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1 Introduction

The Schumpeterian idea of creative destruction lies at the heart of the innovation-based
growth theory (Grossman and Helpman, 1991; Aghion and Howitt, 1992). Under this
view, growth is achieved by entrepreneurs or firms successively undertaking costly R&D
to improve and replace each other’s exiting product. There are two key ingredients to
Schumpeter’s theory of creative destruction. First, a successful innovator (leader), by
launching a new product in the market, reveals the frontier knowledge embodied in the
product to potential competitors (followers). The full knowledge spillover ensures a level
playing field in the next round of innovation race for the next product. Second, to pre-
vent this very knowledge spillover from enabling imitators to drive the market price of
the new product down to the the marginal cost, monopoly rights must be granted to the
leader whereby he can recoup his initial investment in R&D. The rich dynamics of compe-
tition, firm exit and turnover inherent in the Schumpeterian model makes it the bedrock
on which a large and growing literature is based, where the outcomes from creative de-
struction among heterogeneous firms can be mapped to micro data (starting from Klette
and Kortum (2004)).

In this paper, we call into question a key assumption of Schumpeterian model and show
how some of its main implications get turned on their heads. The assumption is the as-
sertion that full knowledge spillover enables all, leaders and followers alike, to compete
equally in the innovation race for the next product. We believe that this assumption is
too drastic and unrealistic. We claim that, even when a leader’s knowledge is made pub-
lic, for example through the patent’s registration process, it is far from immediate that
followers can effectively make a productive use of it. Because of the very nature of the
patent system, any innovation that builds upon previously patented knowledge would
face costly legal challenges by the industry leader and, in any case, the amount of “cost-
less” knowledge that is revealed through a patent’s application is always limited - as any
student knows, knowledge is never really for free and learning is a costly, time consum-
ing process.

Examples of the disadvantage that a follower faces trying to improve on a leader’s prod-
uct abound in history and at present. In 1769, the great inventor James Watt obtained
a patent on his idea of a separate condenser in a steam engine, an improvement upon
the Newcomen steam engine. Over the following thirty years while the patent lasted,
steam engines were modified and improved by many of his peers: William Bull, Richard
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Trevithick, Arthur Woolf, and Jonathan Hornblower. Yet none of these models made it
to the market until 1804 after the patent expired, because, no matter how much better
the newer models were, they had to use the idea of the separate condenser (Boldrin and
Levine (2008) contains many more examples). Fast forward 200 years, in 2007, Apple
and Samsung began their decade-long multi-million dollar patent war that spread across
courts in ten countries around the globe. This is yet another example of the unequal foot-
ing from which a leader (then Apple) and a follower (then Samsung) were competing to
bring about new products.

The discussion above suggests that innovation costs for a follower are at least as large as, if
not larger than, those for a leader. Moreover, the technologically more advanced a leader
is relative to the follower, the more costly it is for the follower to leapfrog him. At the ex-
treme, when the technological distance is large enough, then the leader has achieved the
“endpoint strategy” (Hörner (2004)) of pushing the innovation race to a state where any
attempt by the follower to leapfrog the incumbent has become prohibitively expensive,
and innovation efforts by both the leader and the follower cease. The asymmetry between
leader’s and follower’s innovation capability has long been addressed by the theoretical
microeconomic literature on races (tracing back to Harris and Vickers (1987); Budd et al.
(1993), and Hörner (2004)). It is exactly the intuition developed in this literature that we
add to an endogenous growth model. To put it simply, we embed the assumption of state-
dependent asymmetric R&D costs into an otherwise standard endogenous growth model
à la Grossman and Helpman (1991) (henceforth, GH), where followers’ R&D efforts are
aimed at leapfrogging the leaders, thus contributing to aggregate growth.

More formally, we study the effects of state-dependent innovation costs in a general equi-
librium model with a continuum of industries, where in each industry a leader and a
follower play a game of innovation. The state of the industry is the technological dis-
tance between the leader and a competitive fringe of followers, such that when followers
fall behind in the innovation race they see their innovation costs rise. In this model, the
balance growth path where only followers innovate (as in GH) is no longer the only one
that can emerge in equilibrium. For certain range of parameters, the high-growth equi-
librium of the GH type can coexist with “growth traps,” which are low-growth equilibria
where also leaders innovate provided that their technological gap with the followers is
small. These equilibria are characterized by low growth, because the R&D effort by lead-
ers has two opposite effects on the aggregate innovation rate. On one hand, it contributes
to raising the innovation rate of an industry (the intensive margin of innovation) when
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the leader and its followers are close to each other. On the other, it increases the share
of industries (the extensive margin) where leaders and followers are sufficiently far from
each other that innovation drops to zero. In our model the positive effect on the intensive
margin is always dominated by the negative effect on the extensive margin, so that the
success of leaders’ end-point strategies of kicking the followers out of the innovation race
is both the reason for large innovation being done at times by leaders, and the cause of
low aggregate growth.

Starting from an equilibrium path that converges to the high-growth steady state, we
show that an increase in market power beyond a certain threshold will prompt the econ-
omy to change its course and converge towards a low-growth steady state. Along this
path, aggregate innovation, the only form of investment in this model, drops over time.
The drop occurs because the higher market power increases leaders’ incentives to gain
a technological advantage over their followers and secure a lasting dominance in the in-
dustry that discourages innovation by followers. As more industries over time become
dominated by a persistent leader, aggregate innovation by both leaders and followers
decline. The mechanism highlighted in this paper speaks in spirit to recent empirical ev-
idence of increasing market power, declining competition, investment and business dy-
namism in the US (Haltiwanger, 2015; Gutiérrez and Philippon, 2017; Loecker et al., 2020).

There have been many papers in the literature that feature leaders innovating and persis-
tent monopoly. Some of the papers emphasize the asymmetry of the technology of inno-
vation between leaders and followers but without the technology being state-dependent
(Barro and Sala-i-Martin, 1995; Segerstrom and Zolnierek, 1999; Segerstrom, 2007). Some
focus on the asymmetry between leaders and followers in aspects of production other
than innovation: customer’s base (Stein, 1997) and overhead or expansion cost (Klette and
Kortum, 2004; Aghion et al., 2019). Others examine asymmetry stemming from the partic-
ular market or game structure that leaders and followers are in, for example a leader’s first
mover advantage or initial market power (Gilbert and Newbery, 1982; Denicolò, 2001;
Etro, 2004; Aghion et al., 2005). Among the aforementioned papers, several share our
message that persistent monopolies can be detrimental to long-run growth, though it’s
clear that we reach the conclusion from very different mechanisms (Gilbert and New-
bery, 1982; Aghion et al., 2005, 2019).1

1More recent quantitative models of innovation that allow leaders to have different innovation rates
than followers both vertically and horizontally do it without fully endogenizing firm’s innovation rates
(Garcia-Macia et al., 2019; Atkeson and Burstein, 2019).

3



More closely related to our work is Acemoglu and Akcigit (2012) and Liu et al. (2019).
Both papers have studied innovation efforts of leaders and followers that are dependent
on the technological distance in a duopoly setting. Following the patent race literature,
both focus on the step-by-step catchup whereby followers’ cost disadvantage lies in hav-
ing to “reinvent” every step the leader has taken. In contrast, our model features a com-
petitive fringe of followers, whose cost of leapfrogging increases in the distance to the
leader. In our view, the step-by-step catch up process seems less realistic than the costly
leapfrogging as a description of the innovation behavior of followers. The presence of
patent infringement threats forces followers to find new ways to produce better goods,
albeit at a much higher cost, rather than to retrace the leader’s footsteps at a lower speed.
The main departure of our work from Acemoglu and Akcigit (2012) and Liu et al. (2019)
is thus to zoom in on the costly leapfrogging with the additional benefit of providing a
full analytical characterization of the possible equilibria.2

The rest of the paper proceeds as follow. Section 2 introduces the baseline model, Section
3 characterizes the steady states of the economy while Section 4 discusses its global dy-
namics properties. Section 5 provides simulations where we vary the policy parameters
of the model and we discuss welfare implications. Section 6 presents two extensions of
the baseline model. Conclusion follows.

2 The Model

The model is based on GH’s seminal model of quality ladders. It is a continuous time
infinite horizon model. There is a continuum of goods, indexed real numbers in a unit
interval. There are two types of agents in the model, households and firms.

2.1 Households

There is a representative household who decides what to consume at each point in time,
given its income. It is endowed with one unit of labor and supplies it inelastically. It
owns the firms in the economy and hence receives a stream of profits from the firms. Its

2The richest version of Acemoglu and Akcigit (2012) (i.e. the “leapfrogging and infringement” exten-
sion) allows for both step-by-step slow catch-up and “frontier” R&D by followers, the latter of which re-
sembles our cost assumption. In this version however the authors’ results are mainly quantitative, where
simulation results are influenced by multiple innovation processes of the followers.
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wealth at time 0, W0, is then the present value of the stream of profits and labor income it
receives ad infinitum. At each instant, the household chooses the quantity, dit, of each of
the i ∈ [0, 1] goods to consume, taking as given the quality of each good, qit, the price of
each good, pit, and the instantaneous interest rate rt.

The household consumes Ct at time t, which is an aggregate of all varieties of goods:

log Ct =
∫
[0,1]

log (qitdit) di. (1)

The functions qit > 0 define the highest quality developed up to time t for good i. The
household’s lifetime utility is characterized by a time-additive log period utility function
with a rate of time preference of ρ. It solves the following problem:

max
{dit,∀i}∞

t=0

∫ ∞

0
e−ρt log Ctdt (2)

s.t.
∫ ∞

0
e−Rt Etdt ≤W0, (3)

where Rt is the compounded interest rate and Et represents total spending at time t:

Rt =
∫ t

0
r(t′)dt′,

Et =
∫
[0,1]

pitditdi.

The Cobb-Douglas form of the the consumption aggregate implies that the amount spent
by the household on good i is the same across all products, giving

dit =
Et

pit
.

The intertemporal Euler equation gives

Ėt

Et
+ ρ = rt. (4)

Household’s wealth W(0) is given by

W0 =
∫ ∞

0
e−Rt

[
Πt + wtLt + wt

∫
i∈[0,1]

ωitΛit]di
]

dt,
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where Πt are aggregate profits received from firms, wt is the wage paid to labor employed
in the production sector, Lt, and ωit is the wage premium paid to (skilled) labor employed
in the R&D sector in industry i, Λit. We refer to Λ(i) as the intensive margin of innovation
in industry i. The role of these variables is explained in detail in Section 2.2, which lays
out firms’ problem. Here we simply specify that total labor is in fixed supply, normalized
to unity

Lt +
∫

i∈[0,1]
Λitdi = 1,

where Lt and Λit are all non-negative. We also assume that the intensive margin of in-
novation must be bounded above by some constant Λ̄. The interpretation is simply that
there is at most an amount Λ̄ of workers in the economy with the necessary skill to per-
form R&D activities in any given industry. For example, there is a fixed supply of labor
skilled in biomedical sciences available to the pharmaceutical industry, a fixed supply of
labor skilled in computer science available to the information technology industry, and so
on and so forth. Clearly, in this situation the household’s optimal supply of skilled labor
to R&D in an industry, Λ∗(i), is the correspondence Λ∗(i) = [0, Λ̄] if the wage premium is
equal to one, while Λ∗(i) = Λ̄ whenever ω(i) > 1. Modeling the supply of skilled labor
as perfectly elastic up to Λ and perfectly inelastic afterwards has two advantages. First,
when Λ does not bind, our model is equivalent to GH’s model, so that our model nests
GH as a special case. Second, this is a simple and intuitive way to introduce decreasing
returns to innovation at the industry level (the cost of skilled labor becoming increasingly
more expensive when an industry ’s R&D reaches the Λ̄ threshold). We take Λ as an
arbitrarily large constant.3

2.2 Firms

Each product i corresponds to an industry. In each industry, there is a leader and a com-
petitive fringe of followers. The leader in industry i has the technology to produce the
state-of-the-art version qit of product i. Such technology is protected by a patent, so that
only the leader can produce the quality qit. Leaders and followers also carry out R&D ac-
tivities. A successful innovation by either a leader or a follower raises the state-of-the-art
quality from qit to γqit, where γ > 0 is the distance between two consecutive rungs on

3On a technical note, to obtain an equilibrium under a discountinous labor supply correspondence, we
proceed in two steps. First, we propose a continuously differentiable labor supply function with a param-
eter that governs the speed at which the supply increases as λ exceeds Λ. Second, we let the parameter go
to infinity to obtain the formulation of the Λ̄ described above. Details can be found in Appendix A.
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product i’s quality ladder. The quality of a good can then be written as qit = γsit , with
sit ∈N the number of rungs along the quality ladder that have been climbed up to time t
in industry i. Detailed description of firms’ production and R&D activities follow.

