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Denis Nekipelov, Asu Özdağlar, Fiona Scott-Morton, and Glen Weyl for helpful discussions. We thank the
audiences at ASSA 2019, ESSET 2019 and the ACM-EC 2019 Plenary Lecture for productive comments.
†Department of Economics, Yale University, New Haven, CT 06511, dirk.bergemann@yale.edu.
‡MIT Sloan School of Management, Cambridge, MA 02142, bonatti@mit.edu.
§Department of Economics, Yale University, New Haven, CT 06511, tan.gan@yale.edu.

1



1 Introduction

Individual Data and Data Intermediaries The rise of large Internet platforms—such as

Facebook, Google, and Amazon in the US, and of similar large entities in China, such as JD,

Tencent and Alibaba—has led to an unprecedented collection and commercial use of individual

data. The ever-increasing user bases of these platforms generate massive amounts of data

about individual consumers: their preferences, their locations, their friends, their political

views, and almost all other facets of their lives. In turn, many of the services provided by

large Internet platforms rely critically on these data. The availability of individual-level data

allows these companies to offer refined search results, personalized product recommendations,

informative ratings, timely traffi c data, and targeted advertisements.1

The recent disclosures on the use and misuse of social data by Internet platforms have

prompted regulators to limit the hitherto largely unsupervised use of individual data by these

companies. As a result, nearly all proposed and enacted regulation to date is centered on

ensuring that consumers retain control over their data. The idea is that, because consumer

data must be acquired, aggregated, packaged, and sold, the allocation of control rights

impacts the ultimate use of the data.2 In particular, by assigning ownership and control to

individual consumers, regulators hope to enable an effi cient use of information or at least to

grant individual consumers the appropriate compensation for the data they reveal.3 Despite

the appeal of the Coase theorem implicitly invoked in the regulation, it is far from evident

that the resulting allocation of information is effi cient due to multiple potential market

failures. In this paper, we explore the implications of externalities across consumers.

A central feature of the data collected from individuals is its social aspect. Namely, the

data captured from an individual user are not only informative about that specific individual

but also about appropriately defined nearby individuals. Thus, these individual data are

really social data. The social nature of the data generates a data externality, the sign and

magnitude of which depend on the ultimate use of the information so gained. In the context

of geolocation data, for instance, an individual user conveys information about the traffi c

conditions for nearby drivers. In the context of shopping data, an individual’s purchases

convey information about the willingness to pay for a given product among consumers with

similar purchase histories.

1Bergemann and Bonatti (2019) provide a recent introduction.
2The aggregation of consumers into targeting categories is especially important on large platforms that

intermediate the exchange of information about tastes for products between consumers and advertisers.
3The Stigler Committee on Digital Platforms (2019) notes that “Many technology platforms are distinctive

because they provide valued services to consumers without charging a monetary price. Instead, consumers
barter their attention and data to the platforms in exchange for these services. The platforms use that
attention and data to generate monetary payments from advertisers.”
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In this paper, we analyze three critical aspects of the economics of social data. First, we

consider how the collection of individual data changes the terms of trade among consumers,

advertisers, and large Internet platforms. Second, we examine how the social dimension of the

data magnifies the value of individual data for the platforms and facilitates data acquisition.

Third, we analyze how data intermediaries with market power (e.g., large Internet platforms

that sell targeted advertising space) change the level of aggregation and the precision of the

information they provide in equilibrium about individual consumers.

A Model of Data Intermediation We develop a framework to evaluate the allocation

of control rights to consumers in the presence of the data externality. Our model focuses

on three types of economic agents: consumers, firms, and data intermediaries. These agents

interact in two distinct but linked markets: a data market and a product market.

In the product market, each consumer (she) determines the quantity she wishes to pur-

chase, and a single producer (he) sets the unit price at which to offer a product to the

consumers. The product market features demand uncertainty, and each consumer experi-

ences a demand shock. While the producer knows the (common) prior distribution of the

demand shocks, he does not know the realization of the individual demand shocks.

In the data market, the data intermediary acquires demand information from the in-

dividual consumers and then sells these data in some possibly aggregated or noisy version

to the producer. The data intermediary can choose how much information to buy from the

consumers and how much information to resell to the producer. The (upstream) data market

and the (downstream) product market are linked by the pricing decision of the producer.

The consumers’willingness to sell their personal data depends on how the pricing policy of

the producer responds to the data so acquired.

Knowledge of the demand data has distinct implications for consumers and the producer.

The demand information allows the producer to engage in price discrimination, which occurs

at the individual or at the market level, depending on the data aggregation level chosen by

the intermediary. For any information structure, however, the producer gains revenue by

tailoring his price to the demand. Conversely, in our model, the consumer loses in utility

due to the distortion in her consumption entailed by a more responsive price.4 Consequently,

the social value of information is also negative in our setting.

4It is well known (e.g., Bergemann, Brooks, and Morris (2015)) that price discrimination can be beneficial
to consumers. In this case, we deliberately choose a model where information reduces total surplus (and,
hence, a fortiori, consumer surplus) to highlight how the data externality enables profitable intermediation
to take place.
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The Value and Price of Social Data The social dimension of the data– whereby a

consumer’s data are also predictive of the behavior of others– is critical to understand the

consumer’s incentives to share her data with a large platform. A naive argument suggests

that if a consumer is empowered to take control of her data and anticipates any negative

consequences of revealing her information, she will demand compensation from the interme-

diary (e.g., through the quality of the services received). In turn, the need to compensate

consumers will disrupt the intermediaries’business model if the transmission of information

to the downstream producers reduces total surplus.

However, this argument ignores the social aspect of the data. The consumer’s choice

to provide information is guided only by her private benefits and costs, i.e., the externality

generated by the data she provides is not considered in her decision making. Thus, the inter-

mediary has to compensate each individual consumer only to the extent that the disclosed

information affects her own welfare. Conversely, the platform does not have to compensate

the individual consumer for any changes she causes in the welfare of others or for any changes

in her welfare caused by information revealed by others. Consequently, the cost of acquiring

individual data can be substantially below the value of information to the platform.

We can now see how social data drive a wedge between the effi cient and profitable uses of

information. While many uses of consumer information exhibit positive externalities (e.g.,

real-time traffi c information for driving directions), very little prevents the platform from

trading data for profitable uses that are, in fact, harmful to consumers. The presence of

the data externality thus indicates that the mere allocation of ownership and control to

consumers does not ensure effi cient information trade in these markets. In our model, the

difference between the large revenues associated with selling the information about many

consumers and the small compensation necessary to acquire that information means the

intermediary can profitably trade data even if information is socially harmful.

The presence of a data externality can therefore provide a novel explanation for the

digital privacy paradox experimentally documented by Athey, Catalini, and Tucker (2017),

whereby small monetary incentives have large effects on subjects’willingness to relinquish

their private data. In practice, this force also likely drives the extraordinary appetite of

Internet platforms to gather information.5

What restrictions, if any, does the allocation of control rights to consumers over their

data then impose on the equilibrium trading of information? While the data externality

facilitates the diffusion of some information about consumers, we find that how the informa-

5The Furman report identifies “the central importance of data as a driver of concentration and barrier to
competition in digital markets” (Digital Competition Expert Panel (2019)). The social dimension of data
helps explain these forces.
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tion is collected depends on the fundamental characteristics of both the upstream and the

downstream market. In Section 4, we show that when consumers are homogeneous ex ante

and producers use information to set prices, the intermediary prefers to collect aggregate,

market-level information. This means that the intermediary does not enable the producer to

set personalized prices: the data are transmitted fairly precisely but disconnected from the

users’personal profiles. In other words, although from a technological standpoint the data

are freely available to the intermediary, the fundamental role of social data is more subtle in

determining the modality of information acquisition and use.6

Amore nuanced version of this result emerges when we extend the model to accommodate

heterogeneous groups of consumers in Section 5. Indeed, we find that data are aggregated

at least at the level of the coarsest partition of homogeneous consumers, although further

aggregation is profitable for the intermediary when the number of consumers is small. The

resulting group pricing (which one can interpret as discriminatory on observable charac-

teristics, such as location) has welfare consequences in between those of complete privacy

and price personalization. Finally, we extend our aggregation result by allowing for het-

erogeneous uses of information, some of which increase total surplus. In Section 6, we find

that aggregate (market-level) information is collected if and only if it reduces total surplus.

In other words, even if data transmission is socially detrimental (as in the case of price

discrimination downstream), the equilibrium level of data aggregation is socially effi cient.

We conclude the paper by commenting on the policy implications of these findings in the

context of large Internet platforms and business-to-business (B2B) markets.

Our analysis is related to, among others, the model of selling information in Bergemann,

Bonatti, and Smolin (2018). Relative to our earlier work, the framework in Section 2 in-

troduces the problem of sourcing information from an individual consumer who makes her

participation decision ex ante. In other words, the consumer makes a single decision regard-

ing whether to use a platform’s services, rather than trying to influence a data intermediary’s

perception of her willingness to pay. Thus, our work is related to the analysis of the welfare

effects of third-degree price discrimination in Bergemann, Brooks, and Morris (2015) and

to the model of market segmentation with second-degree price discrimination in Haghpanah

and Siegel (2019). In contrast, a recent literature studies settings in which data interme-

diaries collect information about consumers’actions, rather than about their preferences.

For example, Ball (2020) analyzes the design of a quality score that aggregates multiple di-

mensions of an agent’s performance, and Bonatti and Cisternas (2019) examine the optimal

6The importance of social data is also manifest in the optimal information design. In particular, the
intermediary may find it profitable to introduce correlated noise terms into the information elicited from
each consumer. This clearly reduces the value for the producer but exacerbates the data externality by
making the consumers’reports more correlated. Thus, it severely reduces the cost of procuring the data.
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aggregation of consumer purchase histories.

Ichihashi (2019) studies competing data intermediaries that acquire perfect information

from consumers. His model predicts multiple equilibria, in some of which competition harms

consumers to an equal extent as monopoly– see also Westenbroek, Dong, Ratliff, and Sastry

(2019) on this point. In contrast, our competition model assumes that the information

collected by each intermediary contains noise, which means that every intermediary can add

value. This yields a unique equilibrium outcome in terms of the information transmitted

and the players’payoffs, and competition has no effect on protecting privacy. Choi, Jeon,

and Kim (2019) consider a model of privacy in which data collection requires consumers’

consent. They emphasize the information externalities and coordination failures among users

as drivers of an excessive loss of privacy.

Finally, independent work by Acemoglu, Makhdoumi, Malekian, and Ozdaglar (2019)

also studies an environment with data externalities. Their work is different from and largely

complementary to ours. In particular, they analyze a network economy in which asymmetric

users with exogenous and heterogeneous privacy concerns trade information with a data

platform. They derive conditions under which the equilibrium allocation of information

is (in)effi cient and examine the welfare effects of competition among intermediaries. In

contrast, we endogenize privacy concern in a market setting, which enables us to quantify

the downstream welfare impact of data intermediation. Our framework also accommodates

questions around information design, such as when will privacy be preserved, and what are

possible sources of ineffi ciency other than privacy violations.

2 Model

We consider a trading environment with a single intermediary in the data market, a single

producer in the product market, and many consumers. The environment is meant to capture

the choices of consumers on large online platforms. In later sections, we generalize the

analysis to allow for competition in the data market.

2.1 Product Market

Consumers There are finitely many consumers, labelled i = 1, ..., N . In the product

market, each consumer (she) chooses a quantity level qi to maximize her net utility given a

unit price pi offered by the producer (he):

ui (wi, qi, pi) , wiqi − piqi −
1

2
q2
i . (1)
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Each consumer i has a realized willingness to pay for the product denoted by:

wi , θ + θi. (2)

The willingness to pay wi ∈ W = R of consumer i is the sum of a component θ that is

common to all consumers in the market and an idiosyncratic component θi that reflects

her individual taste shock. Throughout, we assume that all random variables are normally

distributed and thus described by a mean vector and a variance-covariance matrix:(
θ

θi

)
∼ N

((
µθ

µθi

)
,

(
σ2
θ 0

0 σ2
θi

))
. (3)

Producer The producer can choose the unit price pi at which he offers his product to each

consumer i. The producer has a linear production cost

c (q) , c · q, for some c ≥ 0.

The producer’s operating profits are given by

π (pi, qi) ,
∑
i

(pi − c) qi. (4)

The producer knows the structure of demand and thus the common prior distribution given

by (3). However, absent any additional information from the data intermediary, the producer

does not know the realized demand shocks prior to setting his price. As a consequence, in the

absence of additional information from the data intermediary, it is optimal for the producer

to offer a uniform unit price to all consumers.

2.2 Data Market

The data market is run by a single data intermediary (it). The data intermediary can

acquire demand information from an individual consumer, package this information, and

then sell it to the producer. We consider bilateral contracts between the data intermediary

and individual consumers, as well as between the data intermediary and the producer. The

data intermediary offers these bilateral contracts ex ante, that is, before the realization of any

demand shocks. The contracts are offered simultaneously to all consumers. Each bilateral

contract determines a data price and a data policy.

The data price determines the fee for the transfer of information. The data policy deter-

mines the inflow of information to and the outflow of information from the data intermediary.
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As a monopolist market maker, the data intermediary decides how to collect the information

from the consumers and how to transmit it to the producer. Thus, the data intermediary

faces both an information design and a pricing problem. The data and product markets are

summarized in Figure 1 below.

Figure 1: Data Market and Product Market

The data intermediary can transmit all information about each consumer i or some,

possibly noisy, statistic of individual and market demand. The two key dimensions of the

data intermediary’s information policy are noise and aggregation. In particular, if consumer

i participates, the intermediary collects a linear, differentially private signal of her willingness

to pay:

si ,
∑N

j=1
αij (wj + ε+ εj) aj, (5)

where the weights αij ∈ R for all i, j determine the influence that the willingness to pay of
consumer j has on the signal about i, and aj ∈ {0, 1} represents the participation decision
of consumer j. If consumer j does not participate (aj = 0), she does not share her data with

the data intermediary and no signal is collected about her willingness to pay.

The weights αij ∈ R allow the data intermediary to fully or partially aggregate the con-
sumers’signals. The leading cases are αij = 1i=j, in which case the intermediary transmits

individual demand information, and αij = 1/N , in which case the intermediary transmits

market demand (average) information.

In either case, the data inflow from consumer i about her private information wi may

be subject to common and idiosyncratic noise terms, ε and εi, with variance, σ2
ε and σ

2
εi
,

respectively. The choice of the variance terms σ2
ε and σ

2
εi
is an instrument available to the

data intermediary to guarantee some degree of informational privacy to consumer i. We
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refer to the inflow data policy described by the signals si as an information structure

S : RN → ∆RN .

In turn, the outflow data policy is given by any information structure

T : RN → ∆RN

that is weakly less informative than the inflow policy S. The outflow data policy can be

chosen, exactly as the inflow data policy, with aggregation and noise. In particular, if every

consumer participates, the data intermediary reports a vector of (potentially noisy) signals

t ∈ RN . The resulting information structure in the data market is given by (S, T ).

The data intermediary makes a bilateral offer to each consumer i that specifies an inflow

data policy Si and a feemi to be paid to the consumer. Similarly, the data intermediary offers

an outflow data policy T and a fee m0 to be paid by the producer. The data intermediary

maximizes the net revenue it receives from the consumers and the producer:7

R , m0 −
∑N

i=1
mi. (6)

2.3 Equilibrium and Timing

The game proceeds sequentially. First, the terms of trade on the data market are determined,

and then the terms of trade on the product market are established. The timing of the game

is as follows:

1. The data intermediary offers a data policy (mi, Si) to each consumer i for data acqui-

sition. Consumers simultaneously accept or reject the intermediary’s offer.

2. The data intermediary offers a data policy (m0, T ) to the producer. The producer

accepts or rejects the offer.

3. The data w and the information flows (s, t) are realized and transmitted according to

the terms of the bilateral contracts.

