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1 Introduction

During the last decade, a vibrant literature has explored the role of uncertainty and

its time-variation in driving business cycles.1 From the empirical side, Bloom et al. (2016)

have demonstrated that simple indices of uncertainty measured from newspaper articles,

the number of federal tax code provisions set to expire in future years, and forecasters’

disagreements clearly correlate with economic activity. In particular, macro uncertainty

seems to be countercyclical: times of high uncertainty are times of low economic activity (at

this moment, this statement does not imply any causal direction). Dozens of papers have

asserted the robustness of this basic finding along with a multitude of modifications of the

research design, econometric approaches, and datasets.

From a theoretical perspective, the work by Bloom (2009), Fernández-Villaverde et al.

(2011), Fernández-Villaverde et al. (2015a), and Justiniano and Primiceri (2008) has pre-

sented equilibrium models where “uncertainty shocks,” i.e., increases in the standard devi-

ation of the shocks that hit the economy, can account for a significant share of aggregate

fluctuations. These papers move beyond Bloom et al. (2016) and assert causality: uncer-

tainty shocks drive part of the business cycle. An extensive literature has followed these

pioneering studies and extended the theoretical models in many directions.

This paper reviews this literature on uncertainty shocks and business cycle research.

In the interest of space, we will focus on equilibrium models of the business cycle with a

representative agent in the tradition of most of the papers in Cooley (1995). To display

many of the ideas, we will postulate, solve, and calibrate a real business cycle model with

financial frictions.

This model will be rich enough to incorporate most of the mechanisms outlined in the

literature linking uncertainty shocks with business cycles and, yet, simple enough to be

understood quickly. For example, we will not add nominal rigidities or extra layers of real

rigidities. And, instead of a multitude of shocks, we will have only six shocks –three level

and three uncertainty shocks– joined in pairs of one level and one uncertainty shock. The

first pair will work as demand shocks. The second pair will work as supply shocks. The

third and final pair will work as financial friction shocks. The trinity of demand, supply,

and financial shocks will capture the intuition often used by researchers to organize their

thinking about business cycles and be easy enough to separate from each other.

1Knight (1921) famously distinguished between “risk,” which he argued is the situation where the dis-
tribution over a set of events is known, and “uncertainty,” where the distribution over a set of events is not
known. In Knight’s language, rolling dice is risky; betting on a future war is uncertain. Nowadays, much
of the literature has moved toward calling the later phenomenon “ambiguity,” and uses “uncertainty” to
denote situations where distributions are known. See Epstein (1999) and Epstein and Schneider (2007) as
examples of such a practice. We will follow the more recent convention in our paper.
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We will organize the rest of our exposition as follows. Section 2 will document some basic

time-series evidence that justifies the study of uncertainty shocks. Section 3 will review the

different mechanisms that relate uncertainty shocks and aggregate variables in equilibrium

models of the business cycle. Section 4 will discuss how to model uncertainty shocks. Section

5 will present a real business cycle model with financial frictions and time-varying uncertainty.

Sections 6 and 7 will explain the computation and calibration of the model, including several

methodological points of interest about how to handle the inherent non-linearities of models

with uncertainty shocks. Section 8 will report our quantitative results. Section 9 will offer

some concluding remarks and propose lines of future research.

2 Why uncertainty shocks

Nearly every time series in macroeconomics displays time-varying volatility, that is, a

standard deviation that changes over time instead of being stationary (Engle, 1982). To

illustrate this point, we will work with three time series: i) a time series that is representative

of aggregate real variables (output growth); ii) a time series that is representative of prices

(the GDP deflator); and iii) a time series that is representative of policy instruments (the

federal funds rate). However, these three series are just examples. Plenty of other series of

interest, from risk premia or exchange rates to unemployment or tax rates, display similar

features. Fernández-Villaverde et al. (2011) and Fernández-Villaverde et al. (2015a) show

many more examples.2

Panel 1a of Figure 1 plots the absolute value of GDP growth in the U.S. after World War

II (we take absolute values to focus on volatility, not signs). Even the most casual observer

can see that output growth fluctuates less at the end of the series than at the start.

This observation is clearer in Panel 1b, where we plot a 10-year moving average standard

deviation of the same series. This moving average standard deviation is a measure of the

realized volatility of output growth.3 Especially during the 1980s, the realized volatility of

output dropped at a fast pace and it has stayed low since then, even after the convulsions of

the financial crisis of 2007-2008. This is, of course, the “great moderation” of business cycle

fluctuations (Stock and Watson, 2003, and Bernanke, 2004), which Panels 1a and 1b show

is alive and enjoying excellent health.

2Bloom (2014) summarizes related and quite similar evidence regarding micro time series (e.g., the
dispersion of firms’ productivity, wages, income, etc.), but given the thrust of our paper, we will omit their
discussion. Suffice it to say that the macro and micro evidence is highly complementary.

3Although both concepts are often mixed, it is useful to remember the difference between uncertainty
about future volatilities (a forward-looking variable) and the realized volatility of past observations (a
backward-looking variable). See Bollerslev et al. (2009) for an application based on this distinction.
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An alternative way to report the same finding is to compute the kernel densities of output

growth before and after 1984.Q1 (a conventional start of the “great moderation”). Panel 1c

of Figure 1 shows a much more concentrated density after 1984, with thinner tails. See Kim

and Nelson (1999) and McConnell and Pérez-Quirós (2000), for similar findings about the

change in volatility in the mid-1980s.

Figure 1: GDP growth
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(a) Absolute value of GDP growth
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(b) Moving average standard deviation
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(c) Kernel densities of GDP growth

Figures 2 and 3 show the same results, but now with respect to the GDP deflator and the

federal funds rate, respectively. Figure 2 documents the big spike of inflation in the 1960s,

the only substantial peace-time inflation in U.S. history, and its “conquest” in the 1980s

(Sargent, 1999). Figure 3 tells us a similar story, but even more sharply, with the period of

zero (or close-to-zero) nominal interest rates at the end.

As we mentioned before, the same properties of time-variation in volatility appear in

many other time series. The literature on uncertainty shocks has paid close attention to

financial variables (see Bloom, 2009, Jurado et al., 2015, and Arellano et al., 2019, among

several others) and to eliciting how financial-market uncertainty interacts with the real sector
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of the economy. This point is essential to remember as our model, later on, will place financial

frictions at the center of its dynamics.

Figure 2: GDP deflator
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(a) Absolute value of GDP deflator
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(b) Moving average standard deviation

-0.1 -0.05 0 0.05 0.1 0.15 0.2

GDP Deflator

0

5

10

15

20

25

30

35

40

45
Kernel Densities, GDP Deflator

Pre 1984.Q1
Post 1984.Q1

(c) Kernel densities of the GDP deflator

How can we think about these changes in the volatility of the time series over time?

One possibility is to consider that the economy has undergone some form of structural

transformation. For example, the move from manufacturing into services and improved

supply-chain management might account for a lower volatility of output (Davis and Kahn,

2008). Similarly, financial innovations in the early 1990s might have stabilized the economy

(Guerrón, 2009). And monetary policy might be conducted now with more deftness than in

the past (Lubik and Schorfheide, 2004, and Cogley and Sargent, 2005).

However, there are so many examples of time-variation (with reversals in the direction

of change!) that relying too much on structural transformation or better policies seems un-

wise. More importantly, when we try to capture the dynamics of macroeconomic time series

with a vector autoregression (VAR) where we allow both for changes in the autoregressive

coefficients and for variations in the matrix of variance-covariances of shocks, the likeli-
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hood function sharply prefers the latter as the primary driver of time-variation in volatility.

This point was demonstrated in a classic paper by Sims and Zha (2006) and drove many

researchers (including us!) into centering their study on changing standard deviations.

Figure 3: Federal funds rate
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(a) Federal funds rate
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(b) Moving average standard deviation
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(c) Kernel densities of the federal funds
rate

Thus, a more parsimonious approach is to consider that the shocks that induce aggregate

fluctuations have time-varying volatility. Since a change in variance moves the dispersion

of the future distributions of the shock, we can call these changes “uncertainty shocks,” (or

second-moment shocks) in comparison with more traditional shocks to levels (of productivity,

preferences, tax rates, etc.; all of them first-moment shocks). In Section 4, we will return

to the question of how to model these uncertainty shocks, and we will define them more

precisely.

Unfortunately, uncertainty cannot be measured directly in the same way as output or

inflation. We cannot open a financial newspaper or visit the webpage of a statistical agency

and read about the uncertainty in the economy from a well-laid table. To discipline the

uncertainty shocks that we can introduce in a model and gauge their quantitative significance,
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researchers need to come up with measures of uncertainty.

The two most popular approaches in the literature have been to estimate a formal econo-

metric model and use it to back up a measure of realized volatility and future uncertainty

or to use some proxy of uncertainty.

The first route, estimating a formal econometric model, is followed by Fernández-Villaverde

et al. (2011) and Fernández-Villaverde et al. (2015a). These papers propose a stochastic

volatility process for the variables of interest (such as interest rates, risk premia, or tax

rates) and estimate such a process using the likelihood approach (see Fernández-Villaverde

et al., 2016, for methodological details). Section 4 will explain why a stochastic volatility

process is a natural process to be taken to the data.

The second route is to search for a proxy of uncertainty. Bloom (2009) popularized the

idea of using the VIX index of 30-day implied volatility on the S&P 500 stock market index.

