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ogy) reduce prices and that a higher number of firms (market structure) reduces prices
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increase with the number of firms when competition is very fierce and when there are

enough network externalities. We also show that increasing competition always leads

to a lower firm’s profit while increasing network density leads to a clockwise rotation
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1 Introduction

People around the world use social network in its various forms (e.g., news feeds on Facebook

and Twitter, private messaging on WhatsApp and WeChat, and discussion forums on Reddit)

for a number of purposes. These can generally be categorized as (i) digitally communicating

and socializing with known others, such as family and friends, (ii) doing the same but with

unknown others who share common interests, and (iii) accessing and contributing to digital

content such as news, gossips, and user-generated product reviews. This means that the way

agents influence each other in their product consumption is key to understand how product

prices are determined and how consumption choices are made. Indeed, firms are well aware

of how social interactions between agents affect their consumption decisions and, therefore,

do take into account these network externalities between consumers in their pricing decisions.

For instance, Nintendo, Sony and Microsoft compete for gaming console dominance knowing

that people playing games have to choose among the Switch (Nintendo), the PlayStation

(Sony), or the Xbox (Microsoft). Key for this choice are the console price and how people

play these games with each other and how their interact in the different online platforms.

In this paper, we examine these issues by modeling the interplay between the market

structure regarding the firms that provide differentiated products to consumers and the

underlying network structure among users who make consumption decisions based on the

consumption’s decisions of their friends and other connections. To this end, we provide a

general network oligopolistic competition model with an arbitrary number of firms, (local)

network effects, and an arbitrary degree of product differentiation. To the best of our

knowledge, this is the first attempt to study how general market structure and general

network effects have a non-trivial impact on prices, firms’ profits and consumers’ utility.

To be more precise, each firm sells a differentiated product to users connected in a

network of social interactions. Users derive utility from their own consumption as well as

from other users’ consumptions who are directly linked to them in the network (who could be

friends, neighbors, but also people who are connected online and sharing common interests).

The latter captures the local network effects from interacting with other users in the network.

The firms simultaneously determine the (potentially discriminatory) prices in the first stage;

while, in the second stage, users determine their consumption for each product, given the

prices set by firms.

Each firm faces the following trade-off when setting prices: lowering prices enhances the

firm’s demands but, at the same time, it is costly for firms because it also reduces the price-

cost margins for existing demands. These effects are modulated by the degree of network

externalities and the number of firms in the market. We show that the price set by each firm

is a decreasing function of the position in the network (in terms of Katz-Bonacich centrality)

of each user, which means that firms network-price discriminate users by charging lower
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prices to more central agents. This implies that influencers pay a lower price and can even

be subsidized for consuming a product.1

We also show that prices are lower when either the network becomes denser (changing

network structure/ topology) or the intensity of network effects becomes stronger. Indeed,

increasing network density or network externalities intensifies the price competition between

firms for the central nodes in the network, who in equilibrium are compensated by being

charged lower prices. We then study how a change in market structure (number of firms L)

affects prices. For regular networks (those in which all nodes have the same degree), prices

always decrease with the number of firms but this is not necessarily true for non-regular

networks. In fact, for the latter, there is a non-monotonic relationship between prices and L.

In particular, we show that, for very connected individuals (the influencers), whose price are

negative (they are subsidized by firms to consume their goods), when L is large and network

externalities are important, increasing further L increases rather than decreases prices. In

other words, for these agents only, in a very competitive market, increasing competition leads

to an increase in prices. Indeed, when competition is very fierce, it becomes less profitable

for firms to subsidize these influential agents if competition further increases and, in the

limit, when L goes to infinity, firms will set a price (mark-up in our setting) of zero for the

influencers.

We then measure the degree of price discrimination by the price dispersion in the market,

i.e., the maximal price differential among users. Price dispersion turns out to be small for the

monopoly case and the very competitive case and attains a maximum value for intermediate

number of firms. Some illustrative examples suggest that the extent of price dispersion can

be significant, and the maximal value is attained when there are two to four firms in the

market.

Next, we examine the impact of market structure and network topology on firm’s prof-

itability. Intuitively, a firm’s profit decreases with fiercer competition. What is less obvious,

however, is that increasing the intensity of network effects does not necessarily increases

firms’ profits because it depends on the degree of competition. We show that, instead, it

leads to a clockwise rotation of the profit curve, which means that, under low competition,

the firm’s profit is higher when there are more network externalities, while, under fierce

competition, the opposite is true. This unintended outcome arises from two effects. On the

one hand, a strong network intensity amplifies the benefits of network externalities, thereby

leading to more users’ consumption. On the other hand, it pushes the firms to lower their

prices due to stronger competition, and this price effect can drive down the firm’s prof-

itability. When there are only a few firms, the first effect dominates and improvement in

network technology (more network externalities) generates a higher firm’s profit. When there

1The idea of using celebrities in consumer markets, who have a high social value, to influence others is a
well-known marketing strategy (Knoll and Matthes (2017)).
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are many firms, however, the price effect takes off and improvement in network technology

dampens the firms’ profitability.

The above result also implies that if free entry is allowed, the improvement in network

technology increases the equilibrium number of participating firms only when the entry cost

is high. This is because a higher entry cost deters firms from participating in the market.

Thus, the number of firms tends to be small, and it is precisely in this regime that the

improvement in network technology can boost the firm’s profitability.

Finally, we demonstrate how our analysis can be used to characterize the optimal net-

work structures from the perspectives of firms and users. We find that their ranking of

network structures are consistent when the number of firms is small and the products are

sufficiently differentiated. However, when there is a large number of firms or products are

sufficiently homogeneous, firms and users hold completely opposite views of what the optimal

network structure is.

1.1 Related literature

Our paper is related to the game-on-network literature (for overviews, see Jackson (2008);

Jackson and Zenou (2015); Bramoullé and Kranton (2016); Jackson, Rogers, and Zenou

(2017)), in particular, the part of this literature that deals with pricing under imperfect

competition in networks (see Bloch (2016) for a survey on targeting and pricing in networks).2

In this literature, different aspects of imperfect competition with network effects have

been addressed. In terms of pricing issues, Bloch and Quérou (2013); Belhaj and Deröıan

(2016); Fainmesser and Galeotti (2016); Leduc, Jackson, and Johari (2017); Candogan,

Bimpikis, and Ozdaglar (2012) deal with the monopoly case while Chen et al. (2018a);

Aoyagi (2018); Fainmesser and Galeotti (2020) examine the duopoly framework.3 A paper

that studies a general market structure (oligopoly with N firms) with network effects is that

of Amir and Lazzati (2011). However, in their model, the network structure is not modeled

since network effects are captured by the fact that users’ willingness to pay is increasing in

the number of agents acquiring the same good.

To the best of our knowledge, our paper is the first that studies the interaction between

2There is an early literature on network externalities with imperfect competition which either focuses
on the aggregate level of network externalities (e.g. Farrell and Saloner (1985); Katz and Shapiro (1985);
for an overview, see Economides (1996)) or on the competitive pricing problem in the context of two-sided
networks in which players on one side care about the aggregate contributions of those on the other side (see
e.g. Caillaud and Jullien (2003); Armstrong (2006); Rochet and Tirole (2006)), which corresponds to a very
specific network structure: the complete bipartite network. In our model, we deal with any possible network
structure.

3See also Ushchev and Zenou (2018) who model the substituability between differentiated goods as a
network and determine the equilibrium prices.
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market structure and network structure/topology in a general network oligopolistic competi-

tion model with an arbitrary number of firms, an arbitrary network structure, and a flexible

degree of product differentiation.

2 Model

2.1 Setting

Consider L firms that sell differentiated products to N users in a social network, where L ≥ 1,

N ≥ 2. Let L := {1, 2, · · · , L} and N := {1, 2, · · · , N} denote the set of firms and users,

respectively. Each firm l ∈ L sells variety l to all users (consumers have a love for variety so

that each of them consumes all goods)4 and sets prices pl = (pl1, · · · , plN)′, since prices may

differ across users, depending possibly on their network positions and other characteristics

such as ai (defined below). Each user i ∈ N has a quasi-linear utility, x0
i +ui(xi,x−i), where

x0
i is i’s consumption of the numeraire good, xi = (x1

i , · · · , xLi )′ ∈ RL
+ is i’s consumption

bundle of products offered by the L different firms, and x−i is the consumption profile for

users other than i.

Denote by G = (gij)n×n the adjacency matrix representing the network structure among

these users. In other words, gij = 1 if and only if i and j are directly connected, and gij = 0,

otherwise. We also assume that gii = 0 (no self-loops) and gij = gji ∈ {0, 1} (undirected and

unweighted network).5

We adopt the following explicit functional form for the utility function:

ui(xi,x−i) :=

(
L∑
l=1

alix
l
i −

1

2

L∑
l=1

(xli)
2 − 1

2

L∑
l=1

∑
s 6=l

βxsix
l
i

)
︸ ︷︷ ︸

:=vi(xi)

+ δ

(
L∑
l=1

(
N∑
j=1

gijx
l
ix
l
j

))
︸ ︷︷ ︸

:=ηi(xi,x−i)

. (1)

The utility of user i’s consists of two terms. The first term vi(xi) represents i’s own

consumption utility, and it only depends on xi with β measuring the curvature of vi(·) and

the degree of substitution between the L products consumed. For each i, s 6= l, ∂2ui
∂xli∂x

s
i

=

−β, which is negative (positive) when β is positive (negative). Therefore, products are

substitutable (complementary) when β > (<)0.

4Indeed, in the utility function (1), each consumer i consumes all goods (love for variety). A necessary
and sufficient condition for consumers to have love for variety, or, more formally, to have strictly convex
preferences over the space of differentiated products, is Assumption 2 below, which we assume throughout
the paper.

5This is without loss of generality. Our model is flexible enough to allow for arbitrary network structure
G, and obtain the same main results.
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The second term in (1), ηi(xi,x−i), captures the network effects (peer effects) enjoyed

by user i from interacting with other users in network G, and these effects are scaled by

the parameter δ, so that ∂2ηi
∂xli∂x

l
j

= δgij for any l ∈ L.6 Therefore, i’s utility depends on j’s

consumption when i and j are directly connected, which reflects the local network effects

among users in the network. In other words, the value of consuming a product for a given

user increases when others directly connected to this user consume this product. The budget

equation for user i is x0
i +

∑L
l=1 p

l
ix
l
i = Yi, where pli is the price user i pays to firm l for the

consumption of xli. As usual, we assume the income Yi is sufficiently large so that the

nonnegativity constraints on consumptions {xli}’s and x0
i are not binding.7

Given the price profile p = (p1, · · · ,pL), and consumption profile x = (x1, · · · ,xn),8

firm l’s profit is given by:

Πl(pl,p−l; x) :=
∑
i∈N

(pli − ci)xli,

where ci is the marginal cost of serving user i.

Our first assumption is to focus on ex ante symmetric firms.

Assumption 1. For each user i, ali = asi = ai > ci ≥ 0 for any l and s.