4. The producer sets a unit price pi for each consumer i who makes a purchase decision

qi given her realized demand wi.

7A priori, the respective monetary fees are unrestricted and can be positive or negative. We anticipate the
results here and describe the transfers from the point of view of the data intermediary. Thus, we implicitly
assume that there is a price of data,or m0 > 0 and an expense for data, or mi > 0.
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We analyze the Perfect Bayesian Equilibrium of the game. At the contracting stage,

the information is imperfect but symmetric. The analysis proceeds by backward induction.

Given an established data policy (S, T ), the optimal pricing policy of the producer is informed

by the data outflow,

p∗ : S × T → RN ,

where logically, the dependence is on both S and T through the realized data policy, but the

price must be measurable with respect to T . The optimal price is thus a vector of potentially

distinct and personalized prices p∗ (t) ∈ RN . The resulting net revenue of the producer is:

Π (S, T ) , E
[∑N

i=1
π (p∗i (t) , qi) |S, T

]
.

By contrast, if the producer chooses not enter into a contract with the data intermediary,

then he must price under the common prior distribution only. We denote the monopoly price

in the absence of information by p̄, the net revenue of the producer is:

Π (S,∅) , E
[∑N

i=1
π (p̄, qi)

]
= Πi (∅,∅) .

If the producer does not receive any information from the data intermediary, he will not have

to pay for any data. If the producer accepts the proposal of the data intermediary, then he

must pay the fee m0. The participation constraint for the producer is thus

Π (S, T )− Π (∅,∅) ≥ m0. (7)

Proceeding backwards, the data intermediary, having implemented an inflow data policy

S, offers an outflow data policy T , possibly as a function of S, thus T (S) and an associated

data price m0 (T (S)) that maximizes its overall data revenue (6). Finally, each consumer

receives an offer for a data contract (mi, Si). We denote the gross expected utility of consumer

i from data sharing by

Ui (S) , E [ui (wi, qi, pi) |S, T (S) ] .

Each pair (mi, Si) must satisfy the consumer’s participation constraint. Holding fixed

the decision of the remaining consumers, by rejecting her contract, consumer i would not

receive compensation for the data but would also not participate in data sharing. This

may affect the realized data outflow policy T (∅, S−i) and the resulting pricing policy of the
producer. In particular, if consumer i does not accept the intermediary’s offer, the producer

10



can personalize the price on the basis of any data he acquires about other consumers.8 The

consumer’s surplus from rejecting the intermediary’s offer is:

Ui (∅, S−i) , E [ui (wi, qi, pi) |∅, S−i, T (∅, S−i) ] .

The data intermediary has to choose a data policy (mi, Si) that satisfies the participation

constraint of each consumers i:

Ui (S)− Ui (∅, S−i) ≥ mi, for all i. (8)

We emphasize that the participation constraint of every consumer i and the producer

are required to hold at the ex ante level. Thus, the consumer (and the producer) agree to

the data policy before the realization of any particular demand realization wi. The choice of

the ex ante participation constraint is meant to capture the prevailing condition where the

consumer and the producer accept the “terms of use agreement”or “terms of service”before

any particular consumption choice or search event. This reflects the practice, for instance

when using Facebook, Amazon, or any search engine, where an account is established before

the realization of any particular event. In particular, the consumer evaluates the consequence

of sharing her data flow ex ante, i.e., she requires a level of compensation that allows her

to profitably share the information on average. Conditional upon agreeing to share the

information, there are no further incentive compatibility constraints.

A Perfect Bayesian Equilibrium is given by a tuple of inflow and outflow data policies,

pricing policies for data and product, and participation decisions by producer and consumers

{(S∗, T ∗,m∗) ; p∗ (S, T ) ; a∗} , (9)

where

a∗0 : S × T × R→{0, 1} , a∗i : Si × R→{0, 1} , (10)

such that (i) the producer maximizes his expected profits, (ii) the intermediary maximizes

its expected revenue, and (iii) each consumer maximizes her net utility.

8This assumption captures the idea that the data intermediary is often a large online platform that
directly enables the interaction between the producer and the consumers. Under this interpretation, even
if a consumer rejects the intermediary’s offer (mi,Si), she still interacts with the producer, who can use all
the information available to him.
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3 Data in the Wild

We begin the equilibrium analysis by characterizing the value of exogenous information in

our model. To do so, we abstract from the data prices and fix an arbitrary information

structure that is freely available to the producer. In terms of the data policy (S, T ), it is

thus as if we were to assume that the data would flow without friction from consumer i to

the producer:

ti = si, ∀i.

We therefore refer to an information structure simply as S. For the subsequent analysis, we

shall assume that the information structure S carries some information about the willingness

to pay by requiring that the variance of the conditional expectation is positive, or:

var [E [wi |S ]] > 0, for all i.

Thus, the conditional expectation of the willingness to pay under the information structure

S carries information about the demand. The realized demand function of each consumer i

is given by

qi = wi − pi, (11)

and hence, the optimal personalized price p∗i (S) is a linear function of the posterior mean

regarding each consumer i’s type:

p∗i (S) =
E [wi | S] + c

2
. (12)

From (1) and (4), the ex ante expectation of consumer i’s surplus and of the producer’s

profit can be written in terms of the personalized price p∗i (S) in (12) as

Ui (S) =
1

2
E
[
(wi − p∗i (S))2] , and (13)

Πi (S) = E [(p∗i (S)− c) (wi − p∗i (S))] . (14)

Because prices and quantities are linear functions of the producer’s conditional expectation

of wi, the ex ante mean of both prices and quantities are constant across all information

policies. Consequently, the welfare implications of a given information policy S are captured

by the variance and covariance of the equilibrium actions and the consumers’ types. In

particular, the ex ante surplus of consumer i in (13) is given by

Ui (S) = − cov [wi, p
∗
i (S)] +

1

2
var [p∗i (S)] + Ui (∅) , (15)

12



where Ui (∅) represents the consumer surplus under no demand data.

Intuitively, any ability of the producer to correlate the price p∗i to the realized willingness

to pay wi is detrimental to consumer i’s welfare, as shown by the covariance term cov[wi, p
∗
i ].

This effect is partially offset by the variance of the price var[p∗i ], which allows the consumer

to adjust her demand qi in her linear optimization problem. The monopoly price p∗i in (12) is

itself linear in the producer’s expectation of wi. The properties of the Gaussian distribution

imply that var [p∗i ] = cov [wi, p
∗
i ] /2, so the overall effect of information on consumer welfare

is negative.

Similarly, the net revenue of the producer in (14) can be written as

Πi (S) = cov [wi, p
∗
i (S)]− var [p∗i (S)] + Πi (∅) , (16)

where the covariance term captures the intuition that adapting prices to willingness to pay

improves profits, while the variance term reflects the loss from varying the choice variable

in a concave optimization problem. On net, because var [p∗i ] = cov [wi, p
∗
i ] /2, the effect of

information is positive for the producer. Using the expressions in (15) and (16), Proposition

1 contrasts the equilibrium welfare levels when the demand data are publicly available to

when the producer only has the common prior information about the demand.

Proposition 1 (Value of Demand Data)
The profits of the producer are higher and the consumer and social surplus are lower under

any information structure S than under no information.

To gain some intuition, suppose that perfectly informative demand data are freely avail-

able to the producer, who then uses the data to the maximal extent possible in his pricing

policy. Thus, the producer pursues a personalized pricing policy towards each individual

consumer. As the producer adapts his pricing policy to the willingness to pay wi of con-

sumer i, he increases the monopoly price p∗i = wi/2 in response to an increase in demand.

The equilibrium quantity q∗i also increases with the willingness to pay wi but at half the rate

it would if the producer only had the common prior information about demand, in which

case the consumer would face a constant price. This reduced responsiveness of the level of

trade to the gains from trade is what reduces social welfare.9

9This result is related to the classic environment of third-degree price discrimination with linear demand
studied by Robinson (1933) and Schmalensee (1981), with some subtle differences. In the current model,
each consumer has a linear demand function, the intercept of which is given by her willingness to pay.
Price discrimination then occurs across different realizations of the willingness to pay. Indeed, the results
in Proposition 1 remain valid if the producer has access to aggregate market-level demand data only and
sets a single price. In contrast, in Robinson (1933) and Schmalensee (1981), price discrimination occurs
across different markets. In both settings, the central result is that average demand will not change (with
all markets served), but social welfare is lower under finer market segmentation.
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The complete availability of the demand data is admittedly an extreme benchmark in

at least two respects. First, the producer may only have access to some noisy or aggregate

version of the demand data. Second, with many consumers, the intermediary may observe

only a subsample of the consumer demand data. Both elements are critical to the profitability

of intermediation, but neither changes the fact that the transmission of any amount of

information is welfare-reducing in our model.

Thus, we are starting (intentionally) in an economic environment where, absent market

imperfections, the consumer data should not be shared and transmitted at all. In Section

6, we consider more general game forms in the downstream interaction between consumers

and the producer, in some of which information increases total surplus.

In the presence of social data, the welfare results above hold not only in levels but also on

the margin, whereby each individual consumer revealing information contributes to part of

the surplus loss. Intuitively, the demand of each individual consumer comes from two sources,

the idiosyncratic shock and the common shock. While each consumer has an informational

monopoly over the idiosyncratic shock, the producer can learn about the common shock not

only from consumer i but also from all other consumers.

We can now formally define our notion of data externality.

Definition 1 (Data Externality)
The data externality imposed by consumers −i on consumer i is given by:

DEi (S) , Ui (∅, S−i)− Ui (∅) < 0.

The data externality DEi (S) is strictly negative for any nontrivial information struc-

ture. This follows immediately if one applies Proposition 1 to the information structure

S, (∅, S−i). Looking ahead to the amount of compensation owed to each consumer i,

Proposition 1 formalizes the intuition that the ability to make inferences about wi from

observing signals s−i has negative implications for consumer i’s surplus.

Corollary 1 (Marginal Value of Information)
The marginal welfare effect of consumer i’s data flow is smaller than the total effect,

0 < Ui (∅, S−i)− Ui (S) < Ui (∅)− Ui (S) . (17)

The second inequality in (17) suggests that the data externality across consumers facil-

itates the profitability of data intermediation. Thus, the overall effect of the data flow S

on consumer i’s surplus is partly due to the data flow Si from her and partly due to the

information flow S−i from the other consumers.
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4 Data and Aggregation

In contrast to the preceding analysis, where the consumer data were available “in the wild,”

we now explicitly assign each consumer the ownership of her demand data. Thus, unless the

consumer explicitly accepts an arrangement to share her data with a data intermediary, the

data will remain private information to her.

4.1 Data Flow

A critical driver of the consumer’s decision to share the data is her ability to anticipate the

intermediary’s use of the information so gained. We therefore begin with a preliminary result

regarding the nature of the interaction between the data intermediary and the producer:

given the data inflow S that the intermediary has acquired, we establish that the subsequent

interaction between the intermediary and the producer is effi cient. In other words, the

intermediary implements a data outflow policy that maximizes the producer’s gross surplus,

which it then extracts through the fee m0.

Proposition 2 (Data Outflow Policy)
The data intermediary offers a data policy of complete sharing, T ∗ (S) = S, for all S. The

data policy T ∗ (S) = S maximizes the gross revenue of the producer among all feasible outflow

data policies given S.

This result remains valid as long as we do not introduce multiple producers who compete

with one another. Because the interaction between the data intermediary and the producer is

frictionless, the presence of external contracting of the data does not matter for the structure

of the optimal data outflow policy. Consequently, we denote a data policy simply by S.

Furthermore, because we know that any nontrivial information structure S reduces total

surplus, we obtain an immediate corollary of Propositions 1 and 2 on the impossibility of

profitable intermediation in the presence of a single (large) consumer.

Corollary 2 (Unprofitable Data Intermediation)
If N = 1, the data intermediary cannot generate strictly positive profits.

We must therefore turn to the social dimension of the data to understand why data

intermediation can be profitable and, in particular, to study the comparative statics of

the value of information as more consumers sell their data to the intermediary. In what

follows, we focus on the intermediary-optimal Perfect Bayesian Equilibrium (henceforth, the

equilibrium). Intuitively, in this equilibrium, all consumers accept the intermediary’s offer

along the path of play.
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Because we are looking to maximize the intermediary’s equilibrium profits, the consumer’s

participation constraint (8) must be binding. The intermediary’s fees are given by

m∗i = Ui (∅, S−i)− Ui (S)

= Ui (∅, S−i)− Ui (∅)︸ ︷︷ ︸
DEi(S)<0

− (Ui (S)− Ui (∅))︸ ︷︷ ︸
∆Ui(S)<0

The optimal intermediary fee can thus be written as the difference between two terms,

both of which are negative: the total change ∆Ui (S) in consumer i’s surplus associated with

information structure S and the data externality DEi (S) imposed on i by consumers −i
when they sell their own data to the intermediary. Thus, the data externality reduces the

compensation that the intermediary owes consumers and creates the possibility of profitable

information intermediation.

Similarly, the optimal fee that the intermediary charges the producer is given by

m∗0 = Π (S)− Π (∅) .

With the notion of a data externality, we then can write the intermediary’s profit (6) as

R (S) = m0 −
∑N

i=1
mi (S) = ∆TS (S) +

∑N

i=1
|DEi (S)| , (18)

where ∆TS denotes the variation in total surplus resulting from information policy S. Thus,

the intermediary’s profits are given by the sum of two terms: the variation in total surplus

associated with a data policy S and the total data externality across N agents. The expres-

sion in (18) further clarifies why with only one consumer (or with independent consumer

types), intermediation is not profitable and why the intermediary’s objective diverges from

the social planner’s.

4.2 Data Aggregation

We now explore the intermediary’s decision to aggregate the individual consumers’demand

data through the weights αij as in (5). At one extreme, the intermediary can collect and

transmit individual demand data (αij = 1i=j), thereby allowing the producer to match the

demand data to each specific consumer. This would be the optimal policy if the data were

freely available. At the other extreme, the intermediary can collect market demand data

(αij = 1/N). In this case, the producer observes a vector of identical (possibly noisy) signals
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of market demand:

si =
1

N

∑N

j=1
(wj + ε+ εj) , s̄, for all i. (19)

The observation of aggregate demand data still allows the producer to perform third-degree

price discrimination across realizations of the total market demand, but limits his ability to

extract surplus from the individual consumers.10

Certainly, the value of market demand data is lower for the producer than the value

of individual demand data. However, the cost of acquiring such fine-grained data from

consumers is also correspondingly higher. Aggregation is then a feasible way of reducing

the data acquisition costs by de facto anonymizing the consumers’information. Proposition

3 shows that, perhaps surprisingly, aggregating the consumers’ data as in (19) is always

optimal for the intermediary.

Proposition 3 (Optimality of Data Aggregation)
For any noise level in the signals

(
σ2
ε, σ

2
εi

)
, the profit-maximizing aggregation weights for the

intermediary are given by α∗ij = 1/N for all i, j.

Within the confines of our policies, the data intermediary always finds it advantageous

to not attempt to elicit the identity of the consumer at all. An important implication is

that the producer will not offer personalized prices. Instead, he will offer variable prices that

adjust to the realized information about market demand. While this form of third-degree

price discrimination is detrimental to social surplus, it represents a milder distortion than

personalized pricing.

This finding suggests why we may see personalized prices in fewer settings than initially

anticipated. For example, the retail platform Amazon and the transportation platform Uber

very rarely engage in personalized pricing. However, the price of every single good or service

is subject to substantial variation across both geographic markets and over time. In light

of the above result, we may interpret the restraint in the use of personalized pricing in

the presence of aggregate demand volatility as the optimal resolution of the intermediary’s

trade-off in the acquisition of sensitive consumer information.