This proposal, however, has been criticized because it is hard to determine the direction

of causality. Instead of uncertainty shocks triggering aggregate fluctuations, we can have

aggregate fluctuations generating time-varying volatility in the stock market (in fact, given

a standard stochastic discount factor model of asset pricing, part of the variance in the stock

market should be the product of level shocks). More in general, an alternative reading of

Figures 1-3 is that economic fluctuations cause uncertainty to increase, not the other way

around.4

A more direct proxy can be to count occurrences of events related to uncertainty. In an

influential paper, Bloom et al. (2016) proposed building policy uncertainty indexes through

the aggregation of three components. The first component counts words related to uncer-

tainty in newspaper articles. More words such as “uncertainty,” “unknowns,” and similar

in any given period mean higher uncertainty. The second component counts the number of

federal tax code provisions set to expire in future years: more tax code provisions set to ex-

pire means more uncertainty about future policies. The third component uses disagreement

among economic forecasters as a proxy for uncertainty.

The idea of counting words related to uncertainty in newspaper articles has proven to be

particularly popular. It is easy to do with modern statistical packages and search engines,

and it can be combined with natural language processing, a booming sub-field of machine

learning (see Blei et al., 2003, and, applied to uncertainty, Larsen, 2017).

Figure 4 shows an example of such a news index. Panel 4a plots, in blue, the European

monthly index built by Scott R. Baker, Nicholas Bloom, and Steven Davis using articles

from Le Monde and Le Figaro for France, Handelsblatt and Frankfurter Allgemeine Zeitung

4Bekaert et al. (2013) show evidence that, indeed, uncertainty shocks drive much of VIX volatility.
Nevertheless, we will return to the issue of the endogeneity of uncertainty in Section 9.
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for Germany, Corriere Della Sera and La Stampa for Italy, El Mundo and El Pais for Spain,

and The Times of London and Financial Times for the United Kingdom.5 The same panel

also plots, in red, the index for Spain between 2001:1 and 2016:1. Shaded areas show local

peaks of uncertainty.

Panel 4b plots the kernel of the Spanish index and points out well-known political events

in Spain during the period. For instance, we see that the times of highest uncertainty were

related to the Iraq War and the Prestige oil spill (which severely damaged the reputation

of the government due to its perceived mismanagement of the accident). The uncertainty

at the time was at the 99th percentile of the distribution. We also see that the uncertainty

distribution is asymmetric, and it has a long right tail. In Section 8, we will see how this

evidence of long tails motivates the study of two-standard-deviation uncertainty shocks.

Figure 4: News

Jesús Fernández-Villaverde (PENN) The Macroeconomics of Uncertainty April 26, 2017 2 / 85(a) News index
Jesús Fernández-Villaverde (PENN) The Macroeconomics of Uncertainty April 26, 2017 3 / 85

(b) Kernel density

One can easily relate peaks and drops in the news index with changes in economic activity

(for instance, with a simple VAR or local projections) and obtain an estimate of the effects of

this news on output, inflation, and other variables of interest. See Bloom (2009) and Bloom

et al. (2016) for examples of well-known measurement estimation along those lines.

The question is, therefore, how to build mechanisms that link these empirical patterns

with standard economic theory.

3 Different mechanisms

Many mechanisms link uncertainty and its variation over time with aggregate fluctuations

in economic models. Instead of reviewing each of them in detail, we will focus on three

5See, for details and updates, http://www.policyuncertainty.com/europe_monthly.html.
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mechanisms that we consider the most important given the model with financial frictions

that we present in Section 5. The first mechanism will be precautionary behavior. The

second mechanism will be the Oi-Hartman-Abel effect. The third mechanism will be the

real rigidities caused by financial frictions.

For those readers interested in complementing our exposition, Fernández-Villaverde and

Rubio-Ramı́rez (2013) and Bloom (2014) are two concise reviews of the literature on uncer-

tainty and business cycles up to its development a few years ago. These reviews dig deeper

than we do into the microfoundations of why uncertainty may vary over time. Note also that,

to keep the paper at a reasonable length, we will focus on the effect of uncertainty shocks in

models with a representative agent and only discuss the implications of uncertainty shocks

in models with heterogeneous agents in passing. Similarly, we will ignore the literature that

relates uncertainty and long-run growth (for example, through the incentives to innovate in

models of endogenous growth). See Aghion and Banerjee (2005) for more details on such a

subfield.

3.1 Precautionary behavior

The most transparent mechanism to link uncertainty shocks and business cycles is to

have agents in the model whose preferences display precautionary behavior. When the utility

function of an economic agent (usually an individual but, if we ignore for a moment the issues

of aggregation, also a household, a firm, or another group) is concave, the agent dislikes

uncertainty. Expected utility from consumption is lower than the utility from expected

consumption:

Eu(c) < u(E(c)) (1)

where E is the expectation operator, u(·) is the utility function, and c is consumption (which

might be a vector of goods including services from durables, home production, and leisure,

not just a scalar). Therefore, mean-preserving increases in the distribution of c will lower

expected utility.

However, risk aversion does not necessarily imply that economic agents will behave dif-

ferently (i.e., they will display precautionary behavior) than in the absence of uncertainty.

A trivial example is to consider an endowment economy, where the stochastic process for c

is exogenously given. Prices in equilibrium will move in such a way that the level of con-

sumption will always be equal to the endowment, regardless of the level of uncertainty in

the endowment.6

6Certainty equivalence does not mean that studying uncertainty is pointless in this class of models. As
mentioned in the main text, since markets must clear, changes in uncertainty in an endowment economy
will impact the valuation of assets that define claims to the stream of consumption. Similarly, there will be
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A more sophisticated example is the celebrated result of certainty equivalence first doc-

umented by Simon (1956) and Theil (1957). These researchers showed how, under some

conditions on the objective function and the constraint set of a dynamic programming prob-

lem, the optimal action of a decision-maker under uncertainty who maximizes her expected

utility is identical with the action that neglects uncertainty by maximizing utility under

perfect foresight. Certainty equivalence will hold, for instance, when the objective func-

tion is quadratic and the constraints are linear. This may occur in the original formulation

of the problem or it may appear as a consequence of a solution algorithm, such as the

linear-quadratic approximation in Kydland and Prescott (1982), which yields a certainty

equivalence solution (even when the original problem does not).

Leland (1968) and Sandmo (1970) broke this certainty equivalence property by showing

that a sufficient condition for risk aversion to translate into precautionary behavior is the

convexity of marginal utility. In this case, agents want to avoid large fluctuations in marginal

utility across states of the world by saving a buffer stock of assets. Mathematically, risk

aversion depends on the sign of the second derivative of the utility function (a negative

sign means the agent is risk-averse). Precautionary behavior, instead, depends on the third

derivative. In particular, agents will save more, everything else equal, if the third derivative

of the utility function is positive (this is also known as “prudence”).7

Table 1: Utility functions and derivatives

Quadratic CRRA

Level α1c− α2

2
c2, α1, α2 > 0 c1−σ−1

1−σ , σ > 0

u′ α1 − α2c c−σ

u′′ −α2 −σc−σ−1
u′′′ 0 (σ + 1)σc−σ−2

To see this point, we can compare, in Table 1, two commonly used utility functions in

macroeconomics: a quadratic utility function and a CRRA utility function. We will assume

that consumption is positive and, in the case of the quadratic utility, below the satiation

point α1

α2
.

Both utility functions have positive first derivatives (i.e., more consumption is better

than less) and negative second derivatives (i.e., agents are risk-averse). However, the third

derivative of the linear-quadratic utility function is zero (i.e., we do not have precautionary

relevant welfare implications. After all, each exercise in asset pricing is, through the back door, an exercise
in welfare analysis (Álvarez and Jermann, 2005).

7We keep repeating the caveat “everything else equal.” This point matters. For instance, if the agents’
demand for saving moves to the right due to precautionary behavior, their labor supply will also typically
increase in general equilibrium. A higher labor income will increase consumption.
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behavior), but the third derivative of the CRRA utility function is positive (i.e., we have

precautionary behavior).8 Note also how, for a CRRA utility function, the same parame-

ter, σ, controls risk aversion and prudence (and, obviously, the elasticity of intertemporal

substitution).

The extension of this explanation to the case with time-varying uncertainty is straightfor-

ward. Imagine that we have an uncertainty shock that increases the variance of productivity

innovations, demand shifts, or fiscal and monetary policy changes. After an uncertainty

shock, consumers with prudence will react by increasing their precautionary behavior, ev-

erything else equal.

What are the aggregate consequences of these changes in precautionary behavior? In a

benchmark equilibrium business cycle model with flexible prices and a standard calibration,

the effects are limited. With a CRRA utility function, precautionary behavior typically

appears as precautionary saving. Thus, an increase in uncertainty leads to a higher demand

for savings. But a higher demand for savings lowers the real interest rate that clears the

investment-savings market. Often, and depending on the concrete details of the model, there

is also a fall in demand for investment, which further lowers the interest rate. By inducing

more consumption today, the lower interest rate undoes most of the contractionary effects

of higher precautionary savings. See Basu and Bundick (2017) for a quantitative assessment

of this mechanism.

This result also appears in models with heterogeneous agents and incomplete markets

(Heathcote et al., 2009). In this class of environments, an increase in uncertainty, either at

an individual or aggregate level, leads to increases in aggregate savings and a lower interest

rate. The effect on the cross-sectional distribution of wealth is, however, contingent on

the calibration of the model. For instance, the persistence of the shocks to income is key to

determining how agents will react to changes in uncertainty. When shocks are very persistent,

higher uncertainty might translate into significant increases in precautionary behavior and

aggregate allocations.

