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1 Introduction

The question of how (if at all) asset price movements should be taken into account in a central
bank�s interest-rate policy decisions has been much debated since at least the 1990s.1 The
importance of the issue has become even more evident after the fallout for the global economy
of the recent real estate booms and busts in the US and several other countries, which at least
some attribute to monetary policy decisions that failed to take account of the consequences for
the housing market.2

Yet the issue is not easily addressed using standard frameworks for monetary policy analy-
sis. One reason is that it is often supposed that large movements in asset prices are particularly
problematic when they are not justi�ed by economic �fundamentals,�but instead represent mis-
taken valuations resulting from mistaken expectations.3 An analysis that evaluates alternative
monetary policies under the assumption that the outcome resulting from each candidate policy
will be a rational-expectations equilibrium assumes that there can never be any misallocation
of resources due to speculative mispricing of assets, regardless of the monetary policy that is
chosen. Such an analysis will accordingly conclude that there is no need for a central bank to
monitor or respond to signs of such mispricing � but by assuming away the problem.
Some analyses of the question have accordingly allowed for potential departures of asset

prices from �fundamental�values, introducing an expectational error term in the asset pricing
equation that is speci�ed as an exogenous stochastic process (e.g., Bernanke and Gertler (1999,
2001), Galí (2014)). But conclusions from such analyses depend on what is assumed about the
nature of expectational errors, as illustrated in Miao, Shen and Wang (2020). In addition, it
depends on how the probability distribution of errors under some given policy (perhaps the kind
of policy that has historically been implemented) is assumed to change with each alternative
policy that may be contemplated. Yet there is little basis for con�dence about the correctness
of a particular choice in this regard.
In recent work, Caines and Winkler (2019) consider a model where asset price beliefs are

allowed to deviate from model consistent ones, following the approach in Adam, Marcet and
Nicolini (2016). They show that it is optimal for monetary policy to lean against asset prices,
when assuming that the process governing belief formation in the asset market is invariant to
policy.
Here we propose a di¤erent approach to the problem. It neither assumes that expectations

must necessarily be model-consistent, nor that expectational errors must be of any speci�c
type that can be predicted in advance; rather, it associates with any contemplated policy a
set of possible probability beliefs, that includes all possible (internally coherent) probability
beliefs that are not too di¤erent from those predicted by one�s model, in the case of that policy
and those beliefs. This is the hypothesis of �near-rational expectations�(NRE) introduced in
Woodford (2010).
This makes the set of possible private-sector beliefs contemplated by the policy analysis

dependent on the particular policy that is adopted, as in the case of the rational expectations
hypothesis. In particular, beliefs are treated as possible if it would not be too easy to discon�rm
them using observed data from the equilibrium of the model, and whether this is so will depend
on policy. But the set of beliefs that are considered will include ones that result in asset
valuations di¤erent from the ones that will be judged correct according to the policy analyst�s
model; hence the policy analyst will consider the possibility of equilibria in which assets are mis-
priced, and will therefore consider the consequences of responding to such asset price movements

1See, for example, Bernanke and Gertler (1999, 2001), Gilchrist and Leahy (2002), Christiano et al. (2010)
2For example, Taylor (2007) or Adam, Marcet and Kuang (2012).
3Adam, Marcet and Beutel (2017) show that stock market investors�expectations are mistaken, in the sense

that they display periods of over-optimism and over-pessimism.
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in di¤erent ways.
Because the set of possible �near-rational�beliefs associated with any given policy includes

many elements, analysis of the kind proposed here will not associate a single predicted path
for the economy (contingent on the realized values of exogenous shocks) with a given policy. It
may therefore be wondered how welfare comparisons of alternative policies are possible. Our
proposal, in the spirit of the robust policy analysis of Hansen and Sargent (2008), is to choose a
policy that achieves the highest possible lower bound for expected utility of the representative
household, across all of the equilibria with �near-rational� expectations consistent with that
policy.4 We call a solution to this problem a �robustly optimal�policy rule.
We wish to consider the problem of robustly optimal policy within as broad a class of

possible policy rules as possible; in particular, we do not wish to prejudge questions such as
the way in which the policy rule may involve systematic response to housing-related variables
or to indicators of market expectations. Our earlier paper without a housing sector (Adam
and Woodford (2012)) shows how it is possible to characterize robustly optimal policy rules
without restricting oneself a priori to some simple parametric family of policy rules. The basic
idea is that one can in a �rst step derive an upper bound for the maximin level of welfare that is
potentially achievable under any policy rule. This upper-bound welfare level can be determined
without making reference to any speci�c class of policy rules. In a second step, one can then
display examples of policy rules that achieve this upper-bound outcome.
Here we generalize our earlier approach in a number of important ways. First, we ex-

tend the New Keynesian DSGE model used in our earlier analysis to include an endogenous
housing supply, equilibrium �uctuations in housing prices, and potentially distorted housing
price expectations. Second, we make a methodological advance by presenting a new Lagrangian
characterization of the upper-bound dynamics, the so-called Lagrangian Upper-Bound Problem
(LUBP). The LUBP makes it considerably easier to verify that given dynamics represent an
upper-bound on what robustly optimal policy can achieve (as maximized worst-case outcome).
Finally, we present a novel method for parameterizing our non-parametric set of admitted

belief distortions. This method turns out to be analytically convenient and allows handling
larger belief distortions, which a¤ect the equilibrium dynamics of in�ation and housing prices
to �rst order. The policies considered in the present paper are thus robust to belief deviations
in a stronger sense than in Adam and Woodford (2012), where belief distortions were restricted
to a¤ect equilibrium dynamics (for a given policy) to second order only. Despite these gener-
alizations, we can still derive analytical expressions characterizing optimal monetary policy.
We are especially interested in a particular way of specifying the policy rule, in which the

central bank commits itself to ful�ll a quantitative target criterion at all times.5 Under this
commitment it uses its policy instrument at each point in time as necessary in order to ensure
that the paths of various endogenous variables satisfy the relationship speci�ed by the target
criterion. In a basic New Keynesian model without a housing sector and under the assumption

4Hansen and Sargent assume a policy analyst who is herself uncertain that her model is precisely correct
as a description of the economy; when the expectations of other economic agents are an issue in the analysis,
these are typically assumed to share the policy analyst�s model, and her concerns about mis-speci�cation and
preference for robustness as well. We are instead concerned about potential discrepancies between the views of
the policy analyst and those of the public; and the potential departures from model-consistent beliefs on the part
of the public are not assumed to re�ect a concern for robustness on their part. In Benigno and Paciello (2014),
instead, optimal policy is computed under the assumption that members of the public are concerned about the
robustness of their own decisions, and the policymaker correctly understands the way that this distorts their
actions (relative to what the policymaker believes would be optimal for them).

5The robustly optimal policy rule is not unique, as is discussed in more detail in Adam and Woodford
(2012). Di¤erent rules may be consistent with the same worst-case NRE equilibrium dynamics, and so achieve
the same lower bound for expected utility, without being equivalent, either in terms of the out-of-equilibrium
behavior that they would require from the central bank, or in terms of the boundaries of the complete set of
NRE equilibria consistent with the policy in question.
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of rational expectations,the optimal policy commitment can be characterized in these terms, see
Benigno andWoodford (2005), Giannoni andWoodford (2017); the required target criterion is a
��exible in�ation targeting�rule in the sense of Svensson (1999), in which short-run departures
from the long-run in�ation target are justi�ed precisely to the extent that they are proportional
to short-run variations in the rate of change of an �output gap�variable.
We �rst show that if the policymaker assumes private agents to have rational expectations,

commitment to a target criterion involving in�ation (�t) and an appropriately de�ned output
gap (ygapt ) is su¢ cient for implementing optimal monetary policy, even in the model with
distortions in the housing sector. The target criterion can be written in the form

�t + �y(y
gap
t � ygapt�1) = 0;

where �y > 0. While shocks to housing supply and housing demand do a¤ect the de�nition
of the target output level and hence the de�nition of the output gap ygapt , the target criterion
makes no reference to housing prices.
We then show that this ceases to be the case when the policymaker fears possible deviations

of housing price and in�ation expectations from the model-consistent ones; yet a generalization
of the standard target criterion can still be used to implement robustly optimal policy. This
target criterion involves in�ation and the rate of change of the output gap, with identical
coe¢ cients as in the case with rational expectations, but now must additionally involve the
surprises to housing prices (bqut ) and in�ation:

�t + �y
�
ygapt � ygapt�1

�
+ �� (�t � Et�1�t) + �q (bqut � Et�1bqut ) = 0; (1)

where �� > 0 and �q ? 0.
In the empirically realistic case in which housing is subsidized by the government, and is

therefore over-supplied in equilibrium, and in which output falls short of its optimum, because
of monopoly power and tax distortions, we have �q > 0. The robustly optimal target criterion
then requires the central bank to �lean against�unexpected increases in housing prices. By this
we mean that it should adopt a policy stance that is projected to result in smaller increases
in in�ation and/or the output gap than would be chosen under the assumption of rational
housing price and in�ation expectations. A positive housing price surprise thus requires a
�tighter�monetary policy than suggested by a rational-expectations analysis. Similarly, the
policymaker should aim for larger increases in in�ation and or the output gap and thus �looser�
policy in the case of an unexpected decline in housing prices.
Notably, the robustly optimal targeting rule makes no reference to the �fundamental�hous-

ing price. Instead, it only involves responses to housing price surprises, independently of
whether these surprises re�ect changes in fundamentals or changes in the size of belief dis-
tortions. This makes the target criterion more suitable as a basis for communication with the
public about the way that policy decisions are to be justi�ed, as it does not require the central
bank to take a public position with regard to the degree to which housing prices di¤er from their
fundamental values. The di¢ culty of determining fundamental asset values in real time is often
used as an excuse for refraining from any attempt to �lean against�asset bubbles; but in our
proposal, �leaning against�housing price increases does not require any such determination.
The policy of �leaning against�house price increases is more robust than a correspondingly

�exible in�ation targeting rule that ignores house price and in�ation surprises, in the sense that
the distorted expectations that would lead to the worst possible outcome under this policy do
not lower welfare as much as some possible beliefs distortions would under the conventional
policy.6 In particular, in a setting with an excess supply of housing and a suboptimally low

6This assumes that belief distortions must comply in both cases with the same maximum bound on the
possible size of belief distortions.
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output level, the policymaker is most fearful of belief distortions that simultaneously increase
housing price expectations and in�ation expectations. Increased housing price expectations
cause current housing prices to increase and thereby lead to an even larger supply of housing
in a setting where there are already too many houses. Similarly, higher in�ation expectations
imply �via the New Keynesian Phillips curve �an even lower output level for any given level
of in�ation, in a situation where output is already suboptimally low. By engineering a (more)
negative correlation between housing price and in�ation surprises �as implied by policies that
�lean against�housing prices �belief distortions are less able to simultaneously increase both
of these expectations. This helps to reduce the maximum harm that belief distortions of any
given size can possibly in�ict. The degree to which the robustly optimal policy requires �leaning
against�house prices increases depends, however, on model parameters. Notably, it depends
both on the size of the housing subsidy and on the size of the output shortfall, as discussed
further below.
The paper is structured as follows. Section 2 de�nes robustly optimal policy and presents the

general approach that we use to characterize it. Section 3 presents our New Keynesian monetary
DSGE model with a housing sector, and de�nes an equilibrium with possibly distorted private
sector expectations, generalizing the standard concept of rational-expectations equilibrium.
Section 4 considers optimal monetary policy under the assumption of rational expectations.
It demonstrates the irrelevance of housing prices for monetary policy by deriving a targeting
rule that implements optimal monetary policy and that depends on in�ation and the output
gap only. Section 5 considers equilibrium dynamics with distorted expectations. It explains in
what sense we allow for larger belief distortions than in our earlier work and how these give
rise to �rst-order terms in the linear approximations to the model structural equations. It also
presents the kind of linear dynamics that we admit as possible solutions. Section 6 determines
the upper bound on what monetary policy can maximally achieve in the presence of belief
distortions. It presents the nonlinear �rst-order conditions, as well as the linearized equations
characterizing the optimal linear upper-bound dynamics. We also show how to verify second-
order conditions so as to insure that the presented dynamics in fact represent an optimum from
the policymaker�s perspective. Section 7 then presents the robustly optimal targeting criterion.
It discusses under what conditions it involves �leaning against� housing prices and how one
can (numerically) verify that it attains the upper-bound solution as worst-case outcome. We
compare the outcomes associated with robustly optimal and rational expectations optimal
policies in a numerical illustration in section 8. A conclusion brie�y summarizes. Technical
material is relegated to a series of appendices.

2 The Policy Problem in General Terms

This section describes the general approach that we use to characterize robustly optimal policy.
Section 2.1 de�nes the problem and presents our new Lagrangian formulation of the upper-
bound problem. Subsection 2.2 introduces non-parametric forms of distorted private sector
beliefs and an entropy-based measure for capturing the size of belief-distortions, following ear-
lier work in Woodford (2010) and Adam and Woodford (2012). Section 2.3 provides a novel
approach that allows us to parameterize the admitted set of belief distortions. This approach
will be analytically convenient when applying the general ideas spelled out in this section to a
New Keynesian model with a housing sector in the remaining part of the paper, and allows for
larger belief distortions than the methods used in our earlier work.
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2.1 Robustly Optimal Policy

Consider a policymaker who cares about some vector y of endogenous economic outcomes in the
sense of seeking to achieve as high a value as possible for some (welfare) objective W (y). The
value of y depends both on policy and on forward-looking private sector decisions, which in turn
depend on the private-sector�s belief distortions as parameterized by some vector �. Among
the determinants of y is a set of structural economic equations, typically involving �rst-order
conditions of private agents and market clearing conditions, that we write as

F (y; �) = 0: (2)

We assume that the equations (2) are insu¢ cient to completely determine the vector y, under
given belief distortions �, so that the policymaker faces a non-trivial choice.
Let us suppose that the policymaker must choose a policy commitment c from some set C of

feasible policy commitments. Our results about robustly optimal policy do not depend on the
precise speci�cation of the set C; for now, we simply assume that there exists such a set, but we
make no speci�c assumption about what its boundaries may be. We only impose two general
assumptions about the nature of the set C: �rst, we assume that each of the commitments in
the set C can be de�ned independently of what the belief distortions may be7; and second, we
shall require that for any c 2 C, there exists an equilibrium outcome for any choice of � in
some set of possible belief distortions Z. This last assumption assigns to the policymaker the
responsibility for insuring existence of equilibrium for arbitrary belief distortions.
Given our general requirements, the set C may include many di¤erent types of policy com-

mitments. For example, it may involve policy commitments that depend on the history of
exogenous shocks; commitments that depend on the history of endogenous variables, as is the
case with Taylor rules; and commitments regarding relationships between endogenous variables,
as is the case with so-called targeting rules. Also, the endogenous variables in terms of which
the policy commitment is expressed may include asset prices (futures prices, forward prices,
etc.) that are often treated by central banks as indicators of private-sector expectations, as
long as the requirement is satis�ed that the policy commitment must be consistent with belief
distortions of an arbitrary form.
In order to de�ne the robustly optimal decision problem of the policymaker, we further

specify that the equilibrium outcome y associated with a given policy commitment c 2 C and
a given belief distortion � are given by an outcome function

O : Z � C ! Y;

with the property that
F (O(�; c); �) = 0

for all all � 2 Z and c 2 C. Here we have not been speci�c about what we mean by an
�equilibrium,� apart from the fact that (2) must be satis�ed. In the context of the speci�c
model presented in the next section, equilibrium has a precise meaning. For purposes of the
present discussion, it does not actually matter how we de�ne equilibrium; only the de�nition
of the outcome function matters for our subsequent discussion.8

7As is made more speci�c in the application below, we specify policy commitments by equations involving
the endogenous and exogenous variables, but not explicitly the belief distortions. Of course, the endogenous
variables referred to in the policy commitment will typically also be linked by structural equations that involve
the belief distortions.

8If the set of equations (2) is not a complete set of requirements for y to be an equilibrium, this only has the
consequence that the upper-bound outcome de�ned below might not be a tight enough upper bound; it does
not a¤ect the validity of the assertion that it provides an upper bound.
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Our de�nition of robustly optimal policy depends on a function V (�; y) � 0 that measures
the size of the belief distortions. We assume that V (�; y) is equal to zero only in the case of
beliefs that agree precisely with those of the policymaker, and that higher values of V (�; y)
represent more severe distortions. The functional form for V (�; y) ultimately re�ects our con-
ception of �near-rational expectations.� Section 2.2 introduces a speci�c functional form, based
on a relative entropy measure, but our remarks here would also apply to other measures of belief
distortions.
The robustly optimal policy problem can then be represented as a choice of a policy com-

mitment that solves

max
c2C

�
min
�2Z

W (O(�; c)) s.t. V (�; O(�; c)) � V

�
(3)

where V � 0 measures the policymaker�s degree of concern for robustness. For the special case
with V = 0 the robustly optimal policy problem reduces to a standard optimal policy problem
with model-consistent private sector expectations. As V increases, the policymaker becomes
concerned with increasingly larger deviations of private sector expectations from those that
would be consistent with its own model used for policy analysis.
Let cR denote the robustly optimal policy commitment and �R the associated worst-case

beliefs, i.e., the solution to the inner problem in (3). Suppose that there exists a Lagrange
multiplier � � 0 such that �R also solves

min
�2Z

W (O(�; cR)) + �V (�; O(�; cR))

with �[V (�; O(�; cR))� V ] = 0. Then cR and �R also jointly solve the alternative problem

max
c2C

min
�2Z

U(O(�; c); �) (4)

where
U(y; �) � W (y) + � V (�; y);

and the parameter � used in the de�nition of U(y; �) parameterizes the concern for robustness.
In what follows, we shall de�ne the robustly optimal policy problem in this way, taking the value
of � as part of the de�nition of our problem. The formulation of the policy problem in equation
(4) is of the same form as decision problem (3) discussed in Hansen and Marinacci (2016)
and can alternatively be microfounded through a variational preference approach (Maccheroni,
Marinacci and Rustichini (2006)).
Our general strategy for characterizing robustly optimal policy can be summarized as fol-

lows. Let the worst-case beliefs associated with a policy commitment be de�ned by the problem

K(c) � min
�2Z

U(O(�; c); �): (5)

Let us also consider the maximization problem

J(�) � max
y2Y

U(y; �) s.t. F (y; �) = 0: (6)

We then observe that

max
c2C

K(c) � min
�2Z

max
c2C

U(O(�; c); �) � min
�2Z

J(�): (7)

The optimization problem on the r.h.s. of inequality (7) provides an upper bound to the robustly
optimal policy problem, i.e., the problem on the l.h.s. of inequality (7). In the upper-bound
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problem, belief distortions � are chosen �rst and the remaining outcomes y second. In the
robustly optimal policy problem, the policymaker must �rst make a policy commitment c and
the belief distortions � to be chosen second.
We can obtain a potentially weaker upper bound, by considering the Lagrangian Upper-