To gain intuition for why the intermediary resolves this trade-off in favor of aggregation,

we turn to the data externality. Suppose that the intermediary acquires individual data, i.e.,

si = wi + ε+ εi, (20)

with fixed noise levels
(
σ2
ε, σ

2
εi

)
. Now consider the data externality imposed on consumer i

10This would also be the case if, equivalently, the producer had access to individual data, including
identifying information about the consumer, but could not identify consumers when he offers his product.
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by all other consumers −i:

DEi (Si) , Ui (∅, S−i)− Ui (∅) = − cov [wi, p
∗
i (S−i)] +

1

2
var [p∗i (S−i)] . (21)

In the above expression (21), p∗i (S−i) denotes the monopoly price charged to consumer i when

she rejects the intermediary’s contract, i.e., the optimal personalized price for consumer i off

the equilibrium path.

If the producer observes the N −1 signals s−i only, he is restricted in his ability to offer a

personalized price to consumer i. The lack of data about any given individual can, however,

be partially compensated with data about other consumers. In particular, as the demand

shock of each consumer has an idiosyncratic and a common component, the producer can

use the aggregate demand data from within his entire sample to estimate the demand of any

specific consumer out of sample. This price is given by a convex combination of the prior

mean and the average of all the other consumers’signals,

p∗i (S−i) =
E [wi | S−i] + c

2
=

1

2

(
c+ x

Σj 6=isj
N − 1

+ (1− x)µ

)
(22)

for some weight x ∈ (0, 1). In this sense, one can view the average signal s̄−i as a differentially

private signal of si. The extent to which the average s̄−i is informative about si then depends

on the variance of the common shock σ2
θ and on the variance of the idiosyncratic shock σ

2
θi
,

i.e., on the degree of correlation of the consumers’types.

Now, contrast this case with the collection of aggregate data as in (19). Along the path

of play, the producer offers the same price to all consumers. If one consumer does not

participate in the contract, however, the producer will be able to offer two prices: a single

price for the N − 1 participating consumers about whom the producer has aggregate and

another price to the deviating “anonymous”consumer. The latter price is again based on

market data and, in fact, is equal to p∗i (S−i) in (22). In other words, with individual signals,

the producer optimally aggregates the available data to form the best predictor of the missing

data point. Therefore, the sale of aggregate data has no impact on the pricing policy off the

equilibrium path. Specifically, all data policies with the same noise levels generate identical

levels of the data externality, independent of the degree of data aggregation.11

At this point, it is immediately clear why it is optimal for the intermediary to aggregate

11The result in Proposition 3 would not change if we forced the producer to charge a single price to all
consumers off the equilibrium path when aggregate data are collected. With this interpretation, however, we
want to capture the idea that the producer offers one price “on the platform,”to the participating consumers
but will still interact with the deviating consumer “offl ine”and will be able to leverage what he has learned
from the available market data to tailor his offl ine price.
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the individual information of all consumers: fix any given noise levels, and start from any

symmetric matrix of weights αij 6= 1/N . Relative to this set of weights, aggregating the re-

sulting signals (such that the effective weights become α = 1/N) leaves theDEi terms in (18)

unchanged but reduces the amount of information conveyed to the producer in equilibrium.

Therefore, aggregate data policies minimize the loss of total surplus and hence maximize the

intermediary’s profits.

Finally, Proposition 3 enables us to contrast the market outcome when consumer data are

freely available with the outcome under data ownership. When consumers own their data,

the presence of intermediaries might induce socially ineffi cient information transmission and

third-degree price discrimination, but the contractual outcome will now preserve the personal

identity of the consumer. Below, we will qualify the result in Proposition 3 by means of two

extensions. In Section 5.3, we consider heterogeneous consumers and endogenous market

segmentation. In Section 6, we consider more general models in which information may

increase total surplus. We then show that the data aggregation decision is made effi ciently

in equilibrium, while the provision of information may nonetheless be socially excessive.

4.3 Basic Data Intermediation

Having shown that the intermediary prefers to acquire and transmit aggregate information,

we now establish whether the intermediary can make positive profits at all. We first consider

the case of basic data intermediation, in which the intermediary collects a signal about the

average willingness to pay s̄ without adding any noise. In the next section, we refine our

result by introducing the optimal level of noise.

In a sense, Proposition 3 shows that assigning to the consumers the control rights over

their data imposes a constraint on the amount of private information traded in the market

when those data are later used for price discrimination. Conversely, Proposition 4 identifies

conditions under which the data market enables trading of surplus-reducing information.

Proposition 4 (Data Intermediation and Size of the Database)
Suppose that the intermediary collects noiseless, aggregate information about the consumers’

willingness to pay (i.e., σ2
ε = σ2

εi
= 0 and αij = 1/N for all i, j).

1. There exists a threshold N̄ > 1 such that the intermediary obtains positive profits if

and only if N ≥ N̄ .

2. The intermediary’s profit is increasing in σ2
θ and decreasing in σ

2
θi
.

Thus, if the data externality is significant and information is suffi ciently valuable to

the producer, then aggregate demand data is profitably transmitted by the intermediary.
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Because multiple Gaussian signals are substitute inputs into the producer’s learning tech-

nology, the data externality is larger– and the individual compensation owed to consumers

is lower– when more consumers are present.12 Similarly, if the common shock σ2
θ is large,

then the informational externality will allow the data intermediary to offer favorable terms

of trade earlier, in terms of the threshold size of the market. By contrast, if the idiosyncratic

shock σ2
θi
is large, then the cost of compensating the consumer will be large and prevent

profitable intermediation. This leads to a higher threshold N when the trade can arise.

A similar result would hold if we forced the intermediary to transmit individual consumer

data without aggregation. However, by transmitting only the aggregate data, the interme-

diary can operate profitably with a smaller number of consumers, for any given level of σ2
θi

and σ2
θ. More important, the aggregate data policy generates smaller losses in total surplus,

and as we have seen, higher revenues for the intermediary for a given market size.

5 Optimal Data Intermediation

In this section, we show that a more sophisticated information policy than considered pre-

viously can increase the revenue of the data intermediary. In particular, we allow the data

intermediary to choose the variance levels of the additional noise terms, σ2
ε and σ

2
εi
. We

then consider how the optimal data policy changes with the number of consumers and how

it adapts to a richer demand specification with consumer heterogeneity.

5.1 Information Design

We begin with the information structure that maximizes the intermediary’s profits. We

leverage the optimality of trading market-level demand data (Proposition 3), and focus on

the optimal noise levels (σε, σεi) associated with the aggregation weights αij = 1/N .

Proposition 5 (Optimal Data Intermediation)
The intermediary’s optimal data policy includes

1. no idiosyncratic noise, σ2
εi

= 0,

2. (weakly) positive aggregate noise σ2
ε = max {0, σ∗}, where

σ∗ =
σ2
θi

+Nσ2
θ

N − 1

σ2
θi
− (N − 1)

(√
3− 1

)
σ2
θ

N
(√

3− 1
)
σ2
θ − σ2

θi

.

12This result is closely connected to the submodularity property of information in Acemoglu, Makhdoumi,
Malekian, and Ozdaglar (2019).
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The optimal level of common noise σ∗ is strictly positive when the ratio σ2
θi
/σ2

θ is large

enough and when N is small enough. When positive, σ∗ is strictly increasing in the ratio

σ2
θi
/σ2

θ and decreasing in N. Our characterization in Proposition 5 yields a necessary and

suffi cient condition for the profitability of data intermediation.

Proposition 6 (Profitability of Data Intermediation)
The data intermediary’s profits are strictly positive if and only if

N
(√

3− 1
)
σ2
θ > σ2

θi
. (23)

Figure 2 shows the optimal variance of the additional common noise term: if the con-

sumers’ preferences are suffi ciently correlated (or if the market is large enough), the in-

termediary does not add any noise. Conversely, if the consumer types are not suffi ciently

correlated– meaning that condition (23) is close to binding– the optimal level of common

noise grows without bound. In particular, for values σθi/σθ higher than the threshold

(
√

3 − 1)/N , no profitable intermediation is feasible. Therefore, the amount of informa-

tion traded in equilibrium is continuous in both σθ and σθi .

Figure 2: Optimal Common Noise (N = 3, σ2
θ = 1)

By introducing additional noise, the intermediary reduces the amount of information

procured from consumers and hence the total compensation owed to them. These cost

savings come at the expense of lower revenues. In this respect, aggregation and noise serve

a common purpose. However, because the intermediary optimally averages the consumers’

signals prior to reselling them to the producer, it may appear surprising that the correlation

structure in the additional noise terms plays such a critical role.
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To gain intuition for the role of correlated noise, it may help to write the “regression

coeffi cient”used by the producer to estimate the market demand (i.e., the average willingness

to pay w̄) from the aggregate demand signal s̄ as in (19). This weight is given by

cov [w̄, s̄]

var [s̄]
=

σ2
θ + σ2

θi
/N

σ2
θ + σ2

ε +
(
σ2
θi

+ σ2
εi

)
/N
. (24)

Clearly, one could obtain the same coeffi cient with many combinations of σ2
ε and σ

2
εi
.

The reason for choosing a unique (degenerate) combination
(
σ2
ε, σ

2
εi

)
= (σ∗, 0) is again

linked to the data externality. In particular, consider what happens to the producer’s in-

ference problem when consumer i does not sell her data to the intermediary. The producer

wishes to estimate wi from the aggregate signal s̄−i. In this new regression, the signal s̄−i
receives the following weight

cov [wi, s̄−i]

var [s̄−i]
=

σ2
θ

σ2
θ + σ2

ε +
(
σ2
θi

+ σ2
εi

)
/ (N − 1)

. (25)

Comparing (24) and (25), we observe that the common noise term enters identically in

both, while the idiosyncratic noise σ2
εi
increases the variance of s̄−i relatively more than the

variance of s̄. This means that the aggregate demand signal in the absence of consumer

i’s participation is a relatively worse predictor of wi (and of w̄) when the intermediary uses

idiosyncratic noise rather than correlated noise. Therefore, by loading all the noise on the

common term ε, the intermediary can hold constant the information content of the signal

sold to the producer and reduce the cost of acquiring the information.

Intuitively, each consumer is performing two tasks under idiosyncratic noise: contributing

to the estimation of market demand and reducing the noise of the aggregate signal (by

averaging out the error terms εi over a larger sample size). The latter effect is absent when

only common noise is used. Common noise makes consumer i less valuable to the producer

and reduces her compensation.

It would be misleading, however, to suggest that common noise is unambiguously more

profitable for the intermediary. Indeed, the two key elements of the information design,

aggregation and noise, interact with one another in a rich way. In particular, the value of

common noise is deeply linked to that of aggregate data. To highlight the contrast, suppose

that the intermediary were constrained to offering personal data intermediation (i.e., the

weights αij = 1i=j). While Proposition 3 shows that idiosyncratic noise is never optimal in

the full problem, it becomes optimal in the constrained problem.
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Proposition 7 (Noise and Personalized Prices)
The intermediary’s optimal data policy when restricted to personalized prices includes

1. no common noise, σ2
ε = 0,

2. weakly positive idiosyncratic noise σ2
εi
that satisfies

lim
N→∞

σεi =∞ and lim
N→∞

σεi
N

= 0.

These results help us understand the economic forces involved in the interaction between

price discrimination and information design. In particular, correlated noise terms are not

part of this restricted optimal information design. Intuitively, when the intermediary offers

personalized signals, it enables personalized price discrimination. We can then informally

describe the producer’s problem as consisting of two tasks: estimate the common component

of market demand θ from the average signals s̄, and then estimate the idiosyncratic taste

shocks θi from the difference between average and individual signals. However, the difference

between s̄ in (19) and si in (20) can be written as

s̄− si = ΣN
j=1 (θj + εj) /N − θi − εi,

which is an unbiased signal of the difference w̄ − wi, where the common noise term ε drops

out. Therefore, common noise with personalized signals reduces the value of information to

the producer without protecting individuals from harmful price discrimination.

Finally, larger amounts of idiosyncratic noise become optimal as the number of consumers

grows: as N →∞, the intermediary can perfectly estimate the common demand component
θ for free. In the presence of personalized pricing, noise then becomes necessary to prevent

the producer from fully reacting to the consumers’private information.

Having clarified that common noise is an important and integral part of the optimal

intermediation, we now turn to the comparative statics of the information design and of the

intermediary’s profits as the number of consumers grows.

5.2 Value of Social Data

Thus far, we have considered the optimal data policy for a given finite number of consumers,

each of whom transmits a single signal. Perhaps, the defining feature of data markets is the

large number of (potential) participants and the large number of data sources and services.

We now pursue the implications of having a large number of participants and data sources

for the social effi ciency of data markets and the price of data.
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We first consider what happens when the number of consumers in the market becomes

large. Each additional consumer presents an additional opportunity for trade in the down-

stream market. Thus, the feasible social surplus is linear in the number of consumers. In

addition, with every additional consumer, the intermediary can obtain additional information

about the idiosyncratic and aggregate demand components. These two effects suggest that

intermediation becomes increasingly profitable in larger markets, where the consumers im-

pose severe data externalities on one another, while the value of information to the producer

grows without bound. Proposition 8 formalizes this intuition.

Proposition 8 (Large Markets)

1. As N → ∞, the individual consumer’s compensation goes to zero, and the total com-
pensation converges to a finite positive value.

2. The total compensation is asymptotically decreasing in N if and only if σ2
θ > σ2

θi
.

3. As N →∞, the intermediary’s revenue and profit grow linearly in N .

As the optimal data policy only estimates the common demand shock, each additional

signal contributed by each additional consumer has a rapidly decreasing marginal value.

Furthermore, each consumer is only paid for her marginal contribution, which explains how

the total payments
∑N

i=1mi converge to a finite number. In particular, this convergence

can occur from above: the decrease in the marginal contribution can be strong enough to

offset the increase in the number of consumers, which means that it can be less expensive to

acquire a larger dataset than a smaller dataset. Figure 3 illustrates such an instance.

Figure 3: Total Consumer Compensation
(
σ2
θ = 1, σ2

θi
= 3/4

)
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Finally, the revenue that the data intermediary can extract from the producer is linear

in the number of consumers. As the market size grows without bound, our model therefore

implies that the per capita profit of the data intermediary converges to the per capita profit

when market-level (aggregate) data are freely available.

In practice, the results in Proposition 8 can shed light on the digital privacy paradox of

Athey, Catalini, and Tucker (2017). Specifically, when aggregate information is collected,

the incremental contribution of each individual consumer to the estimation of the average

willingness to pay is close to nil. Therefore, independently of the final use of information,

each consumer is willing to accept a negligible compensation (even on aggregate) to give up

her private information. In this sense, our results qualify the sentiment that “consumers are

very much willing to consent for their data to be used for their benefit.”13 Instead, we show

that consumers will consent to any use of their data for very little aggregate compensation.

Far from being a paradox, this type of behavior reflects the market value of their information,

which depends both on the correlation structure and on the intermediary’s equilibrium data

policy.

5.3 Market Segmentation and Data

Thus far, we have defined the demand of every individual consumer in terms of a common

and an idiosyncratic component. We then used the assumption of ex ante homogeneity

to produce some of the central implications of social data. Nonetheless, a more complete

description of consumer demand should account for additional characteristics that introduce

heterogeneity across certain groups of consumers. These might include characteristics such

as location, demographics, income, and wealth.

In this section, we explore how these additional characteristics may influence the value

of intermediation and the information policy of the data intermediary. Towards this end,

we augment the description of consumer demand by splitting the population into subsets

according to the common component of their willingness to pay,

wij = θj + θij, i = 1, 2, ..., Nj, j = 1, ..., J . (26)

Thus, each member of group j has the same common component. Across groups, the

common components are drawn from a normal distribution with mean µ and variance σ2
θ–

the two groups are identical ex ante. The idiosyncratic component θij remains normally

distributed with zero mean and variance σ2
θi
, and all random variables are independent. For

13The quote is from Sasan Goodarzi, CEO of the financial software company Intuit, upon acquiring the
financial application Credit Karma. See The New York Times (2020).
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the remainder of the analysis, we consider two consumer groups of equal size, i.e., J = 2 and

N1 = N2 = N.