How can we get around this quantitative irrelevance result of time-variations in uncer-

tainty? Our previous description of this result lays out a map of the different possibilities

in front of researchers: selecting different parameter values, having several assets, and intro-

ducing nominal rigidities.

8This point also illustrates why the first-order perturbation of an equilibrium business cycle around the
deterministic steady state is certainty equivalent (Fernández-Villaverde et al., 2016). A first-order perturba-
tion only uses information about the first and second derivative of the utility function (we take derivatives of
an Euler equation, which has a first derivative itself). Given a CRRA utility function with parameter σ and
a steady-state consumption css, we can calibrate α1 = (1 + σ)c−σss and α2 = σc−σ−1

ss . With this calibration,
the quadratic utility function and the CRRA would have the same first and second derivatives at css and,
thus, a first-order perturbation must deliver the same answer for both utilities.
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3.1.1 Different parameter values

The first possibility is to move away from standard parameter values, either by increasing

risk aversion or the size of the change in uncertainty. The latter can be accomplished by

selecting different target moments in a calibration or by modifying the specification of the

model and the associated likelihood function.

Higher risk aversion can be achieved, for example, by using recursive preferences à la

Epstein and Zin (1989). With these preferences, we can select parameters that deliver high

risk aversion –and with it, high and varying risk premia– while keeping the relatively high

intertemporal elasticities of substitution needed to ensure sound business cycle properties

for the model (see Tallarini, 2000, for a documentation of this “quasi-separation” of prices

and quantities).9

An even more radical departure from standard models than using Epstein-Zin preferences

is to move to a specification of preferences that displays explicit ambiguity aversion as in

Gilboa and Schmeidler (1989), Epstein (1999), and Epstein and Schneider (2007). Here, we

can think about changes in uncertainty as being reflected in changes in the range of the

multiple priors that an agent considers. Since usually in these models agents adopt a max-

min policy rule that leads them to behave as if under a worst-case scenario, an increase in the

range of priors is, loosely speaking, equivalent to the agents believing that some parameter

or some shock will take its worst possible realization. Two notable examples of such a line

of research are Ilut and Schneider (2014) and Bianchi et al. (2017). Since there is a link

between Epstein-Zin preferences, concerns for robustness, and ambiguity aversion, most of

the ideas in these last two paragraphs apply to each of three situations (Barillas et al., 2009,

Maccheroni et al., 2006, and Strzalecki, 2013).

We can obtain higher uncertainty by increasing the probability of rare disasters (a small

risk of a large macroeconomic shock), as argued in Gabaix (2012). We can think about rare

disasters as the possibility of a war, a natural catastrophe, a pandemic, or massive political

upheavals that disrupt economic activity.10 For instance, a rare disaster uncertainty shock

can be a sudden change in geopolitical factors that increases the probability of a war in

the near future, changes in climate that make a devastating flood in a coastal country more

likely, or the appearance of a previously unknown virus that raises the chances of a major

global pandemic.

9See also Swanson (2012) for an important insight about how to compute risk aversion in models with
endogenous labor supply.

10Barro (2006), Barro and Ursúa (2008), Gabaix (2011), and Gourio (2012) have emphasized the impor-
tance of tail-end risk -in particular, disaster risk- as a driver of aggregate fluctuations and asset pricing.
Note, however, that here we are not discussing the effects of these tail-end shocks, but the impact of changes
in the probability of one of those shocks arriving in any given period.
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In asset pricing, Bansal and Yaron (2004) illustrate how the combination of recursive pref-

erences, a small long-run predictable component, and stochastic volatility on the consump-

tion endowment can account for the equity premium, the risk-free rate, and the volatility of

the market return, risk-free rate, and the price-dividend ratio. This message is reinforced

by Drechsler and Yaron (2011), who document a quantitatively significant role for transient

non-Gaussian shocks to fundamentals that affect agents’ views of economic uncertainty and

asset prices.

Fernández-Villaverde and Levintal (2018) make a similar point in the context of both

standard real business cycle and fully fledged New Keynesian models. Even in the pres-

ence of production, Epstein-Zin preferences and rare disasters can match basic asset pricing

observations while delivering excellent business cycle properties.

3.1.2 One-sided shocks

Motivated by our previous discussion, one can think about a change in the probability of

a rare disaster as a change in the skewness of the distribution of shocks. Thus, a possible area

of research, much unexplored, is to consider skewness shocks. Most increases in uncertainty

in the real world are one-sided. A financial crisis increases the probabilities of a major

recession, but not the probabilities of an unseen boom. And a pandemic usually means

there is much more downside health risk, but it rarely means there is a simultaneous higher

probability of much better health outcomes.

A quick-and-dirty way to get a first approximation of this problem in an equilibrium

business cycle model is to consider a simultaneous negative level shock and a positive un-

certainty shock (i.e., an increase in variance). This exercise, however, does not fully capture

the shifting in distributions that we are envisioning.

In the context of models with heterogeneous firms, Salgado et al. (2019) have recently

shown that a negative shock to the skewness of firms’ productivity growth generates a per-

sistent drop in output, investment, hiring, and consumption. Hopefully, more research will

come from this direction in the near future.

3.1.3 Several assets

Much of the attenuation of the effects of uncertainty shocks comes from the fact that, in

a standard neoclassical growth model (and its real business cycle and New Keynesian model

variations), agents only have access to one asset in positive net supply: physical capital.

Why is the presence of only one asset key? Because when uncertainty increases and

agents want to engage in more precautionary behavior, the only asset in which that precau-
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tionary behavior can be reflected –physical capital– also becomes typically riskier. Capital is

riskier either because we have more productivity uncertainty or its valuation becomes riskier

(for example, because of higher discount factor uncertainty).11 There are, therefore, two

counterbalancing forces: a higher demand for capital, because of precautionary behavior,

and a lower demand for capital, because of higher risk.

Fernández-Villaverde et al. (2011) show a straightforward path out of this effect: the

presence of several assets. Specifically, Fernández-Villaverde et al. (2011) model open market

economies where agents can also save in foreign assets. If we assume, for instance, that

higher uncertainty in Spain does not translate into higher uncertainty in Japan (or that the

correlation among these assets is less than 1), then Spanish agents can shift from Spanish

assets into Japanese assets and self-insure against higher uncertainty. Through the induced

changes that such a shift has on investment and labor supply both in Spain and in Japan,

uncertainty shocks can have large real effects.

3.1.4 Nominal frictions

By preventing the counterbalancing effect of prices that attenuated the effects of uncer-

tainty shocks above, nominal rigidities can increase the consequences of volatility and induce

its own type of precautionary behavior.

A clear case is Fernández-Villaverde et al. (2015a). In this paper, firms encounter nominal

rigidities while setting up prices: they need to set up a price before seeing the realization of

shocks and must pay a cost to change it. Firms are more worried about setting a relative

price that is too low ex-post than too high. A relative price that is too low ex-post forces the

firm to sell too much at an unfavorable price (New Keynesian models assume a full-service

obligation at posted prices). A relative price that is too high ex-post, instead, compensates

for the low sales with a high margin. In other words, the profit function is asymmetric with

respect to the relative price: it falls more quickly to the right of the optimal relative price

than to the left. The strength of this effect depends positively on the elasticity of substitution

among goods.

A higher level of uncertainty, by increasing the dispersion of where the relative price

will fall ex-post, induces an upward pricing bias. Firms will increase their expected mark-up

and, thus, reduce the percentage of times their relative prices are too low ex-post. However,

a higher mark-up increases the distortions in the economy, lowering output, hours worked,

investment, and consumption. This last point is remarkable. In many other models of

uncertainty shocks, firms are induced to lower investment after uncertainty spikes. However,

11This statement, however, must be qualified: in some particular models, an increase in uncertainty might
not affect the riskiness of capital, although, as we mentioned in the main text, it typically does.
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since the economy is as productive in the current period as before, consumption must increase

to clear markets. Higher consumption is, however, counterfactual. By highlighting the role

of the upward pricing bias and the distortions it creates in allocation, Fernández-Villaverde

et al. (2015a) can fix this problem.

3.2 The Oi-Hartman-Abel effect

In the previous subsection, we focused on precautionary behavior, typically in the form

of saving and pricing decisions. We now analyze how uncertainty can affect the production

decisions of the economy. We will discuss first the Oi-Hartman-Abel effect and, in the next

subsection, the consequences of real rigidities.

Our starting point for doing so is to go back to Oi (1961), Hartman (1972), and Abel

(1983). Imagine that we have a firm that uses capital, kt, rented at rate rt, and labor, lt,

paid at wage wt to produce a final good yt with a Cobb-Douglas production function

yt = Atkt
αlt

β.

where At is the productivity level at period t. Assume as well that the production function

shows decreasing-returns-to-scale α + β < 1. The optimality conditions for the firm are:

kt
∗ = ψ1At

1
1−α−β (2)

lt
∗ = ψ2At

1
1−α−β (3)

where ψ1 =
(
α
rt

) 1−β
1−α−β

(
β
wt

) β
1−α−β

and ψ2 =
(
α
rt

) α
1−α−β

(
β
wt

) 1−α
1−α−β

.

These optimality conditions lead to a period profit:

Π∗t = ψ3At
1

1−α−β

where ψ3 = ψα1ψ
β
2
− ψ1rt − ψ2wt

These results show how the input demands and profits are convex on At. Thus, a mean-

preserving increase in the uncertainty regarding At will increase, everything else equal, the

ex-post dispersion of input demands, profits, and output.

