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of productivity dispersion among smallholder farmers. Applying standard regression-based
approaches to measuring productivity residuals, we find much larger dispersion but less
persistence than benchmark estimates from manufacturing. We then show, using a novel
framework that combines physical output measurement, estimates from satellites, and machine
learning, that about half of this discrepancy can be accounted for by measurement error in output.
After correcting for measurement error, productivity differences across firms and over time in our
smallholder agricultural setting closely match benchmark estimates for non-agricultural firms.
These results question some common implications of observed dispersion, such as the importance
of misallocation of factors of production.
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Abstract A vast firm productivity literature finds that otherwise similar firms differ widely

in their productivity and that these differences persist through time, with important impli-

cations for the broader macroeconomy. These stylized facts derive largely from studies of

manufacturing firms in wealthy countries, and thus have unknown relevance for the world’s

most common firm type, the smallholder farm. We use detailed micro data from over 12,000

smallholder farms and nearly 100,000 agricultural plots across four countries in Africa to

study the size, source, and persistence of productivity dispersion among smallholder farm-

ers. Applying standard regression-based approaches to measuring productivity residuals, we

find much larger dispersion but less persistence than benchmark estimates from manufactur-

ing. We then show, using a novel framework that combines physical output measurement,

estimates from satellites, and machine learning, that about half of this discrepancy can be

accounted for by measurement error in output. After correcting for measurement error, pro-

ductivity differences across firms and over time in our smallholder agricultural setting closely

match benchmark estimates for non-agricultural firms. These results question some com-

mon implications of observed dispersion, such as the importance of misallocation of factors

of production.
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We thank Chris Barrett, Roz Naylor, Charles Kolstad, Doug Gollin, and seminar participants at Stanford
for helpful comments. We thank the National Science Foundation (NSF grant 1658728) for funding.
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1 Introduction

Why are some firms more productive than others, in terms of their ability to turn inputs

into outputs? This question lies at the center of a vast ‘firm productivity’ literature which

seeks to describe broad patterns of economic performance as a function of the productivity

of individual firms. Over time, this literature has established a set of key empirical stylized

facts, namely that productivity differences among firms are large, even within narrowly-

defined industries, and that these differences persist through time (Syverson, 2011).

These stylized facts derive largely from studies of manufacturing firms in developed countries.

Figure 1 plots estimates of productivity dispersion we compiled from more than 30 published

articles against average per capita income. Over 80% of estimates are based on data from

manufacturing firms, and over 40% come from firms in countries with per capita income

greater than 10,000USD. While manufacturing is a key sector in many developed countries,

the most common type of firm and majority employer in developing countries is typically the

small family-owned farm. Data from the World Census of Agriculture indicate that there

are ∼570 million individual farms in the world, a number roughly on par with the estimated

total number of firms across all non-agricultural sectors combined (Stein, Goland, and Schiff,

2010). Of these, 84% are less than two hectares in size and nearly all are family-owned (FAO,

2014). Approximately 2.5 billion people are estimated to reside in these “smallholder” farm

households, representing at least 60% of the world’s poor (Christen and Anderson, 2013).

In terms of employment, using nationally-representative surveys from 25 African countries

from the years 2006-2012, McMillan and Harttgen (2014) find that 48% of adults over the

age of 25 are employed in agriculture.

Are productivity dynamics of developing-country agricultural firms different from their better-

studied non-agricultural counterparts in developed countries? Figure 1 suggests that produc-

tivity dispersion is higher in countries with lower income levels, where agriculture constitutes

a much higher share of total value added and employment. Yet there are few existing works

that use micro data on agricultural firms across several developing countries to answer the ba-

sic questions about productivity dispersion and persistence that have been part-and-parcel of

the mainstream firm productivity literature for decades. Given the important structural role

smallholder agricultural firms occupy, closing this gap represents an important step towards

establishing a comprehensive understanding of how firm productivity affects development

and growth outcomes.

In this paper we characterize the size and sources of productivity dispersion and persistence
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among smallholder agricultural firms. We use detailed micro data from over 12,000 small-

holder farms (> 93,000 agricultural plots) collected in household-panel surveys conducted in

four countries in Sub-Saharan Africa (Tanzania, Uganda, Nigeria, and Ethiopia). We esti-

mate productivity as a reduced-form residual in the log-log regression of agricultural output

on factor inputs, plus additional covariates and fixed effects. These additional explanatory

variables allow us to measure productivity in a manner consistent with the existing research

on non-agricultural firms, as well as control for environmental factors that play a relatively

stronger role in agricultural production.

We document large apparent dispersion in productivity across firms in each country. As

measured by the ratio of the 90th to the 10th percentile of the estimated productivity distri-

bution, we find that dispersion is a factor of 1.2-2.0 times greater than previous estimates

based on data from manufacturing firms. Persistence, as measured by the annualized au-

tocorrelation of household-level productivity, is lower by a factor of two. Put simply, while

some firms appear to be many times more productive than others in a given year, they might

only be weakly more productive in subsequent years. To our knowledge, these are the first

estimates of both the dispersion and persistence of total factor productivity differences for

agricultural firms.

A primary contribution of our paper is then to advance our understanding of how much

of the large productivity dispersion we observe among these firms can be accounted for by

measurement error in either inputs or outputs, or by misspecification of the mapping of in-

puts to output. The motivation here is straightforward. In the firm productivity literature,

a variety of economic mechanisms have been hypothesized as root causes or important con-

sequences of productivity dispersion. These include misallocation, insecure property rights,

and unobserved heterogeneity in managerial talent. These findings, and the policy prescrip-

tions that arise from them, depend critically on accurate measures of productivity. However,

accurately measuring productivity from actual production data can be difficult for any type

of firm, and smallholder farms are no exception. In our data setting, farmers grow multiple

crops, harvest multiple times, frequently don’t keep formal records, and can be surveyed

weeks or months after harvesting their fields. In addition, land tenure systems are typically

informal, and farmers often struggle to estimate the sizes of their plots. Yet only in the

past few years have researchers begun to analyze whether measurement error is an impor-

tant source of measured productivity dispersion across firms (ex. Bils, Klenow, and Ruane

(2017)). Focusing on agriculture, Gollin and Udry (2019) show that when taken together,

measurement error, unobserved heterogeneity, and idiosyncratic shocks account for much of
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Previous Studies of Firm−Productivity
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Figure 1: Estimates of productivity dispersion in previous studies of firm productivity. There
are few studies of firm-level productivity dispersion in the agricultural sector (red dots), and the estimated
relationship suggests dispersion may be higher at lower incomes where agriculture is a more important
component of the overall economy. Each point represents an individual study’s estimate of productivity
dispersion across firms in a particular country-year, which we match to GDP per capita in the World Bank’s
World Development Indicators database (WDI). Data from 30 published economics papers and working
papers representing 67 country-year estimates are shown. Grey indicates a study of firms in the non-
agricultural sector (>90% manufacturing). Red indicates a study of agricultural firms. The shaded region
indicates the range of per capita GDP values for the countries analyzed in this study. The dashed blue
lines at the bottom show the distribution of ‘share of employment in agriculture’ and ‘share of GDP from
agriculture’ for all countries in the WDI.

the productivity dispersion in Tanzania and Uganda.2 But the literature has yet to quantify

the size of measurement error, and how much of overall productivity dispersion it accounts

for relative to other sources.

2Agricultural economists have also recently looked to measurement error as a potential explanation for why
smaller farms appear to have higher land productivity (Carletto, Gourlay, and Winters (2015); Gourlay, Kilic,
and Lobell (2017); Kilic et al. (2017); Bevis and Barrett (2017)). And in development economics, researchers
have assessed whether data quality issues can account for large gaps in measured labor productivity between
agriculture and non-agriculture in developing countries (Gollin, Lagakos, and Waugh (2014); Mccullough
(2017)).
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We offer novel empirical approaches for quantifying the effect of measurement error on esti-

mates of productivity dispersion and persistence. We consider measurement error from two

sources: misspecification of the production function, and measurement error in inputs and

outputs. For the former, we adopt a machine learning approach that can flexibly account

for any non-linearities or interactions in the production function that would not be picked

up by a standard log-linear specification. Perhaps surprisingly, we find that simple log-linear

production functions describe the data about as well as much more flexible machine learning

approaches. At least in our setting, the Cobb-Douglas function predicts output well.

To quantify the role of measurement error in inputs and outputs, the core idea of our em-

pirical approach is that multiple measures of inputs and output – all measured with noise

for different reasons – can be used to construct bounds on the true variance in productivity

across farms, and purge measurement error from estimates of persistence. In practice, we

use estimates from surveys, satellites, and crop cutting (physical harvest measurement) when

applying this technique to our data. Conservatively, our estimates indicate that measure-

ment error in output accounts for 37-56% of the observed dispersion in productivity from

surveys, and that measurement-error-corrected estimates of productivity dispersion are on

par with benchmark estimates from Hsieh and Klenow (2009) for non-agricultural firms. Our

results suggest that measurement error in output plays a large role relative to other proposed

sources of heterogeneity such as managerial ability or unobserved temporal shocks. As our

method only accounts for mismeasurement in some (not all) components of the production

function, these estimates might even be a lower bound on the overall role of measurement

error in cross-sectional estimates of productivity dispersion.

Correcting for measurement error in output also substantially increases our estimates of

the persistence of productivity differences, relative to naive estimates. Although estimates

vary to some degree by the approach used, our measurement-error-corrected persistence esti-

mates are on par with benchmark estimates from manufacturing firms in developed countries

(Foster, Haltiwanger, and Syverson, 2008).

Taken together, our findings have important implications for the understanding of produc-

tivity dynamics for agricultural firms in developing countries. They suggest that policies and

economic theories premised upon observed patterns in conventional survey-based measures

of productivity may be misguided, and highlight the importance of implementing at-scale

multiple approaches to measuring output in agricultural surveys. Because, after account-

ing for measurement error, the productivity of the smallholder farmers in our data exhibits

patterns consistent with the stylized facts of the firm productivity literature, our work also
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suggests that economic mechanisms underlying firm productivity dynamics explored in pre-

vious studies, and their relationship to broader macroeconomic outcomes, may also apply in

the developing-country agricultural context.

The rest of the paper is organized as follows. In Section 2, we provide an overview of our

data and describe our empirical strategy for measuring productivity. Section 3 provides our

initial estimates of the dispersion and persistence in productivity across agricultural firms

in our survey data, with productivity appearing more dispersed and less persistent than is

suggested by benchmark estimates in the non-agricultural firm productivity literature. To

understand these results, in this section we also decompose the sources of productivity dis-

persion by implementing a range of different fixed-effects specifications, and provide evidence

that unobserved factors which vary at small spatial scales, of which measurement error is

one, are important determinants of productivity dispersion. In Section 4 we introduce our

framework for quantifying the effect of measurement error and explain how it is built upon

and relates to other previous studies. Section 5 presents our main results on the effect of

measurement error and misspecification on our estimates of dispersion and persistence. In

Section 6 we summarize our results and discuss their policy implications.

2 Data and Empirical Framework

2.1 Data

Our data come from the World Bank’s Living Standards Measurement Study Integrated

Surveys on Agriculture (LSMS-ISA), a set of nationally-representative household-level panel

studies from multiple African countries. In particular, we use data from the LSMS-ISA

surveys conducted in Tanzania, Uganda, Nigeria, and Ethiopia. Summaries of each of these

country datasets are provided in Table 1. We define an ‘agricultural firm’ as a household

that harvested crops from any land owned or rented/sharecropped by the household. Under

this definition, we observe more than 12,000 unique agricultural firms in multiple survey

waves and growing seasons over a period from 2008 to 2015. Farms in our dataset are small

(median of 0.81 hectares3), rain-fed (<3% of plots are irrigated), family-owned (>80% of

plots owned by household members), and located in rural areas (>85%).4 Expenditures on

capital inputs such as fertilizer, pesticide, or farm equipment are quite low (<$30 for the

3For reference, the average farm-size in the U.S.in 2017 was 180 hectares
4A plot is generally defined as contiguous pieces of land on which a specific crop or mixture of crops is

grown, and on which a single set of farm management practices are implemented.
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median household), and labor is used much more intensively than capital in production.5

More than 40% of plots cultivated by firms in our dataset are intercropped, and nearly 80%

of households cultivate one or more of following key staple crops: maize, beans, cassava,

sorghum, rice, wheat, teff. The estimated value of agricultural products produced during

a growing season by the average household is $405, and average total annual household

consumption is about $1450.6

Several key features of these data facilitate the analyses we undertake in this study. First,

the LSMS took great effort to track and re-interview all households in the original sample

during subsequent survey waves, with attrition rates generally less than 5%. Consequently,

as shown in Table 1, the vast majority farm households (>85% across countries) in our data

are observed in at least two survey waves. This panel dimension enables us to estimate

productivity for the same households at multiple points in time, and thus allows us to

generate the first-ever estimates of the persistence of total factor productivity for developing-

country agricultural firms.

Second, the surveys provide extremely detailed information about agricultural production

at the plot level, and, as shown in Table 1, we typically see multiple plots cultivated by

the same household in a given growing-season-year, often with different plots managed by

different individual farmers.7 The granularity of these data allow us to construct measures

of inputs, output, and productivity at the both the household- and plot-level, and this in

turn allows us to assess how much fixed characteristics of households or farmers contribute

to measured productivity dispersion. Few, if any, other surveys that have been administered

at the scale of the LSMS-ISA contain similarly detailed agricultural data.

A third important feature of our data is the availability of multiple measures of land area

and crop yield for a subset of plots. These measures can be used to construct multiple

measures of productivity for the same production unit (plot or household) and, as described

below, we exploit these multiple measures to quantify the importance of measurement error

5The median household used ∼150 person days in production across all cultivated plots per growing
season. Even using a conservative back of the envelope wage estimate of $1 USD per person day, the typical
household in our dataset spends approximately five times more on labor than capital inputs. By contrast,
according to 2017 data on farm expenditure from the U.S. National Agricultural Statistics Service, the
average farm in the U.S. spent twice as much on fertilizer, agricultural chemicals, and farm equipment alone
as they did on labor.

