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1 INTRODUCTION

In standard asset pricing models, uncertainty enters through the supply side of the economy, either

through endowment shocks in a Lucas (1978) tree model or productivity shocks in a production

economy model. Recently, several papers introduced demandside uncertainty or “valuation risk”

as a potential explanation of key asset pricing puzzles (Albuquerque et al., 2016, 2015; Creal and

Wu, 2017; Maurer, 2012; Nakata and Tanaka, 2016; Schorfheide et al., 2018). In macroeconomic

parlance, valuation risk is typically referred to as eithera discount factor or time preference shock.1

The literature contends valuation risk is an important determinant of key asset pricing mo-

ments when it is embedded in Epstein and Zin (1989) recursivepreferences. We show the suc-

cess of valuation risk rests sensitively on the way it is introduced. In particular, we examine two

specifications—Current (the specification used in the assetpricing literature) and Revised (our pre-

ferred alternative)—and show they come to very different conclusions. Moreover, we identify four

desirable properties of Epstein-Zin recursive preferences that the current specification violates and

the revised specification satisfies, which cautions againstcontinuing to use the current preferences.

The first property of recursive preferences pertains to comparative risk aversion. It says that,

holding all else equal, an increase in the coefficient of relative risk aversion (RA,γ) equates to an

increase in a household’s risk aversion. We show this property does not hold when the intertempo-

ral elasticity of substitution (IES,ψ) is below unity under the current specification. An increasein γ

equates to a decrease, rather than an increase, in risk aversion, flipping its standard interpretation.2

The second property is that preferences are well-defined with unitary IES. The IES measures

the responsiveness of consumption growth to a change in the real interest rate. An IES of1 is

a focal point because this is when the substitution and wealth effects of an interest rate change

exactly offset. We show this property does not hold under thecurrent specification in the literature.

The third property is that recursive preferences nest time-separable log-preferences whenγ =

ψ = 1. We show the current specification does not always nest log preferences in this case because

it can even generate extreme curvature and risk-aversion whenγ andψ are arbitrarily close to1.

The final property is that equilibrium moments are continuous functions of the IES over its do-

main. We show there is a discontinuity under the current specification. When the IES is marginally

above unity, households require an arbitrarily large equity premium and an arbitrarily small risk-

free rate, while an IES marginally below unity predicts the opposite. This is because the utility

function exhibits extreme concavity with respect to valuation risk when the IES is marginally

above unity and extreme convexity on this dimension when theIES is marginally below unity.

1Time preference shocks have been widely used in the macro literature (e.g., Christiano et al. (2011); Eggertsson
and Woodford (2003); Justiniano and Primiceri (2008); Rotemberg and Woodford (1997); Smets and Wouters (2003)).

2The distinction between Epstein and Zin (1989) recursive preferences and constant relative risk aversion (CRRA)
utility is that in the former,ψ andγ are distinct structural parameters, whereas in the latterγ = 1/ψ.
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The discontinuity is relevant because there is a tension between the finance and macroeco-

nomics literatures as to whether the IES lies above or below unity. Setting the IES to0.5, as is

common in the macroeconomics literature, can inadvertently result in a sizable negative equity pre-

mium.3 Imagine two researchers who want to estimate the IES set the domain to[0, 1) and(1,∞),

respectively. The estimates in the two settings would diverge due to the discontinuity. Therefore,

awareness of these issues is important even if researchers continue to use the current preferences.

In a business cycle context, de Groot et al. (2018) propose a revised Epstein-Zin preference

specification for valuation risk in which the time-varying weights in the CES time-aggregator sum

to 1, a restriction the current specification does not impose. Under this revised specification there

is a well-defined equilibrium when the IES is1 and asset prices are robust to small variations

in the IES. Continuity is preserved because the weights in the time-aggregator always sum to

unity. Another interpretation is that the time-aggregatormaintains the well-known property that a

CES aggregator tends to a Cobb-Douglas aggregator as the elasticity approaches1. The current

specification violates the restriction on the weights so thelimiting properties of the CES aggregator

break down. In summary, the revised specification is consistent with the four desirable properties.

This paper makes two key contributions. First, it analytically shows the preference specification

profoundly affects the equilibrium determination of assetprices. For example, the same RA and

IES can lead to very different values for the equity premium and risk-free rate and comparative

statics, such as the response of the equity premium to the IES, switch sign. Taken at face value,

the current specification resolves the equity premium (Mehra and Prescott, 1985) and risk-free

rate (Weil, 1989) puzzles in our baseline model withi.i.d. cash-flow risk. Under the revised

specification, valuation risk has a smaller role, RA is implausibly high, and the puzzles resurface.

Second, using a simulated method of moments (SMM), this paper empirically re-evaluates the

role of valuation risk in explaining asset pricing and cash-flow moments. We find after estimating

a sequence of increasingly rich models under the revised specification, the role and contribution

of valuation risk change dramatically relative to the literature. However, valuation risk under the

revised specification consistently improves the ability ofthe models to match moments in the data.

We begin by estimating the Bansal and Yaron (2004) long-run risk model (without time-varying

uncertainty) without valuation risk and find it significantly under-predicts the standard deviation

of the risk-free rate, even when these moments are targeted.When we introduce valuation risk, it

accounts for roughly40% of the equity premium, but at the expense of over-predictingthe standard

deviation of the risk-free rate. After targeting the risk-free rate dynamics, valuation risk only ac-

counts for about5% of the equity premium. Therefore, we find it is crucial to target these dynamics

3Hall (1988) and Campbell (1999) provide empirical evidencefor an IES close to zero. Basu and Kimball (2002)
find an IES of0.5 and Smets and Wouters (2007) estimate a value of roughly0.7. In contrast, van Binsbergen et al.
(2012) and Bansal et al. (2016) estimate models with Epstein-Zin preferences and report IES values of1.73 and2.18.
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to accurately measure the contribution of valuation risk. Valuation risk is also able to generate the

upward sloping term structure for real Treasury yields found in the data, whereas cash-flow risk

alone predicts a counterfactually downward sloping term structure. While valuation risk (with or

without the targeted risk-free rate moments) improves the fit of the long-run risk model, the model

still fails a test of over-identifying restrictions. This is because the model fairs poorly in matching

the low predictability of consumption growth from the price-dividend ratio, the high standard de-

viation of dividend growth, and the weak correlation between dividend growth and equity returns.

We consider two extensions that improve the model’s fit: (1) an interaction term between valu-

ation and cash-flow risk (a proxy for general equilibrium demand effects) following Albuquerque

et al. (2016) (henceforth, “Demand” model) and (2) stochastic volatility on cash-flow risk as in

Bansal and Yaron (2004) (henceforth, “SV” model). In a horserace between these extensions, we

find the Demand model wins and passes the over-identifying restrictions test at the5% level. How-

ever, the two extensions are complements and the combined model passes the test at the10% level.

This is because the demand extension lowers the correlationbetween dividend growth and equity

returns, while the SV extension offsets the effect of highervaluation risk on risk-free rate dynam-

ics. Targeting longer-term rates further increases the relative improvement of the combined model.

Our paper also makes an important technical contribution. It is common in the literature to

estimate asset pricing models with a simulated method of moments (e.g., Adam et al., 2016; Albu-

querque et al., 2016; Andreasen and Jørgensen, 2019). We build on this methodology in two ways.

One, we run Monte Carlo estimations of the model and calculate standard errors using different se-

quences of shocks, whereas estimates in the literature are typically based on a particular sequence

of shocks. This approach allows us to obtain more precise estimates and account for differences

between the asymptotic and sampling distributions of the parameters. Two, we use a rigorous two-

step procedure to find the global optimum that uses simulatedannealing to obtain candidate draws

and then recursively applies a nonlinear solver to each candidate. We find that without applying

such rigor, the algorithm would settle on local optima and potentially lead to incorrect inferences.

Related Literature This paper builds on the growing literature that examines the role of valu-

ation risk in asset pricing models. Maurer (2012) and Albuquerque et al. (2016) were the first.

They adopt the current preference specification and find valuation risk accounts for key asset pric-

ing moments, such as the equity premium. Albuquerque et al. (2016) also focus on resolving

the correlation puzzle (Campbell and Cochrane, 1999). Schorfheide et al. (2018) use a Bayesian

mixed-frequency approach that targets entire time series rather than specific moments, but they do

not target the term structure. They focus on one model with three SV processes, but where valua-

tion risk and cash-flow risk are always independent. We examine in-depth the role of valuation risk

by estimating a sequence of increasingly rich models with long-run cash-flow risk, some of which

include general equilibrium demand effects. We find the termstructure moments are informative
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about the role of valuation risk and the data prefers models with demand effects. Creal and Wu

(2017) focus on bond premia. They also use the current specification, but valuation risk is tied

to consumption and inflation and does not have an independentstochastic element. They find the

slope of the yield curve is largely explained by valuation risk, given an IES estimate equal to1.02.

Nakata and Tanaka (2016) and Kliem and Meyer-Gohde (2018) study term premia in a New

Keynesian model using the current specification. The formercalibrate the IES to0.11 and generate

a negative term premium. The latter estimate the IES with a prior in the [0, 1] range and obtain a

value of0.09. Both findings are a consequence of the asymptote, as we show analytically. In con-

trast with the literature, Rapach and Tan (2018) and Bianchiet al. (2018) use the revised specifica-

tion and estimate a real business cycle model. They find valuation risk still explains a large portion

of the term premium because demand shocks interact with the production side of the economy.4

The paper proceeds as follows.Section 2lays out desirable properties of recusive preferences

and the consequences of the valuation risk specification.Section 3discusses asset pricing implica-

tions.Section 4describes our estimation method.Section 5quantifies the effects of valuation risk

in our baseline model withi.i.d. cash-flow risk.Section 6estimates the basic long-run risk model

with and without valuation risk.Section 7extends the long-run risk model to include valuation

risk shocks to cash-flow growth and stochastic volatility oncash-flow risk.Section 8concludes.

2 EPSTEIN-ZIN PREFERENCES WITHDISCOUNT FACTOR SHOCKS

2.1 BACKGROUND Epstein and Zin (1989) preferences generalize standard expected utility

time-separable preferences. Current-period utility is defined recursively over current-period con-

sumption,ct, and a certainty equivalent,µt(Ut+1), of next period’s random utility,Ut+1, as follows:

Ut =W (ct, µt(Ut+1)), (1)

whereµt ≡ g−1(Etg(Ut+1)), W is thetime-aggregator, andg is therisk-aggregator. W andg are

increasing and concave andW andµt are homogenous of degree1. Note thatµt(Ut+1) = Ut+1 if

there is no uncertainty, andµt(Ut+1) ≤ Et[Ut+1] if g is concave and future outcomes are uncertain.

Most of the literature considers the following functional forms forW andg:

g(z) ≡ (z1−γ − 1)/(1− γ), for 1 6= γ > 0, (2)

W (x, y) ≡
(
(1− β)x1−1/ψ + βy1−1/ψ

)1/(1−1/ψ)
, for 1 6= ψ > 0. (3)

Whenγ = 1, g(z) = log(z) and whenψ = 1, W = x1−βyβ. Therefore, the time-aggregator is

4Two other strands of the literature have interesting connections to our work. One, disaster risk (see Barro, 2009
and Gourio, 2012) can generate variation in the stochastic discount factor analogous to valuation risk. Two, Bansal
et al. (2014), identify “discount rate risk” as a component of risk premia distinct from cash-flow and volatility risks.
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a CES function that converges to a Cobb-Douglas function asψ → 1.5 It is also common in the

literature to see the time-aggregator written without the(1− β) coefficient onx as follows:

W (x, y) ≡
(
x1−1/ψ + βy1−1/ψ

)1/(1−1/ψ)
. (3’)

In this case, (3’) is undefined whenψ = 1. This is because the weights in the time-aggregator do

not sum to1. Nevertheless, the exact specification ofW does not affect equilibrium behavior.6

Result 1. Utility function (1) with time-aggregator(3) or (3’) represents the same preferences.

Result 1holds because it is possible to switch between (3) and (3’) with a positive monotonic

transformation that multiplies the utility function by(1 − β)1/(1−1/ψ).7 To see this, note that the

intertemporal marginal rate of substitution (equivalently, the stochastic discount factor) is given by

mt+1 ≡

(
∂Ut
∂ct+1

)/(∂Ut
∂ct

)

= β

(
ct+1

ct

)
−1/ψ (

Ut+1

µt (Ut+1)

)1/ψ−γ

. (4)

Sinceµt is homogenous of degree1, applying the positive monotonic transformation toUt+1 in the

both numerator and denominator leaves the intertemporal marginal rate of substitution unchanged.8

The results thus far are standard, but they lay the groundwork for the discussion that follows.

Valuation risk involves introducing discount factor shocks—exogenous stochastic time-variation

in β. Whether one works with (3) and replaces both instances ofβ with atβ (whereat is a log-

normal mean zero stationary AR(1) stochastic process) or one works with (3’) and replaces the

only instance ofβ with atβ is not innocuous, even though one might conclude it is fromResult 1.

The specification matters and in what follows we will describe the consequences of these choices.

To determine a preferred specification of valuation risk, wefirst establish four desirable prop-

erties of standard Epstein-Zin preferenceswithoutdiscount factor shocks, and then assess whether

the two specifications of Epstein-Zin preferences with discount factor shocks satisfy each of them.

Property 1. γ is a measure of comparative risk aversion.

Suppose there are two households,A andB, with Epstein-Zin preferences as defined above.

The two households are identical in every way except in preference parameterγ. If γ measures

risk aversion, then householdA is more risk averse than householdB if and only if γA > γB.

Property 2. ψ is a measure of the IES and preferences are well defined with unit IES.

5The functional form forg impliesµt = (EtU
1−γ
t+1 )1/(1−γ) whenγ 6= 1 andµt = exp(Et log(Ut+1)) whenγ = 1.

6Kraft and Seifried (2014) prove the continuous-time analogof recursive preferences (stochastic differential utility,
Duffie and Epstein, 1992) is the continuous-time limit of recursive utility if the weights in the time-aggregator sum to1.

7This is similar to the common practice of writing CRRA utility asu(c) = cα/α instead ofu(c) = (cα − 1)/α,
even though the omitted constant term is necessary when proving the limit asα → 0 is given byu(c) = log(c).

8An equivalent observation is that time-preference is independent of the(1 − β) coefficient. In an environment
without consumption growth and without risk, time-preference is captured by the discount factor (i.e.,mt+1 = β).
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The IES is defined as the responsiveness of consumption growth to a change in the real interest

rate. A rise in the real interest rate induces both a substitution effect (consumption today becomes

relatively more expensive, decreasing current consumption) and an income effect (a saver feels

wealthier, increasing current consumption). The substitution and income effects exactly offset

whenψ = 1. Therefore, a unitary IES is an important focal point for anymodel of preferences.9

Property 3. Whenγ = ψ = 1, Epstein-Zin preferences are equivalent to time-separable log-

preferences given byUt = (1− β) log(ct) + βEtUt+1 or, alternatively,Ut = log(ct) + βEtUt+1.

Property 3is a special case of the more general property that whenγ = 1/ψ, Epstein-Zin pref-

erences simplify to standard expected utility time-separable preferences. However, time-separable

log preferences are a staple of economics textbooks, so thisprovides another useful benchmark.

Property 4. Equilibrium moments are continuous functions of the IES,ψ, over its domainR+.

This final property relates to the discussion of time-aggregator (3) versus (3’). Adopt (3’) and

supposex = 1 andy > 0. In this case,limψ→1− W = 0 andlimψ→1+ W = +∞. Therefore, (3’)

exhibits a discontinuity. However, as discussed, this discontinuity does not affect the intertemporal

marginal rate of substitution, (4), and, as a result, does not materialize in equilibrium moments.

2.2 DISCOUNT FACTOR SHOCKS There are two ways to introduce discount factor shocks into

the Epstein-Zin time-aggregator. The first is denoted the “[C]urrent specification” and given by

WC(x, y, at) ≡
(
(1− β)x1−1/ψ + atβy

1−1/ψ
)1/(1−1/ψ)

. (3C)

The second is denoted the “[R]evised specification” and given by

WR(x, y, at) ≡
(
(1− atβ)x

1−1/ψ + atβy
1−1/ψ

)1/(1−1/ψ)
. (3R)

The current specification is commonly adopted in the literature. Its use is not surprising since, at

face value, it is the natural extension of discount factor shocks to expected utility time-separable

preferences given byUt = u(ct) + atβEtUt+1. The specifications, however, arenot equivalent.10

Result 2. Utility function (1) given(3C) does not, in general, reflect the same preferences as(3R).

To demonstrate this result, we show there is no positive monotonic transformation that maps the

two specifications. DefinẽUC
t = (1−atβ

1−β
)1/(1−1/ψ)UC

t , so the transformed preferences are given by

ŨC
t =

(

(1− atβ)c
1−1/ψ
t + atβµt

(

ã
1/(1−1/ψ)
t+1 ŨC

t+1

)1−1/ψ
)1/(1−1/ψ)

, (5)

9A unitary IES is also the basis of the “risk-sensitive” preferences in Hansen and Sargent (2008, Section 14.3).
10The presence of the(1 − β) coefficient in (3C) is irrelevant but we include it for symmetry. The domain ofat is

constrained to ensure the time-aggregator weights are always positive. With (3C), at > 0. With (3R), 0 < at < 1/β.
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whereãt+1 ≡ (1− atβ)/(1− at+1β). The revised preferences are given by

UR
t =

(

(1− atβ)c
1−1/ψ
t + atβµt

(
UR
t+1

)1−1/ψ
)1/(1−1/ψ)

. (6)

Therefore, the equivalence only exists ifat+1 = at for all t. Comparing (5) and (6), there are two

striking features of the current specification. One, it has more risk sincẽat+1 introduces additional

variance. Two, it has more curvature in the certainty equivalent sincẽat+1 is raised to1/(1−1/ψ).

To gain further insight, we make a few simplifying assumptions. First, supposect+1 = 1 and

∆t+j ≡ ct+j/ct+j−1 = ∆ > 1 for all j ≥ 2. Second, supposeat+j = 1 for j = 0 andj ≥ 2, but

at+1 is a random draw. The terms inside the expectations operators contained inµt are given by

ŪC(at+1) ≡ g(UC
t+1) = g

(
(1− β + at+1βx̄)

1/(1−1/ψ)
)
, (7)

ŪR(at+1) ≡ g(UR
t+1) = g

(
(1− at+1β + at+1βx̄)

1/(1−1/ψ)
)
, (8)

wherex̄ = ∆1−1/ψ(1− β)/(1− β∆1−1/ψ). One source of intuition is to examine the curvature of

(7) and (8) with respect toat+1 by defining an Arrow-Pratt type measure of risk aversion given by

Aj ≡ −(Ū ′′

j (at+1)/Ū
′

j(at+1))|at+1=1,

wherej ∈ {C,R}. The curvatures of the current and revised specifications are given by

AC =

(
γ − 1/ψ

1− 1/ψ

)

β∆1−1/ψ and AR =

(
γ − 1/ψ

1− 1/ψ

)
β

1− β

(
∆1−1/ψ − 1

)
. (9)

To visualize these results,Figure 1plots state-space indifference curves following Backus etal.

(2005). Suppose there are two equally likely states forat+1 ∈ {a1, a2}. The45-degree line repre-

sents certainty. We plot(a1, a2) pairs, derived inAppendix A, that deliver the same utility as the

certainty equivalent. A convex indifference curve impliesaversion with respect to valuation risk.

Result 3. The current specification violatesProperty 1whenψ < 1 because increasingγ leads to

a fall in risk aversion. In contrast, the property is never violated under the revised specification.

Result 3states that under the current specification, a higher RA can lead to a fall in risk aver-

sion (∂AC/∂γ < 0) for ψ < 1. Visually, this is captured in the top-row ofFigure 1. Under the

current specification, withψ = 0.95, an increase inγ from 0.1 to 3 causes the indifference curve to

become less convex, indicating a decrease in risk aversion.Whenψ = 1.05, the opposite occurs.

In contrast, under the revised specification,∂AR/∂γ > 0 for all ψ, consistent withProperty 1.

