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Abstract

We study two reverse contests, A and B, with two agents, each of whom has both a linear reward
function that increases in the agent's effort and an effort constraint. However, since the effort
(output) of the agents has a negative effect on society, if the agents' effort constraints are relatively
high, the designer in reverse contest A imposes a punishment such that the agent with the highest
effort who caused the greatest damage is punished. Conversely, if the agents' effort constraints
are relatively low, in reverse contest B, the designer awards a prize to the agent with the lowest
effort who caused the smallest damage. We analyze the behavior of both symmetric and
asymmetric agents in both contests A and B. In equilibrium, independent of the levels of the
agents' effort constraints, both agents are active and they have positive expected payoffs.
Furthermore, the agents might have the same expected payoff regardless of their asymmetric
values of the prize/punishment or their asymmetric effort constraints.
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Reverse Contests�

Aner Sela y

January 7, 2019

Abstract

We study two reverse contests, A and B; with two agents, each of whom has both a linear reward

function that increases in the agent�s e¤ort and an e¤ort constraint. However, since the e¤ort (output)

of the agents has a negative e¤ect on society, if the agents� e¤ort constraints are relatively high, the

designer in reverse contest A imposes a punishment such that the agent with the highest e¤ort who

caused the greatest damage is punished. Conversely, if the agents�e¤ort constraints are relatively low, in

reverse contest B, the designer awards a prize to the agent with the lowest e¤ort who caused the smallest

damage. We analyze the behavior of both symmetric and asymmetric agents in both contests A and B.

In equilibrium, independent of the levels of the agents�e¤ort constraints, both agents are active and they

have positive expected payo¤s. Furthermore, the agents might have the same expected payo¤ regardless

of their asymmetric values of the prize/punishment or their asymmetric e¤ort constraints.

Keywords: Contests, prizes, punishments

JEL classi�cation: D44, D72, D82

1 Introduction

We consider two �rms that produce a homogenous product for which the production process yields some

damage (for example, pollution). To deal with this situation, the regulator would want to reduce the �rms�

�I would like to thank Yaakov Kareev, Judith Avrahami, and David Budescu who gave me the idea for this paper.
yDepartment of Economics, Ben-Gurion University of the Negev, Beer�Sheva 84105, Israel. Email: anersela@bgu.ac.il
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total production.1 One way to do this could be to place a cap on the �rms�production or to impose a tax

that is relative to the level of production. In this paper, however, to attain this goal we assume that the

regulator imposes a punishment on the �rm with the highest production or o¤ers a prize to the �rm with

the lowest production. For both options, each �rm has an incentive to increase its production in order to

increase its pro�t, but, on the other hand, it also has an incentive to reduce production in order to either

win the prize or not be punished. As such, the �rms�behavior in such an environment is not straightforward

and our aim is to study how �rms react to the regulator�s punishment/prize policy. For this purpose, we

consider a model with two agents, each of whom has a linear reward function that is a combination of his

production and cost functions, and which increases in the agent�s e¤ort (output). In addition, each agent

has an e¤ort constraint which restricts his ability to produce an e¤ort larger than this constraint. However,

since the agents�production has a negative e¤ect on society, the regulator either imposes a punishment on

the agent with the highest e¤ort or, alternatively, o¤ers a prize to the agent with the lowest e¤ort. The

agents are not necessarily symmetric but may have asymmetric reward functions, asymmetric values of the

prize/punishment, and asymmetric e¤ort constraints. We refer to our model when the designer imposes a

punishment on the agent with the highest e¤ort as reverse contest A, and when the designer awards a prize

to the agent with the lowest e¤ort as reverse contest B.

The di¤erence between contests A and B is that instead of awarding a prize to the agent with the lowest

e¤ort as in contest B, the agent with the highest e¤ort has to pay a punishment in contest A. When there

are n agents, contest A with one punishment for the agent with the highest e¤ort is equivalent to a contest

with n� 1 identical prizes for all the agents except the one with the highest e¤ort, while in contest B only

the agent with the lowest e¤ort wins a prize. Alternatively, contest B with one prize for the agent with the

lowest e¤ort is equivalent to a contest with n�1 identical punishments for all the agents except the one with

the lowest e¤ort, while in contest A only the agent with the highest e¤ort is punished. Thus, if the number

of agents is larger than two, there is no equivalence between contests A and B and this di¤erence is derived

from the fact that prizes and punishments do not have the same e¤ect on agents�e¤orts (see Moldovanu et

al. 2012 and Sela 2019). However, by the above argument, reverse contests A and B with only two agents are

1This situation is similar to rent seeking contests in which the designer wishes to reduce the contestants�expenditure.
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equivalent, namely, they have the same mixed strategies given that the agents have to participate whether

they have positive or negative expected payo¤s. Note that if the e¤ort constraints are relatively low agents

may have negative expected payo¤s in reverse contest A when they are punished, while in reverse contest B

the agents always have positive expected payo¤s in equilibrium since they are rewarded. Thus, as we assume

that agents are rational and they participate only if they have positive expected payo¤s, we study reverse

contest A when the e¤ort constraints are relatively high, and reverse contest B when the e¤ort constraints

are relatively low. Then, in both contests forms the agents have an incentive to participate since they have

ex-ante positive expected payo¤s.

We begin by analyzing reverse contest A with two agents when the agents are symmetric, namely, they

have the same reward function, the same value for the punishment, and the same e¤ort constraint, and

afterwards when they are asymmetric. Then since each kind of asymmetry has a di¤erent e¤ect on the

agents� strategies as well as on their expected payo¤s we study three sub-cases: 1) there are asymmetric

reward functions; 2) there are asymmetric values for the punishment/prize; and 3) there are asymmetric

e¤ort constraints. Last, we study the case that combines all these three sub-cases. Similarly, we analyze the

agents�behavior in reverse contest B when they are either symmetric or asymmetric.

