year.
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Figure 3. Optimal distortions and portfolios

Notes: This figure plots optimal distortions and portfolios for risk aversion (γ) equal to 2, preference for robustness (θ) equal
to 2, and x = 0. Parameters used are summarized in Panel A of Table 2 and the time horizon is T = 100 years.
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Figure 4. Optimal distortions and portfolios

Notes: This figure plots the distribution of the sentiment variable x, optimal distortions, portfolios, and consumption wealth
ratio for risk aversion (γ) equal to 2, preference for robustness (θ) equal to 2, and η = 0.5. Parameters used are summarized
in Panel A of Table 2 and time horizon is T = 60 years. All figures present quantities at 30 years. They all center at the mean
of the sentiment variable and span from two standard deviation below to two standard deviation above.
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Figure 6. General Equilibrium Results

Notes: This figure plots the optimal distortion, interest rate, price-dividend ratio, stock volatility, difference in stock risk
premia between measures, and the Sharpe ratio in equilibrium. Parameters used are summarized in Panel B of Table 2 and
time horizon is T = 100 years. All figures present quantities at 50 years. They all center at the mean of the sentiment variable
and span from two standard deviation below to two standard deviation above.
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Figure 7. Distribution of Equilibrium Quantities

Notes: This figure plots the distributions of interest rate, stock volatility, risk premium B, and difference in stock risk premia
between measures along equilibrium path generated via Monte Carlo between year 20 and year 50. Parameters used are
summarized in Panel B of Table 2 and time horizon is T = 100 years.
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Tables

Table 1. Responses to Fundamental ShocksBB

This table studies responses to fundamental shocks discussed in the theoretical model.

∆BB Optimal
Distortion

Risk Aversion Sentiment
Volatility

Sentiment

η < 1

positive ↓ ↓ less pessimistic ↓
negative ↑ ↑ more pessimistic ↑

η > 1

positive ↑ ↑ more pessimistic ↑
negative ↓ ↓ less pessimistic ↓
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Table 2. Parameter Values

This table reports parameter values used for simulations. In addition to the variables defined below we use
ε = 1.

Parameter Variable Value

Panel A: Partial Equilibrium
r Risk-free interest rate 0.03
δ Discount rate 0.03
σ Stock volatility 0.20
µ Expected stock return 0.10

Panel B: General Equilibrium
δ Discount rate 0.04
µc Consumption growth rate 0.0191
σc Consumption volatility 0.038
µD Dividend growth rate 0.0245
σD Dividend volatility 0.17
γ Risk aversion 7
θ Preference for robustness 7
η Cressie-Read parameter 0.65
ψ EIS 1.25
ρ Correlation dividend and consumption 0.2
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Table 3. Summary Statistics Wedges

This table reports summary statistics (mean, standard deviation, and skewness) for the wedges for CPI,
Unemployment, GDP and IP growth. The wedge is defined as the difference between the mean one-year
forecast of each variable from Blue Chip Economic Indicators and the one year ahead forecast using a VAR with
two lags. We multiply the wedge for CPI and Unemployment by -1. Data is quarterly and runs from January
1984 to December 2011.

CPI Unemp GDP IP

Mean 0.11% -0.17% -1.40% -1.59%
Stdev 1.13% 0.61% 1.64% 2.91%
Skewness -0.012 -0.017 -0.660 -0.013

Correlations

CPI 1.00
Unemp 0.43 1.00
GDP 0.52 0.86 1.00
IP 0.48 0.92 0.93 1.00

Table 4. Summary Statistics of Equilibrium Quantities

This table reports moments about equilibrium quantities of the calibrated model. The model is disciplined by
the mean, standard deviation and skewness of the wedge on GDP. The empirical values of equilibrium quantities
are obtained from Campbell and Cochrane (1999) and Beeler and Campbell (2012). The theoretical values are
moments of equilibrium quantities between year 20 to 50 obtained by Monte Carlo simulation with 104 paths.
Parameters used are summarized in Panel B of Table 2. The time horizon is T = 100 years.