Bound Problem (LUBP)
min
�2Z

max
y2Y

U(y; �) � '0F (y; �) (8)

for some vector of Lagrange multipliers �': Suppose that there exists a vector of multipliers �'
such that the solution (��; �y) to problem (8) satis�es F (�y; ��) = 0: Then one can show that �y also
solves the maximization problem (6) when � = ��:
Furthermore, if we let �J(�;') be the maximized value of the inner problem in the LUBP

(8), we observe that

J(�) = max
y2Y

min
'

U(y; �) � '0F (y; �)

� max
y2Y

U(y; �) � �'0F (y; �) = �J(�; �'):

It follows that the solution to the LUBP (8) when ' = �' provides an upper bound for the
solution to the problem on the right-hand side of (7), and hence that

max
c2C

K(c) � min
�2Z

J(�) � min
�2Z

�J(�; �'): (9)

Thus the solution to the LUBP (8) when ' = �' provides another upper bound for the
robustly optimal policy problem. This would be true for any vector of multipliers '; but when
' = �'; this upper bound is attained by the solution to the problem in the middle of (9). Hence
this is the upper bound of interest to us.
The previous observations provide a new strategy for determining robustly optimal monetary

policy. We will �rst �nd Lagrange multipliers �' for which the solution to the LUBP (8) satis�es
the structural equations F (�y; ��) = 0; and characterize the outcome and belief distortions that
solve that problem. We then demonstrate that this upper bound is achievable by some policy
commitment �c: If we can do this, �cmust then be at least one example of a robustly optimal policy
commitment. This approach has the advantage of allowing us to study the LUBP, which can
be de�ned independently of any particular class of policy rules C, and then simply demonstrate
that some particular rule �c satis�es the requirements for robust optimality, without ever having
to de�ne the complete set of possible policy rules, let alone determine the worst-case beliefs for
all of them.
More precisely, we proceed as follows. We begin by considering the �rst-order conditions

(FOCs) for the problem in the middle of (9), and use these to �nd a pair (��; �y) that represent
a candidate solution to this problem. Because �y satis�es the FOCs for problem (6), there must
exist a vector of Lagrange multipliers �' such that �y also satis�es the FOCs for the inner problem
in the LUBP (8). We then use those same FOCs to construct a policy rule �c that is consistent
with outcome �y in the case of belief distortions ��:
It is then only necessary to verify (i) that �y not only satis�es the FOCs for the inner

problem of in the LUBP (8), but is an actual maximum, and more generally that (��; �y) solve
the LUBP (8) when ' = �'; (ii) that �y is not only consistent with policy �c, but is the unique
outcome determined by policy �c in the case of beliefs ��; and (iii) that �� are the worst-case belief
distortions in the case of policy �c. If these additional three conditions are veri�ed, we will have
established that �c is an example of a robustly optimal policy commitment.
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2.2 Distorted Private Sector Expectations

We next discuss our quantitative measure of belief distortions. At this point it becomes neces-
sary to specify that our analysis concerns dynamic models in which information is progressively
revealed over time, at a countably in�nite sequence of successive decision points.
Let (
;B;P) denote a standard probability space with 
 denoting the set of possible re-

alizations of an exogenous stochastic disturbance process f�0; �1; �2; :::g, B the ��algebra of
Borel subsets of 
; and P a probability measure assigning probabilities to any set B 2 B.
We consider a situation in which the policy analyst assigns probabilities to events using the
probability measure P but fears that the private sector may make decisions on the basis of a
potentially di¤erent probability measure denoted by bP.
We let E denote the policy analyst�s expectations induced by P and bE the corresponding

private sector expectations associated with bP. A �rst restriction on the class of possible dis-
torted measures that the policy analyst is assumed to consider � part of what we mean by the
restriction to �near-rational expectations�� is the assumption that the distorted measure bP,
when restricted to events over any �nite horizon, is absolutely continuous with respect to the
correspondingly restricted version of the policy analyst�s measure P.
The Radon-Nikodym theorem then allows us to express the distorted private sector expec-

tations of some t+ j measurable random variable xt+j as

bE[xt+jj�t] = E[
Mt+j

Mt

xt+jj�t]

for all j � 0 where �t denotes the partial history of exogenous disturbances up to period
t. The random variable Mt+j is the Radon-Nikodym derivative, and completely summarizes
belief distortions.9 The variableMt+j is measurable with respect to the history of shocks �t+j,
non-negative and is a martingale, i.e., satis�es

E[Mt+jj!t] =Mt

for all j � 0. De�ning

mt+1 =
Mt+1

Mt

one step ahead expectations based on the measure bP can be expressed as
bE[xt+1j�t] = E[mt+1xt+1j�t];

where mt+1 satis�es
E[mt+1j�t] = 1 and mt+1 � 0: (10)

This representation of the distorted beliefs of the private sector is useful in de�ning a measure
of the distance of the private-sector beliefs from those of the policy analyst. As discussed in
Hansen and Sargent (2005), the relative entropy

Rt = Et[mt+1 logmt+1] (11)

is a measure of the distance of (one-period-ahead) private-sector beliefs from the policymaker�s
beliefs with a number of appealing properties.

9See Hansen and Sargent (2005) for further discussion.
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We wish to extend this measure of the size of belief distortions to an in�nite-horizon economy
with a stationary structure. In the kind of model with which we are concerned, the policy
objective in the absence of a concern for robustness is of the form

W (y) � E0

" 1X
t=0

�tU(yt)

#
; (12)

for some discount factor 0 < � < 1; where U(�) is a time-invariant function, and yt is a vector
describing the real allocation of resources in period t. Correspondingly, we propose to measure
the overall degree of distortion of private-sector beliefs by a discounted criterion of the form

E0

" 1X
t=0

�t+1mt+1 logmt+1

#
; (13)

as in Woodford (2010) and Adam and Woodford (2012). This is a discounted sum of the
one-period-ahead distortion measures fRtg:We assign relative weights to the one-period-ahead
measures Rt for di¤erent dates and di¤erent states of the world in this criterion that match
those of the other part of the policy objective (12). Use of this cost function implies that
the policymaker�s degree of concern for robustness (relative to other stabilization objectives)
remains constant over time, regardless of past history.

2.3 Parameterization of Belief Distortions

In stating and solving the robustly optimal policy problem, it will be convenient to work
with a simpler, parametric representation of the possible belief distortions. This parametric
formulation will allow us to analytically handle belief distortions that are su¢ ciently large such
that they a¤ect equilibrium variables to �rst order (given monetary policy).
In the dynamic models that we consider, the structural equations (2) are a vector of condi-

tions of the form
F (yt�1; yt; bEt[g(yt+1)]; �t) = 0

for each period t, where we use the notation bEt[xt+1] = bE[xt+1j�t] for subjective expectations,
and x = g(y) is some function of the complete state vector y.
Suppose that the penalty for large belief distortions is given by (13). Then, the worst case

beliefs associated with a robustly optimal policy problem of the form (4) will solve a problem
of the form

min
mt+1�0

Et[�mt+1 logmt+1]

s:t: : Et[mt+1xt+1] = xet (14)

Et[mt+1] = 1

for some distorted expectations xet , and some parameter � > 0.
10 The solution to this problem

is given by
logmt+1 = ��1� 0txt+1 � logEt[exp(��1� 0txt+1)]; (15)

10The parameter � might seem unnecessary since minimization of E[�m logm] is equivalent to minimization
of E[m logm]. Below, however, we are interested in characterizing the worst case beliefs in a limiting case where
the amplitude of exogenous disturbances, and hence the variation in xt+1 is made arbitrarily small, but the
value of � is made correspondingly small, so that there continue to be non-trivial di¤erences in mt+1 across
states, regardless of how small the amplitude of the disturbances.
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where �t is a vector of Lagrange multipliers associated with constraint (14). It therefore su¢ ces
to consider possible belief distortions of the form described by equation (15) and we can para-
meterize belief distortions in any period t by the vector �t. Note that as in the notation used
in section 2.1, the assumption of rational expectations will correspond to �t = 0 at all times.
In the case of distorted expectations of this parametric form, we can evaluate the relative

entropy (11), obtaining11

Rt = R(��1�t; fxt+1g):
The cost function (13) for a dynamic problem can then be evaluated as

V (�; y; �) = E0

1X
t=0

�t+1R(��1�t; fg(yt+1)g): (16)

The upper bound on what robustly optimal policy can achieve will then be de�ned by a problem
of the form given on the right-hand side of equation (7), where W (y) is given by equation (12)
and V (�; y) by equation (16).

3 A Sticky Price Model with a Housing Sector

We shall begin by deriving the exact structural relations describing a New Keynesian model
featuring a long-lived asset and potentially distorted private sector expectations. The existing
stock of assets is assumed to generate a service �ow that directly enters agents�utility. Assets
depreciate over time but can be produced using a technology with decreasing returns to scale.
For convenience we interpret the long-lived asset as housing, though other interpretations are
possible.
The model is completely standard, except for the presence of the long-lived asset and the fact

that the private sector holds potentially distorted expectations. The exposition here extends
the framework of Adam and Woodford (2011), who write the exact structural relations for a
simpler model without a housing sector.

3.1 Model Structure

The economy is made up of identical in�nite-lived households, each of which seeks to maximize

U � bE0 1X
t=0

�t
�
~u(Ct; �t)�

Z 1

0

~v(Ht(j); �t)dj + ~!(Dt; �t)

�
; (17)

subject to a sequence of �ow budget constraints12

PtCt +Bt + (Dt + (1� �)Dt�1) qtPt + ktPt

� (1 + sd) ~d(kt; �t)qtPt +
Z 1

0

wt(j)PtHt(j)dj +Bt�1(1 + it�1) + �t + Tt;

where bE0 is the common distorted expectations held by consumers conditional on the state of
the world in period t = 0, Ct an aggregate consumption good which can be bought at nominal
price Pt; Ht(j) is the quantity supplied of labor of type j and wt(j) the associated real wage, Dt

the stock of durable assets or houses, � 2 [0; 1] the housing depreciation rate, qt the real price
11The notation fxt+1g used below refers to the time t conditional distribution of the random variable xt+1:
12We abstract from state-contingent assets in the household budget constraint because the representative

agent assumption implies that in equilibrium there will be no trade in these assets.
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of houses, kt investment in new houses and ~d(kt; �t) the resulting production of new houses,
sd ? 0 a government subsidy or tax applied to the value of newly produced houses, Bt nominal
bond holdings, it the nominal interest rate, and �t is a vector of exogenous disturbances, which
may induce random shifts in the functions ~u, ~v, ~! and ~d. The variable Tt denotes lump sum
taxes levied by the government and �t pro�ts accruing to households from the ownership of
�rms.
The aggregate consumption good is a Dixit-Stiglitz aggregate of consumption of each of a

continuum of di¤erentiated goods,

Ct �
�Z 1

0

ct(i)
��1
� di

� �
��1

; (18)

with an elasticity of substitution equal to � > 1. We further assume isoelastic functional forms

~u(Ct; �t) �
C1�~�

�1
t

�C ~��1
t

1� ~��1 ; (19)

~v(Ht; �t) �
�

1 + �
H1+�
t

�H��
t ; (20)

~!(Dt; �t) = �dtDt; (21)

~d(kt; �t) =
Adt
~�
k~�t ; (22)

where ~�; � > 0; ~� 2 (0; 1) and f �Ct; �Ht; �
d
t ; A

d
t g are bounded exogenous and positive disturbance

processes which are among the exogenous disturbances included in the vector �t. Our speci�ca-
tion includes two housing related disturbances that will be of particular interest for our analysis,
namely �dt which captures shocks to housing preferences and A

d
t shocks to the productivity in

the construction of new houses. We impose linearity in the utility function (21) as this greatly
facilitates the analytical characterization of optimal policy.
Each di¤erentiated good is supplied by a single monopolistically competitive producer; there

is a common technology for the production of all goods, in which (industry-speci�c) labor is
the only variable input,

yt(i) = Atf(ht(i)) = Atht(i)
1=�; (23)

where At is an exogenously varying technology factor, and � > 1. The Dixit-Stiglitz preferences
(18) imply that the quantity demanded of each individual good i will equal13

yt(i) = Yt

�
pt(i)

Pt

���
; (24)

where Yt is the total demand for the composite good de�ned in (18), pt(i) is the (money) price
of the individual good, and Pt is the price index,

Pt �
�Z 1

0

pt(i)
1��di

� 1
1��

; (25)

corresponding to the minimum cost for which a unit of the composite good can be purchased
in period t. Total demand is given by

Yt = Ct + kt + gtYt; (26)

where gt is the share of the total amount of composite good purchased by the government,
treated here as an exogenous disturbance process.
13In addition to assuming that household utility depends only on the quantity obtained of Ct; we assume that

the government also cares only about the quantity obtained of the composite good de�ned by (18), and that it
seeks to obtain this good through a minimum-cost combination of purchases of individual goods.
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3.2 Household Optimality Conditions

Each household maximizes utility by choosing state contingent sequences fCt; Ht(j); Dt; kt; Btg
taking as given the process for fPt; wt(j); qt; it;�t; Ttg. The �rst order conditions give rise to
an optimal labor supply relation

wt(j) =
~vH(Ht(j); �t)

~uC(Ct; �t)
; (27)

a consumption Euler equation

~uC(Ct; �t) = � bEt �~uC(Ct+1; �t+1)1 + it
�t+1

�
; (28)

an equation characterizing optimal investment in new houses

kt =
��
1 + sd

�
Adt qt

� 1
1�~� ; (29)

and an asset pricing equation
qut = �dt + �(1� �) bEtqut+1; (30)

where
qut � qtC

�~��1
t

�C ~��1

t (31)

is the market valuation of housing in period t, expressed in marginal-utility units. The variable
qut provides a measure of whether housing is currently expensive or inexpensive, in units that
are particularly relevant for determining housing demand. More importantly, because of (30),
it is expectations about the future value of quT , rather than the future value of qT as such,
that in�uence the current market value of housing, so that the degree of distortion that may be
present in expectations regarding the former variable is of particular importance for equilibrium
determination. The housing-price variable qut is accordingly of particular interest.
Equations (27)-(30) jointly characterize optimal household behavior under distorted beliefs.

Using (26) and (29), one an express aggregate demand as

Yt =
Ct + 
tC

~��1
1�~�
t

1� gt
(32)

where


t �
��
1 + sd

�
Adt �C

�~��1
t qut

� 1
1�~�

> 0 (33)

is a term that depends on exogenous shocks and belief distortions only.

3.3 Optimal Price Setting by Firms

The producers in each industry �x the prices of their goods in monetary units for a random
interval of time, as in the model of staggered pricing introduced by Calvo (1983) and Yun
(1996). Let 0 � � < 1 be the fraction of prices that remain unchanged in any period. A
supplier that changes its price in period t chooses its new price pt(i) to maximize

bEt 1X
T=t

�T�tQt;T�(pt(i); p
j
T ; PT ;YT ; q

u
T ; �T ); (34)

where bEt is the distorted expectations of price setters conditional on time t information, which
are assumed identical to the expectations held by consumers, Qt;T is the stochastic discount
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factor by which �nancial markets discount random nominal income in period T to determine the
nominal value of a claim to such income in period t, �T�t is the probability that a price chosen
in period t will not have been revised by period T , and the function �(pt(i); : : :) indicates the
nominal pro�ts of the �rm in period t (discussed further below). In equilibrium, the discount
factor is given by

Qt;T = �T�t
~uC(CT ; �T )

~uC(Ct; �t)

Pt
PT

: (35)

Pro�ts are equal to after-tax sales revenues net of the wage bill. Sales revenues are deter-
mined by the demand function (24), so that (nominal) after-tax revenue equals

(1� �t)pt(i)Yt

�
pt(i)

Pt

���
:

Here �t is a proportional tax on sales revenues in period t; f�tg is treated as an exogenous
disturbance process, taken as given by the monetary policymaker. We assume that �t �uctuates
over a small interval around a non-zero steady-state level � . We allow for exogenous variations in
the tax rate in order to include the possibility of �pure cost-push shocks�that a¤ect equilibrium
pricing behavior while implying no change in the e¢ cient allocation of resources.
The real wage demanded for labor of type j is given by equation (27) and �rms are assumed

to be wage-takers. Because the right-hand side of (32) is a monotonically increasing function
of Ct, (32) implies the existence of a di¤erentiable function

Ct = C(Yt; q
u
t ; �t) (36)

solving (32) with the derivative CY satisfying 0 < CY (Yt; q
u
t ; �t) < 1 � g. Using this function

and the assumed functional forms for preferences and technology, the nominal wage bill will
equal

Ptwt(j)ht(i) = Pt
�Ht(i)

�H
��
t

C�e��1t C
e��1
t

ht(i)

= �Pt

�
pt(i)

Pt

���� 
pjt
Pt

!����
H
��
t

�
Yt
At

�1+! �
C(Yt; q

u
t ; �t)

Ct

�e��1
where

! � �(1 + �)� 1 > 0
is the elasticity of real marginal cost in an industry with respect to industry output. Subtracting
the nominal wage bill from the above expression for nominal after tax revenue, we obtain the
function �(pt(i); p

j
T ; PT ;YT ; q

u
T ; �T ) used in (34). The vector of exogenous disturbances �t now

includes At; gt and �t, in addition to the shocks ( �Ct; �Ht; �
d
t ; A

d
t ).

Each of the suppliers that revise their prices in period t chooses the same new price p�t ; that
maximizes (34). Note that supplier i�s pro�ts in (34) are a concave function of the quantity
sold yt(i); since revenues are proportional to yt(i)

��1
� and hence concave in yt(i), while costs

are convex in yt(i). Moreover, since yt(i) is proportional to pt(i)��; the pro�t function is also
concave in pt(i)��. The �rst-order condition for the optimal choice of the price pt(i) is the same
as the one with respect to pt(i)��; hence the �rst-order condition with respect to pt(i);

bEt 1X
T=t

�T�tQt;T�1(pt(i); p
j
T ; PT ;YT ; q

u
T ; �T ) = 0;
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is both necessary and su¢ cient for an optimum. The equilibrium choice p�t (which is the same for
each �rm in industry j) is the solution to the equation obtained by substituting pt(i) = pjt = p�t
into the above �rst-order condition.
Under the assumed isoelastic functional forms, the optimal choice has a closed-form solution

p�t
Pt
=

�
Kt

Ft

� 1
1+!�

; (37)

where Ft and Kt capture the e¤ects of discounted marginal costs and revenues, respectively,
and are de�ned by

Ft � bEt 1X
T=t

(��)T�tf(YT ; q
u
T ; �T )

�
PT
Pt

���1
; (38)

Kt � bEt 1X
T=t

(��)T�tk(YT ; �T )

�
PT
Pt

��(1+!)
; (39)

where

f(Y; qu; �) � (1� �) �C ~��1Y C(Y; qu; �)�e��1 ; (40)

k(Y ; �) � �

� � 1��
�H��

A1+!
Y 1+! (41)

Relations (38)�(39) can also be written in the recursive form

Ft = f(Yt; q
u
t ; �t) + �� bEt[���1t+1Ft+1] (42)

Kt = k(Yt; �t) + �� bEt[��(1+!)t+1 Kt+1]; (43)

where �t � Pt=Pt�1:
14 The price index then evolves according to a law of motion

Pt =
�
(1� �)p�1��t + �P 1��t�1

� 1
1�� ; (44)

as a consequence of (25). Substitution of (37) into (44) implies that equilibrium in�ation in
any period is given by

1� ����1t

1� �
=

�
Ft
Kt

� ��1
1+!�

: (45)

Equations (42), (43) and (45) jointly de�ne a short-run aggregate supply relation between
in�ation, output and house prices, given the current disturbances �t; and (potentially distorted)
expectations regarding future in�ation, output, house prices and disturbances.

