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history-dependent dynamic discrete choice models
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Abstract

We study the identification of intertemporal preferences in a stationary dynamic dis-

crete decision model. We propose a new approach which focuses on problems which are

intrinsically dynamic: either there is endogenous variation in the choice set, or preferences

depend directly on the history. History dependence links the choices of the decision-maker

across periods in a more fundamental sense standard dynamic discrete choice models typ-

ically assume. We consider both exponential discounting as well as the quasi-hyperbolic

discounting models of time preferences. We show that if the utility function or the choice

set depends on the current states as well as the past choices and/or states, then time pref-

erences are non-parametrically point-identified separately from the utility function under

mild conditions on the data and we may also recover the instantaneous utility function

without imposing any normalization on the utility across states.
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Study the past if you would define the future.

– Confucius

1 Introduction

We study the identification of intertemporal preferences in a stationary dynamic discrete de-

cision model. We propose a new approach which focuses on problems which are intrinsically

dynamic: either there is endogenous variation in the choice-sets, governed by previous choices

and previous realizations of the state, or preferences depend directly on the history. In this envi-

ronment, the history-dependence feature links the choices of the decision-maker across periods

in a more fundamental sense than standard dynamic discrete choice model typically assume.

We consider both the common environment where agents exhibit exponential discounting as

well the environment where agents are quasi-hyperbolic discounters.

Time preferences play an essential role in understanding inter-temporal economic behavior.

However, a well-known characteristic of dynamic discrete-choice decision models is that the dis-

count factor is not non-parametrically identified.1 Most empirical papers have usually fixed the

discount factor at an arbitrarily-chosen value, or imposed ad-hoc functional form restrictions.2

We show that if the utility function or the choice set depends on the current states as well

as the history of choices, then time preferences are in fact non-parametrically point-identified

separately from the utility function. Moreover, we may also recover the instantaneous utility

without imposing the standard, though arbitrary, normalization of the utility of one reference

alternative across all states. Specifically, in the exponential discount environment, the discount

factor and utility function are identified as long as one choice is not available in some states,

even with arbitrarily small probability, provided this probability varies across histories.3

Rust (1994) showed that the discount factor in standard dynamic discrete choice models

is generically not identified. As dynamic discrete-choice approaches have grown in empirical

applications, a literature has developed to characterize the degree of under-identification and

has proposed some solutions. Most relevant for this paper, Magnac and Thesmar (2002) and

Abbring and Daljord (2019b) expanded Rust’s non-identification results and proposed exclusion

1Komarova et al. (2018) discusses the identification of the time preference in a parametric context.
2See for example Hendel and Nevo (2006); Schiraldi (2011); Gowrisankaran and Rysman (2012); Lee (2013);

Ho (2015); Shcherbakov (2016); Bayer et al. (2016); De Groote and Verboven (2019); Agarwal et al. (2019) and
for the quasi-hyperbolic discount see for example Fang and Wang (2015); Chan (2017); Dalton et al. (2019)

3Whereas more requirement are needed in the quasi-hyperbolic discount case as discussed below.
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restrictions on the utility or value function that lead to the identification of the standard

discount factor. However, as pointed out by Abbring and Daljord (2019b), even these exclusion

restrictions do not usually provide point identification but only set identification. In contrast,

our setup achieves point identification using variation in the data rather than utility restrictions.

Why are time preferences not identified in this environment? One intuition lies in the

fact that, given a sequence of observed states and choices, the typical approach would not

distinguish between any permutations on the ordering, provided that the same state-choice

pairs were maintained.4 Indeed, the only value of having panel data at all is to estimate the

state transition probabilities: the choices themselves are considered only in the cross-section.

In a cross section, however, the discrete choice probabilities identify only the differences in the

conditional value functions, which in turn are functions of the instantaneous utility and the

time preferences, but these objects cannot be separately identified without further restrictions.

A typical approach to identification in the exponential discounting model adds exclusion

restrictions on utility (conditional value function) across states, the presence of an absorbing

choice, (e.g. Magnac and Thesmar, 2002; Abbring and Daljord, 2019b), or restricts attention

to finite horizon model (e.g. Yao et al., 2012; Chung et al., 2014; Bajari et al., 2016; Chou,

2016), usually coupled with a strong normalization on the utility of the reference alternative.

Some of these restrictions may be thought of as extreme forms of history-dependent prefer-

ences. For example, an absorbing choice imposes that after choosing the absorbing alternative

k, the subsequent utility of any other choice is infinitely negative. In a finite-horizon model, the

decision-maker’s instantaneous utility set to zero in all histories after period T . The utility is

thus immediately revealed by period-T choices, and the discount factor identified by explicitly

calculating the expected continuation value in the period-(T − 1) choice. In the present paper,

we formalize and generalize this intuition and show conditions under which allowing the instan-

taneous utility to depend on past choice either directly5 or indirectly through the availability

of different choice sets,6 identification is achieved.

The key advantage of this approach is that the precise sequence of decisions is now used

4That is, a decision-maker choosing alternative j in state s at time t and then alternative j′ in state s′ at
time (t+ 1) has exactly the same implications for the utility model as a decision-maker choosing alternative j′

in state s′ at time t and then alternative j in state s at time (t+ 1).
5See for example Eckstein and Wolpin (1989) and Keane and Wolpin (1997) where the history of choices

enter in the instantaneous utility
6The choice set may be viewed as a form of exclusion restriction on utility, holding utility fixed when an

alternative is available and setting it to negative infinity when unavailable. In contrast to the restrictions used
in the literature, though, availability may be observed in the data.
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longitudinally, and it is this variation which identifies the decision-makers’ time preferences

separately from the utility function. We show that the necessary (and sufficient in the expo-

nential discounting model) condition for the identification of the time preference is that the

history dependence should be of length equal to at least 2. A consequence is that dynamic

discrete-choice models with simple switching costs, transaction costs, reference dependent pref-

erences, etc. are often not identified as the typical application imposes history-dependence of

length one.7 This non-identification follows from the fact that in the standard Markovian world,

the period-(t + 1) state is a sufficient condition for the expected period-(t + 1) continuation

value conditional on the period-t state and choice. This holds equally true in both the case of

no-history dependence as well as history dependence of length 1, and thus no additional iden-

tification is provided. In contrast, applications which allow the costs or preferences to depend

more flexibly on the history are non-parametrically identified.

Without further restrictions, in the standard dynamic discrete-choice model discussed in the

literature not only the discount factor, but also the utility is not identified nonparametrically

without a priori restrictions such as prespecifying the utility of one reference choice in all states

(see for example Rust, 1994; Magnac and Thesmar, 2002). Clearly such a restriction on the

utility across states is not without loss of generality. Importantly, counterfactual choice proba-

bilities, which are often the objects of interest in dynamic discrete-choice analysis, are generally

not invariant to the choice of reference utility (see for example Aguirregabiria, 2010; Aguirre-

gabiria and Suzuki, 2014; Arcidiacono and Miller, 2019; Norets and Tang, 2014; Kaloupsidi et

al., 2019). In contrast, endogenous variation in the choice set allows us to recover not only the

discount factor δ, but also the instantaneous utility for all alternative in all states.8 That is,

the reference alternative is no longer a free parameter but is pinned down state-by-state from

data. Intuitively in a framework where past choices and states affect future utility through the

availability of alternatives, the choice and therefore the utility of different alternatives are linked

across states which breaks the indeterminacy above and allow us to identify the instantaneous

utility without any restriction.

Endogenous choice sets may be thought of as a special case of history-dependent preferences

more generally. In the case of history-dependent choice sets, the utility of an alternative is

held constant across all histories except those in which it is unavailable, in which case it is

7See for example Schiraldi (2011) and Shcherbakov (2016)
8Formally, the utility is identified up to a constant, as a single normalization on the felicity is without loss

of generality.
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equivalent to an infinitely negative utility.9 We show that our identification results extend to

arbitrary history-dependent preferences under a generalization of these features. Namely, that

there exist at least two alternatives for which the difference in utilities across the subset of

histories involving just one another is either zero or observed. This is a common feature of

many applications such as those involving switching costs or storable goods, which we show are

identified provided the history-dependence is extended beyond a single lag.

Building on the history-dependent choice set approach, we extend the class of preferences

beyond the exponential discounting model to consider dynamically inconsistent time prefer-

ences, namely the β− δ quasi-hyperbolic discounting model (Phelps and Pollak, 1968; Laibson,

1997; O’Donoghue and Rabin, 1999). An endogenous choice set is a common feature in most

applications, but especially so in the context of hyperbolic discounting where the notion of

pre-commitment has played a central role. Demand for commitment devices has been taken as

evidence of sophisticated present-bias, e.g. DellaVigna and Malmendier (2006). A sophisticated

agent may want to lock in her savings to avoid spending by future present-biased selves, that is,

to restrict her future choice sets without receiving a current period pay-off. A history-dependent

choice set is in general a form of partial commitment, while the presence of an absorbing choice

is a form of full commitment. We show that a natural generalization of the absorbing choice to

apply over a longer history, i.e. a form of delayed commitment, is able to separate the short-run

from the long-run discount factor. We may also contrast our result with the existing literature

in behavioural economics which has already made use of exogenous variation in the choice set,

i.e. commitment contracts. The typical field experiment essentially offers only a single choice

in a single period; our results show why this is insufficient and provide a blueprint for how ex-

periments could be extended to solve this shortcoming. Related to our paper is Abbring et al.

(2019), where the authors study the identification of the β and δ in a finite horizon model and

show that the time preferences are set identified under some exclusion restrictions including the

normalization of the utility function of a reference alternative to zero across states. Fang and

Wang (2015) claim a proof of identification of the quasi-hyperbolic discount factors, however

Abbring and Daljord (2019a) have highlighted that this proof in fact has no implications for

identification.