The intermediary’s data policy space is now potentially richer. In particular, the inter-

mediary must choose how to aggregate the consumers’signals both across groups and within

each group. However, an identical argument to Proposition 3 establishes that it is always

optimal to aggregate all signals within each homogeneous group, i.e., to sell at most two

distinct signals (s̄1 and s̄2) to the producer.

Corollary 3 (No Discrimination within Groups)
The optimal data policy aggregates all signals within each group j = 1, 2.

We then ask whether and under what conditions the data intermediary will collect and

transmit group characteristics. By collecting information about the group characteristics,

the intermediary influences the extent of price discrimination. For example, by sending

the sample average of all signals across groups to the producer, the intermediary forces the

producer to offer a single price. Alternatively, the intermediary could allow the producer to

discriminate between two groups of consumers by transmitting the group-level means s̄j. As

intuition would suggest, enabling price discrimination across groups allows the intermediary

to charge a higher fee to the producer but also increases the compensation owed to consumers.

Proposition 9 sheds light on the optimal resolution of this trade-off. In this result, we

restrict attention to the case of noiseless signals (σε = σεi = 0) . We expect these results to

extend to a noisy signal environment.

Proposition 9 (Segmentation)
Let σε = σεi = 0.

1. There exists N such that the data intermediary induces group pricing for all N > N .

2. The threshold N is decreasing in the variance of the common component σ2
θ and in-

creasing in the variance of the idiosyncratic component σ2
θi
.

Thus, while the earlier Proposition 3 stated that the intermediary will not reveal any

information about consumer identity, the present result shows that if the market is suffi ciently

large, then the intermediary will convey limited identity information, i.e., the groups’identity.

This will allow the producer to price discriminate across but not within groups.

The limited amount of price discrimination, which optimally operates at the group level

rather than at the individual level, can explain the behavior of many platforms. For example,

Uber and Amazon claim that they do not discriminate at the individual level, but they use
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price discrimination based on location and time as well as other dimensions that effectively

capture group characteristics.

The benefits of pooling signals across groups arise in similar conditions as those of the

additional noise in the case of homogeneous consumers. If the producer faces a small number

of consumers and their types are not highly correlated, then pooling reduces the cost of

sourcing the data.

The result in Proposition 9 is perhaps the sharpest manifestation of the value of big

data. By enabling the producer to adopt a richer pricing model, a larger database allows the

intermediary to extract more surplus. Our result also clarifies the appetite of the platforms

for large datasets: as having more consumers allows the platform to profitably segment the

market in a more refined way, the value of the marginal consumer i = N to the intermediary

remains large even as N grows. In other words, allowing the producer to segment the market

is akin to paying a fixed cost (i.e., higher compensation to the current consumers) to access

a better technology (i.e., one that scales more easily with N). Proposition 10 formalizes this

result, and Figure 4 illustrates it.

Proposition 10 (Marginal Consumer)
The profitability of an additional consumer for the intermediary is higher under group pricing

than under uniform pricing as long as either profit level is strictly positive.

Figure 4: Uniform Pricing vs. Group Pricing
(
σ2
θ = 3/10, σ2

θi
= 1
)

The optimality of using a richer pricing model when larger datasets are available is

reminiscent of model selection criteria under overfitting concerns, e.g., the Akaike information

criterion. In our setting, however, the optimality of inducing segmentation is not driven by

econometric considerations. Instead, it is entirely driven by the intermediary’s cost-benefit

analysis of acquiring more precise information from consumers. As the data externality
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grows suffi ciently strong, acquiring the data becomes cheaper, and the intermediary exploits

the richer structure of consumer demand.14

5.4 Multiple Services

Another defining feature of data markets is the rapid increase in data sources and data ser-

vices. For example, Facebook Connect allows Facebook to track consumers across additional

services such as Instagram, Snapchat, Facebook Open Graph, and Facebook Groups. This

service extends the number of sources of information about each consumer.15

Our aim in this section is to capture the precision of information associated with multiple

sources in a parsimonious way. Thus, we assume that each consumer observes (or is able to

transmit) only a noisy signal of her willingness to pay,

ri , wi + ζ i, (27)

where ζ i is an exogenous Gaussian noise term with variance σ2
ζi
. (One could easily derive

(27) from a model with K different sources of information, each with its own idiosyncratic

noise term ζ i,k.)

We now consider the role of augmenting the precision of information collection, i.e.,

of reducing σ2
ζi
. This has a direct effect on the data policy, as it increases the value of

information. In addition, to the extent that the intermediary can acquire more information

from all consumers, it may be able to lower the total compensation for a given data policy.

Proposition 11 (Precision of Information Collection)

1. The optimal amount of common noise σ∗ is increasing in σ2
ζi
.

2. The intermediary’s profit is decreasing and convex in σ2
ζi
.

This result captures the idea that more sources and more services yield more data trans-

mission. In particular, we have assumed that with more information sources, the noise in

each individual observation σ2
ζi
decreases. This greater precision strengthens the correla-

tion in the signals ri, because the fundamentals wi are themselves correlated, while the noise

terms ζ i are independent. Therefore, the informational externality increases as σ
2
ζi
decreases,

14Olea, Ortoleva, Pai, and Prat (2019) offer a demand-side explanation of a similar phenomenon: they
show that buyers who employ a richer pricing model are willing to pay incrementally more for larger datasets.
15Similarly, Google offers a number of services, such as Gmail, Google Maps, and YouTube, that gather

information about a consumer from many different sources. Such “super profiles” have recently attracted
regulatory attention in the EU.
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which lowers the compensation required by the individual consumer. Furthermore, greater

correlation in the underlying signals ri allows the intermediary to further reduce the amount

of additional correlated noise, which explains the convexity in profits: the intermediary ob-

tains increasing returns by reducing σ2
ζi
. We leverage this model with exogenously noisy

observations when we introduce competing intermediaries in Section 7.3.

6 Intermediation and Value Creation

In our baseline model, the consumer’s information is only used to set prices. This is, in

a sense, the worst-case scenario for the intermediary: as data transmission reduces total

surplus, no intermediation is profitable without a suffi ciently strong data externality. In

practice, consumer data can also be used in surplus-enhancing ways, e.g., to facilitate the

provision of products and quality levels targeted to the consumer’s tastes.

In this section, we develop a generalization of our framework that allows the producer

to charge a unit price pi and to offer a quality level yi to each consumer. Consumers are

heterogeneous in their willingness to pay for the product, but they all value quality uniformly,

ui (wi, qi, pi, yi) = (wi + βyi − pi) qi − q2
i /2,

with β ≥ 0 being the consumer’s marginal valuation of quality.16 (The case of β = 0

yields the baseline model of price discrimination only, while the case of β = 1 is a useful

benchmark in which the consumer values quality and money equally.) The producer has

a constant marginal cost of quantity provision and a fixed cost of quality production per

consumer, i.e.,

π =
∑N

i=1

(
piqi − cqi − y2

i /2
)
.

We first revisit our basic results on the value of exogenous information for all the market

participants. In particular, we obtain the following extension of Proposition 1.

Proposition 12 (Value of Exogenous Information)
Fix any nontrivial information structure S.

1. Producer profits are higher under S than under no information for all β ≥ 0.

2. Consumer surplus is higher under S than under no information for all β ≥ 1.

16Argenziano and Bonatti (2019) provide a treatment of signaling and ratchet effects in a dynamic version
of this model under a fixed information structure, i.e., without data intermediation.
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3. There exists a unique β∗ ∈ (0, 1) such that total surplus is higher under S than under

no information for all β ≥ β∗.

When the intermediary must procure the data from the consumers, the data externality

once again allows for the profitable intermediation of information. Furthermore, for suffi -

ciently strong data externalities, the intermediary will transmit all the data. Whether the

outcome improves or diminishes total surplus depends on the use of the data, which is rep-

resented here by the value of quality. Thus, equilibrium forces in the market for data do not

prevent the diffusion of socially detrimental information in suffi ciently large markets.

However, we can revisit the optimal aggregation policy in this model and establish the

following generalization of Proposition 3.

Proposition 13 (Value of Aggregation)
Fix any noise levels (σε, σεi). The intermediary collects aggregate data (αij = 1/N) if infor-

mation reduces total surplus (i.e., if β < β∗), and individual data (αij = 1ij) otherwise.

In other words, while the effect of information on total surplus imposes no restrictions on

whether the data are traded in equilibrium, it does discipline the equilibrium level of data

aggregation, which is provided in the socially effi cient way.

An example consistent with these results provides a close B2B interpretation of our

model. Consider a business that owns data about its customers and seeks to advertise on a

large platform. In exchange for targeting benefits and a liquid supply of advertising space,

this business shares data with the intermediary about the effectiveness of the ads. This

performance data inform the demand for advertising in the future, as well as the platform-

optimal (reserve) prices. In practice, the provision of advertising space and reserve prices

in ad auctions are targeted at the advertiser level. In this case, our model suggests that

this form of price and quality discrimination might be socially effi cient, and hence, the

information that enables it is provided at the individual advertiser level.

7 Further Extensions

7.1 Data Intermediation with Commitment

In our analysis, the data intermediary maintains complete control over the use of the acquired

data. In particular, given the data inflow, the data intermediary chooses the sequentially

optimal data policy to be offered to the producer. The sequential optimality reflects the

substantial control that the data intermediary has regarding the use of the data. It also
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reflects the opacity in how the data outflow is linked to the data inflow. In other words, it

is diffi cult to establish how any given data input has informed any given data output.

Nonetheless, it is useful to consider the implications of the data intermediary’s ability

to commit to a certain data policy. In this subsection, we return to our baseline model to

describe what would happen under stronger commitment assumptions. We learned from

Proposition 1 that the unrestricted use of data leads to a decrease in social surplus. This

suggests that the data intermediary could realize a higher profit with a data policy that

limits the diffusion of information on the equilibrium path.

In particular, the intermediary could ask each consumer to share her data and commit to

not passing it along to the downstream producer. In exchange for this commitment, the data

intermediary requests compensation from the consumer. Proposition 1 established that each

consumer would prefer that the demand information not be transferred to the producer.

Thus, the remaining question is the amount of compensation that the data intermediary

could extract from each consumer. This depends on the threat that the data intermediary

can impose on the individual consumer should she fail to sign up with the data intermediary.

In the absence of an agreement with consumer i, the data intermediary could forward its

estimate about the demand of consumer i based on the information from all of the remaining

consumers, and this would indeed be the least favorable outcome for consumer i.

Proposition 14 (Commitment Solution)
Suppose that the intermediary can commit to a data outflow policy. Then, the revenue-

maximizing data policy is to acquire all consumer data and to never forward the data to the

downstream producer.

This environment with commitment is related to the analysis in Lizzeri (1999) but has

a number of distinct features. First, in Lizzeri (1999), the private information is held by

a single agent, and multiple downstream firms compete for the information and for the

object offered by the agent. Second, the privately informed agent enters the contract after

she has observed her private information; thus, an interim perspective is adopted.17 The

shared insight is that the intermediary with commitment power may be able to extract a

rent without any further influence on the effi ciency of the allocation.

In both the commitment solution and the sequentially optimal solution, we did not impose

any restrictions on the sign or size of the monetary payments. In the sequentially optimal

solution, every consumer receives compensation for her marginal damage. In the commitment

17The distinction between ex ante and interim contracting may disappear in the setting of in Lizzeri (1999),
where the intermediary has a testing technology available that allows him to verify the private information
of the agent. Thus, one might be able to decentralize (or distribute) the ex ante payment over the interim
state in such a way that in expectation the ex ante and interim contracts are payoff equivalent.

31



solution, every consumer pays a fee to avoid information disclosure. We might then ask

what the scope of data policy is if the data intermediary can neither reward nor punish the

consumer. In other words, we restrict the data intermediary to offering a data policy that

does not involve a monetary transaction with the consumer, or mi = 0, for all i.

Proposition 15 (Commitment Solution without Monetary Compensation)
Suppose that the intermediary cannot use monetary transfers with the consumers and thus

that mi = 0, for all i. Then, the optimal data policy is to collect all demand data and to

enable the producer to offer each consumer i a personalized price that does not rely on data

provided by consumer i.

Thus, in the absence of monetary transfers between the data intermediary and consumers,

the data intermediary still acquires the demand data from all the consumers but exercises

some restraint in their use. In particular, the data intermediary forwards only the data that

will enable the producer to offer a personalized price to consumer i, where the personalized

price is computed without reference to the demand information provided by consumer i.18

7.2 Unique Implementation

In our baseline model, the profit and compensation are calculated in the intermediary’s most

preferred equilibrium. A natural question is to ask whether the ability of the intermediary

to extract full surplus in per capita terms will be preserved if we consider the intermediary’s

least preferred equilibrium in the subgame following its offers to consumers.

To answer this question, we could consider a “divide-and-conquer”scheme whereby the

intermediary will sequentially approach consumers and offer compensation conditioned on

all earlier consumers having accepted their offers. In this scheme, the first consumer receives

compensation equal to her entire surplus loss, which guarantees her acceptance regardless of

the other consumers’decisions. More generally, consumer i receives the optimal compensa-

tion level in the baseline equilibrium when N = i. Thus, the first consumer accepts her offer

in all equilibria, and the second consumer will accept regardless of the remaining consumers’

decisions. By a contagion argument, we can guarantee the unique implementation of the

equilibrium, which gives rise to a lower bound on the profit of the data intermediary.

Proposition 16 (Divide and Conquer)
Suppose that the intermediary uses the divide-and-conquer compensation scheme. As N

grows without bound, the intermediary’s profit per capita converges to the profit per capita

when aggregate data are available “in the wild.”

18In contrast, without commitment, there is no trade of information without monetary transfers.

32



Unlike in the baseline model, the total compensation owed to consumers does not converge

but rather diverges at rate O (log (N)) . However, the individual compensation level decreases

fast enough that the linear growth in revenue drives the asymptotics, and the profits of the

intermediary converge to the complete information level.

7.3 Competing Intermediaries

We now ask whether competition promotes privacy protection. As a first step, we extend

our model to accommodate J ≥ 2 competing intermediaries. We introduce heterogeneity

across these intermediaries in a way that is pertinent to information markets. Specifically,

each intermediary j ∈ {1, ..., J} collects a noisy signal about each consumer i,

ri,j = wi + ζ i,j.

As in Section 5.4, the noise term ζ i,j represents limitations in the communication channel

between consumer and intermediary. We assume that each shock ζ i,j is independently drawn

from a normal distribution with zero mean and variance σ2
ζ > 0. Thus, we treat σ2

ζ as a

lower bound on the variance of the idiosyncratic noise specific to each intermediary.

The timing of the game is as in Section 2.3, except for the competing intermediaries:

1. The intermediaries simultaneously offer data price and data inflow policies (mi,j, Si,j)

to all consumers, and each consumer chooses a subset of offers to accept.

2. Given the realized data inflows, the intermediaries simultaneously offer a data price

and data outflows (m0,j, Tj) to the producer.

3. The producer decides which data offers to accept and sets prices for the consumers.

Mirroring our baseline analysis, we first consider the subgame beginning after the con-

sumers’acceptance decisions. Denote by Sj the realized data inflow to intermediary j and

by S the total information collected by all intermediaries. The following proposition char-

acterizes the unique equilibrium.

Proposition 17 (Unique Pricing Subgame)
Let σ2

ζ > 0, and fix any realized data inflow (Sj)
J
j=1. There exists a unique equilibrium in

which intermediary j sells Tj = Sj for a fee of m0,j = π(S) − π(S\Sj), and the monopolist
accepts all intermediaries’offers.

Note that the uniqueness result would break down if σ2
ζ = 0, i.e., if each intermediary

could collect perfect information from consumers. In this extreme case, once one intermediary
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obtains one copy of a report from consumer i, any other report about i collected by the other

intermediary is useless for the producer. Therefore, in the pricing subgame, once a report

of consumer i is sold, the other intermediary becomes indifferent about whether to sell

i’s information, which breaks the unique equilibrium price in that subgame. This causes

multiplicity of equilibria, as in Ichihashi (2019).

