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On the Optimal Allocation of Prizes in Best-of-Three All-Pay

Auctions

Aner Sela and Oz Tsahi�

February 13, 2020

Abstract

We study best-of-three all-pay auctions with two players who compete in three stages with a single

match per stage. The �rst player to win two matches wins the contest. We assume that a prize sum is

given, and show that if players are symmetric, the allocation of prizes does not have any e¤ect on the

players�expected total e¤ort. On the other hand, if players are asymmetric, in order to maximize the

players�expected total e¤ort, independent of the players�types, it is not optimal to allocate a single �nal

prize to the winner. Instead, it is optimal to allocate intermediate prizes in the �rst stage or/and in the

second stage in addition to the �nal prize. When the asymmetry of the players�types is su¢ ciently high,

it is optimal to allocate intermediate prizes in both two �rst stages and a �nal prize to the winner.

JEL Classi�cation Numbers D72, D82, D44

Keywords Best-of-three contests, intermediate prizes, all-pay auctions

1 Introduction

In the literature on contest theory it has been shown that when players are risk neutral it is optimal for

the designer who wishes to maximize the players� total e¤ort to allocate the entire prize sum to a single

�rst prize. Examples include the all-pay auction under complete information for which Barut and Kovenock
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(1998) found that if there are n players who are symmetric, then any allocation of the entire prize sum

into k prizes, k < n, yields the same expected total e¤ort, and that is also optimal to allocate one single

prize. In the all-pay auction under incomplete information, Moldovanu and Sela (2001) showed that when

cost functions are linear or concave in e¤ort it is optimal to allocate the entire prize sum to a single �rst

prize. Later (2006) these authors studied a two-stage all-pay auction with multiple prizes under incomplete

information and showed that if the cost functions are linear in e¤ort, it is optimal for a contest designer

who wishes to maximize the expected total e¤ort to allocate a single �rst prize in the last (second) stage.

Similarly, in symmetric Tullock contests, Clark and Riis (1996, 1998) found that the contestants�total e¤ort

is maximized when only one prize is awarded, and Fu and Lu (2012) who studied multi-stage sequential

elimination Tullock contests demonstrated that the optimal contest eliminates one contestant at each stage

until the �nal one. Then, the winner of the �nal takes the entire prize sum. Our goal in this paper is to

analyze the optimal allocation of prizes in best-of-three contests and, in particular, to examine whether or

not it is optimal to allocate the entire prize sum to a single �rst prize.

The best-of-k contest consists of a sequence of k matches (k is an odd integer) where the player who is �rst

to win the majority of matches (k+12 matches) wins the overall contest. Such contests can be found especially

in sports (see Szymanski 2003 and Malueg and Yates 2009), but may also be observed in political races

(see Klumpp and Polborn 2006) and also in the context of R&D (see Fudenberg et al. 1983 and Harris and

Vickers 1985, 1987). Best-of-k contests are played between either two teams where in each stage di¤erent

players compete, or between two players who compete in all the stages until the winner is decided. We

consider the version of best-of-three contests between two players. Such contests have been analyzed when

each match is modeled as either an all-pay auction (Konrad and Kovenock 2009, Sela 2011, and Krumer

2015) or a Tullock contest (Klumpp and Polborn 2006, Malueg and Yates 2006, and Mago et al. 2013), or a

rank order tournament (Ferall and Smith 1999).

How to optimally allocate prizes in best-of-k contests is a challenging task since in each of the stages

except the �rst, one of the players may have an advantage over his opponent if he performed better previously

(see, for example, Klumpp and Polborn 2006, and Malueg and Yates 2010). This advantage could be so

considerable that in one of the stages, a player might �nd himself with an expected payo¤ of zero, in
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which case he will have no incentive to keep on playing. To deal with this problem, allocating intermediate

prizes might encourage such a player to continue playing until the end. Indeed, Konrad and Kovenock

(2009), characterized the unique equilibrium in best-of-k contests with two players (k � 3) where players

are matched in an all-pay auction, assuming that players are given an additional identical intermediate prize

in each of the matches and as such each player has an incentive to exert e¤ort in each match. Sela (2011),

furthermore, showed that allocating prizes to the losers in each stage may increase the players�total e¤ort,

and Mago et al. (2013) by an experimental analysis of a best-of three Tullock contest, demonstrated that

intermediate prizes lead to higher e¤orts. Fu et al. (2015) investigated a contest between two teams that

compete in a best-of-k contest and found that when allocating intermediate prizes, the probability of winning

in every single match depends on the players�types and not on the outcome of the previous matches.