Since each firm l is defined by its product l, this assumption is equivalent to having

symmetric products. Let a = (a1, · · · , aN)′ denote the marginal utility vector. For the

equilibrium analysis in Section 3, we consider arbitrary a. For some analysis in Sections

4 and 5, we further restrict our analysis to the case when ai = a, ci = 0,∀i ∈ N (see

Assumption 3). While this is not without loss of generality, it best serves our purpose in

this paper because our main focus is on the network topology (see footnote 16 for further

discussions).

Third, for ease of the exposition, we focus on substitutable products (β ≥ 0) with positive

network effects (δ ≥ 0). We assume β ∈ [0, 1), under which i’s utility ui(xi,x−i) in (1) is

strictly concave in xi (see Lemma A1 in the Online Appendix A for the proof). Let λ1(G)

denote the largest eigenvalue of G.

Assumption 2. δ ≥ 0, 0 ≤ β < 1 and

1− β − δλ1(G) > 0, (2)

Condition (2) guarantees the uniqueness of consumption equilibrium for any price profile,

and the concavity of the firm’s profit in prices. This assumption imposes conditions on both

6Also, note that, for l 6= s, i 6= j, ∂2ηi
∂xli∂x

s
j

= 0, i.e., we assume away cross-product network effects.

7Effectively, user i chooses xi to maximize ui(xi,x−i)−
∑L
l=1 p

l
ix
l
i.

8Note that the dimension of pl is N , while the dimension of xi is L so that both p and x have dimension
NL.
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the product differentiation parameter β, the network effect parameter δ, and the spectral

radius of G (which, by the Perron-Frobenius theorem, is λ1(G), the largest eigenvalue of G

since G is a matrix with non-negative entries) but does not depend on L, the number of

firms. This condition is satisfied when δ is not too large, i.e., δ < (1− β)/λ1(G). Analogous

conditions to (2) are imposed in many network papers.9

We study the subgame perfect equilibrium of the following two-stage game: first, firms

simultaneously choose their prices and, second, users simultaneously choose their consump-

tion bundles. The network structure G, together with other model parameters β, δ, a, are

known and common knowledge for firms and users. We take as given the market structure L

and the network structure G in most of the analysis, with the exception of Section 6 where

we study the free-entry of firms (so that the market structure L is endogenized) and the

optimal network structure. Throughout the paper, we maintain Assumptions 1 and 2 in all

propositions, corollaries, and lemmas. Thus, we will not explicitly spell them out.10

2.2 Discussions of model and assumptions

We now provide several discussions of our model and give some justifications of some of our

assumptions.

The first one concerns the functional form of users’ utility given by (1). The quadratic

form in the private part of vi(·) has been widely adopted in industrial organization, trade,

and macroeconomics (see for example Singh and Vives (1984); Vives (2001); Ottaviano,

Tabuchi, and Thisse (2002); Asplund and Nocke (2006); Foster, Haltiwanger, and Syverson

(2008); Melitz and Ottaviano (2008); Syverson (2019)).11 Also, quasi-linear utility function

such as (1) is commonly adopted in many network models (e.g. Ballester et al. (2006);

Bramoullé and Kranton (2007); Bramoullé et al. (2014)), especially IO network models (e.g.

Candogan et al. (2012); Bloch and Quérou (2013); Fainmesser and Galeotti (2016, 2020);

Chen et al. (2018a); Ushchev and Zenou (2018)). Moreover, the quadratic interaction terms

in the network benefit part ηi(xi,x−i), together with the quadratic term vi(xi), gives us

great tractability of the model. This enables us to conduct extensive comparative statics

with respect to model parameters (such as the network structure G and market structure

L) in the equilibrium and welfare analysis.

Second, our model considers general market structure L, and it naturally incorporates

9See, for instance, Ballester, Calvó-Armengol, and Zenou (2006); Candogan, Bimpikis, and Ozdaglar
(2012); Bloch and Quérou (2013); Bramoullé, Kranton, and d’Amours (2014); Fainmesser and Galeotti
(2016); Chen, Zenou, and Zhou (2018a); Galeotti, Golub, and Goyal (2020).

10In Appendix A, we provide the matrix notations used in this paper.
11In fact, without network externalities (i.e., δ = 0), our model reduces to the standard IO and trade

models where the utility function is given by: ui(xi,x−i) = vi(xi).
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and generalizes several existing models in the literature about pricing network effects. For

instance, it generalizes the monopoly model (L = 1) of Bloch and Quérou (2013) and Can-

dogan, Bimpikis, and Ozdaglar (2012), and the duopolistic model (L = 2) of Chen et al.

(2018a). As shown in Sections 4 and 5, under different market structures, we obtain quali-

tatively different results, and in several cases even the opposite results. These observations

highlight the importance of allowing for general market structure L.

Third, we focus on substitutable products (β ≥ 0) with positive network effects (δ ≥
0).12 This is mainly for the ease of exposition, and our analytical results can directly carry

over to the settings with negative network effects (δ < 0) and/or complementary products

(β < 0), after corresponding modification of Assumption 2 and model interpretation.

Fourth, we can give an alternative interpretation of our model: each node i in the

network represents a market (for instance, a region, a city, or a country) with a representative

consumer in each market with the utility function specified in (1). Firms offer differentiated

products to these markets, and δgij represents the degree of demand spillovers across two

markets i and j. Our model and results will have the same implications under this alternative

interpretation.

Lastly, the common knowledge and perfect information about the network structure

merit additional justifications. Note that we allow for arbitrary but exogenously given net-

work structure and no additional restriction on the network structure is imposed. As an ini-

tial analysis with general market structures, it is natural to impose this common knowledge

assumption on G. Further analysis can be developed to relax this assumption.13 Moreover,

under the alternative interpretation in which each node in the network represents a market,

it seems plausible to assume that the spillovers between two markets, δgij, are fully known

to firms. This would justify our assumption of common knowledge on G.

3 Equilibrium analysis

3.1 Consumption equilibrium

We first characterize the users’ simultaneous consumption decisions. Given a price profile p =

(p1, · · · ,pL), each user i chooses xi that maximizes ui(xi,x−i)−
∑L

l=1 p
l
ix
l
i, while taking as

given the consumption decisions of all other users in the network. A consumption equilibrium

12When β = 0, our model reduces to L independent products. When δ = 0, there are no externalities
between users.

13See, among others, Fainmesser and Galeotti (2016, 2020) for pricing with imperfect network knowledge
under monopolistic and duopolistic competition, respectively. It would be interesting to extend the models
of Fainmesser and Galeotti (2016, 2020) to an oligopolistic setting and to consider the interaction of network
knowledge and market structure. This is beyond the scope of this paper.

8



(CE) x(p) is a Nash equilibrium of the second stage consumption game among users in the

network. In our setting, this consumption game belongs to the family of network games with

multi-dimensional strategy space studied in Chen et al. (2018b). Here we sketch the main

results regarding the consumption equilibrium; see Appendix C for details.

When each user i makes her consumption decisions, she takes into account the following

factors: her own preference ali for each product l, the degree of substitution β between the

different products, the number of firms L in the market, which determines the number of

products consumed, the price pli of each good l, and the local network effects δ (what her

friends consume and how important they decisions are for i). Lemma C1 in Appendix C

shows that, under Assumptions 1 and 2, there exists a unique consumption equilibrium

(CE) x(p) and the consumption of each product for each user is determined by the sum and

difference of the marginal utility of consumption and prices of each product multiplied by

two matrices M+ and M−, defined as:

M+ := [(1 + (L− 1)β)In − δG]−1, M− := [(1− β)In − δG]−1. (3)

As shown in Appendix C, we interpret M+ as the market expansion social multiplier, and

M− as the business-stealing social multiplier, because the former measures the marginal

reduction of the average demand of firms following a marginal increment of average price

(see equations (C7) or (C6)), and the latter measures (the negative value of) the marginal

reduction of the demand difference between two firms following a marginal increment of the

price difference between these two firms (see equation (C8)).

We show that the business-stealing social multiplier is stronger than the market ex-

pansion social multiplier, i.e., M− � M+. We also show that, as the number of firm L

increases, the market expansion effect of social network is diminished (M+ is weaker), while

the business stealing effect of social network M− remains the same.

Corollary C1 shows that linear combinations of M+ and M− collectively determine the

own-(cross-) price elasticities of a firm’s demands. Since products are substitutable, raising

firm l’s prices reduces l’s demands and increases competitor s’s demands (i.e., ∂xl

∂pl
� 0 and

∂xs

∂pl
� 0). We also show that the “own-price” sensitivity −∂xl

∂pl
is a convex combination of

M+ and M−. And it puts more weight on M−1 and, therefore, smaller weight on M+, for a

larger number of firms. These observations will play a key role in shaping the incentives of

firms regarding prices in the first stage.

3.2 Pricing equilibrium

We now characterize the pricing decisions of firms in the first stage. Suppose there exists

a symmetric equilibrium in the pricing stage in which all firms charge the same prices p∗

9



(i.e., the price is the same for all firms but may be different for each user). We now derive

the necessary conditions to sustain p∗ as a symmetric pricing equilibrium. As such, the

equilibrium demand for each firm would be x∗ = M+(a− p∗) as in part (ii) in Lemma C1.

If a firm, say firm 1, deviates and lowers her price vector by ∆p1, it must then satisfy the

following no-deviating condition:

marginal loss of lowering prices︷ ︸︸ ︷
〈∆p1, M+(a− p∗)︸ ︷︷ ︸

=x∗ by Lemma C1

〉 = 〈

∆x1 by Corollary C1︷ ︸︸ ︷
M+ + (L− 1)M−

L
∆p1, (p∗ − c)〉︸ ︷︷ ︸

marginal benefit of lowering prices

.

Indeed, when firm 1 lowers her prices for all her users by ∆p1, she increases her profits

because all users will consume more of product 1, but this increase will depend on the

network effects δ, the degree of substitution β between the different goods, and how it

propagates through the network; all these aspects are captured by both M+, the market

expansion social multiplier, and M−, the business-stealing social multiplier. By lowering her

prices by ∆p1, she also reduces her profits because she loses money for each product sold to

users and this depends on the same parameters, which are captured by M+ but not by M−

since the latter measures the business-stealing effect.

The above equation must hold for any ∆p1 in RN , implying the following identity:

M+(a− p∗) =
M+ + (L− 1)M−

L
(p∗ − c). (4)

Solving (4) yields the p∗ stated in Proposition 1.14

Proposition 1. There exists a unique equilibrium in the pricing stage in which all firms

charge the same price p∗ defined as follows:

p∗ =
a + c

2
− (L− 1)β

2
[(2 + (L− 3)β)In − 2δG]−1(a− c). (5)

In equilibrium, each firm’s profit is Π∗ = 〈x∗, (p∗ − c)〉, where x∗ = M+(a− p∗).

The pricing formula (5) in Proposition 1 is determined by the trade-off specified in (4):

lowering prices enhances the firm’s demands but, at the same time, it is costly for the firm

because it also reduces the price-cost margins for existing demands. The degree of demand

enhancing effects and the size of existing demands are captured by Corollary C1 and Lemma

C1, respectively. The relative strength of these two forces pins down the equilibrium prices

in Proposition 1.

14All proofs can be found in Appendix B.