The rest of the paper is organized as follows. Section 2 describes the general model. Section

3 provides our main identification results in the case of history-dependent choice sets. Section

9Note that as we allow the choice set to be stochastic conditional on a history and realized state, this
interpretation requires an expansion of the state space.
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4 provides results in the broader class of history-dependent preferences. Section 5 extends the

results of section 3 to the quasi-hyperbolic discounting model. Section 6 extends the results to

the case of unobserved heterogeneity. Section 7 concludes.

2 Set-up and Assumptions

We consider a decision-maker facing an infinite sequence of choices dt over a finite discrete

set of alternatives dt ∈ J = {0, . . . , J}. The agent’s utility from these choices is additively

time-separable, with instantaneous flows of utility ūt exponentially discounted10 by an unknown

factor δ ∈ (0, 1): U(u1, . . .) =
∑∞

t=1 δ
tūt.

The agent’s consumption utility depends on state variables (s̃t, εt). As is common in the

discrete choice literature, these include a random preference shock to the utility of each al-

ternative, εt ≡ {ε0,t, . . . , εJ,t}. The agent observes the realization of (s̃t, εt) at the beginning

of each period prior to making their choice, but the econometrician only observes the subset

of the state s̃t. Without any restriction on the unobserved shocks, it is of course possible to

rationalize any observed behavior by a series of appropriate shocks for any utility function. We

therefore make the common assumption that the random utility component is stationary. We

further assume independence in order to highlight the main features of the model, though this

assumption may be easily relaxed and has been studied elsewhere.

Assumption 1 (Independent discrete shock). The unobservable state variable εt is i.i.d. dis-

tributed, with a cumulative distribution function G(ε) that is absolutely continuous with respect

to the Lebesgue measure in RJ .

Notice that while we assume that the cumulative distribution function G(ε) is known,

existing methods show when it may non-parametrically identified.11 We next assume that the

decision-maker’s utility is additively separable in the error term. This can be relaxed to an

assumption of monotonicity (see, Matzkin, 2007, for an overview), but separability is a common

assumption which greatly simplifies the exposition.

Assumption 2 (Additive separability). Instantaneous utility functions uj(s̃, ε) are given by:

∀j ∈ J ,∀t ūjt(s̃, ε) = uj(s̃) + εj (1)

10We relax this assumption in Section 5.
11See for example Blevins (2014), Chen (2017), and Buchholz et al. (2019)
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Moreover, as is common in the discrete-choice literature we also assume that the states have

finite support:

Assumption 3 (Discrete support). The support of st is finite: st ∈ S = {s1, . . . s|S|} with

|S| <∞

Assumption 3 may of course be relaxed, though the benefit of a continuous state space often

lies in recovering the preference shock nonparametrically rather than the utility function. As

the shock is not our focus here, we focus on the simpler case of a finite state-space.

We now introduce our key innovation to make the problem dynamic in a more meaningful

sense, by considering the role of different histories. We decompose s̃t into two components,

s̃t = (st, ht), where st ∈ S denotes observed state variables that enter into the instantaneous

utility function in the standard way, and ht ∈ Ht = (S × J )H represents the history of lagged

choices and states. We allow an arbitrary, albeit finite, history dependence where H denotes

the length of this dependence.

We first describe the law of motion of the observed state variables. The history evolves

deterministically given the current state and choice. Let hnt = ({st−n, dt−n}, . . . , {st−1, dt−1})
denote the length-n history in period-t. The evolution of the history is then, as usual, given

by ht+1 = (hH−1t , st, dt) = h(ht, st, dt). We then make the following conditional independence

assumption (see Rust, 1987) about the transition of the remaining state variables and the

distribution of the shocks:

Assumption 4. (Conditional Independence): The transition distribution of the states has the

following factorization:

Pr(st+1, ht+1, εt+1|st, ht, εt, dt) = πdt(st+1|st, ht) ·G(εt+1) · 1{ht+1 = h(ht, st, dt)} (2)

Suppose the agent faces in each period t a choice set mt ⊆ J , which depends on the current

state as well as the current history where uk(st, ht) = −∞ if k /∈ mt. The set of possible choice

sets, Q, is a subset of the power set of J excluding the empty set, and excluding any sets which

do not include the default alternative 0.12 Let Q = |Q|. In fact, our identification results only

require Q = 2 and this will be guaranteed simply if one choice is not always available with some

probability which varies with the history.

12While we can allow the default alternative not to be always available, this seems a reasonable feature to
have which fits most of the applications usually studied and greatly simplify the notation in the proofs.
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Assumption 5. The current choice set is observed, and distributed according to M(ht, s) :

{S × J }H × S → ∆Q with |Q| ≥ 2.

We assume individuals discount the future at rate δ and maximize the present discounted

value of their lifetime utilities. Under the assumption above, the value function from the

perspective of the beginning of the period can be expressed recursively as

V (st, ht,mt, εt) = max
j∈mt

{uj(st, ht) + εjt + δE[V (st+1, ht+1,mt+1, εt+1)|j, st, ht,mt]} (3)

The ex-ante value function (or integrated value function), V̄ (s, h,m) — the continuation

value of being in state s, in history h, in choice set m — is obtained by integrating V (s, h,m, ε)

over ε:

V̄ (st, ht,mt) =

∫
V (st, ht,mt)dG(εt) (4)

We may also consider the expectation over all possible choice sets:

V̄ (st, ht) =

∫
V̄ (st, ht,m)dM(m|st, ht) (5)

We now define the conditional value function vj(st, ht,mt) as the present discounted value

(net of εt only) of choosing j ∈ mt where mt is the realized choice set and behaving optimally

from period (t+ 1) onwards:

vj(st, ht,mt) ≡

{
uj(st, ht) + δEs,m

[
V̄ (st+1, ht+1,mt+1)|jt, st, ht,mt

]
if j ∈ mt

−∞ if j /∈ mt

(6)

To simplify the notation, we will hereafter always refer to the case where j ∈ mt unless it

is explicitly stated otherwise. First, note that we can write the discrete choice probabilities in

terms of the choice-specific value function as:

Pr(dt = j|st, ht,mt) = E

[
1

{
j = arg max

k∈mt

vk(st, ht,mt, εkt)|st, ht,mt

}]
Under Assumptions 1–4, there exists a one-to-one mapping from the conditional choice

probabilities to differences in the choice-specific value function given the vector of states (see

8



Hotz and Miller (1993)):

∆vj(st, ht,mt) =vj(st, ht,mt)− v0(st, ht,mt) = (7)

ϕ̄j (Pr (d = 0|st, ht,mt) , . . . ,Pr (d = J |st, ht, ,mt)) ≡ ϕj(st, ht,mt)

Note that Pr(d = k|st, ht,mt) = 0 for any k 6∈ mt in equation (2) above. However, as

ϕj(st, ht,mt) = ϕj(st, ht,m
′
t) if j is an element of both choice sets (and infinitely negative if j

is unavailable), we will suppress the mt notation from this point and consider only cases where

j is available.

Moreover, we can write the surplus function for any alternative k as follows:

V̄ (s, h,m) = Ψ(v0(s, h,m), ..., vJ(s, h,m)) (8)

which has the additivity property (Rust, 1994; Arcidiacono and Miller, 2011):

Ψ(v0(s, h,m), ..., vk(s, h,m), ..., vJ(s, h,m)) = Ψ(∆v0(s, h,m), ..., 0, ...∆vJ(s, h,m)) + vk(s, h,m)

= qk(s̃, m) + vk(s̃, m) (9)

for any alternative k ∈ m. Notice that (7) implies that qk(s, h,m) is a unique function of

the choice probabilities ~p(s, h,m). We may therefore re-write equation (6) as:

vj(st, ht,mt) = uj(st, ht,mt) + δEst+1,mt+1 [q0(st+1, ht+1,mt+1) + v0(st+1, ht+1,mt+1)|jt, st, ht,mt]

(10)

For the remainder of the paper, for the sake of expositional clarity, we focus on the case

where the history of choices is a sufficient statistic for the complete history, i.e. H = J H . All

results extend to the general case, albeit with (significant) additional notational complexity.

3 History-Dependent Choice Sets

In this section, we focus our attention on the identification of the dynamic discrete choice model

only allowing history-dependent in the choice set. Endogenous choice sets are a common feature
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of many economic problems, for example in the presence of an underlying budget constraint

whereby the current choice of consumption determines which alternatives are affordable in the

next period; the choice of available products at the supermarket depends on past realized states,

such as the introduction on new products, and past choices, such as the decision of moving in a

different location; the choice of utility-services depends on past realized states, such as the entry

on new firms and products, and past choices, such as the length of the subscribed contract;

the availability of cars may also depend on past introduction/replacement of different model as

well as past purchases through the presence of transaction costs or budget constraint etc.

To simplify the analysis and to emphasis the role of endogenously variation in the choice

set, we consider utility functions which are not themselves history-dependent, deferring their

analysis to Section 4.

Given the history-dependent choice sets, the decision-maker’s optimal strategy must state

a distribution over choices in each state, in each history, for each realized choice set. Note that

if the distribution of choice sets is history-dependent of degree H, then the choice probabilities

conditional on a realized choice set are history-dependent of degree (H − 1), as the current

utility is independent of the history and the continuation value depends on (H − 1) lagged

choices and the current choice.

Thus the distribution of choice sets given history ht and state s is given by M (ht, s), a the

Q× 1 probability in ∆Q. Let

M(ht) =


M (ht, s1)

′

. . .

M(ht, sS)′


be the S × QS block-diagonal matrix giving the distribution of choice sets for all states in

history ht.

