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1 INTRODUCTION

In standard asset pricing models, uncertainty enters gftirthue supply side of the economy, either
through endowment shocks in a Lucas (1978) tree model omptivity shocks in a production
economy model. Recently, several papers introduced desidadincertainty or “valuation risk”
as a potential explanation of key asset pricing puzzlesuddierque et al., 2016, 2015; Creal and
Wu, 2017; Maurer, 2012; Nakata and Tanaka, 2016; Schoshetidl., 2018). In macroeconomic
parlance, valuation risk is typically referred to as eithdiscount factor or time preference shdck.

The literature contends valuation risk is an important cheieant of key asset pricing mo-
ments when it is embedded in Epstein and Zin (1989) recupsiierences. We show the suc-
cess of valuation risk rests sensitively on the way it isadtrced. In particular, we examine two
specifications—Current (the specification used in the gsg®hg literature) and Revised (our pre-
ferred alternative)—and show they come to very differemiobasions. Moreover, we identify four
desirable properties of Epstein-Zin recursive prefersticat the current specification violates and
the revised specification satisfies, which cautions agaorginuing to use the current preferences.

The first property of recursive preferences pertains to @atjve risk aversion. It says that,
holding all else equal, an increase in the coefficient ottisedaisk aversion (RA;) equates to an
increase in a household’s risk aversion. We show this ptgees not hold when the intertempo-
ral elasticity of substitution (IES)) is below unity under the current specification. An increase
equates to a decrease, rather than an increase, in riskoawdligping its standard interpretatién.

The second property is that preferences are well-definddumiitary IES. The IES measures
the responsiveness of consumption growth to a change inetilénterest rate. An IES of is
a focal point because this is when the substitution and wedfects of an interest rate change
exactly offset. We show this property does not hold undecthieent specification in the literature.

The third property is that recursive preferences nest 8eparable log-preferences wher-

1» = 1. We show the current specification does not always nest kefgmnces in this case because
it can even generate extreme curvature and risk-aversiemwhnds: are arbitrarily close ta.

The final property is that equilibrium moments are contiraifanctions of the IES over its do-
main. We show there is a discontinuity under the currentifipatton. When the IES is marginally
above unity, households require an arbitrarily large ggoiiemium and an arbitrarily small risk-
free rate, while an IES marginally below unity predicts thmposite. This is because the utility
function exhibits extreme concavity with respect to valatrisk when the IES is marginally
above unity and extreme convexity on this dimension whenE&eis marginally below unity.

1Time preference shocks have been widely used in the maeratiire (e.g., Christiano et al. (2011); Eggertsson
and Woodford (2003); Justiniano and Primiceri (2008); Rdierg and Woodford (1997); Smets and Wouters (2003)).

2The distinction between Epstein and Zin (1989) recursieégrences and constant relative risk aversion (CRRA)
utility is that in the formery) and~ are distinct structural parameters, whereas in the latterl /.



The discontinuity is relevant because there is a tensiowdset the finance and macroeco-
nomics literatures as to whether the IES lies above or beluty.uSetting the IES td.5, as is
common in the macroeconomics literature, can inadvesteesgult in a sizable negative equity pre-
mium 3 Imagine two researchers who want to estimate the IES sebtiaid to[0, 1) and(1, co),
respectively. The estimates in the two settings would deelue to the discontinuity. Therefore,
awareness of these issues is important even if researatr@iawe to use the current preferences.

In a business cycle context, de Groot et al. (2018) proposwiaed Epstein-Zin preference
specification for valuation risk in which the time-varyingights in the CES time-aggregator sum
to 1, a restriction the current specification does not imposealddthis revised specification there
is a well-defined equilibrium when the IES Isand asset prices are robust to small variations
in the IES. Continuity is preserved because the weights éntithe-aggregator always sum to
unity. Another interpretation is that the time-aggregamaintains the well-known property that a
CES aggregator tends to a Cobb-Douglas aggregator as steigyaapproaches. The current
specification violates the restriction on the weights sdithiing properties of the CES aggregator
break down. In summary, the revised specification is comsistith the four desirable properties.

This paper makes two key contributions. First, it analylycehows the preference specification
profoundly affects the equilibrium determination of agsetes. For example, the same RA and
IES can lead to very different values for the equity premiurd ask-free rate and comparative
statics, such as the response of the equity premium to thesl#&h sign. Taken at face value,
the current specification resolves the equity premium (Meind Prescott, 1985) and risk-free
rate (Weil, 1989) puzzles in our baseline model wiild. cash-flow risk. Under the revised
specification, valuation risk has a smaller role, RA is inugialy high, and the puzzles resurface.

Second, using a simulated method of moments (SMM), thisrpapeirically re-evaluates the
role of valuation risk in explaining asset pricing and céisi+ moments. We find after estimating
a sequence of increasingly rich models under the revisedfg@tion, the role and contribution
of valuation risk change dramatically relative to the kiieire. However, valuation risk under the
revised specification consistently improves the abilityhef models to match moments in the data.

We begin by estimating the Bansal and Yaron (2004) longiskmodel (without time-varying
uncertainty) without valuation risk and find it significantinder-predicts the standard deviation
of the risk-free rate, even when these moments are targétbdn we introduce valuation risk, it
accounts for roughly0% of the equity premium, but at the expense of over-predidtiegtandard
deviation of the risk-free rate. After targeting the riskd rate dynamics, valuation risk only ac-
counts for abou’% of the equity premium. Therefore, we find it is crucial to &trthese dynamics

SHall (1988) and Campbell (1999) provide empirical evidefarean IES close to zero. Basu and Kimball (2002)
find an IES of0.5 and Smets and Wouters (2007) estimate a value of rougfilyin contrast, van Binsbergen et al.
(2012) and Bansal et al. (2016) estimate models with Ep&tipreferences and report IES valuesidf3 and2.18.



to accurately measure the contribution of valuation risklustion risk is also able to generate the
upward sloping term structure for real Treasury yields tbimthe data, whereas cash-flow risk
alone predicts a counterfactually downward sloping temucstire. While valuation risk (with or
without the targeted risk-free rate moments) improves tha the long-run risk model, the model
still fails a test of over-identifying restrictions. This because the model fairs poorly in matching
the low predictability of consumption growth from the prd&idend ratio, the high standard de-
viation of dividend growth, and the weak correlation betwde&idend growth and equity returns.
We consider two extensions that improve the model’s fit: (Lingeraction term between valu-
ation and cash-flow risk (a proxy for general equilibrium dewh effects) following Albuquerque
et al. (2016) (henceforth, “Demand” model) and (2) stodbasilatility on cash-flow risk as in
Bansal and Yaron (2004) (henceforth, “SV” model). In a hoese between these extensions, we
find the Demand model wins and passes the over-identifystgcgons test at the% level. How-
ever, the two extensions are complements and the combinddlpasses the test at th&; level.
This is because the demand extension lowers the correlagitveen dividend growth and equity
returns, while the SV extension offsets the effect of higlsuation risk on risk-free rate dynam-
ics. Targeting longer-term rates further increases tlaivelimprovement of the combined model.
Our paper also makes an important technical contributioms ¢ommon in the literature to
estimate asset pricing models with a simulated method of emsr{e.g., Adam et al., 2016; Albu-
guerque et al., 2016; Andreasen and Jgrgensen, 2019). Weohuhis methodology in two ways.
One, we run Monte Carlo estimations of the model and calewwt@ndard errors using different se-
guences of shocks, whereas estimates in the literaturg@ioally based on a particular sequence
of shocks. This approach allows us to obtain more precismatds and account for differences
between the asymptotic and sampling distributions of tlmarpaters. Two, we use a rigorous two-
step procedure to find the global optimum that uses simubatedaling to obtain candidate draws
and then recursively applies a nonlinear solver to eachidated We find that without applying
such rigor, the algorithm would settle on local optima anteptally lead to incorrect inferences.

Related Literature This paper builds on the growing literature that examinesrtie of valu-
ation risk in asset pricing models. Maurer (2012) and Allrrque et al. (2016) were the first.
They adopt the current preference specification and fincatialu risk accounts for key asset pric-
ing moments, such as the equity premium. Albuquerque ef8llg) also focus on resolving
the correlation puzzle (Campbell and Cochrane, 1999). $uobide et al. (2018) use a Bayesian
mixed-frequency approach that targets entire time seaiber than specific moments, but they do
not target the term structure. They focus on one model witetlsV processes, but where valua-
tion risk and cash-flow risk are always independent. We exanm-depth the role of valuation risk
by estimating a sequence of increasingly rich models wiigioun cash-flow risk, some of which
include general equilibrium demand effects. We find the tstiacture moments are informative
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about the role of valuation risk and the data prefers modéls demand effects. Creal and Wu
(2017) focus on bond premia. They also use the current spetidin, but valuation risk is tied
to consumption and inflation and does not have an indepestiaritastic element. They find the
slope of the yield curve is largely explained by valuatiakrigiven an IES estimate equallt®?2.
Nakata and Tanaka (2016) and Kliem and Meyer-Gohde (2018yserm premia in a New
Keynesian model using the current specification. The focakbrate the IES t6.11 and generate
a negative term premium. The latter estimate the IES witha pr the [0, 1] range and obtain a
value 0f0.09. Both findings are a consequence of the asymptote, as we staytiaally. In con-
trast with the literature, Rapach and Tan (2018) and Biaetél. (2018) use the revised specifica-
tion and estimate a real business cycle model. They find tratuask still explains a large portion
of the term premium because demand shocks interact withrdtiption side of the econony.
The paper proceeds as follonSection 2ays out desirable properties of recusive preferences
and the consequences of the valuation risk specificaBention 3discusses asset pricing implica-
tions. Section 4describes our estimation methdgection 5Squantifies the effects of valuation risk
in our baseline model withi.d. cash-flow risk.Section 6estimates the basic long-run risk model
with and without valuation risk.Section 7extends the long-run risk model to include valuation
risk shocks to cash-flow growth and stochastic volatilitycash-flow risk.Section 8concludes.

2 EPSTEIN-ZIN PREFERENCES WITHDISCOUNTFACTOR SHOCKS

2.1 BACKGROUND Epstein and Zin (1989) preferences generalize standareceegb utility
time-separable preferences. Current-period utility ineel recursively over current-period con-
sumptiong,, and a certainty equivalent; (U, ), of next period’s random utility/;. |, as follows:

U= W<Ct>/~bt(Ut+1>)> (1)

wherep; = g~ (E;9(U11)), W is thetime-aggregatorandyg is therisk-aggregator W andg are
increasing and concave ahid andy; are homogenous of degréeNote thatu,(U;1) = U if
there is no uncertainty, and(U,..1) < E;[U;4+] if g is concave and future outcomes are uncertain.
Most of the literature considers the following functionairhs forit andg:

9(2) = ("7 = 1)/(1 =), for1 £~ >0, )
W(w,y) = ((1—B)a' % + gy /) U gor1 £ > 0. 3)

Wheny = 1, g(z) = log(z) and wheny = 1, W = 2'=#y#. Therefore, the time-aggregator is

4Two other strands of the literature have interesting cotimes to our work. One, disaster risk (see Barro, 2009
and Gourio, 2012) can generate variation in the stochastodnt factor analogous to valuation risk. Two, Bansal
et al. (2014), identify “discount rate risk” as a componeinigk premia distinct from cash-flow and volatility risks.



a CES function that converges to a Cobb-Douglas function as 1.° It is also common in the
literature to see the time-aggregator written without(the- 5) coefficient onz as follows:

W(z,y) = (xl—l/w 4 5y1—1/¢)1/(1—1/¢) . 3)

In this case, §’) is undefined when) = 1. This is because the weights in the time-aggregator do
not sum tol. Nevertheless, the exact specificatiorfiofdoes not affect equilibrium behavibr.

Result 1. Utility function (1) with time-aggregato(3) or (3’) represents the same preferences.

Result 1holds because it is possible to switch betwe®rafid @) with a positive monotonic
transformation that multiplies the utility function iy — 3)/(=1/%).7 To see this, note that the
intertemporal marginal rate of substitution (equivalgrtie stochastic discount factor) is given by

oU, ) <3Ut) <Ct+1)_1/w ( Ui )Uw_7
= —-— | = — —_— . 4
i (0Ct+1 / dcy b Ct ot (Ut+1) @

Sincey; is homogenous of degréeapplying the positive monotonic transformatioriig; in the
both numerator and denominator leaves the intertemponajined rate of substitution unchangéd.
The results thus far are standard, but they lay the groundfeorthe discussion that follows.
Valuation risk involves introducing discount factor sheekexogenous stochastic time-variation
in 5. Whether one works with3j and replaces both instances®fvith a,3 (wherea; is a log-
normal mean zero stationary AR(1) stochastic process) enasrks with @) and replaces the
only instance of3 with a;/ is notinnocuous, even though one might conclude it is fiRasult 1
The specification matters and in what follows we will deserilve consequences of these choices.
To determine a preferred specification of valuation risk fingt establish four desirable prop-
erties of standard Epstein-Zin preferenagthoutdiscount factor shocks, and then assess whether
the two specifications of Epstein-Zin preferences withalistt factor shocks satisfy each of them.

Property 1. ~ is a measure of comparative risk aversion.

Suppose there are two householdsand B, with Epstein-Zin preferences as defined above.
The two households are identical in every way except in peefee parametey. If v measures
risk aversion, then househaltlis more risk averse than househdidf and only if y4 > ~5.

Property 2. ¢ is a measure of the IES and preferences are well defined withEH

SThe functional form fog implies i, = (E,U))Y/(=") wheny # 1 andy, = exp(E; log(Uz4+1)) wheny = 1.

6Kraft and Seifried (2014) prove the continuous-time anatbrggcursive preferences (stochastic differential wiilit
Duffie and Epstein, 1992) is the continuous-time limit ofunesive utility if the weights in the time-aggregator sunito

"This is similar to the common practice of writing CRRA ufiliasu(c) = ¢/« instead ofu(c) = (¢* — 1)/a,
even though the omitted constant term is necessary whetmgrthe limit asa: — 0 is given byu(c) = log(c).

8An equivalent observation is that time-preference is imtheient of the1 — 3) coefficient. In an environment
without consumption growth and without risk, time-prefere is captured by the discount factor (i1 = 5).
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The IES is defined as the responsiveness of consumptionigtovatchange in the real interest
rate. Arise in the real interest rate induces both a subistiteffect (consumption today becomes
relatively more expensive, decreasing current consumptaod an income effect (a saver feels
wealthier, increasing current consumption). The suligtituand income effects exactly offset
wheny = 1. Therefore, a unitary IES is an important focal point for amydel of preferences.

Property 3. Wheny = ¢ = 1, Epstein-Zin preferences are equivalent to time-separdn-
preferences given by, = (1 — ) log(c;) + SE U4 or, alternatively,U, = log(c;) + BE U .

Property 3s a special case of the more general property that whenl /¢, Epstein-Zin pref-
erences simplify to standard expected utility time-selplarpreferences. However, time-separable
log preferences are a staple of economics textbooks, spribwgdes another useful benchmark.

Property 4. Equilibrium moments are continuous functions of the lEyver its domaiR+.

This final property relates to the discussion of time-aggteg@) versus 8’). Adopt 3’) and
supposer = 1 andy > 0. In this caselim,_,;- W = 0 andlim,_,;+ W = +o0. Therefore, §)
exhibits a discontinuity. However, as discussed, thisafiiauity does not affect the intertemporal
marginal rate of substitution4), and, as a result, does not materialize in equilibrium musie

2.2 DISCOUNT FACTOR SHOCKS There are two ways to introduce discount factor shocks into
the Epstein-Zin time-aggregator. The first is denoted tguifrent specification” and given by

I/’[/C'(a:,7y7 at) = ((1 - B)xl—l/w + atﬁyl_l/w)l/(l—l/d)) ) (BC)
The second is denoted the “[R]evised specification” andrgbxe
WR(.T,y,CLt> = ((1 . atﬁ)xl—l/w + atﬁyl_l/d))l/(l_l/w) . (BR)

The current specification is commonly adopted in the liteat Its use is not surprising since, at
face value, it is the natural extension of discount factarckk to expected utility time-separable
preferences given by, = u(c;) + a8 E;Uy, 1. The specifications, however, aret equivalent.

Result 2. Utility function (1) given(3C) does not, in general, reflect the same preferencé3Rs

To demonstrate this result, we show there is no positive noomotransformation that maps the
two specifications. Defing¢ = (%)1/(1—1/1&) UF, so the transformed preferences are given by

e 1-1/% _1/(-1/9) e \ VY VA=)
UZ = ((1 —af)cy + a B (at—i-l Ut+1) ) ) (5)

A unitary IES is also the basis of the “risk-sensitive” prefeces in Hansen and Sargent (2008, Section 14.3).
19The presence of th@ — 3) coefficient in BC) is irrelevant but we include it for symmetry. The domainugfis
constrained to ensure the time-aggregator weights areg/alpasitive. With 8C), a; > 0. With BR), 0 < a; < 1/8.
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wherea,; = (1 — a,8)/(1 — a;115). The revised preferences are given by

UtR = ((1 - atﬁ)ci_l/w + a B (Uﬁﬁl_l/w)l/(l_l/w) . (6)
Therefore, the equivalence only existsif ; = a, for all t. Comparing §) and @), there are two
striking features of the current specification. One, it hasemisk sincei, . ; introduces additional
variance. Two, it has more curvature in the certainty edeivssincei,; is raised tol /(1 —1/4).
To gain further insight, we make a few simplifying assumps$ioFirst, suppose,; = 1 and
Aj = cyj/crj—1 = A > 1forall j > 2. Second, suppose,; = 1 for j = 0 andj > 2, but
a;,1 1S a random draw. The terms inside the expectations opsratotained in:; are given by

Uc(ar) = g(Utﬁl) =9 ((1 -0+ at+lﬁf)l/(l_1/w)) ) (7)
Ur(a1) = g(US) = g (1= aa B+ at+1ﬁj)1/(1_l/w)) ; (8)

wherez = A'"Y¥(1 — B)/(1 — BA'Y/¥). One source of intuition is to examine the curvature of
(7) and @) with respect tai,; by defining an Arrow-Pratt type measure of risk aversion igivg

Aj = _(U],'/(at-’-l)/(_];(a't‘i‘l))|at+1:17

wherej € {C, R}. The curvatures of the current and revised specificationgiaen by

(v =1y _ _(r=1/v\ B _
AC_(W)BN o and AR_(l—l/w)l—ﬁ(Al Teneoe

To visualize these resultBigure 1plots state-space indifference curves following Backus.et
(2005). Suppose there are two equally likely statesifor € {a;, a>}. The45-degree line repre-
sents certainty. We pld,, as) pairs, derived irAppendix A that deliver the same utility as the
certainty equivalent. A convex indifference curve imple®rsion with respect to valuation risk.

