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1 Introduction

The Great Recession that occurred in 2007-2009 was the major recent economic event that

stressed the deficiency of macroeconomists to provide reliable forecasts in turmoil periods.

The poor performance of the economic models was mainly driven by their weakness to

predict abrupt changes in economic series that are usually observed around crisis periods

(see e.g. , Ferrara, Marcellino, and Mogliani (2015), Potter (2011) inter alia).

In the macroeconomic and financial literature, it is well known that forecasting is af-

fected significantly by parameter instability (see, e.g., Clements and Hendry (1998), Hendry

(2000), Stock and Watson (1996), Pesaran, Pick, and Timmermann (2011) inter alia). For in-

stance, assuming wrongly a fixed model structure will result in inconsistent parameter

estimates and probably, major forecast failures. Various methods have been developed

to incorporate parameter changes in econometric models. A common approach is to as-

sume that parameters change continuously over time. In this case, the breaks are generally

of smaller size and occur at every period, resulting in a slowly changing parameter vec-

tor. In particular, random coefficient models assume parameters that evolve stochastically

over time, typically as persistent stochastic processes. These specifications are commonly

adopted in the macroeconometric modelling and forecasting literature (see, e.g., Nicholls

and Pagan (1985), Cogley and Sargent (2005), Primicery (2005)).

An alternative approach assumes that changes occur rarely and are abrupt. A key ref-

erence in this context is Hamilton (1989), whose model with Markov switching coefficients

has been later extended in various directions. Kapetanios and Tzavalis (2010) and Den-

dramis, Kapetanios, and Tzavalis (2015), provide a related avenue for modelling structural

breaks in the level or volatility of economic series.

Both random coefficient and Markov switching models are characterized by unobserv-

able parameter changes. In threshold and smooth transition models, the parameter evolu-

tion is, instead, driven by observable characteristics, see e.g. Tong (1990), Terasvirta (1998).

Ghysels and Marcellino (2018) provide an excellent review on forecasting approaches in

the presence of breaks.

In this paper we propose to handle structural change and parameter instability in a dif-

ferent manner. Drawing from notions of similarity and learning, we allow the time varying

parameter vector to be driven by one or more observable variables, which are collected in

vector zt. This is in line with the threshold and smooth transition approaches, that assume

a parametric specification for linking the zt and the time-varying parameter, βt. In our

framework, the zt is the "trigger" variable that drives the coefficient vector βt through a

kernel weighting scheme, allowing for substantial flexibility in the patterns of parameter
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time variation. This permits a rather simple yet flexible local estimation of models with

autoregressive and moving average components (ARMA), which is generally known to

perform remarkably in out of sample forecasting. Our approach works as follows: through

the observables zt, we identify past periods that are similar to the present in terms of eco-

nomic conditions, and exploit these specific periods to learn about the current model para-

meters, βt. Hence, parameters are estimated by data that are more similar (or relevant) to

the current economic regime.

Our approach can be directly linked to Nearest Neighborhood (NN) techniques and

kernel based non parametric regression. It can nest NN, for specific choices of weighting

scheme, trigger variable zt and set of regressors xt. It is also related to the Locally Weighted

Regression (LWR), which is a generalization of the NN that has been proposed by Cleve-

land (1979), and refined by Cleveland and Devlin (1988). Diebold and Nason (1990) studied

extensively the forecasting performance of this approach for 10 major dollar spot rates in

the post 1973 float, finding no out of sample forecasting benefits from LWR. LWR relates

the weighting scheme to the realizations of an observable variable included in the set of

regressors, while our trigger variable zt is not restricted to this set. Moreover, the computa-

tional burden required by LWR obliges the authors to consider a constant tuning parameter

that accounts for the neighborhood on which the forecasting equation is estimated, while

we allow for time-varying tuning.

Machine Learning (ML) methods such as Neural Networks and Random Forests (RF)

(see Breiman (2001), inter alia) can be seen, in some sense, as extensions of the NN ap-

proach. For instance, RF is an ensemble of fully grown regression trees estimated on dif-

ferent bootstrap subsamples of the original data. A regression tree forecasts a dependent

variable by splitting the space that is spanned by the covariates into a significant number of

regions. In each region, the forecast of a dependent variable yt is defined as its local aver-

age. Then, the out of sample prediction of the dependent (target) variable depends on the

prevailing regime, as summarized by the observed regressors. Similarly, neural networks,

with their ability to approximate arbitrary unknown functions, are important alternatives

to nonparametric regression, especially when extended to ‘deep’ multi-layer architectures.

Further, recent successful architectures such as long short-term memory (LSTM) networks

can ‘remember’ relevant events from the distant past, in an analogous fashion to our ap-

proach. The success of such ML methods in forecasting inflation has been documented in

a recent paper by Medeiros, Vasconcelos, Veiga, and Zilberman (2018).

There is a limited related literature on similarity based forecasting. Guerron-Quintana

and Zhong (2017) use clustering techniques to identify similar economic periods, which are
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then fed to autoregressive integrated moving average (ARIMA) models. In an additional

step, the authors propose to adjust the forecasts by adding an error term that is constructed

from matched blocks of data. Guerron-Quintana and Zhong (2017) also consider a combi-

nation of nearest neighbor models that have previously performed well instead of selecting

a single parameterization. Overall, the proposed algorithms work sufficiently well in re-

cessions, compared to standard ARIMA models, but the theoretical rationale is not fully

specified. Gilboa, Lieberman, and Schmeidler (2011) propose a related approach, that com-

bines the notion of similarity with the non parametric regression. Yet, they focus on the

theoretical axiomatization of their proposals, without presenting a comprehensive econo-

metric methodology or an empirical application. Pesaran, Pick, and Pranovich (2013) also

associate the evolution of the parameter vector βt with that of observables. They derive

theoretically optimal weighting schemes of past observations under specific assumptions

(such as known size and timing) on the break process of the parameter vector, for one step

ahead forecasting. In a related paper, Eklund, Kapetanios, and Price (2010) consider two

groups of forecasting strategies. In the first one, the forecaster monitors the happening of a

change and adjusts the forecasting method once a change has been detected. In the second

strategy, the forecaster does not attempt to identify breaks, and uses instead break robust

forecasting strategies that essentially downweight data from past periods. While moving

in an interesting direction, Eklund, Kapetanios, and Price (2010) do not elaborate on the

extent and shape of the downweighting of past data. Clearly, both issues affect the fore-

casting performance of the model. Monotonic discounting has been extensively studied by

Giraitis, Kapetanios, and Price (2013), while our proposed similarity-based forecasting ap-

proach is able to account for non-monotonicity of past data discounting. The rationale and

importance of this is straightforward: if economic regimes come and go, then data from

periods similar to the current one are more suitable for efficient forecasting, rather than the

more recent data only. In our approach, the trigger variable zt governs the evolution of the

time varying parameter estimates, indicating and exploiting periods with similar economic

characteristics.

Our proposed similarity based, kernel driven, time varying parameter estimator can be

viewed as a form of local linear regression. To this end, standard theoretical results on con-

sistency, rates and asymptotic normality, such as those provided in Pagan and Ullah (1999)

and Robinson (1983), easily apply. Yet, our approach depends crucially on the choice of

the bandwidth parameter. We provide empirical and simulation evidence that supports

the appropriateness of cross validation as a tool for calibrating the bandwidth parameter.

Moreover, although we focus on univariate time-varying ARMA models, analogous meth-
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ods can be applied to account for time-variation in general univariate regression models or

multivariate VAR-type models, or factor models.

To assess empirically the forecasting performance of our similarity based methods rela-

tive to either stable models or a variety of common time varying models, we focus on a set

of key monthly US macroeconomic and financial variables. These include payments, un-

employment, earnings, real personal income, industrial production, capacity utilization,

housing starts, federal funds rate, 3 month interest rate, money stock, consumer credit,

CPI, PPI. In terms of the trigger variable for our similarity approaches, we consider two

main possibilities. First, following proposals in threshold and smooth transition models,

we use a smooth transformation of the target variable that needs to be forecasted. Second,

we explore alternative macroeconomic indicators whose behavior could affect the dynam-

ics of the target variable of interest: oil prices as a measure of external shocks, the federal

funds rate as a measure of the monetary policy stance, and housing starts index, as a lead-

ing indicator of economic conditions. In the online Appendix, we extend the set of trigger

variables to also consider summary indicators of financial and real conditions based on

large information sets.