Several real-life best-of-k contests with intermediate prizes can be mentioned. Iqbal and Krumer (2019)

used data from tennis matches in a Davis Cup tournament which is a best-of-�ve contest. Based on the fact

that since 2009, the Association of Tennis Professionals (ATP) decided to assign intermediate prizes in the

form of ranking points to the winner of a single match in the Davis Cup, they examined the performance of

players in tournaments with (after 2009) and without (before 2009) intermediate prizes. They found that the

intermediate prizes have a signi�cant e¤ect on performance. Likewise, since 2010 in the best-of-�ve contests

of the Federation Internationale de Volleyball (FIVB) World League (for men) and World Grand Prix (for

women) the winning team wins 3 match points and the losing team wins 0, if the �nal set score is either 3-0

or 3-1. Otherwise, if it is 3-2, the winning team wins 2 match points and the losing team wins 1 (see Jiang

2018).

The fact that allocating intermediate prizes increases the players� e¤ort in best-of-k contests is not

surprising since in almost any form of contest, additional prizes increase the players�e¤orts. The interesting

question, however, is whether or not intermediate prizes should be allocated in multi-stage contests when

the prize sum is �xed such that the main prize for the winner of the contest is automatically reduced.

For this purpose, Feng and Lu (2018) characterized the e¤ort-maximizing prize allocation in multi-battle

Tullock contests when the prize sum is �xed and the players�prizes contingent on the number of wins. As

we mentioned, we also study the optimal allocation of prizes in a best-of-three contest with two players in
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which the players�types (abilities or alternatively values of winning) are common knowledge but each match

is modelled as an all-pay auction. Feng and Lu assume that the players are symmetric while we assume that

the players might be asymmetric, namely, they might have di¤erent abilities (cost functions) or, alternatively,

di¤erent values for winning the entire contest or each of the matches in the contest. In addition, Feng and

Lu assume that each player may win only one prize, while in our model an intermediate prize is allocated in

each of the �rst two matches and a �nal prize is allocated for the winner. As such, each player can win more

than one prize. Actually the maximal number of prizes that each player can win is three and that happens

if he wins the �rst two matches. If a player wins two matches where one of them is in the last third stage,

then he wins two prizes, and if he wins one match only he wins a single prize. Note that the values of the

prizes in our model depend on the stage such that if a player wins only in the �rst stage he might get a

di¤erent prize than if he wins only in the second stage.

Our results show that when the entire prize sum is �xed, allocating intermediate prizes in our contest

with two symmetric players does not have any e¤ect on the players�expected total e¤ort. In other words, the

players�expected total e¤ort is the same whether or not intermediate prizes are allocated. If, on the other

hand, the players are asymmetric, it is quite intuitive that the intermediate prizes are e¤ective since they

encourage the weaker player to keep on playing. But when the players�asymmetry is not sharp and none of

the players stop playing in any stage, the e¤ect of the intermediate prizes on the players�expected total e¤ort

is not clear at all. Nonetheless, we show that a best-of-three all-pay auction with a single �nal prize is not

optimal for a designer who wishes to maximize the players�expected total e¤ort. In particular, we show that

when the prize sum is �xed, compared to the best-of-three all-pay auction with a single �nal prize, allocating

an intermediate prize in the �rst stage increases the players�expected total e¤ort, and similarly allocating

an intermediate prize in the second stage increases the players�expected total e¤ort as well. Furthermore,

compared to the best-of-three all-pay auction with a single �nal prize, allocating intermediate prizes in the

�rst stage and the second stage together also increases the players�expected total e¤ort. In addition, when

the prize sum is �xed and asymmetry between the players is su¢ ciently high, we prove that in order to

maximize the players�expected total e¤ort, allocating intermediate prizes in both of the �rst stages is better

than allocating an intermediate prize in only one of these stages. These results demonstrate that in any best-
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of-three all-pay auction, independent of the asymmetry of the players, it is optimal to allocate intermediate

prizes. From this perspective, the best-of three all-pay auction di¤ers from the one-stage all-pay auction and

even from other multi-stage contest forms in which it is optimal to allocate the entire prize sum to a single

one.

The rest of the paper is organized as follows: Section 2 introduces our best-of-three all-pay auction. In

Section 3 and 4 we analyze the allocation of prizes in this contest with symmetric players and asymmetric

players, respectively. Section 5 concludes. The proofs appear in the Appendix.

2 The model

Consider two players (or teams) i = 1; 2 who compete in a best-of-three all-pay auction such that they

compete in sequential matches, and the �rst to win two matches wins the contest. We model each match as

an all-pay auction: both players exert e¤orts, and the one exerting the higher e¤ort wins. Participating in

the contest generates a (sunk) cost xi
vi
for player i, where xi is the the e¤ort of player i and vi is his type

(ability). Player i�s type vi is common knowledge. We assume that v1 � v2, namely, the ability of player 1

is larger than that of player 2. The prize sum is normalized to be 1. The designer awards a prize for the

winner of the contest 
 > 0; he could also award an intermediate prize for the winner in the �rst stage � � 0

and an intermediate prize for the winner of the second stage � � 0 such that �+ � + 
 = 1. Note that this

model is strategically equivalent to a model where all the players have the same marginal cost of 1, but they

have di¤erent values of the prizes. Then, if player i wins in the �rst stage he has a value of �vi; if he wins in

the second stage he has a value of �vi; and if he wins the entire contest he has a value of 
vi = (1����)vi:

The designer�s goal is to choose the prize allocation that maximizes the players�expected total e¤ort.