2.2.1 Production of Goods

The output yit in industry i is produced using labor lit according to a linear technology

yit = lit.

Since, for a given industry, products of different qualities are perfect substitutes, a leader
who charges a markup over marginal cost of production labor anywhere between 1 and
γ can put his followers out of business. Let the markup charged by leaders be m ∈ [1, γ],
which we interpret as a policy variable exogenously determined, as when, for instance,
an antitrust authority limits the monopoly pricing power of the leaders. We will later
investigate how the growth rate of the economy varies with the markup level m. The
price at which leaders sell their products is therefore given by

pit = mwt, for m ∈ [1, γ], (5)

where wt is the wage rate of production labor. Without loss of generality, we normalize
wt to 1 so that, from now on, we express variables in terms of the period wage. The goods
prices are then pit = m and profits of leaders can then be simply expressed as

πit = (m− 1)yit.

At equilibrium prices, the household’s demand for good i is given by

d∗it =
E∗t
m

.

Using the market clearing condition, d∗it = y∗t (i), we conclude that all industries produce
the same amount of output, Yt, using the same amount of labor, Lt, given by

Y∗t = L∗t =
E∗t
m

. (6)
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It follows then that, for all leaders, profits are given by

Π∗t = (m− 1)L∗t . (7)

2.2.2 Game of Innovation

Within each industry, leaders and followers play a game of innovation, and expectations
about each other’s future strategies determine current innovation efforts. We start by
describing the innovation technologies available to the leaders and followers, which de-
pend on the existing technological distance between the two parties, measured in number
of steps on the quality ladder.

When the distance between a leader and a follower is one step, we maintain the GH
assumption that both the leader and follower have the same R&D technology. That is,
if a firm hires an amount λ of skilled workers to perform R&D, the firm experiences an
arrival of a successful innovation at a Poisson rate Γ(λ) given by

Γ(λ) = χλ, for χ > 0,

where χ is a parameter that governs the productivity in the R&D sector. The innovation
technology displays constant returns at the firm’s level.

When the technological distance between a leader and a follower is instead two or more
steps, the follower can no longer innovate with the same technology as that used by
the leader. Specifically, we assume that the cost of innovation for the follower who is
two or more steps behind the leader is high enough that the follower stops innovating
completely. In Appendix B, we show that this assumption is without loss of generality,
because, under the assumption of linear innovation technologies, either a step-by-step
catch-up or a fast catch-up process as in Acemoglu and Akcigit (2012) will give us the
result that followers who are two or more steps behind the leader optimally choose not
to innovate.

This structure of the innovation technology is meant to capture the idea that leapfrogging
becomes increasingly difficult for followers when their technological distance from the
industry leader increases. There are two complementary interpretations for this assump-
tion.
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The first is that every state-of-the-art version of a product incorporates elements from the
previous versions, which are patented. If the follower’s technology is not far from that
of the leader (i.e. when the follower is only one step behind), then the follower is able
to invent the a new product quality without having to incorporate in this new quality
any technological element over which only the leader owns a patent. Indeed, patents can
impose substantial legal and uncertainty costs for challengers. Therefore, when the fol-
lowers own patents on quite obsolete technologies (i.e. when the follower is two steps
behind the leader), then it is not possible for the follower to invent the state-of-the-art
quality without having to incorporate elements that have already been patented by the
leader. However, as in GH, leaders do not have any incentive to grant a license to a fol-
lower, whose innovation costs therefore become prohibitively large.

The second is that some free-of-charge knowledge spillover to followers does take place,
but it takes time. If a leader is a lot more advanced in his stock of knowledge, then it
takes a longer time for the knowledge spillover to complete. In this case, followers fall
for some time behind the leader in the amount of R&D knowledge they can muster when
the distance to the leader is larger.

When leaders and followers are one step apart, there are potential incentives for both to
innovate. Followers innovate to replace the leader, as in GH. Leaders may also want to
innovate for the pure goal of distancing themselves further from the followers. As the dis-
tance grows, innovation costs for followers rise and the followers stop threatening. The
incumbent’s leadership will then be secured for a long period of time through innovation
in the current period. We refer to this strategy of the leader as an endpoint strategy.

We assume that when a leader is two steps ahead of a follower, the distance is reduced
to one step at an exogenous (small) rate τ > 0. When rising R&D costs are interpreted
as driven by legal constraints imposed by patents, then τ can be thought as a policy vari-
able that controls the legal term of patents. When rising R&D costs are tied to lack of full
knowledge spillover, then τ indicates the frequency at which the spillover occurs. It is
worth-noting that when we let τ go to infinity, we are back to the GH world where there
is instant spillover of the innovation technology and leaders and followers can be at most
one step apart.

We say that an industry is in the contestable state if the distance between a leader and
his followers is equal to one step, and in the non-contestable state if the distance is two
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steps. We indicate with αt ∈ [0, 1] the share of industries that at a given time t are in the
contestable state. Since innovation only takes place in a contestable state, we call αt the
extensive margin of innovation in the economy.

Mathematically, the combination of two types of firms (leader l or follower f ) and of
two possible distances (1 or 2) between firms, gives rise to four value function V j

∆(t), for
j ∈ {l, f } and ∆ ∈ {1, 2}. When it does not create confusion, we omit the indication of
the dependence of variables on time. Our four value functions satisfy, at any point of
differentiability, the following differential equations

rV l
2 = Π + τ(V l

1 −V l
2) + V̇ l

2 (8)

rV f
2 = τ(V f

1 −V f
2 ) + V̇ f

2 (9)

rV l
1 = max

λl≥0
Π−ωλl + χλl(V l

2 −V l
1) + χλ f (V f

1 −V l
1) + V̇ l

1 (10)

rV f
1 = max

λ f≥0
−ωλ f + χλ f (V l

1 −V f
1 ) + χλl(V f

2 −V f
1 ) + V̇ f

1 . (11)

Equation (8) (Equation (9)) describes the value function of a leader (follower) who is two
steps ahead (behind). This corresponds to a non-contestable state, where the endpoint
part of the innovation game is reached due to the assumed high innovation cost to the
follower and where thus both the leader and the follower optimally decide not to inno-
vate. Note that the leader is the only one who makes profits and that the distance between
the two is subject to the exogenous rate τ of reduction back to one step. Equations (10)
and (11) describe the value functions of the two in a contestable state, where strictly posi-
tive innovation rates may still be chosen by both the leader and follower. The leader pays
the cost of innovation, ωλl, to increase the probability of enlarging the techonological
gap and obtaining V l

2, whereas the follower pays the cost ωλ f to increase the probability
of leapfrogging and obtaining V l

1. The free entry condition for the competitive fringe of
followers implies that

V f
1 (t) = V f

2 (t) = 0, ∀t.

2.3 Equilibrium

In equilibrium, R&D strategies are symmetric across all industries. We focus on Markov
equilibria. Therefore, at any given point in time, efforts λl

t and λ
f
t by leaders and fol-

lowers, and the corresponding intensive margin Λt, are the same across all industries in
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the contestable state, so we can drop the index i form our notation. The evolution of the
extensive margin is

α̇t = (1− αt)τ − αtχλl
t. (12)

The aggregate number of rungs on the quality ladder achieved at time t, St =
∫
[0,1] sitdi,

evolves according to

Ṡt = χHt ≡ χΛtαt, (13)

where Ht is defined to be the total amount of skilled R&D labor employed at time t.

The definition of equilibrium in this model is standard.

Definition 1. An equilibrium is given by prices {rt, wt, pit, ωt}∞
t=0, innovation rates by leaders

and followers
{

λl∗
t , λ

f ∗
t

}∞

t=0
, functions {E∗t , L∗t , Λ∗t , S∗t , Y∗t , Π∗t , α∗t }

∞
t=0 for aggregate expendi-

ture, supply of production labor, supply of R&D labor, aggregate quality, output, profits and the

extensive margin of innovation, such that

i) Given prices and the evolution of Π∗t , the innovation rates λl∗
t and λ

f ∗
t solve firms’ innova-

tion game.

ii) Given aggregate expenditure E∗t and normalized wages wt = 1, Y∗t and p∗t = m are the

optimal output and price level chosen by leaders in any industry. Correspondingly Π∗t =

(m− 1)Y∗t are the profits of leaders.

iii) Given prices and the evolution of aggregate profits, E∗t , L∗t and Λ∗t are, respectively, the

optimal expenditure, and the optimal production and R&D labor supplies of households.

iv) Given Λ∗t , the wage premium ωt of firms in the contestable state is compatible with fixed

supply of skilled labor and satisfies the complementary slackness condition: (ωt −wt)(Λ̄−
Λ∗t ) = 0. Given λl∗

t and an initial condition α(0), the extensive margin α∗t satisfies (12).

Given an initial condition S(0) and the evolution of H∗t = α∗t Λ∗t , the aggregate quality S∗t
satisfies (13).

v) Markets clear, i.e. L∗t = Y∗t , E∗t /m = Y∗t , Λ∗t = λ
f ∗
t + λl∗

t , H∗t = 1− L∗t .

Note that, since in equilibrium the quantities of all goods are the same and equal to the

11



production labor input, dit = Lt, the log aggregate consumption can be written as

log Ct =
∫
[0,1]

log(qitdit)di =
∫
[0,1]

log γsit di + log Lt = log(γ)St + log Lt.

The growth rate of consumption is therefore

Ċt

Ct
= log(γ)Ṡt +

L̇t

Lt
= log(γ)χHt +

L̇t

Lt
= log(γ)χαtΛt +

L̇t

Lt
.

The growth rate of aggregate consumption is then given, in equilibrium, by the sum of
the growth rate of the production labor input and the growth of the aggregate output
quality. We refer to the quantity gt = log(γ)Ṡ as the rate of technological growth.

The balanced growth path of this model is an equilibrium where aggregate consumption
and quality, Ct and St, grow at the same rate g.

3 Steady States

Depending on the parameter values, the equilibrium economy can display up to three
steady states, which we label using subscripts H, M or L to indicate whether a steady state
is characterized by a high, medium or low value for the extensive margin of innovation,
α.

3.1 The H Steady State

The highest possible steady state value for α∗ is 1. In this steady state only followers
innovate, and thus λl∗ = 0 and λ f ∗ > 0. As already discussed, by taking Λ̄ large enough
we can make sure that in a neighborhood of the steady state Λ∗t = λ

f ∗
t < Λ̄, giving the

skill premium ωt equal to 1. Hence, the first order condition for λ f in a neighborhood of
a H steady state imply that

V l
1(t) =

1
χ

.

12



The condition above naturally implies that V̇ l
1 = 0. Since λl∗

t = 0, a straightforward
substitution in the definition of V l

1 gives

rt

χ
+ λ

f
t = Πt. (14)

Combining the above equation with the facts that Π = (m − 1)L, λ f = (1− L)/α and
r = ρ + L̇/L, we obtain

L̇
L
= χ

[(
m− 1 +

1
α

)
L− 1

α

]
− ρ. (15)

Equation (15) defines the evolution of the economy around the H steady state, together
with the condition

α̇ = τ(1− α). (16)

The H steady state is then characterized by

α∗H = 1; (17)

L∗H =
ρ + χ

χm
; (18)

λ
f ∗
H =

(m− 1)χ− ρ

χm
. (19)

Linearizing the system, (15) and (16), we can show that the H steady state is a saddle. The
non-negativity of λ

f ∗
H requires that m > 1 + ρ

χ .4

The value to a leader who is hypothetically two steps ahead in the H steady state can be
computed as

V l∗
2 =

(m− 1) ρ+χ
m + τ

χ(ρ + τ)
.