In both contests A and B with two agents, if the agents are either symmetric or asymmetric they both

use mixed strategies in equilibrium. While in contest A the agents randomly choose an e¤ort from an interval

between an e¤ort larger than zero and their e¤ort constraint, in contest B the agents randomly choose an

e¤ort from an interval between zero and their e¤ort constraint. In contest A; the minimal e¤ort of the agents

(left point of the support of the agents�mixed strategy) is determined such that if an agent chooses this

e¤ort he is certainly not punished, and he has the same expected payo¤ as he chooses the e¤ort constraint.

In contest B, on the other hand, the minimal e¤ort of the agents is zero since the value of the prize for

the agent with the lowest e¤ort is relatively high and then each agent has an incentive to choose the lowest

e¤ort.

Our results demonstrate that when the agents have asymmetric reward functions, they have di¤erent

expected payo¤s in both contest A and B. On the other hand, when they have asymmetric values for the

punishment in contest A or asymmetric values for the prize in contest B, regardless of the agents�asymmetry,
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they have the same expected payo¤. Furthermore, when the agents have asymmetric e¤ort constraints, in

contest A, regardless of the agents�asymmetry, they have the same expected payo¤, while in contest B they

have di¤erent expected payo¤s. The di¤erences between contests A and B are derived from the fact that

each contest deals with di¤erent levels of e¤ort constraints.

We also consider the reverse contestsA andB with more than two agents. When the agents are symmetric,

in both contests there is an equilibrium in which all the agents use the same mixed strategy. When the

agents are asymmetric in reverse contest B; where the levels of the e¤ort constraints are relatively low, the

equilibrium is quite simple if we assume that only one agent obtains the prize, but if there is more than one

agent with the lowest e¤ort, no one wins the prize. Then, the two agents use the same mixed strategies as in

the two agent contest, and all the other agents choose e¤orts that are equal to their e¤ort constraints. On

the other hand, when the agents are asymmetric in reverse contest A, and the levels of the e¤orts constraints

are relatively high, the equilibrium is not simple and we are not able to provide a complete characterization

of the equilibrium strategies.

In order to understand the uniqueness of our reverse contests, note that in reverse contest A all the

agents except the one with the highest e¤ort win the same prize. Similarly, in reverse contest B all the n�1

agents with the highest e¤orts are punished except the one with the lowest e¤ort. Furthermore, although

the equilibrium analyses of our reverse contests have features in common with the standard models of the

all-pay auction under complete information (see, for example, Baye et al. 1986, Hillman and Samet 1987,

Hillman and Reily 1989, Sela 2012, and Siegel 1989), especially those with multiple prizes (see, Barut and

Kovenock 1998, and Clark and Riis 1998) and those with prizes for winning and losing (see, Baye et al.

2012), these contests are not strategically equivalent to our reverse contests.2 To see this, in our contest

when the agents have the same e¤ort constraint, the distribution of the agents�mixed strategies is always

strictly increasing while in the all-pay auction there is a gap between the e¤ort constraint and the other

possible e¤orts chosen by the agents (see Che and Gale 1998 and Hart 2016 and Cohen et al. 2019). As

such, one of the unique results of our reverse contests and not of the all-pay auction, is that both agents,

even when they are completely asymmetric, might have the same positive expected payo¤.

2Contests are strategically equivalent if they generate the same best response functions, and as a result, the same equilibrium

e¤orts (see Chowdhury and Sheremeta 2015)
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2 Reverse contest A

Consider two agents, each of whom has both a production function �i(xi) = �ixi; �i > 1 (where xi is

contestant i�s e¤ort) and an e¤ort cost function c(xi) = xi; i = 1; 2. The designer imposes a punishment

on the agent with the highest e¤ort, and in a case that both agents have the highest e¤ort then both are

punished . Let Pi; i = 1; 2, be agent i�s value for this punishment. We de�ne agent i�s reward function as

�i(xi) = �i(xi)� c(xi) = (�i � 1)xi = �ixi; i = 1; 2: Then, agent i�s expected payo¤ is

ui(xi) =

8>><>>:
�ixi � Pi if xi � xj

�ixi if xi < xj

In addition, agent i has an e¤ort constraint of di such that xi � di; i = 1; 2. Each agent chooses his e¤ort in

order to maximize his expected payo¤ given the e¤ort of the other agent.

2.1 Symmetric contests

We begin by analyzing the agents�behavior in reverse contest A when the agents are symmetric, namely,

they have the same reward function, �i = �; i = 1; 2, the same value for the punishment if they win, Pi = P ,

i = 1; 2, and the same e¤ort constraint di = d; i = 1; 2. The next result shows that if the agents� e¤ort

constraint is relatively high such that d > P
� , both agents use the same mixed strategy equilibrium where

the minimal e¤ort (the left point of the support of the agents�mixed strategy) of the agents is positive while

the maximal e¤ort (the right point of the support of the agents�mixed strategy) is equal to their e¤ort

constraint. Furthermore, the expected payo¤ of both agents is the same and positive.

Proposition 1 In reverse contest A with two symmetric agents, if �d > P; there is a mixed strategy equi-

librium in which agents 1; 2 randomize on the interval [d � P
� ; d] according to their cumulative distribution

function F (x) which is given by

�PF (x) + �x = �P + �d

Thus, each agent�s equilibrium e¤ort is distributed according to the cumulative distribution function

F (x) =
�P + �(d� x)

�P , d� P
�
� x � d (1)
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Proof. See Appendix A.

The expected payo¤ of each agent is then

�i = �P + �d , i = 1; 2

The condition �d > P in Proposition 1 implies that all the agents have positive expected payo¤s. Otherwise,

they will stay out of the contest. The agents�expected total e¤ort is

TEA = 2

Z d

d�P
�

xF 0(x)dx = 2

Z d

d�P
�

x
�

P
dx (2)

= 2d� P
�

As we could expect, the total e¤ort increases in the values of the e¤ort constraint and the marginal

reward, but, on the other hand, it decreases in the value of the punishment.