10



It is easily verified that the pricing formula in (5) exhibits the following decomposition:

p∗ =
a + c

2
− (L− 1)β

2 ((2 + (L− 3)β))

[
In −

2δ

(2 + (L− 3)β)
G

]−1

(a− c)︸ ︷︷ ︸
=b(G, 2δ

(2+(L−3)β)
,a−c)

(6)

The first term does not depend on the network, while the second term is proportional to

the Katz-Bonacich centralities15 of nodes with the discount factor δ adjusted by a factor of
2

(2+(L−3)β)
. Unless L = 1 (the monopoly case) and/or β = 0 (independent products), the

equilibrium prices exhibit network-based discrimination, i.e., the price is a function of the

user’s position in the network space. In particular, it shows that the more central a user is

(in terms of Katz-Bonacich centrality), the lower the price she will be charged for consuming

a good. This is because a high-central user generates network externalities to her friends

who are more likely to consume the good and this is taken into account by each firm. As

shown in (6), this price discount depends on the intensity of the network effects δ, the degree

of substitution between goods β, the network structure G and the market structure L.

Our general model extends several existing models and the equilibrium prices in (5) are

consistent with existing papers when we restrict L. For instance, the prices reduce to a+c
2

in

the case of a monopoly firm (L = 1, see Bloch and Quérou (2013); Candogan et al. (2012)).

Similarly, for the duopoly case (L = 2), the prices are p∗ = a+c
2
− β

2
[(2−β)In−2δG]−1(a−c)

(see Chen et al. (2018a)). Observe that the monopoly prices (L = 1) are equal to p∗ = a+c
2

,

so the prices in (5) are always below the monopoly prices.

We investigate the impact of network structure and market structure on equilibrium

prices in Section 4, and on firms’ profits in Section 5. In what follows, we impose an

additional assumption.

Assumption 3. c = 0 and a = a1N .

First, we normalize ci to zero so that, in the analysis below, the mark-up (pti− ci) is the

same as the price. Such a normalization is without any loss of generality. Also, to simplify

the notation and without much loss of generality, we impose ai = a for every i, so that

users have the same marginal utility for the products. Nonetheless, the network structure is

arbitrary, and hence users are not necessarily located symmetrically.16

15See Definition A1 in Appendix A for a formal definition of Katz-Bonacich centralities.
16Under Assumption 3, the only heterogeneity between users is their network positions, which is our main

focus. Adding further heterogeneity on marginal utilities ai does not offer any new additional economic
insights.
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4 The effects of market and network structure on equi-

librium prices

We use the equilibrium characterization in Proposition 1 to study the impact of network

topology and market structure on the equilibrium prices. Here is an overview of our find-

ings. First, we show that, by fixing the market structure (i.e. the number of firms L), the

network density has a negative impact on prices. Second, by fixing the network structure, we

demonstrate that the equilibrium prices decreases with the number of firms when L is small.

However, the prices for the most influential users can increase with L for sufficiently large

L when the network effect δ is strong enough. This is a surprising result since it shows that

more competition can be associated with higher prices. Finally, we show that the degree of

price dispersion in the network has a non-monotonic relationship with the market structure

L: it is low when the number of firms L is either small or large and has its maximal value

when L takes intermediate values.

We first investigate the effects of network structure and the strength of network effects

on equilibrium prices, while fixing the number of firms L.

Proposition 2. Suppose that Assumption 3 holds and the number of firms L is fixed. Then,

increasing network density G or the strength of network effects δ decreases the equilibrium

price for all users. Formally, suppose G′ � G′′, and δ′ ≥ δ′′. Then we have

p∗(G′, δ′) � p∗(G′′, δ′′).

Since the equilibrium price vector in Proposition 1 is decreasing in the Katz-Bonacich

centrality measures of users in the network (see (6)), the result in Proposition 2 is straight-

forward. Indeed, increasing network density or network externalities intensifies the price

competition among firms for the central nodes in the network, who in equilibrium are com-

pensated for lower prices.

Example 1. Consider the kite network in Figure 1. Set β = 0.4.17 We plot the equilibrium

prices for node 1 (the blue curve), node 2 (the green curve), and node 4 (the red curve) while

varying the number of firms L (the x-axis): the left panel (Figure 2) is for δ = 0.17, and the

right panel (Figure 3) is for δ = 0.27. The solid black line is for δ = 0.18

In both Figures, we see that, by fixing δ and L and consistent with Proposition 1, the

most central node (node 1 in the kite) is charged the lowest price while the least central node

(node 4) obtains the highest price. Comparing both Figures, we show that indeed all the

17The largest eigenvalue λ1 is about 2.17. Assumption 2 holds when δ < (1− β)/λ1 ≈ 0.276.
18When δ = 0, there is no price difference across different nodes: every node obtained the same price equal

to a 1−β
2+(l−3)β .
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Figure 1: A kite with four nodes

curves are shifted downward, i.e., the price for each node is lower when δ increases from

0.17 to 0.27. In addition, the black curve (δ = 0) is higher than all the other colored curves,

which correspond to prices with strictly positive values of δ.

Next, we explore the impact of competition L on prices while fixing G. In fact, Example

1 already reveals several interesting observations on the effects of competition. In Figure 2

with a smaller δ, the price for every node decreases with competition. In Figure 3 with a

larger δ, interestingly, the price for node 1 is not monotone in L. In both figures, the prices

eventually converge to zero. The following proposition demonstrates that these patterns

hold in general settings.

Proposition 3. Suppose that Assumption 3 holds and let di denote the degree of node i.

(i) If, ∀i ∈ N , 1− β − δdi > 0, then p∗ decreases with L for any L.

(ii) Suppose that, for some i, 1−β−δdi < 0. Then p∗i has a non-monotonic relationship with

the number of firms L. In particular, ∂p∗i /∂L < 0 when L is small, and ∂p∗i /∂L > 0

for sufficiently large L.

In Appendix D.2, we showed that, for regular networks, prices always decrease with

the number of firms L.19 Proposition 3 demonstrates that this is not necessarily true for

non-regular networks. Indeed, there exists a value of δ such that there is a non-monotonic

relationship between prices and L for at least some individuals (part (ii) of Proposition 3).

To be more precise, when 1−β
maxj di

< δ < 1−β
λ1

,20 the price of at least one user, say i, has

a non-monotonic relationship with L, generating an interesting and very counter-intuitive

19 Indeed, under Assumption 3 and setting a = 1, we obtain the following common equilibrium price for
regular networks with degree d:

p∗reg =
(1− β − δd)

2 + (L− 3)β − 2δd
, (7)

where p∗reg ∈ (0, 12 ] (see (D9) in Appendix D). Clearly, ∂p∗reg/∂L < 0 as 1− β − δd > 0 by Assumption 2 for
regular networks.

20For any non-regular network, λ1 < (maxi di) and thus this range is always not empty.
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Figure 2: δ = 0.17
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Figure 3: δ = 0.27
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relationship between competition and prices, i.e. more competition (more firms) may increase

prices for highly connected users if there are already many firms in the market.

Basically, for any node i with 1− β − δdi < 0 (case (ii) of Proposition 3), for large L, it

can be shown that:21

p∗i =
1− β − δdi

βL
+O(L−2),

which means that this price (or mark-up in our setting) is below zero. In other words, when

competition is very fierce (large L), firms find it profitable to subsidize (negative prices) the

very central users for consuming their products while, when there is very little competition,

firms charge a positive price to these high-central users. Of course, as shown in Figures 2

and 3, this also depends on the degree of network externalities δ. If, as in Figure 2, δ is low,

then firms always charge a positive price to all users because they don’t find it profitable

to “subsidize” highly-central users since they do not generate enough positive externalities

on their friends. On the contrary, when δ is high enough as in Figure 3, then firms do

subsidize some of the very influential users. Moreover, in both cases, when there is not

enough competition (low L), prices do decrease with increased competition. When L is very

large and δ is high enough, increasing competition (more firms) increases the prices for the

highly users because firms want to subsidize them less and less; eventually prices converge

to zero in the limit. See the price curve of node 1 in blue color in Figure 3.

In equilibrium, firms charge prices depending on the positions of nodes in the network.

To evaluate the extent of such network-based price discrimination, we define Disp(·) as the

maximal difference in equilibrium prices among users in the network.

Definition 1.

Disp(L) := max
i 6=j
|p∗i (L)− p∗j(L)|.

We have the following result:

Proposition 4. Disp(1) = 0 (monopoly), and limL→∞Disp(L) = 0 (perfect competition).

Suppose that β 6= 0. For any non-regular network,22 there exists an intermediate value L∗

such that Disp(L) is maximized. In particular, L∗ is strictly greater than one.

Proposition 4 demonstrates that the degree of price dispersion is hump-shaped in the

number of firms. When there is only one firm, there is no dispersion. When the number

of firms is infinite, all prices converge to zero and, again, there is no dispersion. The max-

imal dispersion occurs when L∗ takes an intermediate value, generating a non-monotonic

relationship between price dispersion and competition.

21See equation (E16) in Proposition E4 in Appendix E. Given a real-valued function f , we write f(L) =

O(L−2) if lim supL→∞

∣∣∣∣f(L)

L−2

∣∣∣∣ <∞.

22For regular networks, Disp(L) = 0,∀L as all firms charge the same price to all users; see Appendix D.1.
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Figure 4: Price Dispersion curve (y-axis) as a function of l (x-axis): Dashed line (δ = 0.27),
Dot-dashed line (δ = 0.17) and Solid line (δ = 0.07).

Example 2. Consider the kite network with four nodes displayed in Figure 1. In Figure 4,

we plot Disp(L) using different values of δ. We see that the maximal degree of dispersion

may occur when the number of firms is reasonably small. In Figure 4, L∗ ≈ 2 for the

dashed line (δ = 0.27), L∗ ≈ 3 for the dot-dashed line (δ = 0.17), L∗ ≈ 4 for the solid line

(δ = 0.07). We also see that the price differences in the network can be significant. In the

dashed curve, the maximal dispersion is about 0.25. (Note that the monopoly price is 0.5 as

we set a = 1, c = 0 in this example. See also Figure 3.)

When the strength of network effects is not very large, we have the following simple

characterization of the price dispersion.

Remark 1. For small δ,

Disp(L) ≈ δ
(L− 1)β(dmax − dmin)

[2 + (L− 3)β]2
.

The maximal dispersion is about (dmax−dmin)
8(1−β)

δ, obtained when L∗ = −1 + 2/β > 1.

When δ is small, the Katz-Bonacich centrality reduces to the simple counting of degrees

of nodes in the network. In Remark 1, we show that the maximal dispersion increases with

the difference of the maximal degree and the minimal degree, i.e., the degree dispersion in

the network. Also, the optimal L∗ takes the simple form of −1 + 2/β, which decreases with

the degree of product differentiation β. In Example 2, β = 0.4, so L∗ = 4, which is consistent

with the solid blue line for δ = 0.07 in Figure 4.