For the remainder of this section, we focus on the case of perfectly correlated types

wi = θ for the sake of tractability. In the absence of noise terms ζ i,j, this setting is one in

which a monopolist data intermediary would be able to source information about the common

component θ at zero cost. The presence of competition and differentiation makes the analysis

here as rich as the baseline model with imperfectly correlated types. We restrict attention

to equilibria in which each consumer chooses to accept the maximal number of offered data

contracts (subject to her participation constraint). We now compare the equilibrium outcome

under competition with the monopoly outcome.

Proposition 18 (Competing Data Intermediaries)
In every pure and maximal equilibrium with competing intermediaries, the following hold.

1. The producer’s surplus, the consumer surplus, the intermediaries’total profits, and the

information structure are unique.

2. The total amount of information transmitted to the producer by J competing interme-

diaries with noise levels σ2
ζ is equal to the monopoly case with noise level σ

2
ζ/J .

3. Consumer surplus is decreasing in J and increasing in σ2
ζ.

4. The producer’s profit is increasing while the intermediaries’total profit is asymptotically

decreasing in the number of intermediaries J .

5. The total profit of intermediaries converges to a constant as N becomes large.

This result highlights the possibility that, instead of protecting consumers’privacy, com-

petition may make things worse. In the unique equilibrium outcome, competing interme-

diaries collect data in exactly the same way as a monopolist would. Each intermediary’s

profit decreases, which is purely due to a loss of bargaining power against the producer in

the product market. This loss is most clearly seen in the welfare properties of equilibrium

as the number of consumers grows large: while a monopolist intermediary asymptotically

obtains the entire value of information for the producer (which grows without bound), an

imperfectly competitive industry’s profits remain bounded.
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Relative to the case of monopoly, the producer obtains an additional portion of the

surplus extracted from consumers, and consumer surplus decreases even further due to the

multiple sources of information. Apart from the analysis of entry, our model also offers

predictions in terms of mergers: the equilibrium noise level is the same whether the firms

merge or compete, and consumer surplus and social surplus remain unchanged.

Thus, competition in the data market per se may not be a very effective tool to correct

the data externality. In fact, the loss in consumer surplus indicates that, under any kind of

friction in the data market, competition could be detrimental to social welfare. Suppose, for

example, that the data intermediaries did not share the same consumer dataset but had only

partially overlapping sets. Then, the inference problem of the producer becomes harder, and

the value of the data declines because of omissions and repetitions. However, due to the

data externality, the data price would fail to reflect the loss of information, and hence fail

to correct for the loss in informational effi ciency.

8 Conclusion

We have explored the terms of information trade between data intermediaries with market

power and multiple consumers whose preferences are correlated. The data externality we have

uncovered strongly suggests that data ownership is insuffi cient to bring about the effi cient use

of information. Indeed, our baseline model focused on the case in which information harms

consumers. In large markets, we have shown that arbitrarily small levels of compensation

can induce an individual consumer to relinquish precise information about her preferences.

A simple solution to alleviate this problem—echoed in Posner and Weyl (2018)—consists of

facilitating the formation of consumer groups (or unions) to internalize the data externality

when bargaining with powerful intermediaries like large online platforms. In our baseline

model, this policy proposal would restore the first best. However, consumer unionization

would face serious implementation challenges, both from a theoretical and a practical per-

spective. Within the confines of our model, one could consider a richer specification of

consumer heterogeneity, e.g., one that allows for different marginal valuations of quality in

Section 6. Thus, revealing information to a given producer might improve some consumers’

welfare but hurt others. In this scenario, a consumer union would need to aggregate con-

sumer preferences prior to negotiating compensation with the intermediary, which would

inevitably lead to distortions in the allocation of information.

On a more constructive note, our results on the aggregation of consumer information

further suggest that privacy regulations need to move away from concerns over personalized

prices at the individual level. Most often, firms do not set prices in response to individual-
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level characteristics. Instead, segmentation of consumers occurs at the group level (e.g., as

in the case of Uber) or at the temporal and spatial level (e.g., Staples, Amazon). Thus, our

analysis points to the significant welfare effects of group-based price discrimination and of

uniform prices that react in real time to changes in market-level demand.19

Of course, there are dimensions along which the data generate surplus, including some

that do not interact with consumers’decisions to reveal their information: for instance, rat-

ings provide information to consumers about producers, and back-end tools make it possible

to limit duplication and waste in advertising messages. There are also other welfare-reducing

effects, such as spillovers of consumer data to other markets, including B2B markets. For

example, if Amazon and Google use the information revealed by consumers to extract more

surplus from advertisers, then consumers will also pay a higher price, depending on the pass-

through rate of the marginal cost of advertising. In other words, the data externality we

identify is pervasive, starting with consumers but often extending to other economic agents

whose decisions are informed by consumer data.

Finally, our data intermediary collected and redistributed the consumer data but played

no role in the interaction between consumer and producer. By contrast, the consumer can

often access a given producer only through a data platform. In fact, our results apply directly

to a large class of data platforms.20 Many such platforms can then be thought of as selling

access (often through an auction) to the consumer. The data platform provides the bidding

producer with additional information that firms can use to tailor their interactions with

consumers. A distinguishing feature of social data platforms is that they typically trade

individual consumer information for services rather than for money. The data externality

then expresses itself in the level of service (i.e., in quantity and/or quality) and in the amount

of consumer engagement, rather than in the level of monetary compensation. We explore

the collection of social data on these platforms in an ongoing project, Bergemann, Bonatti,

and Gan (2020).

19This echoes the claim in Zuboff (2019) that “privacy is a public issue.”
20These include product data platforms, such as Amazon, Uber and Lyft, that acquire individual data from

the consumer through the purchase of services and products. In addition to these, social data platforms such
as Google and Facebook offer data services to individual users and sell the information, mostly in the form of
advertising placement, to third parties. Relative to the basic model that we analyze, the difference between
the data intermediary and the product platform is that the product platform combines in a single-decision
maker the roles of data intermediation and product pricing.
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9 Appendix

The Appendix collects the proofs of all the results in the main body of the paper.

Proof of Proposition 1. Given data policy S, the profit of the producer is given by

Π(S) = Σi(cov[wi, pi]− var[pi]) + Π(∅)

where pi =
1

2
E [wi |S ] .

Because both wi and pi are Gaussian random variables, the profit of the producer can also

be written as

Π (S) =
∑N

i=1
var[pi] + Π(∅) =

1

4

∑N

i=1
var[E [wi |S ]] + Π(∅),

which means profits are increasing with more information, as measured by the variance of

the producer’s posterior mean. Similarly, the expected surplus of consumer i is given by

Ui(S) = − cov[wi, pi] +
1

2
var[pi] + Ui(∅) = −3

8
var[E [wi |S ]] + Ui(∅),

which is decreasing with more information. Finally, the total value generated by data policy

S (net of the surplus without information Ui(∅) + Π(∅)) is given by

−1

8

∑N

i=1
var[E [wi |S ]],

which is also decreasing with more information.

Proof of Proposition 2. Fix a realized data inflow S. Because the intermediary holds

all the bargaining power, it internalizes the value of information for the producer, which it

then extracts through the fee m0. Thus, the intermediary seeks to maximize the producer’s

profit, which is increasing in the amount of available information by Proposition 1. Finally,

the complete sharing data outflow policy T = S dominates all other policies in the Blackwell

order, which establishes the claim.

Proof of Proposition 3. Fix a data policy S offered by the intermediary, and normalize
the marginal cost of production c to 0. We denote by pi (S) the optimal price charged to

consumer i under complete information transmission, and by pi (S−i) the price when i does
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not report her signal. Given the data policy S, these optimal prices are given by

pi (S) =
1

2
E[wi|S]

pi (S−i) =
1

2
E[θ|S−i] +

1

2
E [θi] =

1

2
E[θ|S−i]

The total value of information for the producer when all consumers accept the intermediary’s

offer is given by

m0 =
1

4

∑N

i=1
var [E[wi|S]] =

∑N

i=1
var[pi (S)].

The compensation owed to consumer i is:

mi =
1

8
(var [E[wi|S−i]]− var [E [wi|S]])− 1

2
cov [wi,E[wi|S−i]− E [wi|S]]

=
3

8
(var [E [wi|S]]− var [E[wi|S−i]]))

=
3

2
(var[pi (S)]− var[pi (S−i)]).

Thus, we can calculate the profit of the intermediary as

R (S) , m0 −
∑N

i=1
mi = −1

2

∑N

i=1
var[pi (S)] +

3

2

∑N

i=1
var[pi (S−i)] (28)

= −1

8

∑N

i=1
var[E[wi|S]] +

3

8

∑N

i=1
var[E[θ|S−i]]. (29)

The first (negative) term is the effect of information on the realized social surplus on path,

while the second (positive) term corresponds to subtracting the consumers’surplus off path.

Now consider any symmetric weights αij, where αii = ᾱ for all i, and αij = α̂ for all

i 6= j. We will argue that it is always more profitable for the intermediary to aggregate

the N signals so to obtain a single average signal s̄. This operation is itself equivalent to

setting αij = 1/N for all i, j from the beginning. Denote the original data policy (with

personalized prices) by S and the aggregated data policy by S̄. By definition any variables

that are measurable with respect to S are measurable with respect to S. Therefore

var[E[wi|S]] ≥ var[E[wi|S]]

Furthermore, aggregation causes no loss in precision in the estimation of wi off the equilib-

rium path. This is because the optimal price pi (S−i) is a function of the average of the other

N − 1 agents’reports

E[θ|S−i] = E[θ|S−i] = AΣj 6=isi,
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and

var[E[θ|S−i]] = var[E[θ|S−i]].

Consequently, by expression (29), the intermediary’s profits from S̄ are always larger than

those from S.

Proof of Proposition 4. Fix a data policy S that fully aggregates the consumers’

signals and introduces noise terms with variance σ2
ε and σ

2
εi
. Recall from expression (28)

that the intermediary’s profit can be written as

R (S) = −1

2

∑N

i=1
var[pi (S)] +

3

2

∑N

i=1
var[pi (S−i)],

where the optimal prices are given by

pi (S) =
1

2
E
[
θ +

1

N

∑N

j=1
θj | S

]
for all i, and

pi (S−i) =
1

2
E [θ | S−i] .

and

p′i =
1

2
E[θ|S] +

1

2
E [θi] =

1

2
E[θ|S].

By Bayes’rule, we obtain

pi (S) =
1

2

Nσ2
θ + σ2

θi

N2(σ2
ε + σ2

θ) +N(σ2
εi

+ σ2
θi

)

∑N

j=1
sj,

pi (S−i) =
1

2

(N − 1)σ2
θ

(N − 1)2(σ2
ε + σ2

θ) + (N − 1)(σ2
εi

+ σ2
θi

)

∑
j 6=i

sj,

and the resulting expected profits for the intermediary

R (S) =
3(N − 1)Nσ4

θ

8((N − 1)(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
−

(Nσ2
θ + σ2

θi
)2

8(N(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
. (30)

Now impose σ2
ε = σ2

εi
= 0. We obtain

R (S) =
3(N − 1)Nσ4

θ

8((N − 1)σ2
θ + σ2

θi
)
−

(Nσ2
θ + σ2

θi
)2

8(Nσ2
θ + σ2

θi
)

To prove the existence of a threshold of N̄ above which intermediation profits are positive, we

first prove that R/N is strictly increasing with respect to N . Up to a positive multiplicative

39



constant, we have

∂R/N

∂N
=
σ2
θi

(
(4N2 − 2N + 1)σ4

θ + 2(N − 1)σ2
θσ

2
θi

+ σ4
θi

)
2N2((N − 1)σ2

θ + σ2
θi

)2
> 0.

Therefore, R is itself increasing with respect to N . Finally, we have

R(1) = −
(σ2

θ + σ2
θi

)

8
< 0, and

lim
N→∞

R(N)

N
=
σ2
θ

4
> 0,

which establishes the existence of a threshold N̄ .

Now we prove the monotonicity in terms of σ2
θ and σ

2
θi
. In particular, we have

∂R

∂σ2
θ

=
N
(
2(N − 1)2σ4

θ + 4(N − 1)σ2
θσ

2
θi
− σ4

θi

)
2((N − 1)σ2

θ + σ2
θi

)2
> 0

so that R is increasing in σ2
θ.

To prove that R decreases with σ2
θi
, it is enough to compute the derivative

∂R

∂σ2
θi

= − 3(N − 1)Nσ4
θ

2((N − 1)σ2
θ + σ2

θi
)2
− 1

2
< 0,

which establishes the desired result.

The following Lemma is instrumental in the proofs of Proposition 5 and 6.

Lemma 1 (Optimality of Symmetric Noise)
Fix a data policy S with full aggregation. It is optimal for the intermediary to choose a

constant level of the variance of the idiosyncratic noise term, σ2
εi

= σ̄ for all i.

Proof of Lemma 1. Fix the variance of the common noise term σ2
ε, and allow the

variance of the idiosyncratic terms σ2
εi
to depend on i. The optimal price levels are then

given by

pi (S) =
∑N

i=1

1

2N

Nσ2
θ + σ2

θi

1 +
∑N

j=1

σ2θ+σ2ε
σ2θi

+σ2εj

si
σ2
θi

+ σ2
εi

,

pi (S−i) =
∑

j 6=i

1

2

σ2
θ

1 +
∑

k 6=i
σ2θ+σ2ε
σ2θi

+σ2εk

sj
σ2
θj

+ σ2
εj

.
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The revenue of the intermediary can therefore be expressed as:

R (S) = −N
2

∑N

i=1
var[pi (S)] +

3

2

∑N

i=1
var[pi (S−i)]

= − 1

8N2

(
Nσ2

θ + σ2
θi

)2(
1 +

∑N

i=1

σ2θ+σ2ε
σ2θi

+σ2εi

)2

∑N

i=1

1

σ2
εi

+ σ2
θi

(
1 +

∑N

i=1

σ2
θ + σ2

ε

σ2
εi

+ σ2
θi

)
+

3

2

∑
i

var[pi (S−i)]

= −
(Nσ2

θ + σ2
θi

)2

8N

1

1 +
∑N

i=1

σ2θ+σ2ε
σ2θi

+σ2εi

∑N

i=1

1

σ2
εi

+ σ2
θi

+
∑N

i=1

3σ4
θ

8

1

1 +
∑

j 6=i
σ2θ+σ2ε
σ2θi

+σ2εi

∑
j 6=i

1

σ2
εi

+ σ2
θi

= −
(Nσ2

θ + σ2
θi

)2

8N

∑N

i=1

σ2θ+σ2ε
σ2θi

+σ2εi

1 +
∑N

i=1

σ2θ+σ2ε
σ2θi

+σ2εi

+
∑N

i=1

3σ4
θ

8

∑
j 6=i

σ2θ+σ2ε
σ2θj

+σ2εj

1 +
∑

j 6=i
σ2θ+σ2ε
σ2θj

+σ2εj

.

We now argue that it is optimal to set σ2
εi
to the same level for all i. To do so, we first

change variables

xi ,
σ2
θ + σ2

ε

σ2
εi

+ σ2
θi

∈
(

0,
σ2
θ + σ2

ε

σ2
θi

]
,

so that optimizing R over σ2
θi
is equivalent to optimizing R over xi. In particular, we have

R (S) = −
(Nσ2

θ + σ2
θi

)2

8N

∑N

i=1
xi

1 +
∑N

i=1
xi

+
∑
i

3σ4
θ

8

∑
j 6=i

xj

1 +
∑

j 6=i
xj

=
(Nσ2

θ + σ2
θi

)2

8N

1

1 +
∑N

i=1
xi

−
∑
i

3σ4
θ

8

1

1 +
∑

j 6=i
xj

+ C

= A
1

1 +
∑N

i=1
xi

−
∑
i

B
1

1 +
∑

j 6=i
xj

+ C

Since B > 0, it is easy to verify that for any {xi} such that x1 6= x2, then setting x′1 = x′2 =

(x1 + x2)/2 will strictly increase profits.