2.2 Contests with asymmetric reward functions

We assume here that the agents are asymmetric such that they have di¤erent reward functions. Without

loss of generality, �1 � �2: We also assume that agents have the same value for the punishment if they win,

Pi = P , and the same e¤ort constraint di = d , i = 1; 2: The next result shows that if the e¤ort constraint

is relatively high such that d > P
�1
then both agents use mixed strategies and compete not to be punished

when they have di¤erent expected payo¤s.

Proposition 2 In reverse contest A with two asymmetric agents such that �1 � �2; if �1d > P , there is

a mixed strategy equilibrium in which both agents randomize on the intervals [d � P
�1
; d] according to their

cumulative distribution functions F1(x); F2(x) which are given by

�PF2(x) + �1x = �P + �1d

�PF1(x) + �2x = ��2
�1
P + �2d

Thus, agent 1�s equilibrium e¤ort is distributed according to the cumulative distribution function

F1(x) =

8>><>>:
��2
�1
P+�2(d�x)
�P , d� P

�1
� x < d

1 , x � d
(3)
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and agent 2�s equilibrium e¤ort is distributed according to the cumulative distribution function

F2(x) =
�P + �1(d� x)

�P , d� P

�1
� x � d (4)

Proof. See Appendix A.

Then, the agents�expected payo¤s are given by

�1 = �P + �1d

�2 = ��2
�1
P + �2d

Note that �1 > �2 implies that �1 > �2. The condition �1d > P implies that �i > 0 for i = 1; 2, otherwise

the agents will stay out of the contest. The expected total e¤ort is

TEA =

Z d

d� P
�1

xF 01(x)dx+

Z d

d� P
�1

xF 02(x)dx = 2d� P
�1 + �2
2�21

(5)

When comparing the expected total e¤ort in the symmetric (2) and asymmetric (5) contests with two agents,

the expected total e¤ort in the asymmetric contest with reward functions of �ix, i = 1; 2 is higher than the

expected total e¤ort in the symmetric contest in which the common reward function is either �1x or �2x:

2.3 Contests with asymmetric punishments

We assume now that the agents are asymmetric such that they have di¤erent values for the punishment if

they win where P1 � P2; :We also assume that agents have the same reward function, �i = �, and the same

e¤ort constraint di = d for i = 1; 2: The next result shows that if the agents�e¤ort constraint is relatively

high such that d > P1
� , then both agents use mixed strategies and compete not to be punished .In this case

the equilibrium strategies are similar to when there are asymmetric reward functions except for the fact that

both agents have the same expected payo¤.

Proposition 3 In reverse contest A with two asymmetric agents where P1 � P2, if �d > P1, there is a

mixed-strategy equilibrium in which agents 1; 2; randomize on the intervals [d � P1
� ; d] according to their

cumulative distribution functions F1(x); F2(x) which are given by

�P1F2(x) + �x = �P1 + �d

�P2F1(x) + �x = �P1 + �d
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Thus, agent 1�s equilibrium e¤ort is distributed according to the cumulative distribution function

F1(x) =

8>><>>:
�P1+�(d�x)

�P2 , d� P1
� � x < d

1 , x � d
(6)

and agent 2�s equilibrium e¤ort is distributed according to the cumulative distribution function

F2(x) =
�P1 + �(d� x)

�P1
, d� P1

�
� x � d (7)

Proof. See Appendix A.

In that case, although the agents have asymmetric values for the punishment they have the same expected

payo¤

�i = �P1 + �d , i = 1; 2

The condition �d > P1 implies that both agents have a positive expected payo¤. Then, the agents�expected

total e¤ort is

TEA = 2d�
P1(P1 + P2)

2�P2
(8)

When comparing the expected total e¤ort in the symmetric (2) and asymmetric (8) contests with two

agents, the expected total e¤ort in the asymmetric contest with values of punishments Pi, i = 1; 2 is higher

than the expected total e¤ort in the symmetric contest with a common value of punishment of either P1 or

P2:

2.4 Contests with asymmetric e¤ort constraints

We assume here that agents have asymmetric e¤ort constraints where d1 � d2: We also assume that agents

have the same value of punishment Pi = P , and the same reward function �i = � for i = 1; 2: The next

result shows that if the e¤ort constraints are relatively high such that the highest e¤ort constraint satis�es

d1 >
P
� and P > �(d1 � d2), then the two agents use mixed strategies in which each of them chooses the

e¤ort that is equal to his e¤ort constraint with a positive probability, namely the supports of the agents are

not the same as in the previous cases. Similar to when there are asymmetric values for the punishments,

regardless of the asymmetry, both agents have the same expected payo¤.
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Proposition 4 In reverse contest A with two asymmetric agents where d1 � d2, if �d1 > P and P >

�(d1�d2), there is a mixed-strategy equilibrium in which agent i; i = 1; 2 randomizes on the interval [d1�P
� ; di]

according to his cumulative distribution function Fi(x) which is given by

�PF2(x) + �x = �P + �d1

�PF1(x) + �x = �P + �d1

Thus, agent 1�s equilibrium e¤ort is distributed according to the cumulative distribution function

F1(x) =

8>>>>>><>>>>>>:

�P+�(d1�x)
�P , x � d2

�P+�(d1�d2)
�P , d2 < x < d1

1 , x � d1

(9)

agent 2�s equilibrium e¤ort is distributed according to the cumulative distribution function

F2(x) =

8>><>>:
�P+�(d1�x)

�P , x < d2

1 , x � d2
(10)

Proof. See Appendix A.

In that case, although the agents have asymmetric e¤ort constraints, they have the same expected payo¤

�i = �P + �d1 , i = 1; 2

The condition �d1 > P implies that the highest e¤ort constraint is relatively high, and the condition

P > �(d1� d2) implies that the di¤erence between the levels of both agents�e¤ort constraints are relatively

small. These conditions imply that both agents have a positive expected payo¤, otherwise the agents will

stay out of the contest. The condition P > �(d1 � d2) also implies that the interval [d1 � P
� ; d2] exists, and

if this condition does not hold then each agent will choose an e¤ort that is equal to his e¤ort constraint.

