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Abstract 

We study round-robin tournaments with four symmetric players and two identical prizes where 

players compete against each other in games modeled as an all-pay contest. We demonstrate 

that in this common structure players may have an incentive to manipulate the results, namely, 

depending on the outcomes of the first round, a player may have an incentive to lose in the 

second round in order to maximize his expected payoff in the tournament. 
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1. Introduction 

Round-robin tournaments in which each team competes against all the others in sequential 

games is one of the most common sports tournaments, when the round-robin tournament with 

four teams in which the best two teams qualify for the next stage being the most frequently used 

format. In this paper, we point out a meaningful disadvantage of this structure since in one stage 

a player may have an incentive to lose, and, as such, the round-robin tournament can be exposed 

to strategic manipulations. 

Previous literature has discussed many cases in which the rules of the tournament can 

cause contestants to lose a game in order to gain some benefit in the post-game. Such a 

phenomenon is harmful to the reputation of the sports industry, and therefore sports authorities 

exert efforts to avoid it. In their review, Kendall and Lenten (2017) presented several examples 

of such scenarios, a prominent one being the 2012 Olympic Badminton Tournament where 

teams tried to lose in order to face a weaker opponent in the next (playoff) stage.1  

Probably, the most well-known example of teams having an incentive to lose is the NBA. 

Taylor and Trogdon (2002) indicated that this incentive is driven by the rule according to which 

the worst teams of the league have the highest probabilities of gaining a better position in the 

following season’s draft when teams can pick the best new players for the league. Therefore, in 

the middle of the NBA season, teams that have lost their chance to qualify for the play-off have 

an incentive to lose in the remaining games of that season in order to increase their chances of 

a better draft position. Another example is given by Duggan and Levitt (2002) who showed that 

professional sumo fighters preferred to lose their last fight of the current season when it was 

not relevant for them in exchange for securing a victory in the next season. Elaad, Krumer, and 

                                                                 
1  It is also worth mentioning the 1994 Caribbean Cup soccer qualification game between Barbados and Grenada, where both 

teams could benefit from scoring an own goal in regular time because of the bizarre rule of assigning two goals instead of 

one in extra time (Preston and Szymanski, 2003). Incentives to lose games have also been demonstrated in US college 

basketball (Balsdon, Fong and Thayer 2007) and European soccer (Csató, 2019). 
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Kantor (2018) showed that such a trade-off between losing in the last game of a soccer season 

and winning in the following season occurs significantly more frequently in countries known 

to be corrupt. 

Incentives to lose may also crop up owing to a collision between two parallel tournaments 

that award the same prize. For example, Dagaev and Sonin (2018) mentioned the last round of 

the 2011–12 season in the Russian Premier League (soccer). In this case Lokomotiv Moscow 

was better off losing to Spartak Moscow as this could have transferred the right to participate 

in the European Cup from Rubin Kazan to Lokomotiv Moscow due to the intersection with the 

rules of the Russian Cup, which is another tournament that assigns a qualification slot for the 

European Cups. One last instance worth mentioning is the study of Haugen and Krumer (2019) 

who showed how two different qualification paths for the 2020 UEFA European Championship 

could have created incentives to lose in order to increase the chances of qualifying for the 

playoffs in the UEFA Nations League.   

The above-mentioned papers show that losing in a tournament may be advantageous for 

the next tournaments or for parallel tournaments. In this work, we demonstrate rather how 

losing in a tournament may already yield a benefit in the same tournament. The reason is that 

strategic considerations may motivate a contestant to lose in one stage of the tournament in 

order to get a higher expected payoff. We arrive at this conclusion by studying a theoretical 

round-robin tournament among four symmetric players. These players behave strategically and 

exert efforts in order to win more games than at least two of their opponents and consequently 

to win one of the two equal prizes. We assume that players have the same common knowledge 

valuation for winning, and model each game between two players as an all-pay contest.2 As a 

                                                                 
2  Applications of the all-pay contest have been made to rent-seeking and lobbying in organizations, R&D races, political 

contests, promotions in labor markets, trade wars, military and biological wars of attrition (see, for example, Hillman and 

Riley 1989, Baye, Kovenock and de Vries 1993, Amman and Leininger 1996, Krishna and Morgan 1997, and Che and Gale 