We also note that, to guarantee that indeed leaders do not want to innovate, so that they
optimally choose λ∗l = 0, we must have m < M, where M is defined so that V l∗

2,H = 2/χ.

4For m < 1 + ρ
χ , the steady state will be characterized by α∗H = L∗H = 1 and λ f ∗ = 0, a case that we rule

out for its lack of relevance.
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One can show that

M =
ρ + χ

χ− ρ− τ
. (20)

For the above to be a meaningful condition, we assume χ > ρ + τ.

3.1.1 The M and L Steady States

In the M and L steady states, both leaders and followers innovate in the contestable state.
The first order conditions for λl and λ f give V l

2(t) = 2ωt/χ = 2V l
1(t). Substituting these

conditions into the value functions and after appropriate calculations we obtain the two
equations:5 {

Π = (2λ f − τ
χ )ω

ω̇ = (r + τ − χλ f )ω.
(21)

The M and L steady states differ in whether the supply of R&D labor is exhausted or
not. In the M steady state the industry-level R&D labor supply constraint is not binding.
Hence, λl∗

M + λ
f ∗
M = Λ∗M < Λ and ω∗M = 1. In contrast, in the L steady state, the industry-

level skilled labor supply binds at Λ and ω∗L > 1. In either steady state, the interest rate
is ρ and the second equation of (21) implies followers innovate at the same intensity,

λ
f ∗
M = λ

f ∗
L =

ρ + τ

χ
. (22)

In the M steady state, we can solve out the production labor from the first equation in
(21), together with Π∗M = (m− 1)L∗M and ω∗M = 1:

L∗M =
2λ

f ∗
M −

τ
χ

m− 1
=

2ρ + τ

χ(m− 1)
. (23)

In the L steady state, since the skilled labor supply binds, we have λl∗
L = Λ− ρ+τ

χ . The

5For detailed derivations, see Appendix A.2.
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evolution of the extensive margin (equation (12)) then implies that in the steady state,

α∗L =
τ

τ + χλl∗
L

=
τ

χΛ− ρ
.

This, in turn, pins down the production labor and profit in the L steady state,

L∗L = 1− α∗LΛ =
(χ− τ)Λ− ρ

χΛ− ρ
;

Π∗L = (m− 1)
(χ− τ)Λ− ρ

χΛ− ρ
.

With these inputs, we can solve out the value to a leader who is one step ahead from (10),

V l∗
1,L =

Π∗L
ρ + χλ

f ∗
L

= (m− 1)
(χ− τ)Λ− ρ

(2ρ + τ)(χΛ− ρ)
.

For the L steady state to exist, V l∗
1,L =

ω∗L
χ > 1

χ . Define M so that V l∗
1,L = 1

χ for m = M.
Therefore, the existence of the L steady state requires m > M, which is given by

M = 1 +
(2ρ + τ)(χΛ− ρ)

χ
(
(χ− τ)Λ− ρ

) . (24)

Comparing M and M, we have M < M if and only if

Λ >
ρ + τ

χ
,

a condition that, as usual, holds as long as Λ is sufficiently large.

3.2 Discussion

The results derived in the previous section can be collected as follows:

Proposition 1. There are two constants M < M, defined by (20) and (24), such that

i) For m < M, only the H steady state exists. For m > M only the L steady state exists. For

m ∈ [M, M] the steady states H, M, L all exist. Over the interval the M steady state exists,

α∗M is increasing in m.
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ii) The H and the L steady states have the saddle-path property, while the M steady state is

a source. In particular, if m > M, then, for any initial condition α0, the economy always

converges to the L steady state.

Proof. See Appendix A.2.

It is worth pointing out that we have α∗H > α∗M > α∗L when all three steady states exist, and
hence our naming of these steady states. Moreover, the three steady states are not only
ranked by their extensive margin of innovation, but are also ranked by their equilibrium
growth rate, as indicated by the following corollary to Proposition 1.

Corollary 1. For m ∈
(
M, M

)
, the steady state growth rates satisfy g∗H > g∗M > g∗L. Moreover,

the steady state growth g∗L associated with m > M is smaller than the growth rate in any of the

steady states for m ∈
(
M, M

)
.

Proof. See Appendix A.3.

The mechanism behind the structure of the steady states is based on the joint effect of two
simple properties of the model: the effect of leaders’ innovation on aggregate growth, and
the effect of the net present value of monopoly on leaders’ incentives to innovate.

First, greater innovation by leaders is associated with lower long-run technological growth
– the result outlined in Corollary 1. This is not surprising, since leaders’ innovation is mo-
tivated by endpoint strategies, whose sole goal is to discourage innovation. The positive
effect on growth from a higher intensive margin of innovation carried out by leaders in
contestable states is more than offset by the greater fraction of industries that, in the long
run, end up in non-contestable states with zero innovation. To see this, recall that the
rate of technological growth is proportional to the product of the extensive and intensive
margins. Using (12) to calculate the steady state value of the extensive margin, we obtain

g∗ = log(γ)χα∗Λ∗ = log(γ)χ
τ

τ + χλl∗Λ∗ = log(γ)χ
τ

τ + χλl∗ (λ
f ∗ + λl∗).

A larger innovation rate by leader is then associated with lower aggregate growth, pro-
vided that χλ f ∗ > τ. This latter condition, which in our case always holds in equilib-
rium, simply requires that the probability of a successful innovation by followers in the
contestable state is greater than the exogenous probability of a spillover (or of a patent
expiration) in the non-contestable state.
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(a) Steady State Extensive Margin of Innovation, α∗i for i = H, M, L

(b) Steady State Growth Rate, g∗i for i = H, M, L

Figure 3.1: Extensive Margin of Innovation and Growth Rate in the Steady States

Note: This figure illustrates the structure of the steady states of the model. In particular, it shows how the

steady state extensive margin of innovation α∗ and the steady state growth rate g∗ vary as we vary the

markup parameter m. For a discussion, see Section 3.2.

17



Second, a higher net present value of monopoly power increases leaders’ incentives to in-
novate. This is intuitive, since a larger leadership value triggers more effort to secure it by
means of endpoint strategies. Indeed, it is straightforward to show that the incremental
value V l

2 −V l
1 to a leader who successfully innovates is given by6

V l
2 −V l

1 =
χλ f

(r + χλ f )(r + τ)
Π.

Leaders’ endpoint strategies are incentivized when monopolist’s profits Π are higher,
when followers’ innovation rates λ f are higher, when interest rates r are lower, and when
the externality intensity τ is lower. Profits are higher, for instance, when markups m are
larger, which explains the result of Proposition 1, depicted in Figure 3.1. Panel (a) of the
figure plots the steady state extensive margin of innovation α∗ against m. As the figure
shows, if markups m are too large, i.e. m > M̄, then incentives for leaders to innovate are
so strong that for any initial condition the economy converges to L, which is the steady
state with lowest long-run growth (Panel (b)). A similar reasoning explains why when
knowledge spillover are infrequent, then only the L steady state exists (notice that M̄ is
increasing in τ). Instead, a higher discounting ρ reduces the present value of profits, and
thus discourages R&D by leaders, while higher innovation by followers, by increasing
the threat to the incumbents, strengthens their incentives to play end point strategies.

For values of m ∈ [M, M̄], the model features multiple steady states. The key to under-
standing this result is to link, in general equilibrium, the two properties discussed above.
Fix a given m ∈ [M, M̄] and begin by assuming that the economy is in a high growth
steady state. Since a large fraction H of the labor input is devoted to R&D, production
labor and period profits are low. With low profits, incentives for leaders to innovate fall.
For similar reasons, innovation intensity for followers λ f ∗ is also reduced (in an H steady
state the extensive margin of innovation is large, but the intensive margin is small).7 This
further depresses leaders’ innovation incentives. Finally, under the log-utility assump-
tion considered so far the steady state interest rate r = ρ is independent of the steady
state growth rate g. However, Section 6.1 shows that, when the elasticity of intertemporal
substitution is greater than 1, then a larger growth rate raises the equilibrium interest rate,
further dampening innovation incentives for leaders. In conclusion, if the economy is at
a H steady state, then general equilibrium effects discourage innovation by leaders, and

6At the steady state, (10) implies V l
1 = Π

r+χλ f and (8)-(10) implies V l
2 −V l

1 =
χλ f Vl

1
r+τ . Combining the two,

we obtain the expression for V l
2 −V l

1 .
7If we compare (22) with (19) we note in fact that λ

f ∗
H < λ

f ∗
M = λ

f ∗
L for m < M̄.
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since R&D by leaders is negatively associated with long run growth, then the high growth
steady state is self-confirmed. A similar line or reasoning can be followed, for instance,
to self-confirm an initial position at the L steady state. In particular, in the region with
multiple steady states, the L equilibrium represents a “monopolistic growth trap.”

4 Global Dynamics

We have established that the model contains three steady states, two of which are saddle-
path stable while the other is unstable. One may now wonder whether there exist also
other types of equilibria, such as cycles where leaders oscillate between innovating and
not innovating. The proposition below establishes that no such equilibrium exists.

Proposition 2. Consider any equilibrium where variables are continuous at all t, with the possible

exception of times where λ∗lt drops to zero. Then for t → ∞ the economy must converge to one of

the three steady states L, M, or H.

Proof. See Appendix A.4.

Note that Proposition 2 holds also for equilibria where the variables are allowed to change
discontinuously at specific points. In this way, Proposition 2 encompasses the case of
equilibrium paths that converge to the H steady state but that start at time 0 with strictly
positive innovation rates λ∗l0 > 0 by leaders. These equilibria can in fact feature a point
of discontinuity caused by the linearity of the R&D technology, which induces a “bang-
bang” structure for the leaders’ optimal innovation strategy with λ∗lt jumping to zero at
the time t when leaders’ innovation ceases (incidentally, this causes the value function V l

2

to display a kink at such points).

4.1 Saddle Path Dynamics: Simulations

In this section, we provide an empirically plausible parametrization of the model and nu-
merically simulate the saddle path convergence of the economy to either the H or the L
steady state depending on the initial condition α0.

We begin by considering an initial condition α in the interval (α∗L, α∗M) but close to α∗M,
and we construct the saddle path equilibrium that leads the economy to converge over

19



time to the L steady state. This is obtained as follows. First, as the economy is initially
close to the M steady state, both leaders and follows innovate and the intensive margin
constraint Λ̄ is not binding. Therefore the system (αt, Lt) evolves as follows{

α̇t = ραt +
2ρ+τ
m−1 + τ − χ

Lt = L∗M = 2ρ+τ
χ(m−1)

. (25)

As soon as Λ binds, the system switches to{
α̇t = τ − αt(χΛ− ρ)

Lt = 1− αtΛ

and the economy converges to the L steady state.

Alternatively, we can construct a converge path for the economy starting from an initial
α0 ∈ (α∗M, α∗H) that is sufficiently close to α∗M. The system evolves according to (25) un-
til leaders are indifferent between innovating and not innovating, i.e. until V l

2(t) = 2/χ.
After that, leaders stop innovation and the equilibrium jumps to the saddle path that con-
verges to the H steady state where only followers innovate. The system evolves according
to: {

α̇t = (1− αt)τ

L̇t/Lt = χ
(
(m− 1)Lt − 1−Lt

αt

)
− ρ

.

We simulate the model under the parameters given in Table 4.1. A period in the model
is one year. We set the subjective discount rate to 0.02. The skilled labor supply cap, Λ,
is calibrated to the percentage of college graduates among adult population in the US in
2017, not all of whom need work in the R&D sector. The rate of patent expiration, τ, is
taken to be 0.05, which is the inverse of the term of patents (20 years). We set m to be in the
interval [M, M], so all three steady states exist. The step size γ of a successful innovation
is chosen to ensure reasonable growth rates of the economy.