3.4 Summary and Equilibrium De�nition

For the subsequent analysis it will be helpful to express the model in terms of the endogenous
variables (Yt; Kt; Ft;�t; q

u
t ;mt; it) only, where mt is the belief distortions of the private sector

and

�t �
Z 1

0

�
pt(i)

Pt

���(1+!)
di � 1

14It is evident that (38) implies (42); but one can also show that processes that satisfy (42) each period,
together with certain bounds, must satisfy (38). Since we are interested below only in the characterization of
bounded equilibria, we can omit the statement of the bounds that are implied by the existence of well-behaved
expressions on the right-hand sides of (38) and (39), and treat (42)�(43) as necessary and su¢ cient for processes
fFt;Ktg to measure the relevant marginal conditions for optimal price-setting.
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a measure of price dispersion at time t. The vector of exogenous disturbances is given by
�t =

�
At; gt; �t; �Ct; �Ht; �

d
t ; A

d
t

�0
.

We begin by expressing expected household utility (evaluated under the objective measure
P) in terms of these variables. Inverting the production function (23) to write the demand for
each type of labor as a function of the quantities produced of the various di¤erentiated goods,
it is possible to write the utility of the representative household as a function of the expected
production plan fyt(i)g. One thereby obtains

U � E0

1X
t=0

�t
�
u(Yt; q

u
t ; �t)�

Z 1

0

v(yjt ; �t)dj + ~!(Dt; �t)

�
; (46)

with

u(Yt; q
u
t ; �t) � ~u(C(Yt; qut ; �t); �t)

v(yjt ; �t) � ~v(f�1(yjt=At); �t)

where in this last expression we make use of the fact that the quantity produced of each good
in industry j will be the same, and hence can be denoted yjt ; and that the quantity of labor
hired by each of these �rms will also be the same, so that the total demand for labor of type j
is proportional to the demand of any one of these �rms.
One can furthermore express the relative quantities demanded of the di¤erentiated goods

each period as a function of their relative prices, using (24). This and the linear dependence of
utility on the stock of assets allows us to write the utility �ow to the representative household
in the form

u(Yt; q
u
t ; �t)� v(Yt; �t)�t + ��

d
t

Adt
~�
k~�t ;

where

��dt �
1X
T=t

Et[(1� �)T�t �T�t�dT ]: (47)

We can use (29), (31) and (36) to express kt in terms of Yt, qut and exogenous shocks. Hence
we can express the household objective (46) as

U = E0

1X
t=0

�tU(Yt;�t; q
u
t ; �t): (48)

where the explicit expression for the �ow utility is given by

U(Yt;�t; q
u
t ; �t) =

C
~��1

t C(Yt; q
u
t ; �t)

1�~��1

1� ~��1

� �

1 + �
�H��
t

�
Yt
At

�1+!
�t

+
Adt
��dt
~�

(qut ; �t)

~� C(Yt; q
u
t ; �t)

~�
1�~� ~�

�1
; (49)

which is a monotonically decreasing function of � given Y , qu and � and where 
(qut ; �t) is the
function de�ned in (33).
The consumption Euler equation (28) can be expressed as

~uC(C(Yt; q
u
t ; �t); �t) = � bEt �~uC(C(Yt; qut ; �t); �t+1)1 + it�t+1

�
; (50)
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Using (45) to substitute for the variable �t equations (42) and (43) can be expressed as

Ft = f(Yt; q
u
t ; �t) + �� bEt [�F (Kt+1; Ft+1)] (51)

Kt = k(Yt; �t) + �� bEt [�K(Kt+1; Ft+1)] ; (52)

where the functions �F ; �K are both homogeneous degree 1 functions of K and F . The system
consisting of (51)-(52) can be written more compactly as

Zt = z(Yt; q
u
t ; �t) + �� bEt [�(Zt+1)] ; (53)

where

Zt �
�
Ft
Kt

�
; z(Y; qu; �) �

�
f(Y; qu; �)
k(Y ; �)

�
; �(Z) �

�
�F (K;F )
�K(K;F )

�
: (54)

Because the relative prices of the industries that do not change their prices in period t
remain the same, one can use (44) to derive a law of motion for the price dispersion term �t

of the form
�t = h(�t�1;�t); (55)

where

h(�;�) � ����(1+!) + (1� �)

�
1� ����1

1� �

� �(1+!)
��1

:

This is the source of welfare losses from in�ation or de�ation. Using once more (45) to substitute
for the variable �t one obtains

�t = ~h(�t�1; Kt=Ft): (56)

The asset pricing equation (30) and equations (50)-(56) represent �ve constraints on the equilib-
rium paths of the seven endogenous variables (Yt; Ft; Kt;�t; q

u
t ;mt+1; it). For a given sequence

of belief distortions mt satisfying restriction (10) there is thus one degree of freedom left, which
can be determined by monetary policy.
We are now in a position to de�ne the equilibrium with distorted private sector expectations:

De�nition 1 (DEE) A distorted expectations equilibrium (DEE) is a bounded stochastic process
for fYt; Ft; Kt;�t; q

u
t ;mt+1; itg1t=0 satisfying equations (10), (30) and (50)-(56).

We can also de�ne the following special case considered in the standard literature on optimal
monetary policy:

De�nition 2 (REE) A rational expectations equilibrium (REE) is a bounded stochastic process
for fYt; Ft; Kt;�t; q

u
t ; itg

1
t=0 satisfying equations (30) and (50)-(56) with mt+1 � 1 in all states.

4 Optimal Policy under Rational Expectations

We �rst consider the nature of an optimal policy commitment under the assumption of rational
expectations. We will then consider the more general case allowing for belief distortions as a
perturbation of our solution for this case.
Under the assumption of rational expectations, equation (30) has a unique bounded solution

given by
qut =

��dt (57)

for all t. Thus the housing price is necessarily equal to its fundamental value ��dt regardless
of policy. Note that ��dt , de�ned in equation (47), is purely a function of exogenous distur-
bances. Thus under the assumption of rational expectations, we can treat qut as an exogenous
disturbance, rather than an additional endogenous variable. Our model with a housing sector
then becomes equivalent to a standard New Keynesian model, except with additional sources
of exogenous disturbances.
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4.1 Optimal Dynamics under Commitment

An optimal policy commitment will be a rule that results in an evolution of the endogenous
variables that maximizes (48) subject to the constraints that (53) and (56) hold for each t � 0,
and an initial precommitment specifying a value for a linear combination of �(Z0) and qu0 ,
chosen so as to allow us to obtain a time-invariant system of �rst-order conditions. Note that
we need not list equation (50) as a constraint on the problem. Under the assumption that the
zero lower bound on nominal interest rates is not binding, constraint (50) imposes no restrictions
on the path of the other variables.15 The required path for nominal interest rates can then be
computed ex-post using the solution for the other variables and equation (50).
The �rst-order conditions of this planning problem are given by

UY (Yt;�t; q
u
t ; �t) + �

0
tzY (Yt; q

u
t ; �t) = 0 (58)

�t~h2(�t�1; Kt=Ft)
Kt

F 2t
� �1t + ��0t�1D1(Kt=Ft) = 0 (59)

t~h2(�t�1; Kt=Ft)
1

Ft
� �2t + ��0t�1D2(Kt=Ft) = 0 (60)

U�(Yt;�t; q
u
t ; �t)� t + �Et[t+1~h1(�t; Kt+1=Ft+1)] = 0 (61)

for all t � 0. The Lagrange multiplier vector �t is associated with constraints (51) and (52) and
has elements �0t = (�1t;�2;t). The multiplier t is associated with constraint (56). The �rst-
order conditions take this form also for t = 0 on the assumption that the initial precommitment
speci�es a value for

��0�1�(Z0) + (1� �)	�1q
u
0 (62)

for some multipliers ��1 and 	�1:
Above, ~hi(�; K=F ) denotes the partial derivative of ~h(�; K=F ) with respect to its i-th

argument, and Di(K=F ) is the i-th column of the matrix

D(Z) �
�
@F�F (Z) @K�F (Z)
@F�K(Z) @K�K(Z)

�
: (63)

Since the elements of �(Z) are homogeneous degree 1 functions of Z, the elements of D(Z)
are all homogenous degree 0 functions of Z, and hence functions of K=F only. Thus we can
alternatively write D(K=F ).
The optimal dynamics are then bounded stochastic processes {Yt,Ft, Kt,�t} that satisfy the

structural equations (51)-(56) and the �rst order conditions (58)-(61), together with the initial
pre-commitments.

4.2 The Second-Best Steady State

We shall be concerned solely with optimal outcomes that involve small �uctuations around a
deterministic state. The considered deterministic steady state is the one associated with an
optimal monetary policy, taking as given the real distortions (such as the housing subsidy and
monopolistic competition) that monetary policy by itself cannot eliminate. We call this steady
state the second-best steady state and it is de�ned as follows:

De�nition 3 The second-best steady state is a set of constant values (Y ; Z;�; qu; ;�) that
solve the structural equations (30),(51)-(56) and the FOCs (58)-(61) in the case that �t = � at
all times and initial conditions consistent with the steady state are assumed.

15This assertion also depends on our assumption here that the central bank chooses its interest-rate operating
target it with full information about the state of the economy at date t.
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We now compute this steady state. Equation (30) implies qu = �
d
. Moreover, as in the

model without housing, considered in Adam and Woodford (2012), the second-best steady state
satis�es F = K = (1� ��)�1k(Y ; �), which implies � = 1 (no in�ation) and � = 1 (zero price
dispersion), where the value of Y is implicitly de�ned by

f(Y ; qu; �) = k(Y ; �): (64)

As shown in appendix A.1, there exists a unique steady state consumption level Y solving (64).
Furthermore, with ~h2(1; 1) = 0 (the e¤ects of a small non-zero in�ation rate on the measure

of price dispersion are of second order), conditions (59)�(60) reduce in the steady state to the
eigenvector condition

�0 = ��0D(1): (65)

Moreover, since when evaluated at a point where F = K;

@ log(�K=�F )

@ logK
= �@ log(�K=�F )

@ logF
=
1

�
;

we observe that D(1) has a left eigenvector [1 � 1]; with eigenvalue 1=�; hence (65) is satis�ed
if and only if �2 = ��1.
Condition (58) provides one additional condition

UY (Y ; 1; q
u; �) + �1(fY (Y ; q

u; �)� kY (Y ; q
u; �)) = 0; (66)

which uniquely determines �1, given the solutions for Y and qu. Appendix A.1 shows that

kY � fY > 0;

so that �1 has the same sign as UY , the sign of which is discussed below.
Condition (61) provides a restriction that determines the steady state value of  :

U�(Y ; 1; q
u; �)�  + �~h1(1; 1) = 0:

Since U� < 0 and ~h1(1; 1) = �, we have

 =
U�(Y ; 1; q

u; �)

(1� ��)
< 0:

4.3 Comparison with the Optimal Steady State

The optimality of the equilibrium level of output can be assessed by evaluating UY . In the
second-best steady state, appendix A.1 proves that

UY (Y ; 1; q
u; �) = (67)

�C ~��1C
�
Y ; qu; �

��~��1  1� g + sdCY
�
Y ; qu; �

�
1 + sd

� � � 1
�
(1� �)

!
:

This shows that in the absence of a housing subsidy (sd = 0), we have UY = 0 and thus �1 = 0,
if and only if the output subsidy eliminates the steady state monopoly distortion, i.e., when
the wedge � = 0, where

� � log �

� � 1
1� g

1� �
. (68)

We refer to the steady state in which steady-state distortions are absent as the optimal steady
state:
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De�nition 4 The optimal steady state (Y �; Z�;��; qu�; �;��) is a set constant values of
our endogenous variables associated with a second-best steady state in which sd = 0 and � = 0.

We will locally approximate our structural equations and household welfare around this
optimal steady state. More generally, we shall consider the case with a non-zero housing
subsidy/tax. Conditional on the value of housing subsidy sd 7 0 one can then de�ne an
e¢ cient steady state output subsidy � eff (sd), which is the value of � such that UY = 0 in
(67).16 Appendix A.2 then establishes the following result:

Lemma 1 Given a housing subsidy sd 7 0 and the e¢ cient output subsidy 1�� = 1�� eff (sd),
we have

UY (Y ; 1; q
u; �) = �1 = 0:

If the output subsidy falls short of its e¢ cient value, 1� � < 1� � eff (sd), then

UY (Y ; 1; q
u; �) > 0, �1 > 0:

If instead 1� � > 1� � eff (sd), one obtains

UY (Y ; 1; q
u; �) < 0, �1 < 0:

The previous lemma shows that the marginal utility of output is positive (negative) in
the second-best steady state, whenever the output subsidy falls short of (exceeds) the output
subsidy that would be e¢ cient given the actual level of housing subsidies.
We can also consider the e¤ect of perturbations to the asset pricing equation (30). If we

treat qut as an endogenous variable in the planning problem considered in section 4.1, and
equation (30) as an additional constraint, we obtain the additional �rst order condition

Uqu(Yt;�t; q
u
t ; �t) + �

0
tzqu(Yt; q

u
t ; �t) + 	t�1(1� �)�	t = 0 (69)

for all t � 0, where 	t is the Lagrange multiplier associated with constraint (30). In the steady
state, equation (69) implies

	 =
1

�

�
Uqu(Y ; 1; q

u; �) + �1fqu(Y ; q
u; �)

�
: (70)

Appendix A.3 then proves the following result:

Lemma 2 If sd = 0, Uqu(Y ; 1; qu; �) = 0. If sd > 0 (sd < 0), then Uqu < 0 (Uqu > 0). Since
�1 = 0 for � = � eff (sd), it follows that

	 = 0 if sd = 0 and � = � eff (0)
	 < 0 if sd > 0 and � is su¢ ciently close to � eff (sd)
	 > 0 if sd < 0 and � is su¢ ciently close to � eff (sd)

This shows that for a positive housing subsidy, the representative household�s utility is de-
creasing with further house price increases, whenever the output subsidy is su¢ ciently close to
its e¢ cient level. Correspondingly, in the presence of a housing tax, household utility decreases
with a fall in housing prices. Intuitively, holding the level of total output Y �xed, an increase
in the housing price leads to a further increase in housing investment, which is already ine¢ -
ciently high (low) when there is a housing subsidy (tax). House price changes due to distorted
expectations will have welfare e¤ects of this kind as in the case of any other perturbation of
equation (30).

16Note that implementing the e¢ cient steady state substidiy �eff does result in an e¢ cient steady state
outcome when sd 6= 0.
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4.4 Local Approximation of Optimal Dynamics

We can now characterize equilibrium dynamics under an optimal policy commitment by lin-
earizing equations (58)-(61) around the optimal steady state.
It is useful to write these linearized equations in terms of an output gap that measures

the deviation of equilibrium output from its welfare maximizing level. Let us consider the
allocation de�ned by fYt; qut g1t=0 that maximizes the utility of the representative household,
taking as given the equilibrium response of housing supply to any housing price sequence. In
any period t, we de�ne (Y �

t ; q
u�
t ) as the values (Yt; q

u
t ) that maximize U(Yt; 1; q

u
t ; �t). These are

implicitly de�ned by
UY (Y

�
t ; 1; q

u�
t ; �t) = Uqu(Y

�
t ; 1; q

u�
t ; �t) = 0: (71)

Appendix A.4 shows that UY Y < 0; UY qu = 0 and Uququ < 0 at the optimal steady state, so
that the second-order conditions for optimality are also satis�ed for allocations close enough to
the optimal steady state. We also show in appendix A.4 that

qu�t =
�
d

t

1 + sd
; (72)

which implies that if sd > 0, the equilibrium housing price under rational expectations, given
in equation (57), is higher than the optimal level at all times.
One can then derive a �rst-order approximation of the optimal dynamics for the variables

�t � log �t
ygapt = log Yt � log Y �

t

where ygapt denotes the output gap.
Our local approximation applies to the case of exogenous disturbances that are small in the

following sense. We assume linear dynamics for the vector of exogenous disturbances �t of the
form

�t = E0�t + �
X
k

t�1X
j=0

�j;kek;t�j; (73)

where fE0�tg1t=0 is a deterministic sequence satisfying E0�t� � � O(�) for all t � 0; the ekt are
a set of independent underlying disturbance processes, each assumed to be an i.i.d. random
variable with distribution N(0; 1); the �j;k are vectors of coe¢ cients; and � � 0 is an expansion
parameter. We �x the coe¢ cients �j;k but consider the limiting case in which the parameter �
is small. We also assume that steady state distortions are small in the sense that

sd � O(�) and � � O(�); (74)

the initial price dispersion ��1 is small (��1 � O(�2)), and the initial precommitment (62)
involves multipliers ��1, 	�1 of order O(�).
Under these assumptions, the second-best steady state corresponding to the non-zero values

for sd and � involves � and 	 of order O(�), as well as a steady state value for the output gap xt
of order O(�). The second-best optimal dynamics will involve deviations of the variables from
their steady state values that will also be of order O(�). To this �rst order of approximation,
we can characterize the second-best optimal dynamics by log-linearizing equilibrium conditions
(53), (56), and (58)-(61) around the constant values associated with the optimal steady state.
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4.5 The Irrelevance of Housing Prices under Rational Expectations

Under the assumption of an initial precommitment satisfying �1;�1 = ��2;�1, the second-best
optimal dynamics involve �1;t = ��2;t for all t � 0 as well, allowing us to characterize the
second-best optimal dynamics of in�ation and the output gap (�t; y

gap
t ) without reference to

any other endogenous variables. The evolution of these two variables is given by the unique
bounded solution to the pair of linearized equations17

�t = �Et�t+1 + �yy
gap
t + ut (75)

���t +
�y
�y

�
ygapt � ygapt�1

�
= 0; (76)

where the constants �y > 0;�� > 0 and �y > 0 are functions of the deep model parameters.
(An explicit expression for �y is provided in Appendix A.5, while Appendix A.6 derives ��and
�y.) The cost-push disturbance in equation (75) is given by

ut =
(1� �) (1� ��)

�(1 + !�)
(� + b�t � bgt) ; (77)

where

b� � � log�1� �t
1� �

�
bg � � log�1� gt

1� g

�
de�ne deviations of �t and gt from their second-best steady state values.
Equation (75) indicates the form taken by the New Keynesian Phillips curve in our model.