Proof of Proposition 5. Having established in Lemma 1 that it is optimal to use

a symmetric noise scheme, we now prove that the optimal idiosyncratic noise level is nil,

σ∗εi = 0. To show this result, suppose σ2
ε ≥ 0 and σ2

εi
> 0. Then there exists δ > 0 such that

augmenting the common noise to σ̄2
ε , σ2

ε + δ2 and diminishing the idiosyncratic noise to

σ̄2
εi
, σ2

εi
− (N − 1)δ2 ≥ 0 the profits R will strictly increase. Too see this, notice that

R (S) =
3(N − 1)Nσ4

θ

8((N − 1)(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
−

(Nσ2
θ + σ2

θi
)2

8(N(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
.
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The first term is unchanged under new information structure, while the denominator of the

second term increases, thus the total profit increases.

Next we turn to the expression of the optimal common noise. First we use first order

condition to calculate the optimal σ2
ε for any fixed σ

2
εi
(for future reference). By Proposition

6 (which we prove below), we can focus on the case where

N
(√

3− 1
)
σ2
θ − σ2

θi
> 0, (31)

which corresponds to case in which the intermediary can obtain positive profits. Straight-

forward algebra then yields

∂R

∂σ2
ε

=
Aσ4

ε +Bσ2
ε + C

8
(
N(σ2

ε + σ2
θ) + σ2

εi
+ σ2

θi

)2
((N − 1)(σ2

ε + σ2
θ) + σ2

εi
+ σ2

θi
)2

where

A = −(N − 1)2N
(
2N2σ4

θ − 2Nσ2
θσ

2
θi
− σ4

θi

)
.

Therefore the numerator is a quadratic function of σ2
ε with negative quadratic term. It has

two roots, and the smaller one is given by

−2(N − 1)N2σ6
θ − (
√

3− 1)Nσ4
θσ

2
θi

+ (3N − 1)σ2
θσ

4
θi
−
√

3σ2
θσ

4
θi

+ σ6
θi

(N − 1)
(
2N2σ4

θ − 2Nσ2
θσ

2
θi
− σ4

θi

)(
−N(2N − 3)σ4

θ + 2Nσ2
θσ

2
θi
−
√

3σ2
θ(Nσ

2
θ + σ2

θi
) + σ4

θi

)
(N − 1)

(
2N2σ4

θ − 2Nσ2
θσ

2
θi
− σ4

θi

) σ2
εi

When (31) holds, the denominator is positive while the nominator is negative: the smaller

root is always negative. Therefore the optimal σ2
ε (for fixed σ

2
εi
) is either 0 or the larger root

of the quadratic function, which can be simplified to

σ2∗
ε (σ2

εi
) = max

{
σ2
θi

+Nσ2
θ

N − 1

σ2
θi
− (N − 1)

(√
3− 1

)
σ2
θ

N
(√

3− 1
)
σ2
θ − σ2

θi

(32)

+

(
3 +
√

3− 2N
)
Nσ4

θ +
(√

3 + 2N
)
σ2
θσ

2
θi

+ σ4
θi

(N − 1)
(
2N2σ4

θ − 2Nσ2
θσ

2
θi
− σ4

θi

) σ2
εi

}
.

In particular, since it is optimal to set σ2
εi

= 0, we have,

σ2∗
ε = max

{
0,
σ2
θi

+Nσ2
θ

N − 1

σ2
θi
− (N − 1)

(√
3− 1

)
σ2
θ

N
(√

3− 1
)
σ2
θ − σ2

θi

}
, (33)

which completes the proof.
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Proof of Proposition 6. When condition (31) is not satisfied, using expression (30)

in the proof of Proposition 4 (set σ2
εi

= 0), we have:

R =
3Nσ4

θ

8(σ2
θ + σ2

ε)

(
1−

σ2
θi

(N − 1)(σ2
ε + σ2

θ) + σ2
θi

)
−

(Nσ2
θ + σ2

θi
)2

8N(σ2
θ + σ2

ε)

(
1−

σ2
θi

N(σ2
ε + σ2

θ) + σ2
θi

)
,

(34)

and thus

R ≤
(

3Nσ4
θ

8(σ2
θ + σ2

ε)
−

(Nσ2
θ + σ2

θi
)2

8N(σ2
θ + σ2

ε)

)(
1−

σ2
θi

N(σ2
ε + σ2

θ) + σ2
θi

)
≤ 0.

Conversely, when (31) holds, we can rewrite R as

Aσ2
ε +B

8(σ2
εN +Nσ2

θ + σ2
θi

)(σ2
εN − σ2

ε +Nσ2
θ − σ2

θ + σ2
θi

)
, with

A = (N − 1)
(
2N2σ4

θ − 2Nσ2
θσ

2
θi
− σ4

θi

)
> 0.

Thus, the intermediary receives a positive profit as long as σ2
ε is suffi ciently large.

Proof of Proposition 7. We first show that it is asymptotically optimal to set σ2
ε = 0

and σ2
εi
> 0 that grows sub-linearly with N . Similar to the proof of Proposition 4, we can

compute the intermediary’s profit under a data policy S that enables personalized pricing,

i.e., when the weights are αij = 1i=j:

R (S) =
3(N − 1)Nσ4

θ

8(σ2
ε(N − 1) + σ2

εi
+ (N − 1)σ2

θ + σ2
θi

)
−

(Nσ2
θ + σ2

θi
)2

8(N(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
−

(N − 1)σ4
θi

8(σ2
εi

+ σ2
θi

)
.

(35)

The right-hand side of (35) contains an additional negative term, compared with the profit

under data aggregation (30), which echoes the result in Proposition 3. The additional term

does not depend on σ2
ε, thus we can use the result of Proposition 5 to find the optimal

common noise for given σ2
εi
(32). (Because the profit with personalized pricing is strictly

smaller than under uniform pricing, we can focus on the case (
√

3− 1)Nσ2
θ ≥ σ2

θi
.)

If N is suffi ciently large, both linear term (of σ2
εi
) and constant term is negative. Thus

it is optimal to set common noise to zero (for any σ2
εi
). Then

lim
N→∞

R

N
≤ σ2

θ

4
− lim

N→∞

σ4
θi

8(σ2
εi

+ σ2
θi

)
≤ σ2

θ

4
,

and the upper bound can be attained if the idiosyncratic noise σ2
εi
grows without bound but

sub-linearly in N .
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Indeed, if σ2
εi
grows faster than linearly

lim
N→∞

σ2
εi

N
=∞

then lim
N→∞

R

N
= 0

which is not optimal. Letting σ2
εi
grow at linear speed is also not optimal:

lim
N→∞

σ2
εi

N
= a > 0

then lim
N→∞

R

N
=

σ4
θ

4(a+ σ2
θ)
<
σ2
θ

4
.

Therefore the optimal asymptotic solution must involve setting σ2
ε = 0 and σ2

εi
growing less

than linearly in N.

Finally we want to prove that it is always optimal to set σ2
ε = 0. We first rule out an

interior optimum, i.e., σ2
ε > 0 and σ2

εi
> 0. This is done by showing that there is no solution

(σε, σεi) to the system of two first-order conditions ∂R/∂σεi = 0 and ∂R/∂σε = 0. Thus the

optimal noise structure must involve a corner solution. We then rule out that σ2
ε > 0 and

σ2
εi

= 0 at the optimum by showing that, when σ2
εi

= 0, the two inequalities ∂R/∂σε > 0

and R > 0 cannot hold at the same time.

Proof of Proposition 8. Using the calculations in the proof of Proposition 3, the

total compensation owed to consumers can be written as

∑N

i=1
mi = Σi

3

2
(var[pi (S)]− var[pi (S−i)])

=
3N(Nσ2

θ + σ2
θi

)2

8
(
N2(σ2

ε + σ2
θ) +N(σ2

εi
+ σ2

θi
)
) − 3(N − 1)2Nσ4

θ

8
(
(N − 1)2(σ2

ε + σ2
θ) + (N − 1)(σ2

εi
+ σ2

θi
)
) .

In the proof of Proposition 5, we have shown that for N suffi ciently large, but finite, it is

optimal to set σ2
εi

= σ2
ε = 0. We can simplify the expression for large N to

∑N

i=1
mi =

3σ2
θi

((2N − 1)σ2
θ + σ2

θi
)

8((N − 1)σ2
θ + σ2

θi
)

.

The limit of the compensation is positive but finite:

lim
N→∞

∑N

i=1
mi =

3σ2
θi

4
.

44



Furthermore, the derivative is asymptotically negative if and only if σ2
θ > σ2

θi
:

∂

∂N

∑N

i=1
mi =

3σ2
θσ

2
θi

(σ2
θi
− σ2

θ)

8((N − 1)σ2
θ + σ2

θi
)
.

And finally, profits grow linearly, because we have

lim
N→∞

R

N
=
σ2
θ

4
.

This ends the proof.

Proof of Proposition 9. Consider two groups of N consumer each. We first derive

the expression of the profit in the two cases of uniform pricing and group pricing. In the

case of uniform pricing, the producer charges does not have any identification information.

He can thus only provide one price for every consumer:

pij (S) =
1

4N
E[
∑2

j=1

∑N

i=1
wij | S] =

1

4N

∑2

j=1

∑N

i
sij.

The last equation holds since we only consider noiseless signals in this section. Off the

equilibrium path, the intermediary will use the remaining (2N − 1) signals to estimate the

willingness to pay of the deviating consumer. Since he does not know which group this

consumer is coming from:

pij (S−ij) =
1

4
E[θ1 + θ2|S−ij] =

(2N − 1)σ2
θ

4((2N2 − 2N + 1)σ2
θ + (2N − 1)σ2

θi
)

∑
i′j′ 6=ij

si′j′ .

The revenue of the intermediary is given by

R (S) = −1

2
2N var[pij (S)] +

3

2

∑
ij

var[pij (S−ij)]

= −
(
N

8
σ2
θ +

1

8
σ2
θi

)
+

3N

16

(2N − 1)2σ4
θ

(2N2 − 2N + 1)σ2
θ + (2N − 1)σ2

θi

. (36)

On the other hand, in the group pricing scheme, the producer knows which group the

consumer comes from, thus the analysis is as in the baseline model. We immediately obtain

the expression of the intermediary’s profits:

R (S) =
3(N − 1)Nσ4

θ

4((N − 1)(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
−

(Nσ2
θ + σ2

θi
)2

4(N(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
. (37)

45



We then compare the derivatives of (36) and (37) with respect to N :

∂(R−R)

∂N
= −

3(2N − 1)σ2
θ((2N(N(2N − 3) + 3)− 1)σ2

θ + 2N(4N − 3)σ2
θi

+ σ2
θi

)

(2(N − 1)Nσ2
θ + (2N − 1)σ2

θi
+ σ2

θ)
2

− 2

+
12σ2

θ

(
(N − 1)2σ2

θ + (2N − 1)σ2
θi

)
((N − 1)σ2

θ + σ2
θi

)2

≥ −
3(2N − 1)σ2

θ((2N(N(2N − 3) + 3)− 1)σ2
θ + 2N(4N − 3)σ2

θi
+ σ2

θi
)

((2N − 1)((N − 1)σ2
θ + σ2

θi
))2

− 2

+
12σ2

θ

(
(N − 1)2σ2

θ + (2N − 1)σ2
θi

)
((N − 1)σ2

θ + σ2
θi

)2

=
(2N(4(N − 4)N + 11)− 7)σ4

θ + (2N − 1)(8N − 5)σ2
θσ

2
θi

+ 2(1− 2N)σ4
θi

(2N − 1)((N − 1)σ2
θ + σ2

θi
)2

.

Note that 4Nσ2
θ > σ2

θi
is suffi cient for the last expression to be positive. Furthermore, when

4Nσ2
θ ≤ σ2

θi
, neither pricing scheme yields a positive profit to the intermediary. This is true

for the case of uniform pricing, since

R = −(
N

8
σ2
θ +

1

8
σ2
θi

) +
3N

16

(2N − 1)2σ4
θ

(2N2 − 2N + 1)σ2
θ + (2N − 1)σ2

θi

≤ −5N

8
σ2
θ +

3N

16

(2N − 1)2σ2
θ

(2N2 − 2N + 1) + 4N(2N − 1)

< −5N

8
σ2
θ +

3N

16

2N − 1

N − 1 + 4N
σ2
θ < 0.

It is also true for group pricing, because Proposition 6 showed that, when
(√

3− 1
)
Nσ2

θ <

σ2
θi
, group pricing is not profitable, and this condition is implied by 4Nσ2

θ ≤ σ2
θi
.

Finally, imposing 4Nσ2
θ = σ2

θi
yields

R−R =
N(N(40(7− 11N)N − 53) + 1)σ2

θ

16(5N − 1)(2N(5N − 3) + 1)
< 0, and

lim
N→∞

R−R
N

=
σ2
θ

4
> 0.

Therefore there exist at most a single threshold N such that group pricing is more profitable

if and only if N > N .

Proof of Proposition 10. We have shown in the proof of Proposition 9 above that,

as long as 4Nσ2
θ > σ2

θi
, we have

∂(R−R)

∂N
> 0.
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Furthermore, when 4Nσ2
θ ≤ σ2

θi
, neither pricing scheme yields positive profits. Therefore

when either of the schemes is profitable, we must have 4Nσ2
θ > σ2

θi
, and thus the derivatives

with respect to N are ranked for all N.

Proof of Proposition 11. We first prove the monotonicity of σ∗ε with respect to σ
2
ζi
.

From equation (32) in the proof of Proposition 5, we obtain that the optimal common noise

is given by σ2∗
ε = max{0, σ∗

(
σ2
ζi

)
}, where

σ∗
(
σ2
ζi

)
=
σ2
θi

+Nσ2
θ

N − 1

σ2
θi
− (N − 1)

(√
3− 1

)
σ2
θ

N
(√

3− 1
)
σ2
θ − σ2

θi

+

(
3 +
√

3− 2N
)
Nσ4

θ +
(√

3 + 2N
)
σ2
θσ

2
θi

+ σ4
θi

(N − 1)
(
2N2σ4

θ − 2Nσ2
θσ

2
θi
− σ4

θi

) σ2
ζi
.

So for fixed N , σ2
θ and σ

2
θi
, σ∗ is a linear function of σ2

ζi
When the coeffi cient on σ2

ζi
is positive

we are done. When it is not, we prove that σ∗ < 0 so that the optimal common noise σ∗ε
is constant and equal to zero. If the coeffi cient is negative, because denominator is always

positive when N
(√

3− 1
)
σ2
θ > σ2

θi
, we must have

N(3− 2N)σ4
θ + 2Nσ2

θσ
2
θi

+
√

3σ2
θ(Nσ

2
θ + σ2

θi
) + σ4

θi
< 0.

The constant term is also negative (using the fact that N
(√

3− 1
)
σ2
θ > σ2

θi
), so

−2(N − 1)N2σ6
θ +

(√
3 + 1

)
Nσ4

θσ
2
θi

+
(

3N +
√

3− 1
)
σ2
θσ

4
θi

+ σ6
θi

< Nσ2
θ

(
N(3− 2N)σ4

θ + 2Nσ2
θσ

2
θi

+
√

3σ2
θ(Nσ

2
θ + σ2

θi
) + σ4

θi

)
< 0.

Therefore σ∗ < 0, and the optimal common noise is constant (and nil).