Result 3. The current specification violaté&operty 1wheny < 1 because increasingleads to
a fall in risk aversion. In contrast, the property is neveolaited under the revised specification.

Result 3states that under the current specification, a higher RA&aah o a fall in risk aver-
sion QA /0y < 0) for ¢» < 1. Visually, this is captured in the top-row &igure 1 Under the
current specification, witlh = 0.95, an increase i from 0.1 to 3 causes the indifference curve to
become less convex, indicating a decrease in risk aver¥ihreny) = 1.05, the opposite occurs.
In contrast, under the revised specificatiom? /0~ > 0 for all 4, consistent wittProperty 1

Result 4. The current preferences become extremely concave witleaesp valuation risk as
1 — 17 and extremely convex as— 1~ and are undefined whep = 1, violating Property 2 In
contrast, the curvature of the revised preferences is oootis and increases only modestly/in
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Figure 1: State-space indifference curves. Wesset0.9975 andA = 1.0015.

Result 4states that under the current specification, risk aversigary sensitive to the calibra-
tion of the IES. This is concerning since Epstein-Zin-typef@rences are designed to separate risk
attitudes from timing attitudes. Under the current speaiftn, curvature and hence risk attitudes
are primarily determined by the IES parameter. The revipedification resolves this problem.

One source of intuition is to examine an alternative versiahe current specification given by

WA(x,y,at) = ((1 - atﬁ)xl—l/w + By1_1/¢)1/(1—1/¢) ’ (3A)

wherea; only appears in the first position. A priori, if we accept therent specification, then
(3A) should be an acceptable alternative. The curvature oflteenative specification is given
by A4 = — (?:iﬁﬁ) % (1 — ﬁAl‘W’), which has almost the exact opposite propertiesias
because the preferences become extremely convex withcteaspealuation risk ag) — 11 and
extremely concave as — 1-. SinceA” = A“ + A4, the extreme curvature observed in both the

current and alternative specifications broadly cancel ndeuthe revised specificatidh.

Result 5. Supposey = 1 —eand1 — 1/¢ = €2. Ase — 0, the current specification violates
Property 3 whereas the revised specification convergds;te- (1 — a;3) log ¢, + a;,fE Uy 1.

Appendix Bshows BA) is isomorphic to 8C) with a small change in the timing of the discount factor shoc
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Result 5summarizes our investigation Bfoperty 3under valuation risk. If we begin with log-
preferences and introduce discount factor shocks,thea (1 —a,3) log(¢;) +a;SEUys 1 Or U, =
log(¢;) + a;8E,Uyyq and there is no curvature with respect to valuation ridk= 0). Therefore,
when~y = ¢ = 1, Epstein-Zin preferences under valuation risk should ydar@duce to one of
these utility functions and the stochastic discount fashauld reduce tew, ; = atﬁ(%)%l
ormgyq = atﬁcil . We show inAppendix Cthat this occurs under the revised specification nloit
under the current specification whérapproaches at a faster rate than. Furthermore, suppose
we calculate the limit as — 0, assumingy = 1 — ¢ and1 — 1/¢) = €2 to ensure) converges to
1 at a faster rate thag. The current specification still exhibits extreme curvatuaith respect to

valuation risk even though bothand«) become arbitrarily close tbas in the log-preference case.

3 CONSEQUENCES FORASSETPRICING

Thus far, we have described the alternative valuation nmcigications in terms of properties
related to the curvature of the utility function. This seatiapplies these ideas to asset pricing
moments using our baseline asset pricing model and andlygesonsequences f&roperty 4

3.1 BASELINE ASSEFPRICING MODEL This section describes our baseline model witd.
cash-flow risk. Later sections will introduce richer feawiinto the model. Each periodlenotes
1 month. There are two assets: an endowment shafethat pays incomey,, and is in fixed unit
supply, and an equity share,;, that pays dividends/,, and is in zero net supply. A representative
household choosgs:, s; ¢, s2. }5°, to maximize utility (L) with time aggregatordC) or (3R).*?

The representative household’s choices are constraindteldfiow budget constraint given by

¢t + pyiSie + DaeSer = Dys + Y)s14-1 + (Par + di)s2-1, (10)

wherep, , andp,,, are the endowment and dividend claim prices. The optimadityditions imply

Tyi41 = (Dyit1 + Yir1) /Dyt (11)

Eym]yry i) =1,
=1, 7rair1 = Pat+1 + dit1)/Da, (12)

E, [m§+1rd,t+1]

wherer, ., andrq,,, are the gross returns on the endowment and dividend clamds, a

miy = af B (ﬂ)_w (%)Wﬂ, (13)
Ct Nt(UtH)
mf, = af'B (1 - a%ﬁ) <Ct“)_w (L&)H) " (14)
1—aip Ct Nt(Ut}il)

12Kkollmann (2016) introduces a time-varying discount fadtto Epstein-Zin preferences in similar way as our re-
vised specification. In that setup, however, the discouwtbfas a function of endogenously determined consumption.
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To permit an approximate analytical solution, we rewrite diptimality conditions as follows

Eyfexp(ifyy + Fyep1)] = 1, (15)
Et[exp(mg+1 + fd,t—kl)] =1, (16)

where a hat denotes a log variable. The log stochastic disdactor is given by
i = 0log B+ 0(ar — wa) — (0/Y) A1 + (0 — 1)y iia, (17)

wheref = (1 —v)/(1 — 1/4). The second term captures the direct effect of valuatidnaisthe
stochastic discount factor, wheré = 0, v’ = 8, anda;, = a¢ ~ af*/(1 — /3). Valuation risk also
has an indirect effect through the return on the endowmere.ldg preference shock;, 1, follows

&t—l—l = pa&t + Oa€ajt+1, Eat+1 ™ N(O7 1)7 (18)

where0 < p, < 1is the persistence of the process apd> 0 is the shock standard deviation. We
apply a linear approximation to the asset returns follovagnpbell and Shiller (1988) to obtain

Tyt+1 = Ryo + Ry12yt4+1 — 2yt + Ayt-‘:—l» (19)

Tdt+1 = Kdo + Kd1Zdi+1 — 2z + Ddiy, (20)
wherez, ,;, is the log price-endowment ratid, ;1 is the log price-dividend ratio, and

Kyo = log(l +exp(2y)) — k1 2y, Ky = exp(Zy)/(1+ exp(Z,)), (21)
Kao = log(1 + exp(Zq)) — ka1Za, ka1 = exp(2q)/(1 + exp(Zq)), (22)

are constants that are functions of the steady-state pridewment and price-dividend ratios.
To close the model, the processes for log-endowment andiladend growth are given by

Agt—l—l = Uy + OyEyt+1, Eyt+1 ™ N(O> 1)7 (23)
ACZt+1 = Ud + TayOy€yt+1 + Va0yEd i1, Edp1 ~ N(0,1), (24)

wherey,, andy, are the steady-state growth rateg,> 0 andi,0, > 0 are the shock standard
deviations, andr,;, determines the covariance between consumption and diviglewth. At this
point, cash-flow growth igi.d. Later sections will introduce other empirically relevaaafures.
The asset market clearing conditions imply, = 1 ands,; = 0, so the resource constraint
is ¢; = 9. Equilibrium includes sequences of price®.1, 2.t Za.t, Ty.t+1, Td+1 Fiog, quantities
{¢,}2,, and exogenous variablédg, 1, Ad, 1, a1 152, that satisfy 15)-(20), (23), (24), and the
resource constraint, given the state of the econdmy},, and shock sequences,, ;, €4, €a.t } 121 -
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We posit the following solutions for the price-endowmend @mice-dividend ratios:

iy,t = Tyo + nyldtv ZA/d,t = Tldo + ndldtv (25)

wherez, = 1,0 andz; = n4. We solve the model with the method of undetermined coefftsie
Appendix Dderives the SDF, a Campbell-Shiller approximation, thetsah, and key asset prices.

3.2 AsSETPRICING MOMENTS We begin with a brief discussion of the asset pricing implica
tions of the model without valuation risk. In particular, weview how Epstein-Zin preferences,
by separating risk attitudes from timing attitudes, aid &tching the risk-free rate and equity pre-
mium. We then compare these moments under the current aisédexaluation risk preferences.

3.2.1 (ONVENTIONAL MODEL In the original Epstein-Zin preferences, there is no vatumat
risk (o, = 0). If, for simplicity, we further assume endowment and dend risks are perfectly cor-
related ¢, = 0; 74, = 1), then the average risk-free rate and average equity premaia given by

Elfg] = —log B + py /1 + (1)1 — ) (1 =) =)0, /2, (26)
Elep] = oy, (27)

where the first term in26) is the subjective discount factor, the second term acsdientendow-
ment growth, and the third term accounts for precautionaving)s. Endowment growth creates an
incentive for households to borrow in order to smooth consion. Since both assets are in fixed
supply, the risk-free rate must be elevated to deter bormpwivVhen the IESy, is high, households
are willing to accept higher consumption growth so the ederate required to dissuade borrowing
is lower. Therefore, the model requires a fairly high IES ttch the low risk-free rate in the data.
With CRRA preferences, higher RA lowers the IES and pushethepisk-free rate. With
Epstein-Zin preferences, these parameters are indepesdes high IES can lower the risk-free
rate without lowering RA. The equity premium only depend€R#a Therefore, the model gener-
ates a low risk-free rate and modest equity premium with@afitly high RA and IES parameter
values. Of course, there is an upper bound on what constdasenable RA and IES values, which
is the source of the risk-free rate and equity premium pszZ¢her prominent model features such
as long-run risk and stochastic volatility a la Bansal aadovi (2004) help resolve these puzzles.

3.2.2 \ALUATION RISk MODEL COMPARISON We now turn to the model with valuation risk.
Figure 2plots the average risk-free rate, the average equity pramands; (i.e., the marginal
response of the price-dividend ratio on the equity retungeu both preference specifications. For
simplicity, we remove cash flow riskr{ = 0; n, = 1q) and assume the time preference shocks
arei.i.d. (p, = 0). Under these assumptions, the assets are identicgd, 50,1, 7,0, 7y1) =
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Figure 2: Equilibrium outcomes in the model without cash flisk (o, = 0; p, = pq) andi.i.d. preference shocks
(pa = 0) under the current (C) and revised (R) preference spedditatWe sett = 0.9975, v = 10, ando, = 0.005.

(Kdos Kd1s Ndos Na1) = (Ko, k1, M0, M1 ). We plot the results with and without cash-flow growth X

In Figure 2 the current preferences are given by the solid-black {pestndowment growth)
and red-diamond (no endowment growth) lines. In both cdkesaverage risk-free rate and aver-
age equity premium exhibit a vertical asymptote when theit&lS The risk-free rate approaches
positive infinity as the IES approache$srom below and negative infinity as the IES approaches
from above. The equity premium has the same comparativiestaith the opposite sign, except
there is a horizontal asymptote as the IES approaches nfiftiese results occur because of the
extreme curvature of the utility function whenis close tal as described in the previous sectidn.

Analytics provide similar insights. The average risk-frate and equity premium are given by

E[ff] = —log B+ py /¥ + (0 — 1)kiniol /2, (28)
Elep] = (1 — 8)rinior, (29)

and the log-price-dividend ratio is given by= 7, + a, (i.e., the loading on the preference shock,
m,is1). Therefore, when the household becomes more patieritaises, the price-dividend ratio
rises one-for-one on impact and returns to the stationauiequm in the next period. Since, is
independent of the IES, there is no endogenous mechanismpreheents the asymptote thfrom
influencing the risk-free rate or equity premium. Sifice x; < 1, § dominates both of these mo-
ments when the IES is near The following result describes the comparative statidh wie IES.

Result 6. Supposey > 1. The current preferences violaRroperty 4 Asy) — 17,0 — —oo, SO
E[r¢] = —oo while E[ep] — +o00. Asy) — 17,8 — 400, SOE[¢] = 400 wWhile Efep] — —ooc.

13pohl et al. (2018) find the errors from a Campbell-Shillerragpmation of the nonlinear model can significantly
affect equilibrium outcomedAppendix Eproves that the vertical asymptote also occurs in the fudilimear model.
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Therefore, small and reasonable changes in the value oEthdd.g., from).99 to 1.01) can
result in dramatic changes in the predicted values of theageerisk free rate and average equity
premium. It also illustrates why valuation risk seems likelsan attractive feature for resolving
the risk-free rate and equity premium puzzles. As the IE€4dn1 from abovef becomes in-
creasingly negative, which dominates other determindrttsearisk-free rate and equity premium.
In particular, with an IES slightly above the asymptote i causes the average risk-free rate to
become arbitrarily small, while making the average equignum arbitrarily large. Bizarrely, an
IES marginally belowl (a popular value in the macro literature), generates the@sipppredic-
tions. As the IES approaches infinity,— ¢ tends toy. Therefore, even when the IES is far above
1, the last term inZ8) and 9) is scaled byy and can still have a meaningful effect on asset prices.

In Figure 2 the revised preferences are given by circle-blue (p@&s@wdowment growth) and
dashed-black (no endowment growth) lines. In both casesathrage risk-free rate and average
equity premium are continuous in the IES, regardlegs,ofVheny, = 0, the endowment stream
is constant. This means the household is indifferent abweittitming of when the preference
uncertainty is resolved, so both and the average equity premium are independent of the IES.
Wheny, > 0, the household’s incentive to smooth consumption interadth uncertainty about
how it will value the higher future endowment stre&hWhen the IES is large, the household has a
stronger preference for an early resolution of uncertasdyhe equity premium rises as a result of
the valuation risk (see theigure 2inset). Therefore, the qualitative relationship betwdenlES
and the equity premium has different signs under the cuemetirevised specifications. Moreover,
the increase in the equity premium is quantitatively smadl aonverges to a level well below the
value with the current preferences. Itis this differenchimsign and magnitude of the relationship
between the IES and the average equity premium that willeéxphany of our empirical results.

In this case, the expressions for the average risk-frearat@quity risk premium are given by

Elry]
Elep]

—log 3 + g/t + (0 = Drint — 05%)07/2, (30)
(1= 0)k1m1 + 08) kim0 (31)

Relative to the current specification,, is unchanged® However, both asset prices include a
new term that captures the effect of valuation risk on curugifity, so a rise ina; that makes the

household more patient raises the value of future certaigtyvalent consumption and lowers the
value of present consumption. The asymptote occurs unéecuirent specification because it
does not account for the effect of valuation risk on curigeriod consumption. With the revised

“Andreasen and Jgrgensen (2019) show how to decouple thehad's timing attitude from the RA and IES.
Notice x; is a function of the steady-state price-dividend ratip,When the IES id, z; = 8/(1 — ), which is
equivalent to its value absent any risk. Therefore, wherHSais 1, valuation risk has no effect on the price-dividend

ratio. This result points to a connection with income andstitittion effects, which usually cancel when the IES.is
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preferences;; = fwheny = 1, so the terms involving cancel out and the asymptote disappears.
Result 7. The revised preferences satisfsoperty 4 as E || and Elep| are continuous inj.

Wheny = 1, valuation risk lowers the average risk-free rate#y?/2 and raises the average
equity return by the same amount. Therefore, the averageygmemium equalsi®s2, which is
invariant to the RA parameter. When> 1, x; > 3, S0 an increase in RA lowers the risk-free rate
and raises the equity return. As— oo, the equity premium with the revised specification relative
to the current specification equalst+ 5(1 — 7)/(vx1). This means the disparity between the
predictions of the two models grows as RA increases. As aetpuenice, the revised preferences
would require much larger RA to generate the same equity ipraras the current preferences.

3.3 FURTHER DiscussiON The previous section shows the current and revised prefesen
generate different predictions. This section covers twacellaneous questions readers may have.

Question 1: Is the valuation risk specification under CRRA pieferences important?

Since we have demonstrated that the valuation risk speaiiices important under Epstein-Zin
preferences, it is worth addressing whether the same isitrder CRRA preferences. In particular,
is the choice betweeti; = u(¢;) + a;,SE U1 andU, = (1 — a.8)u(c;) + ai S E Uy important?

In terms of first-order dynamics, both specifications getedize same impulse response functions
with an appropriate rescaling ef The rescaling is by the factar— p, 3, wherep, is unchanged
across the specifications. There is a numerically smatdifice inZ[7¢] and E[ep], which is easy

to see by setting = 1 in equations28)-(31). This stems from the conditional expectatiorugf; .

Question 2: Are the revised preferences the only viable altaative?

A potential alternative to the revised specification is tiéofving:
Vi = Wiew auer) = [e; 77 + Blag) =YV, (32)

We refer to this specification as “disaster risk” preferentmlowing Gourio (2012). That paper
shows how a term like, can arise endogenously in a production economy asset gnoeadel.
Technically, since the disaster risk shock affects theagast equivalent of future utility and
does not alter the time-aggregator, these preference®asestent with the four desirable proper-
ties described ilsection 2 However, they do not represent a household’s intrinsie fimeference
uncertainty. To appreciate why, once agaimset 1/¢) = 1, givingV; = log ¢; +1og(a;) + EViyq.
The model reduces to time-separable log-preferences witdéitive shock term. As a resuit
disappears from any equilibrium condition, so the disass&rpreferences are not able to capture
an exogenous change in the household’s impatience, evaglhhibere is no plausible reason why
a household with time-separable log-preferences canramnibe more or less patient over time.
This means valuation risk must be linked to time-variatiothie discount factor, as i) and ©).

14



4 DATA AND ESTIMATION METHODS

We construct our data using the procedure in Bansal and Y&©@0d4), Beeler and Campbell
(2012), Bansal et al. (2016), and Schorfheide et al. (20I8¢ moments are based on seven time
series from 1929 to 2017: real per capita consumption experd on nondurables and services,
the real equity return, real dividends, the real risk-fra rthe price-dividend ratio, and the real
5- and 20-year U.S. Treasury yields. Nominal equity retamescalculated with the CRSP value-
weighted return on stocks. We obtain data with and withoutiends to back out a time series for
nominal dividends. Both series are converted to real seseggy the consumer price index (CPI).
The nominal risk-free rate is based on the CRSP yield-tairitgton 90-day Treasury bills,
and the intermediate and long-term nominal Treasury yiatdsavailable on Morningstar Direct
(formerly Ibbotson Associates). We first convert the norhiimae series to a real series using the
CPI. Then we construct a@x-antereal rate by regressing tlex-postreal rate on the nominal rate
and inflation over the last year. The consumption data is @nnlo match this frequency, the
monthly asset pricing data are converted to annual timesesing the last month of each year.
Using the annual time series, our target mome\ﬁ%, are estimated with a two-step General-
ized Method of Moments (GMM) estimator, whefe= 87 is the sample siz&. Given the GMM
estimates, the model is estimated with Simulated Method ofignts (SMM). For parameteri-
zation# and shocks’, we solve the model and simulatefit = 1,000 times forT" periods. The
model-implied analogues of the target moments are the madiements across the simulations,
\P%T(Q, £). The parameter estimates,are obtained by minimizing the following loss function:

J(0,€) = [WF — UH7 (0, E)'[E2(1 + 1/R)| U7 — UH7(6,€)),

whereX? is the diagonal of the GMM estimate of the variance-covamematrix}’ We use Monte
Carlo methods to calculate the standard errors on the pseaestimates. For different sequences
of shocks, we re-estimate the structural maslglk= 500 times and report the mean afid 95) per-
centiles.Appendix FandAppendix Gprovide more details about our data and estimation method.
The baseline model target§ moments: the means and standard deviations of consumption
growth, dividend growth, equity returns, the risk-freeetatnd the price-dividend ratio, the correla-
tion between dividend growth and consumption growth, the@arrelations of the price-dividend
ratio and risk-free rate, and the cross-correlations o$aarption growth, dividend growth, and eq-
uity returns. These targets are common in the literaturdtamdame as Albuquerque et al. (2016),
except we excludé- and10-year correlations between equity returns and cash-flowtr.oWe
omit the long-run correlations to allow a longer sample theludes the Great Depression period.