Let q̃0(h
H−1, s) =

[
q0(h

H−1, s,m1), . . . , q0(h
H−1, s,mQ

]′
be the Q × 1 vector of expected

surpluses in state s and length-(H − 1) history hH−1 for all possible choice sets.

Finally, given the (ex-ante) value function in state s with history h, V̄ (s, h), let V (h) denote

the S× 1 vector across all states. Similarly, define ϕj(h) as ϕj(s, h) stacked across all states.13

13Recall that we consider j only when it is available, and thus may omit m as an argument.
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3.1 Identification of the discount factor

We first show that history-dependent choice sets lead to the identification of the discount

factor under very mild conditions. Specifically, the identifying variation is how the choice

probabilities for the same alternative in the same state differ across histories. In order to make

such a comparison, there must be some alternative which is indeed available (with positive

probability) in different histories.14 Moreover, conditional on j being available, the only way

these two histories may be informative is that they differ in their implications for the future

distribution of chocie sets. Assumption 6 formalizes these two requirements.

Assumption 6. Define Aj(s) = {h : j ∈ supp
⋃

m∈M(h,s)

m}. There exists j 6= 0, s, and x, y ∈ Aj(s)

such that xH−1 6= yH−1, xH−2 = yH−2, and M(h(x, j, s), ·) 6= M(h(y, j, s), ·).

The set Aj(s) consists of the set of all histories where alternative j is sometimes available.

Note that this does not imply that they are all available at once, or with the same probability,

or in all histories. We require that for at least one alternative there exist two histories, which

differ only in period t− (H − 1), and possibly also in period t−H, such that there is a state

where the alternative is available with positive probability. One sufficient condition likely to

be satisfied in many applications would be that the full choice set J is always available with

some probability. Note that as M(·, s) is a point in the Q-simplex, it will generically be in the

interior and assign positive probability to all choice sets, thus satisfying Assumption 6 for all j

and for all s. More importantly, this assumption may be readily verified in the data.

Treating history-independent choice sets as the H = 0 case, one might imagine that moving

to the H = 1 case may suffice. Under our timing assumptions, however, this provides too little

variation as choices are only revealed conditional on a choice set, which renders the history

irrelevant for H = 1. Instead, we show that under our assumptions, H = 2 is a necessary and

sufficient condition to identify the discount factor.

Theorem 1. Under assumptions 1–6, the discount factor δ is identified if and only if H ≥ 2.

Proof. If

14Consider, for instance, the case where M(·, j) is degenerate on mj = {j} for all j. This would violate our
assumption by locking the decision-maker in to an infinite stream of the same alternative repeated forever. The
discount factor would obviously not be separable from the felicity in this example.

11



The difference in choice-specific value functions between alternatives j and 0 in history (x, j)

can now be written as:

ϕj(x, j) = uj − u0 + δπj (u0 + δπ0V (j, 0) +M (j, j)q0(j))

− δπ0(u0 + δπ0V (0, 0) +M(j, 0)q0(0)) (11)

Next, consider some other history (x, k). Equation (11) becomes:

ϕj(x, k) = uj − u0 + δπj (u0 + δπ0V (j, 0) +M(k, j)q0(j))

− δπ0(u0 + δπ0V (0, 0) +M (k, 0)q0(0)) (12)

Differencing these two equations yields:

ϕj(x, j)−ϕj(x, k) = δ (πj [M(j, j)q0(j)−M (k, j)q0(j)])

−π0 [M (j, 0)q0(0)−M(k, 0)q0(0)]) (13)

Equation (13) is a system of S equations in one unknown, namely δ. The system has a

unique solution if either M (j, j) 6= M (k, j) or M (j, 0) 6= M (k, 0). Finally, as one can let

k = 0, δ is identified if |J | ≥ 2.

Only If

Suppose the decision-maker’s true preferences are given by {uj(s)}j∈J and δ, and that H = 1.

Define ũj(st) = uj(st) + δE[V (st+1, j))|j, st], and let δ̃ = 0. Then ṽj(s) = vj(s) for all

j, s, which is independent both of the history and the realized choice set (provided j is avail-

able). Under assumptions 1–4 the decision-maker’s choices are completely characterized by the

choice-specific value functions vj(s, h). A decision-maker with preferences (u, δ) is therefore

observationally equivalent to a decision-maker with preferences (ũ, 0). To see this, note that if

H = 1 then:

ũj(st, ht) = uj(st, ht) + δE[V (st+1, j)|st, j]

= uj(st, h
′
t) + δE[V (st+1, j)|st, j] = ũj(st, h

′
t)

≡ ũj(st)
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and thus a history-independent felicity ũj(s) exists. If instead H ≥ 2, the value function will

differ between the second and third expressions above given the dependence of M(·, ·) on ht

and thus ũ does not exist. As the preferences given by (δ, u) and (0, ũ) are observationally

equivalent and both satisfy assumptions 1–4, the discount factor is not identified.

In the proof of Theorem 1, we obtain more equations than unknowns, and it is therefore

natural to consider what may be relaxed in the model. One compelling case is that of a state-

dependent discount factor.15 In addition to macroeconomic examples, health applications with

variable mortality chances for instance naturally feature a stochastic discount factor, which is

identified under the same condition as Theorem 1:

Corollary 1. Under assumptions 1–6, the state-dependent discount factor δ(s) is identified if

and only if H ≥ 2 for all s ∈ S

Proof. The proof immediately follows from theorem 1 as we can write equation (13) for state

s as follows

ϕj(x, j, s)−ϕj(x, k, s) = δ(s) (πj(s) [M (j, j)q0(j)−M (k, j)q0(j)]

−π0(s) [M(j, 0)q0(0)−M (k, 0)q0(0)]) (14)

δ(s) is therefore identified as (πj(s)[M(j, j)q0(j)−M (k, j)q0(j)]−π0(s)[M (j, 0)q0(0)−M (k, 0)q0(0)]) 6=
0. Repeating the analysis for all s identifies the vector δ.

3.2 Identification of utility

Rust (1994) and Magnac and Thesmar (2002) have established that the non-identifiability of

instantaneous utility in standard dynamic discrete choice framework discussed in the literature.

They show that utility can be only identify after imposing |S| restrictions, i.e. by setting the

utility of a reference choice to 0. These restrictions are clearly made with loss of generality

and affect counterfactual predictions16. This non-identification follows from the fact that in the

15Note, we consider the case in which the decision-maker at date t treats the unknown future discount
factors as welfare-relevant, thus maximizing the expected discounted value for all possible discount factors.
This contrasts with the case where the decision-maker has a dynamically inconsistent preference, such as the
quasi-hyperbolic discounting model which we consider in Section 5.

16see e.g. Kaloupsidi et al. (2019)
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standard Markovian world, the period-(t + 1) state is a sufficient condition for the expected

period-(t + 1) continuation value conditional on the period-t state and choice. In contrast,

we show below that in applications which allow the costs or preferences to depend more flex-

ibly on the history are non-parametrically identified. Specifically, we show that in a world

where past choices and states affect future utility through the availability of alternatives, the

choice of different alternatives are linked across states which breaks the indeterminacy above

and allow us to identify the instantaneous utility without any restriction (but for a single nor-

malization of the reference instantaneous utility in one state which is without loss of generality).

It is worth to emphasis that both the discount factor and the utility function are identified

under very weak conditions. In particular, as |Q| = 2 this implies that the intertemporal pref-

erences are identified as long as one choice is not available in some states, even with arbitrarily

small probability, provided this probability varies across histories of length H ≥ 2.

Theorem 2. Under assumptions 1–6, utility is non-parametrically identified if H ≥ 2.

Proof. Assumptions 1–5 and H ≥ 2 immediately imply that the discount factor δ is identified

by Theorem 1. Given δ, it is possible to write the value function for history (0, 0) recursively,

as:

V (0, 0) = u0 +M(0, 0)q̃0 + δπ0V (0, 0) = (I − δπ0)
−1 [M(0, 0)q̃0 + u0] (15)

Moreover, in histories ending with 0, we have:

V (k, 0) = u0 +M(k, 0)q̃0 + δπ0 (I − δπ0)
−1 [M(0, 0)q̃0 + u0] (16)

Rather than writing the differences in choice-specific value functions in terms of a single

period-(t + 1) alternative as we do in (11), which would subsume all information about util-

ity into q0, we may instead consider two choices and the probabilities with which they are

chosen under the optimal strategy, conditional on choosing one of those alternatives. That

is, let P0j(h
H−1) be the QS × 2QS matrix (where Q = 2) formed by diagonally stacking the

probabilities p0(h
H−1|stmtdt ∈ {0, j}) and pj(h

H−1|st,mt, dt ∈ {0, j}). Note that these weights

are constrained by the probability that alternative j is available; this variation will be key in

identifying the model. We thus rewrite (11) as:

14



ϕj(x, k) = uj + δπj

[
M(k, j)P0j(j)

(
ũ+ q̃(j) + δṼ (j)

)]
(17)

− δπ0(u0 + δπ0V (0, 0) +M(j, 0)q0(0)) (18)

where Ṽ (j) is the expectation over period-(t+ 2) continuation values in all states for both

period-(t + 1) choices V (j, dt+1).
17. By equations (16) and (15), πjM (k, j)P (j)Ṽ (j) may be

written in terms of the value of consuming u0 in periods t+ 2 and t+ 3, the surpluses in period

(t + 2) and (t + 3), and V (0, 0) beginning in period (t + 4) all given the induced distributions

of states, choice sets, and period t+ 2 and t+ 3 histories.