Statistic Calibrated value Empirical value

Mean wedge (EB[−u∗σP ]) -1.15% -1.40%
Stdev wedge (σ(−u∗σP )) 0.68% 1.64%
Skewness wedge (skewness(−u∗σP )) -1.77 -0.66

Theoretical value Empirical value

Equity premium (EB[µS − r]) 4.89% 3.90%
Stock volatility (σS) 17.9% 18.0%
Sharpe ratio (EB[µS − r]/σS) 0.27 0.22
Interest rate (EB[r]) 2.76% 2.92%
Interest rate volatility (σ(r)) 0.91% 2.89%
Price-dividend ratio (EB(P/D)) 21.7 21.1
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Appendix A Proofs

Proof of Lemma 1

Using Itô’s formula on Dt,s defined in equation (4) yields that

dDt,s = dφ(Zt,s) =
Zt,s−Zηt,s

1−η (−u′s)dBB
s + 1

2Z
η
t,s|us|2ds. (A.1)

It follows from Hölder’s inequality that

EB
t

[ ∫ T

t
e−δ(s−t)(Zt,s −Zηt,s)2Ψ2

s|us|2ds
]
≤ C2EB

t

[ ∫ T

t
e−δ(s−t)(Zt,s −Zηt,s)2qds

] 1

qEB
t

[ ∫ T

t
e−δ(s−t)Ψ2p

s ds
] 1

p

,

where C = max |u| and 1/p + 1/q = 1. Because EB
t

[ ∫ T
t e−δ(s−t)Ψ2p

s ds
]
< ∞ with some p > 1 by

assumption and EB
t

[ ∫ T
t e−δ(s−t)(Zt,s − Zηt,s)

2qds
]
< ∞ due to the boundedness of u, the process

{e−δ(s−t)Ψs(Zt,s−Zηt,s)us}s≥t is square integrable under B. Hence
∫ ·
t e
−δ(s−t)Ψs(Zt,s−Zηt,s)(−u′s)dBB

s is

a martingale under B. Then we have from (3) and (A.1) that

RU
t =

1

2θΦt
EB
t

[ ∫ T

t
e−δ(s−t)ΨsZ

η
t,s|us|2ds

]
.

When Φt = Z1−η
t ,

RU
t =

1

2θ
EB
t

[ ∫ T

t
e−δ(s−t)ΨsZt,sZ

η−1
s |us|2ds

]
=

1

2θ
EU
t

[ ∫ T

t
e−δ(s−t)ΨsZ

η−1
s |us|2ds

]
.

Then

RU
t =EU

t

[ ∫ t̃

t
e−δ(s−t)

1

2θ
ΨsZ

η−1
s |us|2ds+ e−δ(t̃−t)

∫ T

t̃
e−δ(s−t̃)

1

2θ
ΨsZ

η−1
s |us|2ds

]
=EU

t

[ ∫ t̃

t
e−δ(s−t)

1

2θ
ΨsZ

η−1
s |us|2ds+ e−δ(t̃−t)RU

t̃

]
.

Proof of Proposition 1

The first result follows from the Comparison Theorem of El Karoui, Peng, and Quenez (1997). The

second result is a direct consequence of (11). And the third result is a consequence of (1).

Proof of Proposition 2

In the following, we prove all portfolio choice results for Epstein-Zin utility. Proposition 2 is then a

special case. To this end, consider an agent whose preference over consumption streams is described

by a continuous time stochastic differential utility of Kreps-Porteus and Epstein-Zin type. Given the

discount rate δ, the relative risk aversion 0 < γ 6= 1, and the EIS 0 < ψ 6= 1, the Epstein-Zin aggregator

f (see, e.g., Duffie and Epstein (1992)) is

f(c, v) ≡ δ c
1− 1

ψ

1− 1
ψ

(
(1− γ)v

)1− 1

ν − δνv,
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where ν = 1−γ
1− 1

ψ

. Incorporating the Cressie-Read distance, we introduce the robust Epstein-Zin

preference for a consumption stream c as

Uct = inf
u
EU
t

[ ∫ T

t
f(cs,Ucs ) + 1

2θΨsZ
η−1
s∧τ |us|2 ds+ εu(cT )

]
, (A.2)

where τ = inf{t ≥ 0 : Zt ≤ z or Zt > z}.
Following the discussion in Section 1.2, Uc follows the following BSDE

dUct =
[
δUct − f(ct,Uct ) +

θ

2

|Γt|2

ΨtZ
η−1
t∧τ

]
dt+ Γ′tdB

B
t , UcT = εu(cT ),

The optimal subjective measure is induced by

u∗t =
θ Γt

ΨtZ
η−1
t∧τ

.