18| total, there ar&9 periods in our sample, but we lose one period for growth raelsone for serial correlations.
YFor the revised preferences, we impose the restrigtiexp(4(1 — 3)/a2/(1 — p2)) < 1 when estimating the
model parameters. This ensures the time-aggregator veeaghipositive ir99.997% of the simulated observations.
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Many elements of our estimation procedure are common intégraiure. We use a limited in-
formation approach to match empirical targets and SMM t@awntfor short-sample bias that oc-
curs because asset pricing models often have very petgstaesses. To improve on the current
methodology, we repeat the estimation procedure for @iffeshock sequences. The estimations
are run in parallel on a supercomputer. The literature glfyicestimates models once based on
a particular seed and uses the Delta method to compute steatars. While our approach has
a higher computational burden, our estimates are indep¢ndéehe seed and have more precise
standard errors. The estimates allow us to numericallycqumate the sampling distribution of
the parameters and test whether they are significantlyrdiffeacross models. We also obtain a
distribution of J values, which determine whether a model provides a significaprovement in
fit over another model, and the corresponding p-values fréesteof over-identifying restrictions.

5 ESTIMATED BASELINE MODEL

This section takes the baseline model frBettion 3.1Jand compares the estimates from the current
and revised preference specifications. We fix the IES.Gpwhich is near the upper end of the
plausible range of values in the literatdfeThis restriction helps us compare the estimates from
the two preference specifications because the model fit, asured by the/ value, is insensitive

to the value of the IES in the revised specification, but theoastrained global minimum prefers
an implausibly high IES. For example, thievalue is only one decimal point lower with an IES
equal tol0. Therefore, we are left with estimating nine parametersatcinl 7 empirical targets.

Table 1shows the parameter estimates aatle 2reports the data and model-implied moments
for six variants of our baseline model: with and without &tigg the yield curvei- and20-year
average risk-free bond yields); with the current prefeesnand with the revised preferences,
with and without an upper bound on RA. For each parameter,epert the average an@, 95)
percentiles across00 estimations of the model. For each moment, we provide thennaed
t-statistic for the null hypothesis that a model-impliedmemnt equals its empirical counterpart.

We begin with the model that excludes the yield curve momeimt$oth preference specifi-
cations, the data prefers a very persistent valuation niekgss withp, > 0.98. In the current
specification, the risk aversion parametgrns 1.55. In the revised specification= 74.23, which
is well outside what is considered acceptable in the assghgditerature!® Both specifications
generate a sizable equity premium (the estimates are doubwer than the empirical equity

18Estimation results withy = 1.5 andy = 2.0 for each specification considered below are includefdpendix H
In total, we estimaté4 variants of our model. Since each variant is estimététimes, there arg7,000 estimations.
The estimations are run in Fortran and the time per estimagioges from -24 hours depending on model complexity.
®Mehra and Prescott (1985, p. 154) say “Any of the above citediss. . . constitute aa priori justification for
restricting the value of [RA] to be a maximum of ten, as we dthis study.” Weil (1989, p. 411) describgs= 40 as
“implausibly” high. Swanson (2012) showsdoes not equate to risk aversion when households have artergin.
Therefore, only in production economies cahe reasonably aboud, where it is common to see values around.
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OmitsE[rj»75] & E["’j’,QO]

All Moments

Ptr Current Revised Max RA Current Revised Max RA
5 1.55 74.23 10.00 1.38 98.17 10.00
(1.52,1.58) (70.95, 77.47) (10.00, 10.00) (1.35,1.41) (93.29, 103.03) (10.00, 10.00)
B 0.9977 0.9957 0.9973 0.9979 0.9964 0.9978
(0.9976, 0.9978) (0.9956, 0.9957) (0.9972, 0.9973) (0.9977, 0.9980) (0.9963, 0.9964) (0.9977, 0.9978)
Pa 0.9968 0.9899 0.9879 0.9973 0.9893 0.9878
(0.9965, 0.9971) (0.9896, 0.9902) (0.9876, 0.9882) (0.9970, 0.9976) (0.9890, 0.9896) (0.9875, 0.9881)
Oq 0.00031 0.03547 0.03880 0.00028 0.03653 0.03891
(0.00030, 0.00033) (0.03491, 0.03596) (0.03832,0.03927) (0.00027, 0.00030) (0.03597, 0.03703) (0.03845, 0.03939)
fy 0.0016 0.0016 0.0017 0.0016 0.0016 0.0016
’ (0.0016, 0.0016) (0.0016, 0.0016) (0.0017,0.0017) (0.0016, 0.0016) (0.0016, 0.0017) (0.0016, 0.0016)
1 0.0015 0.0021 0.0010 0.0010 0.0016 0.0005
(0.0015, 0.0016) (0.0020, 0.0021) (0.0009, 0.0010) (0.0010, 0.0011) (0.0016, 0.0017) (0.0004, 0.0005)
oy 0.0058 0.0058 0.0058 0.0058 0.0056 0.0060
(0.0057,0.0058) (0.0057, 0.0059) (0.0057, 0.0060) (0.0058, 0.0058) (0.0054, 0.0057) (0.0059, 0.0061)
Py 1.54 0.97 1.09 1.52 1.13 1.02
(1.43,1.64) (0.87,1.07) (0.97,1.19) (1.42,1.61) (1.04,1.22) (0.93,1.13)
Tdy 0.815 0.436 0.617 0.816 0.613 0.601
(0.764, 0.872) (0.400, 0.472) (0.562, 0.674) (0.759, 0.873) (0.581, 0.639) (0.546, 0.662)
J 29.27 47.98 55.55 31.73 49.99 59.36
(28.62, 29.98) (47.62, 48.35) (54.93,56.11) (31.05, 32.43) (49.60, 50.41) (58.85, 59.86)
pval 0.000 0.000 0.000 0.000 0.000 0.000
(0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)
df 6 6 6 8 8 8

Table 1: Baseline model. Average afid95) percentiles of the parameter estimates. The |IES5is

premium) and a near zero risk-free rate. However, they fogmitly under-predict the standard
deviation of dividend growth and over-predict the autoelation of the risk-free rate in the dad4.
Using the analytical expressions for the average risk+fagzand equity premium (seb.(L5)
and ©.16) in Appendix D), it is possible to break down the fraction of each momentarpd
by cash-flow and valuation risk. With the current specification valuation risk expla®ts9%
and99.2% of the risk-free rate and the equity premium, whereas withrdvised preferences it
explains only63.1% and79.0%. Since the estimate of the cash-flow shock standard dewitio
unchanged, cash-flow risk has a bigger role in explainingthety premium due to higher RA.
The revised specification has a significantly poorer fit thendurrent specification/(= 48.0
vs. J = 29.3), although both specifications fail the over-identifyimgtrictions test? The poorer
fit is mostly due to the model significantly over-predictimgp tvolatility of the risk-free rate and

20The estimate of the valuation risk shock standard deviatignis two orders of magnitude larger in the revised
specification than the current specification. Recall thetdluation risk term in the SDF is given by—way;. When
the valuation risk shock isi.d., the estimates of the shock standard deviation are veryasirhiowever, as the persis-
tence increases with the revised preferen6é,[a; — wa.1] shrinks, sar, rises to compensate for the extra term.

2IThe mean risk-free rate is given Wy[#;;] = a1 + az0? + 04305 and the mean equity premium is given by
Elepy] = auo; + asoy, for some function of model parameters, i € {1,...,5}. Therefore, the contribution of
valuation risk to the risk-free rate and equity premium igegibyazo? /(202 + a30) andayo? /(auo? + asoz).

22The test statistic is given by* = J(é, &%), wheref? is a matrix of shocks given seed J(é7 £) convergesto a
x? distribution with V,,, — N,, degrees of freedom, whefé,, is the number of empirical targets ang is the number
of estimated parameters. Tlig 95) percentiles of the p-values determine whether a modehiglzasses the test.
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Omits E[ry 5] & E[ry20] All Moments

Moment Data Current Revised Max RA Current Revised Max RA
E[A(] 1.89 1.89 1.94 2.01 1.89 1.98 1.95
(0.00) (0.18) (0.49) (0.00) (0.36) (0.25)
E[Ad] 1.47 1.84 2.47 1.17 1.25 1.98 0.58
(0.38) (1.04) (—0.32) (—0.23) (0.52) (—0.93)
Elz4] 3.42 3.45 3.49 3.56 3.49 3.52 3.60
(0.18) (0.47) (1.02) (0.48) (0.74) (1.27)
E[r4] 6.51 5.46 5.59 4.06 4.78 4.98 3.37
(—0.66) (—0.58) (—1.53) (—1.08) (—0.96) (—1.96)
Elrs] 0.25 0.25 0.36 1.06 0.09 0.26 0.41
(0.00) (0.18) (1.32) (—0.26) (0.00) (0.26)
Elrys] 1.19 1.25 1.76 2.18 0.92 1.23 1.50
(0.09) (0.83) (1.46) (—0.40) (0.05) (0.46)
Elrs 0] 1.88 3.19 3.49 3.33 2.57 2.29 2.63
’ (2.18) (2.69) (2.42) (1.16) (0.68) (1.25)
SDI[A¢] 1.99 1.99 2.00 2.00 2.00 1.92 2.07
(0.00) (0.01) (0.02) (0.01) (—0.16) (0.16)
SDI]Ad] 11.09 3.47 2.13 2.49 3.44 2.46 2.45
(—2.79) (—3.28) (—3.14) (—2.80) (—3.15) (—3.16)
SDIrq] 19.15 18.41 13.65 13.44 18.47 13.47 13.11
(—0.39) (—2.90) (—3.01) (—0.36) (—3.00) (—3.18)
SDIry] 2.72 3.21 3.69 3.86 2.99 3.70 3.76
’ (0.96) (1.92) (2.25) (0.53) (1.92) (2.04)
SD[z4] 0.45 0.46 0.25 0.23 0.48 0.24 0.22
(0.22) (—3.16) (—3.49) 0.47) (—3.32) (—3.59)
AC|ry] 0.68 0.95 0.90 0.88 0.95 0.89 0.88
’ (4.12) (3.36) (3.14) (4.17) (3.29) (3.13)
AC|[z4) 0.89 0.92 0.85 0.83 0.93 0.84 0.83
(0.64) (—0.85) (—1.30) (0.75) (—1.00) (—1.32)
Corr[Ac, Ad] 0.54 0.47 0.41 0.50 0.48 0.48 0.51
(—0.32) (—0.59) (—0.19) (—0.29) (—0.27) (—0.13)
Corr[Ac, 4] 0.05 0.09 0.06 0.09 0.09 0.09 0.09
(0.57) (0.23) (0.61) (0.57) (0.56) (0.66)
Corr[Ad, rq) 0.07 0.19 0.15 0.18 0.18 0.18 0.19
(1.41) (1.03) (1.38) (1.38) (1.35) (1.41)

Table 2: Baseline model. Data and average model-implied embsn t-statistics are in parentheses.

under-predicting the volatilities of the price-divideratio and equity return. The intuition is as
follows. In the revised specification, risk-free rate vibitytis relatively more sensitive to valuation
risk than equity return volatility. Since the volatility efuity returns is higher than the volatility of
the risk-free rate in the data, valuation risk alone doesatv the model to match these moments.
Dividend growth volatility, however, cannot rise to compate for the lack of the equity return
volatility because the target correlation between eq@tyms and dividend growth is near zero.
The revised preferences not only have a worse fit, but thewisksion parameter is implausibly
large. When we restriet to a maximum ofl 0—the upper end of the values used in the asset pricing
literature—the fit deteriorates further & 55.6 vs. 48.0). The primary source of the poorer fit is
the larger estimate of the risk-free ratel(s vs. 0.4%) and lower equity returnd(1% vs. 5.6%).
Intuition suggests that valuation risk should also be imfative about the long-term risk-free
interest rates, not just the short-term rate. When longentmoments are omitted from the es-
timation routine, both preferences over-predict the slopthe yield curve £[ryq0] — E[r¢] is
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2.9% and3.1% for the current and revised preferences, relative tath# in the data). Once the
yield curve moments are included, however, the slopesdall4% and2.0%, respectively. For
the revised preferences, this flattening of the yield cus\geinerated by a rise in RA. Overall, the
inclusion of these moments worsens the fit of the model bus doematerially change the results.
To summarize, our results demonstrate that introducingatan risk to the baseline model in
its revised form does not resolve the equity premium andfrisé rate puzzles. The rest of the
paper examines whether revised valuation risk has a signifiole in richer asset pricing models.

6 ESTIMATED LONG-RUN RISK MODEL

Long-run risk provides a well-known resolution to many ags&ing puzzles. This section intro-
duces this feature into our baseline model and re-examirgesiarginal contribution of valuation
risk with the revised preferences. To introduce long-rek,rive modify 23) and @4) as follows:

Agt—l—l = [y + T+ OyEyt+1s Eyt+1 ™~ N(Ov 1)7 (33)
ACZt+1 = Ud + Galt + Tayoyey 141 + Vaoy€arrt, a1 ~ N(0, 1), (34)
Tpp1 = Pady + ¢z0y€x,t+1, Ext+1 ™ N(07 1)7 (35)

where the specification of the persistent compongntfollows Bansal and Yaron (2004). We
apply the same estimation procedure as the baseline modeptethere are three additional pa-
rametersgp,, p., andy,. We also match up to five additional moments: the autocdioels of
consumption growth, dividend growth, and the equity remd two predictability moments—the
correlations of consumption growth and the equity premiuth tihe lagged price-dividend ratio.

The long-run risk model also prefers a high IES even thoudbéts not significantly lower the
J value. As a result, we continue to set the IEQ tband estimate the remaining parameters. The
parameter estimates are showable 3and the data and model-implied moments are reported in
Table 4 The tables show the results for six variants of the modeh amnd without targeting both
the yield curve and higher-order risk-free rate momentt) amd without targeting the yield curve
but always including higher-order risk-free rate momeats] with and without valuation risk.

We begin with the model without valuation risk and without §field curve and risk-free rate
moments (column 1). Thisis a typical model estimated initkedture. The model fails to pass the
over-identifying restrictions test at tHiés level, signalling that the standard long-run risk model
is insufficient to adequately describe the behavior of gsseeés and cash flows. The parameter
estimates are similar to the estimates in the literaturgoahticular, the data requires a small but
very persistent shock that generates risk in long-run dashgrowth (p, = 0.9988; v, = 0.0260).

The literature typically excludes the standard deviatioth autocorrelation of the risk-free rate
when estimating the long-run risk model because the moded dot generate sufficient volatility
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Omits SD[ry], AC[ry¢], Omits All Moments
Elrys), & Elry 0] Elrys] & Elry 0]
Parameter No VR Revised No VR Revised No VR Revised
ol 2.58 2.63 2.70 2.54 2.51 2.33
(2.31,2.84) (2.36,2.93) (2.41,2.96) (2.25,2.83) (2.14,2.84) (1.99, 2.70)
B

0.9990
(0.9989, 0.9991)

0.9980
(0.9979, 0.9982)

0.9990
(0.9988,0.9991)

0.9989
(0.9987, 0.9990)

0.9985
(0.9983, 0.9986)

0.9984
(0.9983, 0.9986)

Pa — 0.9817 — 0.9548 — 0.9569
(0.9800, 0.9835) (0.9531, 0.9565) (0.9546, 0.9592)
Oq — 0.0475 — 0.0167 — 0.0175
(0.0452,0.0498) (0.0161,0.0173) (0.0167,0.0184)
y 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016
: (0.0014,0.0017)  (0.0014,0.0018)  (0.0015,0.0017)  (0.0014,0.0017)  (0.0015,0.0017)  (0.0014,0.0017)
L 0.0013 0.0013 0.0014 0.0013 0.0013 0.0011
(0.0009,0.0016)  (0.0009,0.0016)  (0.0012,0.0017)  (0.0009,0.0016)  (0.0010,0.0015)  (0.0008,0.0014)
Oy 0.0041 0.0041 0.0049 0.0041 0.0046 0.0038
(0.0040,0.0042)  (0.0039,0.0043)  (0.0048,0.0050)  (0.0040,0.0042)  (0.0045,0.0047)  (0.0036,0.0041)
Py 3.25 2.78 3.05 3.17 3.22 3.36
(3.02, 3.47) (2.53,3.02) (2.83,3.25) (2.92,3.41) (2.97, 3.45) (3.01,3.67)
Tdy 0.588 0.812 0.122 0.666 0.206 0.777
(0.322, 0.868) (0.547,1.120)  (—0.200,0.418)  (0.416,0.916)  (—0.148,0.515)  (0.500, 1.059)
bd 2.30 1.55 2.15 2.19 2.35 2.34
(2.07,2.51) (1.44,1.68) (1.94,2.34) (1.97,2.43) (2.06,2.62) (2.05,2.64)
Pz 0.9988 0.9994 0.9977 0.9990 0.9976 0.9990
(0.9983,0.9992)  (0.9992,0.9995)  (0.9969,0.9985)  (0.9985,0.9994)  (0.9968,0.9985)  (0.9985,0.9994)
Py 0.0260 0.0261 0.0314 0.0255 0.0303 0.0249
(0.0247,0.0274)  (0.0248,0.0274)  (0.0292,0.0335)  (0.0242,0.0269)  (0.0281,0.0327)  (0.0234,0.0264)
J 20.55 14.29 56.48 19.59 63.32 24.50
(19.80, 21.30) (13.86, 14.72) (55.64, 57.39) (18.96,20.27) (62.50, 64.15) (23.78, 25.20)
pval 0.009 0.027 0.000 0.012 0.000 0.006
(0.006,0.011) (0.023,0.031) (0.000, 0.000) (0.009,0.015) (0.000, 0.000) (0.005, 0.008)
df 8 6 10 8 12 10

Table 3: Long-run risk model. Average affil 95) percentiles of the parameter estimates. The IESSis