In sum, the results in this section highlight the importance of considering general market

structure. The value of L qualitatively matters for the analysis of both the price trend and
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the price dispersion. When the number of firms increases from L = 1 to L = 2, the

equilibrium prices always go down. One naive conjecture would be that prices always go

down with competition. However, such an observation regarding the relationship between

prices and competition does not globally extend to the general setting with any L. As shown

in Proposition 3, prices can easily increase with competition, especially when δ and L are

large. This suggests that we need to be cautious when drawing empirical implications for

price trend in the presence of network effects.

Moreover, the degree of price dispersion in non-regular networks can be significant, and

the market structure generating the largest degree of dispersion, L∗, although not equal to

monopoly, is not necessarily the duopoly case with L = 2. This further validates that local

network effects crucially craft the tactical pricing strategies and interact with the market

competitiveness. Finally, for markets with a large number of competing firms, the structure

of the network has little impact on equilibrium prices.

5 The effects of market structure and network struc-

ture on firms’ profits

In this section, we characterize the effects of the network structure G and the number of

firms L on firms’ profits. As expected, we show that the firm’s profit curve, as a function of

L, is downward sloping because of the intensified competition. However, increasing network

density does not lead to an overall upward shift of the firm’s profit curve. This is surprising

because, other things being equal, an increased network density leads to a higher gross utility

for each user since a user now benefits more from other users’ consumption. Instead, it leads

to a clockwise rotation of the profit curve. In other words, as the network density increases,

the firm’s profit increases when L is relatively small, and decreases when L is sufficiently

large. The market structure at which the profit curve rotates depends negatively on the

product differentiation parameter β and the strength of network effects δ. Regarding the

firms’ profits, increasing δ has similar effects as increasing network density.

5.1 Regular networks

We first start with regular networks and then proceed to general network structures. We set

a = 1 to simplify notation and assume β > 0.

In Appendix D.3, we show that increasing competition (i.e., higher L) always leads to

a lower profit per firm Π∗reg.
23 We then study the impact of the network effect δ on Π∗reg.

23Under Assumption 3 and setting a = 1, in equation (D11) in Appendix D, we show that each firm’s
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There are two main economic forces. On the one hand, increasing δ decreases the equilibrium

price p∗reg because the firms are competing more intensively in the pricing game, which leads

to uniformly lower prices (price effect). This negatively affects the profit. On the other

hand, a rise in δ increases the social multiplier effect, which positively affects profits (social

multiplier effect). In Proposition D1, we show that the impact of δ on Π∗reg is non-monotonic.

More precisely, when the number of firms L is sufficiently small (large), increasing δ increases

(decreases) Π∗reg. Indeed, when L is relatively small, the equilibrium prices p∗reg are very close

to the monopoly price 1/2 and, accordingly, 1−2p∗reg is close to zero. Consequently, the price

effect is negligible compared to the social multiplier effect.24 As a result, the firm’s profit

increases with δ. On the contrary, when L is sufficiently large, competition is so intense that

the equilibrium price is close to zero and the price effect of δ dominates the social multiplier

effect. This implies that the firm’s profit decreases with δ.

We now discuss some immediate consequences of Proposition D1. First, an improvement

in the network technology (caused, for example, by an increase in δ so that peer effects are

stronger) does not always generate a higher firm’s profit. In fact, whether firms can profit

from such a technology improvement critically depends on the degree of competition they

face. As the extreme, a monopoly firm can extract some of the additional network benefits

enjoyed by the users and, hence, obtains a higher profit. With competition, the extent of such

value extraction by firms is jeopardized by the intensified price competition. In fact, when

competition is too strong, the firm’s profit is reduced. This suggests some potential incentives

for firms not to improve the network technology. Second, when δ increases marginally, the

profit curve, as a function of L, rotates, instead of shifting globally. Furthermore, Proposition

D1 explicitly identifies the critical L̄ := χ
(

β
1−δd

)
at which the profit curve rotates, where χ(.)

is the function defined in Lemma D1 in Appendix D.3. χ(·) is continuously differentiable

and strictly decreasing. The graph of χ is plotted in Figure D1. Interestingly, the threshold

L̄ decreases with δ and β as χ(·) is decreasing.

Example 3. In Figure 5, we plot Π∗reg as a function of L for a regular network with d = 2

(for instance, a ring network). We set δ = 0.2 for the blue curve, and δ = 0.3 for the red

curve. We see that the red curve is a clockwise rotation of the blue curve, which means that,

under low competition (i.e., L ≤ 3.5), the firm’s profit is higher when δ is higher (more

network externalities) while, under fierce competition (i.e., L > 3.5), the opposite is true.

In Appendix D.3, we show that one implication of Proposition D1 is Corollary D2:

equilibrium profit for a regular network with degree d is given by:

Π∗reg :=
n(1− p∗reg)p∗reg

1 + (L− 1)β − δd
, (8)

where p∗reg is given by (7) in footnote 19. In Section D.3, we show that: ∂Π∗reg/∂L < 0.
24in Appendix D.3, we explicitly decompose the net effect of δ on profit into these two effects.
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Figure 5: Π∗reg curve, as a function of L, for small δ (blue curve; δ = 0.2) and large δ (red
curve; δ = 0.3)

Π∗reg has a non-monotonic relationship with δ depending of the market competition L. In

particular, when there is a monopolist, increasing δ always increases profit while, when L is

large enough, increasing δ always decreases profits. For intermediary values of L, there is an

inverted U-shaped curve between δ and Π∗reg. The following example illustrates this result:

Example 4. In Figure 6, we plot the curve of Π∗reg as a function of δ under different market

structures. For L = 1 (monopoly, blue dashed curve), the firm’s profit always increases

with δ. For L = 2 (duopoly, black dashed curve), the firm’s profit first increases and then

decreases with δ.25 For L = 5 (oligopoly, red dashed curve), the profit always decreases with

δ.

In Proposition D2 in Appendix D.3, we show that increasing the degree d of a regular

network (denser networks) does not always increase the firm’s profit. In fact, increasing d

leads to a similar clockwise rotation to the one we observed when increasing δ. As a result,

we can obtain the same Figure 5 in Example 3 if we fix δ = 0.2 but increase d from 2 to 3.

(Note that, in Example 3, d is fixed at 2, but δ increases from 0.2 to 0.3.)

5.2 General network structures

The results for regular networks in the previous subsection qualitatively extend to the settings

with general network structures.

25∂Π∗reg/∂δ vanishes only when L = χ(β/(1− δd)), or equivalently, δ = 1−χ−1(L)/β
d .
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Figure 6: The profit Π∗reg curve as a function of δ under different market structures: Blue
L = 1; Black L = 2; Red L = 5

Proposition 5. For any network structure G, let Spec(G) = {λ1, · · · , λN} denote the set

of eigenvalues of G.

(i) The firm’s profit Π∗ decreases with L, and it converges to zero as L→∞.

(ii) Increasing δ leads to higher (lower) profit when the market is sufficiently concentrated

(competitive). More precisely,

(a) ∂Π∗/∂δ > 0 if L < χ(β/(1− δλi)) for any λi ∈ Spec(G);26

(b) ∂Π∗/∂δ < 0 if L > χ(β/(1− δλi)) for any λi ∈ Spec(G).27

The results in Proposition 5 are similar to those derived under regular networks and

have the same intuition. Indeed, Proposition 5 (i) is the counterpart of equation (D12) and

shows that competition drives down firm’s profit. Proposition 5 (ii) generalizes Proposition

D1 by showing that increasing δ leads to a rotation of the profit curve.

Proposition 6. Given two network structures G′ and G′′ with G′ � G′′, there exist cutoffs

L̄ and L such that28

(i) For any L < L, Π∗(G′; β, δ, l) ≥ Π∗(G′′; β, δ, L);

(ii) For any L > L̄, Π∗(G′; β, δ, L) ≤ Π∗(G′′; β, δ, L).

26Equivalently, L < mini χ(β/(1− δλi)) = χ(β/(1− δλ1)) as χ(·) is decreasing.
27Equivalently, L > maxi χ(β/(1− δλi)) = χ(β/(1− δλN )) as χ(·) is decreasing, where λN is the smallest

eigenvalue.
28These thresholds depend on G′, G′′, β and δ.
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Increasing network density generates a similar rotation of the profit curve, as shown by

Proposition D2 (for regular networks) and Propositions 5 and 6 (for general networks). As

above, these results are due to the fact that there is a trade-off between the price effect and

the social multiplier effect. When L, the number of firms, is small, the latter dominates the

former and firms benefit from an increase in network externalities δ and in network density.

When competition becomes very fierce because L is large, increasing δ or network density

decreases profit because the negative impact on prices is stronger than the positive network

effect.

5.3 A technical contribution

We discuss several technical aspects behind our results.

The underlying driving forces behind the profit results (regular and non-regular net-

works) are similar, i.e., the trade-off between the interaction of price effects of competition

and the market expansion social multiplier effects. For regular networks, these two effects

take simpler form due to the symmetry of the degree. The proofs are more involved for

non-regular network structures as both effects operate in the space of matrices due to the

heterogeneity of the nodes. Essentially, we reduce the complex problem of a general network

structure into a series of sub-problems with regular networks, in which each sub-problem is

easy to solve. Formally, we demonstrate that the equilibrium firm’s profit in any non-regular

network G can be decomposed into a weighted aggregation of several terms, where each term

corresponds to a regular network with d replaced by the corresponding eigenvalue of G, and

where the positive weight is equal to the square of the inner product of the vector a1/
√
N

and the associated eigenvector of G.

Mathematically, we show the following identity for the equilibrium firm’s profit:29

Π∗(G; β, δ, L) :=
∑

λi∈Spec(G)

Π∗reg(λi, β, δ, L)× (〈ui,
a1√
N
〉)2 (9)

where Spec(G) = {λ1, · · · , λN} is the set of eigenvalues of G, and ui is the corresponding

normalized eigenvector30 associated with λi. The proof of this identity uses the key Lemma

B1 in Appendix B, which is an application of the spectral decomposition theorem of the

network matrix G. The coefficient (〈ui, a1√
N
〉)2 is positive, unless ui is orthogonal to 1N .31

29We can adopt similar techniques to study comparative statics of other welfare measures. The details are
available upon request.

30In other words, each ui is of unit length, and Gui = λiui.
31An eigenvalue λi satisfying 〈ui,1〉 6= 0 is called a main eigenvalue of the network. The set of main

eigenvalues is called the “main part of the spectrum”, see Cvetković (1970).
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Consider a regular network G with degree d, we have λ1 = d and u1 = 1N/
√
N , and

only one term in the summation in (9) is non-zero. The reason is that all the eigenvectors

ui for i 6= 1 is orthogonal to u1, thus (〈ui, a1√
N
〉)2 = 0. For a non-regular network, there are

usually more non-zero summation terms in (9), as multiple coefficients can be positive.32

This identity greatly simplifies our analysis of the comparative statics results of the

profit in a general network structure, as we can exploit the results for the case of regular

networks, which are simpler and fully studied in Appendix D. For example, here we illus-

trate how one can apply the above identity to prove Proposition 5. First, note that the

coefficients (〈ui, a1√n〉)
2 are nonnegative. Analogous to equation (D12), we can first show

that ∂Π∗reg(λi, β, δ, L)/∂L < 0 for any λi ∈ Spec(G). Therefore, ∂Π∗(G; β, δ, L)/∂L <

0, i.e., we prove Proposition 5 (i). Second, similar to Proposition D1, we prove that

∂Π∗reg(λi, β, δ, L)/∂δ > (<)0 if and only if L < (>)χ(β/(1 − dλi)). Therefore, suppose

L < χ(β/(1− δλi)) for any λi ∈ Spec(G), we have ∂Π∗(G; β, δ, L)/∂δ > 0; this corresponds

to case (a) in Proposition 5 (ii). Case (b) can be shown in a similar way.