Result 4. The current preferences become extremely concave with respect to valuation risk as

ψ → 1+ and extremely convex asψ → 1− and are undefined whenψ = 1, violatingProperty 2. In

contrast, the curvature of the revised preferences is continuous and increases only modestly inψ.

7
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Figure 1: State-space indifference curves. We setβ = 0.9975 and∆ = 1.0015.

Result 4states that under the current specification, risk aversion is very sensitive to the calibra-

tion of the IES. This is concerning since Epstein-Zin-type preferences are designed to separate risk

attitudes from timing attitudes. Under the current specification, curvature and hence risk attitudes

are primarily determined by the IES parameter. The revised specification resolves this problem.

One source of intuition is to examine an alternative versionof the current specification given by

WA(x, y, at) ≡
(
(1− atβ)x

1−1/ψ + βy1−1/ψ
)1/(1−1/ψ)

, (3A)

whereat only appears in the first position. A priori, if we accept the current specification, then

(3A) should be an acceptable alternative. The curvature of the alternative specification is given

by AA = −
(
γ−1/ψ
1−1/ψ

)
β

1−β

(
1− β∆1−1/ψ

)
, which has almost the exact opposite properties asAC

because the preferences become extremely convex with respect to valuation risk asψ → 1+ and

extremely concave asψ → 1−. SinceAR = AC +AA, the extreme curvature observed in both the

current and alternative specifications broadly cancel out under the revised specification.11

Result 5. Supposeγ = 1 − ǫ and 1 − 1/ψ = ǫ2. As ǫ → 0, the current specification violates

Property 3, whereas the revised specification converges toUt = (1− atβ) log ct + atβEtUt+1.

11Appendix Bshows (3A) is isomorphic to (3C) with a small change in the timing of the discount factor shock.
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Result 5summarizes our investigation ofProperty 3under valuation risk. If we begin with log-

preferences and introduce discount factor shocks, thenUt = (1−atβ) log(ct)+atβEtUt+1 orUt =

log(ct) + atβEtUt+1 and there is no curvature with respect to valuation risk (A = 0). Therefore,

whenγ = ψ = 1, Epstein-Zin preferences under valuation risk should always reduce to one of

these utility functions and the stochastic discount factorshould reduce tomt+1 ≡ atβ(
1−at+1β
1−atβ

) ct
ct+1

ormt+1 ≡ atβ
ct
ct+1

. We show inAppendix Cthat this occurs under the revised specification, butnot

under the current specification whenψ approaches1 at a faster rate thanγ. Furthermore, suppose

we calculate the limit asǫ → 0, assumingγ = 1 − ǫ and1 − 1/ψ = ǫ2 to ensureψ converges to

1 at a faster rate thanγ. The current specification still exhibits extreme curvature with respect to

valuation risk even though bothγ andψ become arbitrarily close to1 as in the log-preference case.

3 CONSEQUENCES FORASSETPRICING

Thus far, we have described the alternative valuation risk specifications in terms of properties

related to the curvature of the utility function. This section applies these ideas to asset pricing

moments using our baseline asset pricing model and analyzestheir consequences forProperty 4.

3.1 BASELINE ASSET-PRICING MODEL This section describes our baseline model withi.i.d.

cash-flow risk. Later sections will introduce richer features into the model. Each periodt denotes

1 month. There are two assets: an endowment share,s1,t, that pays income,yt, and is in fixed unit

supply, and an equity share,s2,t, that pays dividends,dt, and is in zero net supply. A representative

household chooses{ct, s1,t, s2,t}∞t=0 to maximize utility (1) with time aggregator (3C) or (3R).12

The representative household’s choices are constrained bythe flow budget constraint given by

ct + py,ts1,t + pd,ts2,t = (py,t + yt)s1,t−1 + (pd,t + dt)s2,t−1, (10)

wherepy,t andpd,t are the endowment and dividend claim prices. The optimalityconditions imply

Et[m
j
t+1ry,t+1] = 1, ry,t+1 ≡ (py,t+1 + yt+1)/py,t, (11)

Et[m
j
t+1rd,t+1] = 1, rd,t+1 ≡ (pd,t+1 + dt+1)/pd,t, (12)

wherery,t+1 andrd,t+1 are the gross returns on the endowment and dividend claims, and

mC
t+1 ≡ aCt β

(
ct+1

ct

)
−1/ψ ((UC

t+1)
1−γ

µt(UC
t+1)

)1/ψ−γ

, (13)

mR
t+1 ≡ aRt β

(
1− aRt+1β

1− aRt β

)(
ct+1

ct

)
−1/ψ ((UR

t+1)
1−γ

µt(UR
t+1)

)1/ψ−γ

. (14)

12Kollmann (2016) introduces a time-varying discount factorinto Epstein-Zin preferences in similar way as our re-
vised specification. In that setup, however, the discount factor is a function of endogenously determined consumption.

9
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To permit an approximate analytical solution, we rewrite the optimality conditions as follows

Et[exp(m̂
j
t+1 + r̂y,t+1)] = 1, (15)

Et[exp(m̂
j
t+1 + r̂d,t+1)] = 1, (16)

where a hat denotes a log variable. The log stochastic discount factor is given by

m̂j
t+1 = θ log β + θ(ât − ωjât+1)− (θ/ψ)∆ĉt+1 + (θ − 1)r̂y,t+1, (17)

whereθ ≡ (1 − γ)/(1− 1/ψ). The second term captures the direct effect of valuation risk on the

stochastic discount factor, whereωC = 0, ωR = β, andât ≡ âCt ≈ âRt /(1−β). Valuation risk also

has an indirect effect through the return on the endowment. The log preference shock,ât+1, follows

ât+1 = ρaât + σaεa,t+1, εa,t+1 ∼ N(0, 1), (18)

where0 ≤ ρa < 1 is the persistence of the process andσa ≥ 0 is the shock standard deviation. We

apply a linear approximation to the asset returns followingCampbell and Shiller (1988) to obtain

r̂y,t+1 = κy0 + κy1ẑy,t+1 − ẑy,t +∆ŷt+1, (19)

r̂d,t+1 = κd0 + κd1ẑd,t+1 − ẑd,t +∆d̂t+1, (20)

whereẑy,t+1 is the log price-endowment ratio,ẑd,t+1 is the log price-dividend ratio, and

κy0 ≡ log(1 + exp(ẑy))− κy1ẑy, κy1 ≡ exp(ẑy)/(1 + exp(ẑy)), (21)

κd0 ≡ log(1 + exp(ẑd))− κd1ẑd, κd1 ≡ exp(ẑd)/(1 + exp(ẑd)), (22)

are constants that are functions of the steady-state price-endowment and price-dividend ratios.

To close the model, the processes for log-endowment and log-dividend growth are given by

∆ŷt+1 = µy + σyεy,t+1, εy,t+1 ∼ N(0, 1), (23)

∆d̂t+1 = µd + πdyσyεy,t+1 + ψdσyεd,t+1, εd,t+1 ∼ N(0, 1), (24)

whereµy andµd are the steady-state growth rates,σy ≥ 0 andψdσy ≥ 0 are the shock standard

deviations, andπdy determines the covariance between consumption and dividend growth. At this

point, cash-flow growth isi.i.d. Later sections will introduce other empirically relevant features.

The asset market clearing conditions implys1,t = 1 ands2,t = 0, so the resource constraint

is ĉt = ŷt. Equilibrium includes sequences of prices{m̂t+1, ẑy,t, ẑd,t, r̂y,t+1, r̂d,t+1}
∞

t=0, quantities

{ĉt}
∞

t=0, and exogenous variables{∆ŷt+1,∆d̂t+1, ât+1}
∞

t=0 that satisfy (15)-(20), (23), (24), and the

resource constraint, given the state of the economy,{â0}, and shock sequences,{εy,t, εd,t, εa,t}
∞

t=1.

10
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We posit the following solutions for the price-endowment and price-dividend ratios:

ẑy,t = ηy0 + ηy1ât, ẑd,t = ηd0 + ηd1ât, (25)

whereẑy = ηy0 andẑd = ηd0. We solve the model with the method of undetermined coefficients.

Appendix Dderives the SDF, a Campbell-Shiller approximation, the solution, and key asset prices.

3.2 ASSET PRICING MOMENTS We begin with a brief discussion of the asset pricing implica-

tions of the model without valuation risk. In particular, wereview how Epstein-Zin preferences,

by separating risk attitudes from timing attitudes, aid in matching the risk-free rate and equity pre-

mium. We then compare these moments under the current and revised valuation risk preferences.

3.2.1 CONVENTIONAL MODEL In the original Epstein-Zin preferences, there is no valuation

risk (σa = 0). If, for simplicity, we further assume endowment and dividend risks are perfectly cor-

related (ψd = 0; πdy = 1), then the average risk-free rate and average equity premium are given by

E[r̂f ] = − log β + µy/ψ + ((1/ψ − γ)(1− γ)− γ2)σ2
y/2, (26)

E[ep] = γσ2
y , (27)

where the first term in (26) is the subjective discount factor, the second term accounts for endow-

ment growth, and the third term accounts for precautionary savings. Endowment growth creates an

incentive for households to borrow in order to smooth consumption. Since both assets are in fixed

supply, the risk-free rate must be elevated to deter borrowing. When the IES,ψ, is high, households

are willing to accept higher consumption growth so the interest rate required to dissuade borrowing

is lower. Therefore, the model requires a fairly high IES to match the low risk-free rate in the data.

With CRRA preferences, higher RA lowers the IES and pushes upthe risk-free rate. With

Epstein-Zin preferences, these parameters are independent, so a high IES can lower the risk-free

rate without lowering RA. The equity premium only depends onRA. Therefore, the model gener-

ates a low risk-free rate and modest equity premium with sufficiently high RA and IES parameter

values. Of course, there is an upper bound on what constitutereasonable RA and IES values, which

is the source of the risk-free rate and equity premium puzzles. Other prominent model features such

as long-run risk and stochastic volatility à la Bansal and Yaron (2004) help resolve these puzzles.

3.2.2 VALUATION RISK MODEL COMPARISON We now turn to the model with valuation risk.

Figure 2plots the average risk-free rate, the average equity premium, andκ1 (i.e., the marginal

response of the price-dividend ratio on the equity return) under both preference specifications. For

simplicity, we remove cash flow risk (σy = 0; µy = µd) and assume the time preference shocks

are i.i.d. (ρa = 0). Under these assumptions, the assets are identical so(κy0, κy1, ηy0, ηy1) =

11



DE GROOT, RICHTER & T HROCKMORTON: VALUATION RISK REVALUED

0.5 1 1.5 2 2.5 3
0

2

4

6

8

0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

0.5 1 1.5 2 2.5 3
0.995

0.996

0.997

0.998

0.999

1

0 0.1 0.2 0.3 0.4 0.5
0.02

0.025

0.03

ψ → ∞

(Current Preferences)

Figure 2: Equilibrium outcomes in the model without cash flowrisk (σy = 0; µy = µd) andi.i.d. preference shocks
(ρa = 0) under the current (C) and revised (R) preference specifications. We setβ = 0.9975, γ = 10, andσa = 0.005.

(κd0, κd1, ηd0, ηd1) ≡ (κ0, κ1, η0, η1). We plot the results with and without cash-flow growth (µy).

In Figure 2, the current preferences are given by the solid-black (positive endowment growth)

and red-diamond (no endowment growth) lines. In both cases,the average risk-free rate and aver-

age equity premium exhibit a vertical asymptote when the IESis 1. The risk-free rate approaches

positive infinity as the IES approaches1 from below and negative infinity as the IES approaches1

from above. The equity premium has the same comparative statics with the opposite sign, except

there is a horizontal asymptote as the IES approaches infinity. These results occur because of the

extreme curvature of the utility function whenψ is close to1 as described in the previous section.13

Analytics provide similar insights. The average risk-freerate and equity premium are given by

E[r̂f ] = − log β + µy/ψ + (θ − 1)κ21η
2
1σ

2
a/2, (28)

E[ep] = (1− θ)κ21η
2
1σ

2
a, (29)

and the log-price-dividend ratio is given byẑt = η0 + ât (i.e., the loading on the preference shock,

η1, is1). Therefore, when the household becomes more patient andât rises, the price-dividend ratio

rises one-for-one on impact and returns to the stationary equilibrium in the next period. Sinceη1 is

independent of the IES, there is no endogenous mechanism that prevents the asymptote inθ from

influencing the risk-free rate or equity premium. Since0 < κ1 < 1, θ dominates both of these mo-

ments when the IES is near1. The following result describes the comparative statics with the IES.

Result 6. Supposeγ > 1. The current preferences violateProperty 4. Asψ → 1+, θ → −∞, so

E[r̂f ] → −∞ whileE[ep] → +∞. Asψ → 1−, θ → +∞, soE[r̂f ] → +∞ whileE[ep] → −∞.

13Pohl et al. (2018) find the errors from a Campbell-Shiller approximation of the nonlinear model can significantly
affect equilibrium outcomes.Appendix Eproves that the vertical asymptote also occurs in the fully nonlinear model.

12
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Therefore, small and reasonable changes in the value of the IES (e.g., from0.99 to 1.01) can

result in dramatic changes in the predicted values of the average risk free rate and average equity

premium. It also illustrates why valuation risk seems like such an attractive feature for resolving

the risk-free rate and equity premium puzzles. As the IES tends to1 from above,θ becomes in-

creasingly negative, which dominates other determinants of the risk-free rate and equity premium.

In particular, with an IES slightly above1, the asymptote inθ causes the average risk-free rate to

become arbitrarily small, while making the average equity premium arbitrarily large. Bizarrely, an

IES marginally below1 (a popular value in the macro literature), generates the opposite predic-

tions. As the IES approaches infinity,1− θ tends toγ. Therefore, even when the IES is far above

1, the last term in (28) and (29) is scaled byγ and can still have a meaningful effect on asset prices.

In Figure 2, the revised preferences are given by circle-blue (positive endowment growth) and

dashed-black (no endowment growth) lines. In both cases, the average risk-free rate and average

equity premium are continuous in the IES, regardless ofµy. Whenµy = 0, the endowment stream

is constant. This means the household is indifferent about the timing of when the preference

uncertainty is resolved, so bothκ1 and the average equity premium are independent of the IES.

Whenµy > 0, the household’s incentive to smooth consumption interacts with uncertainty about

how it will value the higher future endowment stream.14 When the IES is large, the household has a

stronger preference for an early resolution of uncertainty, so the equity premium rises as a result of

the valuation risk (see theFigure 2inset). Therefore, the qualitative relationship between the IES

and the equity premium has different signs under the currentand revised specifications. Moreover,

the increase in the equity premium is quantitatively small and converges to a level well below the

value with the current preferences. It is this difference inthe sign and magnitude of the relationship

between the IES and the average equity premium that will explain many of our empirical results.

In this case, the expressions for the average risk-free rateand equity risk premium are given by

E[r̂f ] = − log β + µy/ψ + ((θ − 1)κ21η
2
1 − θβ2)σ2

a/2, (30)

E[ep] = ((1− θ)κ1η1 + θβ)κ1η1σ
2
a. (31)

Relative to the current specification,η1, is unchanged.15 However, both asset prices include a

new term that captures the effect of valuation risk on current utility, so a rise inat that makes the

household more patient raises the value of future certaintyequivalent consumption and lowers the

value of present consumption. The asymptote occurs under the current specification because it

does not account for the effect of valuation risk on current-period consumption. With the revised

14Andreasen and Jørgensen (2019) show how to decouple the household’s timing attitude from the RA and IES.
15Noticeκ1 is a function of the steady-state price-dividend ratio,zd. When the IES is1, zd = β/(1− β), which is

equivalent to its value absent any risk. Therefore, when theIES is1, valuation risk has no effect on the price-dividend
ratio. This result points to a connection with income and substitution effects, which usually cancel when the IES is1.
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preferences,κ1 = β whenψ = 1, so the terms involvingθ cancel out and the asymptote disappears.

Result 7. The revised preferences satisfyProperty 4, asE[r̂f ] andE[ep] are continuous inψ.

Whenψ = 1, valuation risk lowers the average risk-free rate byβ2σ2
a/2 and raises the average

equity return by the same amount. Therefore, the average equity premium equalsβ2σ2
a, which is

invariant to the RA parameter. Whenψ > 1, κ1 > β, so an increase in RA lowers the risk-free rate

and raises the equity return. Asψ → ∞, the equity premium with the revised specification relative

to the current specification equals1 + β(1 − γ)/(γκ1). This means the disparity between the

predictions of the two models grows as RA increases. As a consequence, the revised preferences

would require much larger RA to generate the same equity premium as the current preferences.

3.3 FURTHER DISCUSSION The previous section shows the current and revised preferences

generate different predictions. This section covers two miscellaneous questions readers may have.

Question 1: Is the valuation risk specification under CRRA preferences important?

Since we have demonstrated that the valuation risk specification is important under Epstein-Zin

preferences, it is worth addressing whether the same is trueunder CRRA preferences. In particular,

is the choice betweenUt = u(ct) + atβEtUt+1 andUt = (1 − atβ)u(ct) + atβEtUt+1 important?

In terms of first-order dynamics, both specifications generate the same impulse response functions

with an appropriate rescaling ofσ. The rescaling is by the factor1 − ρaβ, whereρa is unchanged

across the specifications. There is a numerically small difference inE[r̂f ] andE[ep], which is easy

to see by settingθ = 1 in equations (28)-(31). This stems from the conditional expectation ofat+1.

Question 2: Are the revised preferences the only viable alternative?

A potential alternative to the revised specification is the following:

Vt = W (ct, atµt) = [c
1−1/ψ
t + β(atµt)

1−1/ψ]1/(1−1/ψ). (32)

We refer to this specification as “disaster risk” preferences following Gourio (2012). That paper

shows how a term likeat can arise endogenously in a production economy asset pricing model.

Technically, since the disaster risk shock affects the certainty equivalent of future utility and

does not alter the time-aggregator, these preferences are consistent with the four desirable proper-

ties described inSection 2. However, they do not represent a household’s intrinsic time preference

uncertainty. To appreciate why, once again setγ = 1/ψ = 1, givingVt = log ct+log(at)+EtVt+1.

The model reduces to time-separable log-preferences with an additive shock term. As a resultat
disappears from any equilibrium condition, so the disasterrisk preferences are not able to capture

an exogenous change in the household’s impatience, even though there is no plausible reason why

a household with time-separable log-preferences cannot become more or less patient over time.

This means valuation risk must be linked to time-variation in the discount factor, as in (5) and (6).
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4 DATA AND ESTIMATION METHODS

We construct our data using the procedure in Bansal and Yaron(2004), Beeler and Campbell

(2012), Bansal et al. (2016), and Schorfheide et al. (2018).The moments are based on seven time

series from 1929 to 2017: real per capita consumption expenditures on nondurables and services,

the real equity return, real dividends, the real risk-free rate, the price-dividend ratio, and the real

5- and 20-year U.S. Treasury yields. Nominal equity returnsare calculated with the CRSP value-

weighted return on stocks. We obtain data with and without dividends to back out a time series for

nominal dividends. Both series are converted to real seriesusing the consumer price index (CPI).

The nominal risk-free rate is based on the CRSP yield-to-maturity on 90-day Treasury bills,

and the intermediate and long-term nominal Treasury yieldsare available on Morningstar Direct

(formerly Ibbotson Associates). We first convert the nominal time series to a real series using the

CPI. Then we construct anex-antereal rate by regressing theex-postreal rate on the nominal rate

and inflation over the last year. The consumption data is annual. To match this frequency, the

monthly asset pricing data are converted to annual time series using the last month of each year.

Using the annual time series, our target moments,Ψ̂D
T , are estimated with a two-step General-

ized Method of Moments (GMM) estimator, whereT = 87 is the sample size.16 Given the GMM

estimates, the model is estimated with Simulated Method of Moments (SMM). For parameteri-

zationθ and shocksE , we solve the model and simulate itR = 1,000 times forT periods. The

model-implied analogues of the target moments are the median moments across theR simulations,

Ψ̄M
R,T (θ, E). The parameter estimates,θ̂, are obtained by minimizing the following loss function:

J(θ, E) = [Ψ̂D
T − Ψ̄M

R,T (θ, E)]
′[Σ̂DT (1 + 1/R)]−1[Ψ̂D

T − Ψ̄M
R,T (θ, E)],

whereΣ̂DT is the diagonal of the GMM estimate of the variance-covariance matrix.17 We use Monte

Carlo methods to calculate the standard errors on the parameter estimates. For different sequences

of shocks, we re-estimate the structural modelNs = 500 times and report the mean and(5, 95) per-

centiles.Appendix FandAppendix Gprovide more details about our data and estimation method.