Consider a portfolio choice problem with robust Epstein-Zin preferences. The optimal

consumption-investment problem (19) for this agent is then

Vt = inf
u

sup
π,c

EU
t

[ ∫ T

t
f(cs, Vs) +

1− γ
2θ

VsZ
η−1
s∧τ |us|2 ds+ εu(cT )

]
. (A.3)

The choice of Ψ in (18) ensures the following decomposition of the optimal value

Vt =
W 1−γ
t

1− γ
ef(t,xt), (A.4)

where x follows (25). Using dynamic programming, we obtain the HJB equation satisfied by f and

summarize the agent’s optimal investment and consumption strategies as follows.

Proposition 5. When γ ∈ (0, 1), the function f defined in (26) satisfies

0 = inf
u

sup
π,c̃

{
∂tf + 1

2 |u|
2
(
∂2
xxf − ∂xf + (∂xf)2

)
+ (1− γ)∂xfπ

′σu+ δνc̃1− 1

ψ e−
1

ν
f

+ (1− γ)
[
r + π′(µ− r − σu)− c̃− 1

2γπ
′Σπ
]
− δν + 1−γ

2θ e
(1−η)x|u|2

}
,

(A.5)

for (t, x) ∈ [0, T )× (x, x), with boundary conditions

f(t, x) = f ent
x (t), f(t, x) = f ent

x (t), and f(T, x) = log ε. (A.6)

When γ > 1, the infimum and supremum in (A.5) are changed to supu infπ,c̃. If Σ is positive definite and

∂2
xxf−∂xf+(∂xf)2+ 1−γ

θ e(1−η)x > 0 when γ ∈ (0, 1) (resp. < 0 when γ > 1), for any (t, x) ∈ [0, T )×(x, x),

then the agent’s optimal belief and strategies are given by

π∗ =
(
γ +

(1− γ)(1− ∂xf)2

∂2
xxf − ∂xf + (∂xf)2 + 1−γ

θ e(1−η)x

)−1
Σ−1(µ− r), (A.7)

u∗ =
(1− γ)(1− ∂xf)

∂2
xxf − ∂xf + (∂xf)2 + 1−γ

θ e(1−η)x
σ′π∗, (A.8)

c̃∗ = δψe−
ψ

ν
f . (A.9)

Function f ent
x in (A.6) is the value for the problem with an entropy cost and θ(x) = θe(η−1)x. It then

satisfies the ODE given in (A.12).
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Proof. Dynamic programming implies that

Ṽt = Vt +

∫ t

0
f(cs, Vs) + 1−γ

2θ Vse
(1−η)xs |us|2 ds,

where V is given in (A.3), is a martingale under U when u, π, c are agent’s optimal strategy and t < τ .

To calculate the drift of Ṽ , we use equation (25) and apply Itô’s formula to derive

def(t,xt) = ef(t,xt)
[
∂tf + 1

2 |ut|
2
(
∂2
xxf − ∂xf + (∂xf)2

)]
dt+ ef(t,xt)∂xfu

′
tdB

U
t .

Moreover define c̃ = c
W as the consumption-wealth ratio. Then

d
W 1−γ
t

1− γ
= W 1−γ

t

[
r + π′(µ− r − σu)− c̃− 1

2γπ
′Σπ
]
dt+W 1−γ

t π′σdBU
t , (A.10)

Combining the previous two equations, we obtain the drift of Ṽ (divided throughout byW 1−γef (t, xt))

r + π′(µ− r − σu)− c̃− 1
2γπ

′σπ + 1
1−γ
[
∂tf + 1

2 |u|
2(∂2

xxf − ∂xf + (∂xf)2)
]

+ ∂xfπ
′σu

+ δ
1− 1

ψ

c̃1− 1

ψ e−
1

ν
f − δ ν

1−γ + 1
2θe

(1−η)x|u|2.