The period-(t+ 2) surpluses depend on the joint distribution of period-(t+ 2) states, choice

sets, and histories induced by the choice probabilities in period-(t+ 1). We collect these terms

as πjM (k, j)P0j(j)π̂M̂ (j)q̂t+2
0 .18 Similarly, the period-(t + 3) surpluses may be collected as

πjM(k, j)P0j(j)π̌M̌ (j)q̌t+3
0 . The period-t + 4 surpluses onwards all follow a history (0, 0)

and thus may be written in terms of the induced distribution of st+4, which can in turn be

written as the induced t + 2 distribution iterated forward two periods by π0. That is, as:

πjM(k, j)P0j(j)π̂Ĩ
2QS
s π2

0(I − δπ0)
−1 [M (0, 0)q0(0)].

The flow utilities received in period-(t+ 1) depend on the period-(t+ 1) states, choice sets,

and choices. We can collect these terms as πjM(k, j)P (j)χu, where, importantly, u =

[
u0

uj

]
is the unknown vector of utilities of these two choices across all states and χ is a permutation

matrix which expands u to be conformable.

Beginning in period-(t + 2), the value function is again written in terms of u0. We thus

require the conditional distribution of period-(t+ 2) states, which we have defined above. The

utilities beginning in period-(t+2) onwards may thus be collected as πjM (k, j)P0j(j)π̂Ĩ
2QS
S (I−

δπ0)−1Z0u where Z0 is a S×2S matrix consisting of an identity matrix followed by zeros such

that Zju = u0; similarly, define Zj such that Zju = uj.

With this notation, equation (17) may now be written as:

17Specifically, let V (j, s) =

[
π0(s)′V (j, 0)
πj(s)

′V (j, j)

]
be the 2× 1 vector yielding the expectation of the value function

following each choice, taken from state s in history (·, j).
Let Ṽ (j, s) = [V (j, s)′, . . . ,V (j, s)′]

′
be the 2Q× 1 vector formed repeating V (j, s) Q times.

Then Ṽ (j) =
[
Ṽ (j, s1)′, . . . , Ṽ (j, sS)′

]′
be the 2QS × 1 vector formed by stacking Ṽ (k, s) across all states.

18Full definitions of these matrices are relegated to the appendix to preserve the sanity of readers.
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ϕj(x, k) = uj + δπjM (k, j)P0j(j)q̃(j)

+ δ2πjM(k, j)P0j(j)π̂M̂ (j)q̂t+2
0 + δ3πjM(k, j)P0j(j)π̌M̌ (j)q̌t+3

0

+ δ4πjM(k, j)P0j(j)π̂Ĩ
2QS
s π2

0(I − δπ0)
−1 [M (0, 0)q0(0)]

+
[
δπjM(k, j)P0j(j)χ+ δ2πjM(k, j)P0j(j)π̂Ĩ

2QS
S (I − δπ0)−1Z0

]
u

− u0 − δπ0(u0 +M(k, 0)q0(0) + δ(I − δπ0)−1 (u0 +M (0, 0)q0(0)) (19)

= θj(k, l) +
[
Zj − (I − δπ0)−1Z0 + πjM(k, j)P0j(j)ξ

]
u (20)

where equation (20) simplifies notation by using θj(k, l) to collect the q terms, and ξ = δχ +

δ2π̂Ĩ2QSS (I − δπ0)
−1Z0 simplifies the terms multiplying u.

Next, note that as (20) has row-rank S, the system is not invertible. We may, however,

stack across an additional history l 6= k, as both j and 0 are known to sometimes be available

in at least two histories by Assumption 6, to obtain a total of 2S equations:

φ =

[
ϕj(x, k)− θj(k, 0)

ϕj(x, l)− θj(l, 0)

]
=

[
Zj − (I − δπ0)−1Z0 + πjM (k, j)P0j(j)ξ

Zj − (I − δπ0)−1Z0 + πjM(l, j)P0j(j)ξ

]
u = λu (21)

Note that the system defined by (20) is homogeneous of degree zero in u19, or equivalently

λ is only column-rank (2S − 1). We may at this point normalize a single value of u without

loss of generality, say, u0(s1) = 0. Let λA be the 2S + 1× 2S matrix formed by adding a row

[0, . . . , 0, 1] to λ, which now has full column rank and is thus left-invertible. We obtain:

[
u0

uj

]
=
[(
λTAλA

)−1]
λTA

ϕj(x, k)− θj(k, 0)

ϕj(x, l)− θj(l, 0)

0


Once u0 has been recovered, the utility of any remaining alternative may be recovered in

any history by evaluating equation (11) directly.

19To see this, note that the columns of Zj and Z0 sum to one, as do the columns of πj ,M(k, j),P0j ,χ, and
π̂. The columns of πjM(k, j)P0j(j)ξ therefore sum to δ/(1− δ), and the columns of λ thus sum to zero. This
equates to the standard result that utility is identified only up to a constant.
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4 History-dependent preferences

History-dependent choice sets may be thought of as a special case of history-dependent pref-

erences, wherein utilities are held constant across a subset of histories (i.e. those in which an

alternative is “available”) and infinitely negative in the complementary histories (i.e. those

when it is “unavailable”). In this section, we consider the case in which the decision-maker’s

felicity, conditional on the state, depends directly on the history of choices in an arbitrary way.

Assumption 7 (History-dependent preference). There exists some j and histories h, h′ such

that uj(s, h) 6= uj(s, h
′) for some s.

Assumption 7 implies that the decision-maker’s instantaneous consumption utility depends

directly on both the current state and the history . We allow for arbitrary history-dependence to

an arbitrary length H <∞. This assumption encompasses and generalizes several economically

intuitive cases, including:

Switching costs With additive switching costs, uj(st, ht) = u∗j(st)− cj(st, ht) for some state-

dependent cost function cj. Typically it is assumed that for all j, cj(st, ht) = 0 if dt−1 = j.

See for example Ho (2015); Shcherbakov (2016).

Habit formation and addiction The addiction model of Becker and Murphy (1988) imposes

adjacent complementarity in consumption of an addictive good. Assume that J is ordered

such that j < k means that k represents greater consumption of the good. Then adjacent

complementarity implies that the marginal utility is increasing in lagged consumption,

i.e. that uk(st, j)− uj(st, j) < uk(st, k)− uj(st, k).

Reference-dependent preferences Models of reference-dependent utility explicitly impose

history-dependence on the instantaneous utility. For example, Kaheman and Tversky’s

(1979) prospect theory would imply that that the decision-maker evaluates alternatives

according to differences relative to a reference point. Letting the reference point be

status quo, i.e. dt−1 and letting alternatives represent levels of consumption, this implies

uj(st, k) = u∗(st, j − k). See Gentry and Pesendorfer (2018) for an empirical application.

Finite horizon models Perhaps the strongest form of history-dependence occurs when the

environment has a finite decision horizon of T periods. In this case, the decision-maker’s

instantaneous utility is immediately revealed by period-T choices, and the discount factor
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identified by explicitly calculating the expected continuation value in the period-(T − 1)

choice. Such models may be though of as imposing history-dependence in an infinite-

horizon model by setting utility to zero after period-T. Denoting a “null” alternative ∅
to allow histories before the problem has “begun”, this implies : uj(st, ht) = 0 for all j

if dt−τ 6= ∅ for any τ ≥ T . See for example Bajari et al. (2016) and the literature cited

therein.

Storable/durable goods In models of storable goods with unit consumption, the decision-

maker’s utility depends on the stock (for storable goods, see for example Hendel and

Nevo (2006)) or the value (possibly net of transaction costs for durable goods, for example

Schiraldi (2011)) of goods on hand and the current-period purchase decision or the utility.

Given a history-dependent preference, the choice-specific value function vj is given by:

vj(s̃t) = uj(st, ht) + δEs̃t+1

[
uk(s̃t+1) + qk(s̃t+1) + δEs̃t+2 [V (ht+2)|k, ht+1] |j, s̃t

]
(22)

Differencing 22 for alternatives j and 0 in state s̃t = (st, ht) yields:

ϕj(st, ht) = uj(s̃t)− u0(s̃t) + δEs̃t+1

[
uk(s̃t+1) + qk(s̃t+1) + δEs̃t+2 [V (ht+2)|k, ht+1] |j, st, ht

]
− δEs̃t+1

[
uk(s̃t+1) + qk(s̃t+1) + δEs̃t+2 [V (ht+2)|k, ht+1] |0, st, ht

]
(23)

Without further restrictions, equation (22) admits too many degrees of freedom to identify

a dynamic choice model. In contrast with the history-dependent choice set model of Section

3, now not only the current utility but also the future utilities and value functions vary with

the history. Rather than imposing the history-invariant utility assumed in the case of history-

dependent choice sets, we may impose a much weaker assumption that will play a similar role in

identifying the model. Namely, that this history-invariance applies only to a single alternative,

and for a restricted subset of histories:

Assumption 8 (Limited history independence). Define Imn such that if j ∈ Imn, then for all

h, h′ ∈ {m,n}H and for all s, uj(s, h) = uj(s, h
′). Then there exists j such that j ∈ Ijk ⊂ J .

Assumption 8 requires that there is at least one alternative for which the decision-maker’s

utility is history-independent over histories made up of itself and some other alternative. For

example, if H = 1, then uj(s, j) = uj(s, k) for some k 6= j. For example, in a durable

goods application j could be no consumption and k an alternative which fully depreciates in

18



one period, while other alternatives depreciate over longer horizons. A much stronger, but

perhaps easier to interpret, assumption would be that j is globally history-independent across

all histories, and perhaps even across states. This is far stronger than we will need to assume,

but nevertheless may be a very natural assumption in some applications in particular with

respect to the reference alternative 0. Finally, we note that the subset in assumption 8 is strict,

as otherwise it could be satisfied trivially by all alternatives being globally history-independent,

which would then violate assumption 7.