1998). 
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result, the win probabilities in each game become endogenous in that they result from mixed 

equilibrium strategies and are positively correlated to win valuations. Moreover, the win 

probabilities depend on the stage of the tournament in which the game takes place, and on the 

identity of the future expected opponents. Thus, in order to determine the tournament's 

outcome, we compute a dynamically intertwined set of pair-wise equilibria for each allocation 

of the players which enables us to provide analytic solutions. 3   

In addition, we identify a situation where one of the contestants has a higher expected 

value in case of a loss rather than in case of a win, thereby creating an incentive to lose. The 

intuition behind this finding is quite simple. Each player wants to maximize his expected payoff 

which is equal to his expected value of winning minus his expected cost of effort. When there 

are two prizes for four players, only one win may give a player one of the prizes and therefore 

after one stage a player who already has one win considers whether it is worthwhile to exert 

costly efforts in the next stages. In a round-robin tournament with only one prize such a situation 

is not feasible since one win is not sufficient for winning the prize and the players have to 

compete in at least one more game in order to ensure that they win the tournament. 

In support of this result, Krumer, Megidish and Sela (2017) who studied a round-robin 

tournament with four symmetric players did not detect such a situation in which one of the 

players has an incentive to lose. This suggests that the number of prizes in round-robin 

tournaments explains the strategic manipulations in this structure. The disadvantage of 

allocating two prizes instead of one prize is also reflected in the findings of Krumer, Megidish 

and Sela (2019) who studied the optimal design of round-robin tournaments with three 

                                                                 
 

3
 Sahm (2019) analysed round-robin tournaments where each game is modelled as a Tullock contest.  
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symmetric players. It was shown that in order to maximize the players' expected total effort the 

designer should allocate only one prize.   

Earlier studies have also shown why a designer may prefer an allocation of one over 

several prizes in contests.  For example, Moldovanu, and Sela (2001) showed that in all-pay 

auctions under incomplete information when cost functions are linear or concave in effort, it is 

optimal to allocate the entire prize sum to a single first prize, but when cost functions are 

convex, several positive prizes may be optimal. Later, Moldovanu and Sela (2006) studied a 

two-stage all-pay auction with multiple prizes under incomplete information and showed that 

for a contest designer who maximizes the expected total effort, if the cost functions are linear 

in effort, it is optimal to allocate the entire prize sum to a single first prize. In symmetric all-

pay auctions under complete information, Barut and Kovenock (1998) indicated that a revenue 

maximizing prize structure allows any combination of k-1 prizes, where k is the number of 

players. In other words, the contest designer is indifferent to whether he should allocate one or 

several prizes.  

We focus on all-pay contests in order to describe players' behavior in real-life round-robin 

tournaments. Indeed, we can find several evidences that the all-pay contest reflects well players' 

behavior in other real-life contests. To illustrate, Krumer, Megidish and Sela (2017) studied 

round-robin tournaments with three players by means of an all-pay model and found that a 

player who competes in the first and the third rounds has the highest probability to win the 

tournament. Based on real-world data from wrestling Olympic tournaments, these findings were 

empirically confirmed by Krumer and Lechner (2017). Moreover, these authors showed that in 

six out of seven possible cases, the all-pay model correctly predicted the identity of a wrestler 

with a higher probability of winning. In addition, Krumer (2013) proposed a theoretical 

explanation for the empirical finding that there is a second-leg home advantage in European 

soccer cups as presented in Page and Page (2007) by using an all-pay model. Thus, we believe 
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that our finding which demonstrates the difference in the effects of allocating either one or two 

prizes are relevant to the players' behaviour in contests in general and, in particular, in round-

robin tournaments. 

 

2. The round-robin tournament with four symmetric players 

and two identical prizes 

We consider a round-robin all-pay tournament with four symmetric players which are 

denoted by 𝑖 ∈ {1,2,3,4}. In each round 𝑟, 𝑟 ∈ {1,2,3} there are two different sequential pair-

wise games, such that each player competes once in each of the three different rounds. Thus, 

the number of games is six and each player has three games as depicted in Table 1. The two 

players with the highest number of wins receive an equal prize. Should more than two players 

have the same highest number of wins, then each of them wins a prize with the same probability. 

Each game is modelled as an all-pay auction. In each game, both players exert efforts and the 

player with the higher effort wins the respective game. Without loss of generality, we assume 

that player i’s value of winning (the value of the prize) is =
1

2
 , and his cost function is 𝑐(𝑥𝑖) =

𝑥𝑖, where 𝑥𝑖 is his effort. 