3 The best-of-three all-pay auction with symmetric players

In order to analyze the subgame-perfect equilibrium of the best-of-three all-pay auction, we begin with the

last stage and go backwards to the previous stages. We assume �rst that players are symmetric and we

denote the players�type by v = v1 = v2:
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3.1 Stage 3

The players compete in the last stage only if each player won one of the previous matches. Therefore, the

expected value of player i if he wins the match in stage 3 is v(1����) and if he loses, it is zero. Thus, based

on the analysis of the one-stage all-pay auction (Hillman and Reily 1989 and Baye et al. 1996), players 1 and

2 randomize on the interval [0; v(1 � � � �)] according to their cumulative distribution function F (3)which

is given by

v(1� �� �)F (3)(x)� x = 0 (1)

The players�probabilities of winning in this stage are p(3)1 = p
(3)
2 = 0:5 and their expected total e¤ort is

TE(3) = v(1� �� �)

3.2 Stage 2

Without loss of generality, assume that player 1 won the �rst match in stage 1. Then, if player 2 wins in

this stage, by (1), his payo¤ is �v, but if he loses his payo¤ is zero. On the other hand, if player 1 wins in

this stage, he wins the contest, and his payo¤ is v(1� �), but if he loses, by (1), his expected payo¤ in the

next stage is zero. Thus, since 1 � � � �, we obtain that players 1 and 2 randomize on the interval [0; �v]

according to their e¤ort cumulative distribution functions F (2)i ; i = 1; 2 which are given by

v(1� �)F (2)2 (x)� x = v(1� �� �) (2)

�vF
(2)
1 (x)� x = 0

The players�probabilities of winning in this stage are

p
(2)
1 = 1� �

2(1� �) ; p
(2)
2 = 1� p21

and their expected total e¤ort is

TE(2) =
�v

2
(1 +

�v

v(1� �) ) =
v�(1� �+ �)
2(1� �)
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3.3 Stage 1

If player 1 or 2 wins, by (2), his payo¤ is v(1 � �), but if he loses his expected payo¤ in the next stage is

zero. Thus, we obtain that players 1 and 2 randomize on the interval [0; v(1 � �)] according to their e¤ort

cumulative distribution function F (1); i = 1; 2, which is given by

v(1� �)F (1)(x)� x = 0

The players�probabilities of winning in this stage are p(1)1 = p
(1)
2 = 0:5 and their expected total e¤ort is

TE(1) = v(1� �) + v�(1� �+ �)
2(1� �)

+2(1� �

2(1� �) )

3.4 Results

The expected total e¤ort in all the stages of the best-of-three contest is

TE = TE(1) + TE(2) + 2p
(1)
2 p

(2)
1 TE(3)

= v(1� �) + v�(1� �+ �)
2(1� �)

+2
1

2

�

2(1� �)v(1� �� �) = v

Thus, we can conclude that

Proposition 1 The expected total e¤ort in the best-of-three all-pay auction with symmetric players does not

depend on the allocation of the prize sum among the stages, and as such, allocation of intermediate prizes

do not change the players�expected total e¤ort.

In contrast, in the next section when the players are asymmetric, we show that the intermediate prizes

have a meaningful e¤ect on the players�expected total e¤ort.

4 The best-of-three all-pay auction with asymmetric players

In order to analyze the subgame-perfect equilibrium of the best-of-three all-pay auction with asymmetric

players, we begin with the last stage and go backwards to the previous stages. Usually, if players are
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asymmetric, they also have di¤erent expected values in all the stages, and then according to Baye et al.

(1996), the subgame-perfect equilibrium of the best-of-three all-pay auction that we present is unique.

4.1 Stage 3

The players compete in the last stage only if each player won one of the previous matches. Therefore, the

expected value of player i if he wins the match in stage 3 is vi(1 � � � �) and if he loses, it is zero. Thus,

based on the analysis of the one-stage all-pay auction, since v1 � v2; players 1 and 2 randomize on the

interval [0; v2(1� �� �)] according to their cumulative distribution functions F (3)i ; i = 1; 2 which are given

by

v1(1� �� �)F (3)2 (x)� x = (v1 � v2)(1� �� �) (3)

v2(1� �� �)F (3)1 (x)� x = 0

The players�probabilities of winning in this stage are

p
(3)
1 = 1� v2

2v1
; p
(3)
2 = 1� p(3)1

and their expected total e¤ort is

TE(3) =
v2(1� �� �)