6The average annual consumption per adult equivalent in our dataset is 378 USD, or slightly more than
$1 per day. Compare this to the estimate of the international poverty line in 2019 of $1.90 per day

7A farmer is generally defined as the individual household member who is the primary decision maker
regarding management practices on a particular plot.
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Table 1: World Bank LSMS-ISA Surveys

Tanzania
(TZNPS)

Uganda
(UNPS)

Nigeria
(GHS)

Ethiopia
(ERSS)

Years 2008 - 2012 2009 - 2012 2012 - 2015 2011 - 2015
Survey Waves 3 3 2 3
Growing Seasons 2 2 1 1
Farm Households 3503 2430 2985 3091
% HHs Obs. in multiple waves 0.67 0.95 0.93 0.89
HH-season-years 8863 10860 5051 7765
Plots/HH-season 1.8 2.9 1.8 4.9
Farmers/HH-season 1.2 1.1 1.1 1.1
Median Plot Size (ha) 0.4 0.2 0.3 0.1
Plot-season-years 15814 31408 9338 36906

in observed patterns of productivity dispersion in our data. More specifically, for between 60

and 90 percent of plots in each country, we observe both a farmer-estimate of plot area, as well

as the area measured by survey enumerators using a GPS device. In Ethiopia, enumerators

also conducted a ”crop-cutting” exercise on ∼ 30% of plots across all three survey waves.8

During a crop-cut, enumerators randomly select a 2x2 meter section within a plot, harvest

all the crops in the selected area, then weigh, dry, and weigh again the collected harvest.

In conjunction with yields computed based on farmer-estimates of plot area and harvest

quantity, the crop cuts provide us with a second measure of crop yields for the subset of

plots on which they were conducted.

Finally, because we find in the Ethiopian LSMS data that measurement error in output

contributes substantially to measured productivity dispersion, we also exploit two other

datasets that allow us to further examine the importance of measurement error in output.

In particular, we use survey data on maize farmers from Kenya and Uganda in which plot-

level measures of output collected on the ground were matched to independent satellite-based

estimates (Burke and Lobell, 2017; Lobell et al., 2018). While these data do not contain as

much detail on farm inputs as our main LSMS datasets, they do allow us to assess whether

dispersion in standard measures of land productivity (i.e., yield) are as affected as other

productivity measures (i.e., total factor productivity) by measurement error in output in an

alternative and independent data setting.

8For more detail on the co-occurrence of GPS and farmer-estimated area measures, and crop-cut-based
vs. farmer-estimated yield in Ethiopia, see Tables A6 and A7 in Appendix A.5.3.
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2.2 Measuring Productivity

The primary measure of productivity analyzed in the firm productivity literature is total

factor productivity (TFP). As discussed in Syverson (2011), the literature takes two com-

mon approaches to estimating TFP. In the first, the researcher assumes firms’ production

technologies can be described using a known functional form (ex. Cobb-Douglas) and that

the share of total costs firms allocate to each different factor input represents its output

elasticity. Under these assumptions, TFP can be inferred directly by inverting the pro-

duction function.9 Reliable estimates of cost shares in smallholder African agriculture are

unavailable, making this approach hard to implement in our setting.

The second approach, and the one we undertake in this paper, is to estimate the produc-

tion function using data, and measure productivity as the Solow residual. Specifically, we

measure productivity as the residual from a regression of log output on log inputs with ad-

ditional controls and fixed effects. This approach has a number of advantages in our setting.

First, it allows us to measure productivity in a manner consistent with previous studies in

the firm productivity literature. For example, most studies of manufacturing-firm produc-

tivity focus on dispersion across firms within narrowly defined industries (ex. as defined by

four-digit SIC product codes). We too focus on intra-sectoral variation in productivity by

including crop-system fixed effects, thus isolating productivity comparisons to farms that

produce similar goods. Second, our approach makes it straightforward to account for the

fact that agricultural production, as compared to manufacturing, is likely more dependent on

local environmental factors such as climate, weather, and soil characteristics. By including

controls for these environmental factors and village-year fixed effects, we isolate productivity

variation across farms that is not driven by these agronomic factors. Finally, this approach

to measuring productivity also allows for a straightforward decomposition of the sources of

productivity dispersion by altering the granularity of the fixed effects. This type of decom-

position has been identified as an important part of the agenda for emerging research on

firm productivity (Syverson, 2011), and provides another direct way to compare our results

to previous research.

9Some additional assumptions, including whether or not firms’ production technologies exhibit constant
returns to scale, are also required. For applications of this approach see, for example, Foster, Haltiwanger,
and Syverson (2008) or Midrigan and Xu (2014)
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Our main specification is,

outputimhvt = β1landit + β2laborit + β3capitalit (1)

+
∑
k

βk4geovar
k
ht + crop-systemm + village-yearvt + εimhvt,

where i indicates the plot, t indicates the growing-season-year, h refers to the household

that cultivates plot i, v indicates the village (cluster) in which household h is located, and m

indicates the mixture of crops grown on plot i. The terms crop-systemm and village-year vt

indicate fixed-effects for the most commonly observed crop-mixtures in each country10, and

for each village-year, respectively. The term geovarkht denotes the household-level climate,

weather, soil, and land quality variables.11

The remaining terms correspond to our plot-level measures of agricultural output and inputs,

which are measured in logs.12 Labor is measured as the total number of person-days spent on

pre-harvest activities by either hired laborers or own household members.13 Capital inputs

are measured in value terms, as the sum of expenditures on variable inputs (seeds, fertilizer,

pesticides and herbicides) and the farmer-reported value of the stock of owned and rented

durable capital (tools, machinery, and structures).14 Our primary measure of agricultural

output is computed as the sum, across crops cultivated on each plot, of the product of the

harvested quantity and a fixed national-level median crop price. To generate estimates of

physical productivity we also measure output as the quantity (in kgs) of crops harvested for

10There are between 50 and 100 unique crops recorded in each country dataset, and thousands of plot-
specific intercrop combinations. Rather than specifying a fixed effect for each of these, we classify each
crop into one of 9 higher-order groups (cereals, vegetables and melons, fruits and nuts, oilseed crops, roots
and tubers, beverage and spice crops, legumes, sugar crops, other crops) using the FAO’s Indicative Crop
Classification (ICC) system, maintaining separate groups for the 7 most common staple crops observed in the
data (See Appendix A.2 for more on the definition of key crops). Crop mixtures are then defined based on the
combination of crop-groups observed on each plot. This classification procedure results in 50-100 different
crop-mixture classifications in each country dataset. By comparison, there are around 200 different four-digit
product-category codes for the manufacturing sector in the International Standard Industrial Classification
(ISIC) of all economic activities.

11Appendix A.3 provides a detailed summary of the geographic variables included in our main specification.
12See Appendix A.1 for summary statistics of these measures by country at the plot- and household-level
13For Uganda, labor inputs are not disaggregated by activity type, so person-days totals include time

spent harvesting crops.
14In cases where farmers did not report expenditures, such as for own-produced organic fertilizer (e.g.

animal manure) we use fixed national-level median prices to value capital inputs. Additionally, the value
of tools, equipment and machinery is reported at the household level. To construct a plot-level measure,
we attribute to each plot a share of household-level durable capital proportional to the plot’s share of total
household area.
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a set of common staple crops in each country.15 Our analysis necessarily requires a number

of measurement choices. Appendix A.4 shows that alternative measurement choices lead to

similar results.

We refer to our primary measure of productivity as revenue-based total factor productivity

(TFPR). Unlike the firm productivity literature, the majority of agricultural goods produced

by smallholder farms are homogeneous and undifferentiated, so differences in product quality

are likely small. In addition, smallholder farmers take prices as given and a large share of

output is allocated to home consumption. The re-weighting of crop outputs by national

prices serves only to fix units when summing output of different crops. When focusing on

the output of a single crop, we denote productivity as quantity TFP, or TFPQ. In some

results we also consider crop yield, which we compute by residualizing crop-specific yields

(harvested quantities over planted area) on observed geographic controls and the specified

fixed effects. Across disciplines and fields of study, yields are the most commonly used

metric of agricultural productivity, and can be computed in many settings which lack the

necessary data to compute TFP. We include residual yield as a measure of land productivity

for comparability with this broader academic context.

We estimate Equation (1) (separately for each country) using OLS. Log productivity is then

estimated as the Solow residual, ε̂imhvt. We acknowledge that this approach to estimation

contrasts with other non-experimental approaches to estimating production functions with

observational data. These include control-function approaches similar to those developed

in Olley and Pakes (1996), Levinsohn and Petrin (2013) and Ackerberg, Caves, and Frazer

(2015), as well as dynamic-panel techniques along the lines of Arellano and Bond (1991) and

Blundell and Bond (2000). The primary advantage of these methods is that they provide

a means of obtaining accurate estimates of the factor elasticities in the production func-

tion. However, neither are particularly well-suited to our empirical setting. In particular,

control-function approaches leverage assumptions about the timing and relationship between

productivity shocks and other types of production decisions, such as investment or purchase

of intermediate inputs. In our data, intermediate inputs are not well observed, and the re-

quired assumptions about the timing of productivity shocks relative to input use decisions

tend to be strong and untestable. With dynamic panel approaches, commonly used instru-

ments include lags or (lagged) differences of output or input prices. Our panels are relatively

15Key crops are described in Appendix A.2. Valuing harvest quantity, versus relying on reported crop
sales, accounts for the value of auto-consumed harvest. Aggregating harvest value across crops provides a
comprehensive way to measure output produced by intercropped production systems. When measuring out-
put as harvest value, we measure the land input as farmer-reported total plot area. For physical productivity,
we use crop-specific planted area
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short (2-3 periods) limiting the number of potential instruments of this type. Since our

interest lies in analyzing patterns in the residuals, rather estimating factor elasticities, we

instead just use OLS.

3 Size and Sources of Productivity Dispersion and Per-

sistence

In this section, we implement the empirical framework described in Section 2 to generate

baseline estimates of productivity at both the plot- and household-level. Using these es-

timates, we first quantify the magnitude of productivity dispersion across plots and the

degree of persistence in household-level productivity. For both dispersion and persistence we

benchmark our estimates against estimates from previous studies in manufacturing, finding

greater dispersion and less persistence among firms in our dataset. To better understand the

potential mechanisms underlying these patterns, we then decompose plot-level productivity

dispersion into various components (ex. village, household, farmer, crop-system), finding

substantial dispersion remaining at small spatial scales. This motivates our subsequent

analysis of the effect of measurement error, which is introduced in the next section.

3.1 Plot-Level Productivity Dispersion

Figure 2 summarizes our estimates of the magnitude of plot-level dispersion in measured

productivity. Each row of the figure pertains to one of our three key measures of productivity.

The left column shows the kernel density of the distribution of log-productivity resulting

from the estimation of Equation (1) for each country (colored lines). In each panel, these

densities are plotted relative to an artificial distribution representing the TFPR of Indian

manufacturing firms based on the values reported in Hsieh and Klenow (2009), hereafter

referred to as HK (shaded grey area and bottom panel).16 The right column of Figure 2

shows the estimated magnitude of productivity dispersion, as measured by the ratio of the

90th to the 10th percentile value of each distribution, across a range of model specifications.

In this column, the solid points indicate the 90:10 ratio resulting from the estimation of

16In particular, we start with the 90:10 ratio of TFPR reported for Indian manufacturing firms in HK.
The natural log of this ratio is equivalent to the difference between the 90th and 10th percentile values of
the log TFPR distribution. Assuming this distribution is standard normal, +/− half the log difference can
be related to the z-score associated with these percentiles. From these z-scores, we estimate of the standard
deviation, then generate the artificial distribution by taking draws from a standard normal distribution
with this estimated variance. In general, we use HK as a benchmark for dispersion because it is one of the
best-cited papers on productivity dispersion, is one of few studies that provide estimates of dispersion in
developing countries, and because HK’s estimate for dispersion among Indian manufacturing firms falls very
close to the median of all the dispersion estimates we collected and presented in Figure 1.
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productivity using our baseline specification of the production function (Equation (1)). This

specification includes village-year fixed effects as well as crop-system fixed effects, such that

we are comparing two farmers in the same village growing the same crop or set of crops

in the same year. Lighter-colored points indicate alternative specifications containing fewer

fixed effects and controls.17 The estimates furthest to the right correspond to the 90:10 ratio

when productivity is estimated without any controls or fixed effects.18 The bottom-right

panel contains a box-plot describing the (inter-quartile) range of estimates of dispersion in

TFPR in the non-agricultural sector from across the published studies displayed in Figure

1. The dashed magenta lines in each panel are located at a value of 5.0, and indicate the

magnitude of dispersion in TFPR observed among Indian manufacturing firms reported in

HK.

Across countries and measures of productivity, the values shown in Figure 2 indicate that

dispersion in productivity among developing-country agricultural firms is large, and sub-

stantially larger than benchmark estimates of dispersion in the non-agricultural sector. The

dispersion estimates shown in the figure are relatively consistent across countries and mea-

sures of productivity The cross-country average 90:10 ratios of our baseline measures of

TFPR, TFPQ, and residual yield are 8.86, 7.21, and 9.34, respectively.19 These values are

significantly larger than HK’s estimate for Indian manufacturing firm TFPR and, except

for TFPQ, exceed the 75th percentile value (8.15) of the box-plot in Figure 2. The large

dispersion we observe across firms in our data is consistent with the findings of other recent

studies which quantify dispersion among smallholder farmers using LSMS-ISA data.20

17Left-to-right, the controls and fixed effects included in the specifications represented by each row of dots
in Figure 2 are: (i) village-year, crop-system, geovariables, (ii) village, year, crop-system, geovariables, (iii)
level-2 administrative jurisdiction by year, crop-system, geovariables, (iv) level-2 administrative jurisdiction,
year, crop-system, geovariables, (v) crop-system, year, geovariables, (vi) crop-system, year, (vii) crop-system,
(viii) none.