In that case, the agents�expected total e¤ort is

TEA =

Z d1

d1�P
�

xF 01(x)dx+

Z d2

d1�P
�

xF 02(x)dx2d1 = 2d1 �
P

�
(11)

When comparing the expected total e¤ort in the symmetric (2) and asymmetric (11) contests with two

agents, the expected total e¤ort in the asymmetric contest with e¤ort constraints di, i = 1; 2 is higher than

the expected total e¤ort in the symmetric contest with a common e¤ort constraint of d2 but is the same as

the expected total e¤ort in the symmetric contest with a common e¤ort constraint of d1:
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2.5 Contests with asymmetric punishments, asymmetric reward functions and

asymmetric e¤ort constraints

We assume here that agents have asymmetric e¤ort constraints where d1 � d2:The next result shows that

if the agents�e¤ort constraints are relatively high such that �1d1 > P1 and P1 > �1(d1 � d2) then the two

agents use mixed strategies and they have di¤erent expected payo¤s.

Proposition 5 In reverse contest A with two asymmetric agents where

1) d1 � d2

2) �1d1 > P1 and P1 > �1(d1 � d2),

3) P1
�1
� P2

�2

there is a mixed-strategy equilibrium in which both agents randomize on the intervals [d1� P1
�1
; di] according

to their cumulative distribution functions F1(x); F2(x) which are given by

�P1F2(x) + �1x = �P1 + �1d1

�P2F1(x) + �2x = ��2
�1
P1 + �2d1

Thus, agent 1�s equilibrium e¤ort is distributed according to the cumulative distribution function

F1(x) =

8>>>>>><>>>>>>:

��2
�1
P1+�2(d1�x)
�P2 , x � d2

��2
�1
P1+�2(d1�d2)
�P2 , d2 < x < d1

1 , x � d1

(12)

and agent 2�s equilibrium e¤ort is distributed according to the cumulative distribution function

F2(x) =

8>><>>:
�P1+�1(d1�x)

�P1 , x < d2

1 , x � d2
(13)

Proof. See Appendix.

In that case, the agents�expected payo¤s are given by

�1 = �P1 + �1d1

�2 = � �2
�1
P1 + �2d1
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Note that �1d1 > P1 implies that �1 > �2. It also implies that F2(x) is well de�ned and the condition

P1
�1
� P2

�2
implies that F1(x) is well de�ned. The expected total e¤ort is then

TE =

Z d1

d�P1
�1

xF 01(x)dx+

Z d2

d�P1
�1

xF 02(x)dx = 2d1 � P
�1 + �2
2�21

(14)

3 Reverse contest B

Consider now two agents, each of whom has both a production function �i(xi) = �ixi; �i > 1 (where xi is

contestant i�s e¤ort) and an e¤ort cost function c(xi) = xi; i = 1; 2. We de�ne agent i�s reward function as

�i(xi) = �i(xi) � c(xi) = (�i � 1)xi = �ixi; i = 1; 2: The designer allocates a prize to the agent with the

lowest e¤ort. Let Vi; i = 1; 2; be agent i�s value for this prize. Agent i�s expected payo¤ is

ui(xi) =

8>><>>:
�ixi if xi � xj

�ixi + Vi if xi < xj

In addition, agent i has an e¤ort constraint of di such that xi � di; i = 1; 2. Each agent chooses his e¤ort in

order to maximize his expected payo¤ given the e¤orts of the other agent.

3.1 Symmetric contests

Now we assume that the agents are symmetric, namely, they have the same reward function, �i = �; i = 1; 2;

the same value for the prize, Vi = V , i = 1; 2; and the same e¤ort constraint di = d; i = 1; 2. Then, if the

e¤ort constraint is relatively low such that d < V
� , the agents�mixed strategy equilibrium is given by

Proposition 6 In reverse contest B with two symmetric agents, if �d < V; there is a mixed strategy equilib-

rium in which agents 1; 2 randomize on the interval [0; d] according to their cumulative distribution function

F (x) which is given by

V (1� F (x)) + �x = �d

Thus, each agent�s equilibrium e¤ort is distributed according to the cumulative distribution function

F (x) = 1� �(d� x)
V

(15)
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Proof. See Appendix B.

The agents have the same expected payo¤

�i = �d , i = 1; 2

and their expected total e¤ort is

TEB = 2

Z d

0

xF 0(x)dx = 2

Z d

0

ax

V
dx =

ad2

V
(16)

Note that the symmetric equilibrium in reverse contest B and A are similar although they deal with di¤erent

levels of the e¤ort constraint.

3.2 Contests with asymmetric reward functions

We assume here that the agents are asymmetric in that they have di¤erent reward functions. Without loss

of generality, �1 � �2: We also assume that agents have the same value for the prize, Vi = V , and the same

e¤ort constraint di = d , i = 1; 2: The next result shows that if the agents�e¤ort constraint is relatively low

such that d < V
�1
then the two agents use mixed strategies and they have di¤erent expected payo¤s.

Proposition 7 In reverse contest B with two asymmetric agents such that �1 � �2; if �1d < V , there is an

equilibrium in which both agents randomize on the intervals [0; d] according to their cumulative distribution

functions Fi(x); i = 1; 2 which are given by

V (1� F2(x)) + �1x = �1d

V (1� F1(x)) + �2x = �2d

Thus, agent 1�s equilibrium e¤ort is distributed according to the cumulative distribution function

F1(x) = 1�
�2(d� x)

V
(17)

and agent 2�s equilibrium e¤ort is distributed according to the cumulative distribution function

F2(x) = 1�
�1(d� x)

V
(18)

Proof. See Appendix B.
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In that case, the agents�expected payo¤s are given by

�i = �id; i = 1; 2

The condition �1d < V implies that both agents have an incentive to compete for the prize and this condition

decreases their minimal e¤ort to zero. Note that �1 > �2 implies that �1 > �2. The expected total e¤ort is

TEB =

Z d

0

xF 01(x)dx+

Z d

0

xF 02(x)dx (19)

=

Z d

0

a2
V
xdx+

Z d

0

a1
V
xdx+

=
�1 + �2
2V

d2

3.3 Contests with asymmetric prizes

Here we assume that the agents are asymmetric in that they have di¤erent values for the prize where Vi � V2.