(a standard deviation @f51 vs. 2.72 in the data) and over-predicts the autocorrelatidag vs.
0.68 in the data). Even when these two moments are targeted, as1shaolumn 3, long-run
cash-flow risk is unable to significantly improve on these ranta (the standard deviation rises to
0.68 and the autocorrelation falls th95). The standard long-run risk model also fairs poorly on
three additional moments: (1) the standard deviation dfidivd growth (too low), (2) the corre-
lation between dividend growth and the return on equity fagh), and (3) the predictability of
consumption growth (too high). All of them are significardijferent from their empirical targets.
Adding valuation risk (columns 2 and 4) significantly impesvthe fit of the model. With the
restricted set of moments, thievalue declines fron20.6 to 14.3. More importantly, the p-value
from the over-identifying restrictions test rises fran®1 to 0.03, even though the valuation risk
model contains two more parameters than the standard mbdeg(ees of freedom instead &)t
Unlike cash-flow risk, valuation risk directly affects thme-series properties of the risk-free
rate, which makes it important to target these moments irstienation. In column 2, the model
includes valuation risk but targets neither the standavéhtien nor the autocorrelation of the risk-
free rate. As a result, the estimated model significantly-pvedicts both moments (the standard
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Omits SD[ry], AC[ry¢], Omits All Moments

Elrys), & Elry 0] Elrys] & Elry o]
Moment Data No VR Revised No VR Revised No VR Revised
E[Ad 1.89 1.89 1.89 1.89 1.89 1.89 1.89
(0.00) (0.03) (—0.01) (0.00) (0.00) (0.01)
E[Ad] 1.47 1.53 1.54 1.71 1.50 1.52 1.35
(0.06) (0.07) (0.25) (0.03) (0.05) (—0.13)
E[zd] 3.42 3.42 3.40 3.41 3.42 3.42 3.43
(0.00) (—0.18) (—0.07) (0.00) (0.00) (0.05)
E[rd] 6.51 6.33 6.44 5.82 6.43 5.58 6.31
(—0.11) (—0.05) (—0.43) (—0.05) (—0.58) (—0.13)
E[ry] 0.25 0.26 0.26 0.26 0.25 1.40 1.19
(0.01) (0.01) (0.01) (0.00) (1.88) (1.55)
E[rf_5] 1.19 0.11 0.99 0.05 0.25 1.24 1.26
’ (—1.60) (—0.30) (—1.69) (—1.40) (0.07) (0.09)
Elrs20] 1.88 —0.32 0.94 —0.53 —-0.15 0.83 0.98
’ (—3.65) (—1.56) (—4.00) (—3.37) (—1.74) (—1.49)
SDI[A¢] 1.99 1.92 1.96 2.40 1.91 2.22 1.76
(—0.14) (—0.07) (0.84) (—0.16) (0.47) (—0.48)
SDI]Ad) 11.09 5.59 4.64 6.38 5.42 6.34 5.32
(—2.01) (—2.36) (—1.72) (—2.07) (—1.74) (—2.11)
SD[rd] 19.15 18.15 19.75 18.92 18.21 19.02 18.25
(—0.53) (0.32) (—0.12) (—0.50) (—0.07) (—0.47)
SD[T,«] 2.72 0.51 5.44 0.68 2.82 0.61 2.91
’ (—4.36) (5.36) (—4.03) (0.19) (—4.16) (0.38)
SD[zd] 0.45 0.53 0.46 0.51 0.52 0.51 0.52
(1.29) (0.10) (0.98) (1.14) (1.00) (1.16)
AC[AC] 0.53 0.43 0.46 0.48 0.43 0.46 0.42
(—1.07) (—0.74) (—0.59) (—-1.07) (—0.79) (—1.18)
ACIAd) 0.19 0.27 0.20 0.31 0.26 0.31 0.25
(0.76) (0.12) (1.16) (0.65) (1.13) (0.59)
ACr4] —0.01 0.00 —0.05 0.00 —0.01 0.00 —0.01
0.17) (—0.44) (0.08) (0.02) (0.07) (0.01)
ACry] 0.68 0.96 0.84 0.95 0.69 0.95 0.70
(4.33) (2.49) (4.21) (0.14) (4.20) 0.27)
AC[zd] 0.89 0.94 0.90 0.93 0.94 0.93 0.94
(1.05) (0.29) (0.83) (1.00) (0.82) (1.01)
Corr[Ac, Ad] 0.54 0.48 0.51 0.44 0.49 0.45 0.50
(—0.28) (—0.14) (—0.46) (—0.23) (—0.44) (—0.20)
Corr[Ac, rd] 0.05 0.07 0.06 0.08 0.07 0.08 0.07
(0.32) (0.18) (0.50) (0.29) (0.53) (0.28)
Corr[Ad, rd] 0.07 0.24 0.19 0.28 0.23 0.28 0.23
(2.07) (1.44) (2.53) (1.96) (2.49) (1.89)
Corrlep, zq4,—1] —0.16 —0.17 —0.13 —0.14 —0.17 —0.14 —0.17
(—0.04) (0.38) (0.25) (—0.01) (0.26) (—0.02)
Corr[Ac, zq,-1] 0.19 0.66 0.59 0.69 0.65 0.68 0.65
(2.67) (2.30) (2.85) (2.64) (2.77) (2.60)

Table 4: Long-run risk model. Data and average model-indpfi@ments. t-statistics are in parentheses.

deviation is5.44 vs. 2.72 in the data and the autocorrelation)is4 vs. 0.68 in the data). How-
ever, once these moments are targeted in the estimatiamiool), the standard deviation of the
risk-free rate i2.82 and the autocorrelation of the risk-free rat@® .89, consistent with the data.

In both columns 2 and 4, the model closely matches the melafireis rate and equity return.
However, the contribution of valuation risk is quite di#fet across the various sets of moments.
Recall that in the baseline model, valuation risk explaisgable majority of the risk-free rate and
equity premium. In column 2, valuation risk has a smallerstilitmeaningful contribution48.2%
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of the risk-free rate and8.9% of the equity premium). In column 4, however, it explainsyer
little of these moments’3(8% and5.1%) because the model requires smaller and less persistent
valuation risk shocksy, = 0.9548 ando, = 0.0167) to match the dynamics of the risk-free réte.
Finally, we turn to the yield curve. In columns 1 and 3, whisitlade valuation risk and do
not target longer-term risk-free rates, the presence df-tias risk generates a (counterfactual)
downward sloping yield curve. This is because householdbenmodel dislike long-run risks
to cash-flow growth and longer-term risk-free bonds prowadeditional insurance against these
risks. Valuation risk, however, generates a positive terempum for longer-term risk-free bonds
because it creates the possibility that households wikhltes/future cash flows. A longer-term
asset increases exposure to this risk. This results in arlpvige and higher return for risk-free
assets with a longer maturity, leading to an upward slopiealglyurve. In columns 2 and 4, which
add valuation risk, the yield curve is humped shaped duestadimpeting effects of the two risks.
The failure of the long-run risk model to predict an upwampshg yield curve is not resolved
by targeting the yield curve moments. In column 5, which edek valuation risk but targets the
yield curve moments, the yield curve remains downward sigpiHowever, the entire curve is
raised, resulting in a short-term risk free ratelof%. The addition of valuation risk (column
6) improves the slope of the yield curve, loweriafyr(| by 21 basis points and raising|[r s,
by 15 basis points. However, the constraints imposed by alsetiagthe standard deviation and
autocorrelation of the risk-free rate limit the role of vation risk in fully matching the yield curve.
These results show that valuation risk does not unilaterafiolve the risk-free rate and equity
premium puzzles, but the improvements in fit show that it ef@tch the data. Despite these
improvements, the long-run risk model with valuation rigk performs poorly on the three mo-
ments listed above as well as the yield curve. Furthermdirsjxaspecifications fail to pass the
over-identifying restrictions test at t1%% level. The next section addresses these shortcomings.

7 ESTIMATED EXTENDED LONG-RUN RISK MODEL

We consider two extensions to the long-run risk model. Fwst allow valuation risk shocks to
directly affect cash-flow growth, in addition to their effen asset prices through the SDF (hence-
forth, the “Demand” shock model). This feature is similaatdiscount factor shock in a production
economy model. For example, in the workhorse New Keynesiaaetnan increase in the discount
factor looks like a negative demand shock that lowers istages, inflation, and consumption.
Therefore, it provides another mechanism for valuatiok t@s help fit the data, especially the

23The contribution of valuation risk under the current prefeses is larger than under the revised preferences. In the
model without the higher-order risk-free rate or term swee moments, valuation risk under the current preferences
explain$95.3% of the risk-free rate angd.2% of the equity premium. If only the term structure momentsexauded,
valuation risk explains a smaller percentage but it is kigber than with the revised preferenc8.6¢% and17.1%).
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correlation moment¥' Following Albuquerque et al. (2016), we modif$3) and @4) as follows:

A1 = ply + Tt + 0y€y i1 + TyaOaCartri, (36)

AOZHl = g + PaTt + TdaOaa,t+1, (37)

wherer,, andr,, control the covariances between valuation risk shocks ash-Gow growtre>
Second, we add stochastic volatility to cash-flow risk feilog Bansal and Yaron (2004)
(henceforth, the “SV” model). SV introduces time-varyingcertainty. Bansal et al. (2016) show
SV leads to a significant improvement in fit. An important digesis therefore whether the pres-
ence of SV will affect the role of valuation risk. To introdu8V, we modify 83)-(35) as follows:

Afiy1 = py + T¢ + 0y 1€y 141, (38)

Adt+1 = g + P + TayOy 1€y t+1 + Va0yt€d 141, (39)
Tp1 = Paly + Vy0y €041, (40)

U§,t+1 = O‘Z + ,Ogy(ait — 05) + VyEo, i1 (42)

wherep,, is the persistence of the SV process apds the standard deviation of the SV shock.
Table 5andTable 6present estimates from three versions of the extendedriamgsk model:
(1) the SV model without valuation risk (columns 1 and 4),t{® demand shock model (columns
2 and 5), and (3) the combination of the demand shock and S\ém@cblumns 3 and 6). In each
case, we report the results from including and excludingéosierm rates as targeted moments.
We begin with the models that exclude longer-term returrtarggted moment®. A key find-
ing is that all three extensions improve on the p-values ftieensimpler long-run risk models in
the previous section. Adding SV to the model without valoatiisk increases the p-value from
near zero {able 3 column 3) t00.02 (Table 5 column 1). The estimated SV process is very per-
sistent p,, = 0.9630) and the shock is statistically significant, consistenhwiite literature. The
improved fit largely occurs because SV helps match the higrdar risk-free rate moments (the
standard deviation i2.54 vs. 2.72 in the data and the autocorrelatiori§9 vs. 0.68 in the data).
The Demand model increases the p-value ffofi2 (Table 3 column 4) t00.096 (Table §
column 2). Thus, the Demand model easily passes the ovetifidag restrictions test at the%
level. Consistent with the predictions of a production exoy model,r,, andr,, are negative in

%4see, for example, Smets and Wouters (2003). However, withoarefully microfounded model, it is not clear
whethere, ;11 should be correlated withg,; or z, (or both) and what restrictions should be placed on the shock
coefficients. While there are limitations to using this reeld-form specification, it is very useful for informing what
description of the shock processes best explain the datbbaddveloping models with deeper microfoundations.

25\ith the inclusion ofry, andmq,, T4, andy, are redundant so we exclude them from the Demand specifisatio

26The No VR+SV model is the same model BKY estimate. In that paper, theeinoalsses the over-identifying
restrictions test at th8% level, while in our case it does not. The key difference is BidY do not target the
correlations between cash-flows and the equity return. Wieeexclude these moments, our p-value jumps t6.
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Omits E[rs 5] & E[ry,20] All Moments
Ptr No VR+SV Demand DemandSV No VR+SV Demand DemandSV
5 2.58 3.22 6.51 1.48 3.42 8.01
(2.41,2.74) (2.99, 3.42) (5.14, 8.05) (1.25,1.72) (3.10, 3.78) (7.09, 8.98)
15} 0.9982 0.9991 0.9980 0.9980 0.9987 0.9976
(0.9981, 0.9983) (0.9990, 0.9991) (0.9977, 0.9983) (0.9979, 0.9982) (0.9986, 0.9988) (0.9975,0.9977)
Pa — 0.9594 0.9930 — 0.9616 0.9933
(0.9576, 0.9614) (0.9921, 0.9936) (0.9591, 0.9639) (0.9927, 0.9937)
Oq — 0.0185 0.0288 — 0.0194 0.0286
(0.0179,0.0193) (0.0275, 0.0296) (0.0186, 0.0203) (0.0278, 0.0291)
Iy 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016
(0.0014, 0.0017) (0.0015, 0.0016) (0.0015, 0.0016) (0.0015, 0.0018) (0.0015, 0.0016) (0.0015,0.0017)
Lhd 0.0013 0.0015 0.0015 0.0002 0.0013 0.0015
(0.0010, 0.0016) (0.0012, 0.0016) (0.0014, 0.0017) (0.0000, 0.0006) (0.0011, 0.0015) (0.0013,0.0017)
oy 0.0008 0.0041 0.0006 0.0010 0.0037 0.0004
(0.0004, 0.0014) (0.0039, 0.0042) (0.0001, 0.0013) (0.0003, 0.0019) (0.0036, 0.0039) (0.0000, 0.0008)
iy 2.99 - - 2.82 - -
(2.79, 3.19) (2.58, 3.02)
Tay 0.771 - - 0.773 - -
(0.503, 1.049) (0.436, 1.099)
bq 1.90 2.69 2.84 1.77 3.21 2.87
(1.81, 2.00) (2.54, 2.85) (2.65, 2.99) (1.67,1.87) (2.96, 3.46) (2.76, 2.98)
Px 0.9992 0.9975 0.9958 0.9995 0.9970 0.9957
(0.9989, 0.9994) (0.9971, 0.9980) (0.9952, 0.9965) (0.9994, 0.9995) (0.9965, 0.9976) (0.9951, 0.9963)
Py 0.0255 0.0306 0.0358 0.0253 0.0303 0.0357
(0.0241, 0.0269) (0.0285, 0.0313) (0.0334, 0.0385) (0.0241, 0.0267) (0.0285, 0.0312) (0.0337,0.0378)
Tya — —0.055 —0.049 — —0.037 —0.044
(—0.074, —0.038) (—0.064, —0.033) (—0.053, —0.022) (—0.059, —0.029)
Tda — —1.036 —0.877 — —1.011 —0.896
(~1.068, —1.003) (—0.905, —0.852) (—1.047, —0.975) (—0.920, —0.872)
o, 0.9630 — 0.7708 0.9562 — 0.5741
(0.9589, 0.9668) (0.5997, 0.8794) (0.9502, 0.9624) (0.4708,0.6777)
Uy 1.2e-5 - 2.7e—5 1.5e—5 - 3.6e—5
(1.1e—5, 1.46—5) (2.0e—5, 3.5e—5) (1.3e—5,1.7e—5) (3.1e—5,4.16—5)
J 18.09 13.52 9.25 25.02 18.51 10.08
(17.38,18.81) (12.98, 14.04) (8.85, 9.66) (23.97, 26.09) (17.97,19.02) (9.64, 10.54)
pval 0.021 0.096 0.161 0.005 0.047 0.260
(0.016, 0.026) (0.081,0.113) (0.140, 0.182) (0.004, 0.008) (0.040, 0.055) (0.229, 0.292)
df 8 8 6 10 10 8

Table 5: Extended long-run risk models. Average 8nd5) percentiles of the parameter estimates. The IES5is

the estimation. More specifically, a positive valuatiok shiock, which makes households more
patient, reduces consumption and dividend growth. In ectilverse race between the SV model
and the Demand model, which have the same number of paranisieDemand model wins. The
superior fit of the Demand model comes from the fact that itebehatches the high volatility of
dividend growth and the low correlation between dividenohwgh and equity returns. The model
is better able to match these moments because the volafilityidend growth increases witty,
while partially offsetting the positive relationship betan valuation risk and the return on equity.
The Demand-SV model (column 3) raises the p-valuetd61, passing the over-identifying
restrictions test at th€0% level. This result reveals that the two extensions to thg-am risk
model are complements, rather than substitutes, which isbvdousa priori because both features
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OmitsE[ry 5] & E[ry,20] All Moments

Moment Data NoVR-SV Demand DemandSV NoVR+SV Demand DemandSV
E[Ac] 1.89 1.90 1.87 1.89 1.96 1.89 1.91
(0.05) (—0.08) (0.02) (0.27) (0.02) (0.10)
E[Ad] 1.47 1.58 1.74 1.83 0.36 1.61 1.78
0.11) (0.28) (0.38) (—1.16) (0.14) (0.32)
E[zd] 3.42 3.41 3.40 3.39 3.48 3.41 3.40
(~0.07) (—0.16) (—0.21) (0.44) (—0.09) (—0.19)
E[rg) 6.51 6.68 5.81 5.78 5.76 5.52 5.73
(0.10) (—0.44) (—0.46) (=0.47) (—0.62) (—0.49)
E[ry] 0.25 0.13 0.36 0.19 0.98 1.22 0.27
(=0.21) (0.17) (=0.11) (1.20) (1.58) (0.03)
E[rj»75] 1.19 —0.75 0.31 0.75 1.43 1.25 1.45
(—2.87) (=1.30) (—0.65) (0.34) (0.09) (0.38)
E[’I’j’_]go] 1.88 —2.13 —0.12 0.63 1.21 0.96 1.57
(—6.66) (—3.31) (—2.08) (=1.10) (~1.52) (—0.51)
SD[AC] 1.99 2.01 1.98 2.09 2.12 1.75 2.11
(0.03) (=0.04) (0.21) (0.26) (—0.49) (0.25)
SDI]Ad) 11.09 5.28 7.60 9.68 5.24 7.79 9.84
(—2.12) (—1.28) (—0.51) (—2.14) (~1.20) (—0.46)
SDlrq) 19.15 18.71 18.31 18.69 18.22 18.63 18.58
(~0.23) (—0.44) (—0.24) (—0.49) (~0.27) (—0.30)
SD[ry] 2.72 2.54 2.97 2.69 2.59 3.05 2.61
(—0.36) (0.49) (=0.07) (=0.27) (0.64) (~0.22)
SDlz4] 0.45 0.51 0.50 0.48 0.54 0.49 0.49
(0.91) (0.81) (0.46) (1.44) (0.69) (0.58)
AC[AC] 0.53 0.44 0.43 0.45 0.45 0.42 0.45
(~0.97) (=1.07) (~0.92) (=0.91) (~1.21) (—0.90)
AC[Ad] 0.19 0.24 0.21 0.17 0.24 0.22 0.17
(0.45) (0.20) (—0.24) (0.43) (0.25) (~0.21)
AC[rd] —0.01 —0.03 0.02 —0.03 0.01 0.01 —0.01
(—0.26) (0.32) (—0.20) (0.28) (0.30) (0.03)
AClry] 0.68 0.69 0.71 0.70 0.65 0.72 0.71
(0.08) (0.49) (0.25) (=0.45) (0.64) (0.39)
AC[zd] 0.89 0.93 0.93 0.91 0.94 0.92 0.91
(0.87) (0.81) (0.41) (1.13) (0.70) (0.47)
Corr[Ac, Ad] 0.54 0.51 0.49 0.51 0.52 0.45 0.49
(~0.13) (=0.24) (=0.11) (=0.08) (—0.39) (~0.21)
Corr[Ac, rd] 0.05 0.06 0.09 0.10 0.06 0.09 0.11
(0.18) (0.59) (0.79) (0.12) (0.63) (0.83)
Corr[Ad, rd] 0.07 0.21 0.13 0.06 0.21 0.13 0.06
(1.72) (0.79) (—0.06) (1.71) (0.75) (~0.12)
Corr[ep, zd7_1] —0.16 —0.23 —-0.14 —0.12 —0.20 —0.13 —0.11
(—0.65) (0.26) (0.42) (=0.41) (0.37) (0.53)
Corr[Ac, zd7_1] 0.19 0.65 0.66 0.62 0.67 0.65 0.62
(2.63) (2.66) (2.47) (2.71) (2.59) (2.48)

Table 6: Extended long-run risk models. Data and averagesiingblied moments. t-statistics are in parentheses.

help match risk-free rate dynamics. It also occurs evenghaloe two additional parameters in the
model reduce the degrees of freedom and the critical valuéémver-identifying restrictions test.
The model continues to fail on one key moment: the predilitalmf consumption growth
given the price dividend ratio (i.eorr[Ac, z4—1]) remains too high((.62 vs. 0.19 in the data).
The overall improvement in fit occurs because the Dem&WM model does a much better job
matching dividend growth dynamics. Specifically, it betteatches the standard deviation of div-
idend growth 9.68 vs. 11.09 in the data) and the weak correlation between dividend drand
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equity returns@.06 vs. 0.07 in the data). In this model, valuation risk has a bigger rbbntin the
Demand modeld, = 0.993 vs. p, = 0.959; o, = 0.0288 vs. 0, = 0.0185), while the SV process
is not as persistenpf, = 0.771vs. p,, = 0.963) as in the No VR-SV model. Alsog, is signif-
icantly smaller, so the contribution of consumption growstatility from pure endowment risk is
smaller when compared to the Demand model. The Demand masd@tduble matching dividend
growth dynamics while simultaneously matching risk-fragerdynamics. An expanded role of
valuation risk is crucial for matching dividend growth dymias. Without SV, this is not possible
because it would cause the model to miss on the risk-freelyat@mics. Introducing SV, however,
permits a lower,, which helps offset the effect of valuation risk on the rfske rate dynamics.