The baseline model targets15 moments: the means and standard deviations of consumption

growth, dividend growth, equity returns, the risk-free rate, and the price-dividend ratio, the correla-

tion between dividend growth and consumption growth, the autocorrelations of the price-dividend

ratio and risk-free rate, and the cross-correlations of consumption growth, dividend growth, and eq-

uity returns. These targets are common in the literature andthe same as Albuquerque et al. (2016),

except we exclude5- and10-year correlations between equity returns and cash-flow growth. We

omit the long-run correlations to allow a longer sample thatincludes the Great Depression period.

16In total, there are89 periods in our sample, but we lose one period for growth ratesand one for serial correlations.
17For the revised preferences, we impose the restrictionβ exp(4(1 − β)

√

σ2
a/(1− ρ2a)) < 1 when estimating the

model parameters. This ensures the time-aggregator weights are positive in99.997% of the simulated observations.
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Many elements of our estimation procedure are common in the literature. We use a limited in-

formation approach to match empirical targets and SMM to account for short-sample bias that oc-

curs because asset pricing models often have very persistent processes. To improve on the current

methodology, we repeat the estimation procedure for different shock sequences. The estimations

are run in parallel on a supercomputer. The literature typically estimates models once based on

a particular seed and uses the Delta method to compute standard errors. While our approach has

a higher computational burden, our estimates are independent of the seed and have more precise

standard errors. The estimates allow us to numerically approximate the sampling distribution of

the parameters and test whether they are significantly different across models. We also obtain a

distribution ofJ values, which determine whether a model provides a significant improvement in

fit over another model, and the corresponding p-values from atest of over-identifying restrictions.

5 ESTIMATED BASELINE MODEL

This section takes the baseline model fromSection 3.1and compares the estimates from the current

and revised preference specifications. We fix the IES to2.5, which is near the upper end of the

plausible range of values in the literature.18 This restriction helps us compare the estimates from

the two preference specifications because the model fit, as measured by theJ value, is insensitive

to the value of the IES in the revised specification, but the unconstrained global minimum prefers

an implausibly high IES. For example, theJ value is only one decimal point lower with an IES

equal to10. Therefore, we are left with estimating nine parameters to match17 empirical targets.

Table 1shows the parameter estimates andTable 2reports the data and model-implied moments

for six variants of our baseline model: with and without targeting the yield curve (5- and20-year

average risk-free bond yields); with the current preferences; and with the revised preferences,

with and without an upper bound on RA. For each parameter, we report the average and(5, 95)

percentiles across500 estimations of the model. For each moment, we provide the mean and

t-statistic for the null hypothesis that a model-implied moment equals its empirical counterpart.

We begin with the model that excludes the yield curve moments. In both preference specifi-

cations, the data prefers a very persistent valuation risk process withρa > 0.98. In the current

specification, the risk aversion parameter,γ, is 1.55. In the revised specificationγ = 74.23, which

is well outside what is considered acceptable in the asset pricing literature.19 Both specifications

generate a sizable equity premium (the estimates are about1% lower than the empirical equity
18Estimation results withψ = 1.5 andψ = 2.0 for each specification considered below are included inAppendix H.

In total, we estimate54 variants of our model. Since each variant is estimated500 times, there are27,000 estimations.
The estimations are run in Fortran and the time per estimation ranges from1-24 hours depending on model complexity.

19Mehra and Prescott (1985, p. 154) say “Any of the above cited studies. . . constitute ana priori justification for
restricting the value of [RA] to be a maximum of ten, as we do inthis study.” Weil (1989, p. 411) describesγ = 40 as
“implausibly” high. Swanson (2012) showsγ does not equate to risk aversion when households have a labormargin.
Therefore, only in production economies canγ be reasonably above10, where it is common to see values around100.
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OmitsE[rf,5] & E[rf,20] All Moments

Ptr Current Revised Max RA Current Revised Max RA

γ 1.55 74.23 10.00 1.38 98.17 10.00
(1.52, 1.58) (70.95, 77.47) (10.00, 10.00) (1.35, 1.41) (93.29, 103.03) (10.00, 10.00)

β 0.9977 0.9957 0.9973 0.9979 0.9964 0.9978
(0.9976, 0.9978) (0.9956, 0.9957) (0.9972, 0.9973) (0.9977, 0.9980) (0.9963, 0.9964) (0.9977, 0.9978)

ρa 0.9968 0.9899 0.9879 0.9973 0.9893 0.9878
(0.9965, 0.9971) (0.9896, 0.9902) (0.9876, 0.9882) (0.9970, 0.9976) (0.9890, 0.9896) (0.9875, 0.9881)

σa 0.00031 0.03547 0.03880 0.00028 0.03653 0.03891
(0.00030, 0.00033) (0.03491, 0.03596) (0.03832, 0.03927) (0.00027, 0.00030) (0.03597, 0.03703) (0.03845, 0.03939)

µy 0.0016 0.0016 0.0017 0.0016 0.0016 0.0016
(0.0016, 0.0016) (0.0016, 0.0016) (0.0017, 0.0017) (0.0016, 0.0016) (0.0016, 0.0017) (0.0016, 0.0016)

µd 0.0015 0.0021 0.0010 0.0010 0.0016 0.0005
(0.0015, 0.0016) (0.0020, 0.0021) (0.0009, 0.0010) (0.0010, 0.0011) (0.0016, 0.0017) (0.0004, 0.0005)

σy 0.0058 0.0058 0.0058 0.0058 0.0056 0.0060
(0.0057, 0.0058) (0.0057, 0.0059) (0.0057, 0.0060) (0.0058, 0.0058) (0.0054, 0.0057) (0.0059, 0.0061)

ψd 1.54 0.97 1.09 1.52 1.13 1.02
(1.43, 1.64) (0.87, 1.07) (0.97, 1.19) (1.42, 1.61) (1.04, 1.22) (0.93, 1.13)

πdy 0.815 0.436 0.617 0.816 0.613 0.601
(0.764, 0.872) (0.400, 0.472) (0.562, 0.674) (0.759, 0.873) (0.581, 0.639) (0.546, 0.662)

J 29.27 47.98 55.55 31.73 49.99 59.36
(28.62, 29.98) (47.62, 48.35) (54.93, 56.11) (31.05, 32.43) (49.60, 50.41) (58.85, 59.86)

pval 0.000 0.000 0.000 0.000 0.000 0.000
(0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)

df 6 6 6 8 8 8

Table 1: Baseline model. Average and(5, 95) percentiles of the parameter estimates. The IES is2.5.

premium) and a near zero risk-free rate. However, they significantly under-predict the standard

deviation of dividend growth and over-predict the autocorrelation of the risk-free rate in the data.20

Using the analytical expressions for the average risk-freerate and equity premium (see (D.15)

and (D.16) in Appendix D), it is possible to break down the fraction of each moment explained

by cash-flow and valuation risk.21 With the current specification valuation risk explains98.9%

and99.2% of the risk-free rate and the equity premium, whereas with the revised preferences it

explains only63.1% and79.0%. Since the estimate of the cash-flow shock standard deviation is

unchanged, cash-flow risk has a bigger role in explaining theequity premium due to higher RA.

The revised specification has a significantly poorer fit than the current specification (J = 48.0

vs. J = 29.3), although both specifications fail the over-identifying restrictions test.22 The poorer

fit is mostly due to the model significantly over-predicting the volatility of the risk-free rate and

20The estimate of the valuation risk shock standard deviation, σa, is two orders of magnitude larger in the revised
specification than the current specification. Recall that the valuation risk term in the SDF is given byât−ωât+1. When
the valuation risk shock isi.i.d., the estimates of the shock standard deviation are very similar. However, as the persis-
tence increases with the revised preferences,SDt[ât − ωât+1] shrinks, soσa rises to compensate for the extra term.

21The mean risk-free rate is given byE[r̂f,t] = α1 + α2σ
2
a + α3σ

2
y and the mean equity premium is given by

E[ept] = α4σ
2
a + α5σ

2
y for some function of model parametersαi, i ∈ {1, . . . , 5}. Therefore, the contribution of

valuation risk to the risk-free rate and equity premium is given byα2σ
2
a/(α2σ

2
a + α3σ

2
y) andα4σ

2
a/(α4σ

2
a + α5σ

2
y).

22The test statistic is given bŷJs = J(θ̂, Es), whereEs is a matrix of shocks given seeds. J(θ̂, E) converges to a
χ2 distribution withNm−Np degrees of freedom, whereNm is the number of empirical targets andNp is the number
of estimated parameters. The(5, 95) percentiles of the p-values determine whether a model reliably passes the test.
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OmitsE[rf,5] & E[rf,20] All Moments

Moment Data Current Revised Max RA Current Revised Max RA

E[∆c] 1.89 1.89 1.94 2.01 1.89 1.98 1.95
(0.00) (0.18) (0.49) (0.00) (0.36) (0.25)

E[∆d] 1.47 1.84 2.47 1.17 1.25 1.98 0.58
(0.38) (1.04) (−0.32) (−0.23) (0.52) (−0.93)

E[zd] 3.42 3.45 3.49 3.56 3.49 3.52 3.60
(0.18) (0.47) (1.02) (0.48) (0.74) (1.27)

E[rd] 6.51 5.46 5.59 4.06 4.78 4.98 3.37
(−0.66) (−0.58) (−1.53) (−1.08) (−0.96) (−1.96)

E[rf ] 0.25 0.25 0.36 1.06 0.09 0.26 0.41
(0.00) (0.18) (1.32) (−0.26) (0.00) (0.26)

E[rf,5] 1.19 1.25 1.76 2.18 0.92 1.23 1.50
(0.09) (0.83) (1.46) (−0.40) (0.05) (0.46)

E[rf,20] 1.88 3.19 3.49 3.33 2.57 2.29 2.63
(2.18) (2.69) (2.42) (1.16) (0.68) (1.25)

SD[∆c] 1.99 1.99 2.00 2.00 2.00 1.92 2.07
(0.00) (0.01) (0.02) (0.01) (−0.16) (0.16)

SD[∆d] 11.09 3.47 2.13 2.49 3.44 2.46 2.45
(−2.79) (−3.28) (−3.14) (−2.80) (−3.15) (−3.16)

SD[rd] 19.15 18.41 13.65 13.44 18.47 13.47 13.11
(−0.39) (−2.90) (−3.01) (−0.36) (−3.00) (−3.18)

SD[rf ] 2.72 3.21 3.69 3.86 2.99 3.70 3.76
(0.96) (1.92) (2.25) (0.53) (1.92) (2.04)

SD[zd] 0.45 0.46 0.25 0.23 0.48 0.24 0.22
(0.22) (−3.16) (−3.49) (0.47) (−3.32) (−3.59)

AC[rf ] 0.68 0.95 0.90 0.88 0.95 0.89 0.88
(4.12) (3.36) (3.14) (4.17) (3.29) (3.13)

AC[zd] 0.89 0.92 0.85 0.83 0.93 0.84 0.83
(0.64) (−0.85) (−1.30) (0.75) (−1.00) (−1.32)

Corr[∆c,∆d] 0.54 0.47 0.41 0.50 0.48 0.48 0.51
(−0.32) (−0.59) (−0.19) (−0.29) (−0.27) (−0.13)

Corr[∆c, rd] 0.05 0.09 0.06 0.09 0.09 0.09 0.09
(0.57) (0.23) (0.61) (0.57) (0.56) (0.66)

Corr[∆d, rd ] 0.07 0.19 0.15 0.18 0.18 0.18 0.19
(1.41) (1.03) (1.38) (1.38) (1.35) (1.41)

Table 2: Baseline model. Data and average model-implied moments. t-statistics are in parentheses.

under-predicting the volatilities of the price-dividend ratio and equity return. The intuition is as

follows. In the revised specification, risk-free rate volatility is relatively more sensitive to valuation

risk than equity return volatility. Since the volatility ofequity returns is higher than the volatility of

the risk-free rate in the data, valuation risk alone does notallow the model to match these moments.

Dividend growth volatility, however, cannot rise to compensate for the lack of the equity return

volatility because the target correlation between equity returns and dividend growth is near zero.

The revised preferences not only have a worse fit, but the riskaversion parameter is implausibly

large. When we restrictγ to a maximum of10—the upper end of the values used in the asset pricing

literature—the fit deteriorates further (J = 55.6 vs. 48.0). The primary source of the poorer fit is

the larger estimate of the risk-free rate (1.1% vs. 0.4%) and lower equity return (4.1% vs. 5.6%).

Intuition suggests that valuation risk should also be informative about the long-term risk-free

interest rates, not just the short-term rate. When longer-term moments are omitted from the es-

timation routine, both preferences over-predict the slopeof the yield curve (E[rf,20] − E[rf ] is
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2.9% and3.1% for the current and revised preferences, relative to the1.6% in the data). Once the

yield curve moments are included, however, the slopes fall to 2.4% and2.0%, respectively. For

the revised preferences, this flattening of the yield curve is generated by a rise in RA. Overall, the

inclusion of these moments worsens the fit of the model but does not materially change the results.

To summarize, our results demonstrate that introducing valuation risk to the baseline model in

its revised form does not resolve the equity premium and risk-free rate puzzles. The rest of the

paper examines whether revised valuation risk has a significant role in richer asset pricing models.

6 ESTIMATED LONG-RUN RISK MODEL

Long-run risk provides a well-known resolution to many asset pricing puzzles. This section intro-

duces this feature into our baseline model and re-examines the marginal contribution of valuation

risk with the revised preferences. To introduce long-run risk, we modify (23) and (24) as follows:

∆ŷt+1 = µy + x̂t + σyεy,t+1, εy,t+1 ∼ N(0, 1), (33)

∆d̂t+1 = µd + φdx̂t + πdyσyεy,t+1 + ψdσyεd,t+1, εd,t+1 ∼ N(0, 1), (34)

x̂t+1 = ρxx̂t + ψxσyεx,t+1, εx,t+1 ∼ N(0, 1), (35)

where the specification of the persistent component,x̂t, follows Bansal and Yaron (2004). We

apply the same estimation procedure as the baseline model, except there are three additional pa-

rameters,φd, ρx, andψx. We also match up to five additional moments: the autocorrelations of

consumption growth, dividend growth, and the equity returnand two predictability moments—the

correlations of consumption growth and the equity premium with the lagged price-dividend ratio.

The long-run risk model also prefers a high IES even though itdoes not significantly lower the

J value. As a result, we continue to set the IES to2.5 and estimate the remaining parameters. The

parameter estimates are shown inTable 3and the data and model-implied moments are reported in

Table 4. The tables show the results for six variants of the model: with and without targeting both

the yield curve and higher-order risk-free rate moments; with and without targeting the yield curve

but always including higher-order risk-free rate moments;and with and without valuation risk.

We begin with the model without valuation risk and without the yield curve and risk-free rate

moments (column 1). This is a typical model estimated in the literature. The model fails to pass the

over-identifying restrictions test at the5% level, signalling that the standard long-run risk model

is insufficient to adequately describe the behavior of assetprices and cash flows. The parameter

estimates are similar to the estimates in the literature. Inparticular, the data requires a small but

very persistent shock that generates risk in long-run cash-flow growth (ρx = 0.9988; ψx = 0.0260).

The literature typically excludes the standard deviation and autocorrelation of the risk-free rate

when estimating the long-run risk model because the model does not generate sufficient volatility
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OmitsSD[rf ], AC[rf ], Omits All Moments
E[rf,5], & E[rf,20] E[rf,5] & E[rf,20]

Parameter No VR Revised No VR Revised No VR Revised

γ 2.58 2.63 2.70 2.54 2.51 2.33
(2.31, 2.84) (2.36, 2.93) (2.41, 2.96) (2.25, 2.83) (2.14, 2.84) (1.99, 2.70)

β 0.9990 0.9980 0.9990 0.9989 0.9985 0.9984
(0.9989, 0.9991) (0.9979, 0.9982) (0.9988, 0.9991) (0.9987, 0.9990) (0.9983, 0.9986) (0.9983, 0.9986)

ρa − 0.9817 − 0.9548 − 0.9569
(0.9800, 0.9835) (0.9531, 0.9565) (0.9546, 0.9592)

σa − 0.0475 − 0.0167 − 0.0175
(0.0452, 0.0498) (0.0161, 0.0173) (0.0167, 0.0184)

µy 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016
(0.0014, 0.0017) (0.0014, 0.0018) (0.0015, 0.0017) (0.0014, 0.0017) (0.0015, 0.0017) (0.0014, 0.0017)

µd 0.0013 0.0013 0.0014 0.0013 0.0013 0.0011
(0.0009, 0.0016) (0.0009, 0.0016) (0.0012, 0.0017) (0.0009, 0.0016) (0.0010, 0.0015) (0.0008, 0.0014)

σy 0.0041 0.0041 0.0049 0.0041 0.0046 0.0038
(0.0040, 0.0042) (0.0039, 0.0043) (0.0048, 0.0050) (0.0040, 0.0042) (0.0045, 0.0047) (0.0036, 0.0041)

ψd 3.25 2.78 3.05 3.17 3.22 3.36
(3.02, 3.47) (2.53, 3.02) (2.83, 3.25) (2.92, 3.41) (2.97, 3.45) (3.01, 3.67)

πdy 0.588 0.812 0.122 0.666 0.206 0.777
(0.322, 0.868) (0.547, 1.120) (−0.200, 0.418) (0.416, 0.916) (−0.148, 0.515) (0.500, 1.059)

φd 2.30 1.55 2.15 2.19 2.35 2.34
(2.07, 2.51) (1.44, 1.68) (1.94, 2.34) (1.97, 2.43) (2.06, 2.62) (2.05, 2.64)

ρx 0.9988 0.9994 0.9977 0.9990 0.9976 0.9990
(0.9983, 0.9992) (0.9992, 0.9995) (0.9969, 0.9985) (0.9985, 0.9994) (0.9968, 0.9985) (0.9985, 0.9994)

ψx 0.0260 0.0261 0.0314 0.0255 0.0303 0.0249
(0.0247, 0.0274) (0.0248, 0.0274) (0.0292, 0.0335) (0.0242, 0.0269) (0.0281, 0.0327) (0.0234, 0.0264)

J 20.55 14.29 56.48 19.59 63.32 24.50
(19.80, 21.30) (13.86, 14.72) (55.64, 57.39) (18.96, 20.27) (62.50, 64.15) (23.78, 25.20)

pval 0.009 0.027 0.000 0.012 0.000 0.006
(0.006, 0.011) (0.023, 0.031) (0.000, 0.000) (0.009, 0.015) (0.000, 0.000) (0.005, 0.008)

df 8 6 10 8 12 10

Table 3: Long-run risk model. Average and(5, 95) percentiles of the parameter estimates. The IES is2.5.

(a standard deviation of0.51 vs. 2.72 in the data) and over-predicts the autocorrelation (0.96 vs.

0.68 in the data). Even when these two moments are targeted, as shown in column 3, long-run

cash-flow risk is unable to significantly improve on these moments (the standard deviation rises to

0.68 and the autocorrelation falls to0.95). The standard long-run risk model also fairs poorly on

three additional moments: (1) the standard deviation of dividend growth (too low), (2) the corre-

lation between dividend growth and the return on equity (toohigh), and (3) the predictability of

consumption growth (too high). All of them are significantlydifferent from their empirical targets.

Adding valuation risk (columns 2 and 4) significantly improves the fit of the model. With the

restricted set of moments, theJ value declines from20.6 to 14.3. More importantly, the p-value

from the over-identifying restrictions test rises from0.01 to 0.03, even though the valuation risk

model contains two more parameters than the standard model (6 degrees of freedom instead of8).