These techniques are very similar to those used in a recent paper by Galeotti, Golub, and

Goyal (2020), which also use spectral decomposition theorem to simplify the optimal targeted

interventions in networks. Here, we use them in a very different context of comparative

statics in oligopoly networks. Both papers, though focusing on different economic issues,

highlight the analytical advantages of looking at the problems through the angle of eigen-

decomposition and eigenvector space of the network matrix.

6 Free entry and optimal network structures

We now study how the market structure and network structure are determined. First, we

endogeneize the market structure by allowing for free entry of firms. Second, we endogeneize

the network structure by determining the firm’s and the user’s optimal network structure.

6.1 Equilibrium market structure with free entry

Suppose that the number of firms in the market is determined by a free-entry condition. We

assume that each firm pays a fixed cost for entering the market. We show that, when the fixed

cost is sufficiently large, the equilibrium market structure is relatively concentrated. In this

region, increasing network density or network technology level leads to more firms in the free-

entry equilibrium. On the contrary, when the fixed cost is sufficiently low, the equilibrium

32This identity should be viewed as a useful mathematical result rather than an economic identity since,
when the eigenvalue λi is negative (or not integer-valued), it does not make much sense to say that
Π∗reg(λi, β, δ, L) corresponds to a regular graph with degree λi.
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market structure is relatively competitive. We reach a different region: increasing network

density or network technology level leads to fewer firms in the free-entry equilibrium. The

results are mainly driven by the rotation of profit curve studied in the previous Section.

Given a fixed entry fee/cost f > 0, define LFE∗ as the number of firms in the free-entry

equilibrium such that Π∗(LFE∗) = f. Since Π∗(·) is strictly decreasing in L, LFE∗ is uniquely

determined.33 For ease of notation, we omit the other dependent variables (such as G, β, δ)

in the definition of LFE∗.

Proposition D3 in Appendix D.4 considers a regular network of degree d and shows that

the equilibrium number of firms LFE∗ decreases (increases) with δ when the entry cost f

is sufficiently small (large). It is a direct consequence of Proposition D1. For illustration,

consider Figure 5 in Example 3. When f is higher than the profit at the rotation point

(L ≈ 3.5), the free-entry number of firms is higher for the red curve with higher δ than for

the blue curve with lower δ. The reverse happens when f is lower than the profit at the

intersection point. Indeed, for a marginal increase in δ, the rotation point occurs exactly

when L = L∗ = χ
(

β
1−δd

)
by Proposition D1. Therefore, the threshold f̄ in Proposition

D3 is, in fact, equal to f̄ = Π∗reg(d; β, δ, χ
(

β
1−δd

)
). In reality, the size of f depends on the

institutional context, which varies from one industry to another. The above Proposition

provides several possible implications of the impact of technology or network improvement

on market concentration with endogenous firm entry.

Since the observation that increasing network density or δ leads to similar rotations of

the profit curve (see Proposition 5 (ii) and Proposition 6), a similar result (available upon

request) as in Proposition D3 holds in general network settings. What is new here is the fact

that the equilibrium number of firms not only depends on the entry cost f and the degree

of product substitution β, as it is usually the case, but also on the network structure and on

the intensity of the network effects δ.

6.2 User-optimal and firm-optimal network structures

So far, we have treated the network structure as given. We now fix the market structure L

and discuss what is the optimal network structure from the perspective of firms and from that

of the users.34 We show that, regardless of the market structure, users’ equilibrium utilities

always increase with network density. As a result, the optimal user-optimal network is always

the complete network. In contrast, firms’ preferences over network structure critically depend

on the market structure: the optimal network is the complete network when the number of

33We treat L as a continuous variable. To make our problem interesting, we assume f is below the
monopoly profit, i.e., f < Π∗(L)|L=1.

34Very few papers have examined optimal network design in network games. Exceptions include Belhaj
et al. (2016); Hiller (2017); König et al. (2019).
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firms is sufficiently small, while it is the empty network when competition is very fierce

(i.e., when there is a sufficiently large number of firms). Consequently, when the market is

relatively concentrated, i.e., L is small, firms’ and users’ preferences over network structures

are fully aligned. However, in highly competitive markets, i.e., L is large, their preferences are

exactly the opposite. These results highlight the importance of considering market structure

in determining network structures for various users.

In Proposition E5 in Appendix E.2, we show that the user -optimal network is the

complete network. Indeed, increasing network density benefits users in two different ways.

First, the equilibrium prices are lower, due to intensified price competition among firms

(see Proposition 2). Second, the network multiplier is stronger, which generates a greater

level of network benefits for users. Formally, in the proof of Proposition E5, we show that

the equilibrium user’s surplus is monotone in the equilibrium consumption of users, i.e,

u∗i ∝ (x∗i )
2. Recall that, in equilibrium, the consumption is given by the multiplication

of market expansion and the difference of marginal utility vector and price vector, i.e.,

x∗ = M+(a − p∗). With a denser network, the multiplier M+ is stronger and prices are

lower. The result then immediately follows.

From the firms’ perspective, increasing network density again generates two forces, which

work in the opposite directions. On the one hand, higher density leads to lower equilibrium

prices due to more competition, which reduces the profit’s margins and, hus, hurts firm’s

profitability. On the other hand, the demand enhancing effects due to stronger network

effects can benefit the firms. Which force dominates the other depends on L, the number of

existing competitors in the market.

Proposition E6 in Appendix E.3 shows that, when L is low enough, the firm-optimal

network is the complete network while, when L is high enough, the firm-optimal network is

the empty network. Moreover, part (ii) of Proposition E6 highlights the fact that adding a

link between any pair of nodes can result in an intensified price competition among firms

and, therefore, may drive down their profits. This phenomenon appears when the market is

relatively concentrated, and, in this case, users and firms hold opposite views of the optimal

network structure. Note that even if the network is empty, firms’ profits can still be strictly

positive because each user’s willingness to pay is positive from the stand-alone consumption

utility.

It is worth mentioning that, in reality, neither firms nor users have full flexibility in

adjusting the network structures. Thus, our results in Proposition E6 shall be regarded as

benchmarks of optimal networks. Nonetheless, the proofs of Propositions E5 and E6 reveal

a deeper principle: we provide unambiguous answers to the directions of the firm profit’s

and the user surplus’ changes if we add one additional link to an existing network.
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7 Conclusion

In this paper, we examine the interplay between the market structure (as measured by the

number of firms in the market that sell differentiated products) and the network structure

(as measured by its topology) among users who make consumption decisions. We show

that prices are set lower when either the network becomes denser (by adding links) or the

intensity of the network effects is stronger. This suggests an intensified competition among

firms due to network effects among users. Moreover, we show that price dispersion in the

market turns out to be small for the monopoly case and the very competitive case (i.e., when

there are many firms), and attains a maximum value in the intermediate range. We also

show that, when we increase the number of firms, initially prices are always driven down

(due to competition), but can revert to an uprising trend when the number of firms becomes

large.

We also find that increasing the intensity of network effects does not shift the firms’

profit curves but, instead, leads to a clockwise rotation. Improvement in network technology

generates a higher firm’s profit when there are only a few firms, but it dampens the firms’

profitability when there are many firms. This implies that, if free entry is allowed, the

improvement in network technology increases the equilibrium number of participating firms

only when the entry cost is high. Finally, we characterize the optimal network structures from

the perspectives of firms and users. Intriguingly, their rankings of network structures are

consistent when the number of firms is small and the products are sufficiently differentiated.

However, when there is a large number of firms or products are sufficiently homogeneous,

firms and users hold completely opposite views of the optimal network structures.

Our model could be extended in several possible directions. First, we mostly focus

on symmetric firms. Extending the analysis to asymmetric firms’ competition can address

new research questions. In addition, this symmetry prohibits us to study the impact of

mergers, which could be an interesting research avenue. Second, our analysis relies on the

common and perfect knowledge regarding the network structure among users and firms.

While this assumption is standard and holds for relatively small networks, relaxing it will

lead to asymmetric network information and would allow us to study the interactions between

network knowledge and market structure. We leave these exciting topics for future research.
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Appendix

A Matrix notation, Katz-Bonacich centrality and some

preliminary results

Matrix notation. Let A′ denote the transpose of matrix A. In is the n×n identity matrix,

Jmn is the m× n matrix with 1’s, and 1n = Jn1 is a column vector with 1s:

In =

1 · · · 0
. . .

0 · · · 1


n×n

, Jmn =

1 · · · 1
...

. . .
...

1 · · · 1


m×n

, 1n =

1
...

1


n×1

.

The inner product of two column vectors x = (x1, · · · , xn)′ and y = (y1, · · · , yn)′ in Rn

is denoted by 〈x,y〉 = x′y =
∑

i xiyi. We use 0 to denote the zero matrix with suitable

dimensions. For any two matrices A and B, A � (�)B if component-wise aij ≤ (≥)bij for

all i, j. Consequently, A is a positive matrix if A � 0. A square symmetric matrix A is

called positive definite if all of its eigenvalues are strictly positive.

Katz-Bonacich centrality. Let us define the Katz-Bonacich centrality. Denote by

λ1(G) the spectral radius of matrix G. Since G is a nonnegative matrix, by the Perron-

Frobenius Theorem it is also equal to its largest eigenvalue.

Definition A1. Assume 0 ≤ δ < 1/λ1(G). Then, for any vector a = (a1, · · · , an)′ ∈ Rn,

the Katz-Bonacich centrality vector with weight a is defined as:

b(G, δ, a) := M(G, δ)a, (A1)

where

M(G, δ) = [I− δG]−1 = I +
∑
k≥1

δkGk. (A2)

Let bi(G, δ, a) be the ith entry of b(G, δ, a). Let mij(G, δ) be the ij entry of M(G, δ). Then,

bi(G, δ, a) =
∑
j

mij(G, δ)aj.

Some preliminary results. We would like now to present some results: Lemma A1

and Lemma A2, which will be used in the proofs in Appendix B.
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Lemma A1. Suppose β ∈ [0, 1) and L ≥ 1. Define the L× L matrix Ψ as:

Ψ =


1 β · · · β

β 1 · · · β
...

. . . . . .
...

β · · · β 1


L×L

. (A3)

Then (i) the matrix Ψ is positive definite. (ii) For a > 0, the function

v(x) = ax′1L −
1

2
x′Ψx = a(

L∑
t=1

xt)− 1

2

L∑
t=1

(xt)2 − β

2

L∑
t=1

∑
s 6=t

xsxt, x = (x1, · · · , xL) ∈ RL

has a unique maximizer at x∗ = x̂1L with the maximum value v(x∗) = L(1+(L−1)β)
2

(x̂)2, where

x̂ = a
1+(L−1)β

.