Table 1: The schedule of the round-robin tournament with four players 

Round 1 
Game 1: Player 1 - Player 2 
Game 2: Player 3 - Player 4 

Round 2 
Game 3: Player 1 - Player 3 

Game 4: Player 2 - Player 4 

Round 3 
Game 5: Player 1 - Player 4 

Game 6: Player 2 - Player 3 

 

We begin the analysis by explaining how the players’ strategies are calculated in each 

game of the tournament. Suppose that players i and j compete in game 𝑔, 𝑔 ∈ {1,2,3,4,5,6}. We 

denote by 𝑝𝑖𝑔 the probability that player i wins the game g against player j and 𝐸𝑖𝑔 and 𝐸𝑗𝑔 

being the expected payoffs of players i and j in game g, respectively. The mixed strategies of 

the players in each game are denoted by 𝐹𝑘𝑔(𝑥), 𝑘 ∈ {𝑖, 𝑗}. In addition, we assume that player 

i’s continuation value if he wins in game g is 𝑤𝑖𝑔 given the previous and possible future 

outcomes. Similarly, we assume that player i’s continuation value if he loses game g is 𝑙𝑖𝑔, 

given the previous and possible future outcomes. Without loss of generality, we assume that 

𝑤𝑖𝑔 − 𝑙𝑖𝑔 > 𝑤𝑗𝑔 − 𝑙𝑗𝑔.  
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Then, according to Hillman and Riley (1989) and Baye, Kovenock and de Vries (1996), 

there is always a unique mixed-strategy equilibrium in which players i and j randomize on the 

interval [0, 𝑤𝑗𝑔 − 𝑙𝑗𝑔], according to their effort cumulative distribution functions, which are 

given by 

𝐸𝑖𝑔 = 𝑤𝑖𝑔𝐹𝑗𝑔(𝑥) + 𝑙𝑖𝑔 (1 − 𝐹𝑗𝑔(𝑥)) − 𝑥 = 𝑙𝑗𝑔 + 𝑤𝑖𝑔 − 𝑤𝑗𝑔 

𝐸𝑗𝑔 = 𝑤𝑗𝑔𝐹𝑖𝑔(𝑥) + 𝑙𝑗𝑔 (1 − 𝐹𝑖𝑔(𝑥)) − 𝑥 = 𝑙𝑗𝑔 

Thus, player i’s equilibrium effort in game g is uniformly distributed; that is  

𝐹𝑖𝑔(𝑥) =
𝑥

𝑤𝑗𝑔 − 𝑙𝑗𝑔
 

while player j’s equilibrium effort in game g is distributed according to the cumulative 

distribution function 

𝐹𝑗𝑔(𝑥) =
𝑙𝑗𝑔 − 𝑙𝑖𝑔 + 𝑤𝑖𝑔 − 𝑤𝑗𝑔 + 𝑥

𝑤𝑖𝑔 − 𝑙𝑖𝑔
 

Player i’s probability of winning game g against player j is then 

𝑝𝑖𝑔 = 1 −
𝑤𝑗𝑔 − 𝑙𝑗𝑔

2(𝑤𝑖𝑔 − 𝑙𝑖𝑔)
>

1

2
 

When 𝑤𝑖𝑔 − 𝑙𝑖𝑔 = 0, player i is indifferent between winning or losing and then he has no 

incentive to exert a positive effort and therefore we actually have no equilibrium. To overcome 

this complication, we can assume, similarly to Groh et al. (2012), that in every game each player 

has an additional value of winning a single game of 𝑚 > 0 where 𝑚 → 0. This assumption does 

not affect the players’ behavior, but ensures the existence of equilibrium. However, when 𝑤𝑖𝑔 −

𝑙𝑖𝑔 is strictly negative, player i has incentive to lose. Below we describe such a strategic 

manipulation. 

 

3. Strategic manipulations 

Here we show that in round 2-game 3 of our round-robin tournament where players 1 and 

3 compete against each other (see Table 1), player 1 prefers to lose. For this purpose, we analyse 

the subgame perfect equilibrium of the relevant part of this tournament. We begin with the last 

stage and go backwards until the game between players 1 and 3 in game 3 of round 2. Figure 1 

presents this part of the game tree of our round-robin tournament. 
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Figure 1: Part of the game tree of the round-robin tournament. 

The players' mixed equilibrium strategies, their expected payoffs, and their probabilities of 

winning in the above Vertexes 1-12 are summarized in the following Table 2.  
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Table 2: Summary of the players' mixed equilibrium strategies, their expected payoffs, and their 

probabilities of winning. 