Overall, we find that the forecasting performance of stable AR(1) models can be im-

proved by either adding more lags or an MA component, which both capture additional

persistence that can be either real or due to unaccounted parameter changes. Evidence in

favour of the latter option is provided by the overperformance of the time varying para-

meters models in many cases. Within this class of models, our newly proposed similarity

based methods behave satisfactory in a substantial number of cases, indicating the poten-

tial of this type of econometric modelling.

The paper is structured as follows. In Section 2, we introduce our similarity-based fore-

casting approach and discuss its theoretical properties and cross validation schemes for

choosing the tuning parameters, which are important for the empirical implementation of

the approach. In Section 3, we briefly review alternative existing time-varying forecasting

models and forecast comparison criteria. In Section 4, we conduct Monte Carlo experi-

ments to assess the relative performance of our method in a controlled environment. In

Section 5, we present the extensive empirical application related to forecasting US macro-

economic variables. In Section 6, we summarize the main results and conclude. Additional

results are gathered in an online Appendix.
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2 Similarity based forecasting

In this section we present three model specifications that are associated with the notion of

similarity and learning. In our first proposal, we extend the kernel based, non parametric

regression model. The second draws on the threshold regression model and in our final

proposal we modify appropriately the local averaging model. In these models, similar

economic regimes are identified endogenously by the values of a trigger variable.

2.1 Trigger time varying parameter model

We consider the following linear regression model for the dependent variable yt:

yt = xt�1βt�1 + ut, t = 1, .., n, ut � I ID
�

0, σ2
u

�
, (1)

where xt is a 1� k vector of relevant covariates that may include an intercept, p lags of

the dependent variable, q lags of the errors (ut), and/or other exogenous regressors. The

forecast of yn+1 made in period n, denoted by byn+1, depends crucially on the estimate of

the k� 1 vector βn, denoted by bβn. It is

byn+1 = xnbβn. (2)

To estimate βn, we adopt a non-parametric approach combined with the notion of sim-

ilarity. Specifically, periods that match the current evolution of xt affect significantly the

parameter estimate, and vice versa for periods that are very different. To identify these

periods, we relate the value of βn to that of a trigger variable, zn, and we define the kernel

estimator as: bβn =

 
n

∑
l=1

knl ,Hx0l�1xl�1

!�1 n

∑
l=1

knl ,Hx0l�1yl

!
, (3)

with the weights knl ,H = K ((zn � zl) /H), where K (x), x 2 R is a continuous bounded

function and H is the bandwidth parameter. In practice, K (.) is generally specified as a

probability density function (e.g. a normal kernel). Other popular choices for K (.) include

rolling window kernel with K (u) = I (0 � u � 1), and the exponential weighted moving

average (EWMA) with K (u) = exp (�u), for u 2 [0, ∞). The parameter H, that governs the

relative magnitude of the weight, is set equal to H =
�
max

�
fzlgn

l=1
�
�min

�
fzlgn

l=1
��

h.

The tuning parameter h controls the magnitude of the effect that the trigger variable zt has

on the parameter estimate. A sufficiently small H implies that for periods l in which the

trigger zl is far from zn (in the squared error sense in the case of a symmetric kernel), the
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kernel weight that is placed on the observation pair (xl�1, yl) is relatively small compared

to periods where zl is closer to zn. For a large enough bandwidth H (or equivalently h), the

estimator bβn in (3) is very similar to the full sample OLS estimator.

In case of an AR(p) model, the vector xt�1 includes lags of the dependent variable. To

add an MA(q) component, the estimation procedure has to be slightly modified. In a first

step, the estimated errors but are derived from a long autoregressive model, AR(m) with m

large. In the second step, but�1,...,but�q�1 are included as covariates in xt�1, and the resulting

model is estimated by the estimator in (3). This two-step procedure is a direct extension

of that often adopted for constant parameter ARMA models, see e.g. Dufour and Pelletier

(2008).

It is important to notice that the estimator in (3) nests other popular time varying es-

timators proposed in the literature. In particular, when the trigger variable zt equals the

time index t, i.e. zt = t, then the estimator in (3) becomes the time varying kernel estima-

tor developed by Giraitis, Kapetanios, and Yates (2018). In this case, bβn is associated with

a monotone weighting scheme of past data, while in our approach the weights depend

on the behavior of the trigger variable, which can clearly imply non monotonic weighting

schemes. As we will see in the next section, model (1) accompanied by the estimator in

(3), also nests other popular approaches in the literature, like exponential smoothing and

threshold regressions.

In practice, the trigger zt can be any variable that is informative about the likely evo-

lution of the βt parameters. Past values of the dependent variable are a candidate. For

example, the dynamics of inflation or growth can depend on whether these variables are

high or low. Economic theory can also provide some clues about the choice of zt. For in-

stance, the stance and extent of fiscal or monetary policy can influence the magnitude of

the effects of changes of foreign variables (or shocks) on the domestic indicators.

In the following Sections, we will refer to model (1) estimated by (3) as the trigger

time varying parameter model (tv-trig). The special case where the trigger variable zt is

the time dimension t will be referred to as the tv model. For both types of models (tv

and tv-trig) we will use a Normal Kernel, experiment with two types of cross-validation

methods (described below) for the bandwidth selection, and consider specifications with

and without an MA component.

In our presentation the notion of similarity is defined in terms of the univariate trigger

variable zt and the symmetric kernel weighting scheme. This can be clearly extended to

cases in which the zt is a vector that includes the most recent observations, capturing more

information about the prevailing regime. Moreover, one can allow for asymmetric weight-
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ing schemes that place more weight to past periods of data that are of the same sign of

the current ones. This can be done, for instance, by skewed versions of the kernel function

(e.g. skewed normal distribution). While these are important extensions, the flexibility that

these imply come at the cost of increasing the computational complexity.

2.2 Similarity local averaging model

Giraitis, Kapetanios, and Price (2013) have exhaustively analyzed the properties of a lo-

cal averaging model. We now introduce a similarity-based extension of this model, and

discuss its use for economic prediction.

Following Giraitis, Kapetanios, and Price (2013), we assume that data are generated by

a modified local averaging model. Now, locality is defined in terms of similarity of the

current dependent variable with the past observations, rather the time index variable t. In

this specification, the trigger variable coincides with yt. To this end, the historical values of

yt that are more similar to its current value are weighted proportionally more than the less

similar past values. Formally, we consider the following model:

yt =
t�1

∑
i=1

wi,ρeyt�i + εt, εt � I ID
�

0, σ2
ε

�
, (4)

where wi,ρ =
ρi

∑t
j=1 ρj , ρ is the tuning parameter with 0 < ρ < 1, eyt = yt, and feyt+1�igt

i=2 are

the ordered most similar observations to yt (in the squared error sense), in the set
�

yj
	t�1

j=1,

with eyt�1 being the most similar to yt (lowest squared error (yt � eyt�1)
2) and ey1 the less

similar to yt (highest squared error (yt � ey1)
2). The tuning parameter ρ controls the relative

magnitude of the weights wi which can be calibrated by cross validation, as we will also

discuss in the next section. For a given choice of ρ equal to bρ, the forecast of yn+1 is:

byn+1 =
n

∑
i=1

wi,ρeyn+1�i (5)

It is worth emphasizing the direct association of model (4), with our basic proposal

given by (3) and (1). Accordingly, the trigger variable zt in (3) which identifies the simi-

lar regimes, is now replaced by the lagged dependent variable yt�1, indicating the most

important observations in the history of yt. The model in (4) can be also interpreted as a

similarity based version of exponential smoothing. Additionally, when the kernel knj,H, is

set equal to K (x) = exp (�x), then the (3) coincides with the exponential weighted moving

average (EWMA) model. This holds for ρ = exp (�1/H). In both cases, the weights could
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be also made dependent on zt. Finally, (5) also coincides with a Nearest Neighborhood

(NN) forecast, when using yt as trigger variable.

In the following Sections, we will refer to the model in (4) as the similarity local averag-

ing model (SLA).