The presence of the housing sector makes no di¤erence to this equation, when written in terms
of in�ation and the output gap, though housing variables, i.e., housing supply shocks Adt and
housing demand shocks �dt , do a¤ect the de�nition of the target output level Y

�
t and hence the

de�nition of the output gap.
Equation (76) represents a target criterion for optimal monetary policy. This equation also

involves only in�ation and the output gap and is una¤ected by any of the housing variables
(except again insofar as they are involved in the de�nition of the output gap); in fact the
criterion is identical to the optimal target criterion for a model without a housing sector. It
immediately follows that the second-best optimal dynamics of in�ation do not respond to shocks
to housing supply or demand, nor do the second-best optimal dynamics of the output gap. Not
only is it possible to formulate a criterion for optimal policy that makes no reference to housing
prices, but none of the equilibrium determinants of housing prices a¤ect this criterion, either.
Thus under the assumption of rational expectations it would be appropriate for the monetary
authority to determine a path for in�ation that would not respond in any way to the occurrence
of a housing boom.

5 Linear Dynamics in the Presence of Belief Distortions

We next consider how the equilibrium dynamics of endogenous variables are a¤ected by belief
distortions. We begin by observing that the only private sector expectations that matter for

17Equations (75) and (76) are a special case of the ones derived below for the more general case with belief
distortions. Given the signs established for the coe¢ cients �y;�� and �y and the fact that � 2 (0; 1), the
existence of a unique bounded solution follows from the same argument as in the model without a housing
sector, see section 5.3 in Adam and Woodford (2012).
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the determination of endogenous variables under any policy are the subjective expectationsbEt[�(Zt+1)] that enter equation (53) and bEt[qut+1] that enter equation (30). It follows that
under any policy, the worst-case beliefs will be of the form (15), where

xt+1 �
�
�(Zt+1)
qut+1

�
: (78)

The multipliers f�tg1t=0 appearing in (15) can then be used to parameterize possible belief
distortions.
We are again interested in a local approximation of the dynamics of �rst order in the expan-

sion parameter �, where the vector of exogenous disturbances �t is assumed to evolve according
to (73). In addition to assuming only small �uctuations in the exogenous disturbances, we as-
sume that the belief distortion process f�tg1t=0 involves �uctuations only of order O(�) around
some constant vector �; we later verify that the worst case beliefs are indeed of this form, for
a vector � that remains to be determined. We similarly assume that the Lagrange multipliers
f�t;	tg1t=0 are of order O(�), as in the rational expectations case, and that ftg1t=0 di¤ers from
its optimal steady state value � only by a term of order O(�); we later verify that this is indeed
the case. As in section 4.4, we also assume that steady state distortions are small, in the sense
that sd � O(�) and � � O(�), that the initial price dispersion ��1 is small (��1 � O(�2)),
and that the initial precommitment (62) involves multipliers ��1, 	�1 of order O(�).
We also assume that the parameter �, measuring the degree of concern for robustness to

belief distortions, is small in the sense that

� � O(�2): (79)

Under this assumption, the belief distortion factor mt+1 implied by (15) will continue to vary
across states to a non-trivial extent, even in the limit as � is made arbitrarily small. This
assumption allows for more signi�cant belief distortions in the case of small exogenous distur-
bances than in the analysis in Adam and Woodford (2012), where � was assumed to have a
�xed positive value regardless of the magnitude of �, so that the worst-case �uctuations inmt+1

were only of order O(�). In our earlier paper, this implied that the e¤ects of belief distortions
on the model�s structural equations were at most of order O(�2). Here, instead, we obtain
linear approximations to the model structural equations that include belief distortion terms of
order O(�). In particular, we �nd that the worst-case belief distortions will generally imply
mis-pricing of housing of order O(�).
We look for solutions to the structural equations in which the log deviations

wt �
�
ygapt ; bqut ; bFt; bKt

�
;

de�ned as bqut � log qut =�
d
, bFt � logFt=K

�, bKt � logKt=K
�, each evolve (to a �rst-order

approximation) according to linear dynamics of the form

wt = E0wt + �
P

k

Pt�1
j=0wj;kek;t�j; (80)

where E0wt � O(�).
Our assumption that the log deviations evolve in this way implies that (to a �rst-order

approximation) the variables xt+1 have surprise components

ext+1 � xt+1 � Etxt+1 = �
X
k

x0;kek;t+1 (81)

for certain time-invariant coe¢ cients x0;k. We can then approximate the expectation terms in
the structural equations using the approximation

Et[mt+1xt+1] = Et[xt+1] + Et[emt+1ext+1] +O(�2); (82)
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where
log emt+1 = ��1� 0text+1 � logEt[exp(��1� 0text+1)] (83)

is an approximation to (15) obtained using this linear approximation to the surprise component
of xt+1. Using properties of normal and log-normal random variables (see for example Yang
(2008)), we can evaluate the expression

Et[emt+1ext+1] =M�t; (84)

where
M � 1

�
Et[ext+1ex0t+1] = 1

�

X
k

x0;kx
0
0;k: (85)

This allows us to write the forward-looking structural equations (30) and (53) to a �rst-order
approximation as

(bqut � bqu�t ) = �(1� �)Et[bqut+1 � bqu�t+1] + (1� �(1� �))sd + �(1� �)M3�t (86)bZt = (1� ��)
�
z + zyy

gap
t + zq (bqut � bqu�t ) + z0��t

�
+ ��D(1)Et bZt+1 + ��fM�t; (87)

where fM �
�
M1

M2

�
;

we use the notation Mi for the i -th row of M , and (z; zy; zq; z�) are the coe¢ cients of a log-
linear approximation to the function log z(Yt; qut ; �t) at the optimal steady state. This yields
a system of linear relations with constant coe¢ cients linking the endogenous variables wt, the
exogenous disturbances �t, and the belief distortions �t. These equations generalize the log-
linearized structural equations of the RE model, discussed in section 4, by adding the linear
terms in �t. Our initial precommitment (62) can also be approximated by a linear restriction,
using the approximation18

��0�1�(Z0) + (1� �)	�1q
u
0 = K��0�1 bZ0 + (1� �)�

d
	�1bqu0 +O(�3): (88)

We shall further restrict the class Z of belief distortions that we consider to ones of the
form

�t = E0�t + �
P

k

Pt�1
j=0�j;kek;t�j +O(�2); (89)

where E0�t � O(�), so that the linearized structural equations (86) and (87) continue to admit
solutions of the linear form (80) to a �rst-order approximation, just as in the RE case, when
policy is speci�ed by a linear target criterion. Note that while assumption (89) requires that
belief distortions be small (of order O(�)), they still modify the form of the structural equations
(86) and (87) to �rst order. In this respect, the belief distortions allowed here are not required
to be as small as those assumed in Adam and Woodford (2012), which a¤ected the structural
equations only to second order.
Appendix A.5 shows that the linearized structural equations (87) imply a generalized

Phillips curve of the form

�t = �yy
gap
t + �q(bqut � bqu�t ) + ut + �Et�t+1 + �0��t; (90)

where the coe¢ cients � are de�ned in appendix and satisfy �y > 0; �q > 0. The disturbance ut
remains the one de�ned in equation (77). This equation generalizes the RE Phillips curve (75)
in two respects: mispricing of housing (bqut 6= bqu�t ) has a cost-push e¤ect, and belief distortions
a¤ecting subjective expectation of in�ation shift the Phillips curve as well.

18The approximation (88) is accurate to second order because of our assumption that the multipliers ��1 and
	�1 are of order O(�).
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6 Upper-Bound Dynamics Allowing for Belief Distor-
tions

We shall now formulate the upper bound problem, i.e., the problem on the right-hand side of
inequality (7), for the nonlinear New Keynesian model with a housing market and distorted
private sector expectations, and characterize its solution.
We �rst characterize the policymaker�s best response problem (the problem in equation

(6)) to an arbitrary belief distortion process f�tg1t=0 2 Z. This problem can be written as a
Lagrangian problem of the form

max
fYt;Zt;�t;qut g

1
t=0

E0

1X
t=0

�t

2664
U(Yt;�t; q

u
t ; �t) + ��mt+1 logmt+1

+t[~h(�t�1; Kt=Ft)��t]
+�0t[z(Yt; q

u
t ; �t) + ��mt+1�(Zt+1)� Zt]

+	t[�
d
t + �(1� �)mt+1q

u
t+1 � qut ]

3775
+ ��0�1�(Z0) + (1� �)	�1q

u
0 ; (91)

where t;�t and 	t are the Lagrange multipliers associated with the same three constraints as
in sections 4.1 and 4.3, and the initial precommitment (62) has again been added to allow for
a time-invariant solution. The initial precommitment speci�es a value for a linear combination
�e�0�1�(Z0)+ (1� �)qu0 , and 	�1 is the Lagrange multiplier associated with this constraint. We
further use the notation ��1 � 	�1e��1 in the Lagrangian (91) so that our �rst-order conditions
have a time-invariant form. In evaluating the Lagrangian (91), we substitute the process (15)
for fmt+1g1t=0 implied by the chosen process for fxt+1g1t=0 and the process f�tg1t=0.

6.1 Local Approximation of the Best-Reponse Problem

We are interested in a local approximation of the best-response dynamics of �rst order in the
expansion parameter �, under the assumptions stated in section 5. The terms in the Lagrangian
(91) involving belief distortions are of the form

�Et[mt+1 logmt+1] + �
0
tEt[mt+1xt+1]; (92)

where

�t �
"

�K��t

(1� �)�
d
	t

#
:

We compute a linear approximation to the best response dynamics in which the variables wt+1
are assumed to have a solution of the form (80) for some time-invariant coe¢ cients wj;k.
Again using (81) we can approximate the terms in equation (92) using (82) and

Et[mt+1 logmt+1] = Et[emt+1 log emt+1] +O(�2);

where ext+1 is de�ned in equation (81) and log emt+1 given in equation (83). The properties of
normal and log-normal random variables, mentioned earlier, allow us to write (84) and

Et[emt+1 log emt+1] =
1

2�
� 0tM�t;

where M is de�ned in (85). Hence the terms in the Lagrangian involving the belief distortions
can be approximated to second order as

�Et[mt+1 logmt+1] + �
0
tEt[mt+1xt+1] = Et[�

0
txt+1] +

1

2
� 0tM�t + �

0
tM�t +O(�3): (93)
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We show in appendix A.6 how to compute second-order approximations to the other terms
in the Lagrangian (91), using a second-order Taylor expansion around the constant values of
the variables associated with the optimal steady state. This allows us to write

1X
t=0

�t[U(Yt;�t; q
u
t ; �t) + t(~h(�t�1; Kt=Ft)��t)] (94)

= �
1X
t=0

�t[���
2
t + �y (y

gap
t )2 + �q(bqut � bqu�t )2] + t:i:p:+O(�3);

where �� > 0;�y > 0;�q > 0; and t:i:p: collects terms that are independent of policy.19

The terms in the Lagrangian (91) that still need to be approximated are equal to

�0t(z(Yt; q
u
t ; �t) + ��Et[�(Zt+1)]� Zt) + 	t(�

d
t + �(1� �)Et[q

u
t+1]� qut ): (95)

Note that we include here the terms of the form Et[�
0
txt+1] from the right hand side of equation

(93). Because the multipliers �t and 	t are of order O(�), approximation of the terms (95)
to second order requires only a �rst order approximation to the constraints, i.e., the structural
equations. These have been approximated to �rst order in section 5, see equations (86) and
(87). A quadratic approximation to (95) is thus given by

K��0t[(1� ��)
�
z + zyy

gap
t + zq (bqut � bqu�t ) + z0��t

�
+ ��D(1)Et bZt+1 � bZt]

+ �
d
	t[(1� �(1� �))sd + �(1� �)Et[bqut+1 � bqu�t+1]� (bqut � bqu�t )]:

We can similarly quadratically approximate the initial precommitment using (88).
Thus we obtain an approximation to the Lagrangian (91) that is quadratic in the policy-

maker�s decision variables of the form

E0

1X
t=0

�t
�
�1
2

�
���

2
t + �y (y

gap
t )2 + �q(bqut � bqu�t )2� (96)

+K�0t

�
(1� ��)

�
z + zyy

gap
t + zq (bqut � bqu�t ) + z0��t

�
+��D(1)Et bZt+1 � bZt

�
+ �

d
	t
�
(1� �(1� �))sd + �(1� �)Et[bqut+1 � bqu�t+1]� (bqut � bqu�t )�

+ �K�0�1D(1) bZ0 + (1� �)�
d
	�1bqu0

+
1

2
�� 0tM�t + ��0tM�t

�
;

neglecting terms independent of policy and terms of order O(�3):
We further specialize our analysis to the case of belief distortions with the property that

�2;t = ��1;t at all times. This restriction on the class of contemplated belief distortions can only
raise the value of the upper bound computed as the right-hand side of equation (7), so that
our computed upper bound must also be an upper bound for our original problem. We show
below that even this potentially looser upper bound is in fact achievable through an appropriate
policy commitment; hence our restriction on the class of contemplated belief distortions is not
a binding constraint.
Under this assumption, we can also show, as in the rational expectations analysis in section

4, that in the case of an initial precommitment in which �2;�1 = ��1;�1, the best response
19Note that in addition to a Taylor expansion of the objective, we have used a second-order approximation

to equation (45) to substitute variations in in�ation �t for variations in Kt=Ft. Explicit expressions for the
coe¢ cients ��; �y and �q are provided in appendix A.6.
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dynamics will involve multipliers for which �2;t = ��1;t for all t � 0. We accordingly assume
this restriction as well in what follows. In this case, only two linear combinations of the vectorext+1 matter for our calculations and we can write

�0text+1 = �'t (�t+1 � Et�t+1)� (1� �) t
�bqut+1 � Etbqut+1�

� 0text+1 = ��t (�t+1 � Et�t+1) + �qt
�bqut+1 � Etbqut+1� ;

where we introduce a new parameterization of the Lagrange multipliers for the policymaker�s
problem,

't � K� �

1� �
(1 + !�)�1;t,  t � ��

d
	t; (97)

and a new parameterization of belief distortions

b�t � (��t ; �qt )0;
where

��t � �K�
�
1 + !�

1� �

�
�1;t, �qt � �

d
�3;t:

We can then rewrite

� 0tM�t = ��1b� 0tV b�t
�0tM�t = ���1 ('t; (1� �) t)V b�t

where
V � Et

h�
�t+1 � Et�t+1; bqut+1 � Etbqut+1� � ��t+1 � Et�t+1; bqut+1 � Etbqut+1�0i (98)

is a covariance matrix for the surprise components of �t+1 and bqut+1. This allow us to write
the Lagrangian (96) entirely in terms of the evolution of in�ation, the output gap and housing
prices.

6.2 A Modi�ed Linear-Quadratic Approximate Problem

Using the results from the previous section, we rewrite the Lagrangian (96) in the form

E0

1X
t=0

�tf�1
2

�
���

2
t + �y (y

gap
t )2 + �q(bqut � bqu�t )2�+ �

2�
b� 0tV b�t

+ 't

�
�t � �yy

gap
t � �q (bqut � bqu�t )� ut � �Et�t+1

����1V1b�t
�

+  t

"
(bqut � bqu�t )� (1� �(1� �))sd

��(1� �)
�
Et[bqut+1 � bqu�t+1] + ��1V2b�t�

#
�'�1�0 � (1� �) �1 (bqu0 � bqu�0 )g ; (99)

where Vi is the i-th row of the covariance matrix of surprises V de�ned in (98).
The approximate Lagrangian (99) is in fact the Lagrangian for a problem of choosing evo-

lutions for the endogenous variables f�t; ygapt ; bqut g1t=0 so as to minimize a quadratic loss function
E0

1X
t=0

�t

2

�
���

2
t + �y (y

gap
t )2 + �q(bqut � bqu�t )2 � �

�
b� 0tV b�t� (100)
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subject to the constraints

�t =�Et�t+1 + �yy
gap
t + �q (bqut � bqu�t ) + ut

+ ���1V1b�t (101)

(bqut � bqu�t ) =�(1� �)Et[bqut+1 � bqu�t+1] + (1� �(1� �))sd

+ �(1� �)��1V2b�t (102)

for all t � 0, and an initial precommitment of the form
'�1
 �1

�0 + (1� �)(bqu0 � bqu�0 ) = G0; (103)

where the coe¢ cients '�1= �1 and G0 are given. Here the constraints (101) and (102) represent
the �rst-order approximations to the structural equations derived in section 5, but with the
belief distortion terms now written in terms of the smaller vector b�t. The �rst two terms in
the loss function (100) would also be present under the assumption of rational expectations,
but the third term would not be needed (as it would be independent of policy), and the fourth
term would not be present (as this re�ects the penalty for large belief distortions).
The problem of minimizing the loss function (100) subject to the constraints (101) and (102)

is more complicated than the linear-quadratic problem that would approximately characterize
an optimal policy commitment in the case of rational expectations. First, the constraints (101)
and (102), while containing only terms of order O(�), are no longer linear in the responses of
the endogenous variables to shocks, because of the belief distortion terms (recall that V1 and V2
themselves depend on those responses). Second, the loss function remains a quadratic function
of the responses of the endogenous variables, but it is no longer a simple sum of squared terms
with positive weights, but now includes a �nal term that is concave rather than convex as a
function of the responses of the endogenous variables.
Note that we restrict the policies that we consider to be ones that result in equilibrium

dynamics, to a �rst order of approximation, in which the evolution of the endogenous variables
is of the form (80). Thus in our approximate characterization of robustly optimal policy, the
e¤ects of the underlying disturbances ekt on endogenous variables such as in�ation and output
are linear, as in standard characterizations of optimal policy under commitment in the case of
rational expectations. We can thus compare the robustly optimal dynamics that we obtain to
the optimal dynamics under rational expectations by comparing the linear impulse response
functions to di¤erent types of exogenous disturbances.
Because of this, we can express our endogenous variables as sums of forecastable and un-

forecastable components,

�t+1 = Et�t+1 +
X
k

�0;kek;t+1 (104a)

ygapt+1 = Ety
gap
t+1 +

X
k

y0;kek;t+1 (104b)

bqut+1 = Etbqut+1 +X
k

q0;kek;t+1; (104c)

for each t � 0. Substituting these expressions into the Lagrangian for the problem of minimizing
(100) subject to the constraints (101)-(102), we �nd that the Lagrangian for the policymaker�s
best response problem can be written as the sum Le+Lu, where Le depends only on (�0; y

gap
0 ; bqu0 )

and the predictable components fEt�t+1; Etygapt+1; Etbqut+1g1t=0, taking as given the evolution of
the belief distortions and the Lagrange multipliers, and Lu depends only on the coe¢ cients
(�0;k; y0;k; q0;k) describing the surprise components of each of the variables.
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We further observe that Le is a convex quadratic function of the predictable components,
and accordingly has an interior minimum corresponding to the unique solution to a system of
linear di¤erence equations.20 The function Lu is a quadratic function of the form

Lu = E0
P1

t=0�
t
P

k

�
a0t;k

�
�0;k
q0;k

�
+ (�0;k; q0;k) H

�
�0;k
q0;k

�
+ bty0;k +

�y
2
(y0;k )

2

�
; (105)

where the coe¢ cients (at; bt; H) are de�ned in appendix A.7 and where we ignored terms that
are independent of policy. This is a convex function of the response coe¢ cients if and only if
the 2x2 matrix H is positive semi-de�nite, i.e., if and only if

H11 � 0 and det(H) � 0: (106)

As discussed in appendix A.7, conditions (106) are necessarily satis�ed in the case of any large
enough value for �=�2.21 In this case, the response coe¢ cients that minimize the Lagrangian
are given by a system of linear equations, the coe¢ cients of which depend on the paths of the
belief distortions and the Lagrange multipliers.
The �rst order conditions for the minimization of Le + Lu, together with the linearized

structural equations (101)-(102), provide a system of equations to solve for the dynamics of the
endogenous variables and the Lagrange multipliers. Assuming that this solution implies paths
for the multipliers that satisfy condition (106), we have obtained a solution to the problem of
minimizing the Lagrangian, given the belief distortions f��t ; �

q
t g1t=0.