Proof of Lemma A1: The eigenvalues of Ψ: 1−β (with multiplicity L−1), and 1+(L−1)β

(with multiplicity 1), are strictly positive, and hence Ψ is positive definite. The FOC of

maximizing v is just a1L = Ψx∗ which, by symmetry, leads to:

x∗ = aΨ−11L =
a

1 + (L− 1)β
1L

Since v(·) is strictly concave by (i), x∗ is the unique global maximizer. Substituting x∗ into

v(·) yields the maximum value.

Lemma A2. Under Assumption 2.

(i) For any λi ∈ Spec(G),

1−β−λiδ > 0, 1+(L−1)β−λiδ > 0, 1+(L−2)β−λiδ > 0, 2+(L−3)β−2λiδ > 0.

(ii) The following matrices are symmetric and positive definite:

[(1−β)In−δG]−1, [(1+(L−1)β)In−δG]−1, [(1+(L−2)β)In−δG]−1, [(2+(L−3)β)In−2δG]−1.

Moreover, for each matrix above, every entry is nonnegative.

Proof of Lemma A2: (i) Note that λ1 is the largest eigenvalue in Spec(G). So λi ≤ λ1,
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implying 1− β − λiδ ≥ 1− β − λ1δ > 0 by Assumption 2. Moreover,

1 + (L− 1)β − λiδ ≥ 1 + (L− 2)β − λiδ = (1− β − λiδ)︸ ︷︷ ︸
>0

+ (L− 1)β︸ ︷︷ ︸
≥0

> 0

and

2 + (L− 3)β − 2λiδ = (1− β − λiδ) + (1 + (L− 2)β − λiδ) > 0.

(ii) The eigenvalues of [(1 − β)In − δG]−1 are precisely 1
1−β−λiδ , where λi ∈ Spec(G).

Since 1
1−β−λiδ > 0 by part (i), [(1 − β)In − δG]−1 is positive definite. The nonnegativeness

of the matrix follows from

[(1− β)In − δG]−1 =
1

1− β
M(G,

δ

1− β
) =

1

1− β
∑
j≥0

(
δ

1− β
)jGj � 0.

The proofs for the other three matrices are similar.
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B Proofs

Proof of Proposition 1: The FOC at the symmetric prices p∗ is derived in the main text:

[(1+(L−1)β)IN−δG]−1(a−p∗) =
[(1 + (L− 1)β)IN − δG]−1 + (L− 1)[(1− β)IN − δG]−1

L
(p∗−c).

Solving this linear equation of p∗ yields the symmetric prices in Proposition 1. We provide

two equivalent expressions for the equilibrium prices p∗ in (B4). We will adopt the most

convenient form in the analysis later.

p∗ = [(2 + (L− 3)β)IN − 2δG]−1 [(1− β)IN − δG] a + [(1 + (L− 2)β) IN − δG] c

=
a + c

2
− (L− 1)β

2
[(2 + (L− 3)β)IN − 2δG]−1(a− c). (B4)

Next we check the second-order conditions of firms’ optimization problem. Recall that

Π1 = 〈x1,p1 − c〉. Since x1 is linear in p1, the Hessian matrix of Π1 with respect to p1 is

just −2M++(L−1)M−

L
by Corollary C1, which is negative definite by Lemma A2. As a result,

the profit function Π1 is strictly concave in p1, and FOCs are sufficient for optimality.

Under this symmetric pricing equilibrium, for each firm the consumption vector is

x∗ = M+(a− p∗) = [(1 + (L− 1)β)IN − δG]−1(a− p∗)

= [(1 + (L− 1)β)IN − δG]−1[(2 + (L− 3)β)IN − 2δG]−1[(1 + (L− 2)β)IN − δG](a− c).

and the equilibrium profit is Π = 〈x∗, ( p∗−c)〉, which can be simplified to 〈(a−c),Φ(G)(a−
c)〉, where

Φ(z) :=
(1 + (L− 2)β − δz)(1− β − δz)

(1 + (L− 1)β − δz)(2 + (L− 3)β − 2δz)2
.

Remark B1. In the symmetric equilibrium, the consumption vector x∗ = M+(a − p∗) is

positive as M+ � 0 and a−p∗ � (a−c)/2. Moreover we can show that there is no asymmetric

pricing equilibrium. Hence, the symmetric pricing equilibrium stated in Proposition 1 is

unique.

Proof of Proposition 2: With Assumption 3, which assumes that c = 0 and ai = a for all

i, the equilibrium prices are given by:

p∗ =
1

2
1N −

(L− 1)β

2
[(2 + (L− 3)β)IN − 2δG]−11N ,
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by using the formula in the first row of (B4). Note that

[(2 + (L− 3)β)IN − 2δG]−1 =
1

(2 + (L− 3)β)

∑
j≥0

(
2δ

2 + (L− 3)β

)j
Gj.

When G′ � G′′, and δ′ ≥ δ′′, clearly,

[(2 + (L− 3)β)IN − 2δ′G′]−1

=
1

(2 + (L− 3)β)

∑
j≥0

(
2δ′

2 + (L− 3)β

)j
G′j

� 1

(2 + (L− 3)β)

∑
j≥0

(
2δ′′

2 + (L− 3)β

)j
G′′j

= [(2 + (L− 3)β)IN − 2δ′′G′′]−1.

Consequently, p∗(G′, δ′) � p∗(G′′, δ′′).

Proof of Proposition 3: With Assumption 3, which assumes that c = 0 and ai = a for all

i, the equilibrium prices are given by:

p∗ = a[(2 + (L− 3)β)IN − 2δG]−1 [(1− β)IN − δG] 1N .

by using the formula in the first row of (B4). We have

∂p∗

∂L
= −aβ[(2 + (L− 3)β)IN − 2δG]−1[(2 + (L− 3)β)IN − 2δG]−1 [(1− β)IN − δG] 1N .

For case (i), we have 1− β − δdi > 0 for every i, so [(1− β)IN − δG] 1N � 0. Furthermore,

[(1− β)IN − δG] 1 � 0 and [(2 + (L− 3)β)In − 2δG]−1 � 0. Thus, ∂p∗

∂L
� 0.

For case (ii), for any node i with 1−β−δdi < 0, for large L, by equation (E16) in Proposition

E4 in Appendix E, we have:

p∗i =
1− β − δdi

βL
+O(L−2)

Clearly, ∂p∗i /∂L > 0 when L is sufficiently large (see (E17)). Moreover, the fact that

∂p∗i /∂L < 0 for small L follows from the observation that

∂p∗

∂L
|L=1 = −aβ

4
[(1− β)IN − δG]−11︸ ︷︷ ︸

�0

� 0.
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This proves the results.

Proof of Proposition 4 : When L = 1, p∗i = p∗j = a
2
, so the dispersion is zero. As

L → ∞, the equilibrium price p∗i converges to zero for any i ∈ N by Proposition E4; again

the dispersion is zero. Consequently, the maximal dispersion must occur when L takes some

intermediate value l∗. Obviously, such l∗ is strictly greater than one.

Proof of Remark 1 : The equilibrium price, by taking the Taylor series expansion of (5)

with respect to δ, takes the following forms when δ is small:

p∗ =
(1− β)a + (1 + (L− 2)β)c

(2 + (L− 3)β)
− δ (L− 1)β

(2 + (L− 3)β)2
G(a− c) +O(δ2).

Under Assumptions 3, p∗i − p∗j ≈ δ (L−1)β
(2+(L−3)β)2

(di − dj) (we omit the higher-order terms of

δ), implying Disp(l) = δ (L−1)β
(2+(L−3)β)2

(dmax − dmin). The result about L∗ just follows from the

observation that:

(L− 1)β

(2 + (L− 3)β)2
=

(L− 1)β

((2− 2β) + (L− 1)β)2
≤ (L− 1)β

4(2− 2β)(L− 1)β
=

1

8(1− β)

Here we use a simple fact: for positive numbers a and b, (a+ b)2 ≥ 4ab with equality when

a = b.

Proof of Proposition 5: Before proving this proposition, we state and prove the following

Lemma:

Lemma B1 (Localization Lemma). Suppose f(z) is an analytical function on an interval

which contains Spec(G), so that f(G) is well-defined. Then, we have the following

v′f(G)v =
∑

λi∈Spec(G)

f(λi)(v
′ui)

2.

In particular, if f(z) is positive (nonnegative) at any λi ∈ Spec(G), then v′f(G)v > (≥)0

for any v ∈ Rn\{0}.

Proof of Lemma B1: The first part of this Lemma is a direct application of the spectral

theorem adapted to the symmetric matrix G, so we omit the proof, which is standard. For

the second part, when f(λi) ≥ 0 for every λi, clearly v′f(G)v ≥ 0. When f(λi) > 0, and

v 6= 0, v′ui is non-zero for at least one i as these eigenvectors {ui} form a basis of Rn. As

a result, v′f(G)v > 0.
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We can now prove Proposition 5. We first show identity (9). In the proof of Proposition

1, we show that the equilibrium profit, which equals 〈M+(a− p∗),p∗〉, can be rewritten as

Π∗(G; β, δ, L) = 〈a,ΦPT (G)a〉,

where

ΦPT (z; β, δ, L) :=
(1 + (L− 2)β − δz)(1− β − δz)

(1 + (L− 1)β − δz)(2 + (L− 3)β − 2δz)2
.

Note that when z = d, ΦPT (d; β, δ, L) exactly equals 1
n
× Πreg(d; δ, β, L) in (D11). The

identity then just follows from Lemma B1. The rest of the proof follows from the discussion

in the main text.

Proof of Proposition 6: We assume G′ � G′′. When L = 1, Π∗(G; β, δ, L = 1) =
1
4
a′[IN − δG]−1a is monotone in G; in other words, Π∗(G′; β, δ, L = 1) > Π∗(G′′; β, δ, L = 1)

as G′ � G′′. By continuity, we obtain part (i). Using the following tarylor series expansion

of ΦPT at L =∞:

ΦPT (z; β, δ, L) =
(1− β − δz)

β2

1

L2
+O(L−3),

we obtain

Π∗(G; β, δ, L) = 〈a, (1− β)IN − δG)

β2

1

L2
a〉+O(L−3).

Therefore,

Π∗(G′; β, δ, L)− Π∗(G′′; β, δ, L) = 〈a, δ(G
′′ −G′)

β2
a〉︸ ︷︷ ︸

<0, as G′ � G′′

× 1

L2
+O(L−3).

So, for sufficiently large L, Π∗(G′; β, δ, L) < Π∗(G′′; β, δ, L),which proves part (ii).
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C Consumption equilibrium

Given the price profile, each user i maximizes

ui(xi,x−i)−
L∑
l=1

plix
l
i =

L∑
l=1

(ai − pli)xli −
1

2

L∑
l=1

(xli)
2 − 1

2

L∑
l=1

∑
s 6=l

βxsix
l
i + δ

L∑
l=1

(
N∑
j=1

gijx
l
ix
l
j

)
.