2.3 Similarity based threshold regression

The SLA model presented in the previous section is solely based on the variable yt, neglect-

ing the information that might be provided by the covariates xt. A related approach that

can also account for the covariates is the threshold regression model (see e.g. Gonzalo and

Pitarakis (2002)), which has an immediate similarity based interpretation:

yt = ext�1γ+ vt, t = 1, .., n, vt � I ID
�

0, σ2
v

�
, (6)

where γ is a 2k � 1 vector of parameters, ext is a 1 � 2k vector of explanatory variables

defined as ext =
�
xt I
�
zt < λp

�
, xt
�
1� I

�
zt < λp

���
and I (A) is an indicator (dummy)

variable, whose value is equal to 1 when the event A is true and zero otherwise. The

event A depends on the trigger variable zt and the threshold parameter λp. Practically,

this means that the effects of xt are allowed to change depending on whether zt < λp

(and consequently I
�
zt < λp

�
= 1), or zt � λp (and I

�
zt � λp

�
= 1). The value of the

threshold parameter λp is essential, as it indicates the value of zt that triggers the regime

change. Empirically, it is sensible to assume that λp is the p-th quantile of the filtered

empirical distribution of zt. In practice, the optimal λp can be also calibrated using past

data, through a cross validation procedure. Given a value for λp, the model (6) is easily

estimated by OLS, and forecasts of yn+1 are given by

byn+1 = exnbγols.

Model (6) can be also considered as a special case of our basic model proposal. In par-

ticular for a flat kernel of the form K (x) =
�

1 when x < λp and 0 otherwise
	

, the model

in (1) with the estimator in (3) nests the threshold regression model (6). Moreover model

(6) can be also interpreted as a Locally Weighted Regression (LWR).

In the following Sections, we will refer to the model in (6) as the similarity based thresh-

old regression (STR).
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2.4 Theoretical considerations

The above models can be viewed within the context of nonparametric regression. If one

assumes a deterministic form for βt, and stationarity and mixing conditions on xt and

ut, then the theoretical properties of estimators such as (3) follow readily from existing

work. It is important to note that the work of Giraitis, Kapetanios, and Price (2013) relates

to structural change, thus making the imposition of stationarity and mixing assumptions

suspect, and allows for stochastic βt, therefore requiring a separate theoretical analysis.

In our case, (3) can be viewed as a form of local linear regression estimator and standard

theoretical results on consistency, rates and asymptotic normality, such as those provided

in Pagan and Ullah (1999) and Robinson (1983), easily apply.

In particular, the following is a list of assumptions commonly encountered in the liter-

ature:

1. β(x) is a bounded and twice continuously differentiable function.

2. (yt, xt, zt) is a stationary α-mixing process with mixing coefficients αk, such that ∑∞
k=n α1�2θ

k =

O(n�1), Ejytjθ < ∞, Ejxtjθ < ∞ and Ejztjθ < ∞ for some θ > 2.

Under these assumptions and also assuming technical regularity conditions relating to

the kernel function K(.) that are satisfied by our setup in the previous sections, we can

obtain a host of standard useful asymptotic results for the estimates of β. Expressions for

the bias and variance of the estimators can be obtained, and thereby rates and asymptotic

normality can be established. In particular, a rate of order (Th)1/2, for scalar xt and zt

where the bandwidth h tends to zero, and asymptotic normality has been obtained in a

number of papers such as, e.g., Robinson (1983), and Bierens (1987).

2.5 Selection of the tuning parameter

The similarity based forecasting methods previously presented require the selection of

some tuning parameters. Specifically, the trigger time varying parameter model in (3) de-

pends on the bandwidth h, the similarity based local averaging (4) on the parameter ρ,

and the similarity based threshold regression (6) on λp. For all these choices we specify

alternative cross validation schemes, based on mean squared forecast error (MSFE).

Let δ denote a general tuning parameter, on which the one step ahead forecast byn+1jn,δ

depends on. In what we label as end of sample cross validation, we calibrate δ by minimizing
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the MSFE over the last n0 observations of the sample fyt,zt,xtgn
t=1,

bδ = arg min
δ

1
n0

n

∑
t=n�n0+1

�
yt � bytjt�1,δ

�2
, for δ 2 [δmin,δmax] . (7)

The parameter space [δmin,δmax], over which the objective function in (7) is optimized, de-

pends on the similarity based approach at hand. For instance, in the trigger time vary-

ing parameter model, we have that δ = h. The upper bound of the parameter space of

the bandwidth h, hmax, is chosen to approximate the standard OLS estimator. The lower

bound, hmin, is chosen such that when h = hmin a non zero weight is attributed to a sig-

nificant proportion of observations, to prevent computational issues. The actual values of

hmax and hmin depend on the specific data at hand. In the similarity based local averaging

model, it is δ = ρ, and ρmax = 1, while ρmin should be greater than zero. Instead, in the

similarity based threshold regression, it is δ = λp, and λp is chosen by comparing various

quantiles of the trigger variable fztgn
t=1.

To better accommodate the idea of similarity in the cross validation scheme, we propose

the following alternative, which we label clustered cross validation. We focus the pseudo out

of sample forecasting exercise on histories of data (blocks of observations) that are more

similar to the current economic conditions. To this end, we divide the data into blocks,

and we search for blocks that are the most similar to the current block of observations. To

cluster the data into blocks we use the trigger variable zt. To this end, suppose that data up

to time j are denoted as yj = fytgj
t=1, xj = fxtgj

t=1, zj = fztgj
t=1. Then, we implement the

following stepwise procedure:

a) For each j = n1, .., n, we compute the distance

dm0
j =

m0

∑
i=1

�
zn+1�i � zj+1�i

�2 . (8)

b) We use dm0
j to order the blocks of data

�
yj, xj, zj	n

j=n1
, depending on how similar these

are to the current regime, according to the trigger variable zt.The quantity dm0
j matches the

last m0 observations of zt i.e.zn, zn�1, .., zn+1�m0 , with other similar sequences in the dataset

zj = fztgj
t=1. Let

�
yj, xj, zj	

j2Ψ, with Ψ =
�

t1,t2,..,tn�n1+1
	

, be the ordered histories, from

the most similar (t1) to the least (tn�n1+1).

c) Finally, we find the δ that minimizes the MSFE over the n0 most similar blocks of

observations, ft1,t2,..,tn0g, i.e.,
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bδ = arg min
δ

1
n0

∑
t2ft1, t2,..tn0g

�
yt � bytjt�1,δ

�2
, for δ 2 [δmin,δmax] . (9)

The values of n1 and m0 must be also chosen by the researcher. In practice, n1 has to be

large enough such that the estimation from block
�

yj, xj, zj	
j=n1

does not pose numerical

problems. A simple rule could be that the model (1) can be reliably estimated with the

dataset fyn1 , xn1 , zn1g, for a large enough value of H. Additionally, m0 can be set equal to

one or to a larger value, depending on the data at hand. In our empirical application and

simulation experiments, we examine several values for m0 as a robustness check. A com-

parison example of the two cross validation schemes is presented in the online Appendix

of the paper.

3 Alternative methods and forecast comparison

In this section we briefly review alternative time-varying forecasting models and forecast

comparison criteria that will be used in later sections to assess the relative performance of

our similarity-based methods.

3.1 Alternative time-varying forecasting methods

As discussed in the introduction, a common parametric time-varying approach assumes

continuous evolution in the parameters of regression models, see e.g. Stock and Watson

(1996) for an early forecasting application. The evolution of the parameter vector βt is

often specified as a multivariate random walk process, with more general specifications

feasible but more heavily parameterized. Hence, the model is:

yt = xt�1βt�1 + η1t, t = 1, .., n, (10)

βt = βt�1 + η2t, (11)

η1t � N
�

0, σ2
η1

�
, η2t � N

�
0, Ση2

�
,

where (10) is the measurement equation, (11) is the set of state equations, xt�1 is the vector

of regressors, Ση2 is a diagonal matrix and η1t and η2t are independent error terms. In the

following Sections, we will refer to the model in (10)-(11) as the time varying parameter

model (TVP).

An alternative specification that assumes abrupt parameter changes is the Markov Switch-

11



ing (MS) model, proposed by Hamilton (1989). We write an N-state MS model as:

yt = xt�1βSt�1 + ηt, ηt � iid N
�

0, σ2
�

, (12)

βSt�1 =

8>>>><>>>>:
β1 when St�1 = 1
β2 when St�1 = 2

� � �
βN when St�1 = N

,

where St�1 is the unobserved state variable, which is allowed to evolve stochastically ac-

cording to a strictly stationary, homogeneous, first order Markov chain with an N � N

transition matrix P =
�
pij
�
, with pij = Pr (St = ijSt�1 = j). In practice, the number of

regimes is generally set at N = 2 or 3. In the following Sections, we will refer to the model

in (12) as the Markov Switching model (MS2AR or MS3AR, depending on the number of

regimes).