2
(1 +

v2
v1
) =

v2(1� �� �)(v1 + v2)
2v1

4.2 Stage 2

Case A: Assume �rst that player 1 won the �rst match in stage 1. Then, if player 2 wins in this stage,

by (1), his payo¤ is �v2; but if he loses his payo¤ is zero. Similarly, if player 1 wins in this stage, he wins

the contest, and his payo¤ is v1(1 � �), but if he loses, by (1), his expected payo¤ in the next stage is

(v1 � v2)(1� �� �): As such, we obtain that player�s 1 expected value (the di¤erence of his payo¤ when he

wins and when he loses) is larger than player 2�s expected value; that is,

[v1(1� �)� (v1 � v2)(1� �� �)]� [�v2]

= �(v1 � v2) + v2(1� �� �) � 0
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The last inequality holds since v1 � v2 and � + � < 1. Thus, we obtain that players 1 and 2 randomize on

the interval [0; �v2] according to their e¤ort cumulative distribution functions F
(2)
i ; i = 1; 2 which are given

by

v1(1� �)F (2)2 (x) + (v1 � v2)(1� �� �)(1� F (2)2 (x))� x = v1(1� �)� �v2 (4)

�v2F
(2)
1 (x)� x = 0

The players�probabilities of winning in this stage are

p
(2)
1 = 1� �v2

2(v1(1� �)� (v1 � v2)(1� �� �))
= 1� �v2

2(�v1 + v2(1� �� �))

p
(2)
2 = 1� p(2)1

and their expected total e¤ort is

TE(2) =
�v2
2
(1 +

�v2
v1(1� �)� (v1 � v2)(1� �� �)

)

Case 2B: Assume now that player 2 won the �rst match in stage 1. Then, if player 1 wins in this stage,

by (1), his expected payo¤ is (v1 � v2)(1 � � � �) + �v1 = v1(1 � �) � v2(1 � � � �), but if he loses, his

payo¤ is zero. Similarly, if player 2 wins in this stage, he wins the contest, and then his payo¤ is v2(1� �),

but if he loses, by (1), his expected payo¤ in the next stage is zero. Now we have two subcases. In the �rst

one, player 1�s expected value (the di¤erence between his expected payo¤s when he wins and loses) is larger

than that of player 2, and in the second, player1�expected value is smaller than that of player 2.

Case 2B1: Player 1�s expected value in the second stage is larger than that of player 2, namely,

v1(1� �)� v2(1� �� �) > v2(1� �) or equivalently,

v1(1� �)� v2(2� 2�� �) � 0 (5)

Then, we obtain that players 1 and 2 randomize on the interval [0; v2(1 � �)] according to their e¤ort

cumulative distribution functions F (2B1)i ; i = 1; 2 which are given by

[v1(1� �)� v2(1� �� �)]F (2B1)2 (x)� x = v1(1� �)� v2(2� 2�� �) (6)

v2(1� �)F (2B1)1 (x)� x = 0
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The players�probabilities of winning in this case are

p
(2B1)
1 = 1� v2(1� �)

2(v1(1� �)� v2(1� �� �))

p
(2B1)
2 = 1� p(2B1)1

and their expected total e¤ort is

TE(2B1) =
v2(1� �)

2
(1 +

v2(1� �)
v1(1� �)� v2(1� �� �)

)

Case 2B2: Player 2�s expected value in the second stage is larger than that of player 1, namely,

v1(1� �)� v2(2� 2�� �) < 0 (7)

Then, we obtain that players 1 and 2 randomize on the interval [0; v1(1� �)� v2(1� �� �)] according

to their e¤ort cumulative distribution functions F (2B2)i ; i = 1; 2 which are given by

[v1(1� �)� v2(1� �� �)]F (2B2)2 (x)� x = 0 (8)

v2(1� �)F (2B2)1 (x)� x = v2(2� 2�� �)� v1(1� �)

The players�probabilities of winning in this case are

p
(2B2)
1 =

v1(1� �)� v2(1� �� �)
2v2(1� �)

p
(2B2)
2 = 1� p(2B2)1

and their expected total e¤ort is

TE(2B2) =
v1(1� �)� v2(1� �� �)

2
(1 +

v1(1� �)� v2(1� �� �
v2(1� �)

)

4.3 Stage 1

If player 1 wins, by (4), his expected payo¤ is (v1(1��)��v2)+�v1 = v1��v2. But if he loses, given that

condition 5 holds, by (6), his expected payo¤ is v1(1� �)� v2(2� 2�� �), and if condition 7 holds, by (8),

his expected payo¤ is zero.