Vertex 1: 

𝐸26 =
1

2
𝐹36(𝑥) − 𝑥 = 0 

𝐸36 =
1

2
𝐹26(𝑥) − 𝑥 = 0 

𝑝26 =
1

2
 , 𝑝36 =

1

2
 

Vertex 7: 

𝐸15 =
1

2
𝐹45(𝑥) +

1

2
(1 − 𝐹45(𝑥)) − 𝑥 =

1

2
 

𝐸45 = 0 ∙ 𝐹15(𝑥) − 𝑥 = 0 

𝑝15 =
1

2
 , 𝑝45 =

1

2
 

Vertex 2: 

𝐸26 =
1

2
𝐹36(𝑥) − 𝑥 = 0 

𝐸36 =
1

2
𝐹26(𝑥) − 𝑥 = 0 

𝑝26 =
1

2
 , 𝑝36 =

1

2
 

Vertex 8: 

𝐸15 =
1

2
𝐹45(𝑥) +

1

3
(1 − 𝐹45(𝑥)) − 𝑥 =

1

3
 

𝐸45 =
1

3
𝐹15(𝑥) +

1

24
(1 − 𝐹15(𝑥)) − 𝑥 =

1

6
 

𝑝15 =
2

7
 , 𝑝45 =

5

7
 

Vertex 3: 

𝐸26 =
1

6
𝐹36(𝑥) − 𝑥 = 0 

𝐸36 =
1

2
𝐹26(𝑥) +

1

6
(1 − 𝐹26(𝑥)) − 𝑥 =

1

3
 

𝑝26 =
1

4
 ,  𝑝36 =

3

4
 

Vertex 9: 

𝐸15 =
3

8
𝐹45(𝑥) − 𝑥 =

3

8
 

𝐸45 = 0 ∙ 𝐹15(𝑥) − 𝑥 = 0 

𝑝15 = 1 , 𝑝45 = 0 

Vertex 4: 
𝐸26 = 0 ∙ 𝐹36(𝑥) − 𝑥 = 0 

𝐸36 =
1

3
𝐹26(𝑥) − 𝑥 =

1

3
 

𝑝26 = 0 , 𝑝36 = 1 

Vertex 10: 

𝐸15 =
1

2
𝐹45(𝑥) − 𝑥 = 0 

𝐸45 =
1

2
𝐹15(𝑥) − 𝑥 = 0 

𝑝15 =
1

2
 , 𝑝45 =

1

2
 

Vertex 5: 

𝐸26 =
1

3
𝐹36(𝑥) − 𝑥 =

1

6
 

𝐸36 =
1

2
𝐹26(𝑥) +

1

3
(1 − 𝐹26(𝑥)) − 𝑥 =

1

3
 

𝑝26 =
3

4
 , 𝑝36 =

1

4
 

Vertex 11: 
𝐸24 = 0 ∙ 𝐹44(𝑥) − 𝑥 = 0 

𝐸44 =
1

6
𝐹24(𝑥) − 𝑥 =

1

6
 

𝑝24 = 0 , 𝑝44 = 1 

Vertex 6: 

𝐸26 =
1

2
𝐹36(𝑥) +

1

6
(1 − 𝐹36(𝑥)) − 𝑥 =

1

2
 

𝐸36 =
1

2
𝐹26(𝑥) +

1

2
(1 − 𝐹26(𝑥)) − 𝑥 =

1

2
 

𝑝26 = 1 , 𝑝36 = 0 

Vertex 12: 

𝐸24 =
1

6
𝐹44(𝑥) − 𝑥 =

1

6
 

𝐸44 = 0 ∙ 𝐹24(𝑥) − 𝑥 = 0 

𝑝24 = 1 , 𝑝44 = 0 

 

A complete analysis of the players' mixed strategies, their expected payoffs, and their 

probabilities of winning in Vertexes 1-12 are described in detail in the Appendix.  
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In the following we focus on the competition between players 1 and 3 in Vertex 13 who 

compete in there only if player 1 won the first game and player 3 won the second game. If 

player 1 wins, he will reach Vertex 8 via Vertex 11 with certainty (see the Appendix) where his 

expected payoff is 
1

3
 (𝑤13 =

1

3
). If, on the other hand, player 1 loses in Vertex 13, he reaches 

Vertex 9 via Vertex 12 with certainty (see the Appendix) where his expected payoff is 
3

8
 (𝑙13 =

3

8
). Thus, we can see that in Vertex 13, player 1's value of losing (𝑙13 =

3

8
) is strictly higher than 

his value of winning (𝑤13 =
1

3
), and therefore player 1 has an incentive to lose that game. 