Finally, as it is indicated by the recent literature (see e.g. Stock and Watson (2006)), we

evaluate the constant parameter ARMA(p, q) model. This is defined as:

yt = xt�1β+ ut, t = 1, .., n ,ut � I ID
�

0, σ2
u

�
. (13)

where xt�1 =
�
1, yt�1, yt�2, .., yt�p, ut�1, ut�2, .., ut�q

�
, and β is a (p+ q+ 1) vector of pa-

rameters. When q = 0, model (13) is just an autoregressive model of order p, AR(p).

The ARMA orders p, q are typically set by optimizing an information criterion, like the

Bayesian information criterion (BIC). Estimation of pure AR models can be done by OLS,

while in the presence of an MA component we adopt the two-step procedure described in,

e.g., Dufour and Pelletier (2008).

All the methods presented above could be extended to allow for time variation in the

variance. This could be important in particular for density forecasting, where a characteri-

zation of the uncertainty associated with the prediction is relevant.

Table 1 lists all the models that will be used in the forecasting exercises with simulated

and actual data.

3.2 Forecast comparison criteria

The forecasting performance of the alternative models is evaluated relative to that of the

benchmark, an AR(1) model, using the relative mean squared forecast error (rMSFE). For
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each model m and target series s, it is:

rMSFE(m,s) =
∑T

t=t0

�
e(m,s)

t

�2

∑T
t=t0

�
e(AR(1),s)

t

�2 , (14)

where e(m,s)
t = y(s)t � by(m,s)

t is the 1-step ahead forecast error of model m for series s, and

e(AR(1),s)
t = y(s)t � by(AR(1),s)

t is the counterpart for the benchmark AR (1) model. When the

rMSFE(m,s) is less than one, model m out performs the benchmark AR (1) for variable s. To

assess the statistical significance of the MSFE differentials, we use the Diebold and Mariano

(1995) test (henceforth DM test).

To assess whether the relative performance of a model is stable over time, we adopt

a two fold approach. First, we compute the rMSFEs separately for the recession periods,

as identified by the NBER business cycle dating. Second, we implement the forecast fluc-

tuation test developed by Giacomini and Rossi (2010) (henceforth GR test). The forecast

fluctuation test measures the relative, local forecasting performance for the two models.

In contrast to DM test, that measures the global performance over the forecasting horizon,

the GR test concludes about the stability of the relative performance over the entire path

of time. The test statistic is equivalent to DM statistic computed over rolling out of sample

windows of size µ. In our empirical exercise we choose µ=50. Finally, to account for the

comparison of many models, we have also considered the Model Confidence Set (Hansen,

Lunde, and Nason (2011)). As results are not conclusive, they are presented in the online

Appendix.

4 Simulation Study

We carry out a Monte Carlo study to investigate the performance of our proposed sim-

ilarity based forecasting approaches in a controlled environment. We aim to study the

overall forecasting performance and, more specifically, the working of the cross validation

approaches for estimating the tuning parameters.
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4.1 Monte Carlo Design

We consider two data generating processes (DGP). The first DGP accommodates the SLA

model (see (4)) and it is specified as follows

yt+1 =
t

∑
i=1

wieyt+1�i + εt, εt � N
�

0, σ2
ε

�
, (15)

where wi =
ρi

∑t
j=1 wj

and t = 1, ..., T, with T = 1000. The feyt+1�igt
i=1 are the ordered most

similar observations to yt (in the squared error sense), in the set
�

yj
	t�1

j=1, with eyt�1 being the

most similar to yt (lowest squared error (yt � eyt�1)
2) and ey1 the less similar to yt (highest

squared error (yt � ey1)
2). An initial sample and a burn in period is needed for this scheme.

For the initial sample we use 60 iid observations from N (0, 1) and an additional burnin

period of 320 observations. After that period we store 1000 data points which are used for

estimation and forecasting.

To generate realistic patterns of data, we set the parameters ρ and σε at the estimates

obtained when fitting model (15) to the US unemployment rate. Moreover, since in real

time forecasting the optimal ρ parameter is allowed to change over time, we allow for

varying values of ρ, fρtgT
t=1, set according to the values resulting from the cross validation

in the US unemployment rate forecasting exercise. Specifically, we adopt 60 sequential

estimates of ρ, from the date 01-Jun-2005 until the date 01-Jul-2014, while this sequence is

then replicated a sufficient number of times in order to generate a total of T + 380 values

for ρ. The last 240 data points of the generated series are used as the pseudo out of sample

forecasting period.

In the online Appendix of the paper, (see Figure A2) we report a sample from the gen-

erated series, as well as the set fρtgT
t=1 of tuning parameters used to generate the series.

Intuitively, this process implies a transition between different regimes through the para-

meter ρ. As ρ approaches 1, the similarity local averaging model reduces to the simple

sample average of the past data, denoting small persistence of the series. As ρ diminishes,

the characteristics of the series differ, and in particular persistence increases.

In the second DGP, we generate data according to a two regime MS autoregressive

model. To this end, in (12) we set St = fS1, S2g, xt�1 = [1, yt�1], homogeneous variance σ,

and 2� 2 transition matrix P =
�
pij
�
, with pij = Pr (St = ijSt�1 = j). In order to generate

realistic patterns of data, we also fit this model to the unemployment rate series, and set

the DGP parameters equal to the estimated values. Specifically, we have:
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State 1 (S1) parameters : β11 = �0.044, β12 = �0.195, σ = 0.023
State 2 (S2) parameters : β21 = 0.23, β22 = 0.0026, σ = 0.023
Transition matrix : p12 = 0.016, p21 = 0.104

(16)

where βi = (βi1,βi2)
0. The state variable fStgT

t=1 is sampled once, and then it is kept fixed

in all simulations. The length of the generated series is T = 1000, while we forecast one

step ahead over the last 240 observations.

One issue that arises in the application of our approaches, is the choice of the trigger

variable, zt, on the simulated samples (e.g., see equations (3), (6)). Since zt is assumed

to be an informative indicator of prevailing regime, a natural candidate is a smoothed

transformation of the original target series. Hence, in our simulation experiments, for an

initial value P0 = 100 and a generated series fytgT
t=1, we use the transformation Pt =

Pt�1 (1+ yt�1) to generate fPtgT+1
t=1 . Then, we set the trigger variable zt as the smoothed

growth rate of Pt, zt =
Pt�Pt�3

Pt�3
. This smoothed transformation is also considered later in the

empirical applications, in addition to other choices for zt.

For the two DGPs, we examine the one step ahead out of sample forecasting perfor-

mance of the proposed similarity based forecasting approaches; the Markov Switching

model, the time varying parameter model, AR(1), ARMA(1,1), AR(p) and ARMA(p,q) with

p,q selected by the Bayesian information criterion (BIC). The models under comparison are

listed in Table 2, with additional details for each model reported in Table 1. For each model

and for each of 300 replications, we compute the MSFE relative to that of the AR(1), and

then we average the relative MSFEs over the replications.

4.2 Simulation Results

Out of sample forecasting results of the simulation exercise are presented in Table 2. Fo-

cusing on the first DGP (SLA), a number of interesting conclusions could be made. First,

the infeasible SLA with the true value of ρ is the first best (rMSFE is 0.74) method. The

second best is SLA with ρ selected according to cross-validation based on the last 6 obser-

vations (rMSFE is 0.89). The tv-trig models yield rMSFEs in the range 0.93� 0.95, similar

to STR, with 0.93� 0.96. The time varying models with the time index t as trigger do not

perform satisfactory, with rMSFE in the range 0.98� 1, and a similar finding holds for the

TVP models. Instead, the MS models, which allow for abrupt changes in the parameters

perform rather well, in particular when allowing for changes in all the parameters, with a

rMSFE of 0.91. ARMA models also perform remarkably well in this exercise, in particular,

when the lag order is chosen by BIC (rMSFE is 0.93), confirming the relevance of including
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an MA component when it is suspected parameter instability.

For the second DGP (MS2AR) the best performer is MS2AR model, with rMSFE of 0.82,

while the rMSFE of MS2ARc is 0.88. The rMSFEs of the tv-trig are in the range 0.88� 0.91,

better than those of SLA, 0.95� 0.97, and TVP, 0.94. The use of BIC for choosing the order

of the ARMA model does not provide any forecasting gains over the benchmark in this

DGP, but an ARMA(1,1) has a decent performance, with a rMSFE of 0.92.

Notice that when we generate data from the two regime MS model, the SLA(6) fails

to produce reliable forecasts, compared to the other models examined. We consider that

this is a reasonable behavior, due to the fact that SLA is favored by DGPs with smooth

transition from one regime to the other rather than abrupt changes of regimes such as

those considered in the MS model.