Similarly, if player 2 wins, given that condition 5 holds, by (6), his expected payo¤ is �v2 , and if condition

7 holds, by (8), his expected payo¤ is v2(2�2���)�v1(1��)+ �v2 = v2(2����)�v1(1��): If player 2
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loses, by (4), his expected payo¤ is zero. Thus, if condition 5 holds, we obtain that players 1 and 2 randomize

on the interval [0; �v2] according to their e¤ort cumulative distribution functions F
(1B1)
i ; i = 1; 2, which are

given by

(v1 � �v2)F (1B1)2 (x) + (v1(1� �)� v2(2� 2�� �))(1� F (1B1)2 (x))� x = v1 � v2(�+ �) (9)

�v2F
(1B1)
1 (x)� x = 0

The players�probabilities of winning in this case are

p
(1B1)
1 = 1� �v2

2((v1 � �v2)� (v1(1� �)� v2(2� 2�� �)))

p
(1B1)
2 = 1� p(1B1)1

and their expected total e¤ort is

TE(1B1) =
�v2
2
(1 +

�v2
(v1 � �v2)� (v1(1� �)� v2(2� 2�� �))

)

If condition 7 holds, we obtain that players 1 and 2 randomize on the interval [0; v2(2����)�v1(1��)]

according to their e¤ort cumulative distribution functions F (1B2)i ; i = 1; 2, which are given by

(v1 � �v2)F (1B2)2 (x)� x = (v1 � v2)(2� �) (10)

(v2(2� �� �)� v1(1� �))F (1B2)1 (x)� x = 0

The players�probabilities of winning in this case are

p
(1B2)
1 = 1� v2(2� �� �)� v1(1� �)

2(v1 � �v2)

p
(1B2)
2 = 1� p(1B2)1

and their expected total e¤ort is

TE(1B2) =
v2(2� �� �)� v1(1� �)

2
(1 +

v2(2� �� �)� v1(1� �)
v1 � �v2

)

When condition 5 holds, the players�expected total e¤ort in all the stages is

TE(B1) = TE(1B1) + p
(1B1)
1 TE(2) + p

(1B1)
2 TE(2B1) + (p

(1B1)
1 p

(2)
2 + p

(1B1)
2 p

(2B1)
1 )TE(3) (11)

and when condition 7 holds, their expected total e¤ort in all the stages is

TE(B2) = TE(1B2) + p
(1B2)
1 TE(2) + p

(1B2)
2 TE(2B2) + (p

(1B2)
1 p

(2)
2 + p

(1B2)
2 p

(2B2)
1 )TE(3) (12)
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4.4 Results

Without loss of generality we assume in this section that the players�types satisfy v = v1 � v2 = 1. Let

(�; �; 
) be the prizes, where � is the intermediate prize for the winner in the �rst stage, � is the prize for

the winner in the second stage , and 
 = 1 � (� + �) is the prize for the winner of the contest. When an

intermediate prize is allocated only in the �rst stage, we have

Proposition 2 There is a value 1 > � > 0 for which the players�expected total e¤ort in the best-of-three

all-pay auctions under the allocation of prizes (�; 0; 1��) is larger than under the allocation of prizes (0; 0; 1):

Thus, optimally allocating an intermediate prize in the �rst stage increases the players�expected total e¤ort

compared to the best-of-three all-pay auction with a single �nal prize.

Proof. See Appendix.

When an intermediate prize is allocated only in the second stage, we have

Proposition 3 There is a value 1 > � > 0 for which the players� expected total e¤ort in the best-of-three

all-pay auctions under the allocation of prizes (0; �; 1��) is larger than under the allocation of prizes (0; 0; 1):

Thus, optimally allocating an intermediate prize in the second stage increases the players�expected total e¤ort

compared to the best-of-three all-pay auction with a single �nal prize.

Proof. See Appendix.

When intermediate prizes are allocated in both the �rst and the second stages, we have

Proposition 4 There is a value 1 > � > 0 for which the players�expected total e¤ort in the best-of-three

all-pay auctions under the allocation of prizes (�; �; 1 � 2�) is larger than under the allocation of prizes

(0; 0; 1): Thus, optimally allocating intermediate prizes in the �rst and second stages of the best-of-three all-

pay auction increases the players� expected total e¤ort compared to the best-of-three all-pay auction with a

single �nal prize.

Proof. See Appendix.

The following result shows that if the asymmetry between the players is su¢ ciently large, namely v1 >>

v2, then allocating intermediate prizes in both �rst stages is more e¢ cient than allocating an intermediate

prize in only one of the �rst stages.
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Proposition 5 When the prize sum is �xed and asymmetry between the players is su¢ ciently high, in order

to maximize the players�expected total e¤ort, it is optimal to allocate intermediate prizes in both stages of

the best-of-three all-pay auction.