Just as assumption 8 relaxes assumption that the utility of an alternative is constant when-

ever it is available, we next generalize the analogous assumption regarding the utility difference

when the alternative is “unavailable”. Rather than assuming that the difference is known to

be negatively infinite, we allow this difference to vary arbitrarily across histories, but instead

require that it is known for one alternative in one history.

Assumption 9 (Normalization of history dependence). uj(s, h)− uj(s, h′) is known for some

s ∈ S, h, h′ ∈ {j, k}H and k ∈ Ijk

Assumption 9 states that for some alternative j, for which there exists a k which satisfies

assumption 8 with respect to j, the difference in utilities across two histories involving j and

k is known. Note that this difference may be zero. We state the assumption in this form

as it is the necessary condition for Theorem 3, but in fact most economic applications will

imply something much stronger. For example, if there are two globally history-independent

alternatives alongside some history-dependent ones, then assumptions 8 and 9 are implied. We

relax this by only requiring a condition on certain histories, and indeed allowing the utility

to vary by a known amount rather than zero. This latter requirement may be satisfied, for

example, by switching cost models in which at least some switching costs are either observed

or known to be zero.

Theorem 3. Under assumptions 1–4 and 7–9 the discount factor δ is identified if and only if

H ≥ 2

Proof. If

We present the H = 2 case for simplicity. The proof extends naturally for H > 2 by iterating

the expectation in (22) to include H−1 flow utilities and surpluses and end with the expectation

of V (st+H , d). By Assumption 8, let j, 0 ∈ Isj0 for all s.
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Differencing (22) for alternatives j and 0 in state s̃t = (st, (j, j)) yields:

ϕj(st, (j, j)) = uj(st, (j, j))− u0(st, (j, j))

+ δEst+1 [uj(st+1, (j, j)) + qj(st+1, (j, j)) + δEs [V (s, (j, j))|j, st+1, ht+1] |j, st]

− δEst+1 [uj(st+1, (j, 0)) + qj(st+1, (j, 0)) + δEs [V (s, (0, j))|j, st+1, ht+1] |0, st]
(24)

where we set the arbitrary period-(t + 1) choice equal to j. Evaluating this same equation

in the same state but history (j, 0) yields:

ϕj(st, (j, 0)) = uj(st, (j, 0))− u0(st, (j, 0))

+ δEst+1 [uj(st+1, (0, j)) + qj(st+1, (0, j)) + δEs [V (s, (j, j))|j, st+1, ht+1] |j, st]

− δEst+1 [uj(st+1, (0, 0)) + qj(st+1, (0, 0)) + δEs [V (s, (0, j))|j, st+1, ht+1] |0, st]
(25)

We then take the difference between (24) and (25) to obtain:

ϕj(st, (j, j))−ϕj(st, (j, 0))) = κ+ δ
[
Est+1 [qj(st+1, (j, j))− qj(st+1, (0, j))|j, st]

−Est+1 [qj(st+1, (j, 0))− qj(st+1, (0, 0))|0, st]
]

(26)

Under assumption 9, the constant κ is known. Equation (26) is thus a linear equation in

one unknown, namely δ. Moreover, as both the distribution of states st+1 differs across j and

0 and the surpluses differ across length-2 histories, the term in brackets on the right-hand side

will generically be nonzero. There is therefore a unique value of δ which satisfies this equation,

providing identification.

Only If

Suppose the decision-maker’s true preferences are given by {uj(s, h)}s∈S,h∈JH and δ, and that

H = 1. Under assumption 6, there exists at least one alternative k that yields history-

independent utility over histories involving itself and some other j. Without loss, let k = 0.

Next define ũj(st, ht) = uj(st, ht) + δE[V (st+1, ht+1)|j, st, ht], and let δ̃ = 0. Then ṽj(s, h) =

vj(s, h) for all j, s, h. Under assumptions 1–7 the decision-maker’s choices are completely char-

acterized by the choice-specific value functions vj(s, h). A decision-maker with preferences (u, δ)

is therefore observationally equivalent to a decision-maker with preferences (ũ, 0).
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Next, note that if H = 1 then:

ũ0(s, 0) = u0(s, 0) + δE[V (st+1, 0)|s, 0]

= u0(s, j) + δE[V (st+1, 0)|s, 0] = ũ0(s, j)

where the second inequality follows by the history-independence of alternative 0 over histories

involving itself and j. More generally, if u0(s, h) is history-independent over some set of his-

tories, ũ0(s, h) will also be history-independent of the same set. This clearly does not hold if

H ≥ 2, as the value function will differ between the second and third expressions above given

the presence of alternatives whose utility does vary across these histories. The preference ũ

therefore also satisfies assumption 8. As the two models are observationally equivalent and

both satisfy assumptions 1–6, the discount factor is not identified.

Corollary 2. Under assumptions 1–4 and 7–9 the state-dependent discount factor δ(s) is iden-

tified in any state for which assumption 9 holds if H ≥ 2.

Unlike the history-dependent choice set case studied in the previous section, we cannot

identify the utility function without further restrictions (e.g. u0(s) = 0 for all s) when it

exhibits arbitrary history-dependence. Going across histories increases the number of equations

but also increases the number of unknowns commensurately. We could, however, add a history-

dependent choice set to provide additional identification — particularly under an assumption

that the length of history-dependence in the choice set exceeded that in the utility function.

5 β − δ discounting

We now extend our results beyond the simple exponential discounting model, and assume that

the agent’s intertemporal preferences are represented by the now commonly used formulation of

time-inconsistent preferences: quasi-hyperbolic discounting (Phelps and Pollak, 1968; Laibson,

1997; O’Donoghue and Rabin, 1999):

Definition 1. ((β, δ)-preferences). The (β, δ)-preferences are intertemporal preferences repre-

sented by

Uit(ūit, ūit+1, ...) ≡ ūit + β
+∞∑
τ=t+1

δτ−tūτ
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where β ∈ (0, 1] and δ ∈ (0, 1]

The parameter δ is referred to as the standard discount factor, which captures long-run,

time-consistent discounting; and the parameter β is called the present-bias factor, which cap-

tures short-term impatience. It is β that generates the dynamic inconsistency in the agent’s

preferences. The standard model is nested as a special case of (β, δ)-preferences when β = 1.

When β ∈ (0, 1), (β, δ)-preferences capture the “quasi-hyperbolic” time discounting (Laibson,

1997). We say that an agent’s preferences are time-consistent if β = 1, and are present-biased

if β ∈ (0, 1).

Since its creation and subsequent refinement, a quite large empirical literature has developed

to estimate the parameters of the quasi-hyperbolic discounting model. Most methods have

focused on continuous choices, for example over time-dated monetary rewards (e.g. Thaler,

1981; Andersen et al., 2008) or over the allocation effort over time (e.g. Augenblick et al.,

2015; Augenblick and Rabin, 2019). At the same time, a large field-experimental literature

has purported to show evidence of present-biased preferences as revealed by “commitment

contracts” which constrain the decision-maker’s future choices in some manner (for a review,

see, e.g. DellaVigna (2009)). However, as Carerra et al. (2019) have recently pointed out,

commitment contracts may be thought of as a discrete choice problem, in which case choosing

them reveals only the utility shock and not the decision-maker’s time-inconsistent preference.

That paper and others (e.g. Acland and Levy, 2015; Heidhues and Strack, 2019; Bracke, Levy

and Schiraldi, 2019) have proposed combining the discrete choice with a continuous choice

to provide identification of both the degree of inconsistency as well as beliefs about future

inconsistency (i.e. “naivete”). In this section, we provide conditions under which present-bias

is identified only by discrete choices, using the history-dependent choice sets already introduced.

Behavior of agents with (β, δ)-preferences Following previous studies of time-inconsistent

preferences, we analyze the behavior of an agent by thinking of the single individual as consisting

of many autonomous selves, one for each period. Each period-t self chooses her current behavior

to maximize her current utility Uit(ūit, ūit+1, ...), while her future selves control their subsequent

decisions. While O’Donoghue and Rabin (1999, 2001) allow agents to be naive about their

future selves’ behavior, we focus on the fully sophisticated case as in Laibson (1997) in which

the preferences and behavior of future selves are correctly forecasted.

A (Markovian) strategy profile for all selves is σ ≡ {σt}∞t=1 where σt : S×(|J |)H×RJ+1 → J
for all t and it specifies for each self her action in all possible states and under all possible
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realizations of shock vectors. For any strategy profile σ, let σ+
t ≡ {σk}∞k=t be the continuation

strategy profile from period t on.

To characterize the equilibrium of the intra-personal game of an agent with potentially

time-inconsistent preferences, we first write V̄t(st, ht,mt;σ
+
t ) as the agent’s period-t expected

continuation utility when the state variable is st and history ht under her long-run time pref-

erence for a given continuation strategy profile σ+
it .

20 We can think of V̄it(sit, ht,mt;σ
+
it ) as

representing, hypothetically, her intertemporal preferences from some prior perspective when

her own present-bias is irrelevant.

The solution concept we use to solve this game is subgame-perfection.21 Each self takes the

strategy of all future selves σ+
t+1 = {σt+1, σt+2, ...} as given, and best-responds to these beliefs.