Focusing on the cross validation for the time varying trigger models, in both exper-

iments the differences between the two versions are small while the clustered approach

seems to provide slight overall improvements over the end of sample scheme.

In summary, the similarity based forecasting approaches work satisfactory in both ex-

periments, though the gains are not very large compared with MS specifications. The gains

are larger with respect to TVP, but this is likely due to the fact that TVP models are not so

suited to capture the kind of breaks that characterize both DGPs. Adding an MA compo-

nent to AR models is also helpful in the presence of unmodelled parameter time variation.

5 Empirical application

5.1 Data

Our forecasting empirical analysis is performed on a set of key monthly US macroeconomic

and financial variables, recursively over the sample 1961m1-2017m4. The out of sample

forecasting evaluation is performed over the last 440 observations, that is from 1980m1

until 2017m4. Such a long sample allows us to have enough observations for estimation

and out of sample evaluation, over periods of varied economic conditions.

To choose the target variables, we start from those considered by Guerron-Quintana and

Zhong (2017), dropping those not available in FRED-MD (see McCracken and Ng (2015))

for the considered sample, and adding similar available series. We end up with 14 indica-

tors (see Table 3 for details): employment, unemployment, earnings, real personal income,

industrial production, capacity utilization, housing starts, federal funds rate, 3 month rate,

money stock, consumer credit, CPI, PPI. All data are downloaded from FRED-MD, and
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transformed as suggested by McCracken and Ng (2015), see Table 3 for additional details

and figure A5 in the online Appendix of the paper).

Regarding the trigger variable zt, we consider two main possibilities. First, we use

the target variable itself, a common choice in threshold and smooth transition models.

Specifically, we consider either the variable itself, or its quarter on quarter (q-o-q) or year on

year differences (y-o-y), which have often a smoother behavior. Second, we use alternative

macroeconomic indicators whose behavior could affect the dynamics of the target variable

of interest: (changes in) oil prices as a measure of external shocks, the federal funds rate

as a measure of the monetary policy stance, and housing starts, as a leading indicator of

economic conditions.

5.2 Empirical Results

The main empirical findings are reported in Tables 5-8. We report, for each variable, the

MSFE for a range of models relative to that of an AR(1) benchmark model. Additionally we

indicate statistical significance at the 5% and 10% levels for the DM and GR tests, against

the AR(1) model. For ease of exposition, the tables report the best method in red and un-

derlined, when this is better than the benchmark. In Tables 5 and 7 the (relative) MSFEs

are computed over the whole evaluation period (1980m1-2017m4), while in Tables 6 and

8 MSFEs are reported only for the recession periods as these are defined by the NBER. In

Tables 5 and 6 the regressors in all models are the lagged value of the dependent vari-

able, yt�1, and an intercept. This is to make the differences with respect to the benchmark

AR(1) model dependent only on parameter time variation, modelled either via the three

similarity approaches (tv-trig, SLA, STR), or Markov Switching (MS), or continuous time

variation (TVP). We recall here that SLA can be also interpreted as a NN forecast, while

STR as a LWR forecast. To allow for more complex dynamics, Tables 7 and 8 present tv-tig

ARMA(1,1) models. It is well known that fixed parameter, ARMA(1,1) models, typically

forecast very well macroeconomic and financial indicators, and we expect that extending

them with our proposals can provide further benefits. Additionally, as it is also shown in

our empirical exercise, the ARMA(1,1) is almost always better than the ARMA(p,q), with

p,q selected by BIC. For the similarity approaches we also experiment with the two cross-

validation criteria described in Section 2, i.e., end of sample and clustered cross validation.

The precise specification of the models reported in Tables 5-8 can be inferred from the

model classification in Table 1, while the acronyms for the series are explained in Table 3.

A number of comments can be made based on the empirical results. First, starting with

Table 5, one of the similarity approaches produces the lowest MSFE for 10 out of the 14 vari-
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ables under analysis. (PAYEMS, TB3MS, UNRATE, M1SL, INDPRO, FFR, MZMSL, CON-

SPI, AVGHE, RPI, WPSID). Yet, for PAYEMS and INDPRO the performance is the same as

AR(BIC), and this model is competitive for several other variables, likely because a larger

number of AR lags can try to capture the spurious persistence generated by unmodelled

parameter changes. More generally, and in line with the simulation results, the MSFE gains

from the similarity approaches are not large, though they are rather systematic. It is also

worth mentioning that the quarter on quarter difference of the target series is the best per-

forming trigger variable in most cases. Moreover, for this trigger variable, clustered cross

validation is slightly but systematically better than end of sample cross validation.

Second, from Table 6, the forecasting gains from the use of parameter time variation in

the AR(1) model generally increases during recessionary periods, much more so for real

variables such as PAYEMS, UNRATE and INDPRO than for nominal variables and interest

rates. In terms of ranking of the various types of models, similarity approaches remain

best for 10 out of 14 variables, but now SLA is best for 4 of the 11 variables (PAYEMS, CPI,

FFR and CONSPI) and tv-trig for 7 of them. TVP becomes instead best for the 3 remaining

variables (UNRATE, INDPRO and HOUST). Moreover, the quarter on quarter difference

of the target series remains overall the best performing trigger variable, with HOUST as

second best, which highlights the importance of this variable during recessionary periods.

Again, the clustered cross validation is generally better than end of sample cross validation

for the trig models.

Third, from Table 7, adding an MA(1) component to the constant parameter (bench-

mark) AR(1) model is helpful for 12 of the 14 variables, and comparable for the remaining

2 variables. The, BIC based lag selection is basically never helpful in the ARMA case. The

ARMA(1,1) has the same or lower MSFE than ARMA(BIC) for all variables, while it low-

ered the MSFE for 11 of the 14 variables in the case of a pure AR model (see Table 5).

This suggests that, once an MA component is included in the model, longer AR lags are

no longer needed to capture unmodelled parameter breaks. Extending the ARMA models

with the similarity based, specifically trig, approaches provides advantages over the fixed

parameter ARMA for 10 out of the 14 variables. Comparing tv-trig ARMA models with

the AR(1) benchmark shows that our proposals perform better in 12 out of the 14 cases

examined. This leads us to believe that extending ARMA models with our approaches can

impact the out of sample forecasting. The most significant improvement for our propos-

als over the ARMA models is considered for the series PAYEMS, UNRATE, CONSPI, RPI,

and WPSID. Now, the preferred trigger variable and the cross validation method depends

more on the series of interest. Yet, for the trig models there are in general small gains from

18



adding the MA component, likely because they already take into consideration parameter

time variation. The 3 variables where the gains from adding the MA term are sizable are

M1SL, CPI and AVGHE.

Finally, from Table 8, the forecasting gains from using an ARMA(1,1) instead of an AR(1)

are generally larger during recessionary periods, but much more so for real variables such

as PAYEMS, UNRATE and INDPRO. One of the tv-trig ARMA models is better than the

benchmark (and the fixed parameter ARMA) for 12 out of 14 variables but, as noted before,

the gains from adding the MA component in tv-trig methods are small.

It becomes clear that in practice the forecaster faces a number of modelling choices.

Based on our forecasting exercises, our baseline recommendation is to use a smoothed

transformation of the forecasted variable as a trigger indicator, with the clustered cross

validation scheme to choose the bandwidth parameter. This seems a robust and easy to

implement, short term forecasting approach. Alternatively, the researcher can always use

a preselected window of data to set optimally these specification choices.

Overall our methods can provide slight, but systematic improvements over the consid-

ered benchmarks. Nevertheless, we need to highlight that these are not always statistically

different from the AR(1) model. For instance in Table 5 our proposed and best performing

methods are statistically different from the AR(1) forecasts for 5 out of 14 cases, in Table 6,

in 1 case, in Table 7, in 9 cases, and in Table 8 in 9 cases. This is an indication that although

we can establish improvements in terms of RMSE in many cases, it is sometimes difficult

to establish statistical significance.

Our empirical exercise also highlights the importance of parameter changes for mod-

elling and forecasting macroeconomic variables. The forecasting performance of fixed pa-

rameter AR(1) model can be generally improved by either adding more lags or an MA

component, which both capture additional persistence that can be either real or due to

unaccounted parameter changes. Evidence in favour of the latter option is provided by

the better forecasting performance of models with time varying parameters. Within this

class, our newly proposed similarity based methods behave well, and the trigger based

models particularly well, even without an MA component, likely because of their flexible

non parametric accounting of parameter evolution, that filters snapshots (periods) of data

which are more suitable for estimation and forecasting under the maintained economic

conditions. Yet, a careful choice of the trigger variable is required, combined with cross

validation for the selection of the tuning parameters.
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6 Conclusions

In this paper we propose similarity based approaches for macroeconomic forecasting. The

basic idea is to overweight periods similar to the current one and downweight the rest

of the sample, when estimating the model parameters, to be later used to construct the

forecast. The weighting is based on the behavior of trigger variables, combined with a non

parametric kernel estimator. Lags of the dependent variable or other exogenous variables

can be used as triggers, possibly after some smoothing to amplify the signal.