We also assume that agents have the same production function, �i = �, and the same e¤ort constraint di = d

for i = 1; 2. The next result shows that if the e¤ort constraint is relatively low such that d < V2
� both agents

use mixed strategies and compete for the prize for which they have the same expected payo¤.

Proposition 8 In reverse contest B with two asymmetric agents when V1 � V2, if �d < V2, there is a

mixed strategy equilibrium in which agents 1; 2; randomize on the intervals [0; d] according to their cumulative

distribution functions F1(x); F2(x) which are given by

V1(1� F2(x)) + �x = �d

V2(1� F1(x)) + �x = �d

Thus, agent 1�s equilibrium e¤ort is distributed according to the cumulative distribution function

F1(x) = 1�
�(d� x)
V2

; (20)

agent 2�s equilibrium e¤ort is distributed according to the cumulative distribution function

F2(x) = 1�
�(d� x)
V1

; (21)

Proof. See Appendix B.
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The condition �d < V2 implies that both agents have an incentive to compete for the prize. In that case,

although the agents have asymmetric values for the prize they have the same expected payo¤

�i = �d , i = 1; 2

Their expected total e¤ort is

TEB =

Z d

0

xF 02(x)dx+

Z d

0

xF 01(x)dx (22)

=

Z d

0

�

V1
xdx+

Z d

0

�

V2
xdx =

�d2

2V1
+
�d2

2V2

3.4 Contests with asymmetric e¤ort constraints

We assume here that the two agents have asymmetric e¤ort constraints where d1 � d2:We also assume that

they have the same value of the prize Vi = V , and the same production function �i = � for i = 1; 2: The

next result shows that the two agents use mixed strategies but they do not have the same expected payo¤.

Proposition 9 In reverse contest B with two asymmetric agents when d1 � d2, if �d1 < V , there is a

mixed strategy equilibrium in which both agents randomizes on the interval [0; d2] according to his cumulative

distribution function Fi(x); i = 1; 2; which is given by

V (1� F1(x)) + �x = �d2

V (1� F2(x)) + �x = �d1

Thus, agent 1�s equilibrium e¤ort is distributed according to the cumulative distribution function

F1(x) = 1�
�(d2 � x)

V
; (23)

and agent 2�s equilibrium e¤ort is distributed according to the cumulative distribution function

F2(x) =

8>><>>:
1� �(d1�x)

V ; x < d2

1; x � d2
; (24)

Proof. See Appendix B.

The condition �d2 < V implies that both agents have an incentive to compete for the prize. In that case,

the agents�expected payo¤s are given by

�i = �di , i = 1; 2
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and their expected total e¤ort is

TEB =

Z d2

0

xF 02(x)dx+

Z d2

0

xF 01(x)dx+ d2
�(d1 � d2)

V
(25)

=
�(d22 + d

2
1)

2V
+ d2

�(d1 � d2)
V

3.5 Contests with asymmetric reward functions, asymmetric prizes and asym-

metric e¤ort constraints

We assume here that agents have asymmetric e¤ort constraints where di � d2: The next result shows that

if the e¤ort constraints are relatively low such that d1 < V1
�1
and d2 < V2

�2
then the two agents use mixed

strategies and have di¤erent expected payo¤s.

Proposition 10 In reverse contest B with two asymmetric agents where

1) d1 � d2

2) �1d1 < V1

3) �2d2 < V2

there is a mixed strategy equilibrium in which both agents randomize on the intervals [0; d2] according to

their cumulative distribution functions F1(x); F2(x) which are given by

V2(1� F1(x)) + �2x = �2d2

V1(1� F2(x)) + �1x = �1d1

Thus, agent 1�s equilibrium e¤ort is distributed according to the cumulative distribution function

F1(x) = 1�
�2(d2 � x)

V2
; (26)

agent n�s equilibrium e¤ort is distributed according to the cumulative distribution function

F2(x) =

8>><>>:
1� �1(d1�x)

V1
; x < d2

1; x � d2
; (27)

Proof. See Appendix B.

The agents�expected payo¤s are given by

�i = �idi , i = 1; 2
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Note that if �2 is su¢ ciently larger than �1 then agent 2 has a higher expected payo¤ than agent 1. Also,

the conditions �idi < Vi; i = 1; 2 imply that the distribution functions are well de�ned. In contrast to the

case with only asymmetric e¤ort constraints, here we require that both e¤ort constraints be relatively small.

Then, the agents�expected total e¤ort is

TEB =

Z d2

0

xF 02(x)dx+

Z d2

0

xF 01(x)dx+ d2
�1(d1 � d2)
Vn�1

(28)

= (
�1
V1
+
�2
V2
)
d22
2
+ d2

�1(d1 � d2)
V1

4 Reverse contests with more than two agents

4.1 Reverse contest A

Suppose that in reverse contest A there are n symmetric agents who have the same reward function, �i =

�; i = 1; :::; n; the same value for the punishment if they win, Pi = P , i = 1; :::; n, and the same e¤ort

constraint di = d; i = 1; :::; n. Then, agent i�s expected payo¤ is

ui(xi) =

8>><>>:
�ixi � Pi if xi � maxj xj

�ixi if xi < maxj xj

The next result shows that similar to the two-agent contest, all of the agents use the same mixed strategy

equilibrium, and the expected payo¤ of all the agents is the same and positive.