Finally we prove that the intermediary’s profit is convex in σ2
ζi
. To do this, we simply

calculate the second-order derivative,

∂2R

∂(σ2
ζi

)2
=

3(N − 1)Nσ4
θ

4(σ2
ε(N − 1) + σ2

ζi
+ (N − 1)σ2

θ + σ2
θi

)3
−

(Nσ2
θ + σ2

θi
)2

4(N(σ2
ε + σ2

θ) + σ2
ζi

+ σ2
θi

)3

≥ 1

(N(σ2
ε + σ2

θ) + σ2
ζi

+ σ2
θi

)2

3(N − 1)Nσ4
θ

4(σ2
ε(N − 1) + σ2

ζi
+ (N − 1)σ2

θ + σ2
θi

)

− 1

(N(σ2
ε + σ2

θ) + σ2
ζi

+ σ2
θi

)2

(Nσ2
θ + σ2

θi
)2

4(N(σ2
ε + σ2

θ) + σ2
ζi

+ σ2
θi

)

=
1

(N(σ2
ε + σ2

θ) + σ2
ζi

+ σ2
θi

)2
R,

which is therefore positive whenever positive profits are feasible.
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Proof of Proposition 12. The demand of each consumer in the case of quality and

price discrimination is given by

qi = wi + βyi − pi,

where we restrict attention to the case where the complete-information outcome is well-

defined, i.e., β <
√

2. Under data policy S, the producer offers the following price and

quantity levels (again normalizing the marginal cost of quantity c = 0):

pi (S) =
1

2− β2E [wi |S ]

yi (S) =
β

2− β2E [wi |S ]

The producer’s profit is given by:

Π (S) =
∑N

i=1
E[(wi + βyi − pi)pi − y2

i /2] =
1

2(2− β2)

∑N

i=1
var[wi|S] + Π (∅) ,

which is increasing in the amount of information conveyed by S. The surplus of consumer i

is given by

Ui (S) =
1

2
E
[
(wi + βyi − pi)2

]
= −(3− β2)(1− β2)

(2− β2)2
var[wi|S] + Ui (∅) .

For 0 ≤ β < 1, information reduces consumer surplus, while for 1 < β <
√

2, information

increases consumer surplus. Finally, the social surplus is given by(
1

2(2− β2)
− (3− β2)(1− β2)

(2− β2)2

)∑N

i=1
var[wi|S] +

∑N

i=1
Ui (∅) + Π (∅)

It is straightforward to verify that information increases social surplus if and only if β > β∗,

where β∗ = (7−
√

17)/4 < 1.

Proof of Proposition 13. The argument mirrors the proof of Proposition 3. Any

symmetric weighting scheme α leads to the same off-path prices pi (S−i), which are a function

of the average signal of consumers j 6= i only. Therefore, in order to maximize profits, the

intermediary chooses the weights that maximize the social value of information on path. Let

S denote the data policy with αij = 1i=j, and S the data policy with αij = 1/N ; also let

S denote an arbitrary data policy with symmetric weights. Clearly, we have S ⊂ S ⊂ S.

(Any symmetric weighting signals can be constructed from perfect signals, and the uniform

weighting signals can be constructed by averaging the signals with any symmetric weights.)
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Therefore we have:

var[E[wi|S]] ≥ var[E[wi|S]] ≥ var[E[wi|S]]

Then for 0 ≥ β < β∗, information decreases social surplus, thus αij = 1/N is optimal; for

β∗ < β <
√

2, information increases social surplus, thus αij = 1ij is optimal.

Proof of Proposition 14. The revenue of the intermediary is given by

R (S) = m0 −
∑N

i=1
mi = −1

8

∑N

i=1
var[E[wi|S]] +

3

8

∑N

i=1
var[E[θ|S−i]].

Now our problem becomes:

max
S,Si

[
−
∑N

i=1

1

8
var [E [wi |S ]] +

3

8

∑N

i=1
var [E [wi |S−i ]]

]
.

Since by definition the information off-path is constructed by (sj) j 6= i, S−i ⊂ F(s1, ..., ŝi, ...sN),

we have:

R ≤ −0 +
3

8

∑N

i=1
var(E[wi|F(s1, ..., ŝi, ...sN)])

where the inequality binds (the optimality is reached) when on the path S contains no

information and off the path S−i use all the information from signals (sj) j 6= i.

Proof of Proposition 15. Recall that

R (S) = −1

8

∑N

i=1
var[E[wi|S]] +

3

8

∑N

i=1
var[E[θ|S−i]].

and the consumer surplus is:

∆Ui = −3

8
(var [E [wi |S ]]− var [E [wi |S−i ]]).

Since no transfer is allowed, ∆Ui must be non-negative (consumers must be weakly better

off on the path). Now our problem becomes:

max
S,Si
−
∑N

i=1

1

8
var [E [wi |S ]] +

3

8

∑N

i=1
var [E [wi |S−i ]]

s.t. var [E [wi |S ]]− var [E [wi |S−i ]] ≤ 0.
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Clearly the maximum of this program is smaller than the following relaxed program:

max
S,Si

1

4

∑N

i=1
var [E [wi |S−i ]]

s.t. var [E [wi |S ]]− var [E [wi |S−i ]] ≥ 0.

Then any data policy such that S−i = F(s1, ..., ŝi, ...sN) and var [E [wi |S ]] = var [E [wi |S−i ]],
i.e., a policy that uses all the off-path information for personalized price and keeps consumers

at the same surplus level on path, solves the original problem.

Proof of Proposition 16. We consider a “divide and conquer”compensation scheme

for the intermediary. The payment to consumer k = 1, . . . N compensates her for her incre-

mental loss in surplus, given that only k − 1 other consumers reveal their information. We

have already calculated these quantities in the baseline model where everyone receives their

surplus loss given that N − 1 other consumers reveal their information. Therefore the total

compensation is easily written as

∑N

i=1
mi =

∑N

k=1

3(kσ4
θ + σ4

θk
+ 2kσ2

θσ
2
θk

)

8
(
k2(σ2

ε + σ2
θ) + k(σ2

εk
+ σ2

θk
)
)

−
∑N

k=1

3(k − 1)2σ4
θ

8
(
(k − 1)2(σ2

ε + σ2
θ) + (k − 1)(σ2

εk
+ σ2

θk
)
)

≈
∑N

k=1

6kσ2
θσ

2
θk

8
(
k2(σ2

ε + σ2
θ) + k(σ2

εk
+ σ2

θk
)
)

≈
∑N

k=1

3σ2
θσ

2
θk

4k(σ2
ε + σ2

θ)
≈

3σ2
θσ

2
θk

4(σ2
ε + σ2

θ)
log(N).

Therefore the average compensation also goes to 0 as N goes to infinity.

Proof of Proposition 17. We first verify that the candidate equilibrium indeed

constitutes an equilibrium. Abusing notation, let J denote the set of intermediaries. Suppose

purchasing data from intermediaries D ( J were optimal for the producer. If J\D = {j},
then by construction, purchasing J is equally profitable for the producer and thus optimal.

If J\D contains two intermediaries, suppose j is one of them. In our Gaussian-linear model

where all the noise is additive, the marginal value for information is decreasing in the number

of sources. Since signals are imperfect (recall that we have assumed σ2
ζ > 0), we have

Π({j} ∪D)− Π(D) > Π({j} ∪ (J\{j}))− Π(J\{j}) = m0,j,

where Π(D) denotes the producer’s profit when purchasing SD. Thus purchasing D is worse

50



than D ∪ {j} which is a contradiction.
On the intermediaries’ side, fix the other intermediaries pricing m0,¬j. Suppose it is

optimal for intermediary j to charge m′0,j > m0,j. Then suppose that, under the new price,

the producer would purchase data from D. By construction of m0,j we know D 6= J ,

otherwise it is better not to purchase from j. For the same reason as in the last paragraph,

it is also impossible for J\D to contains two intermediaries. Therefore it is only possible

that {j′} = J\D. However, since (denote Π̄ as the profit of the producer under new price),

Π̄(J\{j})− Π̄(D) = (Π(J\{j})− Σk∈J\{j}m0,k)− (Π(D)− Σk∈Dm0,k)

= −(Π(J)− Π(J\{j})) +m′0,j + Π(J)− Π(D)−m0,j′

= −(Π(J)− Π(J\{j})) +m′0,j > 0.

Therefore D is not optimal. This contradiction completes the verification of the equilibrium.

Now we proceed to uniqueness. We first argue that in any equilibrium, intermediary j

cannot obtain a payoff lower than Π(J)−Π(J\{j}). Suppose toward a contradiction that j
only obtains Rj < Π(J)− Π(J\{j}) in an equilibrium. It could always sell its data at m0,j

such that Rj < m0,j < Π(J)−Π(J\{j}) and the producer would buy its database regardless
of his other purchasing decisions, because of the decreasing returns to information sources.

Now suppose that in equilibrium, one intermediary j sells its database at m0,j > Π(J)−
Π(J\{j}). From the last paragraph we know m0,j′ ≥ Π(J) − Π(J\{j′}). Therefore, on the
equilibrium path, the producer should not purchase all databases, because buying all data-

bases is strictly worse than buying from every intermediary except j. This is a contradiction,

because the rejected intermediary will obtain zero profits, whereas we have shown in the last

paragraph it can guarantee a strictly positive payoff.

Before proceeding to the proof of Proposition 18, we introduce an equilibrium refinement.

Definition 2 (Maximal Equilibrium)
A Perfect Bayesian Equilibrium is maximal if, for given offers by the intermediaries {(mi,j, σij, σj)}j∈J ,
the accepting sets of consumers {Ai} are maximal. That is, there is no other acceptance set
{A′i} that is an equilibrium of the subgame induced by {(mi,j, σij, σj)}j∈J such that Ai ⊂ A′i

for all i and Ai ( A′i for some i.

Lemma 2 (Unique Equilibrium for Accepting Game)
For given offers {(mi,j, σij, σj)}j∈J , there exists a unique maximal equilibrium.

Proof of Lemma 2. Suppose there are two maximal accepting sets {Ai} 6= {Āi}. We
will construct accepting sets {A∞i } such that A∞i ⊃ Ai ∪ Āi ∀i which yields a contradiction.
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We will use an iterated expansion approach to complete the construction. Denote A0
i =

Ai ∪ Āi. Denote also Ui(Ai, A¬i) as consumers’payoff gross of the monetary transfers when
the accepting sets are {Ai}. Since {Ai} and {Āi} are equilibrium choices, we have:

Ui(Ai, A¬i)− Ui(Ai\Bi, A¬i) + Σj∈Bimi,j ≥ 0 ∀Bi ⊂ Ai,

Ui(Āi, Ā¬i)− Ui(Āi\Bi, Ā¬i) + Σj∈Bimi,j ≥ 0 ∀Bi ⊂ Āi.

Therefore, because of decreasing compensation, we will have:

Ui(A
0
i , A

0
¬i)− Ui(A0

i \Bi, A
0
¬i) + Σj∈Bimi,j ≥ 0 ∀Bi ⊂ Ai, or ∀Bi ⊂ Āi.

For Bi ∪ B̄i ⊂ A0
i where Bi ⊂ Ai, B̄i ⊂ Āi and Bi ∩ B̄i = ∅ we have:

Ui(A
0
i , A

0
¬i)− Ui(A0

i \(Bi ∪ B̄i), A
0
¬i) + Σj∈(Bi∪B̄i)mi,j

= Ui(A
0
i , A

0
¬i)− Ui(A0

i \Bi, A
0
¬i) + Σj∈B̄imi,j

+Ui(A
0
i \Bi, A

0
¬i)− Ui(A0

i \(Bi ∪ B̄i), A
0
¬i) + Σj∈B̄imi,j ≥ 0.

In conclusion we have:

Ui(A
0
i , A

0
¬i)− Ui(A0

i \Bi, A
0
¬i) + Σj∈Bimi,j ≥ 0 ∀Bi ⊂ A0

i .

If for each i, there exists a non-empty Bi ⊂ (A0
i )
c such that

Ui(A
0
i ∪B0

i , A
0
¬i)− Ui(A0, A0

¬i) + Σj∈B0imi,j ≤ 0,

then we end the construction and denote A0
i = A∞i . Otherwise, let A

1
i = A0

i ∪ B0
i . Again

because of decreasing compensation, we keep the following property within {A1
i }:

Ui(A
1
i , A

1
¬i)− Ui(A1

i \Bi, A
1
¬i) + Σj∈Bimi,j ≥ 0 ∀Bi ⊂ A1

i .

This iterated process ends in finitely many steps, and the final set {A∞i } satisfies

Ui(A
∞
i , A

∞
¬i)− Ui(A∞i \Bi, A

∞
¬i) + Σj∈Bimi,j ≥ 0 ∀Bi ⊂ A∞i ,

Ui(A
∞
i ∪Bi, A

∞
¬i)− Ui(A∞i , A∞¬i) + Σj∈Bimi,j < 0 ∀∅ 6= Bi ⊂ (A∞i )c.

To verify that {A∞i } is indeed an equilibrium for accepting game, we still need to check
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possible deviation to Bi ∪ Ci where Bi ⊂ A∞i , Ci ⊂ (A∞i )c:

Ui(A
∞
i , A

∞
¬i) + Σj∈A∞i mi,j − Ui(Bi ∪ Ci, A∞¬i)− Σj∈Bi∪Cimi,j

= Ui(A
∞
i , A

∞
¬i)− Ui(A∞i ∪ Ci, A∞¬i)− Σj∈Cimi,j

+Ui(A
∞
i ∪ Ci, A∞¬i)− Ui(Bi ∪ Ci, A∞¬i) + Σj∈A∞i \Bimi,j

≥ −(Ui(A
∞
i ∪ Ci, A∞¬i)− Ui(A∞i , A∞¬i) + Σj∈Cimi,j)

+Ui(A
∞
i , A

∞
¬i)− Ui(Bi, A

∞
¬i) + Σj∈A∞i \Bimi,j

> 0.

Given that other consumers choose A∞−i, consumer i choosing A
∞
i is then indeed optimal.

Therefore, {A∞i } is a equilibrium with strictly larger accepting set, which is a contradiction

that completes the proof.

Proposition 19 (Unique Equilibrium Prediction)
In every pure-strategy maximal equilibrium, each intermediary collects information from

every consumer without additional noise. The consumers are indifferent between accepting

all offers and rejecting all of them.

Proposition 19 thus establishes the first bullet point of Proposition 18 holds. Before we

proceed to prove Proposition 19, however, we introduce three lemmas.

Denote {Āi} as the the maximal accepting set given offers {(mi,j, σij, σj)}j∈J . Consider-
ing any larger accepting set (which is not an equilibrium for the accepting game), we next

show that there must be one consumer who strictly prefers a smaller accepting set.

Lemma 3 (Want Less When Asked More)
For any {Ai} ) {Āi}, ∃ i and Bi ( Ai such that:

Ui(Ai, A¬i)− Ui(Ai\Bi, A¬i) + Σj∈Bimi,j < 0.

Proof of Lemma 3. Suppose not, then we have

Ui(Ai, A¬i)− Ui(Ai\Bi, A¬i) + Σj∈Bimi,j ≥ 0 ∀Bi ⊂ Ai.

Since {Ai} is strictly larger than maximal accepting set, it is not an equilibrium accepting

set, therefore ∃ i and A′i such that A′1i is more profitable than Ai. Choose A1
i such that A

1
i

is the minimal one, i.e. none of its real subsets is more profitable than Ai. Then it is easy
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to see that, due to decreasing returns, that A1
i preserve the property of Ai that it is better

than its every subset:

Ui(A
1
i , A¬i)− Ui(Bi, A¬i) + Σj∈A1i \Bimi,j ≥ 0.

Then we can use the iterated expansion again, and get {A∞i } ) {Ai} such that {A∞i } is a
equilibrium accepting set, which yields a contradiction.

Lemma 4 (Every Intermediary Buys from Every Consumer)
In every pure-strategy maximal equilibrium, every intermediary in the market collects data

from every consumer.