While our approach is related to existing methods such as Nearest Neighborhood, we

provide considerable extensions and refinements, such as combining similarity and time

variation modelling, and introduce cross validation methods to select tuning parameters.

Further, we assess the forecasting performance of our proposals both in Monte Carlo

experiments and in an empirical application based on a set of key US macroeconomic and

financial indicators, also in comparison with common competing time varying specifica-

tions, such as Markov switching and time varying parameter models.

Overall, the similarity approach is promising, even though the forecasting gains with

respect to existing methods are not uniform across variables and require a careful specifica-

tion search, including the choice of the proper trigger variable and tuning parameters. Yet,

with a careful specification we can almost always do better, in a MSFE sense, than ARMA

or competing time varying parameter models.
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Description of the forecasting models
acronym in the tables Explanation

tv(n0)-trig
Autoregressive model with trigger time varying parameter and cross validation over the last n0

observations for optimal h.The kernel is Normal. The cross validation scheme is given in (7).

tv(n0,m0)-trig
Autoregressive model with trigger time varying parameter and clustered cross validation over the
last n0 observations for the optimal h.The kernel is Normal. The clustered cross validation
scheme is given in (9), and m0 is the clustering match parameter.

tv(n0)
Autoregressive model with time varying parameter and cross validation over the last n0

observations for the optimal h. The kernel is Normal. The cross validation scheme is given in (7).

tv(n0)-trig-arma(1,1)
Autoregressive-moving average model with trigger time varying parameter and cross validation over
the last n0 observations for optimal h.The kernel is Normal. The cross validation scheme is given in (7).

tv(n0,m0)-trig-arma(1,1)
Autoregressive-moving average model with trigger time varying parameter and clustered cross validation
over the last n0 observations for the optimal h.The kernel is Normal. The clustered cross validation
scheme is given in (9), and m0 is the clustering match parameter.

SLA(n0)
Similarity based local averaging (see (4)) with cross validation (CV) over the last n0 observations
for the optimal ρ. The cross validation scheme is given in (7).

STR(n0)
Similarity based threshold regression (see (6)) of the autoregressive model with cross validation (CV)
over the last n0 observations for the optimal λp. The cross validation scheme is given in (7).

STRc(n0)
Similarity based threshold regression (see (6)) of the autoregressive model with cross validation (CV)
over the last n0 observations for the optimal λp. The cross validation scheme is given in (7). There
is break only on the constant parameter.

TVP
Time varying parameter autoregressive model. There is time variation on both the constant and the
autoregressive parameter of the process.

TVPc Time varying parameter autoregressive model. There is time variation only on the constant of the process.

MS2AR
Markov Regime switching autoregressive model with homogeneous variance and 2 states. There is
regime switching on both the constant and the autoregresive parameter of the process.

MS2ARc
Markov Regime switching autoregressive model with homogeneous variance and 2 states. There is
regime switching only on the constant of the process

MS3AR
Markov Regime switching autoregressive model with homogeneous variance and 3 states. There is
regime switching on both the constant and the autoregresive parameter of the process.

MS3ARc
Markov Regime switching autoregressive model with homogeneous variance and 3 states. There is
regime switching only on the constant of the process.

ar(p) Autoregressive model of order p
ar(bic) Autoregressive model with p chosen by the Bayesian information criterion (bic)

arma(p,q) Autoregressive-moving average model of order p,q
arma(bic) Autoregressive-moving average model with p,q chosen by the Bayesian information criterion (bic)

rw The driftless random walk model

Table 1: Reference on the acronyms of the method names in the next Tables.
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Monte Carlo Simulation
models DGP1 (SLA) DGP2 (MS2AR) models DGP1 (SLA) DGP2 (MS2AR)

tv(6)-trig 0.95 0.91 SLA(true ρ) 0.74 -
tv(12)-trig 0.93 0.9 STR(6) 0.93 0.98
tv(6,1)-trig 0.93 0.89 STR(12) 0.96 0.99
tv(12,1)-trig 0.93 0.88 TVP 1 0.94
tv(6,2)-trig 0.94 0.89 TVPc 1 0.94
tv(12,2)-trig 0.93 0.88 MS2AR 0.91 0.82

tv(6) 0.98 0.95 MS2ARc 0.97 0.88
tv(12) 1 0.97 arma(bic) 0.93 1
SLA(6) 0.89 0.97 ar(bic) 1 1

SLA(12) 0.94 0.95 ARMA(1,1) 0.95 0.92

Table 2: Forecasting exercise using simulated data of size n=1000, forecasting performed over the last 240
observations. The models are defined in Table 1. The figures are MSFEs relative to that of the AR(1) model,
averaged over 300 replications.

series name sort explanation Stationarity Transformation
PAYEMS all employees: total nonfarm first differences of log
RPI real personal income first differences of log
FFR effective federal funds rate first differences
MZMSL MZM money stock second differences of log
UNRATE civilian unemployment rate first differences
WPSID61 PPI: intermediate materials second differences of log
AVGHE average hourly earnings: goods producing second differences of log
M1SL M1 money stock second differences of log
CUMFNS capacity utilization: manufacturing first differences
CONSPI non revolving consumer credit to personal income first differences
INDPRO IP index first differences of log
HOUST housing starts: total new privately owned log
CPI CPI: all items second differences of log
TB3MS 3 month treasury bill second differences of log

Table 3: Series used in the forecasting exercise. The stationarity transformation is as recommended in the
FRED-MD database.

List of th trigger variable used for the similarity based forecasting methods
same as the series to forecast
q-o-q difference (or log difference) of the forecast series
y-o-y difference (or log difference) of the forecast series
oil price, m-o-m second log differences
HOUST, housing starts: total new privately owned, log
Fed rate, effective federal funds rate q-o-q differences

Table 4: Trigger variables used in the similarity based forecasting methods. The m-o-m refers to month
on month differences, the q-o-q refers to quarter on quarter differences and the y-o-y refers to year on year
differences.
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Whole Sample forecasting

modelnseries PAYEMS TB3MS UNRATE M1SL CPI INDPRO FFR MZMSL CONSPI AVGHE CUMFNS RPI WPSID HOUST

ar(bic) 0.7 1.04 0.89 0.91 0.87 0.94 0.99 1.01 0.99 0.98 0.91 1 0.98 0.87
rw 1.12�� 1.46 1.75 4.01 2.24 1.56 1.22 2.02 1.87 5.19 1.59 2.28 2.68 0.99

TVP 0.7���� 1 0.91 1 1 0.99 1 1 0.93���� 1 1.07 1 1 0.87����
TVPc 0.7���� 1 0.91 1 1 0.99 1 1 0.93���� 1 1.07 1 1 0.87����

MS2AR 0.92��� 1.06 0.87�� 0.94�� 1.05 0.98 1 1.21 0.94���� 1 0.96���� 1.07�� 0.99 1.01
MS2ARc 1 1 0.94���� 1 1 1.01 1 1.01 0.92���� 1 0.99 0.99�� 1 1
MS3AR 0.99 1.01 1�� 1.33 1.04 1.02 1.06 1 0.95���� 1.7 1.03 1.01�� 1.15 1
MS3ARc 1 1 1.12 1.31 1.1�� 1.01 1 1 1.26�� 1.67 1 1.19 1.14 1

tv(6) 0.87��� 1.09 0.96 1.59 1.04 1.56 1.07 1.08�� 1.13� 1.43 1.09 1.42�� 1.04 1.03
tv(12) 0.83���� 1.04 0.98 1.57 1.03 1.55 1.08� 1.04 1.01 1.41 1.11 1.43�� 1.01 1