In terms of the yield curve, the No VR+SV and Demand model$atik able to improve along
this dimension. Once the long-term rates are targeted,iéhe gurve slope (i.e.[r ;] — Elrs])
rises from—2.0% to 0.2% with the No VR+SV model (column 4) and from0.5% to —0.3% with
the Demand model (column 5). However, in both cases, the gietve is hump-shaped and the
addition of the yield curve moments decreases the fit of theetscas measured by the p-value. In
the case of the Demand model, it no longer passes the teseofdentifying restrictions at th&
level. In sharp contrast, the Demand+SV model improvesringeof the p-value when the yield
curve moments are targeted fran 6% to 0.26% and the yield curve is no longer hump-shaped
(column 6). All three yield curve moments are insignificgulifferent from their data counterparts.

8 CONCLUSION

Although valuation risk has become the subject of a subsidmidy of research to address asset
pricing puzzles, the literature has ignored the full imglions of the current preference specifi-
cation. This paper first documents four desirable propedfeEpstein-Zin recursive preferences
without valuation risk. It then shows the current valuatigk specification violates these prop-
erties because the distributional weights in the time-aggagor of the utility function do not sum
to 1. In contrast, our revised preferences, which restrict teidutional weights, satisfy all four
properties. These results caution against continuingadhescurrent specification in future work.
Under our revised preferences, valuation risk has a mucliesmale in resolving the equity
premium and risk-free rate puzzles. However, we find vadwatisk still plays an important role in
matching the standard deviation and autocorrelation ofitikefree rate as well as the yield curve.
Furthermore, allowing valuation risk to directly affectstaflow growth, similar to a production
economy model, adds a source of volatility that significaimtiproves the empirical fit of the model
and helps match the standard deviation of dividend gromthitsrcorrelation with equity returns.
Despite the importance of valuation risk, our paper anditkeature is silent on its structural
foundations. As a consequence, there are several openaiesggstions. For example, what does
it mean for a representative household to have a time-vatyime-preference? Is there an economy
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with multiple (heterogenous) households that supportsethpreferences? Is there a decision-
theoretic explanation and is it possible to back out the dyos of a time-varying time-preference
from experiments or data? We believe these questions am@tamh avenues for future research.
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A INDIFFERENCECURVE DERIVATION

For compactness, defipe= 1 — 1/¢ anda = 1 — +. Then from {) and @) in the main paper

Uclam) = 9(US,) =g (1-8+ Clt+15f)l/p) ;
Ur(a1) = Q(Uﬁl) =9 ((1 — a1+ Gt+1ﬁf)1/p) )

whereg(U;1) = (E,[U24])*. The certainty equivalent is given by
U=(01-p+pn)"

Suppose there are two possible outcomesfof, denoted:; anda,. Then

Uc = <(1 — B+ apr)r+ (1= B+ mﬁ:@)a/p)l/a
o 2 :

Ur = <(1 EiChs alﬁj;)a/p + (1 —af + azﬁﬂf)a/p>1/a
R= : _

SetUs andUj, equal to the certainty equivalent, fix, and solve for, to obtain:

(20 — (1 = B + a1 Bz)*/*)"* — (1 = B)

o = o ,
w (20° — (1= aif + aBE)/)"* —1
= BE—1) '

We plot combinations ofa,, a2) under the current and revised preferences.
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B ISOMORPHICREPRESENTATIONS OF THECURRENT SPECIFICATION

In the current literature, the preference shock typicaitg burrent utility. If, for simplicity, we
abstract from Epstein-Zin preferences, then the utilityction and Euler equation are given by

Ut = oztu(ct) -+ BEt[UH_l], (Bl)
BE (g1 /an)u/ (cppr) Ju' (ce)ry 1] = 1. (B.2)

The shock followsAd, 1 = pAd; + 0,64, SO the change in; is known at timet. Alternatively, if
the preference shock hits future consumption, the utilityction and Euler equation are given by

Ut = U(Ct) -+ atﬁEt[UtH], (83)
arBEU (cr1) /0 (ce)ry ] = 1. (B.4)

If the shock followsa; = pa,_1 + o.e¢, the two specifications are isomorphic because setting
a; = a1/ in (B.4) yields B.2). We use the second specification because it is easier toazemp
the current and revised preferences when the shock alwaysssip in the Euler equation in levels.

C RESULTS5 PROOF

The results in this section apply a variant of the followingrflimits:
L tim o [ £ (B [(@ee+ 1)1/6})6 ~1)] = Bles]
2. lime L ((E [(xe% + x)l/ﬁ] ) - E[x])] is undefined
3. timeo [1 (B [(wee+ 1)) = 1)] = Blea]

1

4. lim,_g % ((E [(wec + x)T]) ™ — E[:c])] = Elcz] + O

wherex is an exogenous stochastic variahlés a stochastic policy relevant variable, afidd=
Elzlogx] — E[x]log(E[x]) is an additive term that is independent of the policy relévaniable.

Case 1 Definey =1 — e and1 — 1/1 = €2. Then preferences are given by
. . 2 . . 1\ € 1/€2
Ul = (w{,tcg _'_w%,t (Et [(Ut]+1) ]) )
For simplicity, assume, ; = 1 andc,. ; is nonstochastic fof > 2. DefiningV; = (Utj)e2 implies

. . 62 . . 1/6 €
V? = w{,tct + w%,t (Et [(Vfﬂ) ]) ;
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J o _ 00 k=13 J €2
Vi = (Hi:l w2,t+i> WY 44 kCtke

Combining these results then implies
I — ol € o i e VYT
Vi = wy ¢ +wy, | By (Zk:l wz,t+kw1,t+kct+k> ;

whered,,, = [1;-) w},.;. Now defineW/ = (V;/ — 1)/€2, so the utility function is given by

J
wy ,—1

. ) 0o ~d ; 1/€]\ €
W = w{,tut + w%,t (Et [(ei? D ket w%,t+kw{,t+k(e2ut+k + 1)) ]) e

whereu, = (¢{” — 1)/¢? is a CRRA utility function that converges tog ¢, ase — 0.
Under the revised specificatiom{ft =1—f andwgt = a;f3. Therefore,

Wi = (1 — ayB)u, + %2 <<Et [(62 % el — st + 1)1/6])6 _ 1) (o)
wherea; = Hf;ll a4 5. Applying Limit 1, then implies
11_{1% Wy = (1 —af)loge + aBELY 2y rri(l — arrf) 10g copr].
Under the current preferences;, = 1 — 3 andw§, = a,3. Therefore,
W, = (1 - Bu, + % ((Et [(62(1 —B) > pey Gt + 1 — B+ at+1ﬁ)1/€D€ - a%) ;

which does not converge to a log utility functioneas:> 0 according td_imit 2.

Case 2 The assumption that= 1 — e and1 — 1/¢) = €2 may appear contrived. What is important

is that bothy and tend tol, but approaches at a faster rate. When they approacht the

same rate, then time-separable log utility results regasdbf whether the preference specification.
To see this result, suppose= 1 — ¢ andy = 1 + €. Then utility is given by

1+¢

- (4 v 0]

Once again, assumg, ; = 1 andc,.; is nonstochastic fof > 2. DefiningV;/ = (U7) T implies

: e\ l+e T+e
V! =w] tCt1+E + wy, <Et [(Zk 1 w2 t+kW1 t+k0t1++zi) }) )
whereti, ., is the same as Case 1. Defiiig = (14-¢)(V; —1)/e. The utility function is given by
1
. . € o 1_;’_5 1_+e € .
Wy = w{,tut + w%,t <Et [(1% > e 1“’2 t+kw1 t+k(1+gut+k + 1)) ]) + (1T) (w{,t — 1),
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whereu, = (/"9 — 1)/(¢/(1+ ¢)) is a CRRA utility function that converges tog ¢, ase — 0.
Under the revised specification,’, = 1 — a,3 andwy’, = a, . Therefore,

Wi = (1 - af)u + a,f (1Jer6) ((Et [(1%6 > et Gk (1 = @ B)ugyr + 1)1+6]>1_+€ — 1) )

wherea, ;. is defined above. Applyingimit 3, then implies C.1).
Under the current preferences;, = 1 — 3 andw§, = a,3. Therefore,

Wi = (1= B)us + a3 (lje) ((Et [(ﬁg(l = B) Dy Grrktipsk + af+1)1+6D11+6 - Et[afﬂ])
+af (F2) (Bifaiyy] = 1/ay),
wherea;, ; =1 — 3 + a,41 3. Applying Limit 4, then implies
E_I}'OI Wy = (1-8)loge; + aiB(1 — B)Et[ZZil Gy yr1og copn] + Oy

whereO, = Ei[a;,logai 4] — Eifaj, ] log(Ei[ai 1)) + aB(E[ai 4] — 1/a;) lime_o (1) is an
exogenous additive term that does not affect the househojdimality conditions.

D ANALYTICAL DERIVATIONS

Stochastic Discount Factor The Lagrangian for specificatione {C, R} is given by

U] = max

-1/ 175
o 1-1 j i\ 1—
witct v + w%,t (Et [(Utjﬂ) D ! ]

— Me(er + pyisie + parsar — Pyt + Ye)S1.0-1 — (Pax + di)S2.4-1),

wherew(, = 1—- 3, wfl, = 1—af'f, w§, = af B, andwy’, = a;*3. The optimality conditions imply

w{,t (Utj)l/w Ct_l/w =\, (D.1)
1/—y

wh (U) (B(U)7]) T B0 (00 /051) | = A (D2)
1/p—

wh, ()" (B [0 7)) T B[ (Uh) T (004/0520)] = Awar ©3)

wheredU; /ds1 ;1 = M\(py. +y:) andoU} /3sq,—1 = Mi(pas + d;) by the envelope theorem. Up-
dating the envelope conditions and combinibgl)-(D.3) generatesl(l) and (L2) in the main text.
Following Epstein and Zin (1991), we posit the following mmum state variable solution:

Ul = E14510-1 + Eous241 and ¢ = 345141 + EaeS24-1- (D.4)
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where is a vector of unknown coefficients. The envelope conditmmabined with D.1) imply

1= w] (U7 (pys + 1), (D.5)
§o0 = w{,t(Utj)l/th_l/w (Pa + dy). (D.6)

Multiplying (D.5) by s, ;-1 and ©.6) by s»;_; and then adding yields
U} = wl (U7 (g + o) s1a-1 + (pag + di)szio), (D.7)

which, after plugging in the budget constrairitQ), and imposing equilibrium, can be written as

(U= = ] o ¥ (e pyasia + Passas) = wiser VY (er + pye). (D.8)
Imposing D.8) on the utility function implies
) 1-1/9
/ -1 y ; —y 1—
w{,tCt /wpy,t = wé,t <Et [(Utj—kl) }) T (D.9)

Solving (0.8) for U/ and (.9) for Et[(Uerl)l‘V] and then plugging intol@3) and @4) implies
miy, = (xi)a(CtJrl/Ct)_g/sz;il» (D.10)
wherer] = wjwl, ., /w],. Taking logs of D.10) yields (L7), given the following definitions:
¥ =B +af,
i =B+ al +log(l — Bexp(al,)) — log(1 — Bexp(af) =~ 6 + (af — Bal,)/(1 - B),

anda; = a¢ = af/(1— ) so the preference shocks with the current and revised spifis are
directly comparable. It follows that! = B+ a; — wid asin A7), wherew® = 0 andw? = 8.

Campbell-Shiller Approximation The return on the endowment is approximated by

Fyi+1 = 108(Py i1 + Yer1) — 1og(py.e)
= 10g(Ys+1(Py,+1/Y+1) + Y1) — Log(ye(Py.e/yr))
= log(y+1(exp(Zye41) + 1)) — 2 — log(yr)
= log(exp(Zy,t41) + 1) = 2yt + A
~ log(exp(Zy) + 1) + exp(2y) (3401 — 2) /(1 + exp(2y)) = 2yt + Afiesa

= Kyo + Fy1Zye01 — 2y T Dby

The derivation for the equity return, ., is analogous to the return on the endowment.
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Model Solution We use a guess and verify method. For the endowment claimbtagno

0 = log(E¢[exp(re+1 + Fy+1)])
= log(Et[exp(HB + Q(dt — wjdt+1) + 9(1 — 1/¢)A@t+1 + H(Hy() + Hyléy,t-i-l — éy,t))])

| 0B+ 0(a — wiarr1) + 0(1 — 1/9) (py + oyeys1)
=log | E; |exp . .
+0ky0 + Ory1(nyo + My1Ges1) — O(ny0 + My16e)
93 +0(1 — 1/9)py + O(kyo + nyo(ky1 — 1))
=log | E; |exp +0(1 — wpg + Ny1 (Ky1pa — 1))y
+0(1 — 1/9)oyeyr1 + O(ky1ny1 — w)0aeq 41
= 95 +0(1 = 1/9)y + 0(ky0 + nyo (K1 — 1)) + %(1 - 1/7/’)2‘75
+ Gy — w?)?08 + 0(1 = W po + 11 (sy1p0 — 1)),

where the last equality follows from the log-normalityesfp (s, ;+1) andexp(eg,i+1)-
After equating coefficients, we obtain the following exctrsrestrictions:

B‘l' (L= 1/¢)py + (Kyo + myo(kyr — 1)) + g((l - 1/7/))205 + (Ky1my1 — w)?o2) =0, (D.11)
1- wjpa + 77y1(/‘fy1,0a - 1) =0. (D12)

For the dividend claim, we obtain

0 = log(E: [exp(mt-i-l + Fat+1)])

_ 95 +0(ar — W) + (01 = 1/9) = DAGegr + Adyya
og Et exp A R k
— 1) (kyo + Kyt Zya1 — Zyt) + (Kao + Kar Zae+1 — 2d,t)
63+ (0(1 — 1/%) — Dty + ua
0—1 -1 -1
“log | B, |exp +(0 — 1) (kyo + myo(ky1 — 1)) + (Kao + nao(ka1 — 1))

+(9(1 - ija) + (9 - 1)77311 (“ylpa - 1) + 77d1(’fdlpa - 1))&1%
(Tay — YV)oyeyir1 + (0 — Dkyaimyr + kainar — 0w?)0acat+1 + Yaoyed i

+ (9 1-— 1/1/1 — 1)Ny + Ug + (9 — 1)(/£y0 + 77y0("<5y1 — 1)) + (Fado + ndo("idl — 1))
+ (0(1 - wjpa) + (0 = Dny1(ky1pa — 1) + Na1(kdi1pa — 1))ay
+ %((Wdy v)? 0’ + ((0 — Dkyaing1 + ka1 — 0w’ )02 + ¢§0§)-

Once again, equating coefficients implies the followinglesion restrictions:

0 + (01 —1/v) — Dy + pa + (6 — 1)(Kyo + nyo(ky1 — 1)) + (Kao + Nao (ka1 — 1))
‘l'%((ﬂ'dy - 7)205 + ((0 = Dkyany + Kanar — 9wj)203 + ?/)305) =0, (D.13)
0(1 — wpa) + (0 = D)1 (ky10a — 1) + Nar (Karpa — 1) = 0. (D.14)

EquationsD.11)-(D.14), along with 1) and @2), form a system o8 equations and unknowns.
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Asset Prices Given the coefficients, we can solve for the risk free ratee Ebler equation implies

Fre = —log(Ey[exp(Myy1)]) = — B[] — %Vart[mtﬂ],
since the risk-free rate is known at tineThe pricing kernel is given by
fer = 08 + 0(a; — ware) — (0/9) Afipr + (0 — 1)fy 441
= 93 +0(a — W ygr) — YAG1 + (0 — 1)(Kyo + Kyt Zye01 — Zy,t)
= HB — Yty + (0 = 1) (kyo + myo (kg1 — 1)) + (O(1 — wjpa) + (0 = Dnyi(ky1pa — 1)) ay
+ (0 — Dryamy — O’ )Uaga t+1 = VOyEyt+1
= 08 — iy + (6 = 1)(ky0 +myo(ryn — 1)) + (1 =07 pa)dy

+((0 1)f€y17}y1 — 0w’ )Uaga t+1) — YOyEy,t+1,
where the last line follows from imposin®(12). Therefore, the risk-free rate is given by

Pre =y — 08 — (0 — 1) (150 + my0(kiy1 — 1)) — (1 — w’py)éty

) —
— 570y — 5((0 = Dk — 0w’)’oy.