We define the subgame-perfect strategy profile a strategy profile σ∗ ≡ {σ∗t }∞t=1 with σ∗t = (j∗)

such that for all t, st, and ht

σ∗t (st, ht,mt, εt) = arg max
j∈mt

{
uj(st, ht) + εjt + βδE[V̄t+1(st+1, ht+1,mt+1;σ

+
t+1)|st, ht,mt, σt(st, ht,mt)]

}
(27)

Under the assumption above, we rewrite the long-run value function, given the agent’s

strategy σ∗ is:

V̄ (st, ht,mt) = Eε
[
uσ∗(st, ht) + εσ + δE[V̄ (st+1, ht+1,mt+1)|σ∗, st, ht,mt

]
(28)

=
∑
k

Pr(dt = k|st, ht,mt)
[
qk(st, ht,mt) + uk(st, ht) + δE

[
V̄ (st+1, ht+1,mt+1)|k, st, ht,mt

]]
(29)

and

V̄ (st, ht,mt) = Eε
[
uσ∗(st, ht) + εσ + δE[V̄ (st+1, ht+1,mt+1)|σ∗, st, ht,mt

]
(30)

The decision-maker’s choices are governed by the choice-specific current value function,

which reflects her degree of present bias. The choice-specific current value function is given by:

20As before, we define the ex-ante value function (or integrated value function), V̄ (st, ht,mt;σ
+
t ) given by

integrating V (st, ht,mt, εt;σ
+
t ) over εt.

21We are assuming that agents are perfectly sophisticated with respect to their future preferences. Subgame
perfection coincides with perception-perfection in the case of perfectly sophisticated agents (O’Donoghue and
Rabin, 1999)
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wj(st, ht,mt) ≡ uj(st, ht) + βδE
[
V̄ (st+1, ht+1,mt+1)|j, st, ht,mt

]
(31)

We can then rewrite (28) as

V̄ (st, ht,mt) = E
[
wσ(st, ht,mt) + εσt + (1− β)δE

[
V̄ (st+1, ht+1,mt+1)|σ∗, st, ht,mt

]]
= E

[
max
j∈mt

wj(st, ht,mt) + εjt

]
+ (1− β)δ

∑
k

Pr(dt = k|st, ht,mt)E
[
V̄ (st+1, ht+1,mt+1)|k, st, ht,mt

]
= q0(st, ht,mt) + w0(st, ht,mt) + (1− β)δ

∑
k

Pr(dt = k|st, ht,mt)E
[
V̄ (st+1, ht+1,mt+1)|k, st, ht,mt

]
(32)

Assumption 10 (Final commitment). M(h, 0) is degenerate on choice set {0} ∈ Q for all

h ∈ {J × S}H−1.

While the assumption of an absorbing choice has appeared previously in the discrete choice

literature, it has often been accompanied by a strong restriction that u0(·) is constant across

all s. In contrast, we invoke an absorbing choice but still allow the utility of all alternatives

to depend on the realized state. As before under sophistication, the agent correctly perceives

their future selves’ strategies.

By substituting (32) into (31), we write the choice probabilities of j and 0 in terms of w0,

adjusted by the perception-perfect strategy P and for all possible period-(t+ 1) choice sets:

ϕj(x, j) = uj − u0 + βδπj

(
u0 + βδπ0Υ0 +M (j, j)

[
q̃0(j) + (1− β)δP (j)Ṽ (j)

])
− βδπ0 (u0 + δπ0Υ0) (33)

where Υ0,st+1 ≡ E
[∑∞

τ=t+2 δ
τ−(t+2)u0(sτ , (j, 0))|0, st+1

]
and Υ0 ≡ (I − δπ0)

−1u0 is the vector

of Υ0,st+1 across different states.

Note that by assumption 5, alternative 0 is always available and thus the only uncertainty

in the u0 and Υ terms are the realizations of st+1 and st+2. The probability of choosing any

alternative, however, does depend on the realized choice set, and thus q̃0 and V (j) require an

iterated expectation over choice sets conditional on each state.

Finally, we make an assumption that there exists an alternative which provides delayed
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commitment. The absorbing choice in assumption 10 can be thought of as committing the

decision-maker to choose alternative 0 in all future periods, beginning with period-(t + 1). A

natural generalization of this would be an alternative which commits the decision-maker to

choose alternative 0 in all future periods beginning with some strictly later date. That is,

alternative 0 is an absorbing choice in all histories (h, 0); delayed commitment will do the same

in the reverse situation of (d, h).

Assumption 11 (Delayed Commitment). There exists an alternative d 6= 0 such that M(d, h)

is degenerate on choice set {0} ∈ Q for all h ∈ {J × S}H−1.

Unlike the case of exponential discounting, the continuation value of the quasi-hyperbolic

discounter must take into account the choice probabilities given by the perception-perfect strat-

egy. Having delayed commitment available, however, means that at some point those probabil-

ities are greatly simplified. Our identification proof relies on observing how the probability of

choosing delayed commitment varies across histories which may change the distribution of avail-

able alternatives before the delayed commitment is binding. We therefore modify Assumption

6 to guarantee that delayed commitment is indeed available in at least two histories, and that

these two histories indeed vary in their implications for the choice set during the intervening

periods.

Assumption 6 ′. For all s there exist x, y ∈ Ad(s) such that M(h(x, d, s), ·) 6= M(h(y, d, s), ·).

With the presence of a delayed commitment alternative, we now show that the quasi-

hyperbolic discount factors and utility function are identified.

Theorem 4. If |J | ≥ 4 and under assumptions 1–5, 6 ′ and 10–11: βδ is identified iff H ≥ 2

and β, δ and the utility function are identified if H ≥ 3

Proof. Part 1: βδ is identified iff H ≥ 2. We may consider equation (33) in history (x, k),

for k ∈ J \ {0, d}:

ϕd(x, k) = ud − u0 + βδπd (u0 + βδπ0Υ0)− βδπ0 (u0 + δπ0Υ0)

+ βδπdM(x, k)
[
q̃0(j) + (1− β)δP (d)Ṽ (d)

]
(34)

where M (x, k) is S ×Q. We take a difference with respect to ϕ in one alternative history

(x, l):
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ϕd(x, k)−ϕd(x, l) = βδΛd(x, k, l)
[
q̃0(d) + (1− β)δP (d)Ṽ (d)

]
(35)

where Λd(x, k, l) = (πdM(x, k) − πdM (x, l)). By assumption 11 and H ≥ 2, there exists d

such that the distribution of period-(t + 2) choice sets is identical to the distribution induced

by choosing 0. Under assumption 10, this distribution is degenerate on the singleton {0}. Thus

V (d, ·) = Υ0 regardless of the period-(t + 1) choice, and we may therefore write Ṽ (j) = π̃Υ0

and Equation (35) as

ϕd(x, k)−ϕd(x, l) =
[
Λd(x, k, l)q̃0(d) Λd(x, k, l)P (d)π̃

] [ βδ

βδ2(1− β)Υ0

]
(36)

Equation (36) is therefore a system of S linearly independent equations in S + 1 unknowns,

namely βδ and βδ2(1−β)Υ0. Moreover, the column rank of
([

Λd(x, k, l)q̃0(d) Λd(x, k, l)P (d)π̃
])

is equal to rank
([

Λd(x, k, l)q̃0(d) Λd(x, k, l)P (d)π̃
])

= S. Thus βδ is identified if we nor-

malize Υ0(s
′) = 0 for one arbitrary s′ WLOG22 and |J | ≥ 4.

The only if part follows from a similar argument as in Theorem 3.

Part 2: β, δ and the utility function are identified if H ≥ 3. We start by defining

the following induced distribution over histories and states. As in the proof of Theorem 2,

the joint distribution over st+2, dt+1,mt+1, and st+1 conditional on choosing dt = d in history

(x, k, j) is given by πdM (k, j, d)P (j, d)π̂. The joint distribution over mt+2, st+2, dt+1,mt+1,

and st+1 is given by πdM(k, j, d)P (j, d)π̂M̂ (j, d). We must further specify a distribution

over period-(t+ 2) choices, which is given by πdM(k, j, d)P (j, d)π̂M̂ (j, d)P̂ (d), where P̂ (d) is

defined in the appendix. Finally, we must specify the distribution over st+3, when the delayed

commitment forces the decision-maker to begin consuming alternative 0. This is given by

πdM(k, j, d)P (j, d)π̂M̂ (j, d)P̂ (d)π̆, where π̆ is defined in the appendix.

22Note that Υ is a linear function of u0 with all (weakly) positive coefficients, and hence for an arbitrary u0
there exists a constant κ which may be added to the flow utility in all states such that Υ0(s′) = 0. As the
preference is uniquely determined only up to a constant shift, this is without loss of generality.
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For H = 3, equation (34) is written as:

ϕd(x, k, j) = ud − u0 + βδπd (u0 + βδπ0Υ0)− βδπ0 (u0 + δπ0Υ0)

+ βδπdM (k, j, d)
[
q̃0(j, d) + (1− β)δP (j, d)Ṽ (j, d)

]
(37)

Next, we substitute for Ṽ (j, d) using equation (32). By assumption 11, however, the period-

(t+ 2) continuation values are functions only of Υ0 given that dt = d. We therefore have

ϕd(x, k, j) = ud − u0 + βδπd (u0 + βδπ0Υ0)− βδπ0 (u0 + δπ0Υ0) + βδπdM (k, j, d)q̃0(j, d)

+ (1− β)βδ2πdM(k, j, d)P (j, d)π̂
[(
Ĩ
(J+1)QS
S (u0 + βδπ0Υ0) + M̂(j, d)P̂ (d)π̆Ĩ

(J+1)2Q2S
S Υ0

)
+M̂ (j, d)q̂t+2

0 (d)

]
(38)

where q̂t+2
0 (d) considers surpluses for all possible (t + 1) choices as in Theorem 2, though as

we consider H = 3 we now explicitly condition on dt = d. Without loss, let Assumption 6 ′

apply to h = (x, k.j) and ĥ = (x, j, j). We then take the difference in equation (34) evaluated

in these two histories to obtain:

ϕd(x, k, j)−ϕd(x, j, j) = βδ [πdM(k, j, d)q̃0(j, d)− πdM (j, j, d)q̃0(k, d)]

+ (1− β)βδ2
[
πdM (k, j, d)P (j, d)M̂ (j, d)− πdM (j, j, d)P (j, d)M̂ (j, d)

]
P̂ (d)π̆Ĩ

(J+1)2Q2S
S Υ0

+ (1− β)βδ2 [πdM(k, j, d)P (j, d)− πdM(j, j, d)P (j, d)] π̂Ĩ
(J+1)QS
S π0Υ0

+ (1− β)βδ2
[
πdM (k, j, d)P (j, d)π̂M̂ (j, d)− πdM (j, j, d)P (j, d)π̂M̂ (j, d)

]
q̂t+2
0 (d)

+ (1− β)βδ2 [πdM(k, j, d)P (j, d)− πdM(j, j, d)P (j, d)] π̂Ĩ
(J+1)QS
S u0 (39)

Note that the conditions of Part 1 are satisfied, and we may treat βδ and (1 − β)βδ2Υ0

as known. We therefore collect the first three lines of the right-hand side of equation (39),

which are either data or functions of these known quantities, into a single term θ((x, j), j, k).