The key in this example is that the firm, by endogenously choosing its size, can take

advantage of a higher volatility. When good shocks arrive, the firm can expand, and when

bad shocks arrive, the firm can contract. The concavity of the production function ensures

that such decision rules deliver higher profits when At fluctuates due to uncertainty shocks
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than when At is constant.12

Interestingly, the closer the firm is to constant-returns-to-scale, the larger is the effect,

until it completely collapses when we reach α + β = 1 and the size of the firm becomes

indeterminate. However, if there are adjustment costs to capital or some other friction that

prevents a constant-returns-to-scale firm from fully adjusting to shocks, we will recover a

“quasi-Oi-Hartman-Abel effect.” This mechanism will appear, later on, with the quantitative

results of our model. On the other hand, if the inputs are entirely fixed, for instance, because

we have a putty-clay technology as in Gilchrist and Williams (2000), the effect will disappear.

3.3 Real frictions

The most common real friction in models with uncertainty shocks is the presence of

non-convex adjustment costs in investment (Bloom, 2009). When we have these adjustment

costs, firms follow Ss rules. Firms have a band of inactivity where they do not adjust their

capital. If the shocks move the target capital too far away from the existing capital (that

is, the firm moves outside the Ss band), the firm will incur the non-convex adjustment cost

and invest.

Bloom (2009) points out that if uncertainty about the future increases, the Ss band will

become wider, as firms want to be more cautious before readjusting capital. Then, in the

short run, fewer firms will move outside the Ss band, and investment will fall. The effect

will be particularly salient if the distribution of firms has a lot of mass close to the bands,

perhaps due to some past aggregate shocks. In the absence of an uncertainty shock, many

of these firms would have jumped out of the band in the current period.

However, since the economy is still as productive as before, consumption must increase

to clear markets (recall our discussion above when we analyzed nominal frictions). Thus,

one needs to enrich the model with mechanisms that prevent this counterfactual increase in

consumption.

In our model in Section 5, we will tackle a different real friction that has received less

attention: financial frictions. By changing the distribution of future realizations, uncertainty

shocks modify the probability of a financial friction binding in the future (or the severity of

the constraint). Thus, economic agents will undertake actions today to protect themselves

12In fact, a similar phenomenon can appear on the household side in a standard real business cycle
model. Since the household can adjust its labor supply after a productivity shock, even with a concave
utility function, expected utility can be higher with more uncertainty than with less. The intuition is that,
while the direct utility function is concave in its inputs, the indirect utility function can be convex in prices.
See Cho et al. (2015) for a quantitative exploration of this point and an example of a simple economy where
business cycles increase welfare. In addition, this result should make us cautious about interpolating the
welfare costs of business cycles, including uncertainty shocks, derived from endowment economies à la Lucas
(1985) into production economies. This comment, of course, has sharp consequences for asset prices as well.

16



against such realizations. For example, if capital provides liquidity services that are partic-

ularly valuable when the financial constraints are more severe, the agents will increase their

investment in the current period in the shape of “precautionary investment” (a close relative

of the option value effect of Bernanke, 1983, and Dixit and Pindyck, 1994). We will return

to these ideas in Section 8.

4 How to model uncertainty shocks

The next question we face is how to model, in a simple yet effective way, the changes in

uncertainty over time. To make things more concrete, imagine that we have the volatility,

σt, of some random variable of interest xt, such as productivity or a preference shifter, that

evolves as:

xt = ρxt−1 + eσtεt, where εt ∼ N (0, 1). (4)

To simplify the exposition, we are assuming that xt follows an AR(1), but the extension to

more general structures is straightforward.

The literature has identified three main alternatives to specify σt: stochastic volatility,

GARCH processes, and Markov-regime switching. Stochastic volatility (SV) models the

evolution of σt as an ARMA process, often an AR(1) of the form:

σt = (1− ρσ)σ + ρσσt−1 + (1− ρ2σ)1/2υut, where ut ∼ N (0, 1) (5)

The AR(1) is written in logs to ensure σt > 0.13 We will call ut the “uncertainty shocks”

in contrast with the “level shock” εt. This neat separation between uncertainty and level

shocks allows an easier isolation of the effects of the former in the data and in the equilibrium

economic model. Also, we rescale the variance of the uncertainty shocks to make them

invariant to changes in their persistence ρσ.

We usually assume that the uncertainty and level shocks are uncorrelated. Nevertheless,

it is quite direct to correlate εt and ut if needed (Fernández-Villaverde et al., 2011). This

correlation is sometimes called the “leverage effect” of level shocks on uncertainty shocks

because, in asset pricing, one can get this correlation through the presence of leverage in

a firm’s balance sheet. Also, nothing prevents us from having innovations that are not

Gaussian, such as in Cúrdia et al. (2014). Since models with uncertainty shocks need to

be solved with non-linear solution methods in any case, we can deal with a large class of

distributions for the innovations.

13In an alternative formulation, we can write the AR process as xt = ρxt−1+σtεt and model the evolution
of σt in logs.
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Many researchers are attracted to SV because of its simplicity. For example, with an

AR(1) specification, we only have to deal with two new parameters: ρσ, the persistence of

σt, and υ, the standard deviation of the innovations to volatility (σ, the mean of volatility,

still needs to be estimated when we take volatility as constant). Also, SV models are easily

estimated using sequential Monte Carlo methods, either by themselves or jointly with the

rest of the equilibrium business cycle model (Fernández-Villaverde et al., 2016). As we

will discuss later, sequential Monte Carlo methods are particularly well-adapted to massive

parallelization.

Despite its parsimony, SV can capture much of the dynamics of the data. Also, the

combination of exponents of σt in equation (4) and levels in its evolution (5) shifts the

distribution of the volatility into flexible shapes that can accommodate many time series.

See Shephard and Andersen (2009) for a more complete discussion.

The second approach is to model σt as a GARCH process (Bollerslev, 1986):

σ2
t = ω + α (σt−1εt−1)

2 + βσ2
t−1

that is, the variance σ2
t is a function of its own past and the squared scaled innovation

((σt−1εt−1)
2). As we argued with SV, instead of our simple GARCH specification, we could

think about much richer structures as in the many incarnations of GARCHs proposed in

econometrics (Bollerslev, 2008).

The main difference between SV and GARCH is that, in the latter, there is only one

shock, εt, driving the dynamics of the level and volatility of xt. Therefore, it is impossible to

separate a volatility shock from a level shock: higher volatilities are triggered only by large

past level innovations.

In reduced-form time series econometrics, since we are mainly concerned with forecasting,

this constraint is not much of an issue. However, when we deal with equilibrium business

cycle models, the assumption is too restrictive. Furthermore, while estimating time-series

GARCHs is much easier than estimating an SV model, solving an equilibrium business cycle

model with either GARCH or SV shocks is roughly equivalent in terms of complexity. Finally,

SV models tend to do better in terms of fitting the data (Nakajima, 2012). Therefore, we

see GARCH specifications as clearly dominated by SV for studying uncertainty shocks in

dynamic macroeconomics and we will not discuss them further.

The third approach to modeling the evolution of σt is to specify a Markov regime-

switching structure. For instance, we can assume that σt follows a Markov chain that takes

two values, σL and σH , where L stands for low uncertainty and H stands for high uncertainty
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(σL < σH). The transition matrix is, then:(
a1 1− a1

1− a2 a2

)

Even with only two points, different choices of a1 and a2 capture a large range of interesting

behaviors. A typical example is calibrating a1 � a2, which can be read as low uncertainty

being the regular times and high uncertainty as the rare times (this is similar to our idea of

rare disasters in Section 3, but now in terms of uncertainty). Extending the Markov chain

process to an arbitrary n number of points (or even to induce variation in the entries of the

transition matrix) to encompass a much richer set of events is straightforward (Hamilton,

2016).

How do we compare SV and Markov regime-switching models? There is no obviously

superior approach. SV assumes that uncertainty varies as a continuously changing process.

Markov regime-switching models evolve more abruptly, with discrete jumps interrupted by

periods of constant uncertainty.

Some researchers can argue that a continuously changing process better reflects their

reading of the evidence. For example, the uncertainty about future fiscal policy might

evolve daily as news about the state of the economy arrives or the political game in Congress

unravels day-by-day. Other researchers can reply that some events are better characterized

as discrete jumps, such as the election of a new president or the appointment of a new

governor of a central bank.

Many time series of interest probably share both continuous and discrete components,

and we could consider an encompassing model where the change in the standard deviation

is given by:

σt = νt + (1− ρσ)σ + ρσσt−1 + (1− ρ2σ)1/2υut

where is νt is a discrete jump with a Bernoulli scheme distribution (this class of models is

popular in finance; see Bates, 1996).

The challenge for this encompassing specification is that with fewer than 300 observations,

as we have in the U.S. national income and product accounts (and much fewer for other

countries), estimating such a model is a tall order.

A small technical advantage of the SV specification is that we can take derivatives with

respect to the volatility level, which we cannot in a Markov regime-switching specification.

Taking derivatives will be convenient when, in Section 6, we defend the use of perturbation

methods to solve equilibrium models with uncertainty shocks. This advantage will make us

opt for SV in the model in the next section.
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On the other hand, SV has its own problems. For instance, if the real process has a dis-

crete jump, the SV specification will “anticipate” the change by showing changes in volatility

before they happen (Diebold, 1986). The likelihood function (or most other estimating func-

tions) dislikes huge changes in one period and prefers a sequence of smaller ut before and

after the actual change to an exceptionally large ut that would account for the jump.