The saddle equilibrium path that converges to the L steady state is illustrated in Panel
(a) of Figure 4.1. The initial condition of the extensive margin of innovation, α0, is cho-
sen to be just below α∗M. Initially, around the M steady state, both leaders and followers
innovate. While the extensive margin of innovation decreases over time, the intensive
margin of innovation increases due to increasing innovation rates by leaders. As long
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as the skilled labor supply is not binding, the evolution of the two counteract each other
perfectly, so that the rate of technological growth pinned down by the aggregate level of
innovation, gt, is constant and so is the size of the production sector, Lt. As soon as the
skilled labor supply binds in contestable industries, the decline in the extensive margin
takes over, the aggregate level of innovation declines and the production sector expands.
Admittedly, the kink in gt is driven by the fixed supply of skilled labor together with the
linearity of the R&D technology at the firm level. In Section 6.2 we show that if we relax
the assumption of the linear R&D cost structure, then gt evolves smoothly as the economy
converges to the L steady state.

Panel (b) of the same figure shows the saddle equilibrium path that converges to the
H steady state. Starting from an initial extensive margin of innovation just above the
M steady state, the extensive margin of innovation increases, the intensive margin in-
novation decreases due to leaders innovating less, while the aggregate innovation stays
constant, until the moment when leaders no longer find it profitable to innovate. At that
point, the equilibrium jumps to the saddle path that converges to the H steady state. The
extensive margin αt moves continuously, though its rate of change has a kink at that point,
while the production labor Lt has a discontinuous jump. Once this point of discontinuity
is crossed, the extensive margin keeps increasing until all industries become contestable
and the economy approaches the H steady state.

Parameter Value Justification

ρ 0.02 Convention
Λ 0.34 Pct. of college graduates among adult population
τ 0.05 Term of patents, 20 years
χ 0.24 Ensure the existence of path to the H
m 1.53 The average of M and M
γ 1.60 Ensure γ ≥ m and reasonable consumption growth rate

Table 4.1: Parameter Values

Note: This table reports the parameter values we use in the simulation of the baseline model and their
justifications. For a discussion, see Section 4.1.
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5 Policy and Welfare Implications

Should Medicare be allowed to bargain for better deals with drugs providers, effectively
reducing the markup for pharmaceutical companies? What is the effect of longer patents’
duration? These are all common policy questions that, in our model, involve setting the
parameters m and τ. The results in the previous section show that, in general, the long-
run growth rate of the economy responds in a non-linear way to changes in these parame-
ters such as the mark-up m of the patent’s expiration rate τ. These are both characteristics
of a country’s legal framework, which therefore provides a powerful set of constraints to
the ability of a country to innovate and grow (Parente and Prescott, 2002).

To further shed light on this issue, this section explores the dynamic evolution of the econ-
omy under two policy experiments, one involving a change in m and one a change in τ.
As before, to make our experiments more striking we look at knife-edge cases where the
economy’s initial condition α0 is around the M steady state.

5.1 Raising the Markup Ceiling

In the first policy experiment, we raise the markup m slightly from 1.5237 to 1.5248 and
simulate the equilibrium path from the same initial condition α0 = 0.9162 under the two
different policy environments. The parametrization is otherwise identical to that in Table
4.1. The simulated equilibrium paths are found in Figure 5.1. Panels (a) to (c) illustrate the
equilibrium behavior of the extensive margin of innovation αt, the aggregate production
labor Lt, the rate of technological growth gt. Panel (d) in the same figure shows the ratio
of the aggregate consumption in the high-m environment to the aggregate consumption
in the low-m environment. To ease the reading of the figure, we use solid red to describe
the low-m economy and hollow black to describe the high-m economy.

In the low-m economy, the initial condition α0 is above the M steady state level of ex-
tensive margin, α

∗pre
M , setting the economy on the saddle path to the H steady state. The

H steady features innovation only by followers and in all industries which add up to a
high level of aggregate innovation and growth. However, for the same initial condition,
a slight increase in the mark-up m increases the M steady state level of the extensive mar-
gin, α

∗post
M , which completely changes the equilibrium path of the economy. Now in fact

the economy is set to converge to the L steady state, featuring a much lower level of ag-
gregate innovation and growth.
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(a) Extensive margin of innovation (b) Aggregate production labor

(c) Rate of technological growth (d) Ratio of aggregate consumption

Figure 5.1: Policy Experiment: Raising m

Note: This figure illustrates how the saddle path of the economy can change upon a change in the policy

variable m. The red lines in Panel (a)-(c) depict the evolution of the extensive margin of innovation αt, the

production labor Lt and the growth rate gt on the saddle path to a H steady state. Upon an increase in the

markup m, the economy however lands on a saddle path converging to the L steady state, as shown by the

black lines in those panels. Panel (d) shows the ratio of consumption, period by period, before to after the

increase in m. For a discussion, see Section 5.1.

To evaluate the aggregate consequence of such a policy change, in Panel (d) we track
the aggregate consumption in the high-m environment relative to that in the low-m. It
is noteworthy that raising the mark-up produces higher aggregate consumption growth
in the short run, before the negative long-run effects kick in. The reason for the diverg-
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ing short-run and long-run welfare implications of raising the markup ceiling is as fol-
lows. As monopoly profits are increased under a larger m, leaders respond by raising
their effort in innovation while followers’ optimal intensive margin of innovation remain
unchanged.8 On the other hand, higher intensive margin of innovation by the leaders
increases the speed at which an industry escapes the contestable state and reduces the
extensive margin of innovation (Panel (a)). Therefore, the intensive and extensive margin
of innovation move in opposite direction in the short run after the policy change. Panels
(b) and (c) tell us that the first of the two effects dominates in the short run so that aggre-
gate innovation increases and aggregate labor employed in production decreases. Over
time, the skilled labor employed in the R&D sector in those fewer and fewer contestable
industries is exhausted, so the intensive margin of innovation at the industry level cannot
increase while the extensive margin keeps decreasing. In the long run, the second effect
clearly dominates, canceling out any short-run gain and leading to a permanently lower
consumption growth.

5.2 Lengthening Patents’ Duration

We also consider a policy experiment where τ is reduced marginally from 0.051 to 0.050.
Consider an economy with an initial condition α0 = 0.8576. We plot the simulated saddle
path to their respective steady state under the low-τ and the high-τ environment in Fig-
ure 5.3. The rest of the model parameters remain unchanged.

Before the policy that reduces τ, the initial extensive margin is above its M steady state
level, α

∗pre
M , which means that the economy is on the path to the H steady state. A reduc-

tion in τ increases the M steady state level of the extensive margin of innovation to a level
above α0. As a consequence, the economy is now set on the saddle path to the L steady
state, with the supply of skilled labor becoming immediately binding. As a result, the
extensive margin of innovation declines and so do the aggregate innovation and growth
rate (Panel (a)-(c)).

Panel (d) of Figure 5.3 compares the aggregate consumption in the two equilibrium paths.
The initial dip below 1 of the ratio is caused, as is in the previous experiment, by the initial

8Recall that around the M steady state, the fixed skill supply is not binding and hence ωt = 1. From
the second equation of (21), it is implied that followers around the M steady state innovate at a constant
intensity, λ

f
t = ρ+τ

χ .
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contraction in L0 corresponding to the increase in R&D activity. However, as before, after
a temporary increase in consumption growth relative to the high-τ economy, the force of
declining extensive margin dominates and consequently the consumption trajectory de-
clines permanently relative to the high-τ economy.

(a) Extensive margin of innovation (b) Aggregate production labor

(c) Rate of technological growth (d) Ratio of aggregate consumption

Figure 5.3: Policy Experiment: Decreasing τ

Note: This figure illustrates how the saddle path of the economy can change upon a change in the policy

variable τ. The red lines in Panel (a)-(c) depict the evolution of the extensive margin of innovation αt, the

production labor Lt and the growth rate gt on the saddle path to a H steady state. Upon a reduction in the

destruction rate τ, the economy however lands on a saddle path converging to the L steady state, as shown

by the black lines in those panels. Panel (d) shows the ratio of consumption, period by period, before to

after the increase in m. For a discussion, see Section 5.2.
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5.3 Pareto Optimality

Equilibria featuring higher innovation may or may not be desirable from a welfare per-
spective. The optimal innovation rate depends in fact on the relation between the social
benefit of a successful innovation, represented by γ, the cost of achieving a successful
innovation, proxied by 1/χ, and the rate of time preferences, ρ.

The optimal innovation rate can be calculated from a planner’ problem. The social plan-
ner splits the fixed supply of labor between production and R&D activities across indus-
tries to maximize the lifetime utility of the representative consumer. The problem is

max
lit,Λit

∫ ∞

0
e−ρt log Ctdt

s.t. log Ct =
∫ 1

0
log (qitdit) di

dit = lit

qit = γsit

ṡit = χΛit∫ 1

0
(lit + Λit) di ≤ 1

Λit ≤ Λ.

where as usual Λit represents the overall innovation effort in industry i and the last two
constraints are the labor resource constraint and the fixed skill constraint.

Proposition 3. The solution to the planner’s problem is a unique steady state with consumption

growth rate gSP = χ log(γ)− ρ. Furthermore:

(1) The decentralised H steady state features a suboptimally low growth rate g∗H < gSP if and only

if

m < log(γ)
(

χ

ρ
+ 1
)

(2) The decentralised L steady state features a suboptimally high growth rate g∗L > gSP if and only

if

τ > 1− ρ

χΛ

(
χΛ− ρ

χ log(γ)
+ 1

)
Proof. See Appendix A.5.
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In the H steady state of the decentralised economy only followers innovate and the steady
state behaves similarly to the decentralised steady state in GH, where in addition m = γ.
Under this condition, Proposition 3 implies that if γ < log(γ)

(
χ
ρ + 1

)
then the GH ver-

sion of the H steady state features underinvestment in innovation. On the contrary, the
when γ > log(γ)

(
χ
ρ + 1

)
the equilibrium features overinvesment. By tracing out the

shape of these inequalities as a function of γ, one can see that, depending on the other
model parameters, there can exists a range of values [γ1, γ2] where the GH equilibrium
features underinvestment for γ in that range, and overinvestment for γ outside of that
range. Intuitively, if the positive knowledge externality from innovation (which increases
with the logarithm of γ) outweighs the negative externality from business stealing effects
(which increases linearly with the profit mark-up m = γ), then there is too little growth
in the decentralised economy.

Turning again to the more general formulation of our model, the leader’s mark-up can be
taken to be a regulated value m strictly lower than γ. Based on the discussion above, this
means that for a given m < γ the negative welfare consequence of the business stealing
effects are smaller than in the GH case with m = γ. Therefore the interval of values for γ

where the H equilibrium features underinvestment shrinks relative to the GH case.9

In the event that the H equilibrium features overinvestment, then Proposition 3 states
that the L steady state is characterized by overinvestment if and only if τ is sufficiently
large. This is a straightforward consequence of the fact that the growth rate g∗L in the the
L steady state is strictly increasing in τ (Appendix 1), i.e. g∗L is higher when the patent
duration is shorter. On the other hand, when τ approaches zero then g∗L also approaches
zero, which is surely lower than the social optimum.

6 Extensions and Robustness

In this section, we consider two extensions of our stylized baseline model. In Section
6.1, we consider more general utility functions that belong to the constant intertemporal
elasticity of substitution class. We discuss how the intertemporal elasticity of substitution
affects our results. In Section 6.2, we relax the assumption of the linear cost of innovation
and replace it with a quadratic cost of innovation. Since innovation costs are now strictly

9Yet, in all the numerical example and policy experiments in the previous sections the H steady state
features underinvestment in innovation relative to the social optimum.
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convex, we no longer need to impose a maximum supply of skilled labor at the industry
level. We show that the structure of the steady states in the model with the quadratic cost
resembles that in the baseline model, therefore making sure the linearity of the baseline
model does not drive our key results in any way.