If player 3, on the other hand, wins in Vertex 13, he will reach Vertex 5 via Vertexes 12 

and 9 with certainty (see the Appendix) where his expected payoff is 
1

3
 (𝑤33 =

1

3
). If, on the 

other hand, player 3 loses in Vertex 13, he reaches Vertex 8 via Vertex 11 with certainty. From 

there, he has a probability of  
2

7
  to reach Vertex 3, where his expected payoff is 

1

3
, and a 

probability of  
5

7
  to reach Vertex 4, where his expected payoff is 

1

3
 . Thus, player 3’s value of 

losing is 𝑙33 =
1

3
 which is equal to his value of winning. Given, the additional value of winning 

a single game of 𝑚 > 0 where 𝑚 → 0 player 3 in contrast to player 1 has an incentive to win 

that game. 

The intuition behind the result according to which player 1 has an incentive to lose is that 

by winning of player 1, player 4, his next opponent, has a chance to win one of the prizes, and 

as such, player 4 exerts effort when he meets player 1 in the last round. On the other hand, if 

player 1 loses in Vertex 13, player 4's chance to win a prize (or to make a positive expected 

payoff) vanishes and, as such, in the next round when he competes against player 1, he does not 

have an incentive to exert a positive effort and as such player 1 wins one of the prizes with 

almost certainty. 

In fact the intuition for the manipulation of player 1 in Vertex 13 is more concrete and 

the reason that a player has an incentive to lose after one game in which he won is that this 

player has already a significant probability to win one of the two prizes, and since he maximizes 

his expected payoff over all the tournament, he might prefer to minimize his efforts in the next 

rounds of the round-robin tournament. 
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4. Conclusion 

We analyzed the subgame perfect equilibrium of round-robin all-pay tournaments with 

four symmetric players and two identical prizes. We showed that one of the winners of the first 

round maximizes his expected payoff by losing in the second round. By comparing our results 

with the findings in Krumer, Megidish and Sela (2017) who studied a similar tournament, but 

did not detect such a situation in which players have an incentive to lose, we conclude that the 

number of prizes in round-robin tournaments explains the strategic manipulations in this 

structure.  

In order to avoid strategic manipulations where players might have an incentive to lose 

as we showed, the schedule of the tournament has to be contingent on the results, such that the 

schedule in each round has to be decided according to the outcomes in the previous rounds. In 

particular, the game between the winners of the first round should be delayed from the third 

game to the fourth one, and then the game between the winners of the first round will not affect 

the other game in the second round of the round-robin tournament. 

 

Appendix 

Game 6: Player 2 vs. Player 3 

Vertex 1 

As presented in Figure 1, players 2 and 3 compete in the last sixth game only if the identity 

of the two winners has not determined after the fifth game. This game in Vertex 1 occurs only 

if player 1 won all of his three games, player 3 won the second game, and player 2 won the 

fourth game. Thus, player 1 wins a prize, and each of the players 2 and 3 who wins the last 

game, also wins the other prize (𝑤26 = 𝑤36 =
1

2
). In the case of a loss, each of players 2 and 3, 

gets zero (𝑙26 = 𝑙36 = 0). Thus, there is always a unique mixed-strategy equilibrium in which 

players 2 and 3 randomize on the interval [ 0,
1

2
], according to their effort cumulative distribution 

functions, which are given by 

𝐸26 =
1

2
𝐹36(𝑥) − 𝑥 = 0 

𝐸36 =
1

2
𝐹26(𝑥) − 𝑥 = 0 

Then, player 2’s probability of winning game 6 against player 3 is 𝑝26 =
1

2
.  
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Vertex 2 

This game in Vertex 2 occurs only if player 1 won the first game, player 3 won the second 

game, player 1 won the third game, player 2 won the fourth game, and player 4 won the fifth 

one. Then if each of the players 2 and 3 wins the last game, he also wins the prize (𝑤26 = 𝑤36 =

1

2
). In the case of a loss, each of the players gets nothing (𝑙26 = 𝑙36 = 0). Thus, there is always 

a unique mixed-strategy equilibrium in which players 2 and 3 randomize on the interval [ 0,
1

2
], 

according to their effort cumulative distribution functions, which are given by 

𝐸26 =
1

2
𝐹36(𝑥) − 𝑥 = 0 

𝐸36 =
1

2
𝐹26(𝑥) − 𝑥 = 0 

Then, player 2’s probability of winning game 6 against player 3 is 𝑝26 =
1

2
. 