We are now finally ready to introduce our real business cycle model with financial frictions

and uncertainty shocks.

5 Our model

To illustrate the impact of uncertainty shocks on aggregate fluctuations, we propose a

standard real business cycle model augmented with a financial friction in the tradition of

Kiyotaki and Moore (1997).14 In this economy, time is discrete, and there is a continuum

of households with measure one. Each household has a unit mass of members who are ex-

ante identical. However, in the middle of every period, family members are separated into

entrepreneurs and workers. Each member receives a shock that determines her role within

the period (Shi, 2015). An individual can be an entrepreneur with probability π or a worker

with probability 1 − π. An entrepreneur can invest in capital, but she does not work. In

comparison, a worker cannot invest, but she can work. Both entrepreneurs and workers

can trade equity claims in the financial market subject to constraints to be specified below.

Occupations are assigned for one period only. In the next period, all the members’ identities

are reshuffled.

For parsimony, we will introduce only three level shocks in the model: i) a “supply-

side” productivity shock; ii) a “demand-side” preference shock; and iii) a “real-rigidity”

financial friction shock. Associated with each of these three level shocks, we will have their

corresponding three uncertainty shocks for a total of six shocks. While six shocks might not

be enough to capture all the dynamics in the data, it will be sufficient to illustrate the main

mechanisms that link uncertainty shocks with aggregate fluctuations and that we explained

in Section 3. Other supply, demand, or rigidity shocks (such as price and wage stickiness)

will, to no small extent, behave in similar ways and we can skip them in the interest of

transparency (see Fernández-Villaverde et al., 2015a, and Justiniano and Primiceri, 2008,

for much richer models with uncertainty shocks).

14Our description of the model follows closely Guerrón-Quintana and Jinnai (2019b).
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5.1 Three stages

A period is divided into three stages: i) decision making by the household; ii) production;

and iii) consumption and investment. In the decision stage, all members of the household

start the period united and share their assets, which are equal to st equity claims. One

equity claim, with price qt, gives its holder the ownership of one unit of capital. Thus, st is

also the total amount of capital of the household and qtst its valuation.

Next, the aggregate shocks to exogenous state variables are realized. Because, at this

stage, all the members of the household are identical, the head of the household divides the

equity claims among the members evenly. These members also receive contingency plans to

follow after they are assigned roles. If the agent becomes an entrepreneur, she would invest

it units of the consumption good, consume cet units of the consumption good, and make

necessary trades in the stock market to ensure that she would hold set+1 units of equity claims

at the end of the period. In contrast, if the member becomes a worker, she would supply

lt units of labor, consume cwt units of the consumption good, and make necessary trades in

the stock market to ensure that she would hold swt+1 units of equity claims at the end of

the period. We will discuss below how the head of the household decides these instructions.

After receiving their directives, the members depart to the market. The members remain

separated for the rest of the period.

At the beginning of the production stage, each member receives the shock whose realiza-

tion determines whether the individual is an entrepreneur or a worker. Next, these members

move to the input markets, and they rent their labor lt and capital services utkt to a rep-

resentative competitive firm. The capital services kDt are the product of the total units of

capital, kt, and its utilization rate, ut. This utilization rate controls depreciation, δ(ut). A

higher utilization rate causes faster depreciation according to:

δ(ut) = δ0 + δ1(ut − 1) +
δ2
2

(ut − 1)2.

Here, δi > 0 for i ∈ {0, 1, 2} and δ0 is depreciation in the steady state. In this formulation,

we can have ut > 1, which we interpret as capital being used above the average rate for

which it was designed.

The representative competitive firm produces a final good yt using the inputs rented from

the members of the household with a constant-returns-to-scale Cobb-Douglas production

technology:

yt = At
(
kDt
)α

(lt)
1−α . (6)

The final good can be used for consumption or, as we will describe momentarily, for invest-
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ment. Here, At is a technology shock, which both households and firms take as given and

evolves as an AR(1) process:

At = (1− ρA)Ā+ ρAAt−1 + eσA,tεA,t, where εA,t ∼ N (0, 1). (7)

We normalize the deterministic steady-state productivity Ā to 1 and impose the reflective

barrier A > 0. Given our calibration and the fact that we will focus on studying impulse-

response functions around the deterministic steady state, such a barrier is irrelevant in our

computations.15

Equation (7) incorporates time-varying volatility into productivity σA,t. In particular,

the volatility σA,t also obeys an AR(1) process:

σA,t = (1− ρσA)σA + ρσAσA,t−1 + (1− ρ2σA)1/2υAuA,t, where uA,t ∼ N (0, 1), (8)

with mean σA and persistence ρσA . This is an example of the SV specification we discussed

in Section 4 and that we argued is particularly convenient for equilibrium business cycle

models. The innovation to volatility, uA,t, is the first of the uncertainty shocks that we

consider in this model and can be interpreted as a “supply-side” uncertainty shock.

Let rt and wt denote the rental price of capital and the wage rate, respectively. Therefore,

the optimality conditions for the firm are the common equalities of marginal productivities

of inputs to their prices:

α
yt
kDt

= rt,

and

(1− α)
yt
lt

= wt.

After production, workers receive wage income, equity holders collect dividends, and a

fraction δ(ut) of capital depreciates.

In the third stage of the period, consumption takes place, and entrepreneurs seek finance

to undertake investment projects. To do so, an entrepreneur has access to a linear technology

that transforms it units of the final good into it units of new capital.

The period ends after the events in the three states. The members of the household get

together, their identities are reset, and the next period begins.

15Note the absence of long-run growth in productivity. In a model such as this one, such an absence is
of secondary importance. In the presence of a deterministic or stochastic trend in At, we can always rescale
all variables by such a trend and obtain a stationary representation with properties nearly identical to the
version of the model we study here.
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5.2 Constraints of the head of the household

The contingency plans that the head of the household provides to each member of the

household must meet several constraints. First, the directives have to satisfy the budget

constraints:

cet + it = rtutst + qt
(
(1− δ(ut)) st + it − set+1

)
(9)

and

cwt = rtutst + qt
(
(1− δ(ut)) st − swt+1

)
+ wtlt. (10)

Equation (9) is the budget constraint of entrepreneurs. The equation says that the con-

sumption of an entrepreneur (cet ) plus her investment (it) must be equal to the return from

renting her equity holdings in the inputs market (rtutst) plus the value of her net equity

trades (qt
(
(1− δ(ut)) st + it − set+1

)
). Equation (10) is the budget constraint workers face.

Its interpretation is analogous to the interpretation of equation (9), except that now the

worker does not invest and she has labor income wtlt.

Second, because the members of the household share their assets before the next period

begins, the total equity position of the household must be equal to the sum of the positions

of its members:

st+1 = πset+1 + (1− π) swt+1. (11)

Third, the directives cannot avoid the frictions in the equity market. An entrepreneur

can issue at most θtit of equity against the new capital she accumulates (the counterpart to

these claims is the workers, who cannot invest directly in capital but can buy equity claims

in the financial market).

Besides, the entrepreneur can sell at most a fraction φ ∈ [0, 1] of existing capital in the

market. We interpret these financial frictions as representing the “skin in the game” outside

investors require from inside equity holders to induce the former to fulfill their contractual

obligations to the latter. These constraints introduce a lower bound to the entrepreneur’s

capital holdings:

set+1 ≥ (1− θt) it + (1− φ) (1− δ(ut)) st. (12)

While θt is time-varying, φ is constant. This distinction captures the idea that there are

more fluctuations in the conditions surrounding new investment than in reselling existing

capital. Sometimes the new investment is much harder to evaluate and monitor than already

existing capital. For example, this can occur when most investment in the economy is related

to the arrival of a new general-purpose technology, and outside investors know little about it

(or, simply, they know less than insiders). On other occasions, new investment is not harder

to evaluate than already existing capital. In our previous example, this can occur when most

23



investment in the economy is adding to a mature general-purpose technology. In the former

case, θt is low (the entrepreneur can issue little outside equity against hard-to-evaluate new

projects). In the latter case, θt is high (the entrepreneur can issue more outside equity).16

See Jurado et al. (2015) for a measurement of how uncertainty regarding financial markets

fluctuates in the data and for its possible interpretations.

More concretely, we assume that the salable part of investment, θt, follows an AR(1)

process:

θt = (1− ρθ)θ + ρθθt−1 + eσθ,tεθ,t, where εθ,t ∼ N (0, 1),

with reflecting barriers at [0, 1], mean θ. Again, given our calibration and quantitative

exercises, the numerical consequences of the reflecting barriers for θt are minor for the ideas

in this paper.

The volatility σθ,t of this process is, itself, another AR(1) process:

σθ,t = (1− ρσθ)σθ + ρσθσθ,t−1 + (1− ρ2σθ)
1/2υθuθ,t, where uθ,t ∼ N (0, 1). (13)

This financial friction volatility will be the second source of uncertainty shocks in our model

and we will call it the “financial friction” uncertainty shock.

Financial frictions create an equivalent lower bound to workers’ capital holding:

swt+1 ≥ (1− φ) (1− δ(ut)) st, (14)

but we omit it because this friction does not bind in equilibrium. Since workers are net

buyers of equities in the equilibrium we are interested in, we have that swt+1 > (1− δ(ut)) st
always holds and, thus, the constraint (14) is automatically satisfied.