Equation (39) is a system of S equations in S + 1 unknowns:
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ϕd(x, k, j)−ϕd(x, j, j)− θ((x, j), j, k) = (40)[[πdM (k, j, d)P (j, d)π̂M̂ (j, d)− πdM(j, j, d)P (j, d)π̂M̂ (j, d)
]
q̂t+2
0 (d)

]T[
[πdM(k, j, d)P (j, d)− πdM (j, j, d)P (j, d)] π̂Ĩ

(J+1)QS
S

]T
T

︸ ︷︷ ︸
≡Γ((h,k),j,k)

[
βδ2(1− β)

βδ2(1− β)u0

]

The matrix Γ((h, k), j, k) has dimension S × (S + 1) with rank S, and is therefore not

invertible. Importantly, it has column rank S due to the differences in MP and therefore

adding additional rows by repeating the exercise across additional histories will provide no

additional identification. Instead, we may add a row [0, . . . , 0, 1] to Γ((h, k), j, k) to form an

(S + 1) × (S + 1) matrix Γ and an arbitrary constant x to the left-hand side of (40), i.e. we

normalize (1− β)βδ2u0(sS) = x. Given the normalization of Υ0 in the first step of the proof,

this extra normalization is no longer without loss of generality. We therefore apply a fixed-point

argument to complete the proof.

Given an arbitrarily chosen x, and given that the product βδ is known from step 1, we

obtain a unique value for the long-run discount factor:

δ̂(x) = (βδ)−1

([
1 0 · · · 0

] [(
ΓTΓ

)−1
Γ
] [ϕd(h, k, j)−ϕd(h, k, k)− θ((h, k), j, k)

x

]
+ (βδ)2

)
(41)

Note that δ̂(x) is linear in x, i.e. δ̂(x) = a + bx for some a, b. As (40) is not identified, it

must be that b 6= 0 or else the choice of normalization would not affect the inverse which is a

contradiction. Given δ̂(x), and the previously-identified quantity (1−β)βδ2Υ0, we may obtain

an estimated û0 = (I − δ̂π0)Υ0, and define a function:

f(x) =
[
0 · · · 0 1

] (
I − δ̂(x)π0

) [
(1− β)βδ2Υ0

]
(42)

Notice that f(x) is linear in x, with a nonzero coefficient. Thus there exists a unique fixed

point x∗ such that f(x∗) = x∗. That is, there is only one value of u0(sS) in equation (40) that

is consistent with the normalization of Υ0(s′) in equation (36).
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We thus obtain:[
βδ2(1− β)

u0

]
=
(
ΓTΓ

)−1
ΓT

[
ϕd(x, k, j)−ϕd(x, j, j)− θ((x, j), j, k)

x∗

]
(43)

This identifies u0, and given βδ from the first step, identifies β and δ separately.

The utilities of any other choices then follow from ϕj(o, l, k) observed for all j ∈ J \ {0}
and any arbitrary history (o, l, k) with o 6= d.

It is worth noting that the conditions imposed by Theorem 1 to identify the exponential

discounting model are a strict relaxation of those imposed by Theorem 4 to identify the quasi-

hyperbolic discounting model. The most apparent difference is the requirement in the latter

of assumptions 10 and 11. However, in many ways the more fundamental difference is the

requirement of the former that |J | ≥ 2 and of the latter that |J | ≥ 4, which has a very natural

interpretation. Consider the simplest problem in which the decision-maker’s intertemporal

preferences may be revealed, namely, a finite horizon optimal stopping problem in which the

decision-maker must complete a single task in one of T periods as in O’Donoghue and Rabin

(1999). We normalize the utility of task completion to be zero in all periods, and allow the

utility of waiting to be stochastic with a period-specific mean.

Note that the stationary infinite-horizon model which has been considered is sufficiently

flexible to capture this simple finite-horizon problem. First, note that the absorbing choice

maps onto task completion as once the task is completed there are no other choices to be made

by the decision-maker. Next, because we have assumed history-independent utility, the time

variation in the utility of waiting must be captured by different alternatives. It is clear that

the finite-horizon model would have no implications for intertemporal preferences if T = 1. If

T = 2, the decision-maker’s t = 1 choices involve δ and βδ, respectively, in the two models, and

so of course a quasi-hyperbolic discounter is not distinguished from an exponential discounter

with a discount factor equal to the product βδ. A T = 3 model is necessary to distinguish

the two, which is precisely what is provided by adding an additional alternative to the choice

set. Even this is not sufficient to separate the discount factors from the time-varying utility,

however. This task is provided by the commitment, as there must be some histories where

self-1 can commit self-2 to complete the task with some probability, a requirement which is

imposed by our conditions on M and the introduction of the delayed commitment alternative.
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6 Extensions

6.1 Unobserved heterogeneity

In dynamic discrete choice model, controlling for unobserved heterogeneity is an important

issue. Finite mixture models, which are commonly used in empirical analyses, provide flexible

ways to account for it. Assume that each individual belongs to one of Z types, and his/her

type attribute is unknown.23 The probability of belonging to type z is rz, where the r′zs are

positive and sum to 1. Let the initial (unobservable) distribution of choices be p(s1, d1,m1|z).

We assume that the aggregate sequence of choice probabilities, i.e. Pr({dt, st,mt}Tt=1) (where

T could be infinity), are observable but type-specific choice probability, i.e. Pr(dt|st, ht,mt, z),

is not. The utility functions and the discount factors differ by types, as potentially do the state

transition probabilities. In contrast, we assume that the distribution over Q is common across

all types. The identification relies on the results in Kasahara and Shimotsu (2009)

Assumption 12. Assume that the utility function, discount factor and the transition probability

are type-specific: u(s; z), δ(s; z) and π(st+1|st, ht,mt, z) respectively.

With assumption 12, the mixing probabilities are identified in all three cases studied in

sections 3–5. Formally:

Corollary 3. Under assumptions 1–6 and 12 and for known |Z| if |J | ≥ 3, H = 2, T ≥ 9,

then u(s; z), δ(s; z), rz and p(s1, d1,m1|z) are identified.

Proof. The proof is articulated in two steps. We first identify rz, p(s1, d1,m1, z) and Pr(dt =

j|st, ht,mt, z). The second step we identify u(s; z) and δ(s; z)

Step 1: Notice that we can write the observable choice probability sequence as general sta-

tionary finite mixture model of dynamic discrete choices:

Pr({dt, st,mt}Tt=1) =

Z∑
z=1

rz · p(s1, d1,m1|z)
T∏
t=2

π(st+1|st, dt; z) ·M(mt|ht) · Pr(dt|st, ht,mt, z) (44)

AsM(mt|ht) does not depend on z and therefore is known we can divide both side by
∏T

t=2M(mt|ht)
23Kasahara and Shimotsu (2009) study nonparametric identifiability of the number of types, |Z|
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so to get

P̃ r({dt, st,mt}Tt=1) =
Z∑
z=1

rz · p(s1, d1,m1|z)
T∏
t=2

π(st+1|st, dt; z) · Pr(dt|st, ht,mt, z) (45)

where P̃ r({dt, st,mt}Tt=1) ≡
Pr({dt,st,mt}Tt=1)∏T

t=2M(mt|ht)
. The identification problem in equation 45 has been

studied in Kasahara and Shimotsu (2009) and therefore the identification of rz, p(s1, d1|mt, z),

π(st+1|st, ht, z) and Pr(dt|st, ht,mt, z) follows for their proposition 6.

Step 2: Given Pr(dt = j|st, ht,mt, z), we obtain ϕdt(st, ht,mt|z) then the identification of

u(s; z), δ(s; z) follows from theorem 1 and corollary 1.

Corollary 4. Under assumptions 1–5, 6 ′ and 10–11 and 12 and for known |Z| if J ≥ 4,

H = 3, T ≥ 12, then u(s; z), δ, β, rz and p(s1, d1,m1|z) are identified.

Proof. The first step of the proof is identical to the first step of the proof in corollary 3 and

the second step follows immediately from theorem 4.

7 Conclusion

Dynamic discrete choice models are in general underidentified, and the degree of underiden-

tification and potential solutions in the form of exclusion or parametric restrictions has been

studied in a large literature. We propose a new approach which focuses on problems which are

intrinsically dynamic. History-dependent choice sets and preferences link the decision-maker

across periods in a more fundamental sense than is achieved in history-independent problems

typically studied which lead to the identification of the exponential discount factor.

The power of this approach is greatly strengthened when the class of history-dependence

can be narrowed to history-dependent choice set. An endogenous choice set is a common

feature in most applications, and in some sense plays a similar role to the intertemporal budget

constraint in a dynamic continuous choice model. In this environment, we show that also the

utility function is identify without any normalization which is usually imposed in the literature.