Then the HJB equation for f is

0 = inf
u

sup
π,c̃

{
∂tf + 1

2 |u|
2
(
∂2
xxf − ∂xf + (∂xf)2

)
+ (1− γ)∂xfπ

′σu+ δνc̃1− 1

ψ e−
1

ν
f

+ (1− γ)
[
r + π′(µ− r − σu)− c̃− 1

2γπ
′Σπ
]
− δν + 1−γ

2θ e
(1−η)x|u|2

}
,

(A.11)

when γ ∈ (0, 1). The infimum and supremum changed to supu infπ,c̃ in the previous equation when

γ > 1.

The first-order condition for π yields

π∗ = 1
γΣ−1

(
µ− r − (1− ∂xf)σu∗

)
.

This is the agent’s optimal strategy when Σ is positive definite. The first order condition in u yields

u∗ =
(1− γ)(1− ∂xf)

∂2
xxf − ∂xf + (∂xf)2 + 1−γ

θ e(1−η)x
σ′π∗.

This is the agent’s optimal belief choice if ∂2
xxf − ∂xf + (∂xf)2 + 1−γ

θ e(1−η)x > 0. The agent’s optimal

choice of consumption wealth is

c̃∗ = δψe−
ψ

ν
f .

When the state variable x reaches the boundaries x and x, the x is absorbed there, and the problem

becomes a problem where the cressie-Read penalty in (A.3) becomes

1−γ
2θ Vse

(1−η)xτ |us|2, for s ≥ τ.

Effectively, this is an entropy penalty

1−γ
2θ(xτ )Vs|us|

2, where θ(xτ ) = θe(η−1)xτ .
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As a result, the boundary conditions of f at x and x are specified by the value fent
x with the robust

parameter θ(x) or θ(x). Setting the spatial derivatives to be zero in (A.5), fent
x , with x = x or x, satisfies

the following ODE

0 =∂tf
ent
x − δν + (1− γ)

[
r + (πent)′(µ− r − σuent)− 1

2γ(πent)′Σπent]
+ δψ νψe

−ψν f
ent
x + 1−γ

2θ e
(1−η)x|uent|2,

fent
x (T ) = log ε,

(A.12)

where

πent =
1

γ + θe(η−1)x
Σ−1(µ− r) and uent =

θe(η−1)x

γ + θe(η−1)x
σ′Σ−1(µ− r).

We revisit the utility formulation in Section 1. The optimal distortion u∗ obtained above is a

continuous function evaluated on (t,Xt) ∈ [0, T ] × [x, x]. Hence u∗ is bounded and satisfies the

requirement in Section 1.1. Moreover, by our construction of the HJB equation (A.5), the process

defined in (A.4) satisfies the BSDE associated to (A.3). Hence it is a utility index defined in Section 1.

Finally, the optimal portfolio weight π∗ and consumption-wealth ratio c̃∗ are bounded, because they

are bounded functions evaluated on (t,Xt) ∈ [0, T ] × [x, x]. Therefore the associated wealth process

W has all finite moments. Thanks to the boundedness of f , Ψ defined in (21) satisfies the integrability

assumption required in Lemma 1.

Proof of Proposition 3

When the agent invests in asset P , her optimal consumption and investment problem can be solved

as in Section 2. Instead of constants µ and σ, µP and σP depend on the state variable x. However,

when the portfolio choice problem is solved in Proposition 5, state variable x is already taken into

account. Therefore, even µP and σP are now random, no more state variable needs to be introduced

and the function f in (26) still solves (A.5) with µ and σ therein replaced by µP and σP . The optimal

belief and strategies are given by (A.7), (A.8), and (A.9).

From consumption market clearing and (A.9),

ct = δψe−
ψ

ν
f(t,xt)Wt. (A.13)

Applying Itô’s formula on the right-hand side, yields

de−
ψ

ν
f(t,xt) = −ψ

ν e
−ψ
ν
f(t,xt)

[
∂tf + 1

2 |u|
2
(
∂2
xxf + ∂xf − ψ

ν (∂xf)2
)
|u|2
]
dt− ψ

ν e
−ψ
ν
f(t,xt)∂xfu dB

B
t .