Unlike cash-flow risk, valuation risk directly affects the time-series properties of the risk-free

rate, which makes it important to target these moments in theestimation. In column 2, the model

includes valuation risk but targets neither the standard deviation nor the autocorrelation of the risk-

free rate. As a result, the estimated model significantly over-predicts both moments (the standard
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OmitsSD[rf ], AC[rf ], Omits All Moments
E[rf,5], & E[rf,20] E[rf,5] & E[rf,20]

Moment Data No VR Revised No VR Revised No VR Revised

E[∆c] 1.89 1.89 1.89 1.89 1.89 1.89 1.89
(0.00) (0.03) (−0.01) (0.00) (0.00) (0.01)

E[∆d] 1.47 1.53 1.54 1.71 1.50 1.52 1.35
(0.06) (0.07) (0.25) (0.03) (0.05) (−0.13)

E[zd] 3.42 3.42 3.40 3.41 3.42 3.42 3.43
(0.00) (−0.18) (−0.07) (0.00) (0.00) (0.05)

E[rd] 6.51 6.33 6.44 5.82 6.43 5.58 6.31
(−0.11) (−0.05) (−0.43) (−0.05) (−0.58) (−0.13)

E[rf ] 0.25 0.26 0.26 0.26 0.25 1.40 1.19
(0.01) (0.01) (0.01) (0.00) (1.88) (1.55)

E[rf,5] 1.19 0.11 0.99 0.05 0.25 1.24 1.26
(−1.60) (−0.30) (−1.69) (−1.40) (0.07) (0.09)

E[rf,20] 1.88 −0.32 0.94 −0.53 −0.15 0.83 0.98
(−3.65) (−1.56) (−4.00) (−3.37) (−1.74) (−1.49)

SD[∆c] 1.99 1.92 1.96 2.40 1.91 2.22 1.76
(−0.14) (−0.07) (0.84) (−0.16) (0.47) (−0.48)

SD[∆d] 11.09 5.59 4.64 6.38 5.42 6.34 5.32
(−2.01) (−2.36) (−1.72) (−2.07) (−1.74) (−2.11)

SD[rd] 19.15 18.15 19.75 18.92 18.21 19.02 18.25
(−0.53) (0.32) (−0.12) (−0.50) (−0.07) (−0.47)

SD[rf ] 2.72 0.51 5.44 0.68 2.82 0.61 2.91
(−4.36) (5.36) (−4.03) (0.19) (−4.16) (0.38)

SD[zd] 0.45 0.53 0.46 0.51 0.52 0.51 0.52
(1.29) (0.10) (0.98) (1.14) (1.00) (1.16)

AC[∆c] 0.53 0.43 0.46 0.48 0.43 0.46 0.42
(−1.07) (−0.74) (−0.59) (−1.07) (−0.79) (−1.18)

AC[∆d] 0.19 0.27 0.20 0.31 0.26 0.31 0.25
(0.76) (0.12) (1.16) (0.65) (1.13) (0.59)

AC[rd] −0.01 0.00 −0.05 0.00 −0.01 0.00 −0.01
(0.17) (−0.44) (0.08) (0.02) (0.07) (0.01)

AC[rf ] 0.68 0.96 0.84 0.95 0.69 0.95 0.70
(4.33) (2.49) (4.21) (0.14) (4.20) (0.27)

AC[zd] 0.89 0.94 0.90 0.93 0.94 0.93 0.94
(1.05) (0.29) (0.83) (1.00) (0.82) (1.01)

Corr[∆c,∆d] 0.54 0.48 0.51 0.44 0.49 0.45 0.50
(−0.28) (−0.14) (−0.46) (−0.23) (−0.44) (−0.20)

Corr[∆c, rd] 0.05 0.07 0.06 0.08 0.07 0.08 0.07
(0.32) (0.18) (0.50) (0.29) (0.53) (0.28)

Corr[∆d, rd ] 0.07 0.24 0.19 0.28 0.23 0.28 0.23
(2.07) (1.44) (2.53) (1.96) (2.49) (1.89)

Corr[ep, zd,−1] −0.16 −0.17 −0.13 −0.14 −0.17 −0.14 −0.17
(−0.04) (0.38) (0.25) (−0.01) (0.26) (−0.02)

Corr[∆c, zd,−1] 0.19 0.66 0.59 0.69 0.65 0.68 0.65
(2.67) (2.30) (2.85) (2.64) (2.77) (2.60)

Table 4: Long-run risk model. Data and average model-implied moments. t-statistics are in parentheses.

deviation is5.44 vs. 2.72 in the data and the autocorrelation is0.84 vs. 0.68 in the data). How-

ever, once these moments are targeted in the estimation (column 4), the standard deviation of the

risk-free rate is2.82 and the autocorrelation of the risk-free rate is0.69, consistent with the data.

In both columns 2 and 4, the model closely matches the mean risk-free rate and equity return.

However, the contribution of valuation risk is quite different across the various sets of moments.

Recall that in the baseline model, valuation risk explains asizable majority of the risk-free rate and

equity premium. In column 2, valuation risk has a smaller butstill meaningful contribution (48.2%
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of the risk-free rate and38.9% of the equity premium). In column 4, however, it explains very

little of these moments (8.8% and5.1%) because the model requires smaller and less persistent

valuation risk shocks (ρa = 0.9548 andσa = 0.0167) to match the dynamics of the risk-free rate.23

Finally, we turn to the yield curve. In columns 1 and 3, which exclude valuation risk and do

not target longer-term risk-free rates, the presence of cash-flow risk generates a (counterfactual)

downward sloping yield curve. This is because households inthe model dislike long-run risks

to cash-flow growth and longer-term risk-free bonds provideadditional insurance against these

risks. Valuation risk, however, generates a positive term premium for longer-term risk-free bonds

because it creates the possibility that households will revalue future cash flows. A longer-term

asset increases exposure to this risk. This results in a lower price and higher return for risk-free

assets with a longer maturity, leading to an upward sloping yield curve. In columns 2 and 4, which

add valuation risk, the yield curve is humped shaped due to the competing effects of the two risks.

The failure of the long-run risk model to predict an upward sloping yield curve is not resolved

by targeting the yield curve moments. In column 5, which excludes valuation risk but targets the

yield curve moments, the yield curve remains downward sloping. However, the entire curve is

raised, resulting in a short-term risk free rate of1.4%. The addition of valuation risk (column

6) improves the slope of the yield curve, loweringE[rf ] by 21 basis points and raisingE[rf,20]

by 15 basis points. However, the constraints imposed by also targeting the standard deviation and

autocorrelation of the risk-free rate limit the role of valuation risk in fully matching the yield curve.

These results show that valuation risk does not unilaterally resolve the risk-free rate and equity

premium puzzles, but the improvements in fit show that it helps match the data. Despite these

improvements, the long-run risk model with valuation risk still performs poorly on the three mo-

ments listed above as well as the yield curve. Furthermore, all six specifications fail to pass the

over-identifying restrictions test at the5% level. The next section addresses these shortcomings.

7 ESTIMATED EXTENDED LONG-RUN RISK MODEL

We consider two extensions to the long-run risk model. First, we allow valuation risk shocks to

directly affect cash-flow growth, in addition to their effect on asset prices through the SDF (hence-

forth, the “Demand” shock model). This feature is similar toa discount factor shock in a production

economy model. For example, in the workhorse New Keynesian model, an increase in the discount

factor looks like a negative demand shock that lowers interest rates, inflation, and consumption.

Therefore, it provides another mechanism for valuation risk to help fit the data, especially the

23The contribution of valuation risk under the current preferences is larger than under the revised preferences. In the
model without the higher-order risk-free rate or term structure moments, valuation risk under the current preferences
explains95.3% of the risk-free rate and94.2% of the equity premium. If only the term structure moments areexcluded,
valuation risk explains a smaller percentage but it is stillbigger than with the revised preferences (28.6% and17.1%).
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correlation moments.24 Following Albuquerque et al. (2016), we modify (33) and (34) as follows:

∆ŷt+1 = µy + x̂t + σyεy,t+1 + πyaσaεa,t+1, (36)

∆d̂t+1 = µd + φdx̂t + πdaσaεa,t+1, (37)

whereπya andπda control the covariances between valuation risk shocks and cash-flow growth.25

Second, we add stochastic volatility to cash-flow risk following Bansal and Yaron (2004)

(henceforth, the “SV” model). SV introduces time-varying uncertainty. Bansal et al. (2016) show

SV leads to a significant improvement in fit. An important question is therefore whether the pres-

ence of SV will affect the role of valuation risk. To introduce SV, we modify (33)-(35) as follows:

∆ŷt+1 = µy + x̂t + σy,tεy,t+1, (38)

∆d̂t+1 = µd + φdx̂t + πdyσy,tεy,t+1 + ψdσy,tεd,t+1, (39)

x̂t+1 = ρxx̂t + ψxσy,tεx,t+1, (40)

σ2
y,t+1 = σ2

y + ρσy(σ
2
y,t − σ2

y) + νyεσy,t+1, (41)

whereρσy is the persistence of the SV process andνy is the standard deviation of the SV shock.

Table 5andTable 6present estimates from three versions of the extended long-run risk model:

(1) the SV model without valuation risk (columns 1 and 4), (2)the demand shock model (columns

2 and 5), and (3) the combination of the demand shock and SV models (columns 3 and 6). In each

case, we report the results from including and excluding longer-term rates as targeted moments.

We begin with the models that exclude longer-term returns astargeted moments.26 A key find-

ing is that all three extensions improve on the p-values fromthe simpler long-run risk models in

the previous section. Adding SV to the model without valuation risk increases the p-value from

near zero (Table 3, column 3) to0.02 (Table 5, column 1). The estimated SV process is very per-

sistent (ρσy = 0.9630) and the shock is statistically significant, consistent with the literature. The

improved fit largely occurs because SV helps match the higher-order risk-free rate moments (the

standard deviation is2.54 vs. 2.72 in the data and the autocorrelation is0.69 vs. 0.68 in the data).

The Demand model increases the p-value from0.012 (Table 3, column 4) to0.096 (Table 5,

column 2). Thus, the Demand model easily passes the over-identifying restrictions test at the5%

level. Consistent with the predictions of a production economy model,πya andπda are negative in

24See, for example, Smets and Wouters (2003). However, without a carefully microfounded model, it is not clear
whetherεa,t+1 should be correlated with∆ŷt+1 or x̂t (or both) and what restrictions should be placed on the shock
coefficients. While there are limitations to using this reduced-form specification, it is very useful for informing what
description of the shock processes best explain the data andfor developing models with deeper microfoundations.

25With the inclusion ofπya andπda, πdy andψd are redundant so we exclude them from the Demand specifications.
26The No VR+SV model is the same model BKY estimate. In that paper, the model passes the over-identifying

restrictions test at the5% level, while in our case it does not. The key difference is that BKY do not target the
correlations between cash-flows and the equity return. Whenwe exclude these moments, our p-value jumps to0.15.
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OmitsE[rf,5] & E[rf,20] All Moments

Ptr No VR+SV Demand Demand+SV No VR+SV Demand Demand+SV

γ 2.58 3.22 6.51 1.48 3.42 8.01
(2.41, 2.74) (2.99, 3.42) (5.14, 8.05) (1.25, 1.72) (3.10, 3.78) (7.09, 8.98)

β 0.9982 0.9991 0.9980 0.9980 0.9987 0.9976
(0.9981, 0.9983) (0.9990, 0.9991) (0.9977, 0.9983) (0.9979, 0.9982) (0.9986, 0.9988) (0.9975, 0.9977)

ρa − 0.9594 0.9930 − 0.9616 0.9933
(0.9576, 0.9614) (0.9921, 0.9936) (0.9591, 0.9639) (0.9927, 0.9937)

σa − 0.0185 0.0288 − 0.0194 0.0286
(0.0179, 0.0193) (0.0275, 0.0296) (0.0186, 0.0203) (0.0278, 0.0291)

µy 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016
(0.0014, 0.0017) (0.0015, 0.0016) (0.0015, 0.0016) (0.0015, 0.0018) (0.0015, 0.0016) (0.0015, 0.0017)

µd 0.0013 0.0015 0.0015 0.0002 0.0013 0.0015
(0.0010, 0.0016) (0.0012, 0.0016) (0.0014, 0.0017) (0.0000, 0.0006) (0.0011, 0.0015) (0.0013, 0.0017)

σy 0.0008 0.0041 0.0006 0.0010 0.0037 0.0004
(0.0004, 0.0014) (0.0039, 0.0042) (0.0001, 0.0013) (0.0003, 0.0019) (0.0036, 0.0039) (0.0000, 0.0008)

ψd 2.99 − − 2.82 − −
(2.79, 3.19) (2.58, 3.02)

πdy 0.771 − − 0.773 − −
(0.503, 1.049) (0.436, 1.099)

φd 1.90 2.69 2.84 1.77 3.21 2.87
(1.81, 2.00) (2.54, 2.85) (2.65, 2.99) (1.67, 1.87) (2.96, 3.46) (2.76, 2.98)

ρx 0.9992 0.9975 0.9958 0.9995 0.9970 0.9957
(0.9989, 0.9994) (0.9971, 0.9980) (0.9952, 0.9965) (0.9994, 0.9995) (0.9965, 0.9976) (0.9951, 0.9963)

ψx 0.0255 0.0306 0.0358 0.0253 0.0303 0.0357
(0.0241, 0.0269) (0.0285, 0.0313) (0.0334, 0.0385) (0.0241, 0.0267) (0.0285, 0.0312) (0.0337, 0.0378)

πya − −0.055 −0.049 − −0.037 −0.044
(−0.074, −0.038) (−0.064, −0.033) (−0.053, −0.022) (−0.059, −0.029)

πda − −1.036 −0.877 − −1.011 −0.896
(−1.068, −1.003) (−0.905, −0.852) (−1.047, −0.975) (−0.920, −0.872)

ρσy
0.9630 − 0.7708 0.9562 − 0.5741

(0.9589, 0.9668) (0.5997, 0.8794) (0.9502, 0.9624) (0.4708, 0.6777)

νy 1.2e−5 − 2.7e−5 1.5e−5 − 3.6e−5
(1.1e−5, 1.4e−5) (2.0e−5, 3.5e−5) (1.3e−5, 1.7e−5) (3.1e−5, 4.1e−5)

J 18.09 13.52 9.25 25.02 18.51 10.08
(17.38, 18.81) (12.98, 14.04) (8.85, 9.66) (23.97, 26.09) (17.97, 19.02) (9.64, 10.54)

pval 0.021 0.096 0.161 0.005 0.047 0.260
(0.016, 0.026) (0.081, 0.113) (0.140, 0.182) (0.004, 0.008) (0.040, 0.055) (0.229, 0.292)

df 8 8 6 10 10 8

Table 5: Extended long-run risk models. Average and(5, 95) percentiles of the parameter estimates. The IES is2.5.

the estimation. More specifically, a positive valuation risk shock, which makes households more

patient, reduces consumption and dividend growth. In a direct horse race between the SV model

and the Demand model, which have the same number of parameters, the Demand model wins. The

superior fit of the Demand model comes from the fact that it better matches the high volatility of

dividend growth and the low correlation between dividend growth and equity returns. The model

is better able to match these moments because the volatilityof dividend growth increases withπda
while partially offsetting the positive relationship between valuation risk and the return on equity.

The Demand+SV model (column 3) raises the p-value to0.161, passing the over-identifying

restrictions test at the10% level. This result reveals that the two extensions to the long-run risk

model are complements, rather than substitutes, which is not obviousa priori because both features
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OmitsE[rf,5] & E[rf,20] All Moments

Moment Data No VR+SV Demand Demand+SV No VR+SV Demand Demand+SV

E[∆c] 1.89 1.90 1.87 1.89 1.96 1.89 1.91
(0.05) (−0.08) (0.02) (0.27) (0.02) (0.10)

E[∆d] 1.47 1.58 1.74 1.83 0.36 1.61 1.78
(0.11) (0.28) (0.38) (−1.16) (0.14) (0.32)

E[zd] 3.42 3.41 3.40 3.39 3.48 3.41 3.40
(−0.07) (−0.16) (−0.21) (0.44) (−0.09) (−0.19)

E[rd] 6.51 6.68 5.81 5.78 5.76 5.52 5.73
(0.10) (−0.44) (−0.46) (−0.47) (−0.62) (−0.49)

E[rf ] 0.25 0.13 0.36 0.19 0.98 1.22 0.27
(−0.21) (0.17) (−0.11) (1.20) (1.58) (0.03)

E[rf,5] 1.19 −0.75 0.31 0.75 1.43 1.25 1.45
(−2.87) (−1.30) (−0.65) (0.34) (0.09) (0.38)

E[rf,20] 1.88 −2.13 −0.12 0.63 1.21 0.96 1.57
(−6.66) (−3.31) (−2.08) (−1.10) (−1.52) (−0.51)

SD[∆c] 1.99 2.01 1.98 2.09 2.12 1.75 2.11
(0.03) (−0.04) (0.21) (0.26) (−0.49) (0.25)

SD[∆d] 11.09 5.28 7.60 9.68 5.24 7.79 9.84
(−2.12) (−1.28) (−0.51) (−2.14) (−1.20) (−0.46)

SD[rd] 19.15 18.71 18.31 18.69 18.22 18.63 18.58
(−0.23) (−0.44) (−0.24) (−0.49) (−0.27) (−0.30)

SD[rf ] 2.72 2.54 2.97 2.69 2.59 3.05 2.61
(−0.36) (0.49) (−0.07) (−0.27) (0.64) (−0.22)

SD[zd] 0.45 0.51 0.50 0.48 0.54 0.49 0.49
(0.91) (0.81) (0.46) (1.44) (0.69) (0.58)

AC[∆c] 0.53 0.44 0.43 0.45 0.45 0.42 0.45
(−0.97) (−1.07) (−0.92) (−0.91) (−1.21) (−0.90)

AC[∆d] 0.19 0.24 0.21 0.17 0.24 0.22 0.17
(0.45) (0.20) (−0.24) (0.43) (0.25) (−0.21)

AC[rd] −0.01 −0.03 0.02 −0.03 0.01 0.01 −0.01
(−0.26) (0.32) (−0.20) (0.28) (0.30) (0.03)

AC[rf ] 0.68 0.69 0.71 0.70 0.65 0.72 0.71
(0.08) (0.49) (0.25) (−0.45) (0.64) (0.39)

AC[zd] 0.89 0.93 0.93 0.91 0.94 0.92 0.91
(0.87) (0.81) (0.41) (1.13) (0.70) (0.47)

Corr[∆c,∆d] 0.54 0.51 0.49 0.51 0.52 0.45 0.49
(−0.13) (−0.24) (−0.11) (−0.08) (−0.39) (−0.21)

Corr[∆c, rd] 0.05 0.06 0.09 0.10 0.06 0.09 0.11
(0.18) (0.59) (0.79) (0.12) (0.63) (0.83)

Corr[∆d, rd ] 0.07 0.21 0.13 0.06 0.21 0.13 0.06
(1.72) (0.79) (−0.06) (1.71) (0.75) (−0.12)

Corr[ep, zd,−1] −0.16 −0.23 −0.14 −0.12 −0.20 −0.13 −0.11
(−0.65) (0.26) (0.42) (−0.41) (0.37) (0.53)

Corr[∆c, zd,−1] 0.19 0.65 0.66 0.62 0.67 0.65 0.62
(2.63) (2.66) (2.47) (2.71) (2.59) (2.48)

Table 6: Extended long-run risk models. Data and average model-implied moments. t-statistics are in parentheses.

help match risk-free rate dynamics. It also occurs even though the two additional parameters in the

model reduce the degrees of freedom and the critical value for the over-identifying restrictions test.

The model continues to fail on one key moment: the predictability of consumption growth

given the price dividend ratio (i.e.,Corr[∆c, zd,−1]) remains too high (0.62 vs. 0.19 in the data).

The overall improvement in fit occurs because the Demand+SV model does a much better job

matching dividend growth dynamics. Specifically, it bettermatches the standard deviation of div-

idend growth (9.68 vs. 11.09 in the data) and the weak correlation between dividend growth and
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equity returns (0.06 vs. 0.07 in the data). In this model, valuation risk has a bigger role than in the

Demand model (ρa = 0.993 vs. ρa = 0.959; σa = 0.0288 vs. σa = 0.0185), while the SV process

is not as persistent (ρσy = 0.771 vs. ρσy = 0.963) as in the No VR+SV model. Also,σy is signif-

icantly smaller, so the contribution of consumption growthvolatility from pure endowment risk is

smaller when compared to the Demand model. The Demand model has trouble matching dividend

growth dynamics while simultaneously matching risk-free rate dynamics. An expanded role of

valuation risk is crucial for matching dividend growth dynamics. Without SV, this is not possible

because it would cause the model to miss on the risk-free ratedynamics. Introducing SV, however,

permits a lowerσy, which helps offset the effect of valuation risk on the risk-free rate dynamics.