Moreover, when the history-dependence of the choice set also includes an absorbing choice,

the time preferences and utility of a quasi-hyperbolic discounter may be identified. A vast

literature in behavioural economics has made use of exogenous variation in the choice set,

i.e. commitment contracts, and we provide conditions under which the choice of commitment
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could provide identification. The typical field experiment offers only a single choice in a single

period, essentially |J | = 2; our results show why this is insufficient and provide a blueprint

for how experiments could be extended to solve this shortcoming. Finally, we note that our

examination of hyperbolic discounting focused on the case of fully sophisticated agents. Our

results may be extended to the naive or partially-naive case, though the latter will require

additional assumptions regarding the length of history-dependence and the available variation.
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Appendix A Additional notation

The following definitions apply for the proof of Theorem 4. For the proof of Theorem 2, let J = 1

such that J = {0, j}, as only two alternatives are considered for period (t+ 1) consumption.

Let u =


u0

...

uJ

 be the (J + 1)S × 1 vector of all utilities across all states.

Define Ĩnm =


I
...

I

 to be nm× n matrix of n vertically stacked m×m identity matrices.

Define

χ(s) =


s−1︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0, 0 . . . 0
...

0, . . . , 0, . . . , 0︸ ︷︷ ︸
JS+s−1

, 1, 0 . . . , 0


be the (J + 1) × (J + 1)S matrix where row i has a one in column (i − 1)S + s and zeros

elsewhere.

Finally, let

χ =


ĨQ(J+1)χ(s1)

...

ĨQ(J+1)χ(sS)


be the Q(J + 1)S × (J + 1)S matrix formed first by stacking each χ(s) Q times vertically, and

then stacking these across s. The expected consumption utility in period-(t + 1) given dt and

dt−1 is then: πdtM(dt−1, dt)P (dt)χu

Let

π̂(s,m) =


π′0(s)

. . .

π′J(s)


be the (J + 1)× (J + 1)S transition for each possible choice, conditional on state s and choice

set m. As m does not affect the transition directly, it is ignored when we stack across choice
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sets to define the (J + 1)Q× (J + 1)QS matrix:

π̂(s) =


π̂(s, ·)

. . .

π̂(s, ·)


Finally, we define the (J + 1)QS × (J + 1)QS2 matrix:

π̂ =


π̂(s1)

. . .

π̂(sS)


Next, define the distribution of period-(t + 2) choice sets conditional on dt, st+1,mt+1, dt+1

for each possible state st+2 as the S ×QS matrix:

M̂ (dt, st+1,mt+1, dt+1) =


M(dt, dt+1, s1)

. . .

M(dt, dt+1, sS)


Define the distribution conditional on dt, st+1, and mt+1 as the (J+1)S×(J+1)QS matrix:

M̂ (dt, st+1,mt+1) =


M(dt, st+1,mt+1, 0)

. . .

M(dt, st+1,mt+1)


Define the distribution conditional on dt and st as the (J + 1)QS × (J + 1)Q2S matrix:

M̂ (dt, st+1) =


M̂(dt, st+1,m1)

. . .

M̂ (dt, st+1,mQ)


Finally, define the distribution conditional only on dt as the (J + 1)QS2 × (J + 1)Q2S2

matrix:
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M̂ (dt) =


M̂ (dt, s1)

. . .

M̂(dt, sS)


The expected period-(t + 2) flow utility from consuming alternative 0 is thus given by:

Πt+2u0 = πjM(k, j)P (j)π̂Ĩ
(J+1)QS
S u0.

Now define the period-(t+2) surpluses from alternative 0 conditional on st+1,mt+1, dt+1, st+2

for allmt+2 as theQ×1 vector: q̂t+2
0 (st+1,mt+1, dt+1, st+2) = [q0(dt+1, st+2,m1), . . . , q0(dt+1, st+2,mQ)]′

Define the period-(t+2) surpluses from alternative 0 conditional on st+1,mt+1, dt+1 as the

QS × 1 vector:

q̂t+2
0 (st+1,mt+1, dt+1) =


q̂t+2
0 (st+1,mt+1, dt+1, s1)

...

q̂t+2
0 (st+1,mt+1, dt+1, sS)


Define the period-(t+2) surpluses from alternative 0 conditional on st+1,mt+1 for all dt+1

as the (J + 1)QS × 1 vector:

q̂t+2
0 (st+1,mt+1) =


q̂t+2
0 (st+1,mt+1, 0)

...

q̂t+2
0 (st+1,mt+1, J)


Because dt+1 is a sufficient statistic for mt+1, we define the period-(t+2) surpluses from

alternative 0 conditional on st+1 for all mt+1 as the (J + 1)Q2S × 1 vector: q̂t+2
0 (st+1) =

ĨQ(J+1)QSq̂
t+2
0 (st+1,mt+1)

Similarly as st+2 is a sufficient statistic for st+1, we define the period-(t+2) surpluses as the

(J + 1)Q2S2 × 1 vector: q̂t+2
0 = ĨS(J+1)Q2Sq̂

t+2
0 (st+1).

We will also need the period-(t+ 2) choices for every st+1,mt+1, dt+1, st+2,mt+2 realization,

given ht = (dt−3, dt−2, dt−1) and an arbitrary dt. Define the period-(t+2) choice probabilities

conditional on st+1,mt+1, dt+1, st+2,mt+2 as the 1× (J + 1) vector:

P̂ (dt, st+1,mt+1, dt+1, st+2,mt+2) = P ((dt, dt+1), st+2,mt+2)
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Aggregating across mt+2 to create the Q× (J + 1)Q matrix:

P̂ (dt, st+1,mt+1, dt+1, st+2) =


P̂ (dt, st+1,mt+1, dt+1, st+2,m1)

. . .

P̂ (dt, st+1,mt+1, dt+1, st+2,m1


Aggregating across st+2 to create the QS × (J + 1)QS matrix:

P̂ (dt, st+1,mt+1, dt+1) =


P̂ (dt, st+1,mt+1, dt+1, s1)

. . .

P̂ (dt, st+1,mt+1, dt+1, sS)


Aggregating across dt+1 to create the (J + 1)QS × (J + 1)2QS matrix:

P̂ (dt, st+1,mt+1) =


P̂ (dt, st+1,mt+1, 0)

. . .

P̂ (dt, st+1,mt+1, J)


Aggregating across mt+1 to create the Q2(J + 1)S ×Q2(J + 1)2S matrix:

P̂ (dt, st+1) =


P̂ (dt, st+1,m1)

. . .

P̂ (dt, st+1,mQ)


And finally aggregating across st+1 to create the (J + 1)Q2S2 × (J + 1)2Q2S2 matrix:

P̂ (dt) =


P̂ (dt, s1)

. . .

P̂ (dt, ss)


Looking to (t+3) conditional on choosing dt+2 = 0, note that st+2 is irrelevant but st+1 and

mt+1 affect dt+1 and so will affect mt+3 and q0. Still, it is convenient to at least omit st+2. Thus
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the distribution of st+3 conditional on st+1,mt+1 for all dt+1 is the (J + 1)× (J + 1)S matrix:

π̌(st+1,mt+1) =


π0(st+1)

′π0

. . .

πJ(st+1)
′π0


Aggregating across mt+1 contains no new information when creating the (J+1)Q×(J+1)QS

matrix:

π̌(st+1) =


π̌(st+1, ·)

. . .

π̌(st+1, ·)


Finally we aggregate across st+1 to create the (J + 1)QS × (J + 1)QS2 matrix:

π̌ =


π̌(s1)

. . .

π̌(sS)


Next, define the distribution of period-(t+ 3) choice sets conditional on st+1,mt+1, dt+1 and

dt+2 = 0 for each possible state st+3 as the S ×QS matrix:

M̌(st+1,mt+1, dt+1) =


M(dt+1, 0, s1)

. . .

M(dt+1, 0, sS)


Aggregate across all dt+1 to obtain the (J + 1)S × (J + 1)QS matrix:

M̌ (st+1,mt+1) =


M̌ (st+1,mt+1, 0)

. . .

M̌(st+1,mt+1, J)


Aggregate across all mt+1 to obtain the (J + 1)QS × (J + 1)Q2S matrix:

M̌(st+1) =


M̌ (st+1,m1)

. . .

M̌ (st+1,mQ)
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And aggregate across all st+1 to obtain the (J + 1)QS2 × (J + 1)Q2S2 matrix:

M̌ =


M̌ (s1)

. . .

M̌ (sS)


Finally, define the period-(t+3) surpluses from alternative 0 conditional on st+1,mt+1, dt+1, st+3

and dt+2 = 0 for allmt+3 as theQ×1 vector: q̂t+3
0 (st+1,mt+1, dt+1, st+2) = [q0(0, st+2,m1), . . . , q0(0, st+2,mQ)]′

Aggregate across all st+3 to obtain the QS × 1 vector:

q̌t+3
0 (st+1,mt+1, dt+1) =


q̌t+3
0 (st+1,mt+1, dt+1, s1)

...

q̌t+3
0 (st+1,mt+1, dt+1, sS)


Aggregate across all dt+1 to obtain the (J + 1)QS × 1 vector:

q̌t+3
0 (st+1,mt+1) =


q̌t+3
0 (st+1,mt+1, 0)

...

q̌t+3
0 (st+1,mt+1, J)


Repeat Q times across all mt+1 to obtain the (J + 1)Q2S × 1 vector:

q̌t+3
0 (st+1) =


q̌t+3
0 (st+1, ·)

...

q̌t+3
0 (st+1, ·)


Repeat S times across all st+1 to obtain the (J + 1)Q2S2 × 1 vector:

q̌t+3
0 =


q̌t+3
0 (·)

...

q̌t+3
0 (·)
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