Then using capital market clearing π∗ = 1 and (A.9), we obtain

de−
ψ

ν
f(t,xt)Wt =Wtde

−ψ
ν
f(t,xt) + e−

ψ

ν
f(t,xt)dWt + d〈e−

ψ

ν
f(t,xt),Wt〉t

=e−
ψ

ν
fWt

[
− ψ

ν ∂tf −
ψ
2ν |u|

2
(
∂2
xxf + ∂xf − ψ

ν (∂xf)2
)]
dt

+ e−
ψ

ν
fWt(µ

P − δψe−
ψ
ν f )dt− e−

ψ

ν
fWt

ψ
ν ∂xfuσ

P dt

+ e−
ψ

ν
fWt

[
− ψ

ν ∂xfu+ σP
]
dBB

t .
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Using the previous dynamics and matching the drift and volatility on both sides of (A.13), we obtain

µP = µc + ψ
ν ∂tf + ψ

2ν |u|
2
(
∂2
xxf + ∂xf − ψ

ν (∂xf)2
)

+ δψe−
ψ

ν
f + ψ

ν ∂xfuσ
P , (A.14)

σP = σc + ψ
ν ∂xfu. (A.15)

Plugging (A.15) into the right-hand side of (A.14), we transform µP into

µP = µc + ψ
ν ∂tf + ψ

2ν |u|
2
(
∂2
xxf + ∂xf + ψ

ν (∂xf)2
)

+ δψe−
ψ

ν
f + ψ

ν ∂xfuσ
c (A.16)

Combining (A.7) and (A.16), we obtain from capital market clearing that

µP − r =
[
γ +

(1− γ)(1− ∂xf)2

∂2
xxf − ∂xf + (∂xf)2 + 1−γ

θ e(1−η)x

]
(σP )2. (A.17)

Plug (A.15) and (A.16) back into (A.5) and simplify, we obtain

0 =∂tf + 1
2 |u
∗|2
(
∂xxf − ∂xf + ψ(∂xf)2

)
+ (1− γ)∂xfuσ

c − δ νψ

+ 1−γ
ψ

(
µc − u∗σc − 1

2γ(σc)2
)

+ δψ νψe
−ψν f + 1−γ

2ψθ e
(1−η)x|u∗|2,

where u∗ in (37) is obtained by plugging (A.15) into (A.8) and solving for u∗. Finally, (40) follows from

combining (35), (A.16) and (A.17).

When x reaches the boundary x or x, f is specified by F ent
x which is the value function in an

equilibrium with an entropy cost. F ent
x satisfies the following ODE

0 =∂tF
ent
x − δ νψ + 1−γ

ψ

(
µc − uentσc − 1

2γ(σc)2
)

+ δψ νψe
−ψν F

ent
x + 1−γ

2ψθ e
(1−η)x|uent|2,

F ent
x (T ) = log ε,

(A.18)

where

uent = θe(η−1)xσc.

Proof of Proposition 4

It follows from (45) and the definition of Q that

St = EQ
t

[ ∫ T

t
e−

∫ s
t
rvdvDsds

]
(A.19)

Let ` = S/D be the price-dividend ratio. It follows from the previous equation that D̃t =

e−
∫ t
0
rvdvDt`(xt) +

∫ t
0 e
−

∫ s
0
rvdvDsds is a Q-martingale. Given that the dynamics of x and D under Q

are

dxt =
(1

2
|u∗t |2 − u∗tλt

)
dt+ u∗tdB

Q
t ,

dDt

Dt
=
(
µD − ρσDλt

)
dt+ σD(ρdBQ

t +
√

1− ρ2dB⊥t ).

Equating the drift of D̃ to be zero, we get equation (47) for `.
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To obtain µS and σS , we apply Itô’s formula to St = Dt`(t, xt) to obtain

dSt = d
(
Dt`(t, xt)

)
=Dt`(t, xt)

(∂t`
`

+
1

2
|u∗|2∂x`

`
+

1

2
|u∗|2∂

2
xx`

`
+ µD + u∗σDρ

∂x`

`

)
dt

+Dt`(t, xt)
[(
u∗
∂x`

`
+ σρ

)
dBB

t + σ
√

1− ρ2dB⊥t

]
.