5 Concluding remarks

In several forms of contests, including multi-stage contests, when the prize sum is �xed it is optimal to

allocate the entire prize sum to a single �rst prize that is awarded to the winner in the last stage of the

contest. We show rather, that in the best-of-three all-pay auction with asymmetric players, independent of

the players� types, if the goal of the designer is to maximize the players�expected total e¤ort, allocating

a single prize to the winner is not optimal. In that case, it is always optimal to allocate an intermediate

prize either in the �rst stage and/or the second one. We also show that when the asymmetry between the

players is su¢ ciently high, in order to maximize the players�expected total e¤ort, it is optimal to allocate

intermediate prizes in both �rst stages in addition to the �nal prize. It is important to note that we do not

�nd the optimal relation between the �nal prize for the winner of the contest and these intermediate prizes

since this beyond of the scope of the paper. According to our results as well as those of Sela (2011) that

the expected total e¤ort in the best-of-three all-pay auction is smaller than in the one-stage all-pay auction

when the entire prize sum is awarded as a single prize, it would be interesting to verify whether or not the

expected total e¤ort in the best-of-three all-pay auction with intermediate prizes is still smaller than in the

one-stage all-pay auction. This challenging goal requires that the optimal values of the intermediate prizes

be known which according to the complexity of the present analysis is not a simple task.
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6 Appendix

6.1 Proof of Proposition 2

1) If condition 5 holds, the expected total e¤ort given by (11) is

TE(B1) = TE(1B1) + p
(1B1)
1 TE(2) + p

(1B1)
2 TE(2B1) + p

(1B1)
1 p

(2)
2 TE(3) + p

(1B1)
2 p

(2B1)
1 TE(3) (13)

=
�v2
2
(1 +

�v2
(v1 � �v2)� (v1(1� �)� v2(2� 2�� �))

)

+(1� �v2
2((v1 � �v2)� (v1(1� �)� v2(2� 2�� �)))

)
�v2
2
(1 +

�v2
v1(1� �)� (v1 � v2)(1� �� �)

)

+
�v2

2((v1 � �v2)� (v1(1� �)� v2(2� 2�� �)))
v2(1� �)

2
(1 +

v2(1� �)
v1(1� �)� v2(1� �� �)

)

+(1� �v2
2((v1 � �v2)� (v1(1� �)� v2(2� 2�� �)))

)
�v2

2(�v1 + v2(1� �� �))
v2(1� �� �)(v1 + v2)

2v1

+
�v2

2((v1 � �v2)� (v1(1� �)� v2(2� 2�� �)))
(1� v2(1� �)

2(v1(1� �)� v2(1� �� �))
)
v2(1� �� �)(v1 + v2)

2v1

Let v1 = v; v2 = 1 and � = 0: Then we have

TE(B1)� =
�

2
+

�2

2�v + 4� 4� +
�� �2

2(2�v + 4� 4�) + (
�

2�v + 4� 4� )(
(1� �)2

2v � 2�v � 2 + 2� )

+(
v + 1� �v � �

2v
)(

�

2(�v + 2� 2� )(1�
1� �

2v � 2�v � 2 + 2� )

The marginal e¤ect of � on the expected total e¤ort is

dTE
(B1)
�

d�
=
4�2v3 + 16(�� �2)v2 + (13�2 � 32�+ 24)v + 6�2 � 12�+ 6

8�2v3 + 32(�� �2)v2 + 32(�2 � 2�+ 1)v (14)

when � approaches zero we obtain that

lim
�!0

dTE
(B1)
�

d�
=
24v + 6

32v

Thus, if condition 5 holds, allocating a su¢ ciently small prize of � in the �rst stage, increases the players�

expected total e¤ort.
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2) If condition 7 holds, the expected total e¤ort given by (12) is

TE(B2)� =
v2(2� �� �)� v1(1� �)

2
(1 +

v2(2� �� �)� v1(1� �)
v1 � �v2

) (15)

+(1� v2(2� �� �)� v1(1� �)
2(v1 � �v2)

)
�v2
2
(1 +

�v2
v1(1� �)� (v1 � v2)(1� �� �)

)

+
v2(2� �� �)� v1(1� �)

2(v1 � �v2)
v1(1� �)� v2(1� �� �)

2
(1 +

v1(1� �)� v2(1� �� �
v2(1� �)

)

+(1� v2(2� �� �)� v1(1� �)
2(v1 � �v2)

)
�v2

2(�v1 + v2(1� �� �))
v2(1� �� �)(v1 + v2)

2v1

+
v2(2� �� �)� v1(1� �)

2(v1 � �v2)
v1(1� �)� v2(1� �� �)

2v2(1� �)
v2(1� �� �)(v1 + v2)

2v1

Let v1 = v; v2 = 1 and � = 0: Then we have

TE(B2)� =
2� �� v(1� �)

2
+
(2� �� v(1� �))2

2v

+
(2� �� v(1� �))

2v
(
v(1� �)� 1 + �

2
+
(v(1� �)� 1 + �)2

2(1� �) )

+
(2� �� v(1� �))