SLA(6) 0.74���� 1.06 0.98�� 1.38 1.07 1.04�� 1.11�� 1.21�� 1.01 1.63 0.98�� 1.2 1.1 1.01
SLA(12) 0.84���� 1.01 0.97�� 1.33 0.99�� 1.04 1.06�� 1.07 1 1.62 0.97 1.18 1.06 1.02

trigger variable: q-o-q difference of the forecasted series

tv(6)-trig 0.75���� 1.04�� 0.92�� 1.11 1.04 1.01 1.14�� 0.98 1.03�� 0.97 0.98 1.25�� 0.95
tv(12)-trig 0.77���� 1.09�� 0.9���� 1.1 1.17 0.98 1.01�� 1�� 1.01�� 0.95� 0.98�� 1.23 0.97
tv(6,1)-trig 0.77���� 1.03 0.91��� 0.95�� 1.02 0.98�� 0.86�� 0.89 0.97� 0.94� 0.96�� 0.84���� 0.92
tv(12,1)-trig 0.77���� 1.14�� 0.91�� 0.94�� 0.97�� 0.97 0.91�� 0.9 0.98�� 0.94�� 0.95���� 0.83���� 0.92
tv(6,2)-trig 0.7���� 1.38 0.91�� 0.91�� 0.94�� 0.99� 1�� 0.9 0.97���� 0.91 0.96�� 0.96�� 0.98
tv(12,2)-trig 0.71���� 1.5 0.9���� 0.89�� 0.97 0.98� 1.11�� 0.88�� 0.97�� 0.91 0.96���� 0.92�� 0.98

STR(6) 0.75���� 1.06 0.89�� 0.98 0.95�� 0.96��� 1.01�� 1.14 0.95��� 1 0.96��� 0.94��� 0.99 1
STRc(6) 0.78���� 1.04�� 0.91�� 0.96�� 0.95�� 0.94�� 1�� 1.02 0.95��� 0.99 0.97��� 1.02 0.97 1
STR(12) 0.78���� 1.05 0.89�� 0.97 0.94�� 0.97 1.03�� 1.12 0.97�� 0.95 0.97�� 0.91���� 0.98� 1��

trigger variable: y-o-y difference of the forecasted series

tv(6)-trig 0.86���� 0.94 0.94�� 1.26 1.11 1.04 1.58�� 1.29�� 1 1.1 1.03�� 1.05 2.21��
tv(12)-trig 0.84���� 1.07 0.91���� 1.15 1.03 1.03 1.55�� 1.27�� 1�� 1.02 0.99�� 1.06 2.2
tv(6,1)-trig 1.01� 0.95 0.94���� 1.27�� 0.98 1.01 0.99 1�� 0.98 1.06 1.01� 0.97�� 0.99
tv(12,1)-trig 0.92�� 1.07 0.92���� 1.06�� 0.97 1 1.02 0.99 0.97� 1.02 1.03�� 1.02�� 0.99
tv(6,2)-trig 0.95�� 1.05 0.95��� 1.12�� 1 1 1.48�� 0.95�� 0.97� 1 0.96� 0.95�� 0.98
tv(12,2)-trig 0.93�� 1.04 0.93���� 1.12 0.97 1 0.99 0.95 0.98� 1.01 0.98�� 0.99�� 0.99�

trigger variable: same as the forecasted series

tv(6)-trig 0.98 1.57 0.94���� 1.3 1.08 0.97 1.01 1.55 0.93��� 1.21 1.01 0.93�� 1.04 1.04
tv(12)-trig 0.97�� 1.03 0.94���� 2.19�� 1.09 0.97�� 1 1.55 0.91���� 1.23 0.98 0.93�� 1.02 1.04
tv(6,1)-trig 1�� 0.97 0.98 1.96�� 1.07 1.01 1.01 1.3 1 1.06 1.01 0.86��� 1.13 0.99
tv(12,1)-trig 0.98�� 0.98 0.97 0.98�� 1.08 1.01 0.99� 1.36 1�� 1.03 1 0.85���� 1 1.01
tv(6,2)-trig 0.97�� 2.87 0.97�� 1.95�� 1.2 0.99 0.99 1.37 0.95� 1.02 1 0.88���� 1.05 0.98��
tv(12,2)-trig 0.93���� 1 0.96� 1.17 1.01 0.98 0.98 1.39 0.95���� 1.03 0.98 0.86��� 1.04�� 0.99

trigger variable: oil price, 2nd difference, m-o-m

tv(6)-trig 0.95���� 0.98 1.02 1.05 0.99 1.04 1.03 0.97 1 1.01�� 1.01 1.06 0.99�� 1.02
tv(12)-trig 0.97�� 1.01�� 1.01�� 1.04 0.98 1.01 1.03 1 0.99 1.01 1 1.04 0.99�� 1.01
tv(6,1)-trig 0.99 1 1�� 1.02 0.97�� 1.01�� 0.99 1.01 0.99 1.02 1.02 1.01 0.99 1.01
tv(12,1)-trig 0.99 1 1 1.06 0.96�� 0.99 0.99 1.04 1 1.01 1.01 1.01 0.98 1.01
tv(6,2)-trig 1.01�� 1.02 1.02 1.03 0.96�� 1.01�� 1.35 1.01 1 1.02 1.01 1.03 0.99�� 1.03
tv(12,2)-trig 0.98�� 0.98 1.01 1.03 0.95�� 0.99 1 1.01 1 1 1 1.03 0.99�� 1

trigger variable: housing starts, level

tv(6)-trig 0.75���� 1.24 0.88�� 1.04 1.09 0.94���� 1.04�� 1.14�� 1.04 1.2 0.93�� 1.01�� 1.45 1.03
tv(12)-trig 0.79���� 0.99 0.87�� 1.04 1.08 0.96�� 1.01�� 1.08�� 1.03�� 1.19 0.98� 1 1.45 1.04
tv(6,1)-trig 0.88��� 1.12 0.95 1.05 1.11 1.01�� 1.09�� 1.89 1.01�� 1.03 1.03�� 1.04 1.05 1
tv(12,1)-trig 0.82���� 1.09�� 0.95�� 1.1 1.03 0.98 1.07 1.13 1.04� 1.03 0.99 1 1.05� 1.01
tv(6,2)-trig 0.9�� 1.03 0.93 1.17 1.16 1.01�� 0.98 1.08 1.04�� 1.02 1.02 1.05�� 1.02�� 0.99��
tv(12,2)-trig 0.88��� 1.01 0.94 1.1 1.01 0.98 1.09 1.04 1.03�� 1.02 1.02�� 1.02 1 0.99��

trigger variable: Fed Funds rate, q-o-q

tv(6)-trig 0.92 1.02 0.96� 1.11 1.02 0.99 1.05 1 1.05 0.96���� 1.06�� 1.01 1.1
tv(12)-trig 0.93 1.02 0.93��� 1.1 1.03 0.99 1.02 0.99 1.03 0.96��� 1.04�� 1 1.06
tv(6,1)-trig 0.99 0.99 1 1.02 0.98 1 1.14 0.98 1.03 0.98�� 0.99 0.99 1
tv(12,1)-trig 0.99 0.99 0.98 1.03 0.98 1.01�� 1.12 0.97 1.01 0.98 1 0.99 1
tv(6,2)-trig 1 0.91 1�� 1.04 1 0.98 1.04 1.04 1 0.98 1 1 1.01
tv(12,2)-trig 0.94 0.98 0.97���� 1.01 0.98 0.97���� 1.04 1 1.01 1 1.07 0.98 1.01

Table 5: MSFE results for the whole forecasting period (see Tables 1 and 3 for a description of the models and the series). The

results are relative to the forecast MSFE of the AR(1) benchmark model. See Table 4 for a description of the trigger variables. In red and

underlined you can see the best performing method, when this is better than the benchmark. The * (**) denotes statistically different

forecasts from the AR(1) model at the 10% (5%) significance level, according to the Diebold and Mariano test. The � (��) denotes

statistically different forecasts from the AR(1) model at the 10% (5%) significance level according to the forecast fluctuation test.