Finally, there are non-negativity constraints for it, lt, c
e
t , c

w
t , and swt+1, but we ignore these

as well because they do not bind either along the equilibrium path.

5.3 The problem of the head of the household

The head of the household chooses directives for its members to maximize the household’s

total utility:

Et
∞∑
t=0

βtdt

{
π

(cet )
1−ρ − 1

1− ρ
+ (1− π)

[cwt (1− `t)η]1−ρ − 1

1− ρ

}
(15)

16An alternative interpretation is that some technologies are harder for outsiders to monitor (i.e., IT)
than others (i.e., manufacturing). When new investment is skewed toward the IT sector, θt is low. When
new investment is skewed toward the manufacturing sector, θt is high.
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subject to the budget constraints (9) and (10) and the financial constraints (11) and (12).

Here, β ∈ (0, 1) is the discount factor, ρ is the parameter controlling the elasticity of in-

tertemporal substitution, η is the parameter controlling the labor supply of workers, and dt

is a preference shock shifter.

This preference shock shifter is a stand-in for fluctuations in tastes, demographics, and

fiscal policy, among others, that we do not model explicitly. We will impose the conventional

normalization d̄ = 1 and assume that it changes as an AR(1) process:

dt = (1− ρd)d̄+ ρddt−1 + eσd,tεd,t, where εd,t ∼ N (0, 1). (16)

Through the variable σd,t, equation (16) introduces the third and final source of time-

varying volatility in our model: a “demand-side” shock. As we did before, we will assume

that the evolution of σd,t also obeys an AR(1) process:

σd,t = (1− ρσd)σd + ρσdσd,t−1 + (1− ρ2σd)
1/2υdud,t, where ud,t ∼ N (0, 1). (17)

The structure of this equation and the parameters follow the same interpretation as in

equations (8) and (13). We can interpret ud,t as a “real-rigidity” financial friction uncertainty

shock.

5.4 Inspecting the problem of the household

To understand the problem of the household better, we can manipulate the different

constraints faced by its head. First, we can multiply equation (9) by π and equation (10) by

(1− π), add them, and use equation (11) to aggregate equity holdings and obtain:

πcet + (1− π) cwt + qtst+1 = rtutst + qt (1− δ(ut)) st + (1− π)wt`t + π (qt − 1) it. (18)

Equation (18) is a standard budget constraint at the household level except that the

depreciation rate is a function of utilization, ut, and, more importantly, because we have the

very last term on the right-hand side, π (qt − 1) it. Let us spend some time analyzing this

term.

If qt = 1, we have π (qt − 1) it = 0 and we revert to a standard budget constraint. If

qt > 1, i.e., if the price of equity is above the cost of the final goods required to produce one

extra unit of capital, it relaxes the budget constraint. In other words, the household can

make a profit out of investment: the household takes one unit of the final good and obtains

one unit of capital with a valuation above one.
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But, because funding is limited by financial frictions, there is a limit to how much the

household can benefit from this scheme. Specifically, substituting equation (9) into equation

(12), we find the upper bound on it:

(1− θtqt) it ≤ rtutst + φqt (1− δ(ut)) st − cet . (19)

The left-hand side of equation (19) is the minimum amount entrepreneurs have to self-finance

to conduct investment it. This amount is smaller than it, the quantity of final good invested,

because entrepreneurs can issue θtit of outside equity against the new capital. The right-

hand side of equation (19) is the maximum liquidity available to entrepreneurs, equal to

their equity income, rtutst, plus the value of the equity that can be sold to outside investors

after depreciation, φqt (1− δ(ut)) st, minus their consumption, cet . We can think of equation

(19) as the feasibility constraint for investment.

We can draw three implications from equations (18) and (19). First, when qt = 1,

the term with it disappears from the household budget constraint (18) and any level of it

satisfying equation (19) can be optimal. In equilibrium, it will be determined through the

choice of st+1. Intuitively, investment and equity purchases are perfect substitutes because,

when qt = 1, the price of existing capital is identical to the marginal costs of creating new

capital. In this case, the inequality constraint (19) does not bind in general.

The second implication is that, if qt > 1, the inequality constraint (19) must bind at

the optimum. If not, the household could increase it by ε > 0 without violating equation

(19) and make an extra profit. This increase would loosen the household budget constraint,

allowing the household to raise utility by purchasing an additional quantity of the final good

for consumption. In other words, if the household can make money from investment, it

should utilize this opportunity up to the limit.

Finally, the third implication is that the capital price qt must be strictly less than the

inverse of θt in equilibrium. If not, we would have that (1− θtqt) ≤ 0 and the inequality

constraint (19) would hold for an arbitrarily large positive it. Because qt > 1 also holds in

this case, the household could relax the budget constraint (18), which would violate market

clearing. Intuitively, if qt is not strictly less than the inverse of θt, entrepreneurs could fully

finance the costs of investment by issuing outside equity, and they would be able to engage

in an unlimited amount of arbitrage.

As in Shi (2015), we will restrict our attention to the most interesting case in which the

equilibrium price of capital always exceeds one. Then, the second implication above gives us

that the inequality constraint (19) always binds and the third implication that 1 < qt < 1/θt.

In this situation, we can combine equations (18) and (19) to obtain a modified household
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budget constraint:

πcet + (1− π) cwt + qtst+1 = rtutst + qt (1− δ(ut)) st + (1− π)wt`t

+ π
qt − 1

1− θtqt
(rtutst + φqt (1− δ(ut)) st − cet ) .

(20)

The last term of the right-hand side in the previous equation is crucial. It is a product of

three components: i) the fraction of entrepreneurs π; ii) the liquidity held by entrepreneurs

after consumption, (rtst + φtqt (1− δ(ut)) st − cet ); and iii) the liquidity services:

λt =
qt − 1

1− θtqt

implied by the financial frictions. Since 1 < qt < 1/θt, these liquidity services, λt, are

positive. An entrepreneur can convert one unit of liquidity into 1/ (1− θtqt) units of capital

by leveraged investment, each of which is worth qt in the market. Hence, λt is the price of

this liquidity for the household head.

5.5 Optimality conditions

Once we have derived our modified household budget constraint (20), we can find the

optimality conditions of the household head for `t, c
e
t , c

w
t , st+1, and ut by maximizing the

utility function (15) subject to equation (20).

The optimality condition for labor supply `t is:

η
cwt

1− `t
= wt.

This condition is standard: the household head equates the marginal rate of substitution

of leisure for consumption to wages. Importantly, since the members of the household who

become workers are free from the liquidity concern, there is no wedge between the marginal

rate of substitution of leisure for consumption and wage. This result does not imply, however,

that financial frictions do not have consequences for labor supply. Both cwt and wt are different

from what they would otherwise be because of investment changes along the equilibrium path

due to those frictions.

The optimality condition for the intra-household consumption allocation (cet vs. cwt ) is:

(cet )
−ρ = (1 + λt) (cwt )−ρ (1− `t)η(1−ρ).

This optimality condition shows the existence of a wedge between the entrepreneur’s marginal
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utility from consumption and the worker’s, 1 + λt > 0. Specifically, the entrepreneur’s

marginal utility is larger than the worker’s because liquidity services, λt, are positive. The

reason comes from the budget constraint (20). The entrepreneur’s consumption increases

the uses in the left-hand side of the equation and reduces the resources on the right-hand

side. In comparison, the worker’s consumption increases the uses on the left-hand side while

leaving resources untouched. In other words: the household head understands that the

entrepreneur’s consumption has a higher opportunity cost than the worker’s. Every extra

amount of resources that the household head allocates to the consumption of entrepreneurs

reduces the liquidity of the latter and, with it, the additional profits that investment delivers

under financial frictions.

The Euler equation for investment (or equivalently, for equity claims and, hence, in-

tertemporal allocations) is:

qt = Et

{
β

(
dt+1

dt

)(
cwt+1

cwt

)−ρ(
1− `t+1

1− `t

)η(1−ρ)
∗ (rt+1ut+1 + (1− δ(ut)) qt+1 + πλt+1 (rt+1ut+1 + qt+1φ (1− δ(ut))))

}
.

This condition determines the price of capital qt. Notice that the worker’s marginal utilities

are in the stochastic discount factor because workers are the marginal investors purchas-

ing the outside equity. We also have the ratio of
(
dt+1

dt

)
of preference shifters that tell

the household head how much to discount the present relative to the future with respect

to the average discount factor β. As we discussed before, the term in the right-hand side

(1− δ(ut)) qt+1 + πλt+1 (rt+1ut+1 + qt+1φ (1− δ(ut))) summarizes the benefits of holding eq-

uity, among which the last term is for providing liquidity to entrepreneurs.

The last optimality condition is with respect to the utilization rate of capital. The

condition rt = qtδ
′(ut) equates the marginal return of using the capital at a higher rate with

the marginal depreciation it triggers.

The competitive equilibrium for this economy is standard, and, in the interest of space,

we skip its explicit definition. It is worthwhile, however, to recall that the market-clearing

conditions for final goods, factor services, and equity are:

πcet + (1− π) cwt + πit = At
(
kDt
)α

(lt)
1−α ,

lt = (1− π) `t,

kDt = utkt,
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and

kt = st

respectively, for all t.

Finally, the capital accumulation rule relies on the investment by entrepreneurs and the

decisions on the utilization rate of capital:

kt+1 = (1− δ(u)) kt + πit.