In terms of the yield curve, the No VR+SV and Demand models areboth able to improve along

this dimension. Once the long-term rates are targeted, the yield curve slope (i.e.,E[rf,20]−E[rf ])

rises from−2.0% to 0.2% with the No VR+SV model (column 4) and from−0.5% to−0.3% with

the Demand model (column 5). However, in both cases, the yield curve is hump-shaped and the

addition of the yield curve moments decreases the fit of the models as measured by the p-value. In

the case of the Demand model, it no longer passes the test of over-identifying restrictions at the5%

level. In sharp contrast, the Demand+SV model improves in terms of the p-value when the yield

curve moments are targeted from0.16% to 0.26% and the yield curve is no longer hump-shaped

(column 6). All three yield curve moments are insignificantly different from their data counterparts.

8 CONCLUSION

Although valuation risk has become the subject of a substantial body of research to address asset

pricing puzzles, the literature has ignored the full implications of the current preference specifi-

cation. This paper first documents four desirable properties of Epstein-Zin recursive preferences

without valuation risk. It then shows the current valuationrisk specification violates these prop-

erties because the distributional weights in the time-aggregator of the utility function do not sum

to 1. In contrast, our revised preferences, which restrict the distributional weights, satisfy all four

properties. These results caution against continuing to use the current specification in future work.

Under our revised preferences, valuation risk has a much smaller role in resolving the equity

premium and risk-free rate puzzles. However, we find valuation risk still plays an important role in

matching the standard deviation and autocorrelation of therisk-free rate as well as the yield curve.

Furthermore, allowing valuation risk to directly affect cash-flow growth, similar to a production

economy model, adds a source of volatility that significantly improves the empirical fit of the model

and helps match the standard deviation of dividend growth and its correlation with equity returns.

Despite the importance of valuation risk, our paper and the literature is silent on its structural

foundations. As a consequence, there are several open research questions. For example, what does

it mean for a representative household to have a time-varying time-preference? Is there an economy
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with multiple (heterogenous) households that supports these preferences? Is there a decision-

theoretic explanation and is it possible to back out the dynamics of a time-varying time-preference

from experiments or data? We believe these questions are important avenues for future research.
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J. RUBIO-RAM ÍREZ (2012): “The Term Structure of Interest Rates in a DSGE Modelwith

Recursive Preferences,”Journal of Monetary Economics, 59, 634–648,

https://doi.org/10.1016/j.jmoneco.2012.09.002.

WEIL , P. (1989): “The equity premium puzzle and the risk-free rate puzzle,”Journal of Monetary

Economics, 24, 401–421,https://www.doi.org/10.3386/w2829.

A I NDIFFERENCECURVE DERIVATION

For compactness, defineρ = 1− 1/ψ andα = 1− γ. Then from (7) and (8) in the main paper

ŪC(at+1) ≡ g(UC
t+1) = g

(
(1− β + at+1βx̄)

1/ρ
)
,

ŪR(at+1) ≡ g(UR
t+1) = g

(
(1− at+1β + at+1βx̄)

1/ρ
)
,

whereg(Ut+1) = (Et[U
α
t+1])

1/α. The certainty equivalent is given by

Ū = (1− β + βx̄)1/ρ.

Suppose there are two possible outcomes forat+1, denoteda1 anda2. Then

ŪC =

(
(1− β + a1βx̄)

α/ρ + (1− β + a2βx̄)
α/ρ

2

)1/α

,

ŪR =

(
(1− a1β + a1βx̄)

α/ρ + (1− a2β + a2βx̄)
α/ρ

2

)1/α

.

SetŪC andŪR equal to the certainty equivalent, fixa1, and solve fora2 to obtain:

aC2 =

(
2Ūα − (1− β + a1βx̄)

α/ρ
)ρ/α

− (1− β)

βx̄
,

aR2 =

(
2Ūα − (1− a1β + a1βx̄)

α/ρ
)ρ/α

− 1

β(x̄− 1)
.

We plot combinations of(a1, a2) under the current and revised preferences.
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B ISOMORPHICREPRESENTATIONS OF THECURRENT SPECIFICATION

In the current literature, the preference shock typically hits current utility. If, for simplicity, we

abstract from Epstein-Zin preferences, then the utility function and Euler equation are given by

Ut = αtu(ct) + βEt[Ut+1], (B.1)

βEt[(αt+1/αt)u
′(ct+1)/u

′(ct)ry,t+1] = 1. (B.2)

The shock follows∆α̂t+1 = ρ∆α̂t + σαεt, so the change inαt is known at timet. Alternatively, if

the preference shock hits future consumption, the utility function and Euler equation are given by

Ut = u(ct) + atβEt[Ut+1], (B.3)

atβEt[u
′(ct+1)/u

′(ct)ry,t+1] = 1. (B.4)

If the shock followsât = ρât−1 + σaεt, the two specifications are isomorphic because setting

at ≡ αt+1/αt in (B.4) yields (B.2). We use the second specification because it is easier to compare

the current and revised preferences when the shock always shows up in the Euler equation in levels.

C RESULT 5 PROOF

The results in this section apply a variant of the following four limits:

1. limǫ→0

[
1
ǫ2

((

E
[

(xǫ2c+ 1)
1/ǫ
])ǫ

− 1
)]

= E[cx]

2. limǫ→0

[
1
ǫ2

((

E
[

(xǫ2c+ x)
1/ǫ
])ǫ

− E[x]
)]

is undefined

3. limǫ→0

[
1
ǫ

((
E
[
(xǫc + 1)1+ǫ

]) 1

1+ǫ − 1
)]

= E[cx]

4. limǫ→0

[
1
ǫ

((
E
[
(xǫc + x)1+ǫ

]) 1

1+ǫ − E[x]
)]

= E[cx] +O

wherex is an exogenous stochastic variable,c is a stochastic policy relevant variable, andO =

E[x log x]− E[x] log(E[x]) is an additive term that is independent of the policy relevant variable.

Case 1 Defineγ = 1− ǫ and1− 1/ψ = ǫ2. Then preferences are given by

U j
t =

(

wj1,tc
ǫ2

t + wj2,t

(

Et

[(
U j
t+1

)ǫ
])ǫ)1/ǫ2

.

For simplicity, assumeat+j = 1 andct+j is nonstochastic forj ≥ 2. DefiningV j
t = (U j

t )
ǫ2 implies

V j
t = wj1,tc

ǫ2

t + wj2,t

(

Et

[(
V j
t+1

)1/ǫ
])ǫ

,
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V j
t+1 =

∑
∞

k=1

(
∏k−1

i=1 w
j
2,t+i

)

wj1,t+kc
ǫ2

t+k.

Combining these results then implies

V j
t = wj1,tc

ǫ2

t + wj2,t

(

Et

[(
∑

∞

k=1 w̃
j
2,t+kw

j
1,t+kc

ǫ2

t+k

)1/ǫ
])ǫ

,

wherew̃j2,t+k ≡
∏k−1

i=1 w
j
2,t+i. Now defineW j

t = (V j
t − 1)/ǫ2, so the utility function is given by

Wt = wj1,tut + wj2,t

(

Et

[(
1
ǫ2

∑
∞

k=1 w̃
j
2,t+kw

j
1,t+k(ǫ

2ut+k + 1)
)1/ǫ
])ǫ

+
wj

1,t−1

ǫ2
,

whereut = (cǫ
2

t − 1)/ǫ2 is a CRRA utility function that converges tolog ct asǫ→ 0.

Under the revised specification,wR1,t = 1− atβ andwR2,t = atβ. Therefore,

Wt = (1− atβ)ut +
atβ
ǫ2

((

Et

[(
ǫ2
∑

∞

k=1 ãt+k(1− at+kβ)ut+k + 1
)1/ǫ
])ǫ

− 1
)

, (C.1)

whereãt+k ≡
∏k−1

i=1 at+iβ. Applying Limit 1, then implies

lim
ǫ→0

Wt = (1− atβ) log ct + atβEt[
∑

∞

k=1 ãt+k(1− at+kβ) log ct+k].

Under the current preferences,wC1,t = 1− β andwC2,t = atβ. Therefore,

Wt = (1− β)ut +
atβ
ǫ2

((

Et

[(
ǫ2(1− β)

∑
∞

k=1 ãt+kut+k + 1− β + at+1β
)1/ǫ
])ǫ

− 1
at

)

,

which does not converge to a log utility function asǫ→ 0 according toLimit 2.

Case 2 The assumption thatγ = 1− ǫ and1−1/ψ = ǫ2 may appear contrived. What is important

is that bothγ andψ tend to1, butψ approaches1 at a faster rate. When they approach1 at the

same rate, then time-separable log utility results regardless of whether the preference specification.

To see this result, supposeγ = 1− ǫ andψ = 1 + ǫ. Then utility is given by

U j
t =

(

wj1,tc
ǫ

1+ǫ

t + wj2,t

(

Et

[(
U j
t+1

)ǫ
]) 1

1+ǫ

) 1+ǫ
ǫ

.

Once again, assumeat+j = 1 andct+j is nonstochastic forj ≥ 2. DefiningV j
t = (U j

t )
ǫ

1+ǫ implies

V j
t = wj1,tc

ǫ
1+ǫ

t + wj2,t

(

Et

[(
∑

∞

k=1 w̃
j
2,t+kw

j
1,t+kc

ǫ
1+ǫ

t+k

)1+ǫ
]) 1

1+ǫ

,

wherew̃2,t+k is the same as Case 1. DefineW j
t = (1+ǫ)(V j

t −1)/ǫ. The utility function is given by

Wt = wj1,tut + wj2,t

(

Et

[(
1+ǫ
ǫ

∑
∞

k=1 w̃
j
2,t+kw

j
1,t+k(

ǫ
1+ǫ

ut+k + 1)
)1+ǫ

]) 1

1+ǫ
+
(
1+ǫ
ǫ

)
(wj1,t − 1),
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whereut = (c
ǫ/(1+ǫ)
t − 1)/(ǫ/(1+ ǫ)) is a CRRA utility function that converges tolog ct asǫ→ 0.

Under the revised specification,wR1,t = 1− atβ andwR2,t = atβ. Therefore,

Wt = (1− atβ)ut + atβ
(
1+ǫ
ǫ

)
((

Et

[(
ǫ

1+ǫ

∑
∞

k=1 ãt+k(1− at+kβ)ut+k + 1
)1+ǫ

]) 1

1+ǫ
− 1

)

,

whereãt+k is defined above. ApplyingLimit 3, then implies (C.1).

Under the current preferences,wC1,t = 1− β andwC2,t = atβ. Therefore,

Wt = (1− β)ut + atβ
(
1+ǫ
ǫ

)
((

Et

[(
ǫ

1+ǫ
(1− β)

∑
∞

k=1 ãt+kut+k + ast+1

)1+ǫ
]) 1

1+ǫ
− Et[a

s
t+1]

)

+ atβ
(
1+ǫ
ǫ

)
(Et[a

s
t+1]− 1/at),

whereast+1 ≡ 1− β + at+1β. Applying Limit 4, then implies

lim
ǫ→0

Wt = (1− β) log ct + atβ(1− β)Et[
∑

∞

k=1 ãt+k log ct+k] +Ot.

whereOt = Et[a
s
t+1 log a

s
t+1] − Et[a

s
t+1] log(Et[a

s
t+1]) + atβ(Et[a

s
t+1] − 1/at) limǫ→0

(
1+ǫ
ǫ

)
is an

exogenous additive term that does not affect the household’s optimality conditions.

D ANALYTICAL DERIVATIONS

Stochastic Discount Factor The Lagrangian for specificationj ∈ {C,R} is given by

U j
t = max

[

wj1,tc
1−1/ψ
t + wj2,t

(

Et

[(
U j
t+1

)1−γ
])1−1/ψ

1−γ

] 1

1−1/ψ

− λt(ct + py,ts1,t + pd,ts2,t − (py,t + yt)s1,t−1 − (pd,t + dt)s2,t−1),

wherewC1,t = 1−β,wR1,t = 1−aRt β,wC2,t = aCt β, andwR2,t = aRt β. The optimality conditions imply

wj1,t
(
U j
t

)1/ψ
c
−1/ψ
t = λt, (D.1)

wj2,t
(
U j
t

)1/ψ
(

Et

[(
U j
t+1

)1−γ
])1/ψ−γ

1−γ
Et

[(
U j
t+1

)−γ (
∂U j

t+1/∂s1,t
)]

= λtpy,t, (D.2)

wj2,t
(
U j
t

)1/ψ
(

Et

[(
U j
t+1

)1−γ
])1/ψ−γ

1−γ
Et

[(
U j
t+1

)−γ (
∂U j

t+1/∂s2,t
)]

= λtpd,t, (D.3)

where∂U j
t /∂s1,t−1 = λt(py,t+ yt) and∂U j

t /∂s2,t−1 = λt(pd,t+ dt) by the envelope theorem. Up-

dating the envelope conditions and combining (D.1)-(D.3) generates (11) and (12) in the main text.

Following Epstein and Zin (1991), we posit the following minimum state variable solution:

U j
t = ξ1,ts1,t−1 + ξ2,ts2,t−1 and ct = ξ3,ts1,t−1 + ξ4,ts2,t−1. (D.4)
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whereξ is a vector of unknown coefficients. The envelope conditionscombined with (D.1) imply

ξ1,t = wj1,t(U
j
t )

1/ψc
−1/ψ
t (py,t + yt), (D.5)

ξ2,t = wj1,t(U
j
t )

1/ψc
−1/ψ
t (pd,t + dt). (D.6)

Multiplying (D.5) by s1,t−1 and (D.6) by s2,t−1 and then adding yields

U j
t = wj1,t(U

j
t )

1/ψc
−1/ψ
t ((py,t + yt)s1,t−1 + (pd,t + dt)s2,t−1), (D.7)

which, after plugging in the budget constraint, (10), and imposing equilibrium, can be written as

(U j
t )

1−1/ψ = wj1,tc
−1/ψ
t (ct + py,ts1,t + pd,ts2,t) = wj1,tc

−1/ψ
t (ct + py,t). (D.8)

Imposing (D.8) on the utility function implies

wj1,tc
−1/ψ
t py,t = wj2,t

(

Et

[(
U j
t+1

)1−γ
]) 1−1/ψ

1−γ

. (D.9)

Solving (D.8) for U j
t and (D.9) for Et[(U

j
t+1)

1−γ] and then plugging into (13) and (14) implies

mj
t+1 = (xjt )

θ(ct+1/ct)
−θ/ψrθ−1

y,t+1, (D.10)

wherexjt ≡ wj2tw
j
1t+1/w

j
1t. Taking logs of (D.10) yields (17), given the following definitions:

x̂Ct = β̂ + âCt ,

x̂Rt = β̂ + âRt + log(1− β exp(âRt+1))− log(1− β exp(âRt )) ≈ β̂ + (âRt − βâRt+1)/(1− β),

andât ≡ âCt = âRt /(1−β) so the preference shocks with the current and revised specifications are

directly comparable. It follows that̂xjt = β̂ + ât − ωjât+1 as in (17), whereωC = 0 andωR = β.

Campbell-Shiller Approximation The return on the endowment is approximated by

r̂y,t+1 = log(py,t+1 + yt+1)− log(py,t)

= log(yt+1(py,t+1/yt+1) + yt+1)− log(yt(py,t/yt))

= log(yt+1(exp(ẑy,t+1) + 1))− ẑy,t − log(yt)

= log(exp(ẑy,t+1) + 1)− ẑy,t +∆ŷt+1

≈ log(exp(ẑy) + 1) + exp(ẑy)(ẑy,t+1 − ẑy)/(1 + exp(ẑy))− ẑy,t +∆ŷt+1

= κy0 + κy1ẑy,t+1 − ẑy,t +∆ŷt+1.

The derivation for the equity return,r̂d,t+1, is analogous to the return on the endowment.
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Model Solution We use a guess and verify method. For the endowment claim, we obtain

0 = log(Et[exp(m̂t+1 + r̂y,t+1)])

= log(Et[exp(θβ̂ + θ(ât − ωj ât+1) + θ(1− 1/ψ)∆ŷt+1 + θ(κy0 + κy1ẑy,t+1 − ẑy,t))])

= log

(

Et

[

exp

(

θβ̂ + θ(ât − ωj ât+1) + θ(1− 1/ψ)(µy + σyεy,t+1)

+θκy0 + θκy1(ηy0 + ηy1ât+1)− θ(ηy0 + ηy1ât)

)])

= log




Et




exp






θβ̂ + θ(1− 1/ψ)µy + θ(κy0 + ηy0(κy1 − 1))

+θ(1− ωjρa + ηy1(κy1ρa − 1))ât

+θ(1− 1/ψ)σyεy,t+1 + θ(κy1ηy1 − ωj)σaεa,t+1
















= θβ̂ + θ(1− 1/ψ)µy + θ(κy0 + ηy0(κy1 − 1)) + θ2

2 (1− 1/ψ)2σ2y

+ θ2

2 (κy1ηy1 − ωj)2σ2a + θ(1− ωjρa + ηy1(κy1ρa − 1))ât,

where the last equality follows from the log-normality ofexp(εy,t+1) andexp(εa,t+1).

After equating coefficients, we obtain the following exclusion restrictions:

β̂ + (1− 1/ψ)µy + (κy0 + ηy0(κy1 − 1)) + θ
2
((1− 1/ψ)2σ2

y + (κy1ηy1 − ωj)2σ2
a) = 0, (D.11)

1− ωjρa + ηy1(κy1ρa − 1) = 0. (D.12)

For the dividend claim, we obtain

0 = log(Et[exp(m̂t+1 + r̂d,t+1)])

= log

(

Et

[

exp

(

θβ̂ + θ(ât − ωj ât+1) + (θ(1− 1/ψ) − 1)∆ŷt+1 +∆d̂t+1

+(θ − 1)(κy0 + κy1ẑy,t+1 − ẑy,t) + (κd0 + κd1ẑd,t+1 − ẑd,t)

)])

= log









Et









exp









θβ̂ + (θ(1− 1/ψ) − 1)µy + µd

+(θ − 1)(κy0 + ηy0(κy1 − 1)) + (κd0 + ηd0(κd1 − 1))

+(θ(1− ωjρa) + (θ − 1)ηy1(κy1ρa − 1) + ηd1(κd1ρa − 1))ât

(πdy − γ)σyεy,t+1 + ((θ − 1)κy1ηy1 + κd1ηd1 − θωj)σaεa,t+1 + ψdσyεd,t+1

























= θβ̂ + (θ(1− 1/ψ) − 1)µy + µd + (θ − 1)(κy0 + ηy0(κy1 − 1)) + (κd0 + ηd0(κd1 − 1))

+ (θ(1− ωjρa) + (θ − 1)ηy1(κy1ρa − 1) + ηd1(κd1ρa − 1))ât

+ 1
2((πdy − γ)2σ2y + ((θ − 1)κy1ηy1 + κd1ηd1 − θωj)2σ2a + ψ2

dσ
2
y).