Proposition 11 In reverse contest A with n symmetric agents, if �d > P; there is a mixed strategy equilib-

rium in which agents 1; :::; n randomize on the interval [d� P
� ; d] according to their cumulative distribution

function F (x) which is given by

�PF (x)n�1 + �x = �P + �d

Thus, each agent�s equilibrium e¤ort is distributed according to the cumulative distribution function

F (x) =
n�1

r
�P + �(d� x)

�P , d� P
�
� x � d

The expected payo¤ of each agent is

�i = �P + �d , i = 1; :::; n
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If we assume that there are n asymmetric agents who have asymmetric reward functions, or asymmetric

prizes, or asymmetric e¤ort constraints there is no a simple generalization of the the equilibrium of the

two-agent contest to larger contests with more than two agents.

4.2 Reverse contest B

Now assume that there are n symmetric agents who have the same reward function, �i = �; i = 1; :::; n; the

same value for the prize, Vi = V , i = 1; :::; n; and the same e¤ort constraint di = d; i = 1; :::; n. Agent i�s

expected payo¤ is

ui(xi) =

8>><>>:
�ixi if xi � minxj

�ixi + Vi if xi < minxj

Then, similar to the two-agent contest, the agents�mixed strategy equilibrium is given by

Proposition 12 In reverse contest B with n symmetric agents, if �d < V; there is a mixed strategy equi-

librium in which agents 1; :::; n randomize on the interval [0; d] according to their cumulative distribution

function F (x) which is given by

V (1� F (x))n�1 + �x = �d

Thus, each agent�s equilibrium e¤ort is distributed according to the cumulative distribution function

F (x) = 1� n�1

r
�(d� x)
V

The agents have the same expected payo¤

�i = �d , i = 1; :::; n

If we assume that there are n asymmetric agents who have either asymmetric reward functions, asym-

metric prizes, or asymmetric e¤ort constraints then we obtain that two agents behave exactly as in reverse

contest B with two agents and each of the other agents has no incentive to compete for the prize and he

chooses an e¤ort that is equal to his e¤ort constraint.

17



5 Conclusions

We analyzed the equilibrium strategies of two agents in two types of contests referred to as reverse contest

A in which the designer imposes a punishment on the agent with the highest e¤ort and reverse contest B in

which the designer awards a prize to the agent with the lowest e¤ort. The main properties of these equilibria

are as follows:

� The smallest point of the support of the agents�mixed strategies in contest A is zero while in contest

B it is larger than zero.

� In the symmetric and asymmetric contests A and B, both agents use mixed strategies and have a

positive expected payo¤.

� If the agents have asymmetric reward functions in both contests A and B, they have di¤erent expected

payo¤s.

� If agents have asymmetric values for the prize/punishment in both contests A and B, all agents have

the same expected payo¤.

� In contest A, if agents have asymmetric e¤ort constraints, the agents have the same expected payo¤. In

contest B; on the other hand, if agents have asymmetric e¤ort constraints, they have di¤erent expected

payo¤s.

Accordingly, if the designer uses the right reverse contest, in the mixed-strategy equilibrium the agents

have positive expected payo¤s and therefore they both have an incentive to participate in the contests. In

particular, the designer should use reverse contest A if the levels of the agents�e¤ort constraints are relatively

high and otherwise, if the levels of the agents�e¤ort constraints are relatively small, he should use reverse

contest B:
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6 Appendix A

6.1 Proof of Proposition 1

The function F (x) given by (1) is well-de�ned, strictly increasing on [d�P
� ; d], continuous, satis�es F (d�

P
� ) =

0 and F (d) = 1. Thus, F (x) is a cumulative distribution function of a continuous probability distribution

supported on
�
d� P

� ; d
�
. In order to see that the above strategies are an equilibrium, note that when agent

2 uses the mixed strategy F (x), agent 1�s expected payo¤ is �1 = �P + �d for any e¤ort x 2 [d � P
� ; d].

Since it can be easily shown that for agent 1, e¤orts below d� P
� would lead to a lower expected payo¤ than

�P + �d, and since e¤orts above d are infeasible, any e¤ort in [d� P
� ; d] is a best response of agent 1 when

agent 2 uses F (x): By symmetry, any e¤ort in [d � P
� ; d] is a best response of agent 2 when agent 1 uses

F (x): Hence, F (x) given by (1) is a symmetric mixed strategy equilibrium.

6.2 Proof of Proposition 2

The functions Fi(x); i = 1; 2, given by (3) and (4) are well-de�ned, strictly increasing on [d � P
�1
; d],

continuous, and satisfy both F1(d� P
� ) = F2(d�

P
� ) = 0, and F2(d) = 1; F1(d) = 1, when agent 1 chooses the

e¤ort that is equal to d with a probability of �1��2�1
> 0. Thus, Fi(x); i = 1; 2 are cumulative distribution

functions of continuous probability distributions supported on
h
d� P

�1
; d
i
. In order to see that the above

strategies are an equilibrium, note that when agent 2 uses the mixed strategy F2(x); agent 1�s expected

payo¤ is �1 = �P + �1d for any e¤ort x 2 [d� P
�1
; d]. Since it can be easily shown that for agent 1, e¤orts

below d� P
�1
would lead to a lower expected payo¤ than �P + �1d and that e¤orts above d are infeasible,

any e¤ort in [d� P
�1
; d] is a best response of agent 1 when agent 2 uses F2(x): Similarly, when agent 1 uses

the mixed strategy F1(x), agent 2�s expected payo¤ is �2 = ��2
�1
P +�2d for any e¤ort x 2 [d� P

�1
; d). Since

it can be easily shown that for agent 2, e¤orts below d � P
�1
and an e¤ort that is equal to d would result

in a lower expected payo¤, and e¤orts above d are infeasible, any e¤ort in [d � P
�1
; d) is a best response of

agent 2 when agent 1 uses F1(x):Hence, the mixed strategies (F1(x); F2(x)) given by (3) and (4) are a mixed

strategy equilibrium.
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6.3 Proof of Proposition 3