Note that’;, = log(E;[exp(7+)]). After plugging in 0.11), we obtain

Fre=y/t = B = (1= wpa)as + 5((0 = Dgungy = 0))og + 5((1/$ = 1)1 = 7) = 1%)ey.
Therefore, the unconditional expected risk-free ratevemgby

El#g = =B+ py /¥ + 5((0 = gy, — 0(w’)*)ol + 3((1/¢ —=7)(1 =) =¥*)os.  (D.15)
We can also derive an expression for the equity premilifiep,. 1|, which given by

log(Ey[exp(Pasi1 — 710)]) = Eilfape1] = 7re+ 5 Var[Fapn] = — Covilingg, fa ],

where the last equality stems from the Euler equatE;hﬁHlefd,tH]Jr% Var M1 +7g441] = 0.
We already solved for the SDF, so the last step is to solveh®etuity return, which given by

a1 = Ko + ka1 Zder1 — Zat + Adp
= Ko + Ka1 (Ndo + Nardes1) — (Nao + Narae) + Adp

= ftg + Ko + Nao (ka1 — 1) + Na1 (Ka1pa — 1)as + Ka1Md10a€at41 + TayOyEy t+1 + Va0yed t+1-

Therefore, the unconditional equity premium can be wrigéen

Elep| = vwdyai + (0w + (1 — ) ky1my1) K1 N o= (D.16)
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Long-term Bond Prices The pricing kernel can be written as

Myp1 = Mo + M1Ay + M0Eq 141 + M30yEy 111,

where
mo = 93 — Yy + (0 — 1)(“@/0 + nyO("{yl - 1)), my = (0 — 1)”€y177y1 - ij>
my =1 —wp,, mg = —.

The 1-period bond price is given by

By = =1 = log(Eylexp(riu)]) = mo + md, + m3os /2 +mio /2.

The2-period bond price is given by

ﬁ£2) = log Ey[exp (141 + ﬁﬁr)l)]
= log Ei[exp(mo + miGy + Ma0aEq 1 + M3oyey 11+
mo + M1 (Paliy + Oafapsr) +m30. /2 +mio. /2)]

= 2mg + my (1 + pa)ay + (my +ma)’o; /2 4+ m30; /2 +mio,.
More generally, the price of any-period bond fom > 1 is given by

~ -1 ia 1 -k 4 1
pgn) =nmgy+my Z?:o Phas + 5 g (ma +my Z?:o pl)’os + Em%ag + %mgag

and the risk-free return is given b}([ft) = —ﬁﬁ”)/n.

D.1 SPecIAL CASEL (o, = g = 0 & w4, = 1) Inthis case, there is no valuation risk & 0)
and cash flow risk is perfectly correlatefg, .1 = j, + oyey141; Adyr = pa + oy€y.141). Under
these assumptions, it is easy to see tBatp) and O.16) reduce to 26) and @7) in the main text.

D.2 SPeECIAL CASE 2 (0, = 0, p, = 0, & p, = pg) In this case, there is no cash flow
risk (Age1 = Adyyy = i,) and the time preference shocks ar@. (4,41 = ouc441). UN-
der these two assumptions, the return on the endowment arknd claims are identical, so
{Ky0s Byt Myo, M1 } = {Kdo, Kar, Nao, Nar } = { kKo, k1,M0, M }. Therefore, P.15) and .16) reduce
to (28) and @9) for the current specification an8@) and 31) for the revised specification.

The exclusion restriction[X.12), impliesr; = 1 so (D.11) simplifies to

0=73+ (1 —=1/Y)py + ko +no(k1 — 1) + g(ffl —w’)?o?, (D.17)

First, recall thaD < x; < 1. Therefore, the asymptote thwill permeate the solution with the
current preferencess{ = 0). However, with the revised preferences?(= 3), we guess and
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verify thatx; = S wheny = 1. In this case,[0.17) reduces t0§+mo+no(ﬁ— 1) = 0. Combining

with (21), this restriction implies thafy = log 5—log(1—/5) andkg = —(1—75) log(1—3)—f log S.

Plugging the expressions fgg, o, andx; into (21) and ©.17) verifies our initial guess fox;.
Alternatively, if utility is Epstein-Zin with a stationamyreference shock acurrentutility, then

1
1-1/y | 1-1/9

Ur = |ai(1 = B)e ™"+ B (B, [(Un)' 7)) ™ , 1#£9 >0, (D.18)

Sincew; ; = a;(1 — 8) andw,; = 3, x; = Ba11/a: and the pricing kernel is given by
M1 = 0log B+ 0(ar1 — ar) — (0/0) Al + (6 — D)7y 141 (D.19)

Given this slight modification, the average risk-free ratd average equity premium are given by

Elis] = —log B + /¥ + (0 — 1)rin; +60)0s/2, (D.20)
Elep] = (1 = 0)kams — 0)kamoy. (D.21)
Sincen; = —1, there is once again no endogenous mechanism that prehenasymptote i

from influencing asset pricing moments, just like 28 and @9) under the current specification.

E NONLINEAR MODEL ASYMPTOTE

Assumingu,.1 = yire1/y: = dir1/dy, the (nonlinear) Euler equation is given by

| 9o\ 1/0
w= s (B0 i 0 w) ) =

Tt4+1

wherex® = 0 andy® = 1. Notice the asymptote disappear$Sb(z;,;) — 0 asy) — 1. The

main text focuses on results from a Campbell and Shiller §18@proximation of the model. In

this appendix, we demonstrate three noteworthy resultgyube model’s exact, nonlinear, form.
One, consider the case without valuation riskgse- 1 for all t. The Euler equation reduces to

o= BE[(a”” (1+ 2i00) )’ (E.2)

Wheny = 1, we guess and verify that = /(1 — (), so the price-dividend ratio is constant. This

is the well know result that when the IESTisthe income and substitution effects of a change in

endowment growth offset. Therefore, the price-divideritbrdoes not respond to cash flow risk.
Two, consider the case whenis stochastic under the revised prefereng€s 1) and either

1» = 1 (CRRA preferences) qi; = 1 for all ¢ (no cash-flow growth). In both cases, we guess and

verify thatz;, = a;,3/(1 — a,3). The price dividend ratio is time-varying but independeinf,cso

38



an asymptote does not affect equilibrium outcomes. Theshttusehold is certainty-equivalent.
Three, consider what happens under the current preferéyices 0), which do not account for
the offsetting movements in—a, 3. To obtain a closed-form solution for any IES, we assyme
w and the preference shock evolves accordinpg¢l + a,.11) = oe,11, Wheree,; is standard
normal. Under these assumptions, we guess and verify thatribe-dividend ratio is given by

2 = am = a, B exp(80?/2). (E3)

In this casef) appears in the price-dividend ratio, so the asymptote t&fieguilibrium outcomes.
These results prove that the asymptote is not due to a Cakfpiiéer approximation of the model.

F DATA SOURCES
We drew from the following data sources to estimate our nmsdel

1. [RCONS] Per Capita Real PCE (excluding durables) Annual, chained 2012 dollars.
Source: Bureau of Economic Analysis, National Income amdi&ct Accounts, Table 7.1.

2. [RET D] Value-Weighted Return (including dividends). Monthly. Source: Wharton Re-
search Data Services, CRSP Stock Market Indexes (CRSP IIREVD).

3. [RET X] Value-Weighted Return (excluding dividends) Monthly. Source: Wharton Re-
search Data Services, CRSP Stock Market Indexes (CRSP IIRETX).

4. [CPI] Consumer Price Index for All Urban Consumers. Monthly, not seasonally ad-
justed, index 1982-1984=100. Source: Bureau of Labor$iedi(FRED ID: CPIAUCNS).

5. [RF R] Risk-free Rate: Monthly, annualized yield calculated from nominal priGource:
Wharton Research Data Services, CRSP Treasuries, Risiséges (CRSP ID: TMYTM).

6. [RF R5] 5-year U.S. Treasury Yield Monthly, intermediate-term, annualized. Source:
Ibbotson Associates via Morningstar Direct, IA SBBI US ID(IFOUSA05XQC).

7. [RF R20] 20-year U.S. Treasury Yield Monthly, long-term, annualized. Source: Ibbotson
Associates via Morningstar Direct, IA SBBI US LT (ID: FOUSBRQS).

We applied the following transformations to the above dataces:

1. Annual Per Capita Real Consumption Growth (annual frequeng):
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2. Annual Real Dividend Growth (monthly frequency):

P1928M1 — 100, Pt — Pt—l(l + RETXt), Dt — (RETDt - RETXt)Pt_l,
dt = Z::t—llDi/CPItv AdAt = 100 IOg(dt/dt_lg)

3. Annual Real Equity Return (monthly frequency):

" =log(CPI,/CPI,_y), #4;=1003""_, ,,(log(1 + RETD;) — ")

4. Annual Real Risk-free Rate (monthly frequency)

Tf’f’t = RFRt - IOg(CPIH_g/CPIt), 7Tg = 10g(CPIt/CPIt_12)/4,
Pre = 400(5o + BLRF R + o),

wherij are OLS estimates from regressing the quartexhpostreal ratey fr, on the quar-
terly nominal rate RF'R, and inflation 9. The fitted values estimate tle&-antereal rate.

5. 5- and 20-year Real Risk-free Rate (monthly frequency)

Tf’f’Xt = RFRXt - log(CPIH_m/CPIt), ﬂf = log(CPIt/CPIt_lg),
Prxs = 100(By + BLRFRX, + fary),

wherij are the OLS estimates from regressing the anexigdostreal long-term ratey; fr5
or r fr20, on the annual nominal rat&F R5 or RF R20, and inflationm®. The fitted values
estimate thex-antereal long-term rate.

6. Price-Dividend Ratio (monthly frequency):
Zap = IOg(Pt/Ezzt—nDi)
We use December of each year to convert each of the monthéydéries to an annual frequency.

G ESTIMATION METHOD

The estimation procedure has two stages. The first stageate moments in the data using a 2-
step Generalized Method of Moments (GMM) estimator with avgand West (1987) weighting
matrix with 10 lags. The second stage is a Simulated Method of Moments (SM&edure that
searches for a parameter vector that minimizes the distagtveeen the GMM estimates in the
data and short-sample predictions of the model, weightetidgiagonal of the GMM estimate of
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the variance-covariance matrix. The second stage is regpéat many different draws of shocks
to obtain a sampling distribution for each parameter. Thieviang steps outline the algorithm:

1. Use GMM to estimate the moments?, and the diagonal of the covariance matbi¥,.

2. Use SMM to estimate the structural asset pricing modeleGa random seed, draw a
T-period sequence of shocks for each shock in the model. Beéhetshock matrif;. (e.g.,
in the baseline model;. = [}, 5,5 J_)). Fors € {1,..., N}, run the following steps:

(a) Specify a guesd],, for the N, estimated parameters and the parameter variance-
covariance matrixy p, which is initialized as a diagonal matrix.
(b) Use simulated annealing to minimize the loss function.
i. Fori € {0,..., Ny}, repeat the following steps:
A. Draw a candidate vector of parametes™?, where

0y fori =0,

N(@i_l, C()ZP) fori > 0.

éicand -~

We setc to target an acceptance rate30f4. For the revised preferences, we
restrictde"¢ so thatf exp(4(1 — 8)+/02/(1 — p2)) < 1. This ensures the
utility function weights are positive i89.997% of the simulated observations.

B. Solve the Campbell-Shiller approximation of the modebguiéf“"d.

C. Givené&i(r), simulate the monthly mode® times for7 periods. We draw
initial states,ig, from N(0,02/(1 — p?)). For each repetition, calculate the
momentsI'M (Geend g5 (r)), the same way they are calculated in the data.

D. Calculate the median moments acrossﬂweimulations,@%T(éf“"d,5;1) =
median{ W (§eend g5 (r))}E_, and evaluate the loss function:

r=11

Jreemt = [0 — Uilp(05, RS2 (L + 1/R) U7 — Ui (67, 7).

(2

E. Accept or reject the candidate draw according to

(feond  ocandy i = (),
(éf, J7) = (éf‘md, Jf’cand) if min(1,exp(J2,; — Jf’cand)/cl) > 1,

~

(0;—1,J5 ) otherwise

wherec; is the temperature andis a draw from a uniform distribution. The
lower the temperature, the more likely it is that the candiadtaw is rejected.

ii. Find the parameter dradf . that corresponds tmin{.J} , and updatés..
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A. Discard the firstNV,/2 draws. Stack the remaining draws in\§/2 x N,

matrix, ©°, and define®® = 6° — 1, /91 S 0" Nu/2 5 |(Ny/2).

B. Calculatex$™ = (©°)0°/(Ny/2).

(c) Repeat the previous sty times, initializing at drawd, = 6%,

min

matrix Xp = X3,

lowestN; J values, denote@J;gess} 521, and the corresponding drawg;/. .
N}, minimize the same loss function with MATLABfs1i nsear ch
with a loss function value of >/ .
< 0.001. The parameter estimates

(d) Forj € {1,...,
starting a®;;/. ... The resulting minimum g7

peat, each time updating the guess, ufjtl., —J5

min

reported in the tables in the main paper, denétedorrespond tonin{

and covariance
Gradually decrease the temperature. Of all the draws, fiad t

N,
b

Re-

Ty

min

3. The set of SMM parameter estima{éﬁ}?’;l approximate the joint sampling distribution of
the parameters. We report its meéns 3.0, 0° /N, and(5, 95) percentiles.

For all model specifications, the results in the main paperased onV, = 500, R = 1,000,
Ny = 20,000, Nsarar = 5, andN; = 50. N, c¢o, and the temperatures,, are all model-specific.

H ESTIMATION ROBUSTNESS

Baseline Model:y = 2.0

Omits E[ry,5] & E[ry 0] All Moments
Ptr Current Revised Max RA Current Revised Max RA
~y 1.46 75.79 10.00 1.31 98.91 10.00
(1.44,1.48) (72.61, 79.16) (10.00, 10.00) (1.29, 1.34) (94.21, 103.85) (10.00, 10.00)
I6; 0.9978 0.9957 0.9974 0.9980 0.9964 0.9979
(0.9977, 0.9980) (0.9956, 0.9958) (0.9974, 0.9975) (0.9979, 0.9982) (0.9963, 0.9964) (0.9979, 0.9980)
Pa 0.9968 0.9899 0.9877 0.9973 0.9893 0.9877
(0.9965, 0.9971) (0.9896, 0.9902) (0.9874, 0.9880) (0.9970, 0.9976) (0.9890, 0.9896) (0.9874, 0.9880)
Oa 0.00031 0.03554 0.03907 0.00028 0.03657 0.03918
(0.00030,0.00033)  (0.03504, 0.03605)  (0.03864,0.03955)  (0.00027,0.00030)  (0.03604,0.03709)  (0.03869, 0.03963)
y 0.0016 0.0016 0.0017 0.0016 0.0017 0.0016
’ (0.0016, 0.0016) (0.0016, 0.0016) (0.0017,0.0017) (0.0016, 0.0016) (0.0016, 0.0017) (0.0016, 0.0016)
Ld 0.0015 0.0020 0.0010 0.0010 0.0016 0.0005
(0.0015, 0.0016) (0.0020, 0.0021) (0.0009, 0.0010) (0.0010, 0.0011) (0.0016, 0.0017) (0.0004, 0.0005)
Oy 0.0058 0.0058 0.0058 0.0058 0.0055 0.0060
i (0.0057, 0.0058) (0.0057, 0.0059) (0.0057, 0.0060) (0.0058, 0.0058) (0.0054, 0.0057) (0.0059, 0.0062)
Py 1.54 0.97 1.07 1.52 1.13 1.01
(1.43,1.63) (0.88,1.07) (0.96, 1.18) (1.42,1.61) (1.04, 1.23) 0.92,1.12)
Tdy 0.816 0.438 0.606 0.816 0.614 0.598
(0.765, 0.870) (0.405, 0.475) (0.550, 0.668) (0.760, 0.873) (0.584, 0.645) (0.545, 0.657)
J 29.27 48.09 56.08 31.73 50.04 59.90
(28.62, 29.98) (47.73, 48.47) (55.47, 56.67) (31.05, 32.43) (49.64, 50.46) (59.38, 60.40)
pval 0.000 0.000 0.000 0.000 0.000 0.000
(0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)
df 6 6 6 8 8 8

Table H.1: Baseline model. Average afid95) percentiles of the parameter estimates.
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Omits E[ry 5] & E[ry20] All Moments

Moment Data Current Revised Max RA Current Revised Max RA
E[A(] 1.89 1.89 1.94 2.00 1.89 1.98 1.95
(0.00) (0.19) (0.45) (0.00) (0.36) (0.22)
E[Ad] 1.47 1.84 2.45 1.15 1.25 1.97 0.56
(0.38) (1.02) (—0.34) (—0.24) (0.52) (—0.95)
Elz4] 3.42 3.45 3.49 3.56 3.49 3.52 3.60
(0.18) (0.48) (1.02) (0.48) 0.74) (1.27)
E[r4] 6.51 5.46 5.57 4.03 4.78 4.98 3.35
(—0.66) (—0.59) (—1.55) (—1.08) (—0.96) (—1.98)
Elrs] 0.25 0.25 0.37 1.07 0.09 0.26 0.42
(0.00) (0.19) (1.34) (—0.26) (0.01) (0.28)
Elrys] 1.19 1.25 1.75 2.19 0.92 1.23 1.51
’ (0.09) (0.83) (1.46) (—0.40) (0.06) (0.47)
Elrs 0] 1.88 3.19 3.47 3.32 2.57 2.28 2.62
' (2.19) (2.65) (2.40) (1.16) (0.68) (1.24)
SDI[A¢] 1.99 1.99 1.99 2.01 2.00 1.91 2.08
(0.00) (—0.01) (0.04) (0.01) (—=0.17) (0.18)
SDI[Ad] 11.09 3.47 2.12 2.47 3.44 2.46 2.44
(—2.79) (—3.28) (—3.15) (—2.80) (—3.15) (—3.16)
SD[rg) 19.15 18.41 13.64 13.39 18.47 13.46 13.06
(—0.39) (—2.91) (—3.04) (—0.36) (—3.00) (—3.21)
SDlry] 2.72 3.21 3.70 3.87 2.99 3.70 3.77
’ (0.96) (1.92) (2.27) (0.53) (1.93) (2.06)
SD[z4] 0.45 0.46 0.25 0.23 0.48 0.24 0.22
(0.22) (—3.17) (—3.52) (0.47) (—3.32) (—3.62)
ACry] 0.68 0.95 0.90 0.88 0.95 0.89 0.88
(4.12) (3.35) (3.12) (4.17) (3.28) (3.11)
ACz4) 0.89 0.92 0.85 0.83 0.93 0.84 0.83
(0.64) (—0.86) (—1.33) (0.75) (—1.00) (—1.35)
Corr[Ac, Ad] 0.54 0.47 0.41 0.50 0.48 0.48 0.51
(—0.31) (—0.59) (—0.19) (—0.29) (—0.28) (—0.13)
Corr[Ac, r4) 0.05 0.09 0.06 0.09 0.09 0.09 0.09
(0.57) (0.23) (0.61) (0.57) (0.55) (0.67)
Corr[Ad, rq) 0.07 0.19 0.15 0.18 0.18 0.18 0.19
(1.41) (1.03) (1.37) (1.38) (1.35) (1.41)