Once again, equating coefficients implies the following exclusion restrictions:

θβ̂ + (θ(1− 1/ψ)− 1)µy + µd + (θ − 1)(κy0 + ηy0(κy1 − 1)) + (κd0 + ηd0(κd1 − 1))

+1
2
((πdy − γ)2σ2

y + ((θ − 1)κy1ηy1 + κd1ηd1 − θωj)2σ2
a + ψ2

dσ
2
y) = 0, (D.13)

θ(1− ωjρa) + (θ − 1)ηy1(κy1ρa − 1) + ηd1(κd1ρa − 1) = 0. (D.14)

Equations (D.11)-(D.14), along with (21) and (22), form a system of8 equations and8 unknowns.
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Asset Prices Given the coefficients, we can solve for the risk free rate. The Euler equation implies

r̂f,t = − log(Et[exp(m̂t+1)]) = −Et[m̂t+1]−
1
2
Vart[m̂t+1],

since the risk-free rate is known at time-t. The pricing kernel is given by

m̂t+1 = θβ̂ + θ(ât − ωjât+1)− (θ/ψ)∆ŷt+1 + (θ − 1)r̂y,t+1

= θβ̂ + θ(ât − ωjât+1)− γ∆ŷt+1 + (θ − 1)(κy0 + κy1ẑy,t+1 − ẑy,t)

= θβ̂ − γµy + (θ − 1)(κy0 + ηy0(κy1 − 1)) + (θ(1− ωjρa) + (θ − 1)ηy1(κy1ρa − 1))ât

+ ((θ − 1)κy1ηy1 − θωj)σaεa,t+1 − γσyεy,t+1

= θβ̂ − γµy + (θ − 1)(κy0 + ηy0(κy1 − 1)) + (1− ωjρa)ât

+ ((θ − 1)κy1ηy1 − θωj)σaεa,t+1)− γσyεy,t+1,

where the last line follows from imposing (D.12). Therefore, the risk-free rate is given by

r̂f,t = γµy − θβ̂ − (θ − 1)(κy0 + ηy0(κy1 − 1))− (1− ωjρa)ât

− 1
2
γ2σ2

y −
1
2
((θ − 1)κy1ηy1 − θωj)2σ2

a.

Note that̂rf,t = log(Et[exp(r̂f,t)]). After plugging in (D.11), we obtain

r̂f,t = µy/ψ − β̂ − (1− ωjρa)ât +
1
2((θ − 1)κ2y1η

2
y1 − θ(ωj)2)σ2a +

1
2((1/ψ − γ)(1− γ)− γ2)σ2y .

Therefore, the unconditional expected risk-free rate is given by

E[r̂f ] = −β̂ + µy/ψ + 1
2
((θ − 1)κ2y1η

2
y1 − θ(ωj)2)σ2

a +
1
2
((1/ψ − γ)(1− γ)− γ2)σ2

y . (D.15)

We can also derive an expression for the equity premium,Et[ept+1], which given by

log(Et[exp(r̂d,t+1 − r̂f,t)]) = Et[r̂d,t+1]− r̂f,t +
1
2
Vart[r̂d,t+1] = −Covt[m̂t+1, r̂d,t+1],

where the last equality stems from the Euler equation,Et[m̂t+1+r̂d,t+1]+
1
2
Vart[m̂t+1+r̂d,t+1] = 0.

We already solved for the SDF, so the last step is to solve for the equity return, which given by

r̂d,t+1 = κd0 + κd1ẑd,t+1 − ẑd,t +∆d̂t+1

= κd0 + κd1(ηd0 + ηd1ât+1)− (ηd0 + ηd1ât) + ∆d̂t+1

= µd + κd0 + ηd0(κd1 − 1) + ηd1(κd1ρa − 1)ât + κd1ηd1σaεa,t+1 + πdyσyεy,t+1 + ψdσyεd,t+1.

Therefore, the unconditional equity premium can be writtenas

E[ep] = γπdyσ
2
y + (θωj + (1− θ)κy1ηy1)κd1ηd1σ

2
a. (D.16)
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Long-term Bond Prices The pricing kernel can be written as

m̂t+1 = m0 +m1ât +m2σaεa,t+1 +m3σyεy,t+1,

where

m0 ≡ θβ̂ − γµy + (θ − 1)(κy0 + ηy0(κy1 − 1)),

m1 ≡ 1− ωjρa,

m2 ≡ (θ − 1)κy1ηy1 − θωj,

m3 ≡ −γ.

The 1-period bond price is given by

p̂
(1)
t = −r̂f,t = log(Et[exp(m̂t+1)]) = m0 +m1ât +m2

2σ
2
a/2 +m2

3σ
2
y/2.

The2-period bond price is given by

p̂
(2)
t = logEt[exp(m̂t+1 + p̂

(1)
t+1)]

= logEt[exp(m0 +m1ât +m2σaεa,t+1 +m3σyεy,t+1+

m0 +m1(ρaât + σaεa,t+1) +m2
2σ

2
a/2 +m2

3σ
2
y/2)]

= 2m0 +m1(1 + ρa)ât + (m2 +m1)
2σ2

a/2 +m2
2σ

2
a/2 +m2

3σ
2
y .

More generally, the price of anyn-period bond forn > 1 is given by

p̂
(n)
t = nm0 +m1

∑n−1
j=0 ρ

j
aât +

1
2

∑n
k=2(m2 +m1

∑n−k
j=0 ρ

j
a)

2σ2
a +

1
2
m2

2σ
2
a +

n
2
m2

3σ
2
y

and the risk-free return is given byr(n)f,t = −p̂
(n)
t /n.

D.1 SPECIAL CASE 1 (σa = ψd = 0 & πdy = 1) In this case, there is no valuation risk (ât = 0)

and cash flow risk is perfectly correlated (∆ŷt+1 = µy + σyεy,t+1; ∆d̂t+1 = µd + σyεy,t+1). Under

these assumptions, it is easy to see that (D.15) and (D.16) reduce to (26) and (27) in the main text.

D.2 SPECIAL CASE 2 (σy = 0, ρa = 0, & µy = µd) In this case, there is no cash flow

risk (∆ŷt+1 = ∆d̂t+1 = µy) and the time preference shocks arei.i.d. (ât+1 = σaεa,t+1). Un-

der these two assumptions, the return on the endowment and dividend claims are identical, so

{κy0, κy1, ηy0, ηy1} = {κd0, κd1, ηd0, ηd1} ≡ {κ0, κ1, η0, η1}. Therefore, (D.15) and (D.16) reduce

to (28) and (29) for the current specification and (30) and (31) for the revised specification.

The exclusion restriction, (D.12), impliesη1 = 1 so (D.11) simplifies to

0 = β̂ + (1− 1/ψ)µy + κ0 + η0(κ1 − 1) + θ
2
(κ1 − ωj)2σ2

a. (D.17)

First, recall that0 < κ1 < 1. Therefore, the asymptote inθ will permeate the solution with the

current preferences (ωC = 0). However, with the revised preferences (ωR = β), we guess and
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verify thatκ1 = β whenψ = 1. In this case, (D.17) reduces tôβ+κ0+η0(β−1) = 0. Combining

with (21), this restriction implies thatη0 = log β−log(1−β) andκ0 = −(1−β) log(1−β)−β log β.

Plugging the expressions forη0, κ0, andκ1 into (21) and (D.17) verifies our initial guess forκ1.

Alternatively, if utility is Epstein-Zin with a stationarypreference shock oncurrentutility, then

Ut =

[

at(1− β)c
1−1/ψ
t + β

(
Et
[
(Ut+1)

1−γ])
1−1/ψ
1−γ

] 1

1−1/ψ

, 1 6= ψ > 0. (D.18)

Sincew1,t = at(1− β) andw2,t = β, xt = βat+1/at and the pricing kernel is given by

m̂t+1 = θ log β + θ(ât+1 − ât)− (θ/ψ)∆ĉt+1 + (θ − 1)r̂y,t+1. (D.19)

Given this slight modification, the average risk-free rate and average equity premium are given by

E[r̂f ] = − log β + µy/ψ + ((θ − 1)κ21η
2
1 + θ)σ2

a/2, (D.20)

E[ep] = ((1− θ)κ1η1 − θ)κ1η1σ
2
a. (D.21)

Sinceη1 = −1, there is once again no endogenous mechanism that prevents the asymptote inθ

from influencing asset pricing moments, just like in (28) and (29) under the current specification.

E NONLINEAR MODEL ASYMPTOTE

Assumingµt+1 ≡ yt+1/yt = dt+1/dt, the (nonlinear) Euler equation is given by

zt =
atβ

1− χjatβ

(

Et

[ ((
1− χjat+1β

)
µ
1−1/ψ
t+1 (1 + zt+1)

)θ

︸ ︷︷ ︸
xt+1

])1/θ

, (E.1)

whereχC = 0 andχR = 1. Notice the asymptote disappears ifSD(xt+1) → 0 asψ → 1. The

main text focuses on results from a Campbell and Shiller (1988) approximation of the model. In

this appendix, we demonstrate three noteworthy results using the model’s exact, nonlinear, form.

One, consider the case without valuation risk, soat = 1 for all t. The Euler equation reduces to

zt = β(Et[(µ
1−1/ψ
t+1 (1 + zt+1))

θ])1/θ. (E.2)

Whenψ = 1, we guess and verify thatzt = β/(1−β), so the price-dividend ratio is constant. This

is the well know result that when the IES is1, the income and substitution effects of a change in

endowment growth offset. Therefore, the price-dividend ratio does not respond to cash flow risk.

Two, consider the case whenat is stochastic under the revised preferences (χR = 1) and either

ψ = 1 (CRRA preferences) orµt = 1 for all t (no cash-flow growth). In both cases, we guess and

verify thatzt = atβ/(1 − atβ). The price dividend ratio is time-varying but independent of θ, so
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an asymptote does not affect equilibrium outcomes. Thus, the household is certainty-equivalent.

Three, consider what happens under the current preferences(χC = 0), which do not account for

the offsetting movements in1−atβ. To obtain a closed-form solution for any IES, we assumeµt =

µ and the preference shock evolves according tolog(1 + at+1η) = σεt+1, whereεt+1 is standard

normal. Under these assumptions, we guess and verify that the price-dividend ratio is given by

zt = atη = atβµ
1−1/ψ exp(θσ2/2). (E.3)

In this case,θ appears in the price-dividend ratio, so the asymptote affects equilibrium outcomes.

These results prove that the asymptote is not due to a Campbell-Shiller approximation of the model.

F DATA SOURCES

We drew from the following data sources to estimate our models:

1. [RCONS] Per Capita Real PCE (excluding durables): Annual, chained 2012 dollars.

Source: Bureau of Economic Analysis, National Income and Product Accounts, Table 7.1.

2. [RETD] Value-Weighted Return (including dividends): Monthly. Source: Wharton Re-

search Data Services, CRSP Stock Market Indexes (CRSP ID: VWRETD).

3. [RETX] Value-Weighted Return (excluding dividends): Monthly. Source: Wharton Re-

search Data Services, CRSP Stock Market Indexes (CRSP ID: VWRETX).

4. [CPI] Consumer Price Index for All Urban Consumers: Monthly, not seasonally ad-

justed, index 1982-1984=100. Source: Bureau of Labor Statistics (FRED ID: CPIAUCNS).

5. [RFR] Risk-free Rate: Monthly, annualized yield calculated from nominal price.Source:

Wharton Research Data Services, CRSP Treasuries, Risk-free Series (CRSP ID: TMYTM).

6. [RFR5] 5-year U.S. Treasury Yield: Monthly, intermediate-term, annualized. Source:

Ibbotson Associates via Morningstar Direct, IA SBBI US IT (ID: FOUSA05XQC).

7. [RFR20] 20-year U.S. Treasury Yield: Monthly, long-term, annualized. Source: Ibbotson

Associates via Morningstar Direct, IA SBBI US LT (ID: FOUSA05XQ8).

We applied the following transformations to the above data sources:

1. Annual Per Capita Real Consumption Growth (annual frequency):

∆ĉt = 100 log(RCONSt/RCONSt−1)
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2. Annual Real Dividend Growth (monthly frequency):

P1928M1 = 100, Pt = Pt−1(1 +RETXt), Dt = (RETDt − RETXt)Pt−1,

dt =
∑t

i=t−11Di/CPIt, ∆d̂t = 100 log(dt/dt−12)

3. Annual Real Equity Return (monthly frequency):

πmt = log(CPIt/CPIt−1), r̂d,t = 100
∑t

i=t−11(log(1 +RETDi)− πmi )

4. Annual Real Risk-free Rate (monthly frequency):

rfrt = RFRt − log(CPIt+3/CPIt), πqt = log(CPIt/CPIt−12)/4,

r̂f,t = 400(β̂0 + β̂1RFRt + β̂2π
q
t ),

whereβ̂j are OLS estimates from regressing the quarterlyex-postreal rate,rfr, on the quar-

terly nominal rate,RFR, and inflation,πq. The fitted values estimate theex-antereal rate.

5. 5- and 20-year Real Risk-free Rate (monthly frequency):

rfrXt = RFRXt − log(CPIt+12/CPIt), πat = log(CPIt/CPIt−12),

r̂f,X,t = 100(β̂0 + β̂1RFRXt + β̂2π
a
t ),

whereβ̂j are the OLS estimates from regressing the annualex-postreal long-term rate,rfr5

or rfr20, on the annual nominal rate,RFR5 orRFR20, and inflation,πa. The fitted values

estimate theex-antereal long-term rate.

6. Price-Dividend Ratio (monthly frequency):

ẑd,t = log(Pt/
∑t

i=t−11Di)

We use December of each year to convert each of the monthly time series to an annual frequency.

G ESTIMATION METHOD

The estimation procedure has two stages. The first stage estimates moments in the data using a 2-

step Generalized Method of Moments (GMM) estimator with a Newey and West (1987) weighting

matrix with 10 lags. The second stage is a Simulated Method of Moments (SMM)procedure that

searches for a parameter vector that minimizes the distancebetween the GMM estimates in the

data and short-sample predictions of the model, weighted bythe diagonal of the GMM estimate of
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the variance-covariance matrix. The second stage is repeated for many different draws of shocks

to obtain a sampling distribution for each parameter. The following steps outline the algorithm:

1. Use GMM to estimate the moments,Ψ̂D
T , and the diagonal of the covariance matrix,Σ̂DT .

2. Use SMM to estimate the structural asset pricing model. Given a random seed,s, draw a

T -period sequence of shocks for each shock in the model. Denote the shock matrixEsT (e.g.,

in the baseline modelEsT = [εsy,t, ε
s
d,t, ε

s
a,t]

T
t=1). Fors ∈ {1, . . . , Ns}, run the following steps:

(a) Specify a guess,̂θ0, for the Np estimated parameters and the parameter variance-

covariance matrix,ΣP , which is initialized as a diagonal matrix.

(b) Use simulated annealing to minimize the loss function.

i. For i ∈ {0, . . . , Nd}, repeat the following steps:

A. Draw a candidate vector of parameters,θ̂candi , where

θ̂candi ∼







θ̂0 for i = 0,

N(θ̂i−1, c0ΣP ) for i > 0.

We setc to target an acceptance rate of30%. For the revised preferences, we

restrict θ̂candi so thatβ exp(4(1 − β)
√

σ2
a/(1− ρ2a)) < 1. This ensures the

utility function weights are positive in99.997% of the simulated observations.

B. Solve the Campbell-Shiller approximation of the model givenθ̂candi .

C. GivenEsT (r), simulate the monthly modelR times forT periods. We draw

initial states,̂a0, from N(0, σ2
a/(1 − ρ2a)). For each repetitionr, calculate the

moments,ΨM
T (θ̂candi , EsT (r)), the same way they are calculated in the data.

D. Calculate the median moments across theR simulations,Ψ̄M
R,T (θ̂

cand
i , EsT ) =

median{ΨM
T (θ̂candi , EsT (r))}

R
r=1, and evaluate the loss function:

Js,candi = [Ψ̂D
T − Ψ̄M

R,T (θ̂
cand
i , EsT )]

′[Σ̂DT (1 + 1/R)]−1[Ψ̂D
T − Ψ̄M

R,T (θ̂
cand
i , EsT )].

E. Accept or reject the candidate draw according to

(θ̂si , J
s
i ) =







(θ̂candi , Js,candi ) if i = 0,

(θ̂candi , Js,candi ) if min(1, exp(Jsi−1 − Js,candi )/c1) > û,

(θ̂i−1, J
s
i−1) otherwise,

wherec1 is the temperature and̂u is a draw from a uniform distribution. The

lower the temperature, the more likely it is that the candidate draw is rejected.

ii. Find the parameter draŵθsmin that corresponds tomin{Jsi }
Nd
i=1, and updateΣsP .
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A. Discard the firstNd/2 draws. Stack the remaining draws in aNd/2 × Np

matrix,Θ̂s, and definẽΘs = Θ̂s − 1Nd/2×1

∑Nd
i=Nd/2

θ̂si /(Nd/2).

B. CalculateΣs,upP = (Θ̃s)′Θ̃s/(Nd/2).

(c) Repeat the previous stepNSMM times, initializing at draŵθ0 = θ̂smin and covariance

matrix ΣP = Σs,upP . Gradually decrease the temperature. Of all the draws, find the

lowestNJ J values, denoted{Js,jguess}
NJ
j=1, and the corresponding draws,{θs,jguess}

NJ
j=1.

(d) Forj ∈ {1, . . . , NJ}, minimize the same loss function with MATLAB’sfminsearch

starting atθs,jguess. The resulting minimum iŝθs,jmin with a loss function value ofJs,jmin. Re-

peat, each time updating the guess, untilJs,jguess−J
s,j
min < 0.001. The parameter estimates

reported in the tables in the main paper, denotedθ̂s, correspond tomin{Js,jmin}
NJ
j=1.

3. The set of SMM parameter estimates{θ̂s}Nss=1 approximate the joint sampling distribution of

the parameters. We report its mean,θ̄ =
∑Ns

s=1 θ̂
s/Ns, and(5, 95) percentiles.

For all model specifications, the results in the main paper are based onNs = 500, R = 1,000,

Nd = 20,000,NSMM = 5, andNJ = 50. Np, c0, and the temperatures,c1, are all model-specific.