18For TFPR and TFPQ, the interpretation of the dispersion estimate derived from this model is the
variation in output (either harvest value or quantity) not attributable to variation in land, labor or capital
input use. For yields, the dispersion estimate represents the magnitude of variation in crop-yields. For both
TFPQ and yields, this specification does include a crop fixed-effect to facilitate pooling across key crops,
and so the estimated residual dispersion is within each key crop.

19By country our estimates for TFPR are: 7.16, 8.71, 9.64, and 9.93, for Tanzania, Uganda, Nigeria, and
Ethiopia, respectively. Our estimates for TFPQ, in the same order, are: 6.12, 8.16, 7.40, and 7.17. And for
residual yield: 7.34, 10.63, 10.09, and 9.03

20Using an alternative empirical approach, Restuccia and Santaeulalia-Llopis (2015) estimate the 90:10
ratio of TFPQ to be 10.8 for Malawian smallholder farmers. The 90:10 ratios of plot-level yields reported in
Gollin and Udry (2019) are 17.99 and 27.32 for Tanzania and Uganda, respectively
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Productivity Dispersion: Comparison to the Non−Agricultural Sector
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Figure 2: Dispersion in productivity among developing-country agricultural firms is larger than previous
estimates from the non-agricultural sector. Colored lines in the left column show the kernel density of log
productivity estimated using our baseline specification for each of our sample countries and productivity
measures, relative to an artificial distribution representing the TFPR of Indian manufacturing firms (shaded
grey areas) based on the dispersion in TFPR among these firms reported in Hsieh and Klenow (2009)
(magenta dashed lines). Solid colored points in the right column show the 90:10 ratios associated with these
baseline distributions. Lighter-colored points indicate the 90:10 ratios associated with alternative production
function specifications that include less restrictive fixed effects. The box-plot in the bottom-right panel shows
the (inter-quartile) range of estimates of dispersion in TFPR among non-agricultural firms from more than
30 published firm-productivity studies (50 country-year dispersion estimates in total).

3.2 Persistence in Household-Level Productivity

The above analysis suggests that some agricultural firms are dramatically more productive

than others, with firms at the 90th percentile at least seven times more productive than firms

at the 10th percentile. Do these differences in productivity persist over time? Answering this
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question is key for understanding the underlying sources of productivity dispersion and how

these patterns map to broader economy-wide productivity dynamics. To our knowledge,

no estimates exist on the persistence of productivity differences over time among small

developing-country agricultural firms.

To quantify whether large productivity differences persist over time, we focus only on our

baseline measures of productivity, i.e. those resulting from the estimation of (variants of)

Equation (1). Figure 3 summarizes our results. Again, each row corresponds to one of our

three measures of productivity. In the left column (panels [a]-[c]) we show the linear auto-

correlation of productivity among households observed in multiple survey waves, estimated

from a pooled OLS regression. Because the number of survey waves and the time intervals

between survey waves vary across countries in our sample, we estimate the autocorrelation

between contemporaneous and lagged productivity for lags of one to four years. The shape

and color of the plotted points indicate the country, and the error bars represent 95% con-

fidence intervals. A linear fit to the point estimates is plotted as a dashed colored line in

each panel, and the shaded colored regions represent the 95% confidence intervals on the

predictions of this linear model.

To make our results comparable to estimates reported in the previous literature, in the right

column of Figure 3 (panels [d]-[f]) we plot the annualized autocorrelation of productivity im-

plied by each linear point estimate, where we annualize our linear estimates by raising them

to a power of one over the length of the lag in years. The annualized values thus represent

the year-on-year autocorrelation which, if applied over the number of years specified by each

lag, would generate the linear estimates we observe in panels [a]-[c]. As a benchmark, in

each of the right-column panels we also plot, in magenta, a central estimate of the annual

autocorrelation (0.75) of productivity from Syverson’s 2011 review of firm-productivity stud-

ies. Finally, colored dashed lines in panels [d]-[f] show the simple average of the depicted

estimates.

Across measures of productivity, the values shown in Figure 3 indicate that the persis-

tence of measured productivity among agricultural firms is low relative to estimates from

non-agricultural firms. The cross-country, cross-lag average annualized autocorrelations for

TFPR, TFPQ, and residual yield are 0.40, 0.44, and 0.37, respectively.21 These values are

nearly half the central estimates from the existing firm-productivity literature. For example,

21By country the cross-lag average annualized persistence of TFPR is: 0.49, 0.28, 0.38, and 0.41 for
Tanzania, Uganda, Nigeria, and Ethiopia, respectively. Our estimates for TFPQ, in the same order, are:
0.57, 0.31, 0.34, and 0.44. And for residual yield: 0.53, 0.24, 0.27, and 0.33
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Persistence of Household−Level Productivity
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Figure 3: The persistence of measured productivity among developing-country agricultural
firms is low relative to previous estimates from non-agricultural firms. In panels [a]-[c] plotted
points represent estimates of the linear autocorrelation between contemporaneous household-level produc-
tivity and lagged productivity, across lags ranging from one to four years. Points’ shape and color indicate
the country, and the error bars represent 95% confidence intervals. A linear fit to the point estimates is
plotted as a dashed colored line in each panel, and the shaded colored regions represent the 95% confidence
intervals on the predictions of this linear model. Panels [d]-[f] show the year-on-year autocorrelation which,
when applied over the number of years specified by each lag, generate the corresponding linear estimates
in panels [a]-[c]. Solid magenta lines indicate a central estimate of the persistence of non-agricultural firms
(0.75) from Syverson (2011), and colored dashed lines denote the average of the estimates depicted in each
panel.

Foster, Haltiwanger, and Syverson (2008) find autocorrelation coefficients of approximately

0.75-0.8 among U.S. manufacturing firms. Consistent with our dispersion results, persistence

is highest for TFPQ, and lowest for yields. However, we do see more heterogeneity across
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countries. Across productivity measures and lags, the average annualized persistence by

country is 0.53 for Tanzania, 0.28 for Uganda, 0.33 for Nigeria, and 0.39 for Ethiopia. The

range of these estimates, expressed as a fraction of their mean, is 0.65, approximately twice

the level of cross-country variation we observed in our measures of productivity dispersion.

For all productivity measures, as expected, the linear autocorrelations decay as the length of

the lag increases. However, there is an increasing linear trend in our annualized autocorrela-

tion estimates. This may be due to the presence of unobserved time-invariant determinants

of productivity that vary at spatial scales below the village-level. Such factors would not be

captured by the controls or fixed effects in Equation (1), and thus end up in our residual

measure of productivity. Because they are time-invariant, these factors would be equally

correlated across multiple observations of the same household, regardless of the number of

years separating those observations. This time-invariant component of the measured linear

correlation would then be up-weighted when we annualize our linear estimates. We present

further evidence suggestive of small-scale unobserved heterogeneity in the next subsection.

3.3 Sources of Productivity Dispersion

Our results thus far indicate that there is more dispersion in productivity across plots culti-

vated by developing-country agricultural firms than among the non-agricultural firms typi-

cally studied in the firm productivity literature, and that productivity for smallholder farms

is relatively less persistent. To better understand what mechanisms might explain these pat-

terns, and to motivate our subsequent analysis of measurement error, we conduct a simple

decomposition of the sources of productivity differences among farms. The spirit of this exer-

cise is not to pinpoint specific explanations, as exploring all potential sources of productivity

dispersion in smallholder agriculture in detail is beyond the scope of this study.22 Rather,

the decomposition we conduct serves to classify the spatial, temporal, and organizational

scale at which important determinants of productivity vary.

Our decomposition proceeds as follows. First, we quantify dispersion when productivity is

estimated using a model of the production function with minimal fixed effects or controls.

We refer to the 90:10 ratio associated with these minimally-saturated models as the total

variation or total dispersion in productivity. More specifically, for TFPR, total variation

22We do investigate whether alternative measures of output and factor inputs alter our baseline estimates
of dispersion in TFPR in Appendix A.4. Some of these alternative measurement scenarios, such as using
richer and more disaggregated measures of labor and capital inputs, or using local rather than national crop
prices to value output, shed light on the importance of some specific sources of dispersion (ex. variation in
labor quality or producer-specific prices). A wide variety of other hypotheses could be explored using our
data.
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is estimated as the 90:10 ratio of the residual in a model without any fixed effects or con-

trols, i.e. just (log) harvest value on (log) land, labor, and capital inputs. In this case,

the interpretation of total productivity dispersion is the magnitude of variation in all-crop

harvest value not attributable to variation in input use. For TFPQ and yields, since we pool

observations across multiple key crops in the estimation, we include a crop fixed effect. So

for TFPQ, total dispersion is the amount of variation in harvest quantity not attributable to

input use or differences between key crops in the average quantity harvested. And for yields,

total productivity variation is simply the dispersion of observed crop yields controlling for

average differences between key crops.

We then quantify the 90:10 ratio of productivity associated with a series of specifications

of the production function which include additional and increasing granular fixed effects

and controls. In particular, we start with a model which only contains crop-system fixed

effects, then add survey-year fixed effects, household-level geovariable controls, and village

fixed effects. We then substitute village for village-year fixed effects and drop the (now

redundant) survey-year dummies, thus reproducing our baseline specification (Equation (1)).

To this model we then add household fixed effects, and finally replace the household- with

farmer-level fixed effects. For each of these increasingly saturated models, we calculate the

difference between total dispersion and the 90:10 ratio of productivity estimated using the

specified model, express this difference as a percentage of total dispersion, and interpret

this percentage as the share of total variation explained by all the fixed effects and controls

included in the model. Similarly, for each specification in this sequence, we also calculate the

reduction in the 90:10 ratio relative to the previous model. This reduction can be interpreted

as the amount of additional productivity variation that can be attributed to the newly-added

fixed effects or controls. As with our cumulative measure, we express this additional variation

explained as a percentage of total productivity dispersion.

Table 2 and Figure 4 summarize and contextualize our decomposition results. In the table,

we report statistics that convey the magnitude of the dispersion we decompose, how much of

it we are able to explain in aggregate, and the relative granularity of the different fixed-effects

we include. In Figure 4, the left column (panels [a]-[c]) shows the 90:10 ratio of productivity

associated with each of the model specifications described above – starting on the left with

total productivity dispersion – for each of our sample countries and measures of productivity.

In the right column, y-axis values indicate the share of total dispersion explained by all the

fixed effects and controls in each model, and the grey percentage values at the top of each

panel are the cross-country averages of the additional variation explained by moving from
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Table 2: Dispersion Decomposition Factors

Tanzania Uganda Nigeria Ethiopia

Plot-level obs 15814 31408 9338 36906
Years 3 3 2 3
Crop-systems 67 86 68 54
Villages 381 576 343 589
Median HHs per village-year 8 9 10 10
Avg farmers per village-year 13.6 19.0 11.1 10.3
Total dispersion† 13.37 15.55 17.71 15.50
Max % Explained† 0.76 0.64 0.80 0.62
Max adj. R2 † 0.71 0.53 0.70 0.63

Note: † indicates a cross-measure average

one model to the next.

Our first key observation is that, relative to developed-country non-agricultural firms, a larger

share of productivity differences between firms in our data is not attributable to observable

characteristics or fixed effects. As shown in Table 2, even with our most saturated regression

model we can only explain between 62 and 80 percent of total productivity dispersion. Across

countries and measures of productivity, the average percent of total variation explained by

this model is 71%, and the average of the maximum adjusted R2 obtained across models

is 0.64. For our baseline model, the analogous values are 44% and 0.48, respectively. As a

point of contrast, in their study of the firms in the Forbes 800, Bertrand and Schoar (2003)

estimate a much sparser model of returns on a vector of time-varying firm characteristics

plus firm and year fixed effects, and obtain an adjusted R2 of 0.72.

Second, of the set of factors we consider explicitly, unobserved time-invariant characteristics

of villages, households and individual farmers are the most important sources of productiv-

ity dispersion. On average across countries, unobserved time-invariant features of villages

explain an additional 15% of total dispersion in TFPR, 18% of total dispersion in TFPQ

and 19% of total dispersion in yields, even after controlling for differences driven by input

use, fixed characteristics of different crop-systems, and observable agronomic conditions.

Similarly, adding household fixed-effects to a model already containing geovariables plus

crop-system and village-year fixed effects increases the percent of total variation explained

by 14%, 16%, and 15% for TFPR, TFPQ, and yield, respectively. Farmer fixed effects ex-

plain an additional 11% for all three productivity measures. No other set of fixed effects or
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Decomposition of Plot−Level Productivity Dispersion
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Figure 4: Small-scale unobserved factors explain the largest shares of measured productivity
dispersion, though a substantial portion of dispersion remains unexplained. Panels [a]-[c] report
the 90:10 ratio, by country, of each of our three key measures of productivity when estimated using a series
of specifications of the production function which include additional and increasing granular fixed effects and
controls. Points on the far left of each panel represent ‘total productivity dispersion’ and were estimated
from a model including minimal fixed effects (either none for TFPR or crop-fixed effects for TFPQ and
yield). Left-to-right, subsequent specifications add (i) crop-system and (ii) year fixed effects, (iii) geovariable
controls, (iv) village, (v) village-year, (vi) household and (vii) farmer fixed effects. Panels [d]-[f] plot the
share of total productivity dispersion explained by each specification. Grey percentage values at the top of
each panel are the cross-country averages of the additional variation explained by moving from one model
to the next. In all panels our baseline specification is highlighted with a magenta dashed line.

controls explains more than 10% of total variation on average.23

23Crop-system fixed effects do explain a large share of total productivity variation (18%) for TFPR, but
considerably less for TFPQ (7%) and yields (12%). This is because for TFPQ and yields, we are only
considering the subsample of plots where a key crop was cultivated. Thus, for these measures, crop-system
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How do we interpret these decomposition results in light of our previous findings on dispersion

and persistence? Our dispersion results indicate that differences in measured productivity

across plots are large relative to dispersion in non-agricultural sector. The large share of to-

tal productivity dispersion attributable to village-, household-, and farmer-level fixed effects

in our decomposition exercise suggest that important components of measured productivity

are unobserved (or at least not captured by our observed measures of input use or agro-

nomic conditions), and vary at small spatial and organizational scales (i.e. at or below the

village-year level). Furthermore, the fact that we can only explain around 70 percent of to-

tal variation with the explanatory variables and fixed effects included in our most-saturated

model indicates that factors which vary at even more granular spatial (ex. plot-level) and

temporal (ex. intra-annual) scales may also play a significant role. On persistence, we find

that households’ measured productivity is only weakly correlated over time. Importantly,

in our estimation of persistence, we measured productivity using our baseline model, which

does not include household- or farmer-level fixed effects. Therefore, the productivity resid-

uals we use to measure persistence retain the effects of any time-invariant characteristics

of households or farmers. The observed lack of persistence, then, suggests such factors are

less important drivers of changes in productivity over time than year-to-year fluctuations in

other exogenous factors. Taken together, our results suggest that the most important sources

of productivity dispersion are unobserved, vary over time and at small spatial scales (likely

within plots and years), and are exogenous to time-invariant characteristics of farmers and

households.