 

Vertex 3 

Players 2 and 3 compete in Vertex 3 only if player 1 won all of his previous games 

(implying that he won first prize), player 3 won the second game, and player 4 won the fourth 

game. Then, if player 2 wins, he will have the same number of wins as the three other players 

and therefore, he gets a prize of  
1

2
  with a probability of  

1

3
. Thus, player 2’s value in case of a 

win is 𝑤26 =
1

6
, but in case of a loss, he gets nothing (𝑙26 = 0). 

In that case, if player 3 wins, he wins the prize (𝑤36 =
1

2
). On the other hand, if he loses, 

there will be three players with the same number of wins, and therefore, he gets a prize of  
1

2
  

with a probability of  
1

3
. Thus, player 3's value of losing is 𝑙36 =

1

6
. Therefore, there is always a 

unique mixed-strategy equilibrium in which players 2 and 3 randomize on the interval [0,
1

6
], 

according to their effort cumulative distribution functions, which are given by 

𝐸26 =
1

6
𝐹36(𝑥) − 𝑥 = 0 

𝐸36 =
1

2
𝐹26(𝑥) +

1

6
(1 − 𝐹26(𝑥)) − 𝑥 =

1

3
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Then, player 2’s probability of winning game 6 against player 3 is 𝑝26 =
1

4
. 

 

Vertex 4 

Players 2 and 3 compete in Vertex 4 only if player 1 won the first and the third games, 

player 3 won the second game, and player 4 won the fourth and the fifth games. Then, even if 

player 2 wins, he will still get nothing, because two other players (players 1 and 4) have more 

wins. In that case, player 2’s expected payoff is zero, and therefore he has no incentive to exert 

a positive effort. However, as we previously mentioned, we assume that each player obtains an 

additional prize for winning a single game of 𝑚 > 0 where 𝑚 → 0. This assumption does not 

affect the players’ behavior, but ensures the existence of equilibrium. Consequently, player 3 

wins with certainty and will have the same number of wins as the two other players. Thus, he 

and each of these players get a prize of  
1

2
  with a probability of  

2

3
, which implies that player 3’s 

value of winning is 𝑤36 =
1

3
, but in case of a loss, he gets nothing (𝑙36 = 0). Thus, we have 

𝐸26 = 0 ∙ 𝐹36(𝑥) − 𝑥 = 0 

𝐸36 =
1

3
𝐹26(𝑥) − 𝑥 =

1

3
 

Then, player 2’s probability of winning in game 6 against player 3 is 𝑝26 = 0. 

 

Vertex 5 

Players 2 and 3 compete in Vertex 5 only if player 1 won the first and the fifth games, 

player 3 won the second and the third games, and player 2 won the fourth one. Then, if player 

2 wins, he will have the same number of wins as the two other players and therefore, he as well 

as the other two players get a prize of  
1

2
  with a probability of  

2

3
. This implies that player 2’s 

value of winning is 𝑤26 =
1

3
, but in case of a loss, he gets nothing (𝑙26 = 0). 

If player 3 wins this game, he wins the prize (𝑤36 =
1

2
). On the other hand, if he loses, 

there will be three players with the same number of wins, and therefore, he and each of the other 

two players get a prize of  
1

2
  with a probability of  

2

3
. This implies that player 3’s value of losing 

is 𝑙36 =
1

3
.  Thus, there is always a unique mixed-strategy equilibrium in which players 2 and 3 
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randomize on the interval [0,
1

6
], according to their effort cumulative distribution functions, 

which are given by 

𝐸26 =
1

3
𝐹36(𝑥) − 𝑥 =

1

6
 

𝐸36 =
1

2
𝐹26(𝑥) +

1

3
(1 − 𝐹26(𝑥)) − 𝑥 =

1

3
 

Then player 2’s probability of winning game 6 against player 3 is 𝑝26 =
3

4
. 

Vertex 6 

Players 2 and 3 compete in Vertex 6 only if player 1 won the first game, player 3 won the 

second and the third games, player 2 won the fourth game, and player 4 won the fifth one. Then, 

player 3 gets a prize regardless of whether or not he wins, whereas player 2 gets a prize only if 

he wins (𝑤26 =
1

2
). Given our assumption that there is an additional prize for winning a single 

game of 𝑚 > 0 where 𝑚 → 0 there exists an equilibrium. If player 2 loses, he will have the 

same number of wins as two other players. Therefore, he gets a prize of  
1

2
  with a probability 

of  
1

3
. Thus, player 2’s value of losing is 𝑙26 =

1

6
, and players 2 and 3’s cumulative distribution 

functions are given by 

𝐸26 =
1

2
𝐹36(𝑥) +

1

6
(1 − 𝐹36(𝑥)) − 𝑥 =

1

2
 

𝐸36 =
1

2
𝐹26(𝑥) +

1

2
(1 − 𝐹26(𝑥)) − 𝑥 =

1

2
 

Then, player 2’s probability of winning game 6 against player 3 is 𝑝26 = 1. 