2v
(
v(1� �)� 1 + �

2(1� �) )(
v � �v + 1� �

2v
)

The marginal e¤ect of � on the expected total e¤ort is

dTE
(B2)
�

d�
=
4(�� 1)v4 + (12� 14�)v3 + (18� 23)v2 + (18� 10�)v + 2�� 3

8v2
(16)

When � approaches zero we obtain that

lim
�!0

dTE
(B2)
�

d�
= ��4v

4 + 12v3 � 23v2 + 18v � 3
8v2

It can be veri�ed that the last term is positive for all v > 1: Thus, if condition 7 holds, compared to the

best-of-three all-pay auction with a single �nal prize, allocating a su¢ ciently small prize of � in the �rst

stage increases the players�expected total e¤ort.

6.2 Proof of Proposition 3

1) Let v1 = v; v2 = 1; and � = 0. Then, if condition 5 holds, the expected total e¤ort given by (13) is

TE
(B1)
� =

�

2
+

�2

2�v + 2� 2� +
(1� �)(v + 1)

2v

�

2�v + 2� 2�

The marginal e¤ect of � on the expected total e¤ort is

dTE
(B1)
�

d�
=
2�2v3 + (4� � 3�2)v2 + (3� 2�)v + �2 � 2� + 1

4�2v3 + 8(� � �2)v2 + 4(�2 � 2� + 1)v
(17)
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when � approaches zero we obtain that

lim
�!0

dTE
(B1)
�

d�
=
3v + 1

4

Thus, if condition 5 holds, allocating a su¢ ciently small prize of � in the second stage increases the players�

expected total e¤ort.

2) Let v1 = v; v2 = 1; and � = 0. Then if condition 7 holds, the expected total e¤ort given by (15) is

TE
(B2)
� =

2� � � v
2

+
(2� � � v)2
2(v � �)

+
3v � � � 2
2(v � �) (

�

2
+

�2

2(�v + 1� �) )

+
2� � � v
2(v � �) (

v � 1 + �
2

+
(v � 1 + �)2

2
)

+
3v � � � 2
2(v � �)

�

2(�v + 1� �)
v + 1� �v � �

2v

+
2� � � v
2(v � �)

v � 1 + �
2

v + 1� �v � �
2v

The marginal e¤ect of � on the expected total e¤ort is

dTE
(B2)
�

d�
=
A

B
(18)

where

A = �7�2v6 � (8�3 � 41�2 + 14�)v5 � (��4 � 36�3 + 116�2 � 68� + 7)v4 (19)

�(�2�5 + 9�4 + 56�3 � 18�2 + 140� � 30)v3 � (6�5 � 24�4 � 24�3 + 144�2 � 136� + 41)v2

�(�6�5 + 25�4 � 16�3 � 40�2 + 54� � 20)v � (2�5 � 9�4 + 12�3 � 3�2 � 4� + 2)

and

B = �2v5 + 16(��3 � �2 + �)v4 + 8(�4 + 4�3 � 3�2 � 2� + 1)v3 (20)

+16(��4 + 2�2 � �)v2 + 8(�4 � 2�3 + �2)v

When � approaches zero we obtain that

lim
�!0

dTE
(B2)
�

d�
=
�7v4 + 30v3 � 41v2 + 20v � 2

8v3

It can be veri�ed that the last term is positive for all 1 < v � 2: Since condition 7 holds if 1 � v < 2� �, we

obtain that compared to the best-of-three all-pay auction with a single �nal prize, allocating a su¢ ciently

small prize of � in the second stage increases the players�expected total e¤ort.
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6.3 Proof of Proposition 4

1) Let v1 = v; v2 = 1; and � = �. Then, if condition 5 holds, the expected total e¤ort given by (13) is

TE
(B1)
�� =

�

2
+

�2

2(�v + 2� 4�) + (1�
�

2(�v + 2� 4�) (
�

2
+

�2

2(�v + 1� 2�)

+
�

2(�v + 2� 4�) (
1� �
2

+
(1� �)2

2(v � �v � 1 + 2�) )

+
v + 1� 2�v � 2�

2v
(1� �

2(�v + 2� 4�) )
�

2(�v + 1� 2�)

+
v + 1� 2�v � 2�

2v

�

2(�v + 2� 4�) (1�
1� �

2(v � �v � 1 + 2�) )

The marginal e¤ect of � on the expected total e¤ort is

dTE
(B1)
��

d�
=
C

D
(21)

where

C = (8�6 � 16�5 + 8�4)v7 + (�132�6 + 29�5 � 212�4 + 48�3)v6 (22)