What do these features imply about the potential mechanisms underlying the productivity

differences we observe among firms in our data? In general, residual measures of produc-

tivity are thought to include technology or management differences, differences in market

power across firms, variation in external factors such as weather, and measurement errors.

Given the small size of the firms we study, we can reasonably assume that variation in firms’

market power minimally influence differences in measured productivity. Regarding differ-

ences in management practices, a number of studies of non-agricultural firms suggest firm

performance is strongly determined by the management ability of individual managers or

executives (ex. Bloom and Van Reenen (2007); Bushnell and Wolfram (2007); Bertrand and

Schoar (2003)). Differences in managerial ability could explain the productivity dispersion

fixed effects only capture differences between the smaller set of production systems which include each key
crop. The difference between the the amount of additional dispersion explained by crop-system fixed effects
for TFPQ and yields is likely due to the fact that variation driven by capital and labor input end up in our
residual yields measure. So differences in input use intensity across production systems will be captured by
these fixed effects for yields, but not for TFPQ.
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we see across — but not within — farmers. For instance, about half of the dispersion we

estimate in Uganda and Ethiopia still remains when including fixed effects for individual

farmers.24

Unmeasured small-scale time-varying heterogeneity in agronomic conditions would also con-

form with our descriptive results. Our baseline specification includes village-year fixed effects,

which should account for most types of weather shocks.25 But, highly local and plot-specific

shocks, such as pest attacks or disease outbreaks could still explain part of the dispersion

we estimate.

Measurement errors in inputs or outputs could also produce differences in measured pro-

ductivity that exhibit patterns consistent with our descriptive results. Intuitively, adding

random noise to measures of the components of the production function will increase the

variance of the estimated residual. So if inputs and output are measured with more noise in

our data than in the datasets used to study non-agricultural firms, this could explain why we

observe greater dispersion in productivity. Additionally, measurement error occurs at a small

spatial scale, as our measures of inputs and outputs are either plot- or household-specific.

If measurement error is large, this could explain why the village, household, or farmer fixed

effects in our decomposition exercise appear as the most important sources of cross-sectional

productivity dispersion.26 Finally, measurement error is time-varying and (if it is also id-

iosyncratic) uncorrelated with other time-invariant determinants of productivity. This could

explain why we see low levels of persistence despite the large proportion of cross-sectional

dispersion attributable to fixed characteristics of villages, households, and farmers.

Given that measurement error potentially rationalizes our initial descriptive findings and

24Farmer fixed effects limit our comparison to plots cultivated by the same person. It is well known
that plot productivity may vary across members within a household. For example, Udry (1996) documents
significant differences in productivity between plots managed by male versus female members of the same
household.

25A large number of studies have documented a highly non-linear relationship between crop yields and
temperature where below a threshold of about 34◦C higher temperatures positively affect plant growth, but
exposures to extreme temperatures above this threshold are damaging (ex. Schlenker and Roberts (2009);
Schlenker and Lobell (2010)). These studies also indicate that the timing of exposure to extreme heat during
the plant development cycle moderates the magnitude of the negative effect (Hatfield and Prueger (2015)).

26Note this is true for panel dimension as well. For example, imagine we observe a household in multiple
survey waves that cultivated only a single plot. In theory, if measurement error is mean zero, then with
enough observations the average effect of measurement error will go to zero, and the fixed-effect estimated
for the household will not reflect the effect of measurement error. In practice, our panels are short (2-3 waves
per survey). So if the variance of measurement error is large, it is very unlikely that the average effect of
measurement error approximates zero. In this case, the household fixed effect will still capture the dispersion
induced by measurement error.
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decomposition results, in the next two sections we turn to investigating the significance of

measurement error in our data explicitly. First, in the next section, we propose a framework

for quantifying the effect of measurement error on measured productivity dispersion and

persistence, and describe how we apply this framework to our data. Then, in Section 5, we

present and discuss our measurement error results.

4 Quantifying the Effect of Measurement Error

Productivity is notoriously hard to measure. Wide dispersion and low persistence could

reflect true differences in farmers’ productivity, the stochastic nature of agricultural produc-

tion, or it could simply reflect measurement error. A bevy of recent papers in agricultural

economics on the farm size-productivity relationships highlight the potentially large role of

measurement error in the agricultural context.27

In the firm productivity literature, measurement error has received somewhat less atten-

tion, though the topic has recently begun to attract more interest in the wake of Hsieh and

Klenow (2009) and related studies documenting high levels of ‘resource misallocation’. For

instance, Rotemberg and White (2017) replicate Hsieh and Klenow’s analysis using a modi-

fied version of the Indian Census of Manufactures dataset, which was cleaned in accordance

with procedures typically implemented by the U.S. Census Bureau, and find that significant

differences in the amount of dispersion among Indian versus U.S. manufacturers disappear.

Relatedly, Bils, Klenow, and Ruane (2017) use panel data to show that approximately half

of the dispersion in measured TFPR among Indian manufacturing firms is attributable to

measurement error. In work closely related to ours, Gollin and Udry (2019) examine the

impact of measurement error on productivity dispersion and the extent of resource misal-

location among smallholder farms. They use an IV strategy to recover unbiased estimates

of key factor elasticities, and show that accounting for measurement error and late-season

productivity shocks reduces estimates of dispersion and misallocation substantially.28

Our paper builds on this work in several ways. First, we make use of the fact that agricultural

surveys measure outputs and land inputs in different ways. Objective measures of plot area

from GPS devices allow us to calculate measures of TFP dispersion that are not plagued

27These include studies on the role of measurement error in both farm size(Abay, Bevis, and Barrett,
2019; Carletto, Gourlay, and Winters, 2015; Carletto, Savastano, and Zezza, 2013; Cohen, 2019; Holden and
Fisher, 2013; Kilic et al., 2017) and/or output (Barrett et al., 2017; Desiere and Jolliffe, 2018; Gourlay, Kilic,
and Lobell, 2017; Lobell et al., 2018).

28Specifically, in Gollin and Udry (2019) measurement error in inputs, outputs, and the effect of late-season
production shocks, account for between 66 and 90 percent of the observed variation in log productivity
residuals.
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by measurement error in survey-based measures of land area. For output, we show that

multiple noisy measures of crop production for the same field can be used to derive bounds

on the dispersion of real underlying productivity. In developing this ‘multiple-measures’

approach, we make progress towards understanding how much measurement error affects

productivity estimates derived from survey-based measures that have conventionally been

relied upon in the literature. Second, we study not only the potential error arising from

mismeasurement of inputs and outputs, but also potential error arising from misspecification

of the production function. To our knowledge, the literature has yet to recognize this latter

source of measurement error. Finally, we also provide estimates of the effect of measurement

error on the measured persistence of productivity, where the recent literature has focused

exclusively on dispersion.

4.1 Bounding True Dispersion when Inputs or Outputs are Mis-

measured

Our approach to understanding the influence of mismeasurement of inputs or outputs on

estimated productivity dispersion is to use multiple measures of productivity to put bounds

on the true variance of productivity across farmers. To do so, we make use of farmer-reported

estimates of crop production and plot area, estimates of crop yields based on a procedure

called “crop-cuting” where survey teams participate in partial plot harvests with farmers,

estimates of maize yield from satellites (Burke and Lobell, 2017; Lobell et al., 2018), and

measures of plot area recorded by survey enumerators using a handheld GPS device. These

measures are described in more detail in Appendix A.5.

To see how we use these multiple measures to analyze the effect of measurement error on

measured productivity dispersion, consider a plot i with “true” (unobserved) productivity

ωi, and define σ2
ω as the variance of ω across plots. This is the relevant parameter of interest

because it represents the dispersion in true productivity — rather than any noise due to

mismeasurement. Next, let ωai and ωbi denote two noisy measures of productivity. For

example, ωai could represent the productivity estimate obtained from farmer-reported yield,

and ωbi could be the estimate obtained from a crop cut. Formally, define these two measures

of productivity as:

ωai = ωi + εai (2)

ωbi = ωi + εbi ,
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where εai and εbi are random sources of measurement error — both with a variance of σ2
ε .

29

We assume that εai and εbi are the only sources of measurement error, and that they are inde-

pendent. In our example, this translates into an assumption that the errors from measuring

yield with crop cutting (or satellites) are independent from those with farmer self-reported

yield, and that there is no measurement error in other components of the production function

(e.g. plot area). This assumption seems reasonable since errors from surveys are distinct

from the types of errors that take place when the actual yield from a subset of the field is

extrapolated to the entire field.

Next, we construct two composite measures of productivity using ωai and ωib – a “projected”

and an “average” composite. The variances of these two measures put the bounds on the true

variance, σ2
ω. For the projected composite, first let β̂0 and β̂1 be the estimated coefficients

from the regression of ωa on ωb plus a constant.30 Then define the projected composite as

the predicted value from that regression:

ωproji = β̂0 + β̂1ω
b
i . (3)

Second, let the average composite be defined as the simple average of the two productivity

measures:

ωavgi =
ωai + ωbi

2
. (4)

The variance of ωproji establishes a lower bound on the true variance σ2
ω. To see this, taking

the variance of Equation (3) delivers

V ar(ωproj) = σ2
ω

(
σ2
ω

σ2
ω + σ2

ε

)
. (5)

Equation (5) has intuitive properties. The term in the parentheses causes the variance of

ωproji to be biased downward. This bias becomes more severe as the observed measures of

productivity get noisier, i.e. as σ2
ε increases. Conversely, the variance of the predicted value

converges to the true variance as σ2
ε decreases. Equation (5) also shows that the gap between

the true variance and the variance in observed productivity shrinks when ωai and ωbi are more

strongly correlated and ωbi is less noisy. Intuitively, if the second measure of productivity is

strongly correlated with the first, but less variable, then more of the variation in the first

29An alternative form would allow for a different variance of the measurement error across the two pro-
ductivity measures. Assuming a common variance has no meaningful effect on the bounds we calculate.

30That is, β̂1 =
(
ωb′ωb

)−1
ωb′ωa, and β̂0 = ω̄a − β̂1ω̄b, where ω̄ indicates a sample mean.
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productivity measure can be attributed to actual dispersion rather than measurement error.

The upper bound on the true productivity variance comes from ωavgi . Returning to Equation

(4), a straightforward derivation shows that V ar(ωavg) = σ2
ω + σ2

ε

2
. The simple average of

the two measures is “too noisy” because both measures are made up of the true variance

and the random measurement error. As we would expect, the upper bound decreases when

there is less random noise in the two measures of productivity. In combination, we can

use these two measures to put bounds on the true variance in productivity. The approach

does not require any distributional assumptions or assumptions about the determinants of

measurement error. Instead, we need only for the measurement errors in the two measures

to be uncorrelated.

4.2 Measurement Error and the Persistence of TFP

We next consider the question: how much does noise introduced by measurement error

attenuate the measured persistence of productivity over time? Our method for answering

this question again makes use of the fact that, for a subset of households, we observe the

same set of alternative productivity measures in multiple survey waves. In particular, we use

alternative measures of productivity across survey waves to estimate the persistence of true

productivity (absent measurement error) using instrumental variables (IV), and compare

these IV estimates to those obtained when using OLS regressions to estimate persistence,

as is common in the firm productivity literature (Syverson, 2011). The difference between

the two estimates thus provides a means of quantifying how much measured persistence is

attenuated by measurement error.

For our IV regression, we estimate the autocorrelation of productivity across successive peri-

ods (generically, periods t and t− 1) using one noisy productivity measure as an instrument

for the other in the the earlier period (t−1). In principle, using this IV approach will recover

an unbiased estimate of the autocorrelation of true productivity, absent measurement error,

across periods. The rationale is simple. Assuming, as above, that measurement errors in

both noisy measures of productivity are random, then they are uncorrelated with themselves

and each other both in cross-section and in time-series. In this setting, the separate measures

of productivity – which are true productivity plus measurement error – satisfy the exclu-

sion criteria for suitable instruments. First-stage predictions of one measure of productivity

based on variation in the other in period t− 1 will only reflect the common variation in true

productivity, and so are “purged” of measurement error. Therefore, in the second-stage, the

estimated correlation between first-stage predictions and noisily measured productivity in
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period t will capture only the autocorrelation of true productivity.

Overall, this empirical approach follows Krueger and Lindahl (2001), who use multiple mea-

sures of education to correct for measurement error in cross-country estimates of the return

to schooling. In applying this approach in our setting, we generate the first estimates of

the effect of measurement error on the measured persistence of productivity for smallholder

agricultural firms. Despite the importance of persistent productivity differences over time in

the broader literature (Foster, Haltiwanger, and Syverson, 2008), the role of measurement

error in these persistence estimates has yet to be considered.

4.3 Measurement Error from Production Function Misspecifica-

tion

Analyses of productivity dispersion typically assume a Cobb-Douglas production function.

In keeping with this approach, our main estimating equation (Equation (1)) is log-log in

inputs and linear in household geovariable controls. However, if the relationship between log

output and any of these factors is actually non-linear, then these non-linearities will end up

in our productivity residuals. Interactions between components of the production function

would operate similarly. There is substantial reason to think that agricultural production

functions could have both important non-linearities and interactions: e.g returns to fertilizer

are thought to be highly concave, and large amounts of fertilizer will have no (or limited)

effect on output if the rains fail or if labor is unavailable at harvest.