Table H.2: Baseline model. Data and average model-impliechemts. t-statistics are in parentheses.
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Baseline Model:y) = 1.5

Omits E[ry 5] & E[ry,20] All Moments
Ptr Current Revised Max RA Current Revised Max RA
¥ 1.31 78.83 10.00 1.21 100.12 10.00
(1.29, 1.32) (75.37, 82.75) (10.00, 10.00) (1.19, 1.23) (95.79, 104.96) (10.00, 10.00)
I} 0.9981 0.9958 0.9977 0.9983 0.9964 0.9982
(0.9980, 0.9982) (0.9957, 0.9958) (0.9976, 0.9977) (0.9982, 0.9984) (0.9964, 0.9965) (0.9981, 0.9982)
Pa 0.9968 0.9898 0.9875 0.9973 0.9892 0.9874
(0.9965, 0.9971) (0.9895, 0.9901) (0.9871,0.9878) (0.9970, 0.9976) (0.9889, 0.9896) (0.9871, 0.9877)
Oa 0.00031 0.03566 0.03946 0.00028 0.03665 0.03959
(0.00030,0.00033)  (0.03515,0.03618)  (0.03898,0.04000)  (0.00027,0.00030)  (0.03608,0.03722)  (0.03915, 0.04004)
Ly 0.0016 0.0016 0.0017 0.0016 0.0017 0.0016
(0.0016, 0.0016) (0.0016, 0.0016) (0.0016, 0.0017) (0.0016, 0.0016) (0.0016, 0.0017) (0.0016, 0.0016)
1 0.0015 0.0020 0.0009 0.0010 0.0016 0.0004
(0.0015, 0.0016) (0.0020, 0.0021) (0.0009, 0.0010) (0.0010, 0.0011) (0.0016, 0.0017) (0.0004, 0.0005)
oy 0.0058 0.0057 0.0059 0.0058 0.0055 0.0061
(0.0057, 0.0058) (0.0056, 0.0058) (0.0057, 0.0060) (0.0058, 0.0058) (0.0054, 0.0056) (0.0059, 0.0062)
Py 1.54 0.98 1.05 1.52 1.14 0.99
(1.44,1.63) (0.88,1.09) (0.95,1.16) (1.42,1.61) (1.05,1.24) (0.90, 1.09)
Ty 0.816 0.443 0.600 0.816 0.617 0.590
i (0.763,0.873) (0.409, 0.477) (0.548, 0.662) (0.759, 0.875) (0.589, 0.647) (0.535, 0.645)
J 29.27 48.26 57.00 31.74 50.11 60.78
(28.62, 29.98) (47.90, 48.64) (56.39, 57.59) (31.06, 32.44) (49.71, 50.54) (60.28, 61.26)
pval 0.000 0.000 0.000 0.000 0.000 0.000
(0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)
df 6 6 6 8 8 8

Table H.3: Baseline model. Average afid95) percentiles of the parameter estimates.
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Omits E[ry 5] & E[ry20] All Moments

Moment Data Current Revised Max RA Current Revised Max RA
E[A(] 1.89 1.89 1.94 1.99 1.89 1.98 1.93
(0.00) (0.21) (0.40) (0.00) (0.36) (0.18)
E[Ad] 1.47 1.84 2.44 1.12 1.25 1.97 0.54
(0.38) (1.01) (—0.37) (—0.24) (0.52) (—0.98)
Elz4] 3.42 3.45 3.49 3.56 3.49 3.52 3.60
(0.18) (0.49) (1.03) (0.48) 0.74) (1.27)
E[r4] 6.51 5.46 5.55 4.00 4.78 4.98 3.32
(—0.66) (—0.60) (—1.57) (—1.08) (—0.96) (—1.99)
Elrs] 0.25 0.25 0.38 1.09 0.09 0.27 0.44
(0.00) (0.20) (1.38) (—0.26) (0.02) (0.31)
Elrys] 1.19 1.25 1.75 2.20 0.92 1.23 1.53
’ (0.09) (0.81) (1.49) (—0.40) (0.06) (0.49)
Elrs 0] 1.88 3.19 3.43 3.31 2.57 2.27 2.61
' (2.19) (2.58) (2.38) (1.16) (0.65) (1.22)
SDI[A¢] 1.99 1.99 1.97 2.02 2.00 1.90 2.09
(0.00) (—0.05) (0.06) (0.01) (—0.18) (0.20)
SDI[Ad] 11.09 3.47 2.12 2.44 3.44 2.47 2.42
(—2.79) (—3.28) (—3.16) (—2.79) (—3.15) (—3.17)
SD[rg) 19.15 18.41 13.61 13.28 18.47 13.46 12.97
(—0.39) (—2.92) (—3.09) (—0.36) (—3.00) (—3.26)
SDlry] 2.72 3.21 3.70 3.88 2.99 3.70 3.78
’ (0.96) (1.93) (2.29) (0.53) (1.94) (2.08)
SD[z4] 0.45 0.46 0.25 0.23 0.48 0.24 0.22
(0.22) (—3.19) (—3.58) (0.47) (—3.33) (—3.67)
ACry] 0.68 0.95 0.90 0.88 0.95 0.89 0.88
(4.12) (3.34) (3.09) (4.17) (3.28) (3.08)
ACz4) 0.89 0.92 0.85 0.82 0.93 0.84 0.82
(0.64) (—0.87) (—1.39) (0.75) (—1.02) (—1.41)
Corr[Ac, Ad] 0.54 0.47 0.41 0.50 0.48 0.48 0.51
(—0.31) (—0.59) (—0.18) (—0.29) (—0.28) (—0.12)
Corr[Ac, r4) 0.05 0.09 0.06 0.09 0.09 0.09 0.09
(0.57) (0.23) (0.61) (0.57) (0.56) (0.67)
Corr[Ad, rq) 0.07 0.19 0.15 0.18 0.18 0.18 0.18
(1.41) (1.03) (1.37) (1.38) (1.36) (1.40)

Table H.4: Baseline model. Data and average model-impliechemts. t-statistics are in parentheses.

45



Long-Run Risk Model: ¢ = 2.0

Omits SD[ry], AC[ry¢], Omits All Moments
Elrys), & Elry 0] Elrys] & Elry 0]
Parameter No VR Revised No VR Revised No VR Revised
ol 2.40 2.58 2.49 2.43 2.35 2.29
(2.18,2.62) (2.33,2.87) (2.20,2.75) (2.19,2.68) (1.90, 2.75) (1.96, 2.65)
B 0.9992 0.9983 0.9992 0.9991 0.9987 0.9987
(0.9991,0.9993)  (0.9982,0.9984)  (0.9990,0.9993)  (0.9990,0.9992)  (0.9985,0.9988)  (0.9986, 0.9988)
Pa — 0.9811 — 0.9537 — 0.9562
(0.9793,0.9829) (0.9519,0.9555) (0.9537,0.9587)
Oa — 0.0483 — 0.0165 — 0.0174
(0.0460, 0.0507) (0.0159,0.0171) (0.0164, 0.0184)
y 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016
‘ (0.0014,0.0017)  (0.0014,0.0018)  (0.0014,0.0017)  (0.0014,0.0017)  (0.0015,0.0017)  (0.0014,0.0017)
1 0.0012 0.0013 0.0014 0.0012 0.0012 0.0011
(0.0009,0.0015)  (0.0009,0.0016)  (0.0011,0.0017)  (0.0009,0.0015)  (0.0009,0.0015)  (0.0007,0.0014)
oy 0.0041 0.0040 0.0050 0.0041 0.0046 0.0037
(0.0040, 0.0043)  (0.0038,0.0043)  (0.0049,0.0051)  (0.0039,0.0042)  (0.0045,0.0047)  (0.0034,0.0039)
Vg 3.26 2.89 3.01 3.25 3.22 3.53
(3.05, 3.47) (2.66,3.13) (2.81,3.18) (3.01, 3.49) (2.92,3.50) (3.18, 3.90)
Tdy 0.593 0.782 0.132 0.640 0.208 0.791
(0.354, 0.834) (0.487,1.114) (—0.184, 0.419) (0.392, 0.885) (—0.147,0.546) (0.476,1.110)
b4 2.31 1.65 2.11 2.27 2.36 2.50
(2.13,2.51) (1.53,1.78) (1.88,2.30) (2.06,2.50) (2.00, 2.69) (2.19, 2.86)
o 0.9990 0.9994 0.9981 0.9990 0.9979 0.9991
(0.9986,0.9993)  (0.9993,0.9995)  (0.9974,0.9988)  (0.9986,0.9994)  (0.9969,0.9989)  (0.9986,0.9995)
Py 0.0255 0.0260 0.0306 0.0252 0.0296 0.0246
(0.0242,0.0269)  (0.0247,0.0273)  (0.0287,0.0328)  (0.0240, 0.0266)  (0.0273,0.0321)  (0.0232,0.0261)
J 20.91 14.36 54.54 19.91 62.31 25.31
(20.16, 21.71) (13.93,14.78) (53.67, 55.47) (19.25,20.63) (61.48,63.17) (24.57, 26.07)
pval 0.007 0.026 0.000 0.011 0.000 0.005
(0.005, 0.010) (0.022, 0.030) (0.000, 0.000) (0.008,0.014) (0.000, 0.000) (0.004, 0.006)
df 8 6 10 8 12 10

Table H.5: Long-run risk model. Average aff&] 95) percentiles of the parameter estimates.
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Omits SD[ry], AC[ry¢], Omits All Moments

Elrs), & Elrg o] Elrys) & Elrg o]
Moment Data No VR Revised No VR Revised No VR Revised
E[Ac] 1.89 1.88 1.89 1.88 1.89 1.89 1.89
(—0.03) (0.02) (—0.02) (0.00) (0.00) (0.01)
E[Ad] 1.47 1.48 1.55 1.68 1.48 1.43 1.30
(0.01) (0.08) (0.21) (0.01) (—0.05) (—0.18)
E[z4] 3.42 3.43 3.40 3.42 3.43 3.43 3.43
(0.03) (—0.17) (—0.05) (0.02) (0.05) (0.08)
E[rg) 6.51 6.47 6.46 5.93 6.49 5.59 6.32
(—0.02) (—0.04) (—0.37) (—0.01) (—0.57) (—0.12)
E[rf] 0.25 0.30 0.26 0.28 0.26 1.46 1.23
(0.07) (0.01) (0.05) (0.01) (1.99) (1.61)
E[rf_5] 1.19 0.11 0.96 0.01 0.21 1.28 1.28
’ (—1.60) (—0.34) (—1.74) (—1.45) (0.12) (0.12)
Elr,20] 1.88 —0.42 0.79 —0.74 —0.29 0.77 0.94
(—3.82) (—1.80) (—4.34) (—3.60) (—1.84) (—1.55)
SD[Ac] 1.99 1.92 1.94 2.45 1.89 2.22 1.69
(—0.14) (—0.10) (0.95) (—0.21) (0.47) (—0.62)
SD[Ad] 11.09 5.62 4.79 6.40 5.50 6.35 5.40
(—2.00) (—2.30) (—-1.71) (—2.04) (—1.73) (—2.08)
SD[rd] 19.15 18.03 19.79 18.74 18.16 18.90 18.25
(—0.59) (0.34) (—0.21) (—0.52) (—0.13) (—0.47)
SDIry] 2.72 0.64 5.56 0.87 2.83 0.77 2.92
(—4.11) (5.60) (—3.66) (0.21) (—3.86) (0.39)
SDlz4] 0.45 0.53 0.46 0.52 0.52 0.52 0.53
(1.34) (0.08) (1.12) (1.17) (1.11) (1.19)
ACTA(] 0.53 0.43 0.46 0.48 0.43 0.46 0.42
(—1.07) (—0.75) (—0.55) (—1.09) (—0.78) (—1.21)
ACIAd) 0.19 0.27 0.21 0.31 0.26 0.31 0.26
0.77) (0.20) (1.16) (0.69) (1.14) (0.63)
AC[rd] —0.01 0.01 —0.05 0.00 —0.01 0.00 —0.01
(0.21) (—0.45) 0.12) (0.04) (0.11) (0.03)
AC[Tf] 0.68 0.96 0.84 0.96 0.69 0.95 0.70
’ (4.34) (2.44) (4.25) (0.14) (4.24) 0.27)
AC[zd] 0.89 0.94 0.90 0.93 0.94 0.93 0.94
(1.09) (0.27) (0.91) (1.02) (0.88) (1.02)
Corr[Ac, Ad] 0.54 0.48 0.50 0.44 0.48 0.45 0.49
(—0.27) (—0.18) (—0.45) (—0.26) (—0.43) (—0.21)
Corr[Ac, r4) 0.05 0.07 0.06 0.08 0.07 0.08 0.07
(0.30) (0.21) (0.47) (0.29) (0.50) (0.29)
Corr[Ad, rq) 0.07 0.24 0.19 0.28 0.24 0.28 0.23
(2.09) (1.51) (2.54) (2.01) (2.49) (1.93)
Corrlep, zq4,—1] —0.16 —0.17 —0.13 —0.15 —0.17 —0.15 —0.17
(—0.10) (0.37) (0.16) (—0.04) (0.19) (—0.04)
Corr[Ac, zq,-1] 0.19 0.66 0.60 0.69 0.65 0.68 0.64
(2.67) (2.31) (2.87) (2.64) (2.78) (2.59)

Table H.6: Long-run risk model. Data and average modelddphoments. t-statistics are in parentheses.
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Long-Run Risk Model: v = 1.5

Omits SD[ry], AC[ry¢], Omits All Moments
Elrys), & Elry 0] Elrys] & Elry 0]
Parameter No VR Revised No VR Revised No VR Revised
ol 2.05 2.44 2.08 2.13 2.10 2.17
(1.92,2.18) (2.22,2.68) (1.86,2.31) (1.97,2.34) (1.67,2.58) (1.88,2.56)
B 0.9995 0.9988 0.9995 0.9995 0.9991 0.9992
(0.9994,0.9995)  (0.9987,0.9990)  (0.9994,0.9995)  (0.9994,0.9995)  (0.9989,0.9992)  (0.9991, 0.9993)
Pa — 0.9801 — 0.9514 — 0.9550
(0.9781,0.9820) (0.9490, 0.9538) (0.9521,0.9581)
Oa — 0.0497 — 0.0160 — 0.0172
(0.0472,0.0521) (0.0153,0.0168) (0.0162, 0.0184)
y 0.0015 0.0016 0.0015 0.0015 0.0016 0.0016
‘ (0.0014,0.0017)  (0.0014,0.0018)  (0.0014,0.0017)  (0.0014,0.0017)  (0.0014,0.0017)  (0.0014,0.0017)
1 0.0011 0.0013 0.0013 0.0012 0.0010 0.0010
(0.0008,0.0015)  (0.0009,0.0017)  (0.0010,0.0017)  (0.0008,0.0015)  (0.0007,0.0014)  (0.0006,0.0013)
oy 0.0042 0.0040 0.0051 0.0041 0.0046 0.0035
(0.0040, 0.0044)  (0.0037,0.0043)  (0.0050,0.0052)  (0.0039,0.0043)  (0.0044,0.0047)  (0.0032,0.0037)
Py 3.22 3.10 2.94 3.29 3.26 3.80
(3.01, 3.44) (2.83,3.38) (2.78,3.11) (3.06,3.53) (2.94, 3.58) (3.42,4.23)
Tdy 0.552 0.740 0.191 0.611 0.223 0.808
(0.311, 0.798) (0.414,1.066) (—0.091, 0.456) (0.372,0.895) (—0.167,0.591) (0.464,1.168)
b4 2.29 1.84 2.02 2.33 2.41 2.76
(2.12,2.44) (1.71,1.98) (1.85,2.21) (2.15,2.51) (2.04,2.81) (2.44, 3.15)
o 0.9993 0.9995 0.9988 0.9993 0.9984 0.9992
(0.9991,0.9995)  (0.9993,0.9995)  (0.9983,0.9993)  (0.9990,0.9994)  (0.9974,0.9993)  (0.9987,0.9995)
Py 0.0250 0.0258 0.0290 0.0248 0.0283 0.0240
(0.0238,0.0263)  (0.0246,0.0270)  (0.0275,0.0307)  (0.0236,0.0259)  (0.0263,0.0307)  (0.0227,0.0255)
J 21.89 14.61 52.00 20.68 61.09 26.65
(21.04, 22.74) (14.15, 15.08) (51.02,53.11) (19.95, 21.47) (60.20, 61.98) (25.83, 27.48)
pval 0.005 0.024 0.000 0.008 0.000 0.003
(0.004, 0.007) (0.020, 0.028) (0.000, 0.000) (0.006,0.011) (0.000, 0.000) (0.002, 0.004)
df 8 6 10 8 12 10

Table H.7: Long-run risk model. Average aff&] 95) percentiles of the parameter estimates.
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Omits SD[ry], AC[ry¢], Omits All Moments