H ESTIMATION ROBUSTNESS

Baseline Model:ψ = 2.0

OmitsE[rf,5] & E[rf,20] All Moments

Ptr Current Revised Max RA Current Revised Max RA

γ 1.46 75.79 10.00 1.31 98.91 10.00
(1.44, 1.48) (72.61, 79.16) (10.00, 10.00) (1.29, 1.34) (94.21, 103.85) (10.00, 10.00)

β 0.9978 0.9957 0.9974 0.9980 0.9964 0.9979
(0.9977, 0.9980) (0.9956, 0.9958) (0.9974, 0.9975) (0.9979, 0.9982) (0.9963, 0.9964) (0.9979, 0.9980)

ρa 0.9968 0.9899 0.9877 0.9973 0.9893 0.9877
(0.9965, 0.9971) (0.9896, 0.9902) (0.9874, 0.9880) (0.9970, 0.9976) (0.9890, 0.9896) (0.9874, 0.9880)

σa 0.00031 0.03554 0.03907 0.00028 0.03657 0.03918
(0.00030, 0.00033) (0.03504, 0.03605) (0.03864, 0.03955) (0.00027, 0.00030) (0.03604, 0.03709) (0.03869, 0.03963)

µy 0.0016 0.0016 0.0017 0.0016 0.0017 0.0016
(0.0016, 0.0016) (0.0016, 0.0016) (0.0017, 0.0017) (0.0016, 0.0016) (0.0016, 0.0017) (0.0016, 0.0016)

µd 0.0015 0.0020 0.0010 0.0010 0.0016 0.0005
(0.0015, 0.0016) (0.0020, 0.0021) (0.0009, 0.0010) (0.0010, 0.0011) (0.0016, 0.0017) (0.0004, 0.0005)

σy 0.0058 0.0058 0.0058 0.0058 0.0055 0.0060
(0.0057, 0.0058) (0.0057, 0.0059) (0.0057, 0.0060) (0.0058, 0.0058) (0.0054, 0.0057) (0.0059, 0.0062)

ψd 1.54 0.97 1.07 1.52 1.13 1.01
(1.43, 1.63) (0.88, 1.07) (0.96, 1.18) (1.42, 1.61) (1.04, 1.23) (0.92, 1.12)

πdy 0.816 0.438 0.606 0.816 0.614 0.598
(0.765, 0.870) (0.405, 0.475) (0.550, 0.668) (0.760, 0.873) (0.584, 0.645) (0.545, 0.657)

J 29.27 48.09 56.08 31.73 50.04 59.90
(28.62, 29.98) (47.73, 48.47) (55.47, 56.67) (31.05, 32.43) (49.64, 50.46) (59.38, 60.40)

pval 0.000 0.000 0.000 0.000 0.000 0.000
(0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)

df 6 6 6 8 8 8

Table H.1: Baseline model. Average and(5, 95) percentiles of the parameter estimates.
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OmitsE[rf,5] & E[rf,20] All Moments

Moment Data Current Revised Max RA Current Revised Max RA

E[∆c] 1.89 1.89 1.94 2.00 1.89 1.98 1.95
(0.00) (0.19) (0.45) (0.00) (0.36) (0.22)

E[∆d] 1.47 1.84 2.45 1.15 1.25 1.97 0.56
(0.38) (1.02) (−0.34) (−0.24) (0.52) (−0.95)

E[zd] 3.42 3.45 3.49 3.56 3.49 3.52 3.60
(0.18) (0.48) (1.02) (0.48) (0.74) (1.27)

E[rd] 6.51 5.46 5.57 4.03 4.78 4.98 3.35
(−0.66) (−0.59) (−1.55) (−1.08) (−0.96) (−1.98)

E[rf ] 0.25 0.25 0.37 1.07 0.09 0.26 0.42
(0.00) (0.19) (1.34) (−0.26) (0.01) (0.28)

E[rf,5] 1.19 1.25 1.75 2.19 0.92 1.23 1.51
(0.09) (0.83) (1.46) (−0.40) (0.06) (0.47)

E[rf,20] 1.88 3.19 3.47 3.32 2.57 2.28 2.62
(2.19) (2.65) (2.40) (1.16) (0.68) (1.24)

SD[∆c] 1.99 1.99 1.99 2.01 2.00 1.91 2.08
(0.00) (−0.01) (0.04) (0.01) (−0.17) (0.18)

SD[∆d] 11.09 3.47 2.12 2.47 3.44 2.46 2.44
(−2.79) (−3.28) (−3.15) (−2.80) (−3.15) (−3.16)

SD[rd] 19.15 18.41 13.64 13.39 18.47 13.46 13.06
(−0.39) (−2.91) (−3.04) (−0.36) (−3.00) (−3.21)

SD[rf ] 2.72 3.21 3.70 3.87 2.99 3.70 3.77
(0.96) (1.92) (2.27) (0.53) (1.93) (2.06)

SD[zd] 0.45 0.46 0.25 0.23 0.48 0.24 0.22
(0.22) (−3.17) (−3.52) (0.47) (−3.32) (−3.62)

AC[rf ] 0.68 0.95 0.90 0.88 0.95 0.89 0.88
(4.12) (3.35) (3.12) (4.17) (3.28) (3.11)

AC[zd] 0.89 0.92 0.85 0.83 0.93 0.84 0.83
(0.64) (−0.86) (−1.33) (0.75) (−1.00) (−1.35)

Corr[∆c,∆d] 0.54 0.47 0.41 0.50 0.48 0.48 0.51
(−0.31) (−0.59) (−0.19) (−0.29) (−0.28) (−0.13)

Corr[∆c, rd] 0.05 0.09 0.06 0.09 0.09 0.09 0.09
(0.57) (0.23) (0.61) (0.57) (0.55) (0.67)

Corr[∆d, rd ] 0.07 0.19 0.15 0.18 0.18 0.18 0.19
(1.41) (1.03) (1.37) (1.38) (1.35) (1.41)

Table H.2: Baseline model. Data and average model-implied moments. t-statistics are in parentheses.
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Baseline Model:ψ = 1.5

OmitsE[rf,5] & E[rf,20] All Moments

Ptr Current Revised Max RA Current Revised Max RA

γ 1.31 78.83 10.00 1.21 100.12 10.00
(1.29, 1.32) (75.37, 82.75) (10.00, 10.00) (1.19, 1.23) (95.79, 104.96) (10.00, 10.00)

β 0.9981 0.9958 0.9977 0.9983 0.9964 0.9982
(0.9980, 0.9982) (0.9957, 0.9958) (0.9976, 0.9977) (0.9982, 0.9984) (0.9964, 0.9965) (0.9981, 0.9982)

ρa 0.9968 0.9898 0.9875 0.9973 0.9892 0.9874
(0.9965, 0.9971) (0.9895, 0.9901) (0.9871, 0.9878) (0.9970, 0.9976) (0.9889, 0.9896) (0.9871, 0.9877)

σa 0.00031 0.03566 0.03946 0.00028 0.03665 0.03959
(0.00030, 0.00033) (0.03515, 0.03618) (0.03898, 0.04000) (0.00027, 0.00030) (0.03608, 0.03722) (0.03915, 0.04004)

µy 0.0016 0.0016 0.0017 0.0016 0.0017 0.0016
(0.0016, 0.0016) (0.0016, 0.0016) (0.0016, 0.0017) (0.0016, 0.0016) (0.0016, 0.0017) (0.0016, 0.0016)

µd 0.0015 0.0020 0.0009 0.0010 0.0016 0.0004
(0.0015, 0.0016) (0.0020, 0.0021) (0.0009, 0.0010) (0.0010, 0.0011) (0.0016, 0.0017) (0.0004, 0.0005)

σy 0.0058 0.0057 0.0059 0.0058 0.0055 0.0061
(0.0057, 0.0058) (0.0056, 0.0058) (0.0057, 0.0060) (0.0058, 0.0058) (0.0054, 0.0056) (0.0059, 0.0062)

ψd 1.54 0.98 1.05 1.52 1.14 0.99
(1.44, 1.63) (0.88, 1.09) (0.95, 1.16) (1.42, 1.61) (1.05, 1.24) (0.90, 1.09)

πdy 0.816 0.443 0.600 0.816 0.617 0.590
(0.763, 0.873) (0.409, 0.477) (0.548, 0.662) (0.759, 0.875) (0.589, 0.647) (0.535, 0.645)

J 29.27 48.26 57.00 31.74 50.11 60.78
(28.62, 29.98) (47.90, 48.64) (56.39, 57.59) (31.06, 32.44) (49.71, 50.54) (60.28, 61.26)

pval 0.000 0.000 0.000 0.000 0.000 0.000
(0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)

df 6 6 6 8 8 8

Table H.3: Baseline model. Average and(5, 95) percentiles of the parameter estimates.
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OmitsE[rf,5] & E[rf,20] All Moments

Moment Data Current Revised Max RA Current Revised Max RA

E[∆c] 1.89 1.89 1.94 1.99 1.89 1.98 1.93
(0.00) (0.21) (0.40) (0.00) (0.36) (0.18)

E[∆d] 1.47 1.84 2.44 1.12 1.25 1.97 0.54
(0.38) (1.01) (−0.37) (−0.24) (0.52) (−0.98)

E[zd] 3.42 3.45 3.49 3.56 3.49 3.52 3.60
(0.18) (0.49) (1.03) (0.48) (0.74) (1.27)

E[rd] 6.51 5.46 5.55 4.00 4.78 4.98 3.32
(−0.66) (−0.60) (−1.57) (−1.08) (−0.96) (−1.99)

E[rf ] 0.25 0.25 0.38 1.09 0.09 0.27 0.44
(0.00) (0.20) (1.38) (−0.26) (0.02) (0.31)

E[rf,5] 1.19 1.25 1.75 2.20 0.92 1.23 1.53
(0.09) (0.81) (1.49) (−0.40) (0.06) (0.49)

E[rf,20] 1.88 3.19 3.43 3.31 2.57 2.27 2.61
(2.19) (2.58) (2.38) (1.16) (0.65) (1.22)

SD[∆c] 1.99 1.99 1.97 2.02 2.00 1.90 2.09
(0.00) (−0.05) (0.06) (0.01) (−0.18) (0.20)

SD[∆d] 11.09 3.47 2.12 2.44 3.44 2.47 2.42
(−2.79) (−3.28) (−3.16) (−2.79) (−3.15) (−3.17)

SD[rd] 19.15 18.41 13.61 13.28 18.47 13.46 12.97
(−0.39) (−2.92) (−3.09) (−0.36) (−3.00) (−3.26)

SD[rf ] 2.72 3.21 3.70 3.88 2.99 3.70 3.78
(0.96) (1.93) (2.29) (0.53) (1.94) (2.08)

SD[zd] 0.45 0.46 0.25 0.23 0.48 0.24 0.22
(0.22) (−3.19) (−3.58) (0.47) (−3.33) (−3.67)

AC[rf ] 0.68 0.95 0.90 0.88 0.95 0.89 0.88
(4.12) (3.34) (3.09) (4.17) (3.28) (3.08)

AC[zd] 0.89 0.92 0.85 0.82 0.93 0.84 0.82
(0.64) (−0.87) (−1.39) (0.75) (−1.02) (−1.41)

Corr[∆c,∆d] 0.54 0.47 0.41 0.50 0.48 0.48 0.51
(−0.31) (−0.59) (−0.18) (−0.29) (−0.28) (−0.12)

Corr[∆c, rd] 0.05 0.09 0.06 0.09 0.09 0.09 0.09
(0.57) (0.23) (0.61) (0.57) (0.56) (0.67)

Corr[∆d, rd ] 0.07 0.19 0.15 0.18 0.18 0.18 0.18
(1.41) (1.03) (1.37) (1.38) (1.36) (1.40)

Table H.4: Baseline model. Data and average model-implied moments. t-statistics are in parentheses.
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Long-Run Risk Model: ψ = 2.0

OmitsSD[rf ], AC[rf ], Omits All Moments
E[rf,5], & E[rf,20] E[rf,5] & E[rf,20]

Parameter No VR Revised No VR Revised No VR Revised

γ 2.40 2.58 2.49 2.43 2.35 2.29
(2.18, 2.62) (2.33, 2.87) (2.20, 2.75) (2.19, 2.68) (1.90, 2.75) (1.96, 2.65)

β 0.9992 0.9983 0.9992 0.9991 0.9987 0.9987
(0.9991, 0.9993) (0.9982, 0.9984) (0.9990, 0.9993) (0.9990, 0.9992) (0.9985, 0.9988) (0.9986, 0.9988)

ρa − 0.9811 − 0.9537 − 0.9562
(0.9793, 0.9829) (0.9519, 0.9555) (0.9537, 0.9587)

σa − 0.0483 − 0.0165 − 0.0174
(0.0460, 0.0507) (0.0159, 0.0171) (0.0164, 0.0184)

µy 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016
(0.0014, 0.0017) (0.0014, 0.0018) (0.0014, 0.0017) (0.0014, 0.0017) (0.0015, 0.0017) (0.0014, 0.0017)

µd 0.0012 0.0013 0.0014 0.0012 0.0012 0.0011
(0.0009, 0.0015) (0.0009, 0.0016) (0.0011, 0.0017) (0.0009, 0.0015) (0.0009, 0.0015) (0.0007, 0.0014)

σy 0.0041 0.0040 0.0050 0.0041 0.0046 0.0037
(0.0040, 0.0043) (0.0038, 0.0043) (0.0049, 0.0051) (0.0039, 0.0042) (0.0045, 0.0047) (0.0034, 0.0039)

ψd 3.26 2.89 3.01 3.25 3.22 3.53
(3.05, 3.47) (2.66, 3.13) (2.81, 3.18) (3.01, 3.49) (2.92, 3.50) (3.18, 3.90)

πdy 0.593 0.782 0.132 0.640 0.208 0.791
(0.354, 0.834) (0.487, 1.114) (−0.184, 0.419) (0.392, 0.885) (−0.147, 0.546) (0.476, 1.110)

φd 2.31 1.65 2.11 2.27 2.36 2.50
(2.13, 2.51) (1.53, 1.78) (1.88, 2.30) (2.06, 2.50) (2.00, 2.69) (2.19, 2.86)

ρx 0.9990 0.9994 0.9981 0.9990 0.9979 0.9991
(0.9986, 0.9993) (0.9993, 0.9995) (0.9974, 0.9988) (0.9986, 0.9994) (0.9969, 0.9989) (0.9986, 0.9995)

ψx 0.0255 0.0260 0.0306 0.0252 0.0296 0.0246
(0.0242, 0.0269) (0.0247, 0.0273) (0.0287, 0.0328) (0.0240, 0.0266) (0.0273, 0.0321) (0.0232, 0.0261)

J 20.91 14.36 54.54 19.91 62.31 25.31
(20.16, 21.71) (13.93, 14.78) (53.67, 55.47) (19.25, 20.63) (61.48, 63.17) (24.57, 26.07)

pval 0.007 0.026 0.000 0.011 0.000 0.005
(0.005, 0.010) (0.022, 0.030) (0.000, 0.000) (0.008, 0.014) (0.000, 0.000) (0.004, 0.006)

df 8 6 10 8 12 10

Table H.5: Long-run risk model. Average and(5, 95) percentiles of the parameter estimates.
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OmitsSD[rf ], AC[rf ], Omits All Moments
E[rf,5], & E[rf,20] E[rf,5] & E[rf,20]

Moment Data No VR Revised No VR Revised No VR Revised

E[∆c] 1.89 1.88 1.89 1.88 1.89 1.89 1.89
(−0.03) (0.02) (−0.02) (0.00) (0.00) (0.01)

E[∆d] 1.47 1.48 1.55 1.68 1.48 1.43 1.30
(0.01) (0.08) (0.21) (0.01) (−0.05) (−0.18)

E[zd] 3.42 3.43 3.40 3.42 3.43 3.43 3.43
(0.03) (−0.17) (−0.05) (0.02) (0.05) (0.08)

E[rd] 6.51 6.47 6.46 5.93 6.49 5.59 6.32
(−0.02) (−0.04) (−0.37) (−0.01) (−0.57) (−0.12)

E[rf ] 0.25 0.30 0.26 0.28 0.26 1.46 1.23
(0.07) (0.01) (0.05) (0.01) (1.99) (1.61)

E[rf,5] 1.19 0.11 0.96 0.01 0.21 1.28 1.28
(−1.60) (−0.34) (−1.74) (−1.45) (0.12) (0.12)

E[rf,20] 1.88 −0.42 0.79 −0.74 −0.29 0.77 0.94
(−3.82) (−1.80) (−4.34) (−3.60) (−1.84) (−1.55)

SD[∆c] 1.99 1.92 1.94 2.45 1.89 2.22 1.69
(−0.14) (−0.10) (0.95) (−0.21) (0.47) (−0.62)

SD[∆d] 11.09 5.62 4.79 6.40 5.50 6.35 5.40
(−2.00) (−2.30) (−1.71) (−2.04) (−1.73) (−2.08)

SD[rd] 19.15 18.03 19.79 18.74 18.16 18.90 18.25
(−0.59) (0.34) (−0.21) (−0.52) (−0.13) (−0.47)

SD[rf ] 2.72 0.64 5.56 0.87 2.83 0.77 2.92
(−4.11) (5.60) (−3.66) (0.21) (−3.86) (0.39)

SD[zd] 0.45 0.53 0.46 0.52 0.52 0.52 0.53
(1.34) (0.08) (1.12) (1.17) (1.11) (1.19)

AC[∆c] 0.53 0.43 0.46 0.48 0.43 0.46 0.42
(−1.07) (−0.75) (−0.55) (−1.09) (−0.78) (−1.21)

AC[∆d] 0.19 0.27 0.21 0.31 0.26 0.31 0.26
(0.77) (0.20) (1.16) (0.69) (1.14) (0.63)

AC[rd] −0.01 0.01 −0.05 0.00 −0.01 0.00 −0.01
(0.21) (−0.45) (0.12) (0.04) (0.11) (0.03)

AC[rf ] 0.68 0.96 0.84 0.96 0.69 0.95 0.70
(4.34) (2.44) (4.25) (0.14) (4.24) (0.27)

AC[zd] 0.89 0.94 0.90 0.93 0.94 0.93 0.94
(1.09) (0.27) (0.91) (1.02) (0.88) (1.02)

Corr[∆c,∆d] 0.54 0.48 0.50 0.44 0.48 0.45 0.49
(−0.27) (−0.18) (−0.45) (−0.26) (−0.43) (−0.21)

Corr[∆c, rd] 0.05 0.07 0.06 0.08 0.07 0.08 0.07
(0.30) (0.21) (0.47) (0.29) (0.50) (0.29)

Corr[∆d, rd ] 0.07 0.24 0.19 0.28 0.24 0.28 0.23
(2.09) (1.51) (2.54) (2.01) (2.49) (1.93)

Corr[ep, zd,−1] −0.16 −0.17 −0.13 −0.15 −0.17 −0.15 −0.17
(−0.10) (0.37) (0.16) (−0.04) (0.19) (−0.04)

Corr[∆c, zd,−1] 0.19 0.66 0.60 0.69 0.65 0.68 0.64
(2.67) (2.31) (2.87) (2.64) (2.78) (2.59)

Table H.6: Long-run risk model. Data and average model-implied moments. t-statistics are in parentheses.
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Long-Run Risk Model: ψ = 1.5

OmitsSD[rf ], AC[rf ], Omits All Moments
E[rf,5], & E[rf,20] E[rf,5] & E[rf,20]

Parameter No VR Revised No VR Revised No VR Revised

γ 2.05 2.44 2.08 2.13 2.10 2.17
(1.92, 2.18) (2.22, 2.68) (1.86, 2.31) (1.97, 2.34) (1.67, 2.58) (1.88, 2.56)

β 0.9995 0.9988 0.9995 0.9995 0.9991 0.9992
(0.9994, 0.9995) (0.9987, 0.9990) (0.9994, 0.9995) (0.9994, 0.9995) (0.9989, 0.9992) (0.9991, 0.9993)

ρa − 0.9801 − 0.9514 − 0.9550
(0.9781, 0.9820) (0.9490, 0.9538) (0.9521, 0.9581)

σa − 0.0497 − 0.0160 − 0.0172
(0.0472, 0.0521) (0.0153, 0.0168) (0.0162, 0.0184)

µy 0.0015 0.0016 0.0015 0.0015 0.0016 0.0016
(0.0014, 0.0017) (0.0014, 0.0018) (0.0014, 0.0017) (0.0014, 0.0017) (0.0014, 0.0017) (0.0014, 0.0017)

µd 0.0011 0.0013 0.0013 0.0012 0.0010 0.0010
(0.0008, 0.0015) (0.0009, 0.0017) (0.0010, 0.0017) (0.0008, 0.0015) (0.0007, 0.0014) (0.0006, 0.0013)

σy 0.0042 0.0040 0.0051 0.0041 0.0046 0.0035
(0.0040, 0.0044) (0.0037, 0.0043) (0.0050, 0.0052) (0.0039, 0.0043) (0.0044, 0.0047) (0.0032, 0.0037)

ψd 3.22 3.10 2.94 3.29 3.26 3.80
(3.01, 3.44) (2.83, 3.38) (2.78, 3.11) (3.06, 3.53) (2.94, 3.58) (3.42, 4.23)

πdy 0.552 0.740 0.191 0.611 0.223 0.808
(0.311, 0.798) (0.414, 1.066) (−0.091, 0.456) (0.372, 0.895) (−0.167, 0.591) (0.464, 1.168)

φd 2.29 1.84 2.02 2.33 2.41 2.76
(2.12, 2.44) (1.71, 1.98) (1.85, 2.21) (2.15, 2.51) (2.04, 2.81) (2.44, 3.15)

ρx 0.9993 0.9995 0.9988 0.9993 0.9984 0.9992
(0.9991, 0.9995) (0.9993, 0.9995) (0.9983, 0.9993) (0.9990, 0.9994) (0.9974, 0.9993) (0.9987, 0.9995)

ψx 0.0250 0.0258 0.0290 0.0248 0.0283 0.0240
(0.0238, 0.0263) (0.0246, 0.0270) (0.0275, 0.0307) (0.0236, 0.0259) (0.0263, 0.0307) (0.0227, 0.0255)

J 21.89 14.61 52.00 20.68 61.09 26.65
(21.04, 22.74) (14.15, 15.08) (51.02, 53.11) (19.95, 21.47) (60.20, 61.98) (25.83, 27.48)

pval 0.005 0.024 0.000 0.008 0.000 0.003
(0.004, 0.007) (0.020, 0.028) (0.000, 0.000) (0.006, 0.011) (0.000, 0.000) (0.002, 0.004)

df 8 6 10 8 12 10

Table H.7: Long-run risk model. Average and(5, 95) percentiles of the parameter estimates.
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OmitsSD[rf ], AC[rf ], Omits All Moments
E[rf,5], & E[rf,20] E[rf,5] & E[rf,20]