6 Computation

Because our model has no closed-form solution, we solve it numerically. The solution

method is standard, and it is described in detail in Fernández-Villaverde et al. (2016). We

first find the deterministic steady state of the model.17 Next, we take a third-order approx-

imation in levels of the system of equations characterizing the equilibrium around such a

steady state.18 Third, we compute the generalized impulse response functions, GIRFs, of

variables of interest to different shocks (for details, see Koop et al., 1996, and Andreasen

et al., 2018). In particular, we will report the GIRFs in percentage points from the deter-

ministic steady state, when all the other shocks are at their mean levels.

Three points deserve further discussion. First, our choice of a perturbation solution.

Models with uncertainty shocks are highly dimensional. In addition to the standard state

variables (i.e., capital, preference shocks, productivity levels, etc.), we also need to keep track

of the volatility levels, which become additional state variables when they are time-varying.

In our case, we have seven state variables: the three level shocks, the three uncertainty

shocks, and capital. Thus, dynamic programming and projection methods, both of which

suffer from an acute curse of dimensionality, can be hard to implement. Perturbation, in

comparison, can handle large state spaces without a problem and often delivers outstanding

accuracy even far away from the perturbation point (Aruoba et al., 2006, and Caldara et al.,

17The deterministic steady state is the fixed point of the equilibrium conditions of the model when the
volatility of all shocks has been driven to zero. In contrast, the stochastic steady state is the fixed point of the
equilibrium conditions of the model when the realization of all shocks in the period is zero. These two steady
states will be different in general because of precautionary behavior. Also, even when the deterministic
steady state is unique, we can encounter multiple stochastic steady states. See Fernández-Villaverde et al.
(2019a) for an example of such a situation.

18A technical note is relevant here. It is most advisable to perform the perturbation around the deter-
ministic steady state, even in the presence of uncertainty shocks that may move the stochastic steady state
substantially. First, all the theoretical results involving the consistency of a perturbation with respect to
the exact but unknown solution depend on such a perturbation being taken around the deterministic steady
state. Second, we know how to evaluate all the relevant derivatives only at the deterministic steady state.
Otherwise, we need to engage in an iterative procedure that quickly goes astray.
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2012).

A promising alternative to perturbation for solving this class of models is Taylor projec-

tion. As described in Fernández-Villaverde and Levintal (2018), Taylor projection is a hybrid

of perturbation and projection methods that yields excellent accuracy even when the shocks

are large, the solution of the model presents high curvature, and the state variables are far

away from the deterministic steady state. Indeed, an advantage of Taylor projection is that

the series expansion can be undertaken in points different at the deterministic steady state

and make it depending on values of the state variables. Fernández-Villaverde and Levintal

(2018) show how a Taylor projection can handle models with time-varying rare disasters,

like those described in Section 3, quickly and efficiently.

An even more radical departure with respect to existing solution methods is the use of

machine learning algorithms, such as neural networks and deep learning. Thanks to a smart

choice of basis functions and a simulation approach to the selection of coefficients weighting

these basis functions, these algorithms can break the curse of dimensionality and deal even

with the strongest non-linearities. Therefore, they are particularly promising for this class

of problems. See Fernández-Villaverde et al. (2019a) for details.

Second, we perform a third-order perturbation because we are interested in tracing the

effects of an uncertainty shock. As we discussed in Section 3, a first-order perturbation is

certainty equivalent and, therefore, not useful to study uncertainty shocks. A second-order

perturbation incorporates the effects of uncertainty shocks, but only in terms involving

cross-products of level and volatility shocks. It is in the third-order perturbation that we

find terms in the solution that only involve uncertainty shocks and, hence, we can compute

their GIRFs (which is, intuitively, a partial derivative over time). Fernández-Villaverde et al.

(2015b) present a formal proof of this claim.19

Sometimes, and for accuracy purposes, one may need to go to higher perturbation orders,

but for our model, in this paper terms of order higher than three are of minor quantitative

importance. See, nevertheless, Levintal (2017) for examples and advice on how to implement

such higher-order perturbations.

Third, we compute GIRFs because, once one is dealing with a non-linear solution, the

responses of variables of interest to shocks are state-dependent: they are a function of the

size and sign of the shock, and the point in the state space where the economy is at the arrival

of the shock. In comparison, in a linear model, the regular impulse response functions are

19There is a caveat to remember. Except in a few particular cases, we do not have a proof that the
decision rules that we solve for are differentiable with respect to the uncertainty shocks. This is a problem,
however, for higher-order perturbation methods in general, regardless of whether they deal with uncertainty
shocks. However, note that perturbation methods only require the existence of partial derivatives, not total
differentiability.
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independent of the point in the state space where the economy is, and their shape is just a

scale up or down of the size and sign of the shock.20

7 Calibration

Our next step is to take the model to the data. To do so, the literature has opted for

one of two approaches. The first route is to estimate the model formally using econometric

tools. When the model is solved using a third-order perturbation, this can be easily done by

building the moments of the ergodic distributions of variables of interest and minimizing a

quadratic distance to the analogous moments in the data. This point is often crucial because,

when the model is solved non-linearly, the first moments of the ergodic distribution and the

deterministic steady state can be far away from each other due to precautionary behavior

(although, in our current model, this concern is not of great importance). Andreasen et al.

(2018) show how this moment matching can be done in a few seconds by providing analytic

formulae for all the relevant expressions.

Alternatively, we can use a particle filter to evaluate the likelihood function implied by the

model and, then, rely on a Markov chain Monte Carlo to either sample from the posterior

(if we specify a prior and adopt the Bayesian approach) or search for a maximum (if we

stay within a frequentist paradigm). Fernández-Villaverde (2010) and Fernández-Villaverde

et al. (2016) explain these ideas in detail.21 One advantage of sequential Monte Carlos (such

as the particle filters) is that they are particularly amenable to massive parallelization, an

enormous advantage in an era of graphics processing unit (GPUs), field-programmable gate

arrays (FPGAs), and cloud services. See Fernández-Villaverde and Valencia (2018) for a

tutorial on how to do so.

The second route is to implement a standard calibration. Since the goal of this paper is

to illustrate how uncertainty shocks affect aggregate fluctuations, we follow this latter route:

it is simpler than a formal structural estimation, and it saves us plenty of space that we can

20To see this, note that the linear approximation to the log-deviation of output, ŷt, in a standard real
business cycle model, is a linear function of the log-deviation of capital, k̂t, productivity at the start of the
period, zt−1, and the productivity shock, εt:

ŷt = a1k̂t + a2zt−1 + a3εt.

Thus, the effect of εt on ŷt is through a3, regardless of the values of k̂t and zt−1. In addition, the effect is

a linear function of εt. In a higher-order perturbation, we encounter terms of the form a4k̂tεt that induce
state-dependence and terms of the form a5ε

2
t that make the shape of the response depend on the size and

sign of the shock.
21See also Guerrón-Quintana (2010) for advice in the selection of observables to feed into the likelihood

function.
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put to good use in providing further intuition.

To match data from national income and product accounts, we pick a quarter of a year as

our period. Many of the parameter value choices are standard in the literature. For instance,

we set the discount factor to β = 0.994 and the parameter controlling risk aversion to ρ = 2.

Similarly, we set the utilization rate to 1 in the steady state and the elasticity of δ(·)′ to 0.33

as in Comı́n and Gertler (2006).

We follow Shi (2015) in setting the fraction of investors to π = 0.06 and the capital share

to α = 0.36, and in assuming that the fraction of new equity θ is equal to the steady-state

resealability φ.

We move now to our explicit targets. We calibrate three parameters –the steady-state

resealability, φ, the curvature in leisure in the utility function, η, and the capital depreciation

rate δ– using three observations from the U.S. economy commonly employed in business cycle

research: the aggregate hours of work in the deterministic steady state (1/3), the ratio of

capital to annual output in the deterministic steady state (3.30), and the ratio of annual

investment to capital in the steady state (0.075).

Our last task is to determine the parameters of the six shocks. We start with the persis-

tence of the level shocks. A conventional value for the persistence of technology, ρA, is 0.95

(Cooley and Prescott, 1995). For symmetry, we pick the same persistence for preferences,

ρd, and the financial friction, ρθ. We deem these parameter values as reasonable given the

empirical evidence from Bloom et al. (2018) and Fernández-Villaverde et al. (2015a). All

the persistences of the uncertainty shocks are set to 0.75, roughly around the mean of the

persistences estimated by Fernández-Villaverde et al. (2015a).

Next, we need the means of uncertainty shocks. As a target for the mean of the demand

uncertainty, σd, we use the estimate of log(0.13) in Fernández-Villaverde et al. (2015a).

For the mean of the technology uncertainty, σA, we use log(0.007) from Cooley and Prescott

(1995). For the mean of the financial friction uncertainty, σθ, we use log(0.033) from Guerrón-

Quintana and Jinnai (2019a).

Finally, we select the scale of the uncertainty shocks (i.e., the parameters υA, υd, and

υθ) to yield that a one-standard-deviation positive innovation to the uncertainty shocks

doubles its level. The literature on uncertainty shocks typically studies relatively large

shocks, such as two- or three-standard-deviation-innovations (see Bloom, 2009, Bloom, 2014,

and Fernández-Villaverde et al., 2015a, among many others). The reason is that these are the

range of changes in uncertainty associated with events such as geopolitical crises, financial

turbulence, large political upheavals, and similar developments. This area of research does

not seek to replace regular level shocks, such as productivity or demand innovations, but

to complement them by studying the consequences of large events. As such, the literature
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acknowledges that much of the variation in aggregate variables in average quarters will be

driven by level shocks, not uncertainty shocks.