Adding Dtdt on both sides and dividing by St = Dt`, we obtain

dSt +Dtdt

St
=
(∂t`
`

+
1

2
|u∗|2∂x`

`
+

1

2
|u∗|2∂

2
xx`

`
+ µD + u∗σDρ

∂x`

`
+

1

`

)
dt

+
(
u∗
∂x`

`
+ σρ

)
dBB

t + σ
√

1− ρ2dB⊥t .

Matching the previous equation with equation (46), we obtain µS , σS , and σS,⊥.

Finally, to obtain the CAPM relation, we note that StMt +
∫ t

0 MsDsds is a PU-martingale. Then the

CAPM relation follows from combining (42), (43), and (46).

Appendix B Log utility

We study the portfolio choice problem for an agent with the log utility by taking the scaling limit of

Proposition 2 as γ → 1.

For the function f in (26), define h via

h(t, x) = f(t,x)
1−γ .

Then the agent’s value function (after adding a constant− 1
1−γ ) is

V =
W 1−γe(1−γ)h − 1

1− γ
=
e(1−γ)(logW+h) − 1

1− γ
.

As γ → 1, the right-hand side converges to logW +h, which is the value function in the log utility case

with entropy cost in Maenhout (2004), Appendix B.

From (27), we derive the equation satisfied by h:

0 =∂th+ 1
2 |u|

2
(
∂2
xxh− ∂xh+ (1− γ)(∂xh)2

)
− δ

1−γ + (1− γ)∂xhπ
′σu

+ [r + π′(µ− r − σu)− 1
2γπ

′Σπ] + γ
1−γ δ

1
γ e

(1−γ)(−hγ )
+ 1

2θe
(1−η)x|u|2 = 0,

(B.1)

where

π =
1

γ + (1−(1−γ)∂xh)2

∂2
xxh+(1−γ)(∂xh)2−∂xh+

1
θ e

(1−η)x

Σ−1(µ− r), (B.2)

u =
1− (1− γ)∂xh

∂2
xxh+ (1− γ)(∂xh)2 − ∂xh+ 1

θe
(1−η)x

σ′π. (B.3)

Here we consider ε = 1 in the bequest utility. Then the terminal condition for h is

h(T, x) = 0.
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Now send γ → 1 in (B.1), (B.2), and (B.3) to identify the limiting equation satisfied by h. We first

consider the limit of

− δ
1−γ + γ

1−γ δ
1
γ e

(1−γ)(−hγ )
.

When γ → 1, up to the first order of 1− γ,

− δ
1−γ + γ

1−γ δ
1
γ e

(1−γ)(−hγ ) ≈
−δ + γδ

1
γ (1 + (1− γ)(−h

γ ))

1− γ
=
δ

1

γ − δ
1− γ

− δ
1
γ − δ

1
γ h.

By L’Hospital rule, limγ→1
δ

1
γ −δ
1−γ = δ log δ. Then

lim
γ→1
− δ

1−γ + γ
1−γ δ

1
γ e

(1−γ)(−hγ )
= −δ − δh+ δ log δ.

Using the previous identity, we obtain the limit of (B.1), (B.2), and (B.3) as

0 = ∂th+ 1
2 |u|

2
(
∂2
xxh− ∂xh

)
− δh− δ + δ log δ + r + π′(µ− r − σu)− 1

2π
′Σπ + 1

2θe
(1−η)x|u|2 = 0, (B.4)

where

π =
∂2
xxh− ∂xh+ 1

θe
(1−η)x

1 + ∂2
xxh− ∂xh+ 1

θe
(1−η)x

Σ−1(µ− r), (B.5)

u =
1

∂2
xxh− ∂xh+ 1

θe
(1−η)x

σ′π. (B.6)

From (B.5) and (B.6), we observe that the portfolio choice for the log utility agent is still dynamic.

The log utility agent still hedges against the future belief variation. This can be also seen from the

following identity,

σu+ Σπ = µ− r,

which is obtained after combining (B.5) and (B.6). The variation of u drives the variation of π so that

the sum of σu and Σπ is always constant.
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