6.3 Worst-Case Belief Distortions

We turn next to the problem of choosing the worst-case belief distortions in the Lagrangian
upper-bound problem (8). We wish to consider the e¤ect of variations in the belief distortionsb� = (b�0; b�1; : : :) on the minimized value of the Lagrangian (99) for the policymaker�s best-
response problem. Let x(b�) denote the policymaker�s best response to any belief distortions
�̂ ; where x = (x0; x1; :::) and xt = (�t; y

gap
t ; bqut ; 't;  t). Using the notation �(b�; x) for the

Lagrangian (99), we wish to �nd the belief distortions �̂ that solve the problem

maxb� �(b�; x(b�)): (107)

We begin by �nding a saddle point of the Lagrangian, namely a pair (x�; b��) such that
x� = x(b��) and at the same time b�� is a solution to the problem

max
�̂
�(b�; x�): (108)

With a solution of this kind,

�(b�; x(b�)) � �(b�; x�) � �(b��; x�)
for all b�, so that b�� is in fact the solution to the worst-case belief problem (107).
We note further that the �rst-order conditions for problem (108) are given by

@�

@�
(b��; x�) = 0, (109)

20This system is of the same form as in the case of rational expectations.
21In our numerical illustration below, we verify numerically that conditions (106) hold.
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together with the requirement that x� = x(�̂�): We begin by looking for a solution to this
system of equations.
For given x, the e¤ects of the belief distortions on the Lagrangian (99) are captured by the

terms

��1E0

1X
t=0

�t+1
�
('t; (1� �) t)V b�t � 1

2
b� 0tV b�t� ; (110)

where V is given for given x. The �rst-order condition (109) for b�t delivers the condition
b��0t = ('�t , (1� �) �t ); (111)

where '�t and  
�
t are the Lagrange multipliers associated with the solution to the policymaker�s

best-response problem. This condition implies that the worst-case belief distortions distort
probability beliefs to the greatest extent precisely in those periods and states of the world in
which tightening the constraints implied by the forward-looking structural equations will be
most uncomfortable for the policymaker.
It remains to show that a solution to these �rst-order conditions is actually a solution to

the maximization problem (108). A second-order expansion of �(b�; x�) around b� = b�� delivers:
�(b�; x�) = �(b��; x�) + @�

@b� 0 (b��; x�)b� + b� 0 @
2�

@b�@b� 0 (b��; x�)b� +O(�3): (112)

At the conjectured optimum, we have @�

@b� (b��; x�) = 0 from equation (109). From equation (110)
follows that

@2�

@b�@b� 0 (b��; x�) = ���1V
where V is de�ned in equation (98) and necessarily a positive semi-de�nite matrix. Equation
(112) thus implies that condition (108) locally holds around the conjectured solution. This
proves that the saddle-point distortions (111) solve the worst-case belief problem (107).

6.4 Linearized Upper-Bound Dynamics

We can now substitute the solution (111) for the belief distortions into the system of linear
equations characterizing the best-response dynamics. We obtain a system of linear equations22

���t � 't + 't�1+�
�1E'' (�t � Et�1�t)

+��1(1� �)E' (bqut � Et�1bqut ) = 0 (113)

�yy
gap
t + �y't = 0 (114)

�q(bqut � bqu�t )+�q't �  t + (1� �) t�1

+��1(1� �)E' (�t � Et�1�t)

+��1(1� �)2E  (bqut � Et�1bqut ) = 0 (115)

for all t � 1, and

�t = �yy
gap
t + �q(bqut � bqu�t )+ut + �Et�t+1

+���1V1 ('t; (1� �) t)
0 (116)

22To simplify notation, we do not add the star superscripts to the variables to indicated the upper bound
solution, unlike in the previous section.
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(bqut � bqu�t ) = (1� �(1� �))sd+�(1� �)Et[bqut+1 � bqu�t+1]
+�(1� �)��1V2 ('t; (1� �) t)

0 ; (117)

for all t � 0. In period t = 0, we also have the conditions

���0 � '0 + '�1 = 0 (118)

�yy
gap
0 + �y'0 = 0 (119)

�q(bqu0 � bqu�0 ) + �q'0 �  0 + (1� �) �1 = 0: (120)

together with the initial precommitment (103). Here we have introduced the notation

E �
�
E'' E' 
E' E  

�
� (1� �)E0

1X
t=0

�t
�
't
 t

�
('t;  t) : (121)

Equations (113)-(115), together with the special forms (118)-(120) for the initial period,
correspond to the �rst-order conditions for the policymaker�s best response, after substituting
solution (111) for the worst-case beliefs. Equations (116) and (117) correspond to the linearized
structural equations (101) and (102), again substituting solution (111) for the belief distortions.
Taking as given the time-invariant coe¢ cients of the matrices E and V , these equations, together
with the initial precommitment (103), provide a system of �ve linear equations per period to
solve for the dynamics of the variables f�t; ygapt ; bqut ; 't;  tg1t=0 together with the initial multiplier
 �1. Note that a bounded solution to these equations will necessarily be of the conditionally
linear form (104). Given such a solution, we can then compute the matrices E and V implied
by the solution, using equations (98) and (121). This allows us to de�ne a �xed-point problem
to solve for matrices E and V .
The implied dynamics of the belief distortions associated with such a solution are given by

equation (111). We can then evaluate the matrix H appearing in equation (105), obtaining

H � 1

2

�
�� + ��1E'' ��1(1� �)E' 
��1(1� �)E' �y + ��1(1� �)2E  

�
: (122)

Note that the de�nition (121) implies that E is a positive semi-de�nite matrix. Since ��;�y > 0,
equation (122) implies thatH must be positive de�nite, so that the solution to our linear system
corresponds to a minimum of the Lagrangian for the policymaker�s best-response problem.
A pair of matrices E and V that solve the �xed-point problem, together with the associated

solution of the linear equations (113)-(120), provide a characterization of the linearized upper-
bound dynamics, by which we mean a log-linear approximation to the solution to the Lagrangian
upper-bound problem (8). The associated dynamics of the belief distortions are given by
equation (111). We observe that the implied paths of the Lagrange multipliers f't;  tg1t=0 are
indeed of order O(�), as assumed in section 6.1, because both the constant term (1��(1��))sd
and the disturbance terms (bqu�t ; ut) appearing in equations (113)-(120) are of order O(�), due
to assumption (74). Because the belief distortions are proportional to the Lagrange multipliers,
in accordance with equation (111), the processes fb�tg1t=0 are also of order O(�), as also assumed
in section 6.1.
Associated with this solution for the evolution of the endogenous variables are evolutions of

the complete set of Lagrange multipliers f�t; t;	tg1t=0 for the nonlinear best-response problem
(91). We show in appendix A.8 that these multipliers satisfy

�
�t; t � �;	t

�
� O(�), as

assumed in section 6.1. Hence if the system of linear equations (113)-(120) has a bounded
solution implying a matrix H that is positive semi-de�nite, we can construct paths for all
variables satisfying the assumptions made in our speci�cation of the Lagrangian upper-bound
problem.
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7 A Robustly Optimal Target Criterion for Monetary
Policy

The equations in the previous section describe the dynamics of in�ation, the output gap and
housing prices that solve the upper-bound problem. It remains to be determined if there exists
a monetary policy commitment that can achieve this upper bound, when belief distortions are
chosen as the worst-case distortions in response to this policy commitment.
We begin by noting that conditions (113) and (114) require that under the upper-bound

dynamics the joint evolution of in�ation, output gap and house prices necessarily satisfy

�t +
�y
���y

�
ygapt � ygapt�1

�
+
��1

��
E'' (�t � Et�1�t) +

��1

��
(1� �)E' (bqut � Et�1bqut ) = 0 (123)

for all t � 1. Equation (123) is a necessary condition for achieving the upper bound and we
can propose it as a target criterion for monetary policy, i.e., the central bank adjusts its policy
instrument as necessary in order to ensure that condition (123) is satis�ed in each period
t � 1.23 The coe¢ cients E'' and E' in the target criterion should now be interpreted as
speci�c numbers, corresponding to the values in the upper-bound dynamics, so that the target
criterion establishes a linear relationship among the endogenous variables (as does the initial
precommitment).
Analytically showing that the targeting rule (123) implements the upper-bound dynamics as

a worst-case outcome turns out to be di¢ cult. Nevertheless, the next section presents a general
approach that allows us to verify numerically whether this is the case. Using this approach, we
verify that the target criterion (123) is an example of a robustly-optimal policy commitment
for the numerical example presented in section 8 below. We found this also to be true for a
number of alternative model parameterizations.
The target criterion (123) generalizes the target criterion (76), which is optimal in the

absence of robustness concerns (or under an assumption of rational expectations). In fact, the
rational-expectations optimal policy commitment is obtained from (123) in the limiting case
in which �2=� ! 0, which captures a setting in which belief distortions are more costly.24 The
target criterion (123) also generalizes the one for a New Keynesian model without a housing
sector presented in Adam andWoodford (2012), which featured only the term involving in�ation
surprises in the second line of equation (123).25

23Monetary policy in period t = 0 is speci�ed by the requirement that the initial precommitment be satis�ed.
24Recall that he coe¢ cients (E''; E' ) are of order O(�2) in our setting where steady-state distortions are

of order O(�).

25Adam and Woodford (2012) assumed � � O(�). In a setting where steady-state distortions are of order
O(�), as considered here, we have (E''; E' ) � O(�2), so that � � O(�) implies that the terms in the second
line of (123) are all of second-order. This shows that it is important to either allow for larger belief distortions,
as we do in our present setting where � � O(�2), or to allow for steady-state distortions of order O(0), as in
Adam and Woodford (2012).
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The coe¢ cients in the targeting rule (123) have the following signs

�y
���y

> 0

��1E''
��

> 0

sign(
��1

��
(1� �)E' ) = sign(E' ):

From equation (121) follows that - for the case where the steady state distortions are su¢ ciently
large relative to the standard deviation of the shocks26 - the sign of E' is identical to the sign
of ' �  , where the lower bars indicate the second-best steady state value of the Lagrange
multipliers. From lemmas 1 and 2 and de�nition (97) we then obtain for the empirically
relevant case with a housing subsidy (sd > 0 ) and an ine¢ ciently low output subsidy (1� � <
1� � eff (ss)) that

E' > 0.

A positive coe¢ cient on housing price surprises implies that surprise increases (decreases) in
housing prices require either lower (higher) in�ation or a lower (higher) output gap, compared
to a situation where policy is not concerned about deviations from rational expectations. It is
in this sense that robustly optimal policy requires �leaning against�housing prices.
Intuitively, a situation with a positive housing subsidy and an ine¢ ciently low output sub-

sidy is one where there is too little (non-durable) consumption and too many houses. The
policymaker thus fears belief distortions that simultaneously generate additional housing sup-
ply and an additional shortfall in consumption. This can be achieved by distorting probability
beliefs in a way such that they overstate the likelihood of future states in which both in�ation
and housing prices are high. From the New Keynesian Phillips curve (101) it follows that
upwardly distorted in�ation expectations (��1V1b�t > 0) either cause lower output or to higher
current in�ation, both of which are costly. Likewise, it follows from the housing price equation
(102) that upwardly distorted housing price expectations (��1V2b�t > 0) cause higher housing
prices today and thus an increased excess supply of housing. If housing price and in�ation sur-
prises are positively correlated (the matrix V features a large and positive o¤-diagonal element),
then both of these expectations can be moved in the same direction with a single distortion (one
of the elements of the vector b�t), which amounts to reducing the e¤ective cost of moving both
expectations upwards. The robustly optimal policy (123) causes in�ation and output surprises
to be more negatively correlated when E' > 0. This causes the o¤-diagonal element of V to
be less positive and thus makes it harder (or more costly) to distort both expectations upwards.
Finally, we note that veri�cation of the target criterion (123) does not require a determina-

tion of the extent to which actual housing prices deviate from �fundamental�housing prices.
In fact, there is no need to respond di¤erently to housing price surprises arising from changes
in fundamentals and those due to changes in expectational errors. Nor does the target criterion
make reference to shocks to housing demand or housing supply, except to the extent that these
shocks a¤ect an assessment of the policy-relevant output gap.

7.1 Verifying that the Target Criterion Implements the Upper-Bound
Dynamics

To verify that the target criterion (123) implements the upper-bound solution as a worst-case
outcome, we return to the general strategy spelled out in the last two paragraphs of section

26Speci�cally, we need that sd=� and (1� �eff (sd)� (1� �))=� are su¢ ciently large.
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2.1. We already know that the target criterion is consistent with the solution to the Lagrangian
upper-bound problem (it has been derived from its �rst-order conditions). It remains to show
that the upper-bound solution is the locally unique outcome when policy commits to the pro-
posed target criterion, and when beliefs are given by the upper-bound beliefs. Finally, we need
to show that the upper-bound distortions are in fact the worst-case distortions when policy
commits to the targeting rule (123). We now turn to these latter two issues.
We start by considering the worst-case dynamics associated with the policy commitment

(123), by which we mean the equilibrium dynamics resulting from the worst-case belief distor-
tions, as de�ned in equation (5). The worst-case belief distortion problem can be formulated as
the choice of paths for the variables f�t; ygapt ; bqut ; ��t ; �qt g1t=0 satisfying the target criterion (123)
in each period t � 1, the initial precommitment in period t = 0, as well as the structural
equations (101) and (102), so as to maximize the loss function (100).
The worst-case belief distortion problem is an in�nite-dimensional optimization problem,

which is not easily expressed in a recursive form. This makes it somewhat more complicated
to numerically verify that the upper-bound distortions actually achieve (locally) the maximum
loss in terms of the objective function (100). We deal with this issue in two steps.
In a �rst step, we verify condition (157) in appendix A.10. This condition insures that the

target criterion (123), the initial precommitment, and the structural equations (101) and (102)
imply a locally unique outcome for the variables f�t; ygapt ; bqut g1t=0 for given belief distortions
f��t ; �

q
t g1t=0 in the neighborhood of the worst case belief distortions. This insures that we have a

well-de�ned outcome function O(�; c) that determines the endogenous variables for alternative
belief distortion, as assumed in equation (5), and that the outcome associated with the upper-
bound solution is indeed the locally determinate outcome implied by the target criterion when
the belief distortions are those associated with the upper-bound solution.
In a second step, we show in appendix A.9 that for a given matrix V , the �rst-order con-

ditions to the worst-case belief distortion problem in which policy commits to the targeting
rule (123) imply that the predictable part of the worst-case belief distortions Et�1(��t ; �

q
t ) are

identical to the predictable part of the multipliers Et�1 ('t; (1� �) t) solving the upper bound
equations (113)-(120) for the same matrix V . The predictable part of the multipliers thus have
a recursive solution. This insight allows us to numerically verify whether the target criterion
(123) implements the upper-bound solution by considering the e¤ects of variations in a �nite
number of parameters.
Speci�cally, we consider alternative values for V in the neighborhood of the values implied by

the upper-bound solution, and the associated predictable dynamics of the belief distortions. We
then consider alternative response coe¢ cients to the surprise components of belief distortions
(in the neighborhood of the response coe¢ cients assume in the upper-bound solution), such
that they give rise to equilibrium dynamics consistent with the hypothesized matrix V . In this
way, we have transformed a potentially in�nite-dimensional optimization problem of choosing
alternative belief distortions f��t ; �

q
t g1t=0 into a problem of varying a small number of parameters,

in fact only four. Details of the numerical procedures are spelled out in online Appendix C.
Using this approach, we check for the numerical example presented in the next section

whether alternative belief distortions in the neighborhood of the upper-bound distortions yield
higher or lower losses in terms of the objective function (100).27 Figure 1 depicts the distribution
of incremental welfare losses relative to the losses associated with the upper-bound distortions.
The �gure is obtained by considering 1000 random alternative belief distortion choices in the
neighborhood of the upper-bound distortions. The �gure shows that additional losses are
negative, i.e., that the alternative belief distortions lead to lower losses for the policymaker
than those in the upper-bound solution. The belief distortions associated with the upper-bound
solution thus represent worst-case belief distortions, so that the proposed target criterion (123)

27Obviously, we �rst check that condition (157) is in fact satis�ed.
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Figure 1: Distribution of incremental welfare losses associated with belief distortions in the
neighborhood of the upper-bound distortions, when policy commits to the targeting rule (123).
Parameteric example from section 8.

has the upper-bound solution as its worst-case outcome.

8 A Numerical Illustration

This section determines the upper-bound dynamics, compares them to the RE equilibrium dy-
namics and computes the robustly optimal targeting criterion for a numerical example. Details
of the computations are reported in the online appendix of the paper.
Numerically solving for the upper-bound solution requires parameter values for (�; �; �y; �q;

�Y =��;�q=��; s
d), a value for the (scaled) robustness parameter ��1=��, as well parameters

characterizing the stochastic processes for ut and
b�dt . We consider exogenous disturbances of

the form

ut � w + but
bqu�t = b�dt � sd;

where

w � (1� �) (1� ��)

�(1 + !�)
�

but � (1� �) (1� ��)

�(1 + !�)
(b�t � bgt) ;

34



where but and b�dt are autoregressive processes of the form
but = �ubut�1 + eutb�dt = ��

b�dt�1 + e�t ;

with eut � iiN(0; (�eu)
2), e�t � iiN(0; (�e�)

2)
Table 1 reports our model parameterization, which is motivated in detail in appendix A.11.

The parameterization assumes the presence of a steady state housing subsidy, which will lead
to an oversupply of housing in the second best steady state relative to the optimal steady state.
It also assumes an output subsidy that falls 15% short of its e¢ cient level, so that steady-
state output will be below its optimal steady-state value. For the case where the robustness
parameter ��1=�� is set to zero instead of the value reported in table 1, one obtains the optimal
dynamics in the absence of robustness concerns, i.e., under rational expectations.