6.1 Relaxing Log Utility

In the baseline model, we assumed that households have a log period utility function,
which amounts to assuming unit intertemporal elasticity of substitution. In this section,
we relax this assumption by adopting a more general class of utility functions for house-
holds:

∫ ∞

0
e−ρt C1−σ

t
1− σ

dt,

where 1
σ is the intertemporal elasticity of substitution. All other elements of the model

remain the same as in the baseline model. The consumption Euler equation becomes:

rt = ρ + σ
Ėt

Et
+ (σ− 1) log(γ)Ṡt. (26)

In a steady state, the relationship between the interest rate and the rate of technological
growth is now

r∗ = ρ + (σ− 1)g∗.

With a unit elasticity σ = 1 the steady state interest rate is equal to the rate of time prefer-
ence ρ, as in the baseline model.

Under the more general utility function, the steady state interest rate depends positively
(negatively) on growth when σ is larger (smaller) than unity. This implies that when
σ > 1, in a steady state with high technological growth and innovation, the interest rate
will also be high, which would tend to self-confirm the high-growth situation by discour-
aging innovation by leaders. As discussed in Section 3.2, this is one of the sources of the
multiplicity of steady states in our model. On the other hand, when σ < 1, high aggre-
gate growth and innovation would lead to low interest rates, which would encourage
leaders to innovate and would thus decrease the share industries in the contestable state.
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(a) Steady State Extensive Margin of Innovation

(b) Steady State Growth Rate

Figure 6.1: The Model with the Constant Intertemporal Elasticity of Substitution Prefer-
ence

Note: This figure illustrates the structure of the steady states of the model extended to have constant in-
tertemporal elasticity of substitution preference. In particular, it shows how the steady state extensive
margin of innovation α∗ and the steady state growth rate g∗ vary as we vary the elasticity of substitution
parameter σ. For a discussion, see Section 6.1.
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This by itself is a force that, in the long-run, would tend to push the economy toward a
low-growth situation, playing against the self-confirmation of a high-growth steady state.
This reasoning show that if σ < 1 is small enough, then the economy may not display in
fact a multiplicity of steady states.

We can characterize analytically the structure of the steady states for a range of σ.

Proposition 4. There exist two constants σH < 1 < σL such that for σ ∈ (σH, σL) the economy

has three steady states, H, M, and L. The H and L steady states are saddle path stable, while the

M steady state is unstable. Moreover, for 1 ≤ σ < σL, the three steady states are also ranked by

their aggregate growth rates, g∗H > g∗M > g∗L.

Proof. See Appendix C.

Fix an m ∈
(

M, M
)

and all other parameters as in baseline model. There exists a range
of σ, (σH, σL) and σH < 1 < σL, in which there are three steady states. At σH, the H
and M steady states coincide where leaders become indifferent between innovating and
not innovating. At σL, the M and L steady states coincide where the constraints on Λ̄ be-
comes just binding. Figure 6.1 illustrates the three steady states, their extensive margins
of innovation and growth rates, as we vary σ. This figure is based on simulations of the
model, keeping all parameters as in Table 4.1 and varying σ around unity. The red line
denotes the steady states corresponding to a model with σ = 1 (i.e. the baseline model).

The figure shows that for low values of σ the only steady state that exists is the L steady
state. For moderate values of σ around one, multiple steady states arise. However, when
σ becomes too big, only H steady state survives. Beyond that point in fact the steady state
interest rate is too high to warrant innovation by leaders.

6.2 Relaxing Linear Cost of R&D

Another potential concern is whether the multiplicity of steady states, from which we
derive subtle policy implications, could be driven by the linearity of the model. To ad-
dress this issue, we modify the model to introduce a quadratic cost of innovation to both
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leaders and followers. Suppose the cost of innovation is the following:

φjλ +
1
2

θjλ
2, j = 1, 2,

where j = 1 is for leaders and j = 2 is for followers and φj, ξ j > 0 are parameters of the
model. Since this effectively imposes decreasing return on innovation at the firm level,
we then abandon the assumption of maximum supply Λ̄ of skilled labor. We solve and
simulate this modified model and examine if the baseline key properties of the steady
states survive these modifications.10

In Figure 6.3, we plot the steady state values of the extensive margin of innovation, α∗,
and the growth rate, g∗, against different values of the markup m from the modified
model. Comparing this figure to Figure 3.1 from the baseline model, we confirm that the
structure of the steady states under the quadratic cost of innovation remains similar to
that in the linear model.

10The mathematical derivations of the steady states in the model with quadratic costs are found in Ap-
pendix D.
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(a) Steady State Extensive Margin of Innovation

(b) Steady State Growth Rate

Figure 6.3: The Model with Quadratic Costs of Innovation

Note: This figure illustrates the structure of the steady states of the model extended to have quadratic cost

of innovation. In particular, it shows how the steady state extensive margin of innovation α∗ and the steady

state growth rate g∗ vary as we vary the markup parameter m. For a discussion, see Section 6.2.
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7 Conclusion

Traditional “new growth theory” models of endogenous growth deliver the result that
higher monopoly power – higher markup or longer patent protection – leads to higher
aggregate growth. In this paper, we show that this conclusion rests crucially on the as-
sumption of complete and instantaneous knowledge spillover to followers. We believe
this assumption to be dubious, and thus we study the case where the cost for followers to
leap-frog the industry’s leader increases in the leader’s technological advantage.

We find that under our more general setting, the equilibrium properties of the economy
change dramatically. First of all, instead of being characterized by just one steady state
where only followers innovate (this is the High growth steady state of the traditional
Schumpeterian models), the economy may now features two additional steady states
where also leaders innovate, one with Medium and one with Low growth. The High
and the Low growth steady states are both saddle path stable. The Low growth steady
state is characterized by high but infrequent innovation effort by industry leaders, whose
“endpoint strategy” is to acquire new patents in order to distance themselves from the
followers, thus increasing the followers’ innovation costs and pushing them out of the
innovation race. Second, we find that when leaders are granted large monopolistic rents
or long-lasting patent protection, then the economy features once again a unique steady
state, but it’s the Low growth steady state instead of the traditional High growth one. Al-
lowing leaders to take advantage of excessively high markups and long patent protection
is harmful to growth, as these conditions provide leaders with incentives to enact strate-
gies aimed at stifling firms entry into their industry.

Our theoretical findings indicate that standard results of the “new growth theory” lit-
erature are not robust to the relaxation of the unrealistic assumption of complete and
instantaneous knowledge spillover. Our results also provide a potential framework to in-
terpret the recent empirical trends of increasing markups, reduced investment, and lower
business dynamism.
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Appendix

A Technical Details of the Baseline Model

A.1 The Supply Function of Skilled Labor

To obtain an equilibrium when the supply function for specialized labor is perfectly elas-
tic up to Λ̄, and perfectly inelastic afterwards, we proceed in two steps. First, we postulate
the existence of an exogenous supply function for the specialized labor given by

ω = 1 + θψ(Λ) (A-1)

where θ > 0 and ψ(·) is a C1 function such that

ψ(Λ) = 0, for Λ ≤ Λ̄
ψ′, ψ′′ > 0, for Λ > Λ̄
ψ(Λ)→ +∞, as Λ→ +∞.

(A-2)

Second, we take the limit of the resulting equilibrium as θ → +∞. For the purpose of this
paper, we take Λ̄ to be an arbitrarily large constant.

A.2 The Proof of Proposition 1

The H steady state and its existence are established in the main text of the paper. Here we
focus on the M and L steady states.

From the first-order conditions of the innovating leaders and followers, we have 2ωt/χ =

2V l
1(t) = V l

2(t). Therefore, 2V̇ l
1 = 2 ω̇t

χ = V̇ l
2. Substituting these conditions for the value

functions and their derivatives into the equations defining V l
1 and V l

2, we obtain two equa-
tions. The first is

Πt = (2λ
f
t − τ/χ)ωt, (A-3)

and the second equation is

ω̇t = (rt + τ − χλ
f
t )ωt.



They comprise the system of equations of (21) in the paper.

From the first equation of (21), we have

Π̇
Π

=
L̇
L
=

Ẏ
Y

=
Ė
E
= r− ρ =

2χλ̇ f

2χλ f − τ
+

ω̇

ω
=

2χλ̇ f

2χλ f − τ
+ r + τ − χλ f

⇒ 2λ̇ f = (2λ f − τ/χ)

(
λ f − ρ + τ

χ

)
χ. (A-4)

From the expression for Π, 2λ f − τ/χ > 0. Then in the steady state, λ f ∗ = ρ+τ
χ . Since

Π∗ = (m− 1)(1− α∗Λ∗),

(m− 1)(1− α∗Λ∗) =
2ρ + τ

χ
ω(Λ∗)

⇒ α∗ =
1

Λ∗

(
1− 2ρ + τ

χ(m− 1)
ω(Λ∗)

)
≡ ν1(Λ∗).

From α̇ = (1− α)τ − αχλl, we have

0 = (1− α∗)τ − α∗χλl∗ = (1− α∗)τ − α∗χ(Λ∗ − λ f ∗) = (1− α∗)τ − α∗χ(Λ∗ − ρ + τ

χ
)

⇒ α∗ =
τ

Λ∗χ− ρ
≡ ν2(Λ∗).

The system of equations α∗ = 1
Λ∗

(
1− 2ρ+τ

χ(m−1)ω(Λ∗)
)
≡ ν1(Λ∗)

α∗ = τ
Λ∗χ−ρ ≡ ν2(Λ∗)

, (A-5)

when having two meaningful solutions, define the M and L steady states.

2



In the limit economy, let θ → +∞. Then,

ν1(Λ∗) =

{
1

Λ∗

(
1− 2ρ+τ

χ(m−1)

)
if Λ∗ < Λ

−∞ if otherwise
.

In Figure A-1, we plot ν1 (for both a finite θ and for the limit when θ → ∞) and ν2. One
can show that for finite θ, ν1 and ν2 have at most two crossings, because ν′1

ν′2
increases in

Λ.11. As θ → ∞, the lower crossing occurring at the binding skilled labor constraint,
defining the L steady state, Λ∗L = Λ and the higher crossing defines the M steady state,
where ω∗M = 1.

Let θ go to infinity. Varying m shifts ν1(·) up and down. Let M be the m such that ν1(·) and
ν2(·) have only one intersection at Λ. This implies that if m is lower than M, then the M
and L steady states disappear. Let M be the m such that there are two intersections of ν1(·)
and ν2(·), with the higher one corresponding to α∗ = 1 and the lower one corresponding
to Λ. This implies that if m = M, then α∗H = α∗M = 1. If m > M, then the H and M steady
states disappear. We can show that

M→ 1 +
(χΛ− ρ)(2ρ + τ)

χ
(
Λ(χ− τ)− ρ

) .

M =

{
χ+ρ

χ−τ−ρ if χ− τ − ρ > 0

+∞ if otherwise.

In sum, when m < M, there is only one H steady state.

11We have

ν′1
ν′2

=

2ρ+τ
χ(m−1) θψ′Λ + ν1Λ

τ

(
χ− ρ

Λ

)2
.

It can be shown that the first term’s derivative with respect to Λ is 2ρ+τ
χ(m−1)Λψ′′ > 0. The second term is

clearly increasing in Λ. Therefore, overall the ratio ν′1/ν′2 is increasing in Λ.
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Figure A-1: The M and L Steady States

Note: This figure shows how the M and L steady states are determined. For details of sample selection, see
Appendix A.2.

When M ≤ m ≤ M, there are three steady states, H, M, and L.

α∗H = 1;

α∗M →
χ− τ − 2ρ+τ

m−1
ρ

; (A-6)

α∗L →
τ

χΛ− ρ
.

In the M steady state, Λ∗M < Λ and ω∗M = 1. In the L steady state, Λ∗L = Λ and ω∗L > 1.