To explore whether such non-linearities or interactions in the production function explain

a significant portion of measured dispersion in TFPR, we compare dispersion under our

baseline specification of the production function, to the dispersion of productivity residuals

obtained using a machine learning algorithm to predict output based on inputs and geovari-

ables. More specifically, we use random forests (Tin Kam, 1995; Amit and Geman, 1997)

to predict log revenue using log inputs and geovariable controls after residualizing on crop-

system and village-year fixed effects. See Appendix A.5.2 for an overview of the technical

details of this prediction algorithm.31

The difference between observed log revenue (residualized on fixed effects) and the predictions

of this residual generated by the random forest can be interpreted as an alternative measure

of TFPR that accounts for non-linearities and interactions in the predictor variables (inputs

31Note, some of our geovariables are categorical, rather than continuous. These are not amenable to use
as predictors in a random forest, and so are not included in the residual prediction stage.
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and geovariables). Comparing the distribution of this alternative measure of TFPR to one

we obtain using Equation (1) thus provides a means of assessing how much of the baseline

dispersion in TFPR we measure is attributable to these non-linearities and interactions.

To guard against overfitting, we also generate estimates of dispersion using cross-validated

versions of both the log-linear and random forest models, where the models are trained on

part of the sample and evaluated on held-out data.

5 Effect of Measurement Error on Measured Disper-

sion and Persistence

5.1 Impact of Production Function Misspecification

Turning now to results, we find little evidence that misspecification of the production function

is an important source of measurement error in our estimates of cross-sectional productivity

dispersion. Figure 5 displays the comparison between log-log and random forest estimates of

dispersion for each of the countries in our sample. Each panel in the figure displays the (kernel

density) distribution of two productivity residuals, one (in blue) generated using a Cobb-

Douglas specification of the production function (Equation (1)) and the other generated

using random forest predictions (in red).

The 90:10 ratios of the random-forest predictions are similar to those obtained using the

Cobb-Douglas specification. Using a Cobb-Douglas production function, the 90:10 ratio of

TFPR is 7.16 in Tanzania, 8.71 in Uganda, 9.93 in Nigeria, and 9.64 in Ethiopia. Using

random forest to predict residualized output, the corresponding 90:10 ratios are 6.93, 8.14,

9.07, and 8.59. On average across countries, the 90:10 ratio of the random forest predictions

are 7.3% lower than the associated predictions of the Cobb-Douglas model.32 Comparing

this result to the decomposition of productivity dispersion conducted in Section 3.3, the ad-

ditional variation explained by accounting for nonlinearities and interactions between inputs

and geovariables is comparable to the share of total variation explained by the linear effect

of household geovariables on their own.

We also confirm using cross-validation that neither the linear nor random forest models are

substantially overfitting the data on which they’re trained (see Section A.5.2). Our overall

interpretation from these results is that non-linearities and interactions between observed

components of the production function do not explain a large share of variation in output.

32These percentages by country are 3.2, 6.5, 8.7, and 10.9% for Tanzania, Uganda, Nigeria, and Ethiopia,
respectively
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Figure 5: TFPR Estimated from Linear vs. Random Forest Models. In each panel,
the kernel density of log TFPR estimated using our baseline linear specification (Equation
(1)) is shown in blue, and the distribution resulting from random forest predictions is shown
in red. 90:10 ratios associated with each set of productivity residuals are included as anno-
tations.

Put simply, our results suggest that the production function for smallholder agricultural

firms is essentially Cobb-Douglas.

5.2 Effect of Measurement Error in Inputs and Output on Pro-

ductivity Dispersion

Figures 6 and 7 summarize our estimated bounds on productivity dispersion when accounting

for measurement error in outputs. Figure 6 shows the bounds on productivity dispersion we

derive using multiple measures of output from self reports and crop-cuts in Ethiopia, and

Figure 7 shows bounds for yield (land productivity) dispersion using ground- and satellite-

based maize yield estimates in our non-LSMS data, respectively. The base colors (grey and
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red) in Figure 6 denote the two measures of physical productivity (TFPQ and residual yield)

for which we estimate bounds. The shading of the rectangles indicates which measure of

plot-size (farmer-reported versus GPS-measured) was used to generate the different output

measures.33 In Figure 7, the colors and x-axis labels denote country-years. In the bottom

portion of each figure, we quantify the percentage of observed dispersion (based on farmer-

estimated output/land) that is attributable to measurement error. More specifically, we

compute the differences between the point estimate for ‘farmer-estimated’ dispersion (the

◦’s) and the maximum (average composite) and minimum (projected composite) values of

the bounded region, and express these as a percentage of the farmer-estimated magnitude

of dispersion. The resulting tan bars in Figures 6 and 7 thus represent the percentage of

dispersion in naively measured productivity (i.e. using farmer-estimated quantities without

correcting for measurement error) that is attributable to measurement error. For consistency

with our previous empirical results, the figures take the 90:10 ratio of the productivity

distribution as the measure of dispersion. For consistency with the discussion in Section

4.1, we provide analogous results taking the variance of productivity to be the measure of

dispersion in Figures A5-A8 in Appendix A.5.4.

In general, the bounds displayed in Figures 6 and 7 are very similar. In both cases, the

percent of ‘farmer-estimated’ dispersion that is attributable to measurement error is large.

Specifically, using the Ethiopia data, the bounds imply that at least 37.1% of baseline disper-

sion in TFPQ and 48.3% of baseline dispersion in yields can be attributed to measurement

error in output, on average. Similarly, in our non-LSMS data, the estimated bounds imply

at least 55.9% of variation in survey-based maize yields is due to measurement error.

The estimated upper bounds on productivity dispersion in both Figure 6 and Figure 7 lie

below the benchmark level of dispersion observed in HK (90:10 ratio of 5.0). Using the

Ethiopia crop-cut data, the mean 90:10 ratios in the bounded regions are 2.80 and 2.72 for

TFPQ and residual yields, respectively. For the non-LSMS satellite-based bounds, the mean

90:10 ratio of yields in the bounded area is 2.31.34 This suggests that, after accounting for

33Specifically, when evaluating dispersion in TFPQ, we require two measures of harvest quantities. One
we observe directly in the form of farmer-estimates. For the second, we multiply crop-cut yields by the given
plot area measure. When evaluating residual yields, we observe yields directly from the crop-cuts, and we
compute farmer-estimated yields by dividing farmer-reported harvest quantity by the given area measure.

34The magnitude of these 90:10 ratios are similar to those reported by Gollin and Udry (2019). Specifically,
after accounting for measurement error in factors of production and output and for late-season shocks, they
find the 90:10 ratio of TFPQ drops from 14.8 to 4.4 in Tanzania and from 15.8 to 2.3 in Uganda. In Ethiopia,
accounting for measurement error in output, we find that the 90:10 ratio of TFPQ drops from 7.17 (using
our baseline model) to 2.8 (the mean of the bounded region), with the bounded region ranging from 1.44 to
4.18.
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Measurement Error in Output (Ethiopia):
 Bounds on Cross Sectional Productivity Dispersion
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Figure 6: Bounds on cross-sectional productivity dispersion due to measurement
error in output. Plotted points indicate the 90:10 ratios of the distributions of productivity residu-
als computed using farmer-estimated (◦’s) and crop-cut based (×’s) measures of crop output individually.
Colored polygons bound the range of 90:10 ratios between those associated with the distributions of the
average (upper bound) and projected (lower bound) composites. For each measure of productivity, points
and polygons on the left were calculated using output measures based on farmer-estimated plot size, and
those on the right were calculated using output based on GPS-measured plot size. The tan polygons in
lower panel indicate the percent of dispersion in productivity computed using farmer-estimated output that
is attributable to measurement error implied by the estimates in the top panel. For example, the lower
bound of each tan polygon is the difference between the ◦’s and the upper value of the colored bounded
area, expressed as percentage of the ◦ values. The dashed magenta line represents the 90:10 ratio of the
distribution of TFPR observed among Indian manufacturing firms in Hsieh and Klenow (2009).

measurement error in output, productivity dispersion among smallholder agricultural firms

may actually be lower than dispersion among developing-country non-agricultural firms.

However, this comparison is not completely fair, as measurement error is not accounted for

in HK’s dispersion estimate. More conservatively, these results do not substantiate the claim

31



Measurement Error in Yield:
 Bounds on Cross Sectional Dispersion (Farmer vs. Satellite Estimates)
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Figure 7: Bounds on dispersion due to measurement error in yield. Errors in
measures of crop output in our non-LSMS data from Kenya and Uganda significantly magnify measured
dispersion in maize yields, similar to the effect observed in Figure 7. Plotted points indicate the 90:10 ratios
of the distributions of yields computed using farmer-estimated (◦’s) and satellite-based (×’s) measures of
crop output individually. Colored polygons bound the range of 90:10 ratios between those associated with
the distributions of the average (upper bound) and projected (lower bound) composites. The tan polygons
in lower panel indicate the percent of dispersion in productivity computed using farmer-estimated yield that
is attributable to measurement error implied by the estimates in the top panel. For example, the lower
bound of each tan polygon is the difference between the ◦’s and the upper value of the colored bounded
area, expressed as percentage of the ◦ values. The dashed magenta line represents the 90:10 ratio of the
distribution of TFPR observed among Indian manufacturing firms in Hsieh and Klenow (2009).

that there is more productivity dispersion in agriculture.

For measurement error in inputs, Figure A7 shows the bounds generated when we use farmer-
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reported versus GPS-measured land to estimate productivity. The results indicate that the

lower bound estimate of the percent of measured productivity dispersion that is due to

measurement error in land is relatively small – less than 5% on average, with country-

specific estimates ranging from 0-14%. Notably, the estimated bounds for residual yields in

Figure A7 are substantially wider than those estimated for TFPR and TFPQ, in particular

in the Uganda and Nigeria data. This likely reflects the multiplicative effect of measurement

error in yield measures. In general, the narrowness of the estimated bounds for TFPR and

TFPQ is consistent with the observation that the farmer-reported and GPS-based measures

of plot size are relatively strongly correlated.35 Consistent with this, the preceding analysis

of measurement error in output shows that using objective GPS-based measures of plot sizes,

rather than farmer estimates, does not meaningfully change our bounds. While plot sizes

are clearly measured with error in agricultural surveys, this type of measurement error does

not contribute significantly to our estimate of productivity dispersion across farms.

In contrast, the results of our bounding exercise indicate that measurement error in output

accounts for large share of measured productivity dispersion, a finding borne out consistently

using various measures of output. After accounting for measurement error in output, pro-

ductivity dispersion among the small agricultural firms in our data no longer appears larger

than benchmark estimates of dispersion for non-agricultural firms.

5.3 Impact of Measurement Errors in Inputs and Output on Per-

sistence

Table 3 summarizes our results on the implications of measurement error for estimates of

productivity persistence, using the IV approach described above. Panels in the table cor-

respond to each of the three different key measures of productivity. The first row in each

panel indicates the level of persistence observed when estimated using simple OLS, and the

subsequent rows contain the results obtained using the different instruments described in

Appendix A.5.1, where applicable. The values in Table 3 are the annualized autocorrelation

coefficients derived from the linear estimates resulting from the IV. For each country and

variant of the IV represented in the table, the associated linear regression results, including

the estimated reduced-form, first-stage, and second-stage linear autocorrelations are docu-

mented in Tables A8-A15 in Appendix A.6. Note that because we find that measurement

error in output accounts for a large amount of the variation in productivity, we do not report

estimates of persistence derived using productivity computed using GPS-measured land area

35See Table A7 in Appendix A.5.3
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as an instrument for productivity computed using farmer-estimated land area in Table 3,

though these IV regressions are reported in Appendix A.6.36

Table 3: Annualized estimates of persistence, correcting for measurement error
in either inputs or outputs. IV estimates labeled “2x-lag” instrument lagged productivity
with twice-lagged productivity. Estimates labeled “FE vs crop cut” instrument productivity
estimates using farmer-estimated output measures with output measures from crop cuts.

Tanzania Uganda Nigeria Ethiopia Avg
TFPR
Naive 0.38 0.17 0.45 0.31 0.33
IV: 2x-lag 1.06 0.90 1.09 1.02
Key-crop TFPQ
Naive 0.49 0.20 0.45 0.39 0.38
IV: 2x-lag 0.84 0.92 0.93 0.90
IV: FE vs. Cropcut 0.62 0.62
Key-crop Yield
Naive 0.45 0.15 0.41 0.28 0.32
IV: 2x-lag 0.83 0.69 0.82 0.78

Overall, results on persistence are consistent with the results from our dispersion bounding

exercise. When we use crop-cut yield based TFPQ as an instrument for farmer-estimated

harvest quantity based TFPQ in Ethiopia (the only location where that comparison is pos-

sible), the measured autocorrelation increases to 0.62, up from 0.39 when persistence is

estimated using OLS. Across countries, when we use twice-lagged TFP to instrument for

lagged TFP – which in principle should capture all sources of measurement error in TFP –

we get estimates of persistence that are close to unity.

There are plausible threats to the identification of the linear autocorrelation coefficient for

each of our IV approaches. For the IV approach that uses farmer-estimated versus crop-cut

based measures of output in Ethiopia, the main concern is weak instruments. Encouragingly,

for TFPQ we obtain a highly significant first-stage – the estimated linear autocorrelation is

equal to 0.469 with a standard error of 0.025.37 For our twice-lagged productivity IV strategy,

36More specifically, in this IV setting the exclusion restriction likely fails. This is because output is being
measured in the same way for both alternative measures of productivity (i.e. the one computed using GPS-
measured land and the one computed using farmer-estimated area). Thus, in the presence of measurement
error in output, for which we find strong evidence, the two alternative measures of productivity will both
incorporate the same measurement error in output. So they will be correlated with one another through
something other than “true” productivity.