Proof of Lemma 4. Suppose that, on the equilibrium path, intermediary j′ does

not collect data from consumer i′. Denote the equilibrium accepting set, which is maximal,

as {Ai}. We will construct a profitable deviation for j′ towards a contradiction. In our
construction, we will hold fixed the level of common noise.

As we saw in the proof of Lemma 2, we know that facing the equilibrium prices, consumers

strictly prefer Ai to any larger set. Equivalently, the following strict inequality holds,

Ui(Ai, A¬i)− Ui(Bi, A¬i)− Σj∈Bi\Aimi,j > 0 ∀Bi ) Ai.

From Lemma 3 we know that for any strictly larger {Āi}, there exist i and B̄i such that

consumer i prefers B̄i over Āi:

Ui(Āi, Ā¬i)− Ui(Āi\B̄i, Ā¬i) + Σj∈B̄imi,j < 0.

We rewrite the above system of inequality of all possible Bi and Āi as:

Ui(Ai, A¬i, σ
2
εi′j′

=∞)− Ui(Bi, A¬i, σ
2
εi′j′

=∞)− Σj∈Bi\mi,j > 0 ∀Bi ) Ai,

Ui(Āi, Ā¬i, σ
2
εi′j′

=∞)− Ui(Āi\B̄i, Ā¬i, σ
2
εi′j′

=∞) + Σj∈B̄imi,j < 0.

Here, Ui(Ai, A−i, σ2
εi′j′

) is the hypothetical gross utility for consumer i from final goods

market if all consumers’accepting sets are {Ai} and in addition, consumer i′ report data to
intermediary j′ with idiosyncratic noise εi′j′ . The equilibrium path could be represented by

setting σ2
εi′j′

=∞.
Now we have a finite system of strict inequalities that are continuous in σ2

εi′j′
. Thus

54



intermediary j′ could find a σ2
ε∗
i′j′

<∞ such that all these equations still hold:

Ui(Ai, A¬i, σ
2
ε∗
i′j′

)− Ui(Bi, A¬i, σ
2
ε∗
i′j′

)− Σj∈Bi\Aimi,j > 0 ∀Bi ) Ai, (38)

Ui(Āi, Ā¬i, σ
2
ε∗
i′j′

)− Ui(Āi\B̄i, Ā¬i, σ
2
ε∗
i′j′

) + Σj∈B̄imi,j < 0. (39)

Moreover, from the equilibrium condition we have:

Ui(Ai, A¬i,∞)− Ui(Bi, A¬i,∞) + Σj∈Aimi,j − Σj∈Bimi,j ≥ 0 ∀Bi ⊂ Ai.

Therefore by decreasing compensation, we know:

Ui(Ai, A¬i, σ
2
ε∗
i′j′

)− Ui(Bi, A¬i, σ
2
ε∗
i′j′

) + Σj∈Aimi,j − Σj∈Bimi,j ≥ 0 ∀Bi ⊂ Ai. (40)

Now consider a deviation from intermediary j′ that leaves σj′ , σij′ , mi,j′ ∀i 6= i′ unchanged,

sets σi′j′ = σ∗i′j′ , and offers a price m
∗
i′,j′ to consumer i

′ that keeps i′ indifferent between Ai′

and Ai′ ∪ {j′}:
Ui′(Ai′ , A¬i′ , σ

2
ε∗
i′j′

)− Ui′(Ai′ , A¬i′ ,∞) +m∗i′,j′ = 0.

Now we verify first that Ai∪{j′} and A¬i are indeed optimal choices for each consumer, and
that they are maximal. From these two conclusions, we can ensure Ai ∪{j′} and A¬i will be
the accepting sets of the subgame, if intermediary j′ makes such a deviation.

First, from inequality 38, we know that, given other consumers choose {Ai ∪ {j′}, A¬i},
consumer i 6= i′ prefers Ai over any larger set, and consumer i′ prefers Ai′ ∪ {j′} over
any larger set. From inequality 40, we know all consumers prefer Ai over any smaller set.

Moreover, since by construction of m∗i′,j′ , i
′ is indifferent between Ai and Ai ∪ {j′}, then we

know that Ai ∪ {j′}, and that A¬i is indeed an optimal choice for each consumer.
Second, for any set {Āi} ) {Ai} such that j′ /∈ Āi′ , inequality (39) holds. Therefore,

{Āi ∪ {j′}, Ā¬i} cannot be equilibrium choices for consumers. Thus no set larger than

{Ai ∪ {j′}, A¬i} can be an equilibrium choice. One last step toward a contradiction is

to verify that such deviation is profitable. From the previous analysis, we know that the

information collected by any other intermediary j would remain unchanged. Thus we can

denote their signal simply by sj = θ+ δj, where δj is a independent normal random variable.

Because we have assumed a strictly positive lower bound on the noise σ2
ζ > 0, we must have

σ2
δj
> 0. Denote the signal sent by j′ before deviating as θ + δj′ and the signal sent after

deviating by θ + δ̂j′ , where σ2
δj′
> σ2

δ̂j′
. By construction, we then have

mi,j = Ûi(Ai)− Ûi(A′i) =
3

8
var [E [θ|s¬j′ ŝj′ ]]−

3

8
var [E [θ|s¬j′sj′ ]] .
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On the other hand, the extra fee intermediary j′ could charge to the producer, according to

Proposition 17 is:

Π(ŝj′ , s¬j)− Π(s¬j)− (Π(sj′ , s¬j)− Π(s¬j)) =
N

4
var [E [θ|s¬j′ ŝj′ ]]−

N

4
var [E [θ|s¬j′sj′ ]] .

Thus as long as N ≥ 2, such a deviation is always profitable.

Proof of Proposition 19. First suppose there exist a consumer i and an intermediary

j′ such that in equilibrium (σ2
εij′
, σ2

εj′
) > (σ2

ζ , 0). This means one intermediary adds extra

noise of either kind. From Lemma 4 we know that, in any equilibrium, Ai = J for any i.

Consider a deviation from intermediary j′: it changes (σ2
εij′
, σ2

εj′
) to (σ2

ζ , 0) and increases

compensation to m∗i,j′ + δ, for some small δ > 0, where

m∗i,j′ = mi,j′ + Ui(J, σ
2
ε∗
ij′

)− Ui(J, σ2
εij′

).

From original equilibrium condition we know:

Ui(J, J, σ
2
εij′
, σ2

εj′
)− Ui(Bi, J, σ

2
εij′
, σ2

εj′
) + Σj∈J\Bimi,j ≥ 0 ∀Bi.

Because of decreasing compensation and the fact that σ̂2
εi
> 0, we immediately have:

Ui(J, J, σ̂
2
εi
, σ̂2

ε)− Ui(Bi, J, σ̂
2
εi
, σ̂2

ε) + Σj∈J\Bimi,j > 0 ∀Bi ⊃ {j′}.

By the construction of mi,j we also have:

Ui(J, σ
2
ε∗
ij′

)− Ui(Bi, σ
2
ε∗
ij′

) + Σj∈J\(Bi∪{j′})mi,j +m∗i,j′ + δ

≥ Ui(J, σ
2
εij′

)− Ui(Bi, σ
2
εij′

) + Σj∈J\Bimi,j + ε > 0 ∀Bi ⊂ {j′c}

Therefore J will still be consumer i’s optimal choice given other all accept J . other consumers

on the other hand prefer J even more because more information is revealed by i. Therefore

every consumers accepting every intermediary’s offer is indeed a equilibrium outcome, and

it is the outcome induced by the deviation in our setting since it is clearly the largest. A

similar argument as in Proposition 4 then shows that this deviation is profitable, which leads

to a contradiction.

Finally, we will establish the indifference condition from consumers’side. Suppose con-

sumer i strictly prefers reporting to all intermediaries to none, then denote C = {C1, C2, ...}
as the set of all optimal accepting choices for i given others all accept J (J ∈ C). Note that
C is complete under set inclusion, because if C1 6⊂ C2, C2 6⊂ C1, and they are equally good,
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then by decreasing return C1∪C2 is strictly better. Thus we could assume C1 6⊂ C2 6⊂ ... 6⊂ J .

By assumption we know C1 6= ∅.
Then consider a deviation for j′ ∈ C1. This intermediary could deviate by making mi,j′

slightly smaller. Under this deviation, and assuming other consumers all choose J , every

accepting choice in C brings less utility to consumer i equally and is still strictly better

than the rest, thus it is still optimal for i to choose J . So all consumers accepting all

offers is still an equilibrium outcome under this deviation and (since it is clearly maximal)

it is our selected equilibrium. This deviation is profitable to j′, which is a contradiction.

Therefore the indifference conditions for all consumers must hold. Since the noise structure

is uniquely pinned down (no noise is added), and consumers are indifferent between selling

to all intermediaries and selling to none, consumers surplus, producer surplus, total profit of

the intermediaries are also uniquely determined.

Proof of Proposition 18. Proposition 18.1 was established by Proposition 19. Propo-

sition 18.2 is a direct corollary of Proposition 18.1. We now compute the equilibrium payoff

of all the players. On the equilibrium path, each consumer i will send intermediary j a noisy

signal θ + εij. Therefore on the path, the producer will get a noisy signal θ + δ where δ has

variance σ2
ζ/(NJ). If one consumer i deviates by rejecting all offers, the producer will get a

noisy signal θ + δ−i where δ−i has variance σ2
ζ/((N − 1)J). If there is one intermediary not

selling its database to the producer, the producer will get a noisy signal θ + δ−j where δ−j
has variance σ2

ζ/(N(J − 1)).

As we have shown before, the value of information for the producer and the consumer

surplus are given by

Π(S) =
N

4
var[E [θ|S]] =

N

4

σ4
θ

σ2
θ + σ2

δ

Ui(S) = −3

8
var[E [θ|S]] = −3

8

σ4
θ

σ2
θ + σ2

δ

The equilibrium consumer surplus is increasing in σ2
ζ and decreasing in J :

Ui(S−i) = −3

8

σ4
θ

σ2
θ + σ2

ζ/((N − 1)J)
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The producer surplus is increasing in J :

Π(S)− J(Π(S)− Π(S−j)) =
N

4

( Jσ4
θ

σ2
θ + σ2

ζ/(N(J − 1))
− (J − 1)σ4

θ

σ2
θ + σ2

ζ/(NJ)

)
=
Nσ4

θ

4

σ2
θ

(σ2
θ + σ2

ζ/(N(J − 1)))(σ2
θ + σ2

ζ/(NJ))

The total profit of intermediaries is:

R = J(Π(S)− Π(S−j)) +N(Ui(S)− Ui(S−i))

=
N

4

( Jσ4
θ

σ2
θ + σ2

ζ/(NJ)
− Jσ4

θ

σ2
θ + σ2

ζ/(N(J − 1))

)
+

3N

8
(

σ4
θ

σ2
θ + σ2

ζ/((N − 1)J)
− σ4

θ

σ2
θ + σ2

ζ/(NJ)
)

lim
J→∞

∂R

∂J
J2 = −

(2N − 5)σ2
ζ

8(N − 1)
< 0

lim
N→∞

R =
σ2
ζ

4(J − 1)
.

This completes the proof.

Propositions 18 and 19 provide a characterization of the equilibrium outcome, but do not

establish the existence of an equilibrium.

Proposition 20 (Symmetric Equilibrium)
For any N ≥ 3, J ≥ 2, and σ2

θ > 0, there exists x > 0 such that, if σ2
ζ ≥ x , a symmetric

equilibrium exists in which all intermediaries offer the same compensation to every consumer.

As we have just argued, in the symmetric candidate equilibrium, the potential deviation

for the intermediary is to deviate to some information structure with higher noise such that

he could persuade consumers not to provide any information to other intermediaries. The

following lemma characterizes “the most profitable deviation.”

Lemma 5 (Best Candidate Deviation)
The best deviation for intermediary j′ consists of offering a data policy with σ2

ε∗
ij′

= 0, σε∗
j′
> 0

and price m∗i,j′ such that:

1. conditional on every other consumer reporting her information only to j′, consumer i

is indifferent between reporting to no one and only to j′;

2. conditional on every other consumer reporting her information to all intermediaries,

consumer i is indifferent between reporting only to j′ and to all intermediaries.
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Proof of Lemma 5. Suppose there is a profitable deviation for intermediary j′, and

denote it as {σ∗ij′ , σ∗j′ ,m∗i,j′}, and the accepting set it induces as {A∗i }. If such deviation does
not reduce the information that other intermediaries collect, i.e. A∗i = Ai = J ∀i 6= i′, then

we know such deviation is not profitable for sure.

Now we will argue that A∗i ⊂ {j′} for every profitable deviation. Suppose not, then there
must be some consumer i0 report to some other intermediary j0 6= j′. Note by previous

paragraph we know at least one consumer i1 does not report to some other intermediary

j1 6= j′. Therefore we have the following two inequalities:

Ui(A
∗
i0
, A∗¬i0)− Ui(A

∗
i0
\{j0}, A∗¬i0) +mi,j ≥ 0,

Ui(A
∗
i1
∪ {j1}, A∗¬i1)− Ui(A

∗
i1
, A∗¬i1) +mi,j ≤ 0.

Note the other intermediary’s compensation mi,j is the same since we are considering the

symmetric candidate. But this two inequalities contradict with decreasing return and im-

perfect information transmission. (This is a stronger form of decreasing return.)

Now since A∗i ⊂ {j′}, we could assume A∗i = {j′} and put σ2
εij′

=∞, mi,j′ = 0 when j′ is

actually not collecting data from i.

Up to now, we have argued that if a profitable deviation exist, it must induce A∗i = {j′},
what remaining is to set noise level and compensation optimally under the constraint. It is

clear that to support A∗i = {j′} under maximal accepting assumption, we need at least these
two conditions:

1. m∗i,j′ need to at least make consumer indifferent between reporting to j
′ and to none,

conditioned on other consumers only report to j′;

2. the noise shall be large enough so that every consumer reporting to every intermediary

is not an equilibrium outcome.

Since we are just considering deviation from symmetric candidate equilibrium, if con-

sumer i find it attractive to report to j 6= j′, by decreasing return, she shall find it also

attractive to report to any other j 6= j′. Therefore the second requirement is equivalent

to: the noise shall be large enough so that, even when all other consumers report to all

intermediaries, reporting only to j′ is better than reporting to all.

On the other hand, because of symmetry again, once these two conditions are satisfied,

we know that every consumer reporting only to j′ is the maximal accepting set: now that

the consumer do not want to report to j 6= j′ even when all other consumers reporting to all

intermediaries, they will never want to do so when less information is transmitted.
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Now we need to pin down the noise level. By rescaling and aggregating the noisy reports

with the proper weights, we can represent the signal collected by intermediary j′ on the

equilibrium path as θ + δ, while the signal without report from consumer i as θ + δi, where

σ2
δ =

1

σ2
εj′

+
1∑

i

1
σ2εij′

σ2
δi

=
1

σ2
εj′

+
1

Σi 6=i′
1

σ2εij′

Therefore, by reduce σ2
εij′
(or increase 1/σ2

εij′
if you worry about infinity) and increase σ2

εj′

correspondingly to keep σ2
δ unchanged, we could always reduce σ

2
δi
. This is profitable because

it weakens the consumers’bargaining power and reduces the necessary compensation. Thus

we know it is optimal to set σ2
εij′

= 0.

What is left to pin down is the level of common noise. The requirement that A∗i = {j′}
gives a system of lower bounds for the common noise, the most stringent one of which is

Ui({j′∗¬i)− Ui(J,A∗¬i) + (|J | − 1)mi,j > 0.

The intermediary j′ would always want to decrease noise level as long as the above inequality

is satisfied. Thus the payoff from an optimal deviation is obtained by providing an informa-

tion structure with zero idiosyncratic noise and a level of common noise that is arbitrarily

close to making this constraint bind.

Having identified the best deviation, we then calculate the associated deviation payoff to

verify the existence of a symmetric equilibrium. It is then easy to show that the deviation

is not profitable if we take x→∞ (with N ≥ 3). This ends the proof of Proposition 20.
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