Discount factor � 0.99
Housing depreciation rate � 0.03/4
Phillips curve coe¤. on output gap �y 0.024
Phillips curve coe¤. on house price gap �q -0.0023
Relative weight on output gap �Y

��
0.0031

Relative weight on housing gap �q
��

0.0014
Steady state housing subsidy sd 15%
Steady state mark-up gap w 0.0057
Mark-up shock persistence �u 0.9907
Housing preference shock persistence �� 0.99
Std. dev. mark-up shock innovation �eu 0.0002
Std. dev. housing pref. shock innovation �e� 0.024
Robustness parameters ��1

��
50

Table 1: Parameterization (quarterly model)

Table 2 reports the average values of the output gap, the in�ation rate and the housing price
gap. The table reports these values for the RE solution and for the upper-bound solution.28

For the RE solution, the average values correspond to the ones in the second-best steady state.
For the upper-bound solution, the average values di¤er from the second-best steady state due
to the presence of belief distortions. In the REE, housing prices are on average 15% above
their e¢ cient value, in line with the assumed housing subsidy. The high level of housing prices
causes equilibrium housing supply to be ine¢ ciently high. Moreover, due to the suboptimally
low output subsidy, the average output gap is negative, despite suboptimally high levels of
housing investment. As a result, non non-durable consumption (not reported in the table)
is also depressed relative to its optimal steady-state value. In the upper-bound solution, the
output gap is on average less negative than in the RE equilibrium. This is due to the fact that
the housing price gap is more than 5 percentage points larger than under RE. This shows that
worst case beliefs distort (on average) housing prices further upwards and by doing so give rise
to even higher levels of housing investment. This leads to a slightly reduced output gap. The

28The upper-bound solution is the outcome associated with a robustly optimal policy commitment and the
associated worst case beliefs, while the RE solution is associated with an RE optimal policy commitment and
no belief distortions.
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in�ation rate is on average equal to zero in both solutions. Conditional in�ation dynamics,
however, di¤er notably, as we show next.

RE Upper-bound
solution solution

Output gap (bY � bY �) �22:3% �21:8%
In�ation (�) 0% 0%
Housing price gap (bqu � bqu�) 15% 20:3%

Table 2: Average values

Figure 2 depicts the impulse response of the output gap, the in�ation rate, the price level and
the housing price to a positive innovation in housing preferences e�t of one standard deviation.
To facilitate comparisons across equilibria, the housing price response in �gure 2 is shown in
terms of deviations of housing prices from their second-best steady state value. A demand shock
of the considered size causes housing prices to increase in a persistent manner, with an impact
e¤ect of approximately 2.4%.29 In the REE, the in�ation rate and the output gap do not respond
to the housing shock, in line with the results derived in section 4.5. Under the upper-bound
solution, it becomes optimal to lean against the housing price increase: in�ation and the output
gap both fall persistently below their steady state level. On impact, in�ation is almost 0.15 %
and output more than 0.5% lower than in the absence of the housing demand shock. Given
the relatively small size of the housing price innovation, this is a sizeable response. Stronger
(weaker) robustness concerns, i.e., higher (lower) values for (�=��)

�1), would cause this reaction
to be stronger (weaker). Under the upper bound dynamics, the price level remains permanently
lower following the housing price surprise, i.e., the price level incorporates a random walk
component under robustly optimal policy, while the RE optimal policy implies a stationary
price level.
It is worth emphasizing that the optimal reaction to positive and negative shocks is sym-

metric in the upper-bound dynamics: for a negative housing demand shock, the upper-bound
solution calls for a looser policy than under RE, i.e., for a persistent increase in in�ation and
the output gap. The online appendix of the paper also reports the impulse responses to a
positive mark-up shock. In�ation then reacts identically under both policies and the output
gap and the housing price gap di¤er along the impulse response across the two solutions only
by a constant that is equal to the corresponding di¤erence in average values reported in table
2.
Table 3 reports the coe¢ cients for the robustly optimal targeting rule (123) that implements

the upper-bound solution as a worst case equilibrium outcome. The response coe¢ cient on the
housing price surprise in this targeting rule turns out to be rather sizable. For instance, it
implies that a 2.4 % housing price surprise would call on impact for a 0.75% drop in the output
gap when keeping in�ation at its pre-shock zero value; alternatively, it would call for a 0.37%
drop in (annualized) in�ation when keeping the output gap at its pre-shock average value30,
which is a sizable in�ation response, as it amounts to approximately 15% of the housing price
surprise. In the worst-case equilibrium outcome associated with a commitment to the considered
robustly optimal targeting rule, the output gap and in�ation both fall on impact, but each by
smaller amounts, see �gure 2.

29The impact e¤ect is exactly 2.4% in the RE solution and 2.56% in the upper bound dynamics, as belief
distortions amplify the e¤ect of the shock.
30The latter number is obtained by dividing 0.024�0.0406, i.e., the product of the housing price suprise and

the response coe¢ cient in the targeting rule, by 1.044, which the sum of the coe¢ cient on in�ation and the
in�ation surprise in the targeting rule, and by mutliplying the result by 4 to obtain annualized rates of in�ation.
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Figure 2: RE vs. robustly optimal dynamics (housing pref. shock, +1 std.dev.)

Coe¢ cient on RE optimal Robustly optimal
Change in output gap �y

���y
0.1292 0.1292

In�ation surprises ��1

��
Enew
'' 0 0.0414

Housing price surprises ��1

��
(1� �)Enew

' 0 0.0406

Table 3: Optimal targeting rule coe¢ cients

9 Conclusions

Monetary policymakers concerned about whether private-sector expectations will necessarily
coincide with those implied by their own model, that they use to understand the economy and
choose their policy commitment, may �nd it desirable to include housing prices in the set of
variables that they must track in order to verify that policy is on course, alongside the traditional
�target variables�of in�ation and a suitably de�ned measure of the output gap. This can be
the case even under circumstances where an optimal policy commitment could be formulated
purely in terms of a desired relationship between the paths of in�ation and the output gap, if
one could be con�dent that one�s policy would result in a rational-expectations equilibrium.
We have illustrated this in the context of a standard New Keynesian model extended to include
a housing sector, where we �nd that robustly optimal policy can be characterized by a linear
�target criterion,� but this must involve housing price surprises in addition to the paths of
in�ation and the output gap. In the presence of a housing subsidy, this requires monetary
policy to be tighter (less tight) following unexpected increases (decreases) in the housing price
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than in the case in which the policymaker can rely on the private sector to have the same
expectations as herself.
Of course, our analysis does not pretend to provide a complete analysis of the problem of

the desirable policy response to housing booms and busts. In our simple model, mis-pricing
of housing due to expectational errors matters for welfare only because of its consequences
for the degree to which productive resources are drawn into the housing sector; hence the
dependence of our results on the degree to which there is already an ine¢ cient over-supply of
housing in the steady state, owing to housing subsidies. We believe that this is one reason why
housing booms are harmful, but it probably is not the only one. Central banks�concern to
�lean against�housing booms is often based on the fear that both household and bank balance
sheets may be impaired in the event of a subsequent collapse of housing prices, as a result of
the increased household borrowing often observed during a housing boom. Our model does
not address this issue, as for simplicity we abstract both from household borrowing and from
the existence of banks. The exercise must therefore be viewed more as an illustration of our
proposed approach than as a complete treatment of a policy issue. It should, however, su¢ ce
to indicate that conclusions about the need to include asset prices among the target variables
based on a rational-expectations analysis need not be robust to an allowance for even modest
departures from rational expectations.
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A Appendix

A.1 Steady State Results

This appendix proves a number of claims made in sections 4.2 and 4.3. Using (40) and (41) on
can write (64) more explicitly as

��
�H��

A1+!
Y ! =

� � 1
�
(1� �) �C ~��1C

�
Y ; qu; �

��~��1
: (124)

Since the left-hand side is increasing and the right-hand side decreasing in Y (as CY > 0), there
is a unique value for Y solving this equation, as claimed.
Using the de�nitions of k and f and (124), we have

fY = (1� �) �C ~��1C(Y; qu; �)�e��1
� e��1(1� �) �C ~��1Y C(Y; qu; �)�e��1�1CY (Y; qu; �)

kY =
�

� � 1��
�H��

A1+!
(1 + !)Y !

= (1 + !)(1� �) �C ~��1C
�
Y ; qu; �

��~��1
;

so that from CY > 0 and ! > 0 we get

kY � fY = (1� �) �C ~��1C
�
Y ; qu; �

��~��1
�
�
! + e��1Y C(Y; qu; �)�1CY (Y; qu; �)�

> 0: (125)

From (49) we get

UY (Yt;�t; q
u
t ; �t) = C

~��1

t C(Yt; q
u
t ; �t)

�~��1CY (Yt; q
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t ; �t)
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(1 + !)

�H��
t

A1+!t

Y !
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�
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�1�1CY (Yt; q
u
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Using (124), 1 + ! = �(1 + �) and evaluating at the steady state we have

UY (Y ; 1; q
u; �) = C

~��1
C(Y ; qu; �)�~�

�1
CY (Y ; q

u; �)

� � � 1
�
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�1�1CY (Y ; q
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Using the fact that at the steady state

CY
�
Y ; qu; �

�
=

1� g

1 + 
 e��1
1�e�C(Y ; qu; �) e��11�e��1 (127)
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and (33) we have
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A.2 Proof of Lemma 1

The e¢ cient output subsidy 1 � � eff (sd) is the one giving rise to UY (Y ; 1; qu; �) = 0 and is
implicitly de�ned as

1� � eff (sd) =
�

� � 1

 
1� g + sdCY (Y ; q

u; �)

1 + sd

!

=
�
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 e��1
1�e�C(Y ; qu; �) e�

�1
1�e��1 > 0 follows that @

�
1� � eff (sd)

�
=@sd < 0. Using (127) we can

express the terms in the last parenthesis in (128), which determine the sign of UY whenever �
deviates from � eff (sd), as

1� g

1 + sd
� � � 1

�
(1� �) +

sd
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CY (Y ; q
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�
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1� g

1 + 
 e��1
1�e�C(Y ; qu; �) e��11�e��1 : (129)

The derivative of the r.h.s of (129) w.r.t. (1� �) is given by

�� � 1
�

� sd

1 + sd
1� g�

1 + 
 e��1
1�e�C(Y ; qu; �) e��11�e��1

�2CY (Y ; qu; �) @Y

@(1� �)

and is strictly negative because CY > 0 and because (124) implies @Y
@(1��) > 0. Since UY = 0

for � = � eff (sd) this shows that UY < 0 whenever 1 � � > 1 � � eff (sd) and UY > 0 whenever
1� � < 1� �(sd), as claimed in lemma 1.
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A.3 Proof of Lemma 2

From (49) we obtain using (33)
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Implicitly di¤erentiating (32) we obtain
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proving that Uq < 0 for sd > 0, Uq > 0 for sd < 0, and Uq = 0 for sd = 0. For � su¢ ciently
close to � eff (sd) we furthermore have from lemma 1 that UY is su¢ ciently close to zero, so that
(66) implies that �1 is also su¢ ciently to zero, so that from (70) it follows that 	 has the same
sign as Uq, whenever � 6= � eff . Furthermore, for � = � eff we have UY = �1 = 0 and also Uq =
0 for sd = 0, so that from (70) we obtain 	 = 0.

A.4 Second Order Conditions for Optimal Allocation

This appendix establishes that (Y �
t ; q

u�
t ), de�ned in equation (71), satisfy the second-order

conditions of optimality. Speci�cally, we establish that UY Y < 0, Uququ < 0 and UY qu = 0 holds
at the e¢ cient steady state where sd = 0 and 1� � = (1� g)�=(� � 1). By continuity, second
order conditions then also hold for nearby allocations that involving su¢ ciently small steady
state distortions and su¢ ciently small disturbances. From equation (49) we get

Uqu(Yt;�t; q
u
t ; �t)

= Cqu(Yt; q
u
t ; �t)

 
C
~��1

t C(Yt; q
u
t ; �t)

�~��1

+ ~��1

1�~�A
d
t
��dt
(q

u
t ; �t)

~� C(Yt; q
u
t ; �t)

~�
1�~� ~�

�1�1

!

+ Adt
��dt
(q

u
t ; �t)

~��1 1

~�� 1

(qut ; �t)

qut
C(Yt; q

u
t ; �t)

~�
1�~� ~�

�1

42



Using
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We have Uqu = 0 if and only if
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At the e¢ cient steady state, we have sd = 0 and thus qu = �
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From equation (49) we also get
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Di¤erentiating once more w.r.t. Yt and evaluating at the steady state where qu = qu�, one
obtains
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Di¤erentiating (136) w.r.t. qut and one obtains
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�~��1�1Cqu(Yt; q
u
t ; �t) (1� gt)

� C
~��1

t C(Yt; q
u
t ; �t)

�~��1 (1� gt)

(qut ; �t) (1 + �)C(Yt; q

u
t ; �t)

� qu�t
(qut )

2

1 + 
(qut ; �t) (1 + �)C(Yt; qut ; �t)
�:

Using (131) and evaluating at a steady state with qu = qu� one obtains

UY qu = 0.

A.5 Linearized Phillips Curve

This appendix shows that the linearized structural equations (87) imply the generalized Phillips
curve (90) and derives the values of the Phillips curve coe¢ cients. Premultiplying equations
(87) by (1;�1) and using the fact that this is a left eigenvector of D(1), we obtain

bFt � bKt = (1� ��)[��+ (fy � ky) y
gap
t + fq (bqut � bqu�t ) + �f 0� � k0�

� �
�t � �

�
]

+ �Et[ bFt+1 � bKt+1] + ��[M1 �M2]�t (138)

To a �rst-order approximation, equation (45) implies that

�t =
1� �

�

1

1 + !�

� bKt � bFt� :
Substituting the preceding equation into (138), one obtains (90) where the coe¢ cients � are
given by

�y =
1� �

�

1� ��

1 + !�
(ky � fy)

�q = �
1� �

�

1� ��

1 + !�
fq

�0� =
(1� �) �

1 + !�
[M2 �M1]:

From fq < 0 we obtain �q > 0. From (125) we obtain �y > 0.

A.6 Quadratically Approximated Welfare Objective

This appendix derives the result stated in equation (94). We can write

1X
t=0

�t[U(Yt;�t; q
u
t ; �t) + t(~h(�t�1; Kt=Ft)��t)]

=
1X
t=0

�t[U(Yt;�t; q
u
t ; �t) + t(h(�t�1;�t)��]:

Since UY = Uqu = UY qu = 0 and since U� + (�h1 � 1) = 0 at the optimal steady state and
given our assumption that ��1 � O(�2), which implies �t � O(�2) for all t � 0, a second order
approximation of the contribution of the variables (Yt;�t; q

u
t ;�t;�t; �t) to household utility is

given by
1

2
UbY bY (bYt � bY �

t ) +
1

2
Ubqubqu(bqut � bqu�t ) + 12�h22�2t + t:i:p:;
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where t:i:p: denotes terms independent of policy and where we used the fact that h2 � @h(�;�)
@�

=
0 at the optimal steady state. The approximation coe¢ cients are given by UbY bY � Y @

@Y
(UbY ) �

Y @
@Y
(Y UY ) = Y �UY + (Y

�)2 UY Y and correspondingly for Ubqubqu . Evaluated at the optimal
steady state where UY = Uqu = 0, we get

�� = �
1

2
�h22 > 0

�y = �
1

2
(Y �)2 UY Y > 0

�q = �
1

2

�
qu�
�2
Uququ > 0;

where explicit expressions for Uququ and UY Y are given in (134) and (137), respectively, and
h2 � @2h(�;�)

(@�)2
and � are given by

h22 =
�� (1 + !) (1 + !�)

1� �
> 0

� =
U�

1� a�
< 0;

with

U� = �
�

1 + �
�H
��
�
Y �

A

�1+!
= �

Y �(1� g)

1 + !

 
�C ~��1

C(Y �; qu�; �)

!~��1

< 0;

where the last line follows from (124) and the property that the wedge in (68) satis�es � = 0
at the e¢ cient steady state.

A.7 Details of the LQ Approximate Problem

This appendix derives the coe¢ cients (a; b;H) of the Lagrangian Lu in equation (105) and
shows that H is positive de�nite for su¢ ciently large values of �=�2.
The Lagrangian Lu captures the period t terms that are unpredictable as of period t� 1 in

the Lagrangian associated with minimizing the loss function (100) subject to the constraints
(101) and (102). These terms are given by

Lu = E0

1X
t=1

�t

8<:
1
2

P
k

�
�� (�0;k)

2 + �y (y0;k)
2 + �q(q0;k � q�0;k

�2
�'t

P
k

�
�0;k � �yy0;k � �q

�
q0;k � q�0;k

��
ek;t

� t
P

k

�
q0;k � q�0;k

�
ek;t

9=;
+ E0

1X
t=0

�t
�
�

�
('t; (1� �) t) S b�t � �

2�
b� 0t S b�t�

+ t:i:p: (139)

where t:i:p: summarizes additional terms that are independent of policy, q�0;k denotes the reaction
coe¢ cient of bqu�t to the k-th disturbance (ekt) and

S =

� P
k (�0;k)

2 P
k�kq0;kP

k�0;kq0;k
P

k (q0;k)
2

�
:
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The coe¢ cients a and b are thus given by

at;k �
�

�'t
��qq�0;k + 't�q �  t

�
bt � 't�y:

One can furthermore write

E0

1X
t=0

�t
�
�

�
('t; (1� �) t) S b�t � �

2�
b� 0t S b�t�

=
�

1� �

8<:
1
�
tr
�
S(1� �)E0

X1

t=0
�tb�t ('t; (1� �) t)

�
� 1
2�
tr
�
S(1� �)E0

X1

t=0
�tb�tb� 0t�

9=; : (140)

De�ning

E��' � (1� �)E0
P1

t=0�
�
t 't

E�� � (1� �)Et
0

P1
t=0�

�
t  t

E�q � (1� �)E0
P1

t=0�
t
t�
q
t  t

E�q' � (1� �)E0
P1

t=0�
t�qt 't

E���� � (1� �)Et
0

P1
t=0�

�
t �

�
t

E���q � (1� �)Et
0

P1
t=0�

�
t �

q
t

E�q�q � (1� �)Et
0

P1
t=0�

q
t �

q
t

and using (140), the quadratic terms in (139) can be written as

�

1� �

8><>:
1
2

P
k

�
�� (�0;k)

2 + �y
�
ygap0;k

�2
+ �q(q0;k)

2
�

+1
�

P
k (�0;k; q0;k)

��
E��' (1� �)E�� 
E�q' (1� �)E�q 

�
� 1

2

�
E���� E���q
E���q E�q�q

��
(�0;k; q0;k)

0

9>=>; ;

which implies

H �
�

��
2
+ 1

�

�
E��' � 1

2
E����

�
1
�

�
(1� �)E�� � 1

2
E���q

�
1
�

�
E�q' � 1

2
E���q

� �q
2
+ 1

�

�
1� �)E�q � 1

2
E�q�q

� � :
For the limit �2=� ! 0; the H matrix converges to�

��
2

0

0 �q
2

�
;

which is positive de�nite because �� > 0 and �q > 0.