Moment Data No VR Revised No VR Revised No VR Revised

E[∆c] 1.89 1.85 1.89 1.86 1.86 1.89 1.89
(−0.16) (0.03) (−0.09) (−0.11) (0.00) (0.01)

E[∆d] 1.47 1.38 1.55 1.58 1.42 1.25 1.20
(−0.10) (0.07) (0.11) (−0.05) (−0.24) (−0.28)

E[zd] 3.42 3.44 3.40 3.43 3.43 3.44 3.44
(0.09) (−0.16) (0.02) (0.08) (0.13) (0.13)

E[rd] 6.51 6.85 6.47 6.34 6.77 5.66 6.35
(0.21) (−0.03) (−0.11) (0.16) (−0.53) (−0.10)

E[rf ] 0.25 0.53 0.27 0.40 0.43 1.56 1.29
(0.45) (0.02) (0.24) (0.29) (2.14) (1.70)

E[rf,5] 1.19 0.29 0.92 0.05 0.33 1.33 1.31
(−1.33) (−0.40) (−1.68) (−1.27) (0.21) (0.17)

E[rf,20] 1.88 −0.42 0.54 −0.97 −0.34 0.69 0.90
(−3.82) (−2.21) (−4.74) (−3.68) (−1.98) (−1.63)

SD[∆c] 1.99 1.98 1.90 2.51 1.90 2.19 1.59
(−0.03) (−0.18) (1.06) (−0.19) (0.40) (−0.84)

SD[∆d] 11.09 5.70 5.04 6.36 5.60 6.36 5.49
(−1.97) (−2.21) (−1.73) (−2.01) (−1.73) (−2.05)

SD[rd] 19.15 17.81 19.88 18.32 17.98 18.71 18.20
(−0.71) (0.39) (−0.44) (−0.61) (−0.23) (−0.50)

SD[rf ] 2.72 0.88 5.75 1.18 2.86 1.00 2.93
(−3.63) (5.97) (−3.03) (0.27) (−3.39) (0.40)

SD[zd] 0.45 0.54 0.46 0.54 0.53 0.53 0.53
(1.41) (0.08) (1.36) (1.23) (1.29) (1.24)

AC[∆c] 0.53 0.44 0.46 0.49 0.43 0.46 0.41
(−1.03) (−0.78) (−0.49) (−1.08) (−0.81) (−1.29)

AC[∆d] 0.19 0.28 0.23 0.31 0.27 0.31 0.26
(0.81) (0.33) (1.14) (0.75) (1.15) (0.69)

AC[rd] −0.01 0.02 −0.05 0.01 0.00 0.00 0.00
(0.32) (−0.47) (0.23) (0.12) (0.17) (0.07)

AC[rf ] 0.68 0.96 0.83 0.96 0.69 0.96 0.70
(4.37) (2.36) (4.33) (0.17) (4.28) (0.28)

AC[zd] 0.89 0.94 0.90 0.94 0.94 0.94 0.94
(1.15) (0.26) (1.05) (1.07) (0.97) (1.04)

Corr[∆c,∆d] 0.54 0.48 0.49 0.45 0.48 0.45 0.49
(−0.29) (−0.22) (−0.40) (−0.27) (−0.43) (−0.24)

Corr[∆c, rd] 0.05 0.07 0.06 0.08 0.07 0.08 0.07
(0.26) (0.26) (0.40) (0.27) (0.45) (0.29)

Corr[∆d, rd ] 0.07 0.25 0.20 0.28 0.24 0.28 0.23
(2.14) (1.64) (2.51) (2.07) (2.49) (1.98)

Corr[ep, zd,−1] −0.16 −0.18 −0.13 −0.17 −0.18 −0.16 −0.17
(−0.21) (0.37) (−0.05) (−0.12) (0.06) (−0.08)

Corr[∆c, zd,−1] 0.19 0.66 0.60 0.70 0.66 0.68 0.64
(2.68) (2.32) (2.89) (2.65) (2.77) (2.56)

Table H.8: Long-run risk model. Data and average model-implied moments. t-statistics are in parentheses.
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Extended Long-Run Risk Model: ψ = 2.0

OmitsE[rf,5] & E[rf,20] All Moments

Ptr No VR+SV Demand Demand+SV No VR+SV Demand Demand+SV

γ 2.43 3.02 5.85 1.47 3.43 7.46
(2.29, 2.56) (2.79, 3.27) (4.67, 6.93) (1.19, 1.73) (3.00, 3.85) (6.49, 8.50)

β 0.9985 0.9992 0.9984 0.9983 0.9989 0.9979
(0.9984, 0.9986) (0.9992, 0.9993) (0.9982, 0.9986) (0.9982, 0.9985) (0.9989, 0.9990) (0.9978, 0.9980)

ρa − 0.9586 0.9925 − 0.9614 0.9931
(0.9565, 0.9606) (0.9908, 0.9934) (0.9589, 0.9639) (0.9916, 0.9938)

σa − 0.0184 0.0285 − 0.0195 0.0280
(0.0176, 0.0191) (0.0268, 0.0297) (0.0185, 0.0205) (0.0270, 0.0289)

µy 0.0016 0.0015 0.0016 0.0017 0.0016 0.0016
(0.0014, 0.0018) (0.0015, 0.0016) (0.0015, 0.0016) (0.0015, 0.0019) (0.0015, 0.0016) (0.0015, 0.0017)

µd 0.0013 0.0014 0.0015 0.0002 0.0013 0.0014
(0.0009, 0.0016) (0.0012, 0.0016) (0.0013, 0.0017) (0.0000, 0.0005) (0.0011, 0.0015) (0.0012, 0.0016)

σy 0.0007 0.0041 0.0006 0.0010 0.0036 0.0003
(0.0003, 0.0014) (0.0040, 0.0043) (0.0001, 0.0014) (0.0003, 0.0018) (0.0034, 0.0038) (0.0000, 0.0007)

ψd 3.00 − − 2.87 − −
(2.81, 3.21) (2.63, 3.09)

πdy 0.754 − − 0.744 − −
(0.482, 1.038) (0.417, 1.082)

φd 1.93 2.68 2.76 1.82 3.40 2.73
(1.84, 2.03) (2.51, 2.87) (2.60, 2.89) (1.72, 1.93) (3.06, 3.72) (2.62, 2.85)

ρx 0.9993 0.9978 0.9965 0.9995 0.9971 0.9966
(0.9991, 0.9995) (0.9973, 0.9983) (0.9958, 0.9971) (0.9994, 0.9995) (0.9965, 0.9977) (0.9960, 0.9972)

ψx 0.0253 0.0290 0.0342 0.0256 0.0293 0.0338
(0.0241, 0.0266) (0.0276, 0.0305) (0.0319, 0.0367) (0.0244, 0.0268) (0.0277, 0.0308) (0.0317, 0.0361)

πya − −0.053 −0.051 − −0.035 −0.046
(−0.072, −0.035) (−0.067, −0.034) (−0.051, −0.020) (−0.062, −0.028)

πda − −1.044 −0.866 − −1.007 −0.894
(−1.078, −1.008) (−0.897, −0.836) (−1.044, −0.971) (−0.921, −0.869)

ρσy
0.9608 − 0.7758 0.9524 − 0.5004

(0.9559, 0.9651) (0.6417, 0.8724) (0.9453, 0.9596) (0.3552, 0.6236)

νy 1.3e−5 − 2.7e−5 1.5e−5 − 4.0e−5
(1.2e−5, 1.5e−5) (2.1e−5, 3.5e−5) (1.3e−5, 1.8e−5) (3.4e−5, 4.5e−5)

J 18.44 13.99 9.77 26.27 19.32 11.28
(17.74, 19.18) (13.40, 14.54) (9.32, 10.22) (25.13, 27.51) (18.80, 19.86) (10.78, 11.76)

pval 0.018 0.082 0.135 0.004 0.037 0.187
(0.014, 0.023) (0.069, 0.099) (0.116, 0.157) (0.002, 0.005) (0.031, 0.043) (0.162, 0.214)

df 8 8 6 10 10 8

Table H.9: Extended long-run risk models. Average and(5, 95) percentiles of the parameter estimates.
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OmitsE[rf,5] & E[rf,20] All Moments

Moment Data No VR+SV Demand Demand+SV No VR+SV Demand Demand+SV

E[∆c] 1.89 1.91 1.85 1.89 1.98 1.89 1.92
(0.08) (−0.15) (0.03) (0.37) (0.02) (0.13)

E[∆d] 1.47 1.53 1.73 1.84 0.30 1.58 1.72
(0.06) (0.27) (0.38) (−1.23) (0.11) (0.26)

E[zd] 3.42 3.42 3.40 3.39 3.49 3.41 3.40
(−0.03) (−0.16) (−0.20) (0.51) (−0.07) (−0.17)

E[rd] 6.51 6.77 5.90 5.83 5.69 5.49 5.75
(0.16) (−0.38) (−0.43) (−0.51) (−0.64) (−0.48)

E[rf ] 0.25 0.09 0.45 0.15 0.99 1.25 0.30
(−0.27) (0.33) (−0.18) (1.22) (1.64) (0.08)

E[rf,5] 1.19 −0.79 0.37 0.57 1.43 1.27 1.51
(−2.93) (−1.21) (−0.93) (0.34) (0.12) (0.46)

E[rf,20] 1.88 −2.35 −0.17 0.18 1.14 0.93 1.45
(−7.03) (−3.40) (−2.82) (−1.22) (−1.58) (−0.70)

SD[∆c] 1.99 2.03 1.98 2.12 2.15 1.69 2.16
(0.09) (−0.03) (0.26) (0.32) (−0.64) (0.34)

SD[∆d] 11.09 5.38 7.58 9.47 5.40 7.81 9.61
(−2.09) (−1.28) (−0.59) (−2.08) (−1.20) (−0.54)

SD[rd] 19.15 18.67 18.14 18.53 18.27 18.59 18.33
(−0.25) (−0.53) (−0.33) (−0.46) (−0.29) (−0.43)

SD[rf ] 2.72 2.47 2.99 2.66 2.45 3.06 2.55
(−0.50) (0.53) (−0.12) (−0.53) (0.68) (−0.34)

SD[zd] 0.45 0.51 0.51 0.49 0.54 0.50 0.50
(0.93) (0.91) (0.56) (1.47) (0.72) (0.78)

AC[∆c] 0.53 0.44 0.43 0.45 0.45 0.41 0.45
(−0.95) (−1.06) (−0.92) (−0.85) (−1.26) (−0.88)

AC[∆d] 0.19 0.24 0.21 0.17 0.25 0.22 0.17
(0.49) (0.20) (−0.21) (0.52) (0.29) (−0.22)

AC[rd] −0.01 −0.03 0.02 −0.03 0.01 0.02 0.00
(−0.25) (0.36) (−0.20) (0.27) (0.32) (0.08)

AC[rf ] 0.68 0.69 0.71 0.70 0.65 0.72 0.72
(0.07) (0.50) (0.35) (−0.48) (0.66) (0.57)

AC[zd] 0.89 0.93 0.93 0.91 0.94 0.92 0.92
(0.89) (0.88) (0.51) (1.13) (0.72) (0.62)

Corr[∆c,∆d] 0.54 0.51 0.48 0.52 0.52 0.45 0.49
(−0.13) (−0.27) (−0.10) (−0.09) (−0.41) (−0.23)

Corr[∆c, rd] 0.05 0.06 0.09 0.10 0.06 0.09 0.10
(0.20) (0.55) (0.76) (0.18) (0.64) (0.75)

Corr[∆d, rd ] 0.07 0.22 0.14 0.07 0.22 0.13 0.06
(1.77) (0.80) (0.04) (1.80) (0.78) (−0.05)

Corr[ep, zd,−1] −0.16 −0.23 −0.15 −0.13 −0.20 −0.13 −0.12
(−0.67) (0.18) (0.33) (−0.41) (0.35) (0.42)

Corr[∆c, zd,−1] 0.19 0.65 0.66 0.63 0.67 0.64 0.63
(2.64) (2.66) (2.52) (2.73) (2.57) (2.53)

Table H.10: Extended long-run risk models. Data and averagemodel-implied moments. t-statistics are in parentheses.
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Extended Long-Run Risk Model: ψ = 1.5

OmitsE[rf,5] & E[rf,20] All Moments

Ptr No VR+SV Demand Demand+SV No VR+SV Demand Demand+SV

γ 2.17 2.61 4.57 1.69 3.42 5.99
(2.06, 2.28) (2.32, 2.96) (3.67, 5.54) (1.37, 2.28) (2.90, 3.97) (4.65, 8.05)

β 0.9990 0.9995 0.9991 0.9988 0.9994 0.9986
(0.9990, 0.9991) (0.9995, 0.9995) (0.9989, 0.9992) (0.9987, 0.9989) (0.9993, 0.9994) (0.9984, 0.9988)

ρa − 0.9564 0.9898 − 0.9611 0.9848
(0.9536, 0.9592) (0.9860, 0.9929) (0.9582, 0.9641) (0.9728, 0.9926)

σa − 0.0178 0.0260 − 0.0196 0.0229
(0.0168, 0.0188) (0.0231, 0.0287) (0.0184, 0.0207) (0.0197, 0.0265)

µy 0.0016 0.0015 0.0016 0.0017 0.0016 0.0016
(0.0014, 0.0018) (0.0014, 0.0016) (0.0015, 0.0017) (0.0015, 0.0019) (0.0015, 0.0016) (0.0015, 0.0017)

µd 0.0012 0.0014 0.0015 0.0003 0.0013 0.0012
(0.0009, 0.0016) (0.0011, 0.0016) (0.0013, 0.0017) (0.0000, 0.0008) (0.0010, 0.0015) (0.0009, 0.0015)

σy 0.0007 0.0041 0.0006 0.0013 0.0033 0.0003
(0.0003, 0.0013) (0.0039, 0.0043) (0.0000, 0.0013) (0.0004, 0.0027) (0.0031, 0.0035) (0.0000, 0.0008)

ψd 3.07 − − 2.98 − −
(2.88, 3.27) (2.74, 3.19)

πdy 0.692 − − 0.619 − −
(0.400, 0.970) (0.152, 1.018)

φd 2.02 2.65 2.62 1.95 3.73 2.57
(1.91, 2.13) (2.42, 2.92) (2.44, 2.79) (1.83, 2.08) (3.33, 4.17) (2.32, 2.99)

ρx 0.9994 0.9984 0.9978 0.9995 0.9973 0.9983
(0.9993, 0.9995) (0.9978, 0.9989) (0.9972, 0.9983) (0.9992, 0.9995) (0.9966, 0.9980) (0.9976, 0.9989)

ψx 0.0253 0.0276 0.0305 0.0259 0.0285 0.0287
(0.0242, 0.0265) (0.0262, 0.0291) (0.0283, 0.0326) (0.0246, 0.0279) (0.0266, 0.0301) (0.0269, 0.0308)

πya − −0.055 −0.053 − −0.033 −0.055
(−0.078, −0.035) (−0.071, −0.033) (−0.049, −0.018) (−0.076, −0.035)

πda − −1.065 −0.891 − −1.004 −0.975
(−1.111, −1.024) (−0.954, −0.833) (−1.049, −0.964) (−1.040, −0.905)

ρσy
0.9545 − 0.7629 0.8894 − 0.2819

(0.9489, 0.9601) (0.6252, 0.8652) (0.2121, 0.9462) (0.0259, 0.5148)

νy 1.4e−5 − 2.8e−5 2.0e−5 − 4.1e−5
(1.3e−5, 1.6e−5) (2.2e−5, 3.6e−5) (1.5e−5, 4.8e−5) (3.5e−5, 4.7e−5)

J 19.38 15.22 11.18 29.58 20.70 14.39
(18.62, 20.24) (14.53, 15.84) (10.65, 11.77) (28.18, 31.87) (20.16, 21.28) (13.82, 14.94)

pval 0.013 0.055 0.084 0.001 0.023 0.073
(0.009, 0.017) (0.045, 0.069) (0.067, 0.100) (0.000, 0.002) (0.019, 0.028) (0.060, 0.087)

df 8 8 6 10 10 8

Table H.11: Extended long-run risk models. Average and(5, 95) percentiles of the parameter estimates.
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OmitsE[rf,5] & E[rf,20] All Moments

Moment Data No VR+SV Demand Demand+SV No VR+SV Demand Demand+SV

E[∆c] 1.89 1.93 1.83 1.90 1.98 1.89 1.93
(0.15) (−0.24) (0.06) (0.36) (0.02) (0.16)

E[∆d] 1.47 1.46 1.68 1.78 0.43 1.53 1.50
(−0.02) (0.22) (0.32) (−1.09) (0.05) (0.03)

E[zd] 3.42 3.43 3.40 3.40 3.49 3.42 3.41
(0.03) (−0.13) (−0.19) (0.49) (−0.04) (−0.07)

E[rd] 6.51 6.83 6.15 6.00 5.83 5.45 5.91
(0.20) (−0.23) (−0.32) (−0.42) (−0.66) (−0.38)

E[rf ] 0.25 0.01 0.66 0.09 1.10 1.31 0.30
(−0.40) (0.67) (−0.27) (1.39) (1.73) (0.08)

E[rf,5] 1.19 −0.85 0.53 0.35 1.45 1.30 1.69
(−3.01) (−0.98) (−1.25) (0.37) (0.16) (0.72)

E[rf,20] 1.88 −2.69 −0.18 −0.48 0.96 0.87 1.30
(−7.58) (−3.42) (−3.92) (−1.53) (−1.66) (−0.96)

SD[∆c] 1.99 2.07 1.97 2.11 2.21 1.56 2.05
(0.16) (−0.04) (0.24) (0.45) (−0.89) (0.11)

SD[∆d] 11.09 5.60 7.49 8.89 5.75 7.84 8.53
(−2.01) (−1.32) (−0.80) (−1.95) (−1.19) (−0.94)

SD[rd] 19.15 18.70 17.81 18.13 18.38 18.51 17.83
(−0.24) (−0.71) (−0.54) (−0.40) (−0.33) (−0.69)

SD[rf ] 2.72 2.31 3.01 2.66 2.03 3.08 2.67
(−0.81) (0.57) (−0.12) (−1.36) (0.72) (−0.11)

SD[zd] 0.45 0.51 0.52 0.50 0.54 0.50 0.52
(0.97) (1.08) (0.84) (1.48) (0.79) (1.13)

AC[∆c] 0.53 0.45 0.43 0.44 0.46 0.41 0.44
(−0.91) (−1.06) (−0.95) (−0.79) (−1.34) (−1.01)

AC[∆d] 0.19 0.26 0.21 0.17 0.26 0.23 0.17
(0.61) (0.20) (−0.19) (0.69) (0.32) (−0.21)

AC[rd] −0.01 −0.03 0.03 −0.02 0.01 0.02 0.01
(−0.27) (0.43) (−0.15) (0.19) (0.34) (0.24)

AC[rf ] 0.68 0.69 0.71 0.71 0.64 0.73 0.73
(0.07) (0.51) (0.48) (−0.59) (0.70) (0.68)

AC[zd] 0.89 0.93 0.94 0.93 0.94 0.93 0.93
(0.90) (1.00) (0.75) (1.11) (0.76) (0.93)

Corr[∆c,∆d] 0.54 0.50 0.48 0.50 0.50 0.45 0.49
(−0.16) (−0.28) (−0.16) (−0.17) (−0.39) (−0.23)

Corr[∆c, rd] 0.05 0.06 0.08 0.09 0.06 0.09 0.08
(0.23) (0.47) (0.59) (0.24) (0.65) (0.43)

Corr[∆d, rd ] 0.07 0.22 0.14 0.09 0.23 0.14 0.09
(1.89) (0.83) (0.24) (2.00) (0.81) (0.29)

Corr[ep, zd,−1] −0.16 −0.23 −0.16 −0.16 −0.20 −0.14 −0.16
(−0.67) (0.02) (0.09) (−0.40) (0.31) (0.05)

Corr[∆c, zd,−1] 0.19 0.66 0.66 0.65 0.67 0.64 0.65
(2.66) (2.66) (2.59) (2.76) (2.55) (2.62)

Table H.12: Extended long-run risk models. Data and averagemodel-implied moments. t-statistic are in parentheses.
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