With the presence of prices, the marginal utility ai is reduced exactly by pti for each product t.

The following Lemma regarding the consumption equilibrium directly follows from Theorem

3 of Chen et al. (2018b), after taking into account the prices.

Recall

M+ := [(1 + (L− 1)β)In − δG]−1, M− := [(1− β)In − δG]−1.

Lemma C1 (Consumption Equilibrium). In the consumption game:

(i) Given any price profile p, there exists a unique consumption equilibrium x(p) =

(xl(p), l ∈ L).1 Furthermore, the demand vector of each firm l, xl(p), is linear in

p and given by:

xl(p) = M+

(
a−

∑
s∈L ps

L

)
−M−

(
pl −

∑
s∈L ps

L

)
. (C5)

(ii) When every firm charges the same prices p, the unique CE is symmetric, and, for any

t ∈ L, is equal to:

xl = xsym(p) = M+(a− p) = [(1 + (L− 1)β)IN − δG]−1(a− p). (C6)

Proof of Lemma C1: Part (i) of this Lemma directly follows from Theorem 3 of Chen

et al. (2018b). Given the functional forms of user utilities, the system determined by the

first-order conditions for the underlying consumption equilibrium is linear both in x and p.

Under Assumption 2, the system has a unique solution x(p) (i.e., the CE), which linearly

changes with prices as given in (C5). Part (ii) directly follows from (i), as when pt = p for

any l ∈ L, we have pt =
∑
s∈L ps

L
= p for any l.

To obtain some intuition, we first consider the average demands of firms by summing

1Here xl = (xl1, · · · , xlN )′ is the demand vector of firm l (which is different from xi, the consumption
bundle of user i). So (xl, l ∈ L) and (xi, i ∈ N ) are two equivalent representations of x.
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up (C5) over L:

1

L

∑
s∈L

xs = M+

(
a− 1

L

∑
s∈L

ps

)
. (C7)

As a result, M+ measures the marginal reduction of the average demands of firms for

marginal increment of average prices.2 Similarly, the difference of demands between two

different firms l and s, by taking the difference of (C5) for l and s, satisfies

xl − xs = −M−(pl − ps). (C8)

In other words, M− measures (the negative value of) the marginal reduction of the demand

difference between two firms for marginal increment of price differences between these two

firms.3 Accordingly, two firms charging the same prices must obtain equal demands; this

is consistent with Lemma C1 (ii). Since M+ and M− measure the marginal reductions, we

hereby call them the sensitivity matrices.

Next, we link these sensitivity matrices M+ and M− to the underlying network structure

and market structure. We introduce the following inverse Leontief matrix in the network

literature

M(G, δ) = [IN − δG]−1 = IN + δG + δ2G2 + · · ·+,

where each entry mij of M represents the total number of walks from i to j in network G

with each walk of length k discounted by δk (the infinite sum converges when δ < 1/λ1(G),

see, for instance, Ballester et al. (2006)). In fact, both matrices are proportional to the

inverse Leontief matrix M with some adjustments. The discount factor δ is adjusted by a

factor of 1
1+(L−1)β

for M+ and a factor of 1
1−β for M−:4

M+ =
1

1 + (L− 1)β
M

(
G,

δ

1 + (L− 1)β

)
=

1

1 + (L− 1)β

∑
j≥0

(
δ

1 + (L− 1)β

)j
Gj,

M− =
1

(1− β)
M

(
G,

δ

1− β

)
=

1

(1− β)

∑
j≥0

(
δ

1− β

)j
Gj.

Since β ∈ [0, 1), 1
1+(L−1)β

is less than one, and it decreases with the number of firms L (and

product differentiation parameter β). The latter implies that the network structure is less

pronounced in shaping the sensitivity of the average demands with respect to prices, when

there are more firms or when products are more homogeneous. However, 1
1−β is greater

2It also implies that −∂{x
1+···+xL}
∂ps = [(1 + (L− 1)β)In − δG]−1 = M+.

3It also implies that −∂{x
l−xs}
∂pl

= [(1− β)In − δG]−1 = M−.
4Both M+ and M− have the similar path-counting interpretations as M. Both infinite sums converge by

Assumption 2.
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than one, which implies that competition among substitutable products amplifies the role

of network structure in shaping the sensitivity of relative demand of firms with respect to

price changes. Notably, the adjustment factor 1/(1− β) for M− does not change with L.

In view of the interpretations in equations (C7)-(C8), we call M+ the market expan-

sion social multiplier, and M− the business-stealing social multiplier, as the former reflects

the impact of network structure on the aggregate demand of all firms (see (C7) or (C6)),

and the latter refers to the impact of network structure on the demand differences of two

competing firms (see (C8)). Interestingly, because 1
1+(L−1)β

≤ 1 ≤ 1
1−β , the business-stealing

social multiplier is stronger than the market expansion social multiplier, i.e.,5 M− � M+.

Moreover, as the number of firm L increases, the market expansion effect of social network is

diminished (M+ is weaker), while the business stealing effect of social network M− remains

the same.6

The following Corollary directly follows from Lemma C1 and our discussions above.

Corollary C1. For l 6= s ∈ L, we have:

∂xl

∂pl
= −M+ + (L− 1)M−1

L
� 0

and
∂xs

∂pl
= −M+ −M−1

L
� 0.

Corollary C1 shows that linear combinations of M+ and M− determine the sensitivity

of a firm’s demands with respect to prices charged by herself and her competitors. Since

products are substitutable, raising firm l’s prices reduces l’s demands and increases competi-

tor s’s demands: ∂xl

∂pl
� 0 and ∂xs

∂pl
� 0. Interestingly, the “own-price” sensitivity −∂xl

∂pl
is a

convex combination of M+ and M− but with more weight on M−1 and, therefore, smaller

weight on M+, for a larger number of firms.

5Formally, M− −M+ = M−LβM+ � 0.
6Formally, ∂M+/∂L = −M+βM+ � 0 and ∂M−/∂L = 0.

A10



D Regular networks

In this Appendix, we focus on regular graphs.

Definition D1. A network G is called regular with degree d if every node has the same

degree d, i.e.,
∑

j∈N gij = d,∀i ∈ N . Equivalently, G1N = d1N .

The complete and the circle network are both regular with degree (N − 1) and 2,

respectively.

D.1 Equilibrium prices

For a regular network, G1N = d1N . Using (B4), we obtain the following equilibrium prices:

p∗ = a[(2 + (L− 3)β)IN − 2δG]−1[((1− β)IN − δG)1N

= a
(1− β − δd)

2 + (L− 3)β − 2δd
1N (D9)

= a
1

2 + (L−1)β
1−β−δd

1N .

Set a = 1 in (D9). Then, we obtain the following common equilibrium price (mark-up) for

regular networks with degree d:

p∗i = p∗j = p∗reg :=
(1− β − δd)

2 + (L− 3)β − 2δd
=

1

2 + (L−1)β
1−β−δd

∈ (0,
1

2
]. (D10)

Indeed, since the Katz-Bonacich centrality measures are the same for all nodes in a regular

network, every user gets the same equilibrium price. Note that 1
1+(L−1)β−δd×(1−p∗reg) is each

user’s equilibrium demand while 1
1+(L−1)β−δd is the corresponding market expansion social

multiplier. Indeed, for a regular network, G1N = d1N , and therefore

M+1N =
1

1 + (L− 1)β − δd
1N .

This term decreases with L and β, and increases with δ and d. For a regular network with

degree d, each firm’s equilibrium profit is then equal to:

Π∗reg :=
n(1− p∗reg)p∗reg

1 + (L− 1)β − δd
. (D11)
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D.2 The effects of market and network structure on equilibrium

prices

By differentiating the equilibrium price in (D10), we easily obtain:7

∂p∗reg
∂δ

< 0,
∂p∗reg
∂d

< 0,
∂p∗reg
∂L

< 0.

Thus, for a regular network with degree d, only Proposition 3 (i) occurs and prices decrease

with L for all nodes, i.e.,
∂p∗reg
∂L

< 0. Moreover, by Proposition E4, equilibrium prices (mark-

ups in our setting) for a regular network always lie above zero.8

D.3 The effects of market and network structure on equilibrium

profits

The equilibrium firm’s profit is given by (D11), which is the product of (1 − p∗reg)p∗reg and
1

1+(L−1)β−δd . We study the impact of the number of firms L on the firm’s profit. First, note

that the price effect of L is negative:

∂{(1− p∗reg)p∗reg}
∂L

= (1− 2p∗reg)
∂p∗reg
∂L

< 0

as p∗reg decreases with L and p∗reg lies between 0 and 1/2 (see (D10)). Moreover, the social

multiplier 1
1+(L−1)β−δd is weaker for larger L. Since both effects move in the same direction,

we have:9
∂Π∗reg
∂L

< 0. (D12)

Next, we characterize the impact of δ on the firm’s profit. Similarly, the price effect of

δ is negative:
∂{(1− p∗reg)× p∗reg}

∂δ
= (1− 2p∗reg)

∂p∗reg
∂δ

< 0,

but the social multiplier effect is positive: 1
1+(L−1)β−δd is stronger with larger δ. Therefore,

the net effect of δ on the firm’s profit is determined by the battle of these two effects. The

following Proposition characterizes the exact necessary and sufficient conditions under which

one force dominates the other and the net effect can be determined.

7Indeed, since 1

2+
(L−1)β
1−β−δd

strictly decreases with δ, d and L, the results immediately follow.

8For a regular network with (common) degree d, λ1 = d and Assumption 2 reduces to 1− β − δd > 0. So
Assumption 2 rules out case (ii) in Proposition 3.

9It is easy to show that Π∗reg converges to zero as L goes to infinity.
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Proposition D1. Consider a regular network with degree d. The sign of
∂Π∗reg
∂δ

is positive

when L is sufficiently small and negative when L is sufficiently large. More precisely, there

exists a threshold L̄ (depending on β and δ) such that

∂Π∗reg
∂δ

> (<)0 if and only if L < (>)L̄ := χ

(
β

1− δd

)
,

where χ(.) is the function defined in Lemma D1 in Appendix D.3.10

Before proving Proposition D1, we need to state and prove the following Lemma:

Lemma D1. Define

h(β, l) := 2 + 3(l − 3)β − 6(l − 2)β2 − (l3 − 2l2 − 2l + 5)β3. (D13)

on the domain O = {(β, l) ∈ R2|β ∈ [0, 1], l ≥ 1}. There exists a continuously differentiable

and strictly decreasing function χ() : [0, 1] → [1,∞) of β with χ(1) = 1, limβ→0+ χ(β) = ∞
such that

h(β, l) > (<)0 if and only if l < (>)χ(β). (D14)

Proof of Lemma D1: We complete the proof in several steps.

First, we show that for each l ≥ 1, there exists a unique number β∗(l) ∈ [0, 1] with

g(β∗(l), l) = 0. The existence of such a root β∗ follows from Mean Value Theorem, as

g(0, l) = 2 > 0, and g(1, l) = −l(l − 1)2 ≤ 0. To show the uniqueness, we need to check the

first and second derivatives of h:

hβ(β, l) = 3(l − 3)− 12(l − 2)β − 3(l3 − 2l2 − 2l + 5)β2,

with hβ(0, l) = 3(l − 3), and

hββ(β, l) = −12(l − 2)− 6(l3 − 2l2 − 2l + 5)β.