+(872�6 � 2144�5 + 1930�4 � 764�3 + 114�2)v5

+(�2932�6 + 7752�5 � 8128�4 + 4258�3 � 1123�2 + 120�)v4

+(5192�6 � 14560�+ 16974�4 � 10506�3 + 3625�2 � 656�+ 48)v3

+(�4240�6 + 12544�5 � 15820�4 + 10868�3 � 4278�2 + 912�� 82)v2

+(480�6 � 1664�5 + 2480�4 � 1984�3 + 886�2 � 208�+ 20)v

+896�6 � 2688�5 + 3360�4 � 2240�3 + 840�2 � 168�+ 14

and

D = (8�6 � 16�5 + 8�4)v7 + (�128�6 + 288�5 � 208�4 + 48�3)v6 (23)

+(832�6 � 2048�5 + 1840�4 � 720�3 + 104�2)v5

+(�2816�6 + 7424�5 � 7680�4 + 3904�3 � 976�2 + 96�)v4

+(5248�6 � 14592�5 + 16576�4 � 9792�3 + 3144�2 � 512�+ 32)v3

+(�5120�6 + 14848�5 � 17920�4 + 11520�3 � 4160�2 + 800�� 64)v2

+(2048�6 � 6144�5 + 7680�4 � 5120�3 + 1920�2 � 384�+ 32)v
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When � approaches zero we obtain that

lim
�!0

dTE
(B1)
��

d�
=
48v3 � 82v2 + 20v + 14
32v3 � 64v2 + 32v

It can be veri�ed that the last term is positive for all v � 1. Thus, if condition 5 holds, compared to the

best-of-three all-pay auction with a single �nal prize, allocating a su¢ ciently small prize of � in both �rst

stages increases the players�expected total e¤ort.

2) If condition 7 holds, v1 = v; v2 = 1; and � = 0; then the expected total e¤ort given by (15) is

TE
(B2)
�� =

2� � � v
2

+
(2� � � v)2
2(v � �)

+
3v � � � 2
2(v � �) (

�

2
+

�2

2(�v + 1� �) )

+
2� � � v
2(v � �) (

v � 1 + �
2

+
(v � 1 + �)2

2
)

+
3v � � � 2
2(v � �)

�

2(�v + 1� �)
v + 1� �v � �

2v

+
2� � � v
2(v � �)

v � 1 + �
2

v + 1� �v � �
2v

The marginal e¤ect of � on the expected total e¤ort is

dTE
(B2)
��

d�
=
E

F
(24)

where

E = (�4�3 + 4�2)v7 + (2�4 + 40�3 � 43�2 + 8�)v6 (25)

+(�20�4 � 17�3 + 206�2 � 58�+ 4)v5 + (88�4 + 384�3 � 559�2 + 200�� 19)v4

+(�208�4 � 312�3 + 835�2 � 386�+ 53)v3 + (262�4 + 120�3 � 578�2 + 340�� 59)v2

+(�156�4 + 76�3 + 135�2 � 112�+ 23)v + (32�4 � 32�3 + 8�� 2)

and

F = 8�2v5 + (�16�3 � 32�2 + 16�)v4 + (8�4 + 64�3 � 32�+ 8)v3 (26)

+(�32�4 � 48�3 + 64�2 � 16�)v2 + (32�4 � 32�3 + 8�2)v

When � approaches zero we obtain that
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lim
�!0

dTE
(B2)
��

d�
=
4v5 � 19v4 + 53v3 � 59v2 + 23v � 2

8v3

It can be veri�ed that the last term is positive for all v > 1: Since condition 7 holds if 1 � v < 2� �, we

obtain that compared to the best0of-three all-pay auction with a single �nal prize, allocating a su¢ ciently

small prize of � in the second stage increases the players�expected total e¤ort.

6.4 Proof of Proposition 5

When players are su¢ ciently asymmetric, namely, v1 = v >> v2 = 1, condition 5 holds. In that case, if

we allocate a prize of � in the �rst stage, by (14), we obtain that the marginal e¤ect of the prize on the

expected total e¤ort when v approaches in�nity is

lim
v!1

dTE
(B1)
�

d�
=
4�2

8�2
=
1

2

If we allocate a prize of � in the second stage, by (17), we obtain that the marginal e¤ect of the prize on the

expected total e¤ort when v approaches in�nity is

lim
v!1

dTE
(B1)
�

d�
=
2�2

4�2
=
1

2

and if we allocate a prize of � in both the �rst stages, by (21), (22) and (23), we obtain that the marginal

e¤ect of the prizes on the expected total e¤ort when v approaches in�nity is

lim
v!1

dTE
(B1)
��

d�
=
8�6 � 16�5 + 8�4
8�6 � 16�5 + 8�4 = 1

Thus, we obtain that

lim
v!1

dTE
(B1)
��

d�
> lim

v!1

dTE
(B1)
�

d�
= lim

v!1

dTE
(B1)
�

d�

In other words, in order to maximize the players�expected total e¤ort. it is better to award intermediate

prizes in both �rst stages than in only one of them .
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