When m > M, there is only one L steady state.
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The stability properties of the M and the L steady state are easily established. In the jargon
of economy theory, a steady state is locally stable if, given an initial condition (in our case,
an initial value for α0) in the neighborhood of the steady state, there exists an equilibrium
path converging to the steady state as t → ∞. We know that in a neighborhood of either
the M or the L steady state, the differential equation (A-4) must hold. In order to have λ

f
t

converge to its steady state value λ f ∗ = ρ+τ
χ , we must necessarily have λ

f
t = ρ+τ

χ for all

t.12 Substituting λ
f
t = ρ+τ

χ into (A-3) and combine with Πt = (m− 1)(1− αtΛt, we have

αt =
1

Λt

(
1− 1ρ + τ

χ(m− 1)
ω(Λ)

)
= ν1(Λt).

In other words, starting from some α0, a hypothetical convergence path coincides with
the curve ν1 in Figure A-1.

Recall the curve ν2 in Figure A-1 describes the combination of α and Λ such that α̇ = 0.
This implies that, starting from any αt below the ν2 curve, we have α̇t < 0 while starting
from an αt above the curve we have α̇t > 0.

For any α ∈
(
α∗L, α∗M

)
, we have ν1 > ν2. It follows that, on the hypothetical converging

trajectory, we must have α̇t < 0. Hence, starting from any α0 ∈ (α∗L, α∗M), there exists
a unique initial value Λ0 on ν1 such that the equilibrium pair (αt, Λt) travels southeast
along the curve ν1 and converges to the L steady state as t → ∞. Similarly, pick any
α0 < α∗L, we have α̇t > 0 along the trajectory, which implies that there exists a unique
equilibrium pair (αt, Λt) which travels northwest along ν1 and converges to the L steady
state. Finally, for any α0 > α∗M we have ν1 < ν2. Therefore, any path starting and lying on
ν1 is characterized by α̇t > 0 for all t, which shows that there is no initial condition α0 in
the neighborhood of α∗M for which we can find an equilibrium path converging to the M
steady state. We then say that M is a source and L is a saddle.

Clearly, if m > M̄ then the only steady state is L, and for any initial condition α0 ∈ (0, 1]
the only equilibrium is the one associated with the unique path converging to the L steady

12Recall that necessarily 2λ f − τ/χ > 0. If λ
f
t increases to the steady state value, then λ

f
t > ρ+τ

χ and λ
f
t

will increase without bound. If λ
f
t decreases to the steady state value, then λ

f
t < ρ+τ

χ and λ
f
t will decrease

to zero. Either is a contradiction.
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state.

A.3 The Proof of Corollary 1

Firstly, note that aggregate R&D labor in the M and L can be expressed by

α∗i Λ∗i =
τΛ∗i

τ + χ(Λ∗i − λ
f ∗
i )

, for i = M, L.

Since λ
f ∗
M = λ

f ∗
L and Λ∗M < Λ∗L = Λ, we conclude that α∗MΛ∗M < α∗LΛ∗L under the assump-

tion that τ < χ− ρ < χ. Since g∗i = log(γ)α∗i Λ∗i , we have g∗M > g∗L.

Secondly, comparing the aggregate production labor in the H and M steady states, (18)
and (23), we find L∗H < L∗M if and only if m < M. Since g∗i = log(γ)χ(1− L∗i ), we have
g∗H > g∗M when both exist.

Finally, we can easily solve out the growth rate in the L steady state: g∗L = log(γ)χ τχΛ
χΛ−ρ

,
which is independent of m. Therefore, g∗L is smaller than any growth rates in the M and
H steady states for any m ∈

(
M, M

)
.

A.4 The Proof of Proposition 2

Define “Region I” the system of differential equations (15)-(16) where only followers in-
novate and “Region II” the system (A-3)-(A-4) where both leaders and followers innovate.

Assume that the initial conditions of the system do not coincide with either the steady
states or the saddle paths of the two Regions. Then, starting from such initial condi-
tions, a candidate equilibrium must necessary switch Region at least once, possibly fea-
turing equilibrium cycles where the economy switches indefinitely between Regions (it is
straightforward to show that within-Region cycles do not exist).

Indicate with T a time when the economy switches Region and consider a candidate
equilibrium characterized by an infinite sequence T1, T2, ... of switches between Regions.
For brevity, in the remainder of the proof we assume that Λ̄ is arbitrarily large, so that
α(0) > α∗L and λ f (T) < Λ̄, implying ω(T) = 1 at any T. Also, with a slight abuse of
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notation, we will indicate with x(T) or ẋ(T), respectively, the limit from the right of the
function x(T) or of its time derivative.

Without loss of generality we assume that at T = T1 the economy switches from Region
I to Region II. Because of the continuity assumption, we must have λl(T) = 0. There are
now two possibilities that need to be considered separately.

The first is that λ f (T1) ≥ λ
f ∗
M = ρ+τ

χ . In this case (A-4) implies that λ̇ f (T1) ≥ 0. Also,
since Π = (m− 1)L, equation (A-3) implies L̇(T1) ≥ 0. Moreover, since λl(T1) = 0, then
α̇(T1) > 0. Given that λl

t =
1−Lt

αt
− λ

f
t for any t, it follows that λ̇l(T1) < 0. But this is not

possible, since it would imply that λl
t < 0 at some time t > T1.

For the rest of the proof we will then focus on the second possibility, that is λ f (T1) < λ
f ∗
M .

Since Πt = (m− 1)Lt, then using equation (A-3) we have

L̇
L
=

Π̇
Π

=
2λ̇ f

2λ f − τ
χ

Substituting (A-4) gives
L̇
L
= χλ f − ρ− τ

Recalling that λ f (T1) < λ
f ∗
M , we conclude that L̇ < 0 and λ̇ f < 0 while the system is in

Region II after the switch at T1.

Then, at the time T2 > T1 when the economy switches back to Region I, we have λ f (T2) <

λ f (T1), L(T2) < L(T1), λl(T2) = λl(T1) = 0 and thus α(T2) = 1−L(T2)

λ f (T2)
> α(T1). Since α

strictly increases while in Region I, we conclude that as the economy switches back and
forth between the two regions it generates a strictly increasing sequence {α(Tn)}. This
sequence can only converge to α∗H given that α(0) > α∗L and that in Region I α̇ > 0 as long
as α < α∗H.

We therefore conclude that there is no equilibrium that features a cycle where the econ-
omy switches between Region I and Region II. Any equilibrium, if it exists, that at some
time T1 switches from Region I to Region II at some T1 must converge in the limit to the
H steady state.
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A.5 The Solution to Planner’s Problem

Using symmetry properties, we can drop the index i and write the social planner’s prob-
lem as

max
Λt,Lt

∫ ∞

0
e−ρt (St log γ + log Lt)

s.t. Ṡt = χΛt

Λt ≤ Λ

Λt + Lt ≤ 1.

Assume that the constraint Λ̄ does not bind in equilibrium. Then the current value Hamil-
tonian is H(St, Λt, µt) ≡ St log γ + log(1−Λt) + µtχΛt, where µt is the co-state variable.
The optimality conditions are

∂H(St, Λt, µt)

∂Λ
=
−1

1−Λt
+ µtχ = 0

∂H(St, Λt, µt)

∂S
= log γ = −µ̇t + ρµt.

Differentiating the first equality with respect to time and combining it with the second
equality yields

L̇
L
+ ρ = χ log(γ)L.

In the steady state, L∗ = ρ
χ log(γ) and Λ∗ = 1− ρ

χ log(γ) . The consumption growth rate is
gSP = log(γ)χΛ∗ = χ log(γ)− ρ. We focus on the steady state comparisons, because in
the social planner’s problem, the steady state is a source. The equilibrium path of Lt in
fact indicates that if Lt > L∗, then Lt will increase without bound and if Lt < L∗, then
Lt will decrease without bound. In either case, Lt will eventually violate the boundary
conditions that 0 ≤ Lt ≤ 1.

The consumption growth rate in the H steady state in the decentralized economy is g∗H =

8



log(γ) (m−1)χ−ρ
m . This means that gSP > g∗H if and only if

m < log(γ)
(

χ

ρ
+ 1
)

.

The consumption growth rate in the L steady state in the decentralized economy is g∗L =

log(γ)χ τχΛ
χΛ−ρ

. This means that gSP < g∗L if and only if

χ log(γ)− ρ < log(γ)χ
τχΛ

χΛ− ρ
⇔ χ log(γ)

(
(1− τ)χΛ− ρ

χΛ− ρ

)
< ρ.

When 0 < τ < 1, which is the relevant case, the condition becomes:

τ > 1− ρ

χΛ

(
χΛ− ρ

χ log(γ)
+ 1

)
.

These results are summarised in Proposition 3.

B Dynamic Race with Endogenous Steps

Assume that the innovation technologies used by followers are linear and that innova-
tion costs for followers are increasing in the follower’s lag from the leader.13 We will
show that, under these assumptions, the model with an exogenous maximum distance
of two steps is in fact the equilibrium result of a model where the maximum distance
is endogenous. This conclusion holds for both the “step-by-step catch-up” and the “fast
catch-up” versions of the model.

To prove the claim, we need to consider only the problem of the follower, taking as given
the value functions V l

s of a leader s steps ahead, for s = 1, 2, . . . . Also, to simplify the
exposition, we can focus only on steady states. In the “step-by-step catch-up” we assume
that a follower with lag s > 1 must first spend resources to close the gap to s = 1, and
only then can try to leap-frog the leader. Instead, in the “fast catch-up case,” followers
can jump immediately from any state s > 1 to state s = 1, but they face innovation costs
that are larger the greater the number of steps s− 1 that need to be filled.

13Note that we make no assumption about the form of the innovation costs of the leader.

9



Consider first the “fast catch-up” case. The value V f
s of a follower s ≥ 2 steps behind is

given by the solution to

rV f
s = max

λ
f
s≥0
−λ

f
s + (χsλ

f
s + τs)(V

f
1 −V f

s ) + λl
s(V

f
s+1 −V f

s ). (B-1)

The value function of a follower s = 1 step behind solves the usual problem,

rV f
1 = max

λ
f
1≥0
−λ

f
1 + λ

f
1(V

l
1 −V f

1 ) + λl
1(V

f
2 −V f

1 ). (B-2)

Innovation costs 1/χs are assumed to be increasing in the lag s, while the spillover inten-
sity τs is assumed to be a decreasing sequence. We employ the normalizations χ1 = 1 and
τ1 = 0.

For brevity we can appeal to an intuitive argument that, since innovation costs are increas-
ing in the follower’s lag, and spillover’s intensities are decreasing, then V f

1 ≥ V f
2 ≥ 0, i.e.

the follower is at least as well-off when he is one step behind the leader compared to when
he is two steps behind.14 Now, regardless of whether the condition λ

f
1 ≥ 0 is binding in

the maximization of (B-2), and assuming that the optimal value of λ
f
1 is finite, we have

V f
1 =

λl
1

r + λl
1

V f
2 .

Since at a steady state r > 0 and λl
1 ≥ 0, the equation above and the inequalities V f

1 ≥
V f

2 ≥ 0 are satisfied if and only if

V f
1 = V f

2 = 0.

Substituting V f
1 = V f

2 = 0 in (B-1) for s = 2, the solution to the maximization gives
optimal values λ

f
2 = 0 and V f

3 = 0. Iterating the procedure for s = 3, 4, . . . yields

V f
s = λ

f
s = 0, ∀s > 1.

14The result that the value to the follower decreases with the lag is standard in models of races (see for
instance Hörner (2004)). For the sake of our demonstration, we can make the (incorrect) assumption that
V f

2 > V f
1 ≥ 0. Then, optimality of (B-1) for s = 2 requires that λ

f
2 = 0. Moreover, since V f

2 ≥ 0 and τ2 > 0,

then V f
3 − V f

2 > 0 and thus V f
3 − V f

1 > 0. Iterating the argument for s = 3, 4, . . . , we would conclude that

V f
s+1 −V f

s > 0 and λ
f
s for any s > 1. Hence, followers never innovate at stages s > 1.