26



Recession Period forecasting

model PAYEMS TB3MS UNRATE M1SL CPI INDPRO FFR MZMSL CONSPI AVGHE CUMFNS RPI WPSID HOUST

ar(bic) 0.51 0.95 0.57 0.88 0.97 0.89 1.05 1.15 1.03 0.93 0.87 1 1.16 0.93
rw 0.35�� 1.35 0.75 3.93 1.74 1.2 1.19 2.67 1.81 6.39 1.23 1.98 2.41 0.88

TVP 0.34�� 1 0.45�� 1 1 0.8�� 1 1 1.01 1 1.07�� 0.97 1 0.88��
TVPc 0.34�� 1 0.45�� 1 1 0.8�� 1 1 1.01 1 1.07�� 0.97 1 0.88��

MS2AR 0.71�� 1.02 0.6 0.87 1.03 0.99 0.99 1.12 0.91 1.02 0.93 0.86 1 1.01
MS2ARc 0.93� 1 0.77 1 1 0.97 1.01 1 0.9 0.99 0.96 0.92 1 1.03
MS3AR 0.91�� 1 0.85� 1.32 0.92 0.97 1.03 1.11 0.92� 1.82 0.91�� 1.02 1 1.03
MS3ARc 0.92�� 0.97 0.97 1.31 0.94 0.97 0.96 1.01 0.9� 1.81 0.92 0.99 1.02 1.03

tv-N-CV(6) 0.37�� 1.05 0.65 2.33 0.99 2.53 1.13 0.95 0.87 2.15 1.36 1.13 1.01�� 1.04
tv-N-CV(12) 0.39�� 1 0.64 2.33 1 2.56 1.14 0.96 0.94 2.13 1.4 1.18 0.98 1

SLA-CV(6) 0.31�� 1.21 0.67 1.33 1 1.22 1.09 1.12 0.87 1.89 1.15 1.08 0.98 0.89��
SLA-(12) 0.34�� 0.99 0.74 1.32 0.89 1.23 0.9 1.08 0.91 1.89 1.17 1.08 0.97 0.92��

trigger variable: q-o-q difference of the forecasted series

tv-N-CV(6)-trig 0.43�� 0.94 0.62 1.19 1.1 1.01 1.02 0.95 1.01 0.95 0.82 0.93 0.96
tv-N-CV(12)-trig 0.46�� 1 0.59 1.19 1.52 0.98 0.99 1.16 1 0.94 0.97 0.94 0.97
tv-N-CV(6,1)-trig 0.48�� 0.99 0.6 0.96 1.09�� 0.97�� 1 0.98 1.08� 0.92 0.93� 0.8 0.8
tv-N-CV(12,1)-trig 0.45�� 0.96 0.62 0.93 0.96 0.96�� 1 0.99 1.02 0.97 0.97� 0.83 0.8
tv-N-CV(6,2)-trig 0.46�� 0.96 0.66 0.89 0.94�� 0.96 1.05 1.04 1.04 0.8 0.99 0.78 1
tv-N-CV(12,2)-trig 0.43�� 0.94 0.62� 0.8 0.98�� 0.96� 1.01 0.98 1.01 0.79 0.97 0.79 0.99

STR-CV(6) 0.39�� 1.06 0.59 0.98 0.94�� 0.86�� 1 1.01 1.01 1.03 0.92�� 0.83 1 � 0.99
STRc-CV(6) 0.46�� 1.09 0.63 0.95 0.93�� 0.82�� 0.98� 0.99 0.99 1.01 0.88�� 1.01 0.99� 0.98
STR-CV(12) 0.5�� 1 0.6 0.99 0.93 0.91�� 1.02 0.99 1.06 0.9 0.97� 0.89 1.01� 0.98

trigger variable: y-o-y difference of the forecasted series

tv-N-CV(6)-trig 0.55�� 0.94 0.72 1.05 1.12 1.07� 1.12 0.94 1.17 1.25 1.02� 1.18 4.54
tv-N-CV(12)-trig 0.6�� 1.04 0.73 1.04 1.12 1.07� 1.14 0.92 1.18 1.06 1.03 1.18 4.57
tv-N-CV(6,1)-trig 0.84�� 0.95 0.77�� 1.03 0.97 1.04�� 1.06 0.92 1 1.18 1.09� 1.02 0.99
tv-N-CV(12,1)-trig 0.59�� 0.92 0.75�� 1 0.96 1.03�� 1.11 0.96 0.97 1.08 1.12 1.06 0.99
tv-N-CV(6,2)-trig 0.68�� 0.93 0.83 0.99 1.03 1.04�� 1.11 0.99 0.92 1.01 0.89 1 0.99
tv-N-CV(12,2)-trig 0.64�� 0.97 0.8 0.98 0.98 1.04�� 1.04 0.95 0.95 1.03 1.05 1 1

trigger variable: same as the forecasted series

tv-N-CV(6)-trig 0.83 2.36 0.85 1.56 1.13 0.99 0.99 1.31 1 1.69 1.02 0.89 1.08 1.23
tv-N-CV(12)-trig 0.84 1.08 0.86 3.43 1.19 0.99 0.97 1.29 0.96 1.69 0.99 0.88 1.08 1.25
tv-N-CV(6,1)-trig 0.9 0.99 0.88�� 3.27 1 1.05 0.98 1.09 0.97 1.15 1.04 0.82 1.12 0.97
tv-N-CV(12,1)-trig 0.87 1.03 0.88 0.97 1 1.06 0.96 1.06 0.89 1.12 1.03 0.78 1.02 1.01
tv-N-CV(6,2)-trig 0.89 5.6 0.87 3.32 1.61 0.99 0.94 1.13 0.97 1.08 1.03 0.84 1.11 0.99
tv-N-CV(12,2)-trig 0.86 1.02 0.91 0.99 1.01 0.98 0.96 1.14 0.88 1.09 1 0.84 1.11 1.02

trigger variable: oil price, 2nd difference, m-o-m

tv-N-CV(6)-trig 0.87� 0.98 0.99 1.09 1.02 1.07 1.08 1.11 0.99 1 0.97 1.05 0.98 1.03
tv-N-CV(12)-trig 0.88 1 0.98 1.1 1 1.01 1.09 1.12 0.99 1 0.98 1.03 0.98 1.01
tv-N-CV(6,1)-trig 0.95 1.01 0.95 1.04 0.99 1 0.98 1.03 0.98 1.01 1.01 1.02 1.02 0.99
tv-N-CV(12,1)-trig 0.97 0.98 1 1.17 1 1 1 1.21�� 1 1 1.02 1.03 1.01 0.99
tv-N-CV(6,2)-trig 0.9 1.06 0.98 1.09 0.99� 0.98 0.97 1.01� 0.99 1.01 0.96 1 0.97 1
tv-N-CV(12,2)-trig 0.91 1 1.01 1.08 0.95� 0.96 1 1 1 1.02 1 1.02 0.96 0.99

trigger variable: housing starts, level

tv-N-CV(6)-trig 0.47�� 1.43 0.5�� 1.05 1.15 0.9�� 1.07 1.07 1.21 1.53 0.86�� 1.13 2.33 1.19
tv-N-CV(12)-trig 0.49�� 1.07 0.49� 1.04 1.14 0.86�� 0.98� 1 1.11 1.56 0.95�� 1.09 2.34 1.22
tv-N-CV(6,1)-trig 0.47�� 1.14 0.52 1.05� 1.3 0.92� 0.95 5.02 1.03 1.05 1.02� 1.01 1.13 1
tv-N-CV(12,1)-trig 0.47�� 1.12 0.54 1.2 1.08 0.84� 1.02 1.2 1.11 1.06 0.88�� 1.01 1.12 1.01
tv-N-CV(6,2)-trig 0.48�� 1.17 0.53� 1.34� 1.46 0.87 0.92 1.16 1.02 0.97 0.93 1.07 1 1.04
tv-N-CV(12,2)-trig 0.5� 1.07 0.49� 1.21� 1.01 0.82� 0.96 1.2 1.05 1.01 0.97 1.06 0.99 1.02

trigger variable: Fed Funds rate, q-o-q

tv-N-CV(6)-trig 0.98�� 1.02 1.07 1.16 0.97 1.05 1.14 1.02 1.06 1.01 1.02 1 1.21
tv-N-CV(12)-trig 0.98� 1.04 1 1.16 0.99 1.01 1.06 1 1.04 0.98 1 0.98 1.13
tv-N-CV(6,1)-trig 0.99 0.98 1.03 1.02 0.99 1.08 1.03 0.99 1.03 1.09 1.02 1 1
tv-N-CV(12,1)-trig 1.01 0.98 1.03 1.03 0.98 1.11 1.03 1 1.03 1.07 1 1 0.99
tv-N-CV(6,2)-trig 0.99 1.04 1.02 1.04 0.97 1.04 1.04 1 1 1.06 1.01 1 1.02
tv-N-CV(12,2)-trig 0.97 1.05 0.98 0.99 0.97 1.02 1.01 1.01 1 1.07 1.01 0.96 1.02

Table 6: MSFE results for the recession period (see Tables 1 and 3 for a description of the models and the series). The results are relative

to the forecast MSFE of the AR(1) benchmark model. See Table 4 for a description of the trigger variables. In red and underlined you

can see the best performing method, when this is better than the benchmark.
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