 

Game 5: Player 1 vs. Player 4 

Vertex 7 

As presented in Figure 1, players 1 and 4 compete in Vertex 7 only if player 1 won the 

first and the third games, player 3 won the second game, and player 2 won the fourth game. 

Then, both players have no incentive to exert efforts since even if player 1 loses he still gets a 

prize, since it is not possible that there will be a player with more wins than player 1. On the 

other hand, if player 4 wins, he will still not get any prize, because there will be two players 

with more wins than him. Thus, based on our assumption that there is an additional prize for 
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winning a single game of 𝑚 > 0 where 𝑚 → 0 we have an equilibrium where players 1 and 4’s 

cumulative distribution functions are given by 

𝐸15 =
1

2
𝐹45(𝑥) +

1

2
(1 − 𝐹45(𝑥)) − 𝑥 =

1

2
 

𝐸45 = 0 ∙ 𝐹15(𝑥) − 𝑥 = 0 

In such a case, we assume an equal probability of winning for both players.  

Vertex 8 

Players 1 and 4 compete in Vertex 8 only if player 1 won the first and the third games, 

player 3 won the second game, and player 4 won the fourth one. Then, if player 1 wins, he will 

get a prize (𝑤15 =
1

2
). If he loses, then his expected payoff depends on the result in the sixth 

game depicted in Vertex 4, and, as we have shown, player 3 wins that game with certainty. 

Thus, if player 1 loses in Vertex 8, he will have the same number of wins as the other two 

players, and therefore, he gets a prize of  
1

2
  with a probability of  

2

3
. Thus, player 1’s value of 

losing is 𝑙15 =
1

3
.  

If player 4 wins, then his expected payoff depends on the result in the sixth game depicted 

in Vertex 4. As previously, player 4 will have the same number of wins as the two other players 

and therefore, he will also get a prize of  
1

2
 with a probability of  

2

3
. Thus, player 4’s value of 

winning is 𝑤45 =
1

3
. If, on the other hand, player 4 loses, his expected payoff depends on the 

result in the sixth game depicted in Vertex 3, and as we have shown, player 2 wins that game 

with a probability of  
1

4
. Thus, if player 4 loses, he will have the same number of wins as the 

two other players and therefore he gets a prize of  
1

2
  with a probability of  

1

3
. This implies that 

player 4’s value of losing is 𝑙45 =
1

24
. Should player 3 wins the sixth game, which happens with 

a probability of  
3

4
, player 4 gets nothing. 

Thus, there is always a unique mixed-strategy equilibrium in which players 1 and 4 

randomize on the interval [0,
1

6
], according to their effort cumulative distribution functions, 

which are given by 

𝐸15 =
1

2
𝐹45(𝑥) +

1

3
(1 − 𝐹45(𝑥)) − 𝑥 =

1

3
 

𝐸45 =
1

3
𝐹15(𝑥) +

1

24
(1 − 𝐹15(𝑥)) − 𝑥 =

1

6
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Then player 1’s probability of winning game 5 against player 4 is 𝑝15 =
2

7
. 

 

Vertex 9 

Players 1 and 4 compete in Vertex 9 only if player 1 won the first game, player 3 won the 

second and the third games, and player 2 won the fourth one. In such a case, player 4 has no 

incentive to compete. The reason is that even if player 4 wins, his expected payoff depends on 

the outcome of the last game depicted in Vertex 6, and as we have shown, in that vertex, player 

2 wins with certainty. Thus players 2 and 3 have more wins than player 4, and therefore even 

if he wins he gets nothing. Although player 4 has an expected payoff of zero, given our 

assumption that there is an additional prize for winning a single game of 𝑚 > 0 where 𝑚 → 0 

there exists an equilibrium. 