A.8 Multipliers in the Nonlinear Best-Response Problem

The FOCs of the nonlinear best-response problem (91) are given by

UY (Yt;�t; q
u
t ; �t) + �

0
tzY (Yt; q

u
t ; �t) = 0 (141)

�t~h2(�t�1; Kt=Ft)
Kt

F 2t
� �1t + �mt�

0
t�1D1(Kt=Ft) = 0 (142)

t~h2(�t�1; Kt=Ft)
1

Ft
� �2t + �mt�

0
t�1D2(Kt=Ft) = 0 (143)

U�(Yt;�t; q
u
t ; �t)� t + �Et[t+1~h1(�t; Kt+1=Ft+1)] = 0 (144)

Uq(Yt;�t; q
u
t ; �t) + �

0
tzq(Yt; q

u
t ; �t) + 	t�1(1� �)mt �	t = 0 (145)
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for all t � 0. At the optimal steady state, we have UY = � = 0, see section 4.3, and 	 = 0,
see lemma 2. Given the assumptions in (74) and the assumed disturbance process (73), the
endogenous variables (Yt;�t; q

u
t ; Kt=F ) will deviate from their optimal steady sate value only

by a gap of order O(�). Equation (141) then implies that �t = (�1t;��1t) is of order O(�),
as claimed. Likewise, equation (144) implies that t will deviate from its optimal steady state
value � < 0 only by a gap of order O(�). Equation (145) then implies that 	t is of order O(�),
provided the initial precommitment satis�es 	�1 � O(�), as assumed, and the belief distortions
satisfy mt � O(1). The latter follows from equation (15) and the facts (��t ; �

q
t ) � O(�),

xt+1 = (�t+1; bqut+1) � O(�) and � � O(�2).

A.9 Worst-Case Distortions for the Targeting Rule (123)

The worst-case belief distortion problem is given by

max
fb�t;�t;ygapt ;bqut g1t=0E0

1X
t=0

�t

2

�
���

2
t + �y (y

gap
t )2 + �q(bqut � bqu�t )2 � �

�
b� 0tV b�t� (146)

subject to the constraints

�t =�Et�t+1 + �yy
gap
t + �q (bqut � bqu�t ) + ut

+ ���1V1b�t (147)

(bqut � bqu�t ) =�(1� �)Et[bqut+1 � bqu�t+1] + (1� �(1� �))sd

+ �(1� �)��1V2b�t (148)

for all t � 0, subject to the proposed target criterion

0 = �t +
�y
���y

�
ygapt � ygapt�1

�
+
��1

��
E'' (�t � Et�1�t) +

��1

��
(1� �)E' (bqut � Et�1bqut ) (149)

for all t � 1;and subject to an initial precommitment for t = 0 of the form
'�1
 �1

�0 + (1� �)(bqu0 � bqu�0 ) = G0; (150)

where the coe¢ cients '�1= �1 and G0 are taken as given. The matrix V satis�es

V = �(V ); (151)

where the function �(�) is de�ned in Appendix A.10. Appendix A.10 furthermore provides a
su¢ cient condition, see equation (157), which insures that there is a unique V solving (151)
for belief distortions f��t ; �

q
t g1t=0 in the neighborhood of the upper bound distortions. The

same condition also insures that that equations (147)-(150) imply a locally unique equilibrium
outcome for all belief distortions f��t ; �

q
t g1t=0 in the neighborhood of the upper bound distortions.

We proceed under the assumption that the su¢ cient condition (157) is satis�ed.
The Lagrangian of the worst-case problem is
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max
fb�t;�t;ygapt ;bqut g1t=0 min

f t�1;'t;�t+1g1t=0
E0

1X
t=0

�t

2

�
���

2
t + �y (y

gap
t )2 + �q(bqut � bqu�t )2 � �

�
b� 0tV b�t� (152)

+
1X
t=0

�t

26664
't

�
��t + �Et�t+1 + �yy

gap
t + �q (bqut � bqu�t ) + ut + ���1V1b�t�

+ t

�
�(bqut � bqu�t ) + �(1� �)Et[bqut+1 � bqu�t+1] + (1� �(1� �))sd + �(1� �)��1V2b�t�

+��t+1

�
�t+1 +

�y
���y

�
ygapt+1 � ygapt

�
+ ��1

��
E'' (�t+1 � Et�t+1) +

��1

��
(1� �)E' 

�bqut+1 � Etbqut+1��
37775

+  �1

�
'�1
 �1

�0 + (1� �)(bqu0 � bqu�0 )�G0

�
;

where ('�1= �1; G0) are given by the initial precommitment, �t+1 is the Lagrange multiplier on
the policy commitment in period t + 1, and  �1 the multiplier on the initial precommitment.
All choice variables X take the form Xt+1 = EtXt+1 +

P
kX0;kek;t+1:

The Lagrangian (152) can be written as the sum Lu+Le, where Le depends on
�b�0; �0; ygap0 ; bqu0 ;  �1;  0; '�1; '0�

and the predictable components fEtb�t+1; Et�t+1; Etygapt+1; Etbqut+1; Et t+1; Et't+1; Et�t+1g1t=0 and
Lu on the surprise components in t. The �rst-order condition with respect to b�0 and Etb�t+1 are

V b�0 + '0V
0
1 +  0(1� �)V 0

2 = 0

V Et�1b�t + Et�1'tV
0
1 + Et�1 t(1� �)V 0

2 = 0 for t � 1;

which deliver

Et�1b�t = Et�1

�
't

(1� �) t

�
for all t � 0; (153)

when de�ning E�1b�0 = b�0. Note that condition (153) is also satis�ed in the upper bound
solution, see equation (111), which suggests that with regard to choosing the predictable com-
ponents of the belief distortion, the targeting rule (123) is not binding, i.e., Et[�t+1] � 0.
To verify this conjecture, we derive the FOCs with respect to the forecastable components of
in�ation, output gap and housing price gap :

���0 � '0 + '�1 = 0

��Et�1�t � Et�1't + 't�1 � Et�1�t = 0 for t � 1

�yy0 + '0�y � �
�y
���y

E0�1 = 0

�yEt�1yt + Et�1't�y +
�y
���y

(Et�1�t � �Et�1�t+1) = 0 for t � 1

�q(bqu0 � bqu�0 ) + '0�q �  0 + (1� �) �1 = 0

�qEt�1(bqut � bqu�t ) + Et�1't�q � Et�1 t + (1� �) t�1 = 0 for t � 1

The previous equations together with the predictable parts of the constraints (147)-(148) for
t � 0

Et�1�t =�Et�1�t+1 + �yEt�1y
gap
t + �qEt�1 (bqut � bqu�t ) + Et�1ut

+ ���1V1Et�1b�t (154)

Et�1(bqut � bqu�t ) =�(1� �)Et�1[bqut+1 � bqu�t+1] + (1� �(1� �))sd

+ �(1� �)��1V2Et�1b�t (155)
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and the predictable parts of the targeting rule and the initial commitment

��Et�1�t = �
�y
�y

�
Et�1y

gap
t � ygapt�1

�
for t � 1 (156)

'�1
 �1

�0 + (1� �)(bqu0 � bqu�0 ) = G0:

determine the predictable dynamics of the worst-case problem. It is easy to note that for
Et[�t+1] � 0, the predictable components are identical to the predictable components of the
�rst-order conditions (113)-(120) describing the upper-bound solution when using the same V
matrix . Since there is locally only one solution, the predictable dynamics of the worst-case
belief problem must be identical to the predictable dynamics implied by equations (113)-(120).
For given V we can thus easily determine the predictable dynamics of the belief distortions.

A.10 Local Uniqueness Around Upper Bound: Su¢ cient Conditions

This appendix provides su¢ cient conditions for there to be a locally unique matrix V for
all belief distortions in the neighborhood of the upper bound distortions. It also shows that
the same condition implies that the targeting rule (123) and the initial precommitment then
deliver a locally unique equilibrium outcome for all belief distortions close to the upper bound
distortions.
We prove below the following auxiliary result:

Lemma 3 Consider given belief distortions f��t ; �
q
t g1t=0 and a given positive semi-de�nite sym-

metric matrix V . The structural equations (101) and (102), together with the target criterion
(123) for t � 1 and the initial precommitment in period t = 0 then determine a locally unique
equilibrium outcome for f�t; ygapt ; bqut g1t=0.
Let eV denote the covariance matrix of in�ation and housing price surprises, as de�ned in

equation (98), implied by the locally unique equilibrium outcome for f�t; ygapt ; bqut g1t=0 in lemma
3 and let �(V ) = eV denote the function mapping the assumed covariance matrix V into the
realized covariance matrix eV for in�ation and housing price surprises, when belief distortions
are given by the upper-bound distortions f���t ; �

�q
t g1t=0. For the upper-bound belief distortions

f���t ; �
�q
t g1t=0 and the associated covariance matrix V �, we have �(V �) = V �.

Suppose that
@vec�(V )=@vecV has rank 3, (157)

when evaluated at V = V �. It then follows from the implicit function theorem that there is a
locally unique �xed point �(V ) = V for all belief distortions f��t ; �

q
t g1t=0 in the neighborhood of

the upper bound belief distortions f���t ; �
�q
t g1t=0. From lemma 3 we then obtain that there is a

locally unique equilibrium outcome for f�t; ygapt ; bqut g1t=0 associated with these belief distortions,
as claimed in the main text. Condition (157) can veri�ed numerically.
It remains to prove lemma 3. Consider a given process for belief distortions f��t ; �

q
t g1t=0 and

a given matrix V . We can then uniquely solve equation (102) for a bounded linear process
fbqut g1t=0. Taking expectations of the structural equations (101) and (102) delivers

Et�t+1 = �yEty
gap
t+1 + �Et�t+2 + vt (158)

��Et�t+1 = �
�y
�y

�
Ety

gap
t+1 � ygapt

�
(159)
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for all t � 0, where

vt � Etut+1 + �qEt(bqut+1 � bqu�t+1) + ���1V1
�
Et�

�
t+1; Et�

q
t+1

�0
is a known linear process. The system consisting of equations (158) and (159) has a unique
bounded linear solution for the processes fEt�t+1; Etygapt+1g1t=0 given the exogenous disturbance
processes, linear processes for the belief distortions, and a value for ygap0 . Note that the system is
the same one that determines the equilibrium evolution of expected in�ation and the expected
output gap under rational expectations and a commitment to the RE target criterion (76),
except that the forcing term vt is now not simply given by Etut+1.31 In addition, the solutions
for �0 and y

gap
0 must satisfy

�0 =�E0�1 + �yy
gap
0 + �q (bqu0 � bqu�0 ) + u0

+ ���1V1 (�
�
0 ; �

q
0)
0 (160)

and the initial precommitment; these latter two linear conditions can be solved uniquely for
�0 and y

gap
0 . (Given our solution for bqu0 , the initial precommitment uniquely determines �0;

condition (160) then uniquely determines ygap0 ). In this way, the forecastable components of
the processes f�t; ygapt g1t=0 are uniquely determined given the matrix V and the belief distortion
processes f��t ; �

q
t g1t=0.

The time-invariant coe¢ cients (�0;k; y
gap
0;k ) de�ning the surprise components of these processes

must satisfy

�0;k = �yy
gap
0;k + �q

�
q0;k � q�0;k

�
+ u0;k + ��1;k + ���1V1(�

�
0;k; �

q
0;k)

0 (161)�
�� + ��1E''

�
�0;k = �

�y
�y
ygap0;k � (1� �)��1E' q0;k, (162)

where the �1;k coe¢ cients are given by the linear solution above for the process fEt�t+1g1t=0.
Because

det

 
1 ��y

�� + ��1E''
�y
�y

!
=
�y
�y
+ �y

�
�� + ��1E''

�
> 0;

the system (161)-(162) can be uniquely solved for the coe¢ cients (�0;k; y
gap
0;k ) for each k. We have

thus uniquely determined all of the coe¢ cients describing linear processes for the endogenous
variables f�t; ygapt ; bqut g1t=0 implied by the belief distortions and the assumed matrix V .
A.11 Details of the Model Parameterization

Following table 5.1 in Woodford (2003), we set � = 0:99 and �y = 0:024. From Woodford�s
table 6.1 we take �Y

��
= �x = 0:048=16 = 0:0031, where we divide by 16 because in�ation rates

in our model are expressed in quarterly rates of increase. We set the housing depreciation rate
� equal to 3% per year, following Adam, Marcet and Kuang (2012). We also have

�q = �
(1� ��) (1� �)

�(1 + �!)
fq (163)

�y =
(1� ��) (1� �)

�(1 + �!)
(ky � fy) ; (164)

where fq = @ log f=@ log q; ky = @ log k=@ log y and fy = @ log f=@ log y, so that

�q
�y
= � fq

ky � fy
;

31We have noted earlier that the system consisting of equations (75) and (76) has a unique bounded solution,
given that �y;��;�y > 0 and � 2 (0; 1).
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with ky � fy denoting the elasticity of real marginal costs with respect to output. Following
table 5.1 in Woodford (2003), we set ky � fy = "mc = 0:63, so that we only need to determine
fq in order to obtain a value for �q. Using

fq =
(1 + �) 
C

�

1 + (1 + �) 
C
�

and assuming � = e��1
1�� � 1 � 0, which for a long-run elasticity of housing supply equal to �ve

(e� = 0:8), in line with the estimated value in Adam, Kuang and Marcet (2012) and in the range
of estimates in Topel and Rosen (1988), implies e��1 = 1

5
, we get

fq �

C

�

1 + 
C
� :

From
Y (1� g) = C(1 + 
C

�
)

we can see that privately consumed output Y (1 � g) is divided up into consumption C and
resources invested in the housing sector, 
C

1+�
, so that 
C

�
is the steady state ratio of housing

investment over private expenditures. Over the period 1947-2012, this ratio, when measured as
residential �xed investment spending over the sum of personal consumption expenditure and
nonresidential �xed investment, is equal to 6.3% on average for the United States.32 We thus
have

fq � 0:063=1:063 � 6%
and obtain

�q = �
fq

ky � fy
�y = �

0:06

0:63
0:024 = �0:0023:

We also have33
�q
��

=
1

1� e� 
C
�

1 + 
C
�

1

(1 + (1 + �) 
C
�
)

1

"mc

�Y
��

:

Using the parameterization from above, then delivers

�q
��

=
1

1� 0:8
0:063

1:063

1

(1 + 0:063)

1

0:63
0:0031

� 0:0014:

Next, we determine the parameters of the stochastic process for b�dt . For this purpose we
compute the log of the ratio of the nominal housing price index over nominal GDP for the
US from 1975:Q1-2013:Q4 and extract a linear trend. The log deviations from trend have a
quarterly autocorrelation of 0.9875 and a standard deviation of 0.072. Assuming that about one
quarter of those �uctuations re�ect e¢ cient �uctuations and that the sample autocorrelation
slightly underestimates the actual auto-correlation at values close to one, we set �� = 0:99 and
�e� = 0:024. Assuming a 15% output subsidy for housing (sd = 0:15), this determines the
stochastic process for bqu�t .
32We dowloaded data from FRED St Louis Fed, using the series PRFIA (Private Residential Fixed Investment,

Billions of Dollars, Annual, Not Seasonally Adjusted), PCECA (Personal Consumption Expenditures, Billions
of Dollars, Annual, Not Seasonally Adjusted), and PNFIA (Private Nonresidential Fixed Investment, Billions
of Dollars, Annual, Not Seasonally Adjusted).
33This follows from calculations that are contained in our notes "AW_notes 091415", which are available

upon request.
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Finally, we determine the mark-up distortions. To compute the steady state mark-up dis-
tortion w, note that �y = 0:024, ky � fy = 0:63, and equations (163) and (164) jointly imply

(1� �) (1� ��)

�(1 + !�)
=
0:024

0:63
:

Assuming � = 0:15, which means that the output subsidy falls short 15% of its optimal steady
state value, we get

w =
(1� �) (1� ��)

�(1 + !�)
�

=
0:024

0:63
0:15

� 0:0057:

From the mark-up shock estimates for the post-1980 sample reported in table 3 in Ireland
(2004), we obtain �u = 0:9907 and �eu = 0:0002.
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ONLINE APPENDIX - NOT FOR PUBLICATION

"Robustly Optimal Monetary Policy in a New Keynesian Model with Housing"
Klaus Adam and Michael Woodford

B Numerically Solving for the Upper Bound Dynamics

B.1 The Upper Bound Dynamics

From equations (113)-(117) in the main text we have:

���t � 't + 't�1 + ��1E'' (�t � Et�1�t)

+��1(1� �)E' (bqut � Et�1bqut ) = 0 (165)

�Y y
gap
t + �y't = 0 (166)

�q(bqut � bqu�t ) + �q't �  t + (1� �) t�1

+��1(1� �)E' (�t � Et�1�t)

+��1(1� �)2E  (bqut � Et�1bqut ) = 0 (167)

�t � �yy
gap
t � �q(bqut � bqu�t )� �Et�t+1 � ut

���1�'tE
�
(�t+1 � Et�t+1)

2�
���1�(1� �) tE

�
(�t+1 � Et�t+1)

�bqut+1 � Etbqut+1�� = 0 (168)bqut � (1� �(1� �))b�dt � �(1� �)Etbqut+1
���1�(1� �)'tE

�
(�t+1 � Et�t+1)

�bqut+1 � Etbqut+1��
���1�(1� �)2 tE

h�bqut+1 � Etbqut+1�2i = 0; (169)

where E'', E' and E  are de�ned in equation (121), and where ut is de�ned in (77).
Log-linearizing equation (72) around the optimal steady state (in which there are no steady
state distortions), we get bqu�t = b�dt � sd; (170)

where sd � O(�) and bqu�t denotes the log deviation of qu�t from the optimal steady state. The
previous equation has been used to derive equation (169) from equation (117).
We wish to solve (165)-(169) for the equilibrium values of f�t; ygapt ; bqut ; 't;  tg1t=0, given the

exogenous processes fbut;b�g1t=0 and the initial conditions ('�1;  �1).
B.2 Parameterization Approach

Let us de�ne

(�new)�1 � (�)�1 =�� (171)

'newt � 't=��

 newt �  t=��

and
ut � w + but; (172)
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where

w � (1� �) (1� ��)

�(1 + !�)
�

but � (1� �) (1� ��)

�(1 + !�)
(b�t � bgt) :

We also de�ne

Enew
'' � (1� �)E0

1X
t=0

�t ('newt )2 > 0 (173)

Enew
' � (1� �)E0

1X
t=0

�t'newt  newt (174)

Enew
  � (1� �)E0

1X
t=0

�t ( newt )2 > 0: (175)

We can then write (165)-(169) as

�t � 'newt + 'newt�1 + (�
new)�1Enew

'' (�t � Et�1�t)

+ (�new)�1 (1� �)Enew
' (bqut � Et�1bqut ) = 0 (176)
�Y
��

ygapt + �y'
new
t = 0 (177)

�q
��
(bqut � bqu�t ) + �q'

new
t �  newt + (1� �) newt�1

+(�new)�1 (1� �)Enew
' (�t � Et�1�t)

+ (�new)�1 (1� �)2Enew
  (bqut � Et�1bqut ) = 0 (178)

�t � �yy
gap
t � �q(bqut � bqu�t )� �Et�t+1 � w � but
� (�new)�1 �'newt E

�
(�t+1 � Et�t+1)

2�
� (�new)�1 �(1� �) newt E

�
(�t+1 � Et�t+1)

�bqut+1 � Etbqut+1�� = 0 (179)bqut � (1� �(1� �))b�dt � �(1� �)Etbqut+1
� (�new)�1 �(1� �)'newt E

�
(�t+1 � Et�t+1)

�bqut+1 � Etbqut+1��
� (�new)�1 �(1� �)2 newt E

h�bqut+1 � Etbqut+1�2i = 0: (180)

The previous equations show that the upper bound solution< is determined by the para-

meters �; �; �y; �q; �Y�� ;
�q
��
; sd; w and(�new)�1 ; as well as stochastic processes for but and b�dt (the

latter determines b�dt and jointly with sd also bqu�t ). The model is solved for the parameters
reported in table 1 of the main text.