Also note that for l ≥ 1, the coefficient of β3, −(l3 − 2l2 − 2l + 5), of g is negative as the

minimum value of l3 − 2l2 − 2l + 5 on l ∈ [1,∞) is about 0.73 > 0 at l∗ ≈ 1.72076.

(i) When l > 3, hββ(β, l) < 0 for any β ∈ [0, 1], so h is concave in β. Moreover,

hβ(0, l) = 3(l − 3) > 0, so h first increases , then decrease with β. Since h(0, l) = 2 > 0, h

has a unique root on [0, 1].

(ii) When 2 ≤ l ≤ 3, hβ is negative for any β ∈ [0, 1]. Thus, h is strictly decreasing in

β, which implies uniqueness.

10χ is continuously differentiable and strictly decreases with β. See the proof of Lemma D1. The graph
of χ is plotted in Figure D1.
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(iii) When 1 < l < 2, recall that −hβ/3 = ((l3 − 2l2 − 2l + 5)β2 − 4(2− l)β + (3− l)),
since the leading coefficient (l3 − 2l2 − 2l + 5) > 0, and the discriminant

D := (−4(2− l))2 − 4(l3 − 2l2 − 2l + 5)(3− l) = 4(l − 1)2 (1 + l2 − 3l)︸ ︷︷ ︸
<0, given l∈(1,2)

< 0,

So ((l3 − 2l2 − 2l + 5)β2 − 4(2− l)β + (3− l)) > 0 for any β ∈ [0, 1], and therefore h is

strictly decreasing in β. This implies uniqueness.

(iv) When l = 1, h(β, 1) = 2(1− β)3, so the unique root is β∗(1) = 1.

The analysis above also shows that

g(β, l) > (< 0) if and only if β < (>)β∗(l).

Clearly the unique β∗(l) is continuously differentiable in l. Moreover β∗(1) = 1 and β∗ → 0+

as l →∞.

Second, we show that for each fixed β ∈ (0, 1], there exists a unique χ∗(β) ≥ 1 such that

h(β, l∗(β)) = 0. To this end, we write h as

h(β, l) = 2(1− β)3 + 3β(1− β)2(l − 1)− β3(l − 1)2 − β3(l − 1)3.

Again the existence of such as l∗(β) follows from mean value theorem, as g(β, 1) = 2(1−β)3 ≥
0 and g(β,∞) = −∞. To show uniqueness, we check that

hll(β, l) = −2β3 − 6β3(l − 1) < 0 ( asl ≥ 1)

and

hl(β, 1) = 3β(1− β)2 > 0.

Therefore, h(β, l) is concave in l, and it is positive for small l, first increases with l, and then

decreases with l. So the solution to {l : h(β, l) = 0} is unique. Clearly, χ∗(β) is continuously

differentiable in β. The analysis above also shows that

g(β, l) > (< 0) if and only if l < (>)χ∗(β).

Third, combining with both observations about β∗(l) and χ∗(β), it is immediate that β∗(l)

is the inverse function of χ∗(β), and vice versa. In particular, both curves are injective, and

hence monotone. In Figure D1, we plot the cutoff curve β∗(·), which is indeed decreasing

with l. The curve χ(·) is just the inverse function of such β∗(·), and hence it decreases with

β.11

11For l = 1, 2, · · · , 10, β∗(l) is about 1.0, 0.596072, 0.45541, 0.369902, 0.311759, 0.269522, 0.237411,

A14



2 4 6 8 10
number of firms

0.2

0.4

0.6

0.8

1.0

beta

Figure D1: The cutoff curve β∗(l): below (above) the curve, the function h in Lemma D1 is
positive (negative).

Proof of Proposition D1: Direct differentiation shows that

∂Π∗reg
∂δ

=
dn [(−(5− 2L− 2L2 + L3)β3 − 6(L− 2)β2(1− dδ) + 3(L− 3)β(1− dδ)2 + 2(1− dδ)3)]

(1 + (L− 1)β − δd)2(2 + (L− 3)β − 2δd)3

=

{
dn(1− dδ)3

(1 + (L− 1)β − δd)2(2 + (L− 3)β − 2δd)3

}
︸ ︷︷ ︸

>0

h

((
β

1− δd

)
, L

)

where h(·, ·) is defined in (D13) in Lemma D1. Therefore,
∂Π∗reg
∂δ

has the same sign as that of

h(
(

β
1−δd

)
, L). The rest just follows from Lemma D1.

The economic intuition behind Proposition D1 is very simple. When the number of

firms L is relatively small (or β is very small), the equilibrium prices are very close to 1/2

(the monopoly price), and accordingly 1− 2p∗reg is close to zero. Consequently, the effect of
∂{(1−p∗reg)×p∗reg}

∂δ
= (1− 2p∗reg)

∂p∗reg
∂δ

is not very strong compared to the social multiplier effect.

As a result, the firm’s profit increases with δ. On the contrary, when L is sufficiently large,

competition is so intense that the equilibrium price is close to zero (see Proposition E4), and

the price effect of δ dominates the social multiplier effect. This implies that the firm’s profit

decreases with δ. Moreover, the threshold χ
(

β
1−δd

)
is strictly above 1. Thus, for very small

0.212159, 0.191773, 0.174969, respectively. Conversely, for β = 0.1, 0.2, · · · , 1.0, the threshold χ∗(β) is about
18.5628, 8.57185, 5.24991, 3.59808, 2.61803, 1.97933, 1.54419, 1.25, 1.07078, 1., respectively.
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L, say L = 1, we have
∂Π∗reg
∂δ

> 0. Also, χ
(

β
1−δd

)
is finite by Lemma D1; eventually,

∂Π∗reg
∂δ

is

negative for sufficiently large L. Moreover, since χ(·) is decreasing, the cutoff L̄ is smaller

with higher β, higher d and larger L.

Proposition D1 have several additional implications.

Corollary D2. Suppose Assumption 3 holds. Consider a regular network with degree d, as

a function of δ ∈ [0, 1−β
d

).12 Then,

Π∗reg is


monotonically increasing in δ, if L = 1;

an inverted U-shaped curve of δ, if 1 < L < χ(β);

monotonically decreasing in δ, if L ≥ χ(β).

Proof of Corollary D2: By Proposition D1,

∂Π∗reg
∂δ

> (<)0 if and only if L < (>)χ

(
β

1− δd

)
if and only if

β

1− δd
< (>)χ−1(L).

The rest follows immediately.

We now study the impact of varying the degree d. Since dδ is a sufficient statistics of

Π∗reg, the next result immediately follows from Proposition D1.

Proposition D2. Consider a regular network with degree d. Then, Sign{∂Π∗reg/∂d} =

sign{∂Π∗reg/∂δ}.

Proof of Proposition D2: Note that Π∗reg depends on d and δ only through the product

dδ. Therefore, ∂Π∗reg/∂d = δ
d
∂Π∗reg/∂δ. The rest follows immediately.

D.4 Equilibrium market structure with free entry

Proposition D3. Consider a regular network with degree d. The number of firms LFE∗ in

the free-entry equilibrium decreases (increases) with δ when the entry fee f is sufficiently

small (large). More precisely, there exists a threshold f̄ such that

∂LFE∗

∂δ
> (<)0 if and only if f > (<)f̄ .

This result is a direct consequence of Corollary D2. Note that f̄ = Π∗reg(d; β, δ, χ
(

β
1−δd

)
).

12The upper bound on δ makes sure that Assumption 2 holds.
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E Additional results

E.1 Perfect competition

Regardless of the network structure, the equilibrium price must go to zero in the perfect

competition limit.

Proposition E4. For large L, we have:

p∗ =
(1− β)1n − δG1n

βL
+O(L−2) (E15)

or equivalently, for each i ∈ N ,

p∗i =
1− β − δdi

βL
+O(L−2) (E16)

As L→∞, p∗i converges to 0, for any G, δ, β.

Proof of Proposition E4: Using the Taylor expansion of the equilibrium prices (5) in

Proposition 1 at L =∞, we obtain the following result

p∗ =
(1− β)1n − δG1n

βL
+O(L−2),

which proves (E16). In particular, as L→∞ , clearly we have p∗ → 0.

Recall that we normalize the marginal cost to be zero, and prices here are mark-ups.

Also, for large L,
∂p∗i
∂L
≈ −1− β − δdi

βL2
(E17)

E.2 User-optimal network structure

Let G denote the set of networks with n nodes: G = {G ∈ {0, 1}n×n : gii = 0, gij = gji}. Let

Kn denote the complete network, and ∅ denote the empty network.

Proposition E5. Under any market structure, among networks in G, the user-optimal net-

work is the complete network.

Proof of Proposition E5: By Lemma A1, each user’s equilibrium utility is equal to:
L(1+(L−1)β)

2
(x∗i )

2, for each i, while the equilibrium consumption x∗ = (x∗1, · · · , x∗n) is given by
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x∗ = M+(a− p∗). The rest just follows from the discussions in the main text.13

E.3 Firm-optimal network structure

Proposition E6. Fix the number of firms L. Then, the firm-optimal network is given by:

(i) When L < χ(β), there exists δ̄ > 0 such that, for any 0 < δ < δ̄, the firm-optimal

network is the complete network.

(ii) When L > χ(β), there exists ¯̄δ > 0 such that, for any 0 < δ < ¯̄δ, the firm-optimal

network is the empty network.

Proof of Proposition E6: When δ is small, each firm’s equilibrium profit is equal to:

Π∗(G) =
(1 + (L− 2)β)(1− β)

(1 + (L− 1)β)(2 + (L− 3)β)2
〈a, a〉

+δ
2 + 3(L− 3)β − 6(L− 2)β2 − (L3 − 2L2 − 2L+ 5)β3

(1 + (L− 1)β)2(2 + (L− 3)β)3
〈a,Ga〉+O(δ2)

which follows from the following Taylor series expansion of ΦPT at δ = 0:

Consider two networks G′ and G′′,

Π∗(G′)−Π∗(G′′) = δ

:=h(β,L)︷ ︸︸ ︷
2 + 3(L− 3)β − 6(L− 2)β2 − (L3 − 2L2 − 2L+ 5)β3

(1 + (L− 1)β)2(2 + (L− 3)β)3︸ ︷︷ ︸
>0

〈a, (G′−G′′)(a)〉+O(δ2)

Note that 〈a, (G′−G′′)(a)〉 =
∑

i,j aiaj(g
′
ij−g′′ij) is positive whenever G′ � G′′ (i.e., g′ij ≥ g′′ij

for any i, j, with strict inequality for some i, j). The sign of h(β, L) is given by Lemma D1.

When L < χ(β), h(β, L) is positive, and therefore increasing network density generates a

higher firm profit: Π∗(G′) − Π∗(G′′) > 0 for small δ, whenever G′ � G′′. This shows case

(i). The proof of case (ii) is similar.

13By the same argument, user surpluses increase with δ for any G and L.
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