Thus, since player 4 has no incentive to win, player 1 wins with certainty. In such a case, 

his expected payoff depends on the outcome of the sixth game depicted in Vertex 5. More 

specifically, if player 2 wins that game, which happens with a probability of  
3

4
, there will be 

three players with two wins, such that each player gets a prize of  
1

2
 with a probability of  

2

3
. On 

the other hand, if player 3 wins the sixth game, which happens with a probability of  
1

4
 , player 

1 wins the prize. Thus, player 1’s value of winning is  𝑤15 =
3

8
  while his value of losing is 

𝑙15 = 0.  Therefore, players 1 and 4’s cumulative distribution functions are given by 

𝐸15 =
3

8
𝐹45(𝑥) − 𝑥 =

3

8
 

𝐸45 = 0 ∙ 𝐹15(𝑥) − 𝑥 = 0 

Then, player 1’s probability of winning game 5 against player 4 is 𝑝15 = 1. 

 

Vertex 10 

Players 1 and 4 compete in Vertex 10 only if player 1 won the first game, player 3 won 

the second and the third games, and player 4 won the fourth one. Then, if each of the players 

wins the last game, he also wins a prize together with player 3 (𝑤15 = 𝑤45 =
1

2
). In the case of 

a loss, each of the players gets nothing (𝑙15 = 𝑙45 = 0). Thus, there is always a unique mixed-
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strategy equilibrium in which players 1 and 4 randomize on the interval [0,
1

2
], according to their 

effort cumulative distribution functions, which are given by 

𝐸15 =
1

2
𝐹45(𝑥) − 𝑥 = 0 

𝐸45 =
1

2
𝐹15(𝑥) − 𝑥 = 0 

Then, player 1’s probability of winning game 5 against player 4 is 𝑝15 =
1

2
. 

Note that there will be no sixth game after Vertex 10. The reason is that the identity of 

the two winners (players 1 or 4 together with player 3) have already been determined.  

 

Game 4: Player 2 vs. Player 4 

Vertex 11 

Players 2 and 4 compete in Vertex 11 only if player 1 won the first and the third games, 

and player 3 won the second one. In such a case, player 2 has no incentives to compete. The 

reason is that even if player 2 wins, his expected payoff would be zero, since by winning he 

will reach either Vertex 1 or Vertex 2 via Vertex 7 with the same probability. As we have 

shown, in Vertexes 1 and 2, player 2’s expected payoff is zero, and therefore he has no incentive 

to exert any effort, but we have an equilibrium according to the assumption that each player 

obtains an additional prize for winning a single game of 𝑚 > 0 where 𝑚 → 0. As such, player 

2 loses with certainty, since player 4’s expected payoff in Vertex 11 in the case of winning is 

positive as was depicted in Vertex 8.  

Player 4’s expected payoff depends on the outcome of the fifth game depicted in Vertex 

8. More specifically, by winning the fourth game, which happens with certainty, player 4’s 

expected payoff in Vertex 8 is 
1

6
. Thus, player 4’s value of winning in Vertex 11 is 𝑤44 =

1

6
. 

Then, Players 2 and 4's cumulative distribution functions are given by 

𝐸24 = 0 ∙ 𝐹44(𝑥) − 𝑥 = 0 

𝐸44 =
1

6
𝐹24(𝑥) − 𝑥 =

1

6
 

Thus, player 2’s probability of winning game 4 against player 4 is 𝑝24 = 0. 
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Vertex 12 

Players 2 and 4 compete in Vertex 12 only if player 1 won the first game, and player 3 

won the second and the third ones. In such a case, player 4 has no incentive to compete. The 

reason is that even if player 4 wins, his expected payoff would be zero, since by winning he 

will reach Vertex 10, and as we have shown, player 4’s expected payoff in Vertex 10 is zero. 

Therefore, player 4 has no incentive to exert any effort, but we have an equilibrium according 

to the assumption that each player obtains an additional prize for winning a single game of 𝑚 >

0 where 𝑚 → 0. Thus, player 4 loses with certainty, since player 2’s expected payoff is positive 

if he wins the following game as was depicted in Vertex 5 for which player 2 reaches with 

certainty via Vertex 9. Thus, player 2’s expected payoff depends on the outcome in the sixth 

game depicted in Vertex 5. More specifically, by winning the fourth game which happens with 

certainty, player 2’s expected payoff in Vertex 5 (which he also reaches with certainty) is 
1

6
. 

Thus, player 2’s value of winning is  𝑤24 =
1

6
 and his value of losing is 𝑙24 = 0.  

Then, players 2 and 4’s cumulative distribution functions are given by 

𝐸24 =
1

6
𝐹44(𝑥) − 𝑥 =

1

6
 

𝐸44 = 0 ∙ 𝐹24(𝑥) − 𝑥 = 0 

Thus, player 2’s probability of winning in game 4 against player 4 is 𝑝24 = 1. 
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