B.3 Solution Approach

We simplify (176)-(180) by using (177) to eliminate the output gap:

ygapt = � �y
�Y =��

'newt : (181)

We furthermore simplify using bqu�t = b�dt � sd and the relationshipb�dt = (1� (1� �)�)b�dt + (1� �) �Et
b�dt+1; (182)
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together with the law of motion for b�dt to express b�dt as a function of b�dt :
b�dt = 1� (1� �) ���

1� (1� �)�
b�dt : (183)

This delivers

�t � 'newt + 'newt�1 + (�
new)�1Enew

'' (�t � Et�1�t)

+ (�new)�1 (1� �)Enew
' (bqut � Et�1bqut ) = 0 (184)

�q
��
(bqut � b�dt � sd) + �q'

new
t �  newt + (1� �) newt�1

+(�new)�1 (1� �)Enew
' (�t � Et�1�t)

+ (�new)�1 (1� �)2Enew
  (bqut � Et�1bqut ) = 0 (185)

�t +
(�y)

2

�Y =��
'newt � �qbqut + �q

b�dt � �qs
d � �Et�t+1 � w � but

� (�new)�1 �'newt E
�
(�t+1 � Et�t+1)

2�
� (�new)�1 �(1� �) newt E

�
(�t+1 � Et�t+1)

�bqut+1 � Etbqut+1�� = 0 (186)

bqut � (1� (1� �) ���)
b�dt � �(1� �)Etbqut+1

� (�new)�1 �(1� �)'newt E
�
(�t+1 � Et�t+1)

�bqut+1 � Etbqut+1��
� (�new)�1 �(1� �)2 newt E

h�bqut+1 � Etbqut+1�2i = 0: (187)

We look for time-invariant solutions to these equations in which the variables

x0t =

�
'newt ;  newt ; �t; bqut ;b�dt ; but; Et�t+1; Etbqut+1�

evolve as follows

xt = A+Bxt�1 + C

�
e�t
eut

�
: (188)

The conjectured solution structure (188) is self-consistent in the following sense: given a con-

jecture about the solution parameters P � (A;B;C) and given initial conditions (x�1; bu0;;b�d0),
one can determine the coe¢ cients Enew

'' ; Enew
' and Enew

  de�ned in (173)-(175). In addition, one
can determine the time-invariant values

E�� = Et[(�t+1 � Et�t+1)
2]

E�q = Et
�
(�t+1 � Et�t+1)

�bqut+1 � Etbqut+1��
Eqq = Et

h�bqut+1 � Etbqut+1�2i :
Given the conjectured solution structure (188), equation system (184)-(187) is thus a linear
expectational di¤erence equation system with time invariant coe¢ cients of the form

�0xt = �c + �1xt�1 + �	

�
e�t
eut

�
+ ��

�
��t
�qt

�
; (189)
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where ��t = �t � Et�1�t and �
q
t = bqut � Et�1bqut denote forecast errors. Equation (189) has a

solution of the form (188), which can be readily computed using the approach developed in
Sims (2000). Under the conjecture (188), the only non-standard feature of equations (184)-
(187) is that the coe¢ cients eE = �Enew

'' ; Enew
' ; Enew

  ; E��; E�q; Eqq
�
entering the system depend

themselves on the solution. Solving the equation system thus requires solving a �xed point
problem.
We now explain how we solve for the �xed point. In a �rst step, we start by solving (184)-

(187) for the case (�new)�1 = 0, i.e., for the case without robustness concerns. Equations (184)-
(187) are then independent of eE and assume the standard form (189) with known coe¢ cients.
The REE solution serves as a benchmark to which we can compare the outcomes for the case
with robustness concerns and we use the set of coe¢ cient eE implied by it as a starting guess
when solving for the case with robustness concerns.
Given some guess eE , the coe¢ cients in (189) implied by (184)-(187) are given as follows:

�0 =0BBBBBBBBBBB@

�1 0 1 0 0 0 0 0

�q �1 0 �q
��

��q
��

0 0 0
(�y)

2

�Y =��
� (�new)�1 �E�� � (�new)�1 �(1� �)E�q 1 ��q �q �1 �� 0

� (�new)�1 �(1� �)E�q � (�new)�1 �(1� �)2Eqq 0 1 � (1� (1� �) ���) 0 0 ��(1� �)
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

1CCCCCCCCCCCA
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�0c =
�
0 ��q

��
sd ! + �qs

d 0 0 0 0 0
�

�1 =

0BBBBBBBBBB@

�1 0 0 0 0 0 0 0
0 �(1� �) 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 �� 0 0 0
0 0 0 0 0 �u 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1CCCCCCCCCCA

�	 =

0BBBBBBBBBB@

0 0
0 0
0 0
0 0
1 0
0 1
0 0
0 0

1CCCCCCCCCCA

�� =

0BBBBBBBBBB@

� (�new)�1Enew
'' � (�new)�1 (1� �)Enew

' 

� (�new)�1 (1� �)Enew
' � (�new)�1 (1� �)2Enew

  

0 0
0 0
0 0
0 0
1 0
0 1

1CCCCCCCCCCA
;

Solving (189) with these coe¢ cients delivers a set of solution coe¢ cients P (eE) = fA(eE); B(eE); C(eE)g
for (188). The latter coe¢ cients then imply, together with the initial values (x�1; bu0;b�d0), which
we set equal to the steady state values implied by P (eE), an implied value for eE , which we denote
Z(eE). We then solve for the value eE� satisfying

eE� = Z(eE�) (190)

using a standard root �nding routine. The implied values for the components E��; E�q; Eqq in
Z(eE) can be readily computed from the solution coe¢ cients P (eE). The updated guesses for
Enew
'' ; Enew

' ; Enew
  can be computed using the following observations. The solution (188) implies

for t � 1 and for a starting value x0 at the steady state34, the following recursive law of motion
for E0xtx0t :

E0 [xtx
0
t] = E0

�
(A+Bxt�1 + Cet)

�
A0 + x0t�1B

0 + e0tC
0��

= AA0 + Ax00B
0 +Bx0A

0 + C�eC
0

+BE0

h
xt�1x

0

t�1

i
B0;

where e0t �
�
e�t ; e

u
t

�
and �e � V AR(et) and where we use the fact that for our initial conditions

34The fact that x0 is at the steady state is implied by our assumptions about the initial conditions for

(x�1; bu0;b�d0).
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E0xt = x0. We start the iteration with

E0 [x1x
0
1] = AA0 + Ax00B

0 +Bx0A
0 + C�eC

0 +Bx0x
0

0B
0

= (A+Bx0)(A
0 + x00B

0) + C�eC
0

= x0x
0
0 + C�eC

0:

Then

E0 [x2x
0
2] = AA0 + Ax00B

0 +Bx0A
0 + C�eC

0 +BE0

h
x1x

0

1

i
B0

= AA0 + Ax00B
0 +Bx0A

0 + C�eC
0 +B (x0x

0
0 + C�eC

0)B0

= x0x
0
0 + C�eC

0 +BC�eC
0B0

and more generally for t � 0

E0xtx
0
t = x0x

0
0 +

tX
j=1

Bj�1C�eC
0 (B0)

j�1
;

so that

(1� �)
1X
t=0

�tE0xtx
0
t = x0x

0
0 + (1� �)

1X
t=1

�t
tX

j=1

Bj�1C�eC
0 (B0)

j�1

= x0x
0
0 +

tX
j=1

�jBj�1C�eC
0 (B0)

j�1
:

We numerically compute the sum in the last row by truncating the in�nite sequence when the
terms �jBj�1C�eC

0 (B0)j�1 reach values below (1 � ��B) � 10�9 where �B < 1 is the largest
eigenvalue of B. This insures that approximation errors from computing the truncated sum are
below 10�9. The values for Enew

'' ; Enew
' ; Enew

  are then given by elements (1,1), (1,2) and (2,2),
respectively, of the matrix (1� �)

P1
t=0 �

tE0xtx
0
t.

The numerical code also checks whether the matrix H in equation (122) is positive semi-
de�nite, which insures that the policymaker�s best response in fact achieves a minimum loss in
the upper bound solution. Since H � �� �Hnew, with

Hnew � 1

2

�
1 + (�new)�1Enew

'' (�new)�1 (1� �)Enew
' 

(�new)�1 (1� �)Enew
' �y=�� + (�

new)�1 (1� �)2Enew
  

�
;

this can be achieved by checking whether Hnew is positive semide�nite.
The MatLab routine �Solve_UpperBound.m�reliably solves for the �xed point eE� in (190)

for all values (�new)�1 � 54 when using the parameters from table 1 in the main text. For
values (�new)�1 > 54, one gets problems with non-existence of equilibria during the numerical
�xed point search, i.e., the conjectured solution coe¢ cients E imply that equation system (189)
has no non-explosive solution. The Matlab routine computes the steady states and the impulse
responses to shocks for the RE optimal policy and for the upper bound dynamics. Table 2 in
the main text reports the steady state outcomes for (�new)�1 = 50.

C Verifying that the Targeting Rule Implements the Up-
per Bound

The MatLab routine �Solve_UpperBound.m�also evaluates whether condition (157) in appen-
dix A.10 is satis�ed. This can be achieved by checking whether the matrix

@( eE��; eE�q; eEqq)
@(E��; E�q; Eqq)0

has rank 3, (191)
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when evaluated at the upper bound solution, where ( eE��; eE�q; eEqq) denotes the values of in-
�ation and housing price surprises implied by the solution to equations (184)-(187) for the
assumed values (E��; E�q; Eqq). It insures that there is locally a unique RE equilibrium for
alternative belief distortions around the upper bound distortions.
We can now evaluate the outcomes associated with alternative belief distortions when the

policymaker commits to the proposed targeting rule (123). We do so by considering values
for V in the neighborhood of the upper bound values V �. We can then construct belief dis-
tortions by using the predictable dynamics involved by the solution to equations (184)-(187)
for the considered value of V . In this solution the multipliers ('newt ;  newt ) can be written

for t � 1 as linear functions of their lagged values, the lagged shock values (b�dt�1; but�1), the
lagged expectations (Et�1�t; Et�1bqut ) and the shock innovations (e�t ; eut ). It then follows from
Et�1�

new
t = Et�1���t = Et�1 ('

new�
t ; (1� �) �t )

0 that the (scaled) worst-case belief distortions
for t � 1 can similarly be written as

�newt = a0 + A0

0BBBBB@
�newt�1b�dt�1but�1
Et�1�t
Et�1bqut

1CCCCCA+ A1

�
e�t
eut

�
: (192)

where the 2x1 vector a0 the and the 2x6 matrix A0 are implied by the predictable dynamics;
the 2x2 matrix A1 contains the still undetermined surprise coe¢ cients. We consider surprise
coe¢ cients in the neighborhood of the values implied by belief distortions in the upper bound
solution, such that they are consistent with the assumed matrix of surprises V . The latter
requires solving a �xed point problem, as we now explain.
Given a value for A1 and given the considered value V , we can determine the locally unique

outcome f�t; �t; ygapt ; bqut g1t=1 using the structural equations (101) and (102) and the targeting
rule (123). Using (170),(182), (183), and (171) these equations can be expressed as

0 =�qs
d + w � �t + �Et�t+1 + �yy

gap
t + �qbqut + � (�new)�1 V1b�newt � �q

b�dt + but (193)

0 =� bqut + �(1� �)Et[bqut+1] + �(1� �) (�new)�1 V2b�newt + (1� �(1� �)��)
b�dt (194)

0 =�t +
�y
���y

�
ygapt � ygapt�1

�
+ (�new)�1E'' (�t � Et�1�t) + (�

new)�1 (1� �)E' (bqut � Et�1bqut ) (195)

For given V , equations (192)-(195) take the standard di¤erence equation form (189) with xt =�
�t; y

gap
t ; bqut ; �new�0t ;b�dt ; but; Et�t+1; Etbqut+1�0 and

�0 =

0BBBBBBBBBBBBB@

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0

1 ��y ��q �� (�new)�1 V1 �q �1 �� 0

0 0 1 ��(1� �) (�new)�1 V2 �(1� �(1� �)��) 0 0 ��(1� �)

�1 � �y
���y

0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

1CCCCCCCCCCCCCA
59



�c =

0BBBBBBBBBB@

a0
�qs

d + w
0
0
0
0
0
0

1CCCCCCCCCCA

�1 =

0BBBBBBBBBBBB@

0 0 0 A0;1
0 0 0 A0;2
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 � �y
���y

0 0 0 0 0 0 0

0 0 0 0 0 �� 0 0 0
0 0 0 0 0 0 �u 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCA
;

where A0;i denotes the i-th row of A0, and

�	 =

0BBBBBBBBBBBB@

A1;1
A1;2
0 0
0 0
0 0
1 0
0 1
0 0
0 0

1CCCCCCCCCCCCA
;

where A1;i denotes the i-th row of A1, and

�� =

0BBBBBBBBBBBB@

0 0
0 0
0 0
0 0

(�new)�1E'' (�new)�1 (1� �)E' 
0 0
0 0
1 0
0 1

1CCCCCCCCCCCCA
:

The solution implies actual surprise coe¢ cients (eV1; eV2) and we can use a root �nding routine
to solve for surprise coe¢ cients A1 such that point (eV1; eV2) = (V1; V2). This can be achieved by
varying one of the surprise coe¢ cients and determining the value for the remaining three such
that the �xed point property holds. The solution dynamics are then given for all t � 1 by

xt = AV +BV xt�1 + CV et: (196)

Before we can determine the losses associated with these alternative belief distortions and the
associated equilibrium dynamics, we need to determine the initial value x0. The time zero
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�rst-order conditions of the worst-case belief distortion problem (152) can be written as

�0 � 'new0 +  new�1

�
'�1
 �1

�
= 0 (197)

�y
��
ygap0 + 'new0 �y = 0 (198)

�q
��
(bqu0 � bqu�0 ) + 'new0 �q �  new0 + (1� �) new�1 = 0 (199)

'�1
 �1

�0 + (1� �)(bqu0 � bqu�0 )�G0 = 0; (200)

where '�1
 �1

and G0 are (�xed) coe¢ cient from the initial pre-commitment, which assume the
same value as in the upper bound solution. We can insure that conditions (197)-(200) hold in
t = 0 by choosing appropriate initial conditions for x�1 and then letting x0 = AV +BV x�1,
which assumes - as in the upper bound solution - that e0 = 0. Since the columns in BV

multiplying
�
��1; bqu�1� are zero, these values can be chosen arbitrarily. The initial values for

the lagged disturbances assume the same value as in the upper bound, i.e., bu�1 = b��1 = 0.
It thus remains to determine the �ve remaining initial values (ygap�1 ; �

new0
�1 ; E��0; E�1bqu0 ), where

�new0�1 = ('new�1 ; (1 � �) new�1 ). These are determined by the requirement that (198)-(200) hold,
in addition to (197). Equation (197) holds if

 new�1

�
'�1
 �1

�
+

�y
���y

ygap�1 = 0 (201)

��1

��
E'' (�0 � E�1�0) +

��1

��
(1� �)E' (bqu0 � Etbqu0 ) = 0; (202)

because (197) is then implied by the target criterion (123), which is satis�ed for the dynamics
determined by (AV ; BV ; CV ). Equations (198)-(202) determine the �ve remaining initial con-
ditions x�1, such that x0 = AV + BV x�1 satis�es (197)-(200). It now remains to evaluate the
objective function associated with the alternative solution fxtg1:

t=0.
The period contributions of some outcome xt to the objective can be written as 1

2
�tx0t�xt,

where

� =

0BBBBBBBBBBBBB@

1 0 � � � 0

0 �y
��

0

0 �q
��

0 0 0

0 �� (�new)�1 V11 �� (�new)�1 V12 0
... 0 �� (�new)�1 V21 �� (�new)�1 V22 0

...
0 0 0

0
0

0 � � � 0

1CCCCCCCCCCCCCA
:
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Furthermore, we have that

E0[x
0
t�xt] = E0[(AV +BV xt�1 + CV et)

0� (AV +BV xt�1 + CV et)]

= E0[(AV +BV xt�1)
0� (AV +BV xt�1)] + E0[e

0
tC

0
V�CV et]| {z }

=diag(C0V �CV )
0
diag(�e)

= E0[(AV +BV (AV +BV xt�2 + CV et�1))
0� (AV +BV (AV +BV xt�2 + CV et�1))]

+ diag (C 0V�CV )
0
diag (�e)

= E0[(AV +BV (AV +BV xt�2))
0� (AV +BV (AV +BV xt�2))]

+ diag (C 0V�CV )
0
diag (�e) + diag(C 0VB

0
V�BVCV )diag (�e)]

= :::

= (E0xt)
0 � (E0xt) +

 
tX

j=1

diag(C 0VB
j�10
V �Bj�1

V CV )
0

!
diag (�e)

where E0xt evolves recursively as

E0xt = A+BE0x�1;

with initial conditionE0x0 = x0. We can then numerically evaluate the in�nite sum 1
2
E0[
P1

j=0 �
jx0j�xj],

truncating the summation, as before, when the additional contribution reaches a value below
(1� ��B) � 10�9, where �B is the largest eigenvalue of B.
Figure 1 in the main text depicts the distribution of welfare losses relative to the losses as-

sociated with the upper-bound distortions, for 1000 random alternative belief distortion choices
in the neighborhood of the upper-bound distortions. We draw 1000 alternative values from a
uniform distribution with support +/- 1% around the upper-bound values for V and from a
support of +/- 0.5% of the upper-bound value of the coe¢ cient (2,2) in the matrix A1 in (192)
(the remaining coe¢ cients in A1 are chosen so as to be consistent with the considered value of
V ). The �gure shows that additional losses are negative, i.e., that alternative belief distortions
lead to signi�cantly lower losses for the policymaker than the upper bound distortions.35 This
shows that that the target criterion (123) implements the upper-bound solution as worst-case
outcome.

D Impulse Response to Mark-up Shock

Figure 3 depicts the response to a positive mark-up shock surprise of one standard deviation.
Except for the persistent di¤erences in the output gap, housing price and housing price gap,
the responses under RE and the upper bound are very similar. Since house prices under RE do
not react following the mark-up shock, leaning against the wind is not required under robustly
optimal policy in response to mark-up shocks.

35While 3 of the 1000 considered losses turn out to be positive, the incremental gains are tiny in these cases,
when compared to the losses depicted in �gure 1 and thus very likely the result of numerical imprecisions:
the three positive welfare gains amount to 0.000006189485077, 0.000014156768140 and 0.000017972231905,
respectively.
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Figure 3: RE vs. robustly optimal dynamics in response to a positive mark-up shock (1 std.
deviation)
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