10



This concludes the proof that, provided that the optimal λ
f
s is finite, followers never in-

novate when they are more than one step behind the leader.

The proof for the “step-by-step catch-up” case is straightforward and follows a similar
logic as the one outline above for the “fast catch-up” case. We know from the baseline
model that V f

1 = 0. This means that no follower that is more that 1 step behind the leader
would be willing to spend R&D resources to retrace, one by one, all the technological
steps needed to close the gap to s = 1.

C The Model with Constant Intertemporal Elasticity of Sub-

stitution Utility

The representative household solves the following problem:

max
∫ ∞

0
e−ρt C1−σ

t
1− σ

dt (C-1)

s.t.
∫ ∞

0
e−Rt Etdt ≤W(0), (C-2)

where Rt is the compounded interest rate and Et represents total spending at time t:

Rt =
∫ t

0
r(τ)dτ,

Et =
∫
[0,1]

pitditdi.

The Cobb-Douglas form of the the consumption aggregate implies that the amount spent
by the household on good i is the same across all products, giving

dit =
Et

pit
.

Therefore, we can write the consumption aggregate as

log Ct =
∫
[0,1]

log
(

qit

pit
Et

)
di =

∫
[0,1]

log
(

qit

pit

)
di + log Et ≡ log Qt + log Et,
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where Qt is proportional to the aggregate quality index and Ct = QtEt.

We can rewrite the consumer’s problem equivalently with a flow budget constraint, ȧt =

rtat + It − Et, where at is the stock of savings (wealth) at time t and It is the total income
(labor income and profit from firms) at time t. We set up the current value Hamiltonian,
H(Et, at, µt) =

(QtEt)
1−σ

1−σ + µt(rtat + It − Et). The first order conditions, ∂H
∂Et

= 0 and ∂H
∂at

=

ρµt − µ̇t, imply

rt = ρ + σ
Ėt

Et
+ (σ− 1)

Q̇t

Qt

= ρ + σ
Ėt

Et
+ (σ− 1) log(γ)Ṡt,

which is (26) in the paper. Also note that in the special case of log period utility (σ = 1),
we obtain the familiar Ėt

Et
= rt − ρ.

Let’s maintain all the parametric assumptions made in the baseline model and suppose
m ∈

(
M, M

)
so three steady states exist under the baseline assumption σ = 1. We char-

acterize the structure of the steady states in this environment when σ deviates from 1.

The H steady state. The highest feasible steady state value for α∗ is one, since in this
case λl∗ = 0. Let’s first assume that around the H steady state we have λ f ∗ > 0. As
usual, a steady state with high extensive margin will be associated with a low intensive
margin Λ∗. By taking Λ̄ large enough, we can make sure that in a neighborhood of the
steady state Λ∗t = λ

f ∗
t < Λ̄, giving ωt = 1. Hence, the first order condition for λ f in a

neighborhood of a H steady state implies that

V l
1(t) =

1
χ

.

The condition above implies that, in a neighborhood of the H steady state, V̇ l
1 = 0. Since

λl∗
t = 0, a straightforward substitution in the definition of V l

1 gives

rt

χ
+ λ

f
t = Πt. (C-3)

12



Combining the above equation with the facts that Πt = (m− 1)Lt, λ
f
t = (1− Lt)/αt and

(26), we obtain

ρ

χ
+

σ

χ

L̇
L
+ (σ− 1) log(γ)(1− L) +

1− L
α

= (m− 1)L. (C-4)

Equation (C-4) defines the evolution of the economy around the H steady state, together
with the condition

α̇ = τ(1− α). (C-5)

The H steady state is then characterized by

α∗H = 1;

L∗H =
1 + ρ/χ + (σ− 1) log(γ)

m + (σ− 1) log(γ)
;

λ
f ∗
H =

m− 1− ρ/χ

m + (σ− 1) log(γ)
;

g∗H = log(γ)
χ(m− 1)− ρ

m + (σ− 1) log(γ)
.

Linearizing the system (15), (16) we can show that the H steady state is a saddle. We main-
tain the assumption from the baseline model that m > 1 + ρ/χ to have a non-degenerate
H steady state. Moreover, λ

f ∗
H > 0 and L∗H > 0 jointly requires

σ > 1−
1 + ρ

χ

log(γ)
≡ σH1.

For the H steady state to exist, we in addition require V l∗
2 < 2

χ so that leaders indeed do

13



not have incentive to innovate. This gives us

V l∗
2 =

(m− 1)L∗H + τV l∗
1

ρ + (σ− 1)g∗H + τ

=
(m− 1)χ [1 + ρ/χ + (σ− 1) log(γ)] + τ(m + (σ− 1) log(γ))
(ρ + τ)χ(m + (σ− 1) log(γ)) + (σ− 1) log(γ)(χ(m− 1)− ρ)χ

<
2
χ

⇒ σ > 1−

(
ρ+χ

χ−ρ−τ −m
)
(χ− ρ− τ)

log(γ)(χ(m− 1) + τ)

= 1−
(

M−m
)
(χ− ρ− τ)

log(γ)(χ(m− 1) + τ)
≡ σH2.

We maintain the assumption from the baseline that χ > ρ + τ. For the set of parameters
under which the H steady state exists in the baseline model (i.e. m < M), the H steady
state exists in this extended model as long as σ is greater than σH2, which is a number less
than 1.

To compare σH1 and σH2, we first note that

ρ + χ

χ
−
(

M−m
)
(χ− ρ− τ)

χ(m− 1) + τ

=
(2χ− τ)χ

(
m− 1− ρ

χ

)
χ (χ(m− 1) + τ)

,

which has the same sign as m− 1− ρ
χ . Recall that m > M = 1 + (2ρ+τ)(χΛ−ρ)

χ((χ−τ)Λ−ρ)
and M is

decreasing in Λ. This implies

m > M > lim
Λ→+∞

M = 1 +
2ρ + τ

χ− τ
> 1 +

ρ

χ
.

Therefore, m− 1− ρ
χ > 0, ρ+χ

χ >
(M−m)(χ−ρ−τ)

χ(m−1)+τ
, and in turn

σH1 < σH2.

Define σH = σH2. The H steady state exists as long as σ ≥ σH. At σH, leaders are indif-
ferent between innovating or not. For a σ that is infinitesimally smaller than σH, leaders
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will have strictly prefer to innovate.

The M and L steady states In the M and L steady states, both leaders and followers
innovate at the contestable state. The first order conditions for λl and λ f give V l

2(t) =

2ωt/χ = 2V l
1(t). Substituting these conditions into the value functions and after appro-

priate calculations we obtain the two equations:{
Π = (2λ f − τ

χ )ω

ω̇ = (r + τ − χλ f )ω.
(C-6)

From the first equation in (C-6) and Π = (m− 1)L we can solve out L:

L =
2λ f − τ/χ

m− 1
ω,

which, together with the labor market clearing condition, implies

1− 2λ f − τ/χ

m− 1
ω = α(λ f + λl). (C-7)

From the second equation in (C-6), in the steady state r + τ − χλ f = 0. Combined with
the Euler equation derived at the beginning of this section, we have

ρ + (σ− 1)g + τ − χλ f = 0. (C-8)

The difference between an M and a L steady state is that in an M steady state, the skilled
labor supply does not bind (λl + λ f < Λ) and the skill premium is one (ω = 1), whereas
in a L steady state, the opposite is true: λl + λ f = Λ and ω > 1.
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Then we can use four equations to characterize an M steady state
α = τ

τ+χλl

g = log(γ)χα(λ f + λl)

ρ + (σ− 1)g + τ − χλ f = 0

1− 2λ f−τ/χ
m−1 = α(λ f + λl)

. (C-9)

The first equation becomes from the evolution of the extensive margin αt. The second
equation is the definition of the growth rate. The third equation is (C-8). The last equa-
tion is (C-7), where ω = 1 in an M steady state. From these four equations, we can solve
for the M steady state endogenous variables: α∗M, g∗M, λ

f ∗
M and λl∗

M.

We can use another set of four equations to characterize a L steady state
α = τ

τ+χ(Λ−λ f )

g = log(γ)χαΛ
ρ + (σ− 1)g + τ − χλ f = 0

1− 2λ f−τ/χ
m−1 ω = αΛ

. (C-10)

From these four equations, we can solve for the L steady state endogenous variables: α∗L,
g∗L, λ

f ∗
L and ω∗L.

Let’s focus on the M steady state first. Combining the second and fourth equation in
(C-9), we have one equation that links g to λ f :

g = log(γ)χ
m− 1− 2λ f + τ/χ

m− 1
. (C-11)

Together with the third equation in (C-9), we can solve out the M steady state explicitly

α∗M =
(χ− τ)(m− 1)− (2ρ + τ)− 2τ(σ− 1) log(γ)

ρ(m− 1)− [τ − χ(m− 1)](σ− 1) log(γ)
;

L∗M =
2ρ + τ + 2χ(σ− 1) log(γ)

χ(m− 1) + 2χ(σ− 1) log(γ)
;

λ
f ∗
M =

(σ− 1) log(γ)χ[m− 1 + τ/χ] + (m− 1)(ρ + τ)

[m− 1 + 2(σ− 1) log(γ)]χ
;

g∗M = log(γ)
χ(m− 1)− 2ρ− τ

m− 1 + 2(σ− 1) log(γ)
.

16



The λl∗
M is implied in the last equation of (C-9). Rearranging terms,

λl∗
M =

τ
(
(m + 1)λ f ∗

M −m + 1− τ/χ
)

(m− 1)(χ− τ) + τ − 2χλ
f ∗
M

, (C-12)

which is increasing in λ
f ∗
M . All these endogenous variables are well-defined when σ = 1.

Let’s differentiate λ
f ∗
M with respect to σ− 1.

dλ
f ∗
M

d(σ− 1)
=

log(γ)(m− 1)χ [(m− 1)χ− 2ρ− τ]

[m− 1 + 2(σ− 1) log(γ)]2χ2 .

Recall that m > M = 1 + (2ρ+τ)(χΛ−ρ)

χ((χ−τ)Λ−ρ)
> 1 + 2ρ+τ

χ . Hence,

dλ
f ∗
M

d(σ− 1)
> 0.

This means, as σ decreases below 1, both λ
f ∗
M and λl∗

M will decrease until λl∗
M becomes

zero, at which point the M steady state coincides with the H steady state when leaders
are indifferent between innovating and not innovating. To see this point, when λl∗

M = 0,
from (C-12), λ

f ∗
M becomes

λ
f ∗
M =

m− 1 + τ/χ

m + 1
.

Evaluate the λ
f ∗
H at σ = σH:

λ
f ∗
H =

m− 1− ρ/χ

m− (M−m)(χ−ρ−τ)

χ(m−1)+τ

=
m− 1 + τ/χ

m + 1
= λ

f ∗
M .

This also means, As σ rises above 1, both λ
f ∗
M and λl∗

M will increase until the sum hits the
fixed supply: λ

f ∗
M + λl∗

M = Λ. At this point, as we will show below, the M steady state
coincides with the L steady state where ω = 1.

Let’s focus on the L steady state now. Combining the first two equations in (C-10) and
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cancelling out α, we have

g
log(γ)χΛ

=
τ

τ + χ(Λ− λ f )
.

Combining the above with the third equation in (C-10), we can infer the L steady state
λ

f ∗
L from

χ2λ
f ∗2
L − (ρ + 2τ + χΛ)χλ

f ∗
L + (ρ + τ)(τ + χΛ) + (σ− 1) log(γ)τχΛ = 0. (C-13)

Under our assumption of m ∈
(

M, M
)
, we know when σ = 1 there exists a well-defined

L steady state. When σ = 1, the above quadratic has two roots: λ f = ρ+τ
χ and λ f = Λ + τ

χ

(omitted because it is greater than Λ). The smaller root is the R&D intensity of the follow-
ers in the L steady state in the baseline model, λ

f ∗
L , and we also know in that steady state

ω∗L > 1. As σ increases above 1, the quadratic function shifts up and the smaller root, λ
f ∗
L ,

increases, which in turn implies that α∗L increases (see the first equation of (C-10)). Now
from the fourth equation in (C-10), we deduce that the steady state ω∗L must decrease.
Therefore, as σ increases, the smaller root to (C-13) defines the L steady state level of λ f

until the implied ω∗L decreases to 1, at which point the L steady state coincides with the
M steady state where the constraint on skilled labor supply becomes just binding.