37When evaluating persistence in residual yields using this same approach, the estimated first-stage coeffi-
cient is 0.001 with a standard error of 0.032 (see Appendix Table A15). This weak first stage may result from
the low raw correlation between farmer-estimated and crop-cut yields, and the fact that the autocorrelation
of residual yields does not account for variation in the amount of labor and capital used by farmers in differ-
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the biggest threat is serial correlation in measurement error, resulting in an upward bias in

the IV persistence estimates. We perhaps see some evidence of such bias in our results, with

estimates of the linear autocorrelation (at lags greater than or equal to 1 survey wave) using

this IV strategy approaching unity in several cases (with values ranging from 0.674-1.184,

see Appendix Tables A12-A14).

Despite these concerns, the general picture that emerges from Table 3 is consistent: mea-

surement error appears to significantly attenuate measured persistence. Across countries and

measures of productivity, the annualized autocorrelation of productivity estimated using OLS

is 0.34. The comparable average across IV approaches using twice-lagged productivity or

multiple measures of output is 0.66. One interpretation of these figures is that measurement

error attenuates measured persistence by approximately 50%. Finally, despite the threats

identified above, we note that these are the first reported estimates of the effect of measure-

ment error on the persistence of productivity among small developing-country agricultural

firms.

6 Discussion and Conclusion
We evaluate two key stylized facts which underlie much of the existing literature on firm

productivity – that there is wide dispersion in productivity across firms, and that the pro-

ductivity of individual firms is highly persistent over time – for an understudied and im-

portant type of firm, smallholder farms in developing countries. Our results indicate that,

when using conventional survey-based approaches to estimating TFP, productivity dispersion

among smallholder agricultural firms appears significantly larger than benchmark estimates

for non-agricultural firms in developing countries, and persistence in productivity is nearly

50% lower. To better understand these results, we evaluate the sources of measured disper-

sion in productivity, finding that the largest shares of measured dispersion are attributable

to fixed effects which capture unobserved factors that vary at the village-, farmer-, and

household-levels.

Because measurement error can rationalize both these initial descriptive findings, we then

evaluate the effect of measurement error on measured productivity dispersion and persistence

explicitly. Making use of of the multiple measures of both inputs and outputs, we find that

measurement error in output accounts for more than 37% of observed dispersion in TFPQ

and yield, and that, accounting for measurement error, the dispersion in true productivity

ent survey waves. Because we do not obtain a significant first stage, we omit the corresponding second-stage
estimates of measurement-error adjusted persistence in residual yields from Table 3, though these estimates
are reported in Table A15 in Appendix A.6.
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for smallholder agricultural firms in our data is similar to benchmark estimates for non-

agricultural firms in developing countries.

As an extension of this analysis, we also investigate how much nonlinearities in the production

function or interactions between production function components, which are not specified in

our baseline model, contribute to measured dispersion. To do this, we compare dispersion

estimates from our baseline linear model to those derived from machine learning predictions

that capture the effects of these nonlinearities and interactions. We find that, on average

across countries in our sample, only 7.3% of dispersion can be attributed to these factors

and that this result is not driven by overfitting, suggesting that our results on dispersion are

not dirven by incorrect specification of the functional form in the production function.

To evaluate the effect of measurement error on the persistence of productivity, we use an

instrumental variables approach in which estimates based on multiple independent measures

of inputs and output in earlier survey waves are used to instrument for lagged productivity

in a persistence regression. Consistent with our dispersion results, we find that measurement

error in output significantly attenuates measured persistence and that, accounting for mea-

surement error, the persistence of productivity among smallholder farmers is on par with

estimates of persistence for non-agricultural firms in developed countries.

Overall, we show that the stylized facts which underlie many analyses of the mainstream firm

productivity literature – wide dispersion in productivity across firms, and high persistence

in productivity over time – seem to apply in the developing country agricultural context.

More significantly, we highlight the importance of accounting for measurement error in the

evaluating patterns of firm productivity measured from agricultural survey data. Taking

measurement error seriously alters the conclusions that can be derived from the observation

that survey-based measures of productivity vary widely across farmers.

For instance, a number of recent papers have pointed to land misallocation as a key driver of

low aggregate agricultural productivity in developing countries (Adamopoulos and Restuc-

cia, 2014; Restuccia, 2016). The efficiency gains from policies targeted at land misallocation

depend directly on the magnitude of productivity dispersion across farms. Our results in-

dicate that a meaningful share of this dispersion estimated from agricultural surveys is due

to measurement error in output. Not accounting for this measurement error is likely to

overstate the benefits of reallocation across farmers.

Additionally, a large body of development scholarship argues that poor households (many of
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which are engaged in agriculture) can be freed from “poverty traps” via discrete interventions

that break them out of low-productivity, low-income equilibria (Kraay and Mckenzie, 2014).

One-time interventions that make households more productive, such as training programs,

will only have long-run impacts if the induced shocks to productivity are persistent. Our

results show that not accounting for measurement error may cause one to understate the

persistence of productivity differences across farmers over time.

Finally, our results suggest that improved methods for measuring productivity can help

reduce the large amounts of measurement error in survey-based measures. The vast literature

on productivity differences of manufacturing firms relies mostly on firm surveys for estimating

productivity. Considering alternate measures of output, as we have done in the agricultural

setting, may help researchers focusing on other sectors reduce the influence of measurement

error on estimates of productivity dispersion.
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A Appendices

A.1 Plot and Household Summary Statistics

Table A1: Smallholder Farms in Our Dataset (plot-level)

Factor Level Country Mean Median St.dev Min Max N

Tanzania 149.56 75.44 184.22 0.13 714.98 15814
Uganda 70.99 46.09 66.63 0.38 235.59 31408

Output Plot Nigeria 521.04 292.35 583.76 0.57 2130.36 9338
(nominal USD) Ethiopia 64.63 35.62 73.30 0.16 260.89 36906

All 126.74 53.04 248.17 0.13 2130.36 93466

Tanzania 0.83 0.40 0.83 0.01 3.24 15814
Uganda 0.26 0.20 0.21 0.01 0.81 31408

Land Plot Nigeria 0.43 0.30 0.42 0.01 1.66 9338
(hectares) Ethiopia 0.15 0.09 0.15 0.01 0.53 36906

All 0.33 0.20 0.47 0.01 3.24 93466

Tanzania 62.23 46.00 50.40 1.00 188.00 15814
Uganda 39.94 35.00 25.80 1.00 118.00 31408

Labor Plot Nigeria 152.18 96.00 153.46 1.00 572.00 9338
(person-days) Ethiopia 24.25 14.49 25.46 0.14 88.72 36906

All 48.73 30.00 68.00 0.14 572.00 93466

Tanzania 71.90 12.76 143.46 0.00 575.63 15814
Uganda 17.65 7.63 24.59 0.00 86.49 31408

Capital Plot Nigeria 45.79 22.78 56.68 0.01 204.14 9338
(nominal USD) Ethiopia 9.14 2.88 13.50 0.00 48.15 36906

All 26.28 6.31 67.89 0.00 575.63 93466

Table A1: Table A1 shows summary statistics of inputs and output in our plot-level data. Plots in our

dataset are small, employ low levels of capital inputs, and generate modest revenues. Output is measured

as the dollar value of all crops harvested from each plot, valued using fixed national-average crop-specific

prices (per kg) across survey-waves. Land is total plot area as estimated by farmers. Labor is measured in

person-days worked by household members and hired laborers on each plot. Where permitted by the data

(Tanzania, Nigeria, and Ethiopia), we exclude harvest labor in the calculation of the labor input. Capital is

measured as the nominal dollar value of variable inputs (fertilizer, pesticide/herbicide) plus a share of the

value of durable capital assets (farm equipment/machinery) owned by the household. The share of durable
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capital attributed to each plot is given by the proportion of total household area represented by the plot.

Output and capital are converted to nominal USD using the average country-specific exchange rate over the

period spanned by all waves of each survey.

Table A2: Smallholder Farms in Our Dataset (household-level)

Factor Level Country Mean Median St.dev Min Max N

Tanzania 290.21 148.63 351.48 0.14 1346.13 8863
Uganda 223.31 160.98 195.80 0.97 700.91 10860

Output Household Nigeria 989.99 643.41 976.03 1.54 3604.51 5051
(nominal USD) Ethiopia 410.75 279.88 392.13 0.25 1439.07 7765

All 405.27 214.72 546.56 0.14 3604.51 32539

Tanzania 1.57 1.01 1.49 0.02 5.67 8863
Uganda 1.36 1.01 1.18 0.02 4.45 10860

Land Household Nigeria 0.80 0.52 0.79 0.01 3.00 5051
(hectares) Ethiopia 1.03 0.71 0.97 0.01 3.63 7765

All 1.25 0.81 1.21 0.01 5.67 32539

Tanzania 139.38 97.00 126.47 1.00 480.00 8863
Uganda 317.91 249.00 255.08 1.00 1020.00 10860

Labor Household Nigeria 262.00 151.00 282.63 1.00 1063.00 5051
(person-days) Ethiopia 168.00 105.70 169.07 0.31 623.81 7765

All 224.83 146.00 226.18 0.31 1063.00 32539

Tanzania 140.20 24.06 289.09 0.00 1164.63 8863
Uganda 58.37 22.76 84.46 0.00 309.38 10860

Capital Household Nigeria 90.34 45.84 106.47 0.01 386.73 5051
(nominal USD) Ethiopia 61.66 30.83 71.76 0.00 270.25 7765

All 86.41 27.82 176.29 0.00 1164.63 32539

Table A2: Table A2 shows summary statistics of inputs and output in our household-level panel data. Farms

in our household dataset are small, employ low levels of capital inputs, and generate modest revenues. Output

is measured as the dollar value of all crops harvested from all plots cultivated by each household, valued using

fixed national average crop-specific prices (per kg) across survey-waves. Land is the total area of all plots

cultivated by the household based on farmer estimates of plot area. Labor is the total number of person-days

worked by household members and hired laborers on plots cultivated by the household. Where permitted

by the data (Tanzania, Nigeria and Ethiopia) we exclude harvest labor in the calculation of the labor input.

Capital is measured as the nominal dollar value of variable inputs (fertilizer, pesticide/herbicide) used on all

plots cultivated by the household, plus the value durable capital assets (farm equipment/machinery) owned
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by the household. Output and capital are converted to nominal USD using the average country-specific

exchange rate over the period spanned by all waves of each survey.

A.2 Prevalence of Key Crops

Table A3: Key Crops Constitue a Significant Proportion of the Data

Country Total Obs.
(Plot-level)

Total Obs.
(HH-years)

Crop % of Plots
(pure-stand)

% of Plots
(intercrop)

% Panel Obs.
(pure-stand)

% Panel Obs.
(intercrop)

Tanzania 15814 8863 Maize 0.158 0.555 0.026 0.559
Cassava 0.022 0.069 < 0.01 0.051
Beans 0.02 0.184 < 0.01 0.197
Sorghum 0.014 0.058 < 0.01 0.053
Rice 0.094 0.126 0.019 0.137
All Key Crops 0.318 0.789 0.049 0.712

Uganda 31408 10860 Maize 0.067 0.241 < 0.01 0.517
Cassava 0.076 0.197 < 0.01 0.551
Beans 0.07 0.251 < 0.01 0.569
Sorghum 0.033 0.053 < 0.01 0.11
All Key Crops 0.254 0.55 < 0.01 0.913

Nigeria 9338 5051 Maize 0.061 0.359 < 0.01 0.337
Cassava 0.056 0.324 < 0.01 0.287
Beans 0.018 0.224 < 0.01 0.213
Sorghum 0.041 0.291 < 0.01 0.331
Rice 0.046 0.063 < 0.01 0.059
All Key Crops 0.222 0.851 < 0.01 0.759

Ethiopia 36906 7765 Maize 0.108 0.169 < 0.01 0.405
Beans 0.053 0.074 < 0.01 0.177
Sorghum 0.091 0.137 < 0.01 0.275
Teff 0.124 0.131 < 0.01 0.297
Wheat 0.073 0.079 < 0.01 0.188
All Key Crops 0.451 0.561 0.018 0.735

Table A3: Table A3 shows that, in each of our sample countries, a select number of common crops constitute

a significant portion of our plot- and household-panel samples. Column 3 is the total number of plot-level

observations in each cross-sectional dataset. Column 4 shows the total number of household-year observations

in the panel of households we observe in at least two years. Columns 5 is the proportion of plots that were

only cultivated with each key crop. Column 6 is the proportion of plots where a key crop was cultivated,

including intercropped plots. Column 7 is the proportion of household-years in the panel sample where

households only cultivated a given crop. Column 8 shows the proportion of household-years in the panel

sample where households cultivated a given crop, even if they also cultivated other crops. For the pure-stand

columns (5 and 7) the ‘All Key Crops’ row indicates the sum across all crops listed in Table A3. For the

‘intercrop’ columns (6 and 8), the ‘All Key Crops’ row indicates the proportion of the total plot-level and

panel sample in which plots/households cultivated any key crops. Note, crops that constitute less than 5%

in all columns were excluded in each country subcomponent, but do figure in to the all key-crop totals.
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A.3 Description of Household Geovariables

Table A4: Summary Statistics of Household Geovariables

Variable Tanzania Uganda Nigeria Ethiopia

Climate and Weather Variables

Mean ann temp (◦C * 10) 225.85, (25.64) 218.93, (18.06) 263.53, (10.07) 190.26, (31.70)
Avg temp of wettest qtr (◦C * 10) 231.62, (26.75) 215.90, (16.42) 251.97, (11.24) 186.43, (32.43)
Avg ann precip (mm) 1114.85, (327.77) 1236.31, (177.07) 1331.35, (590.17) 1158.01, (379.34)
Tot precip in survey year (mm) 825.38, (298.80) 1201.84, (187.76) 1233.18, (414.40) 1157.88, (481.80)
Avg precip in wettest mo (mm) 230.53, (85.20) 177.41, (28.91) 275.27, (56.57) 234.99, (77.21)
Avg precip of wettest qtr (mm) 569.48, (186.81) 456.92, (72.91) 701.44, (181.83) 596.57, (204.55)
Precip in wettest qtr of survey year (mm) 488.43, (161.74) 459.99, (118.68) 646.49, (125.57) 578.68, (215.63)
Avg start of wettest qtr (dekad) 17.28, (16.67) 8.30, (4.31) 17.85, (1.04) 15.24, (3.04)
Start of wettest qtr in survey year (dekad) 15.45, (15.41) 8.68, (6.54) 17.93, (3.50) 19.07, (5.70)
Potential wetness index 13.44, (3.33) 1241.67, (253.84) 14.14, (2.96) 12.41, (1.68)