The functions Fi(x); i = 1; 2, given by (6) and (7), are well de�ned, strictly increasing on [d � P1
� ; d],

continuous, satisfy F1(d � P1
� ) = F2(d � P1

� ) = 0, and F2(d) = 1; F1(d) = 1, where agent 1 chooses the

e¤ort that is equal to d with a probability of P2�P1P2
> 0. Thus, Fi(x); i = 1; 2 are cumulative distribution

functions of continuous probability distributions supported on
�
d� P1

� ; d
�
. In order to see that the above

strategies are an equilibrium, note that when agent 2 uses the mixed strategy F2(x); agent 1�s expected

payo¤ is �1 = �P1 + �d for any e¤ort x 2 [d� P1
� ; d]. Since it can be easily shown that for agent 1, e¤orts

below d � P1
� would lead to a lower expected payo¤ than �P1 + �d and e¤orts above d are infeasible, any

e¤ort in [d� P1
� ; d] is a best response of agent 1 when agent 2 uses F2(x). Similarly, when agent 1 uses the

mixed strategy F1(x), agent 2�s expected payo¤ is �2 = �P1 +�d for any e¤ort x 2 [d� P1
� ; d). Since it can

be easily shown that for agent 2, e¤orts below d� P1
� as well as an e¤ort that is equal to d would result in a

lower expected payo¤, and e¤orts above d are infeasible, any e¤ort in [d� P1
� ; d) is a best response of agent

2 when agent 1 uses F1(x). Hence, the mixed strategies (F1(x); F2(x)) given by (6) and (7) are a mixed

strategy equilibrium.

6.4 Proof of Proposition 4

The functions Fi(x); i = 1; 2, given by (9) and (10), are well-de�ned, strictly increasing on [d1 � P
� ; d2],

continuous, and satisfy F1(d1 � P
� ) = F2(d1 �

P
� ) = 0. Agent 2�s mixed strategy satis�es F2(d2) = 1, when

agent 2 chooses the e¤ort that is equal to d2 with a probability of
�(d1�d2)

P > 0. Agent 1�s mixed strategy

satis�es F1(d2) < F1(d1) = 1, when agent 1 chooses the e¤ort that is equal to d1 with a probability of

�(d1�d2)
P > 0.

Thus, Fi(x); i = 1; 2; is a cumulative distribution function of continuous probability distributions sup-

ported on
�
d1 � P

� ; di
�
. In order to see that the above strategies are an equilibrium, note that when agent 2

uses the mixed strategy F2(x). agent 1�s expected payo¤ is �1 = �P+�d1 for any e¤ort x 2 [d1�P
� ; d2][fd1g.

Since it can be easily shown that for agent 1, e¤orts below d1 � P
� and between d2 and d1would lead to a

lower expected payo¤ than �P +�d1 and that e¤orts above d1 are infeasible, any e¤ort in [d1� P
� ; d2][fd1g

is a best response of agent 1 when agent 2 uses F2(x). Similarly, when agent 1 uses the mixed strategy F1(x)
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, agent 2�s expected payo¤ is �2 = �P +�d1 for any e¤ort x 2 [d1� P
� ; d2]. Since it can be easily shown that

for agent 2, e¤orts below d1 � P
� would result in a lower expected payo¤ and e¤orts above d2 are infeasible,

any e¤ort in [d1 � P
� ; d2] is a best response of agent 2 when agent 1 uses F1(x). Hence, the mixed strategies

(F1(x); F2(x)) given by (9) and (10) are a mixed strategy equilibrium.

6.5 Proof of Proposition 5

The functions Fi(x); i = 1; 2, given by (12) and (13), are well-de�ned, strictly increasing on [d1 � P1
�1
; d2],

continuous, and satisfy F1(d1 � P1
�1
) = F2(d1 � P1

�1
) = 0. Agent 2�s mixed strategy satis�es F2(d2) = 1,

when agent 2 chooses the e¤ort that is equal to d2 with a probability of
�1(d1�d2)

P1
> 0. Agent 1�s mixed

strategy satis�es F1(d2) < F1(d1) = 1, when agent 1 chooses the e¤ort that is equal to d1 with a probability

of 1� ��2
�1
P1+�2(d1�d2)
�P2 > 0.

Thus, Fi(x); i = 1; 2; is a cumulative distribution function of continuous probability distributions sup-

ported on
h
d1 � P1

�1
; di

i
. In order to see that the above strategies are an equilibrium, note that when

agent 2 uses the mixed strategy F2(x), agent 1�s expected payo¤ is �1 = �P1 + �1d1 for any e¤ort

x 2 [d1 � P
� ; d2] [ fd1g. Since it can be easily shown that for agent 1, e¤orts below d1 �

P1
�1
and between d2

and d1would lead to a lower expected payo¤ than �P1 + �1d1 and that e¤orts above d1 are infeasible, any

e¤ort in [d1 � P1
�1
; d2] [ fd1g is a best response of agent 1 when agent 2 uses F2(x): Similarly, when agent 1

uses the mixed strategy F1(x), agent 2�s expected payo¤ is �2 = ��2
�1
P1+�2d1 for any e¤ort x 2 [d1� P

� ; d2].

Since it can be easily shown that for agent 2, e¤orts below d1 � P1
�1
would result in a lower expected payo¤

and e¤orts above d2 are infeasible, any e¤ort in [d1 � P1
�1
; d2] is a best response of agent 2 when agent 1 uses

F1(x). Hence, the mixed strategies (F1(x); F2(x)) given by (12) and (13) are a hybrid equilibrium.