To see this point, note how the solution to (C-9) when λ f + λl = Λ must also solve (C-10)
when ω = 1 and vice versa.

Finally, we show that the larger root of this quadratic equation (C-13) can never be a L
steady state. Since σ only shifts the quadratic function up and down, the larger root will
always be strictly larger than the λ

f ∗
L when L and M steady states coincide as we discuss

above. Suppose the larger root, λ
f
2 occurs in a L steady state. Then in that steady state, the

extensive margin α must be larger than the extensive margin when L and M steady states
coincide. This also means, ω in that steady state much be strictly smaller than the skill
premium when L and M steady states coincide, which we know is 1. This contradicts the
definition of a L steady state.

Let σL be the σ at which the L and M steady states coincide and let σL be the σ when
the smaller root of the quadratic equation is τ

2χ and σL < 1. We have shown that for
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σ ∈ (σL, σL), the L steady state exists. λ
f ∗
L is given by the smaller root of equation (C-13)

and the other steady state variables can be derived by

α∗L =
τ

τ + χ(Λ− λ
f ∗
L )

;

g∗L = α∗L log(γ)χΛ;

L∗L = 1− α∗LΛ.

We next show that σL < σH, such that the L steady state is defined whenever the H steady
state is defined and σ < 1. Substituting λ f with τ

2χ in (C-13), we can rearrange to obtain

(1− σL) log(γ) =
(2ρ + τ)(2χΛ + τ)

4τχΛ
.

Recall σH = σH2 and

(1− σH) log(γ) =
χ + ρ−m(χ− ρ− τ)

χ(m− 1) + τ
.

We can derive the following inequalities

(1− σH) log(γ) <
(2ρ + τ)ρ(χΛ− τ − ρ)

2χ(ρ + τ)(χΛ− ρ)− τ2Λχ

=
2ρ + τ

χΛ
ρ(χΛ− τ − ρ)

2(ρ + τ)
(

χ− ρ

Λ

)
− τ2

<
2ρ + τ

χΛ
ρ(χΛ− τ − ρ)

τ(2χ− τ)
.

The first inequality is obtained by replacing m by M since (1− σH) log(γ) decreases in m
and m > M. The second inequality is obtained by replacing

(
χ− ρ

Λ

)
on the denominator
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by χτ
ρ+τ since Λ > ρ+τ

χ . Now, we have

(1− σH) log(γ) < (1− σL) log(γ)

⇐ ρ(χΛ− τ − ρ)

2χ− τ
<

2χΛ + τ

4

⇔ 4ρ(χΛ− τ − ρ) < (2χ− τ)(2χΛ + τ)

⇔ 2χ(2ρ− 2χ + τ)Λ < (2χ− τ)τ + 4ρ(ρ + τ),

which is always true. Because we maintain the assumption that χ > ρ + τ, the left hand
side of the above inequality is negative where as the right hand side is positive. Hence,
we conclude

σL < σH < 1.

This means, the L steady state is always defined for any σ < 1 under which the H steady
state is also defined.

We summarize the discussions above into Proposition 4 in the paper, which is reproduced
here. Maintain the assumption that m ∈

(
M, M

)
.

Proposition 4. There exist σH and σL such that σH < 1 < σL. For σ ∈ (σH, σL), the
economy has three steady states, H, M, and L. The H and L steady states are saddle path
stable, while the M steady state is unstable. For 1 ≤ σ < σL, the three steady states can
be ranked by the aggregate growth rates, g∗H > g∗M > g∗L.

We show how aggregate growth is ordered in the three steady states as described in the
proposition. First, we show that the growth rate in the H steady state is always higher
than that in the M steady state. Since g∗i = log(γ)χ(1− L∗i ) for i = M, H, it suffices to
show that L∗H < L∗M.

L∗H < L∗M

⇔ 1 + ρ/χ + (σ− 1) log(γ)
m + (σ− 1) log(γ)

<
2ρ + τ + 2χ(σ− 1) log(γ)

χ(m− 1) + 2χ(σ− 1) log(γ)

⇔ (σ− 1) log(γ) > −χ + ρ−m(χ− ρ− τ)

χ(m− 1) + τ

⇔ σ > σH,
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an assumption made in Proposition 4. Hence, we have g∗H > g∗M.

Next we order g∗M and g∗L. We first introduce the following Lemma which can be proved
by contradictions.

Lemma. In the M and L steady states, we have λ
f ∗
M ≥ λ

f ∗
L , if σ ≥ 1.

Proof. The case of σ = 1 is discussed in the baseline model, in which case λ
f ∗
M = λ

f ∗
L .

Suppose σ > 1 and we prove by contradiction. Suppose λ
f ∗
M ≤ λ

f ∗
L . Since λ

f ∗
i =

r∗i +τ
χ , for

i = M, L, it implies that r∗M ≤ r∗L. Since r∗i = ρ + (σ− 1)g∗i , it implies that g∗M ≤ g∗L. Since

g∗i = log(γ)χ(1− L∗i ), we have L∗M ≥ L∗L. On the other hand, from the first equation of

(C-6), it must be true that

L∗M =
2λ

f ∗
M −

τ
χ

m− 1
<

2λ
f ∗
L −

τ
χ

m− 1
<

2λ
f ∗
L −

τ
χ

m− 1
ωL = L∗L,

since ω∗L > 1. We reach a contradiction.

This, together with the equation ρ + (σ− 1)g∗i + τ − χλ
f ∗
i = 0 for i = M, L, implies that

g∗M > g∗L as long as σ > 1. This concludes the proof for g∗H > g∗M > g∗L for 1 ≤ σ < σL.
The proof of the local stability properties of the steady states is available upon request.

D The Model with A Quadratic Cost of Innovation

Replace the linear cost of innovation in the baseline model with the following quadratic
cost. In order to achieve an arrival rate of innovation of λ (to reduce notation we normal-
ize ξ = 1), the firm needs to employ the following amount of skilled labor:

φjλ +
1
2

ξ jλ
2,

21



where φj and ξ j are parameters of the cost function for leaders (j = 1) and followers
(j = 2). The value functions of leaders and followers are given as follows.

rV l
2 = Π + τ(V l

1 −V l
2) + V̇ l

2 (D-1)

rV f
2 = τ(V f

1 −V f
2 ) + V̇ f

2 (D-2)

rV l
1 = max

λl≥0
Π− φ1λl − 1

2
ξ1λl2 + λl(V l

2 −V l
1) + λ f (V f

1 −V l
1) + V̇ l

1 (D-3)

rV f
1 = max

λ f≥0
−φ2λ f − 1

2
ξ2λ f 2 + λ f (V l

1 −V f
1 ) + λl(V f

2 −V f
1 ) + V̇ f

1 (D-4)

The FOCs imply

V l
2 −V l

1 = φ1 + ξ1λl (D-5)

V l
1 −V f

1 = φ2 + ξ2λ f . (D-6)

D.1 Both Leaders and Followers Innovating

Focus on the steady states where both leaders and followers innovate. Subtracting (D-3)
from (D-1) and rearranging,

(r + τ + λl)(V l
2 −V l

1) = φ1λl +
1
2

ξ1λl2 + λ f (V l
1 −V f

1 ),

where V l
2 −V l

1 is given by (D-5) and V l
1 −V f

1 is given by (D-6), and r = ρ in a steady state.
This implies the first equation that involves λ f and λl:

(ρ + τ)(φ1 + ξ1λl) +
1
2

ξ1λl2 = λ f (φ2 + ξ2λ f ). (D-7)
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Subtracting (D-4) from (D-2) and rearranging,

V f
2 −V f

1 =
φ2λ f + 1

2 ξ2λ f 2 − λ f (V l
1 −V f

1 )

r + τ + λl =
−1

2 ξ2λ f 2

r + τ + λl , (D-8)

where the last equality follows from substituting V l
1 −V f

1 by (D-6).

Subtracting (D-4) from (D-3) and rearranging,

(r + 2λ f )(V l
1 −V f

1 ) = Π∗ − φ1λl − 1
2

ξ1λl2 + λl(V l
2 −V l

1) + φ2λ f +
1
2

ξ2λ f 2 − λl(V f
2 −V f

1 ),

where V l
1 − V f

1 is given by (D-6), V l
2 − V l

1 is given by (D-5), V f
2 − V f

1 is given by (D-8).
Substituting these terms in the above equation, we have

(r + 2λ f )(φ2 + ξ2λ f ) = Π∗ +
1
2

ξ1λl2 + λ f (r + τ)(φ2 +
1
2 ξ2λ f ) + λl(φ2 + ξ2λ f )

r + τ + λl . (D-9)

Note that in a steady state where both leaders and followers innovate, the extensive mar-
gin is given by

α∗ =
τ

τ + λl .

Then, profit in the steady state becomes

Π∗ = (m− 1)
[

1− α∗
(

φ1λl +
1
2

ξ1λl2 + φ2λ f +
1
2

ξ2λ f 2
)]

= (m− 1)
[

1− τ

τ + λl

(
φ1λl +

1
2

ξ1λl2 + φ2λ f +
1
2

ξ2λ f 2
)]

,

which we can plug in (D-9) together with r = ρ to obtain

ξ2

[
1
2

(
ρ + τ + 2λl

ρ + τ + λl −
(m− 1)τ

τ + λl

)
− 2

]
λ f 2 −

(
(m− 1)φ2τ

τ + λl + φ2ρξ2

)
λ f

+ (m− 1)
[

1− τ

τ + λl

(
φ1λl +

1
2

ξ1λl2
)]

+
1
2

ξ1λl2 − ρφ2 = 0. (D-10)
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Equations (D-7) and (D-10) form a system of equations, from which we can solve for λl

and λ f , which give us the steady state λl∗ and λ f ∗.

D.2 Only Followers Innovating

Now consider the steady state, where only followers innovate. In this steady state, α∗ = 1
and λl∗ = 0.

The value functions, (D-3) and (D-4), at the steady state become

rV l
1 = Π + λ f (V f

1 −V l
1)

rV f
1 = −φ2λ f − 1

2
ξ2λ f 2 + λ f (V l

1 −V f
1 ).

Taking the difference of the above two equations, we have

(r + 2λ f )(V l
1 −V f

1 ) = Π + φ2λ f +
1
2

ξ2λ f 2. (D-11)

Note that the profit is given by

Π = (m− 1)L = (m− 1)
(

1− φ2λ f − 1
2

ξ2λ f 2
)

. (D-12)

Plugging (D-6) and (D-12) in (D-11) and replace r by the steady state value ρ, we have

(ρ + 2λ f )(φ2 + ξ2λ f ) = (m− 1)
(

1− φ2λ f − 1
2

ξ2λ f 2
)
+ φ2λ f +

1
2

ξ2λ f 2

⇒ξ2

(
1
2

m + 1
)

λ f 2 + (ρξ2 + mφ2)λ
f + ρφ2 −m + 1 = 0.

from which we can solve for the steady state value for λ f , λ f ∗.

From the corner solution for λ f , we can infer that

V l
2 −V l

1 < φ1.
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Taking the difference of V l
2 and V l

1, we have

V l
2 −V l

1 =
λ f ∗

ρ + τ
(V l

1 −V f
1 ).

From (D-11), we derive

V l
2 −V l

1 =
λ f ∗

ρ + τ

Π + φ2λ f ∗ + 1
2 ξ2λ f ∗2

ρ + 2λ f ∗

=
λ f ∗

ρ + τ

(m− 1)− (m− 2)
(

φ2λ f ∗ + 1
2 ξ2λ f ∗2

)
ρ + 2λ f ∗ < φ1.

This is the condition for the existence of the steady state where leaders indeed do not in-
novate.
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