Geographic Variables

Elevation (m) 928.99, (544.86) 1241.66, (253.82) 316.46, (217.13) 1918.44, (520.97)
Slope (%) 6.10, (6.00) 7.56, (7.34) 2.69, (2.73) -
Agro-Ecological Zone (%)†

Temperate/semiarid 53.55 0.00 0.00 0.00
Tropic-cool/humid 0.00 29.09 0.00 20.06
Tropic-warm/subhumid 0.00 17.17 51.91 45.52
Tropic-warm/humid 0.00 53.74 6.36 0.21

Terrain (%)†

Mid-alt plains 6.12 0.00 32.79 1.60
High-alt plains 27.58 32.25 12.20 8.47
Mid-alt plateau 25.95 49.07 1.13 21.48
Mid-alt mountain 0.01 14.81 0.00 25.47

Soil Characteristics Variables

Nutrient availability constraint (%)†

None 30.62 14.24 38.86 64.08
Moderate 50.73 61.52 36.69 34.71
Severe 13.08 19.69 24.21 0.48

Nutrient retention constraint (%)†

None 46.02 32.15 44.59 75.11
Moderate 46.64 61.87 50.07 24.13

Rooting conditions constraint (%)†

None 70.10 73.13 65.29 52.32
Moderate 18.42 12.70 29.00 15.94

Root O2 avail constraint (%)†

None 81.19 69.53 84.14 86.16
Moderate 9.88 24.65 13.15 9.89

Excess salt constraint (%)†

None 88.83 93.90 97.86 98.98
Soil toxicity constraint (%)†

None 92.17 93.90 99.76 98.96
Land workability constraint (%)†

None 48.73 66.89 61.27 17.00
Moderate 30.78 15.61 31.58 31.71
Severe 11.69 9.93 5.50 20.68

Observations 8863 10860 5051 7765

Table A4: Table A4 summarizes the household-level geovariables included in our baseline specification of the

production function by country. For continuous variables, the table reports means and standard deviations

(in parentheses) across all household-years in our household-level sample. For categorical variables, the table

reports the % of household-year observations belonging to select categories. For variables denoted with a †,
only a subset of categories are depicted. For weather and climate variables, long-run (i.e., beyond the period

of each survey) climate averages are denoted with ‘Avg’; the remaining variables indicate averages within

each survey-year. Both the climate and weather variables are derived from external environmental datasets,

which use statistical and process-models to spatially interpolate data.
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A.4 Details of and Sensitivity to Measurement Choices

It is important to acknowledge that the richness of the LSMS-ISA data permit alternative
choices about how to measure inputs and output in each country. Given the nascent state
of the literature on developing-country agricultural total factor productivity, there are no
well-established norms. In what follows, we describe our baseline measurement choices in
detail, and conduct additional sensitivity analyses to evaluate the extent to which alternative
measurement choices affect the distribution of estimated productivity. A description of
the alternative measurement scenarios we evaluated is provided in Figure A1. Figure A2
summarizes of the sensitivity of our baseline measures of TFPR dispersion by country across
these different scenarios.

Output: Our primary measure of agricultural output is computed as the sum, across crops
cultivated within a given production unit (plot or household), of the product of the harvested
quantity and a fixed national-level median crop price. By valuing harvest quantity, versus
relying on reported crop sales, this measure accounts for the value of auto-consumed harvest.
Aggregating harvest value across crops is also essential in the African agricultural context,
where intercropped production systems are the norm. It is important to note that in using
fixed national prices we abstract from variation in the value of output driven by differences in
product quality or the effect of local demand conditions on crop prices. While this abstraction
is likely unproblematic in our data setting38, we cannot reject the possibility that ascribing
the same prices to all firms actually creates systematic variation in measured output due
to the fact that (relative) crop prices in some areas (or at some times) differed significantly
from the national median levels. For this reason, we also measure agricultural output as
the physical quantity (in kgs) of crops harvested from a given plot (or by a household) for
a set of four to five key cereal crops in each country.39 Obviously because physical harvest
quantities do not depend on local prices, this measure of output provides a consistent means
of comparing firms experiencing different local market conditions. The drawback is that we
cannot aggregate quantities across the different crops produced by a particular production
unit. Following the convention in the manufacturing firm-productivity literature, we present
results using both value- and physical-based measures of output for all of our main analyses.

Land: In our plot-level analyses, we measure the land input as the total area of the plot as
reported by the farmer. At the household-level, we use the sum of reported plot areas for all
plots cultivated by the household. In the estimation of crop-specific physical productivity
(i.e. when output is measured in kilograms of crop harvested, or as crop yield in mt/ha) we

38Because the majority of agricultural products produced by smallholder farmers are homogeneous, un-
differentiated goods, differences in product quality across firms in our data are likely small. Regarding local
prices and market conditions, our claim is that the notion of productivity most relevant for the comparison
to previous studies of manufacturing firms is one of technical efficiency - that is how much physical ‘stuff’
can a firm produce with a given level of inputs. Using fixed national prices to value harvest simply provides
a means of converting crop-specific physical output into a unit of measure (value) which can be consistently
aggregated across crops.

39Specifically, we consider the following key crops: maize, beans, sorghum (all countries), cassava (Tanza-
nia, Uganda, Nigeria), rice (Tanzania, Nigeria), wheat, and teff (Ethiopia). For more detail regarding the
prevalence and selection of key crops, see Appendix A.2.
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use crop-specific planted area at the plot-level, and the analogous sum for the household-
level. As noted in the description of our data, we do observe GPS-based measures of plot
area for a large fraction of plots. We choose to use farmer-estimated area because that
is what is most commonly observed in other agricultural survey datasets. We explore the
sensitivity of measured productivity to different choices of how to measure the land input
(ex. as harvested area, or as estimated sales value of land) in Figure A2.

Labor: As discussed in Syverson (2011) the preferred measure of labor inputs is the total
wage bill, as the wages paid to different workers should reflect their levels of human capital,
and thus the wage bill is a quality-adjusted measure of labor inputs. However in our data,
while the wage bill is reported for hired labor, no value is reported for the labor supplied by
the members of farm households. Given that we cannot reliably estimate the implicit wages
paid to household members, we measure the labor input as the total number of person-days
supplied by either hired laborers or own household members. In most of our sample, the
data also permit measuring the labor input in a more disaggregated way, i.e. with separate
input quantities for labor supplied by own vs. hired workers, male vs. female workers, or
labor allocated to different activities (ex. land preparation and planting vs. weeding and
fertilizing). Additionally, the individual information supplied about household members,
allow us to construct additional measures of labor quality such as the average age, sex, and
education-level of own-farm workers.

Capital: We measure aggregate capital inputs in value terms, as the sum of expenditures
on variable inputs (seeds, fertilizer, pesticides and herbicides) and the farmer-reported value
of the stock of durable capital (tools, machinery, and structures) owned or rented in by the
production unit. We also use imputed fixed national-level median prices to value the quan-
tities of own-produced organic fertilizer (e.x. animal manure) used in production. Because
durable capital is typically only reported at the household level, to construct a plot-level
measure, we attribute to each plot a share of household-level durable capital proportional
to the plot’s share of total household area. As with our labor data, we evaluate how much
measuring capital inputs in a more disaggregated fashion (ex. with separate measures of
variable vs. durable capital, or for different types of variable and durable capital) affects our
estimates of productivity in Figure A2.

A.5 Understanding Measurement Error

To bound the role of measurement error in output on estimated productivity dispersion, we
use multiple measures of output: farmer self-reports, data from crop cuts, and estimates
from satellites. “Crop-cutting” is a common measurement procedure in which a (random)
subsection of a farmer’s plot is harvested and the production from this section is processed
(ex. dried) and weighed by enumerators. Because only a subset of the plot is harvested, yield
measured from crop cuts is considered to be a noisy measure of yield from the entire field.40

40While some studies use crop-cuts as a benchmark for evaluating measurement error in farmer self-reports
(ex. Barrett et al. (2017)), others evaluate the accuracy of crop-cuts relative to a gold standard benchmark
where survey enumerators observe directly or participate in the harvest of an entire plot. These evaluations
suggest that crop-cuts are also a noisy measure, where errors result from imperfect observance of the crop-cut
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Figure A1: Description of Alternative Measurement Scenarios

Figure A1: Figure A1 Describes the alternative measurement scenarios evaluated in Figure A2.

Satellite-based estimates of crop yields are generated by extracting vegetation indices from
satellite imagery within known field boundaries, and have been shown to be highly correlated
with ground-based yield measures (Burke and Lobell, 2017; Lobell et al., 2018).41 This
innovative approach offers great promise for assessing dimensions of agricultural productivity
at a larger scale and higher frequency than is possible using surveys alone, but improving
and validating the accuracy of predictions generated using these methods is still limited by
the availability of high-quality ground data.

protocols and from sampling error when yields are heterogeneous within plots (Casley and Kumar, 1988;
Desiere and Jolliffe, 2018; Gourlay, Kilic, and Lobell, 2017; Fermont and Benson, 2011; Poate, 1988).

41The R2’s from the regressions of ground-measured crop yields on satellite-based predictions in these
studies range from approximately 0.20-0.55.
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Figure A2

Productivity Dispersion and Sensitivity to Measurement Choices
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Figure A2: Figure A2 highlights the limited sensitivity of the estimated distribution of TFP to choices

about how to measure inputs and output. Panels [a]-[d] on the left show the distribution of log TFP across

plots in each of our sample countries. The bold black lines in these panels correspond to the distribution

resulting from the estimation of our baseline regression specification, using our baseline measures of inputs

and output. Each of the colored lines in panels [a]-[d] show the distribution resulting from a different set of

measurement choices, using the same (baseline) regression specification. Appendix Table A4 describes each

of the different scenarios evaluated for each country in detail. The box-plots in panels [f]-[i] on the right

describe the range of 90:10 ratios across all the measurement-sensitivity scenarios shown on the left-side

panel of the same row. In each box-plot, solid black lines are located at the median 90:10 ratio value, the

colored box contains the inter-quartile range, and the whiskers extend to the extrema.

A.5.1 Empirical Implementation of Measurement Error Bounding Analysis

To implement our proposed method for bounding true productivity dispersion, we require
two measures of productivity for the same plot. In practice, given that plot size and crop
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yields are both multiply-measured in different subsets of our data, we can generate these
alternative measures in two separate ways. The first and most broadly applicable way is to
use the two different estimates of plot size – farmer-reported and GPS measured – in separate
estimations of Equation (1) to generate two sets of productivity residuals. The subset of our
data where we observe both farmer-estimates and GPS-measures of plot size is much larger
than the analogous subset where we observe multiple measures of crop yields. In particular,
we see multiple measures of plot size in all survey waves of all of our sample countries. By
contrast, only in the Ethiopia LSMS data, and in the non-LSMS survey data from Kenya
and Uganda do we observe multiple measures of crop yields. Furthermore, we can apply our
bounding technique using multiple measures of plot size for all three of our key measures of
productivity (TFPR, TFPQ, and yield). This is not the case for crop yields, where we can
only estimate bounds on physical measures of productivity.

The second way to implement our bounding technique is to generate separate productivity
residuals using multiple measures of crop yields. This, in turn, is done in different ways
depending on the specific data being used. In the Ethiopia LSMS data, the multiple estimates
of crop yields we observe are (1) the quotient of farmer-estimated harvest quantity and
farmer-reported plot size and (2) the reported harvest quantity from crop cuts conducted by
enumerators, divided by the crop cut area (4m2). For computing bounds on the variance of
residual yields, these two metrics can be used without further modification. When bounding
dispersion in TFPQ, we multiply the computed crop-cut yields by either the farmer-reported
or GPS-measured plot size to recover an estimate of total plot-level crop output.42 This
estimate, in conjunction with farmer-reported estimates of harvest quantity can then be
used as the dependent variable on the left-hand side of Equation (1).

We can also generate bounds using the multiple estimates of crop yields contained in our
supplementary datasets from Kenya and Uganda, which are described in (Burke and Lobell,
2017; Lobell et al., 2018). The most important feature of these data is that they contain
survey-based estimates of crop yields that are matched to independent satellite-based yield
estimates. Obtaining satellite estimates of yields for the plots in the LSMS data is not
possible because plot-level geolocations are confidential in the publicly available versions
of the data. Even the household geocoordinates recorded in the publicly-available LSMS
are “jittered” for confidentiality reasons. The ability to compare the bounds on dispersion
derived from survey- versus satellite-based yields, to those derived from farmer-reported
versus crop-cut yields is a key advantage afforded by these data. However, the scope for
applying our bounding technique in these data is more limited. In particular, they do not
contain reliable measures of labor and capital input use. Consequently, we can only estimate
bounds on the dispersion of crop yields, and not TFPQ. Additionally, farmers surveyed
exclusively cultivated maize, so the measures of yield dispersion derived from these data
differ slightly from those generated using the LSMS data, where we consider multiple key
crops (including maize).

42Specifically, when using crop-cut TFPQ and TFPQ computed using farmer-estimated plot size, we mul-
tiply by the farmer-reported area. When using crop-cut TFPQ and TFPQ computed using GPS-measured
plot size, we use the GPS-based measure.
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Additionally, to maintain comparability with our descriptive analyses, we focus on the 90:10
ratio of the productivity distribution, rather than the variance, in our empirical bounding
exercise. That is, for all measures of productivity and in all the aforementioned data settings,
we use the 90:10 ratio of the average and projected productivity composites to bound the
90:10 ratio of true productivity. While the 90:10 ratio is a different measure of dispersion
than the variance, for a broad set of probability distributions (including all symmetrical dis-
tributions) it is a simple (linear) function of the variance. Thus, for this set of distributions,
the theoretical results established in Section 4.1 apply directly to the 90:10 ratio.