7 Appendix B

7.1 Proof of Proposition 6

The function F (x) given by (15) is well-de�ned, strictly increasing on [0; d], continuous, and satis�es both

F (0) = 1 � �d
V and F (d) = 1. Thus, F (x) is a cumulative distribution function of a continuous probability
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distribution supported on [0; d]. In order to see that the above strategies are an equilibrium, note that when

agent 2 uses the mixed strategy F (x), agent 1�s expected payo¤ is �1 = �d for any e¤ort x 2 [0; d]. Since

for agent 1 e¤orts above d are infeasible, any e¤ort in [0; d] is a best response of agent 1 when all the other

agents use F (x): By symmetry, any e¤ort in [0; d] is a best response of agent 2 when agent 1 uses F (x):

Hence, F (x) given by (15) is a symmetric mixed strategy equilibrium.

7.2 Proof of Proposition 7

The functions Fi(x); i = 1; 2, given by (17) and (18), are well-de�ned, strictly increasing on [0; d], continuous,

and satisfy F1(0) = �2d
V ; F2(0) =

�1d
V , and F1(d) = F2(d) = 1. Thus, Fi(x); i = 1; 2 are cumulative

distribution functions of continuous probability distributions supported on [0; d]. In order to see that the

above strategies are an equilibrium, note that when agent 2 uses the mixed strategy F2(x), agent 1�s expected

payo¤ is �1 = �1d for any e¤ort x 2 [0; d]. Since for agent 1, e¤orts above d are infeasible, any e¤ort in

[0; d] is a best response of agent 1 when agent 2 uses F2(x). Similarly, when agent 1 uses the mixed strategy

F1(x) agent 2�s expected payo¤ is �2 = �2d for any e¤ort x 2 [0; d]. Since for agent 2 e¤orts above d

are infeasible, any e¤ort in [0; d) is a best response of agent 2 when agent 1 uses F1(x):Hence, the mixed

strategies (F1(x); F2(x)) given by (17) and (18) are a mixed strategy equilibrium.

7.3 Proof of Proposition 8

The functions Fi(x); i = 1; 2, given by (20) and (21), are well de�ned, strictly increasing on [0; d], continuous,

and satisfy F1(0) = �d
V2
; F2(0) =

�d
V1
, and F2(d) = F1(d) = 1. Thus, Fi(x); i = 1; 2 are cumulative distribution

functions of continuous probability distributions supported on [0; d]. In order to see that the above strategies

are an equilibrium, note that when agent 2 uses the mixed strategy F2(x); agent 1�s expected payo¤ is �1 = �d

for any e¤ort x 2 [0; d]. Since for agent 1 e¤orts above d are infeasible, any e¤ort in [0; d] is a best response of

agent 1 when agent 2 uses F2(x): Similarly, when agent 1 uses the mixed strategy F1(x), agent 2�s expected

payo¤ is �2 = �d for any e¤ort x 2 [0; d). Since for agent 2 e¤orts above d are infeasible, any e¤ort in [0; d)

is a best response of agent 2 when agent 1 uses F1(x). Hence, the mixed strategies (F1(x); F2(x)) given by

(20) and (21) are a mixed strategy equilibrium.

22



7.4 Proof of Proposition 9

The functions Fi(x); i = 1; 2, given by (23) and (24) are well-de�ned, strictly increasing on [0; d2], continuous,

and satisfy F1(0) = �dn
V , and F2(0) =

�dn�1
V . Agent 2�s mixed strategy satis�es F2(d2) = 1, when agent

2 chooses the e¤ort that is equal to d2 with the probability of
�(d1�d2)

V > 0. Agent 1�s mixed strategy

satis�es F1(d2) = 1. Thus, Fi(x); i = 1; 2; is a cumulative distribution function of continuous probability

distributions supported on [0; d2]. In order to see that the above strategies are an equilibrium, note that

when agent 2 uses the mixed strategy F2(x), agent 1�s expected payo¤ is �1 = �d1 for any e¤ort x 2 [0; d2].

Since it can be easily shown that for agent 1, e¤orts above d2 would result in a lower expected payo¤ for

agent 1; any e¤ort in [0; d2] is a best response of agent 1 when agent 2 uses F2(x): Similarly, when agent

1 uses the mixed strategy F1(x), agent 2�s expected payo¤ is �2 = �d2 for any e¤ort x 2 [0; d2]. Since for

agent 2 e¤orts above d2 are infeasible, any e¤ort in [0; d2] is a best response of agent 2 when agent 1 uses

F1(x). Hence, the mixed strategies (F1(x); F2(x)) given by (23) and (24) are a mixed strategy equilibrium.

7.5 Proof of Proposition 10

The functions Fi(x); i = 1; 2, given by (26) and (27) are well-de�ned, strictly increasing on [0; d2], continuous,

and satisfy F1(0) = �2d2
V2
, and F2(0) = �1d1

V1
. Agent 2�s mixed strategy satis�es F2(d2) = 1, when agent 2

chooses the e¤ort that is equal to d2 with the probability of
�1(d1�d2)

V1
> 0. Agent 1�s mixed strategy satis�es

F1(d2) = 1. Thus, Fi(x); i = 1; 2; is a cumulative distribution function of continuous probability distributions

supported on [0; d2]. In order to see that the above strategies are an equilibrium, note that when agent 2

uses the mixed strategy F2(x), agent1�s expected payo¤ is �1 = �1d1 for any e¤ort x 2 [0; d2]. Since it can

be easily shown that for agent 1, e¤orts above d2 would result in a lower expected payo¤ for agent 1, any

e¤ort in [0; d2] is a best response of agent 1 when agent 2 uses F2(x): Similarly, when agent 1 uses the mixed

strategy F1(x), agent 2�s expected payo¤ is �2 = �2d2 for any e¤ort x 2 [0; d2]. Since for agent 2 e¤orts

above d2 are infeasible, any e¤ort in [0; d2] is a best response of agent 2 when agent 1 uses F1(x). Hence,

the mixed strategies (F1(x); F2(x)) given by (26) and (27) are a mixed strategy equilibrium.
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