Elrs), & Elrg o] Elrys) & Elrg o]
Moment Data No VR Revised No VR Revised No VR Revised
E[Ac] 1.89 1.85 1.89 1.86 1.86 1.89 1.89
(—0.16) (0.03) (—0.09) (—0.11) (0.00) (0.01)
E[Ad] 1.47 1.38 1.55 1.58 1.42 1.25 1.20
(—0.10) (0.07) (0.11) (—0.05) (—0.24) (—0.28)
E[z4] 3.42 3.44 3.40 3.43 3.43 3.44 3.44
(0.09) (—0.16) (0.02) (0.08) 0.13) 0.13)
E[rg) 6.51 6.85 6.47 6.34 6.77 5.66 6.35
(0.21) (—0.03) (—0.11) (0.16) (—0.53) (—0.10)
E[rf] 0.25 0.53 0.27 0.40 0.43 1.56 1.29
(0.45) (0.02) (0.24) (0.29) (2.14) (1.70)
E[rf_5] 1.19 0.29 0.92 0.05 0.33 1.33 1.31
' (—1.33) (—0.40) (—1.68) (—1.27) (0.21) (0.17)
Elr,20] 1.88 —0.42 0.54 —0.97 —0.34 0.69 0.90
(—3.82) (—2.21) (—4.74) (—3.68) (—1.98) (—1.63)
SD[Ac] 1.99 1.98 1.90 2.51 1.90 2.19 1.59
(—0.03) (—0.18) (1.06) (—0.19) (0.40) (—0.84)
SD[Ad] 11.09 5.70 5.04 6.36 5.60 6.36 5.49
(—1.97) (—2.21) (—1.73) (—2.01) (—1.73) (—2.05)
SD[rd] 19.15 17.81 19.88 18.32 17.98 18.71 18.20
(—0.71) (0.39) (—0.44) (—0.61) (—0.23) (—0.50)
SD[ry] 2.72 0.88 5.75 1.18 2.86 1.00 2.93
(—3.63) (5.97) (—3.03) (0.27) (—3.39) (0.40)
SDlz4] 0.45 0.54 0.46 0.54 0.53 0.53 0.53
(1.41) (0.08) (1.36) (1.23) (1.29) (1.24)
ACIA(] 0.53 0.44 0.46 0.49 0.43 0.46 0.41
(—1.03) (—0.78) (—0.49) (—1.08) (—0.81) (—1.29)
ACIAd) 0.19 0.28 0.23 0.31 0.27 0.31 0.26
(0.81) (0.33) (1.14) (0.75) (1.15) (0.69)
AC[rd] —0.01 0.02 —0.05 0.01 0.00 0.00 0.00
(0.32) (—0.47) (0.23) (0.12) 0.17) (0.07)
AC[rf] 0.68 0.96 0.83 0.96 0.69 0.96 0.70
’ (4.37) (2.36) (4.33) (0.17) (4.28) (0.28)
AC[zd] 0.89 0.94 0.90 0.94 0.94 0.94 0.94
(1.15) (0.26) (1.05) (1.07) 0.97) (1.04)
Corr[Ac, Ad] 0.54 0.48 0.49 0.45 0.48 0.45 0.49
(—0.29) (—0.22) (—0.40) (—0.27) (—0.43) (—0.24)
Corr[Ac, r4) 0.05 0.07 0.06 0.08 0.07 0.08 0.07
(0.26) (0.26) (0.40) 0.27) (0.45) (0.29)
Corr[Ad, rq) 0.07 0.25 0.20 0.28 0.24 0.28 0.23
(2.14) (1.64) (2.51) (2.07) (2.49) (1.98)
Corrlep, zq4,—1] —0.16 —0.18 —0.13 —0.17 —0.18 —0.16 —0.17
(—0.21) (0.37) (—0.05) (—0.12) (0.06) (—0.08)
Corr[Ac, zq,-1] 0.19 0.66 0.60 0.70 0.66 0.68 0.64
(2.68) (2.32) (2.89) (2.65) (2.77) (2.56)

Table H.8: Long-run risk model. Data and average modelddphoments. t-statistics are in parentheses.
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Extended Long-Run Risk Model: ¢y = 2.0

Omits E[rs 5] & E[ry 0] All Moments
Ptr No VR+SV Demand DemandSV No VR+SV Demand DemandSV
5 2.43 3.02 5.85 1.47 3.43 7.46
(2.29, 2.56) (2.79, 3.27) (4.67,6.93) (1.19,1.73) (3.00, 3.85) (6.49, 8.50)
15} 0.9985 0.9992 0.9984 0.9983 0.9989 0.9979
(0.9984, 0.9986) (0.9992, 0.9993) (0.9982, 0.9986) (0.9982, 0.9985) (0.9989, 0.9990) (0.9978, 0.9980)
Pa — 0.9586 0.9925 — 0.9614 0.9931
(0.9565, 0.9606) (0.9908, 0.9934) (0.9589, 0.9639) (0.9916, 0.9938)
o — 0.0184 0.0285 — 0.0195 0.0280
(0.0176, 0.0191) (0.0268, 0.0297) (0.0185, 0.0205) (0.0270, 0.0289)
Ly 0.0016 0.0015 0.0016 0.0017 0.0016 0.0016
(0.0014, 0.0018) (0.0015, 0.0016) (0.0015, 0.0016) (0.0015, 0.0019) (0.0015, 0.0016) (0.0015, 0.0017)
Lhd 0.0013 0.0014 0.0015 0.0002 0.0013 0.0014
(0.0009, 0.0016) (0.0012, 0.0016) (0.0013, 0.0017) (0.0000, 0.0005) (0.0011, 0.0015) (0.0012, 0.0016)
oy 0.0007 0.0041 0.0006 0.0010 0.0036 0.0003
(0.0003, 0.0014) (0.0040, 0.0043) (0.0001, 0.0014) (0.0003, 0.0018) (0.0034, 0.0038) (0.0000, 0.0007)
oy 3.00 - - 2.87 - -
(2.81,3.21) (2.63, 3.09)
Ty 0.754 — — 0.744 — —
(0.482,1.038) (0.417,1.082)
bd 1.93 2.68 2.76 1.82 3.40 2.73
(1.84,2.03) (2.51,2.87) (2.60, 2.89) (1.72,1.93) (3.06, 3.72) (2.62, 2.85)
Pz 0.9993 0.9978 0.9965 0.9995 0.9971 0.9966
(0.9991, 0.9995) (0.9973, 0.9983) (0.9958, 0.9971) (0.9994, 0.9995) (0.9965, 0.9977) (0.9960, 0.9972)
Py 0.0253 0.0290 0.0342 0.0256 0.0293 0.0338
(0.0241, 0.0266) (0.0276, 0.0305) (0.0319, 0.0367) (0.0244, 0.0268) (0.0277, 0.0308) (0.0317,0.0361)
Tya — —0.053 —0.051 — —0.035 —0.046
(—0.072, —0.035) (—0.067, —0.034) (—0.051, —0.020) (—0.062, —0.028)
Tda — —1.044 —0.866 — —1.007 —0.894
(—1.078, —1.008) (—0.897, —0.836) (—1.044, —0.971) (—0.921, —0.869)
P, 0.9608 — 0.7758 0.9524 — 0.5004
(0.9559, 0.9651) (0.6417, 0.8724) (0.9453, 0.9596) (0.3552, 0.6236)
vy 1.3e=5 - 2.7e—5 1.5e—5 — 4.0e—5
(1.2e—5, 1.56—5) (2.1e—5, 3.5e—5) (1.3e—5,1.8¢—5) (3.4e—5, 4.56—b5)
J 18.44 13.99 9.77 26.27 19.32 11.28
(17.74,19.18) (13.40, 14.54) (9.32,10.22) (25.13,27.51) (18.80, 19.86) (10.78,11.76)
pval 0.018 0.082 0.135 0.004 0.037 0.187
(0.014, 0.023) (0.069, 0.099) (0.116,0.157) (0.002, 0.005) (0.031, 0.043) (0.162,0.214)
df 8 8 6 10 10 8

Table H.9: Extended long-run risk models. Average 8n®5) percentiles of the parameter estimates.
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OmitsE[ry 5] & E[ry,20] All Moments

Moment Data NoVR-SV Demand DemandSV NoVR+SV Demand DemandSV
E[Ac] 1.89 1.91 1.85 1.89 1.98 1.89 1.92
(0.08) (—0.15) (0.03) (0.37) (0.02) (0.13)
E[Ad] 1.47 1.53 1.73 1.84 0.30 1.58 1.72
(0.06) (0.27) (0.38) (~1.23) (0.11) (0.26)
E[zd] 3.42 3.42 3.40 3.39 3.49 3.41 3.40
(—0.03) (—0.16) (—0.20) (0.51) (~0.07) (—0.17)
E[rg) 6.51 6.77 5.90 5.83 5.69 5.49 5.75
(0.16) (—0.38) (—0.43) (=0.51) (—0.64) (—0.48)
E[ry] 0.25 0.09 0.45 0.15 0.99 1.25 0.30
(—0.27) (0.33) (—0.18) (1.22) (1.64) (0.08)
E[rj»75] 1.19 —0.79 0.37 0.57 1.43 1.27 1.51
(—2.93) (=1.21) (—0.93) (0.34) (0.12) (0.46)
E[’I’j’_]go] 1.88 —2.35 —-0.17 0.18 1.14 0.93 1.45
(=7.03) (—3.40) (—2.82) (=1.22) (—1.58) (—0.70)
SD[AC] 1.99 2.03 1.98 2.12 2.15 1.69 2.16
(0.09) (=0.03) (0.26) (0.32) (—0.64) (0.34)
SDI]Ad) 11.09 5.38 7.58 9.47 5.40 7.81 9.61
(—2.09) (—1.28) (—0.59) (—2.08) (~1.20) (—0.54)
SD[rd] 19.15 18.67 18.14 18.53 18.27 18.59 18.33
(—0.25) (—0.53) (—0.33) (—0.46) (—0.29) (—0.43)
SD[ry] 2.72 2.47 2.99 2.66 2.45 3.06 2.55
(—0.50) (0.53) (~0.12) (=0.53) (0.68) (—0.34)
SDlz4] 0.45 0.51 0.51 0.49 0.54 0.50 0.50
(0.93) (0.91) (0.56) (1.47) (0.72) (0.78)
AC[AC] 0.53 0.44 0.43 0.45 0.45 0.41 0.45
(—0.95) (—1.06) (~0.92) (=0.85) (~1.26) (—0.88)
AC[Ad] 0.19 0.24 0.21 0.17 0.25 0.22 0.17
(0.49) (0.20) (=0.21) (0.52) (0.29) (~0.22)
ACr4] —0.01 —0.03 0.02 —0.03 0.01 0.02 0.00
(—0.25) (0.36) (—0.20) (0.27) (0.32) (0.08)
ACIry] 0.68 0.69 0.71 0.70 0.65 0.72 0.72
' (0.07) (0.50) (0.35) (—0.48) (0.66) (0.57)
AC[zd] 0.89 0.93 0.93 0.91 0.94 0.92 0.92
(0.89) (0.88) (0.51) (1.13) (0.72) (0.62)
Corr[Ac, Ad] 0.54 0.51 0.48 0.52 0.52 0.45 0.49
(~0.13) (=0.27) (~0.10) (=0.09) (—0.41) (~0.23)
Corr[Ac, rd] 0.05 0.06 0.09 0.10 0.06 0.09 0.10
(0.20) (0.55) (0.76) (0.18) (0.64) (0.75)
Corr[Ad, rd] 0.07 0.22 0.14 0.07 0.22 0.13 0.06
1.77) (0.80) (0.04) (1.80) (0.78) (—0.05)
Corr[ep, zd7_1] —0.16 —0.23 —0.15 —0.13 —0.20 —0.13 —0.12
(—0.67) (0.18) (0.33) (—0.41) (0.35) (0.42)
Corr[Ac, zd7_1] 0.19 0.65 0.66 0.63 0.67 0.64 0.63
(2.64) (2.66) (2.52) (2.73) (2.57) (2.53)

Table H.10: Extended long-run risk models. Data and avemaapel-implied moments. t-statistics are in parentheses.
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Extended Long-Run Risk Model: ) = 1.5

Omits E[rs 5] & E[ry 0] All Moments
Ptr No VR+SV Demand DemandSV No VR+SV Demand DemandSV
ol 2.17 2.61 4.57 1.69 3.42 5.99
(2.06, 2.28) (2.32,2.96) (3.67,5.54) (1.37,2.28) (2.90, 3.97) (4.65, 8.05)
15} 0.9990 0.9995 0.9991 0.9988 0.9994 0.9986
(0.9990, 0.9991) (0.9995, 0.9995) (0.9989, 0.9992) (0.9987, 0.9989) (0.9993, 0.9994) (0.9984, 0.9988)
Pa — 0.9564 0.9898 — 0.9611 0.9848
(0.9536, 0.9592) (0.9860, 0.9929) (0.9582, 0.9641) (0.9728, 0.9926)
o — 0.0178 0.0260 — 0.0196 0.0229
(0.0168, 0.0188) (0.0231, 0.0287) (0.0184, 0.0207) (0.0197, 0.0265)
Ly 0.0016 0.0015 0.0016 0.0017 0.0016 0.0016
(0.0014, 0.0018) (0.0014, 0.0016) (0.0015, 0.0017) (0.0015, 0.0019) (0.0015, 0.0016) (0.0015, 0.0017)
Lhd 0.0012 0.0014 0.0015 0.0003 0.0013 0.0012
(0.0009, 0.0016) (0.0011, 0.0016) (0.0013, 0.0017) (0.0000, 0.0008) (0.0010, 0.0015) (0.0009, 0.0015)
oy 0.0007 0.0041 0.0006 0.0013 0.0033 0.0003
(0.0003, 0.0013) (0.0039, 0.0043) (0.0000, 0.0013) (0.0004, 0.0027) (0.0031, 0.0035) (0.0000, 0.0008)
oy 3.07 - - 2.98 - -
(2.88,3.27) (2.74, 3.19)
Tay 0.692 - - 0.619 - -
(0.400, 0.970) (0.152,1.018)
bd 2.02 2.65 2.62 1.95 3.73 2.57
(1.91,2.13) (2.42,2.92) (2.44, 2.79) (1.83,2.08) (3.33,4.17) (2.32,2.99)
Pz 0.9994 0.9984 0.9978 0.9995 0.9973 0.9983
(0.9993, 0.9995) (0.9978, 0.9989) (0.9972, 0.9983) (0.9992, 0.9995) (0.9966, 0.9980) (0.9976, 0.9989)
Py 0.0253 0.0276 0.0305 0.0259 0.0285 0.0287
(0.0242, 0.0265) (0.0262, 0.0291) (0.0283, 0.0326) (0.0246, 0.0279) (0.0266, 0.0301) (0.0269, 0.0308)
Tya — —0.055 —0.053 — —0.033 —0.055
(—0.078, —0.035) (—0.071, —0.033) (—0.049, —0.018) (—0.076, —0.035)
Tda — —1.065 —0.891 — —1.004 —0.975
(—=1.111, —1.024) (—0.954, —0.833) (—1.049, —0.964) (—1.040, —0.905)
P, 0.9545 — 0.7629 0.8894 — 0.2819
(0.9489, 0.9601) (0.6252, 0.8652) (0.2121, 0.9462) (0.0259, 0.5148)
vy 1.4e—5 - 2.8e—5 2.0e—5 — 4.1e—=5
(1.3e—5, 1.66—5) (2.2e—5, 3.6e—5) (1.5e—5, 4.8¢—5) (3.5e—5, 4.7e—b)
J 19.38 15.22 11.18 29.58 20.70 14.39
(18.62, 20.24) (14.53, 15.84) (10.65,11.77) (28.18, 31.87) (20.16, 21.28) (13.82,14.94)
pval 0.013 0.055 0.084 0.001 0.023 0.073
(0.009, 0.017) (0.045, 0.069) (0.067, 0.100) (0.000, 0.002) (0.019, 0.028) (0.060, 0.087)
df 8 8 6 10 10 8

Table H.11: Extended long-run risk models. Average gn@5) percentiles of the parameter estimates.
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OmitsE[ry 5] & E[ry,20] All Moments
Moment Data NoVR-SV Demand DemandSV NoVR+SV Demand DemandSV
E[A(] 1.89 1.93 1.83 1.90 1.98 1.89 1.93
(0.15) (—0.24) (0.06) (0.36) (0.02) (0.16)
E[Ad] 1.47 1.46 1.68 1.78 0.43 1.53 1.50
(—0.02) (0.22) (0.32) (~1.09) (0.05) (0.03)
E[z4] 3.42 3.43 3.40 3.40 3.49 3.42 3.41
(0.03) (~0.13) (—0.19) (0.49) (—0.04) (—0.07)
E[rg) 6.51 6.83 6.15 6.00 5.83 5.45 5.91
(0.20) (—0.23) (—0.32) (—0.42) (—0.66) (—0.38)
E[rf] 0.25 0.01 0.66 0.09 1.10 1.31 0.30
(—0.40) (0.67) (~0.27) (1.39) (1.73) (0.08)
E[rys) 1.19 —0.85 0.53 0.35 1.45 1.30 1.69
(=3.01) (=0.98) (~1.25) (0.37) (0.16) (0.72)
E[r.20] 1.88 —2.69 —0.18 —0.48 0.96 0.87 1.30
(=7.58) (—3.42) (—3.92) (=1.53) (~1.66) (—0.96)
SDI[A¢] 1.99 2.07 1.97 2.11 2.21 1.56 2.05
(0.16) (=0.04) (0.24) (0.45) (—0.89) (0.11)
SDI]Ad) 11.09 5.60 7.49 8.89 5.75 7.84 8.53
(=2.01) (~1.32) (—0.80) (=1.95) (~1.19) (—0.94)
SDIrq] 19.15 18.70 17.81 18.13 18.38 18.51 17.83
(—0.24) (=0.71) (—0.54) (—0.40) (—0.33) (—0.69)
SD[ry] 2.72 2.31 3.01 2.66 2.03 3.08 2.67
(—0.81) (0.57) (~0.12) (—1.36) (0.72) (=0.11)
SDlz4] 0.45 0.51 0.52 0.50 0.54 0.50 0.52
(0.97) (1.08) (0.84) (1.48) (0.79) (1.13)
AC[AC] 0.53 0.45 0.43 0.44 0.46 0.41 0.44
(~0.91) (—1.06) (—0.95) (=0.79) (—1.34) (~1.01)
AC[Ad] 0.19 0.26 0.21 0.17 0.26 0.23 0.17
(0.61) (0.20) (~0.19) (0.69) (0.32) (~0.21)
ACr4] —0.01 —0.03 0.03 —0.02 0.01 0.02 0.01
(=0.27) (0.43) (=0.15) (0.19) (0.34) (0.24)
AC[rf] 0.68 0.69 0.71 0.71 0.64 0.73 0.73
(0.07) (0.51) (0.48) (=0.59) (0.70) (0.68)
AC[zd] 0.89 0.93 0.94 0.93 0.94 0.93 0.93
(0.90) (1.00) (0.75) (1.11) (0.76) (0.93)
Corr[Ac, Ad] 0.54 0.50 0.48 0.50 0.50 0.45 0.49
(~0.16) (=0.28) (—0.16) (=0.17) (—0.39) (~0.23)
Corr[Ac, rd] 0.05 0.06 0.08 0.09 0.06 0.09 0.08
(0.23) (0.47) (0.59) (0.24) (0.65) (0.43)
Corr[Ad, rd] 0.07 0.22 0.14 0.09 0.23 0.14 0.09
(1.89) (0.83) (0.24) (2.00) (0.81) (0.29)
Corr[ep, zd7_1] —0.16 —0.23 —0.16 —0.16 —0.20 —-0.14 —0.16
(—0.67) (0.02) (0.09) (—0.40) (0.31) (0.05)
Corr[Ac, zd7_1] 0.19 0.66 0.66 0.65 0.67 0.64 0.65
(2.66) (2.66) (2.59) (2.76) (2.55) (2.62)

Table H.12: Extended long-run risk models. Data and avemaagel-implied moments. t-statistic are in parentheses.
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