Next, consider the implementation of our instrumental variables approach to estimating the
persistence of true productivity. In general, all the considerations related to applicability of
our measurement error framework in different data settings described above also apply in
our persistence analysis. As an exception, we note that the non-LSMS data from Kenya and
Uganda is not constructed as a panel, so we do not generate any persistence estimates using
these data. Additionally, because it is households, not plots, that are tracked across survey
waves, we use household-level aggregates of the multiple measures of land area and crop yields
to implement our persistence analysis. For the land input, our household-level measures are
the sum of farmer-estimated and GPS-measured plot size across all plots cultivated by the
household. For crop yields, we take the simple average yield across plots or crop-cuts. And for
harvest quantities used to estimate TFPQ, we first back calculate plot-level harvest quantities
from crop-cut yields using the approach described above then sum to the household level.43

In summary, we generate IV estimates of persistence in TFPR, TFPQ, and residual yields
using multiple household-level measures of land area in all countries in the LSMS data, but
only evaluate TFPQ and yields using the alternative household-level measures of crop yields
and harvest quantity in the Ethiopia data.

As an additional extension, in our empirical persistence analysis we also estimate a variant of
the IV regression described in Section 4.2 in which we use twice-lagged productivity, rather
than alternatively-measured productivity, as an instrument. In other words, if we let ωa

represent the noisy household-level measures of productivity that we observe using farmer-
reported estimates of land area and output, then in this variant of our IV procedure, we use
ωat−2 to instrument for ωat−1 in the panel regression of ωat on ωat−1. The motivation for imple-
menting this alternative approach is to account for potential error in the measures of multiple
production function components simultaneously. More specifically, while implementing our
baseline IV strategy tells us how much measurement error in the multiply-measured quantity
(either land area or output/yield) attenuates persistence, using twice-lagged productivity as
an instrument controls for potential measurement error in all inputs and outputs used to
generate a particular productivity measure. While this is more comprehensive, the assump-
tions required for validity are correspondingly stronger. In particular, we must assume that

43Note, we frequently observe households where at least one plot, but not all, were either GPS measured
or crop-cut. When computing crop-cut based estimates of harvest quantity (for TFPQ) and GPS-measured
land area at the household-level, we first substitute farmer-reported plot-level values for missing data prior
to summing across plots. In this way, we retain the full set of households for where at least one plot was
crop-cut/GPS measured, and differences in the household-level measures only reflect the differences between
the alternative measures across plots that were multiply measured.
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none of the measurement errors in any (rather than jut one) of the production function
components are serially correlated. Practically, we implement this variant of our IV strategy
for all three key measures of productivity in all countries except Nigeria, where we only have
two survey waves of data.

A.5.2 Implementation of Random Forest

Random forest is a ‘decision tree’ algorithm in which predictions of outcomes are generated
by identifying a sequence of binary breaks, termed ‘branches’, in the predictor data, and
attributing the conditional mean of the observed outcome to observations within subsets
delineated at each branch. In random forest, this process is implemented iteratively on sub-
sets of the data (i.e. the algorithm ‘grows’ many decision trees), with branches chosen to
minimize a loss function in each iteration. Final predictions are computed by aggregating
across all the component decision-trees. Intuitively, random forest approximates fitting a
step function to the observed outcomes, where each step is defined by a set of binary condi-
tions across the predictor variables. Any effects of non-linearities and interactions between
predictor variables in the determination of the outcome are thus captured in the conditional
means associated with each branch. The algorithm is best suited for data settings similar to
ours with many observations, and in which the only objective is to create the best possible
predictions of the outcome variable (ex. in lieu of identifying the most important causal
predictors).

Random forests are in general thought to be unlikely to overfit the data on which they’re
trained, as they sample only a subset of predictor variables at each node in a decision tree
and then average over many trees. Because we wish to compare RF estimates to those from a
linear model, one potential concern is that any differences between linear and random forest
model estimates of productivity is because the linear model – but not the random forest –
is overfitting the data. To evaluate this, we split our data into five disjoint train and test
datasets and evaluate predictive performance only on held-out test data (i.e. 5-fold cross
validation). We then assess overfitting by comparing (i) the 90:10 ratios, and (ii) the R2

of the regression of observed residualized revenue on predicted residualized revenue for each
type of model. If the linear model is overfitting, then this will lead to larger 90:10 ratios and
lower R2 values in the test data relative to the full sample.

The results from this exercise are displayed in Table A5 and suggest our linear model is
not significantly overfit. Across countries and measures of model performance, we observe
essentially no differences between the cross-validated models and those estimated on the full
sample. Consistent with our baseline comparison, the random forest model performs mod-
estly better than the linear model across both performance metrics. Our overall interpreta-
tion from these results is that non-linearities and interactions between observed components
of the production function do not explain a large share of variation in output, nor are our
linear models likely overfitting the data. Put simply, our results suggest that the production
function for smallholder agricultural firms is essentially Cobb-Douglas.
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Table A5: Cross-Validated Estimates of TFPR: Linear vs. Random-Forest

90:10 Ratio

Linear
(full sample)

Linear
(cross-validated)

Random Forest
(full sample)

Random Forest
(cross-validated)

Tanzania 7.16 7.15 6.93 6.93
Uganda: 8.71 8.72 8.14 8.18
Nigeria: 9.93 9.92 9.07 9.07
Ethiopia: 9.64 9.66 8.59 8.61

R2 of Observed on Predicted Residualized Revenues

Linear
(full sample)

Linear
(cross-validated)

Random Forest
(full sample)

Random Forest
(cross-validated)

Tanzania 0.191 0.188 0.202 0.206
Uganda: 0.165 0.164 0.200 0.199
Nigeria: 0.081 0.077 0.138 0.136
Ethiopia: 0.296 0.295 0.331 0.328

Note: The second panel reports the adjusted R2 from the regression of all-crop revenue, residualized
on crop-system and village-year fixed effects, on the predictions of this residual generated by each model.

A.5.3 Descriptive Comparison of Multiple Land and Output Measures

The underlying relationship between different measures of land and yields is an integral to
understanding the results we obtain in our empirical analysis of measurement error. For ex-
ample, the strength of the correlation between each pair of alternative measure (and therefore
the productivity residuals derived from them) determines the size of the estimated bounds
on productivity dispersion, and the significance of the first stage in the IV persistence re-
gression. How then, do the different measures of land area and output we observe in the
different data settings described above compare?

We observe both farmer estimates and GPS measures of plot area for 72% of our plot-
level observations. The correlation between the two measures is relatively strong. Across
countries, the average R2 of the regression of farmer-reported on GPS-measured plot size is
0.61. In general, the distributions of the two different measures are similar in all countries.
However, the density of farmer-estimates exhibits bunching around integers or simple fraction
values (see Figure A.5.2 below).44 For example, in Tanzania, the density of farmer-estimates
of plot size within 0.05 acre bins around values of 1, 2, and 3 acres are 12 to 17 times higher
than the corresponding densities for GPS measured area. As a result of this bunching,

44For additional information on the proportion of plots that were GPS measured and the correlation
between GPS and farmer-reported plot size by country, see Table A.5.1 in Appendix A.5. Additionally, we
note that in Uganda, GPS measurements were taken at the parcel, rather than the plot-level, where parcels
are defined as contiguous assemblages of plots. Consequently, we conduct our measurement error analysis
in the Uganda data at the parcel-level.
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the distribution of farmer-reported plot size exhibits slightly lower variance than the GPS
measures. Across countries, the average standard deviation of farmer-estimated plot size is
0.59 ha, whereas the average standard deviation of GPS-measured area is 0.69 ha.

In the Ethiopia LSMS data, enumerators conducted a crop-cut on 31% of plots containing
any key crop. In contrast to the multiple measures of plot size, the correlation between
crop-cut yields and yields computed from farmer-reported harvest quantity and plot size is
low. On average across key crops, the R2 of the regression of farmer-estimated yields on
crop-cut yields is 0.08.45 The distribution of crop-cut yields is also significantly right-shifted
relative to the farmer estimates (see Figure A4 in Appendix A.5). For example for maize,
the mean farmer estimated yield is 3.9 mt/ha, whereas the mean crop-cut yield is 6.2 mt/ha.
This may reflect a tendency for enumerators to randomly select areas for crop-cutting only
in portions of plots where crops are being grown, which would result in higher measured
yields relative to the yields computed based on the farmer estimates where total planted
area (including areas with no harvestable crops) is the denominator. Crop-cut yields also
exhibit lower variance than farmer estimates. Again for maize, the standard deviation of
crop-cut yields is 5.2 mt/ha and 7.9 mt/ha for farmer-estimated yields. This likely results
from the fact that, for farmer-estimated yields, both the numerator and the denominator are
measured with error, whereas crop-cuts were conducted in a standardized 2×2 m2 area.

In contrast to the crop-cuts in Ethiopia, the mean of satellite-based maize yields in Kenya and
Uganda is similar to that of the survey-based measure, and the mean of both measures are
similar in magnitude to mean yields we observe in the LSMS. For example, in Uganda, where
both LSMS and non-LSMS surveys were conducted, the mean of farmer-estimated maize
yields in the LSMS data is 1.19 mt/ha. In the non-LSMS data, mean maize yields are 0.81
mt/ha and 2.22 mt/ha for the survey- and satellite-based estimates, respectively. Relative to
the crop-cuts, the satellite-based estimates of yield are also more strongly correlated with the
survey-based estimates, with R2 values ranging from 0.08-0.22. Finally, the satellite-based
yield estimates also exhibit significantly lower variance than the survey-based measures,
and this relative difference is greater than between the alternative yield measures in the
Ethiopia LSMS data. On average across the countries and years of observation contained in
the Kenya and Uganda data, the standard deviation of satellite-based maize yields is 0.32
mt/ha, whereas the standard deviation of survey-based yields is 1.01 mt/ha.46

45For additional information on the frequency of crop cuts for different key crops, and the correlation
between crop-cut and farmer-estimated yields by crop, see Table A.5.3 in Appendix A.5.

46So in the Ethiopia data, crop-cut maize yields are approximately 34% less variable than the survey-based
estimates, while in the non-LSMS Kenya and Uganda data, satellite-based yields are 68% less variable.

53



Table A6: Multiple Measures of Land Input in Most of the Sample

Country Total Obs.
(plot-level)

Farmer
Estimated

GPS
Measured

Both R-Squared
(FE ∼ GPS)

Tanzania 20881 20881 13408 13408 0.69
(100%) (64%) (64%)

Uganda 34712 34712 20064 20064 0.68
(parcel-level) (100%) (58%) (58%)

Nigeria 9338 9338 8202 8202 0.43
(100%) (88%) (88%)

Ethiopa 36932 36932 31936 31936 0.65
(100%) (86%) (86%)

Table A7: Multiple Measures of Output for Key Crops in Ethiopia

Crop Total Obs
(Plots)

Total Obs
(HH-years)

Plots w.
Crop-cut

(%)

HH-years w.
Crop-cut

(%)

R2: FE Yield ∼
CC Yield

R2: GPS Yield ∼
CC Yield

Maize 5749 3488 1528 1412 0.04 0.03
(27%) (40%)

Beans 2477 1770 1049 950 0.05 0.06
(42%) (54%)

Sorghum 4786 2573 1309 1177 0.03 0.03
(27%) (46%)

Teff 4814 2627 1357 1229 0.04 0.04
(28%) (47%)

Wheat 2885 1707 937 867 0.04 0.06
(32%) (51%)

All Key Crops 19900 6263 6180 3815 0.07 0.08
(31%) (61%)
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Figure A3

GPS−Measured vs. Farmer−Estimated Land Area
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Figure A4

Ethiopia: Crop−Cut vs. Computed Yields for Key Crops
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A.5.4 Measurement Error Bounding Results for the Variance of Productivity

Measurement Error in Output (Ethiopia):
 Bounds on Cross Sectional Productivity Dispersion
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Figure A5: Bounds on cross-sectional productivity dispersion due to measure-
ment error in output. Errors in measures of crop output in the Ethiopian LSMS data significantly
magnify measured dispersion in physical productivity, and accounting for measurement error, dispersion
appears lower than the benchmark value for non-agricultural firms. Plotted points indicate the variance of
the distributions of productivity residuals computed using farmer-estimated (◦’s) and crop-cut based (×’s)
measures of crop output individually. Colored polygons bound the variance range between those associated
with the distributions of the average (upper bound) and projected (lower bound) composites. For each
measure of productivity, points and polygons on the left were calculated using output measures based on
farmer-estimated plot size, and those on the right were calculated using output based on GPS-measured
plot size. The tan polygons in lower panel indicate the percent of dispersion in productivity computed using
farmer-estimated output that is attributable to measurement error implied by the estimates in the top panel.
For example, the lower bound of each tan polygon is the difference between the ◦’s and the upper value of
the colored bounded area, expressed as percentage of the ◦ values. The dashed magenta line represents
the variance of the distribution of TFPR observed among Indian manufacturing firms in Hsieh and Klenow
(2009).
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Measurement Error in Yield:
 Bounds on Cross Sectional Dispersion (Farmer vs. Satellite Estimates)
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Figure A6: Bounds on dispersion due to measurement error in yield. Errors in
measures of crop output in our non-LSMS data from Kenya and Uganda significantly magnify measured
dispersion in maize yields, similar to the effect observed in Figure 7. Plotted points indicate the variances
of the distributions of yields computed using farmer-estimated (◦’s) and satellite-based (×’s) measures of
crop output individually. Colored polygons bound the variance range between those associated with the
distributions of the average (upper bound) and projected (lower bound) composites. The tan polygons in
lower panel indicate the percent of dispersion in productivity computed using farmer-estimated yield that
is attributable to measurement error implied by the estimates in the top panel. For example, the lower
bound of each tan polygon is the difference between the ◦’s and the upper value of the colored bounded area,
expressed as percentage of the ◦ values. The dashed magenta line represents the variance of the distribution
of TFPR observed among Indian manufacturing firms in Hsieh and Klenow (2009).
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