Thus, all the GIRFs to uncertainty shocks reported in Section 8 plot the evolution of the

aggregate variables after a one-standard-deviation positive innovation to the corresponding

uncertainty shock. Given the aims of this paper, such normalization is the best choice to

illustrate how uncertainty shocks operate. In a more fully fledged model, the scale can be

picked, for instance, to match some properties of the estimated volatilities from the data.

Table 2 summarizes our calibration (and where u.s. stands for uncertainty shock).

Table 2: Parameters and Calibration Targets

Parameter value Calibration Target

β: discount factor 0.994 Exogenously chosen

ρ: relative risk aversion 2 Exogenously chosen

π: fraction of entrepreneurs 0.06 Annual fraction of investing firms = 0.24

η: curvature in leisure utility 1.525 Hours of work = 1/3

α: capital share 0.36 Labor income share (1− α) = 0.64
δ0: capital depreciation rate 0.016 Annual investment/capital = 0.065

δ1: slope depreciation function 0.013 Pinned down by steady state

δ2: curvature depreciation function 0.33× δ1 Comı́n and Gertler (2006)

φ: resealability 0.095 Capital stock/annual output = 3.30

θ: mean fraction of new equity 0.095 Set equal to φ
ρd: persistence of preferences 0.95 Exogenously chosen

ρA: persistence of technology 0.95 Cooley and Prescott (1995)

ρθ: persistence of financial friction 0.95 Exogenously chosen

ρσd = ρσA = ρσθ : persistence of u.s. 0.75 Fernández-Villaverde et al. (2015a)

σd: mean of preference u.s. log(0.13) Fernández-Villaverde et al. (2015a)

σA: mean of technology u.s. log(0.007) Cooley and Prescott (1995)

σθ: mean of financial friction u.s. log(0.007) Cooley and Prescott (1995)

8 Results

We can now study the effects of the three uncertainty shocks in our model. First, we will

analyze the uncertainty shock to preferences, to productivity, and to the financial friction.

In the interest of concision, we will not report the GIRFs of level shocks to preferences and

productivity (they are, though, rather conventional), but we will include the GIRFs of the

level shock to the financial friction. Second, we will study how the propagation of the three

uncertainty shocks change as we modify the tightness of the financial friction.
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8.1 Uncertainty shock to preferences

Figure 5 displays the GIRFs to an increase in the uncertainty of the preference shifter, our

“demand-side” shock, that doubles its standard deviation (center panel, bottom row). That

is, upon impact, the volatility of dt goes up to 2× σd (recall the scaling in our calibration).

We can see in Figure 5 that, after the preference uncertainty shock, output (left panel,

top row), investment (right panel, top row), and labor go up (left panel, middle row), while

consumption falls (center panel, top row). Higher uncertainty about future preferences means

that the household faces a larger probability of an event where marginal utility is very high

(remember that the utility function is multiplied by the demand shifter dt). The household

also faces a larger probability of an event where marginal utility is very low, but such an

event is of lower concern for the maximization problem because of the concavity of the utility

function.

Figure 5: Impact of an increase in uncertainty on preference shock
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To limit the effect of these high marginal utility events, the head of the household orders
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an increase in precautionary savings. More concretely, the head of the household instructs

its members to consume less, save (i.e., invest) more, and work harder than before. The

strong desire to save is more than enough to offset the decline in consumption, resulting in a

boom in output. In the absence of nominal rigidities, labor increases to meet the additional

production. Additionally, higher savings from workers raise the demand for equity, and hence

its price, qt (center panel, middle row). Consequently, the liquidity services λt go up (right

panel, middle row).

The shock leads to relatively persistent deviations, with output rising by 20 basis points

at around 12 quarters after impact. That is, we can get a clear and prominent expansionary

effect of uncertainty shocks, a new result in the literature, where most of the (positive)

uncertainty shocks have to deliver contractionary effects. This result is particularly intriguing

because it can help us reconcile some observations about the evolution of uncertainty and

business cycles. Some uncertainty shocks are contractionary (such as the fiscal volatility

shocks in Fernández-Villaverde et al., 2015a, or the shocks in Bloom, 2009), but some might

be expansionary. Thus, naive econometric methods that find mild effects of uncertainty

variations might be just mixing the effects of these two very different classes of uncertainty

shocks.

Also, the model generates hump-shaped GIRFs in output, hours worked, consumption,

and investment despite the absence of habit formation and adjustment costs in investment.

These GIRFs are a remarkable finding since simulations in Basu and Bundick (2017) show

that real business cycle models fail to generate hump-shaped dynamics after a preference

uncertainty shock.

Our model triggers those responses because of two forces. Upon impact, demand for new

capital rises, which pushes the price of capital up and increases the liquidity services provided

by capital. The jump in qt relaxes the financial constraint (19), allowing the household to

invest more. This force resembles the valuation mechanism at the center of the model by

Kiyotaki and Moore (1997), except that we are dealing with an uncertainty shock, not with a

productivity level shock. At the same time, the newly created capital competes with already

existing capital in the provision of liquidity, which makes adding more capital unappealing

for the household. Eventually, this second force dominates, driving down investment, prices,

and liquidity.

Three additional points are salient to understanding Figure 5. First, despite the output

boom, the utilization rate goes down (left panel, bottom row): since capital is now more

valuable, the household head wants to maintain it for the future (when a bad preference

shock might arrive) by reducing depreciation.

Second, the movements in the variables occur even if no fundamental has changed. What
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has changed is the probability of future changes in fundamentals (e.g., the demand shifter).

Thus, a researcher who does not appreciate the importance of uncertainty shocks might find

herself puzzled by the co-movement of aggregate variables displayed by Figure 5: variables

move in different directions and, yet, no obvious (traditional) shock has arrived.

Third, even if output goes up, the period utility at impact is lower: the household is

working more and consuming less. With uncertainty shocks, we must be careful in reading

positive welfare implications from output booms.

8.2 Uncertainty shock to productivity

Figure 6 shows the dynamics of macroeconomic variables following an increase in the

volatility of the productivity shock, σA,t, our “supply-side shock.” As we did with the

preference shock, we look at the case when the volatility of productivity doubles after the

increase in uncertainty. The ordering of the panels is the same as in Figure 5, except that

the uncertainty shock (center panel, bottom row) is now the productivity one, instead of the

uncertainty shock to preferences.

We see in Figure 6 that, after the arrival of the uncertainty shock, output, investment,

and labor go up, while consumption drops for a few quarters and, then, soon recovers.

Similarly, the price of capital and the liquidity services go up. The utilization rate of capital,

in contrast to Figure 5, increases.

At first sight, Figures 5 and 6 look very similar, including the expansionary effect of

positive uncertainty shocks and the presence of humps in the variables of interest. However,

the divergent evolution of the utilization rate of capital (lower after a preference volatility

shock, bigger after a productivity volatility shock) reveals that very different mechanisms

are at work.

Precautionary behavior is behind Figure 5. In comparison, the Oi-Hartman-Abel effect is

behind Figure 6 (recall Subsection 3.2). While the production function of the representative

firm in our economy is constant-returns-to-scale, the presence of financial frictions reduces

the elasticity of capital supply, with q departing from 1 (which would always be the case

without those financial frictions). This departure amounts, in practice, to a behavior of the

firm that closely resembles the case where the production function has decreasing-returns-

to-scale and triggers the Oi-Hartman-Abel effect.

The head of the household responds to this Oi-Hartman-Abel effect by asking the house-

hold members to work harder, invest more, and utilize the capital more. The utilization

rate goes up because the Oi-Hartman-Abel effect tells the household to increase the capital

services that the representative firm employs, which in the short run can be achieved through
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higher utilization of capital, even if at the cost of higher depreciation. Investment goes up

so much that consumption goes down at impact. In other words, the household wants to be

ready for the situation where a particularly good productivity shock arrives (the uncertainty

shock makes it more likely than before).

Figure 6: Impact of an increase in uncertainty on productivity shock
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Also, accumulating extra capital has the additional advantage for the household of pro-

viding extra insurance if the production shock is very negative (capital can be transformed

back into consumption or used to produce more of the final good for consumption). Note,

however, that these effects are quantitatively smaller than the ones in our previous uncer-

tainty preference shock.

8.3 Level shock to the financial friction

Before we can study the consequences of an uncertainty shock to the financial friction,

we need to spend some time studying the level effect of a change in θt, since some of the
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impulse responses are not obvious (compare, for instance, our model with the regular financial

accelerator model of Bernanke et al., 1999).

Figure 7 reports the consequences of a positive one-standard-deviation shock to θt (note

how, for level shocks, we report a traditional one-standard-deviation GIRF). The ordering

of the panels is the same as in Figure 5, except that the center panel, bottom row, reports

the level shock to θt.

Figure 7: Impact of θ
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The increase in θt means that entrepreneurs can issue more equity against new capital.

There are different possible interpretations for such exogenous changes in the financial mar-

kets and their willingness to buy outside equity. For instance, we can have a tightening in

the regulation protecting outside investors, or as we mentioned before, the concentration of

investment in a general-purpose technology that is easier to monitor.

After θt rises, the investment constraint in equation (19) relaxes. This relaxation leads to

more investment and, with it, to a lower price of capital. The newly created capital provides
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additional liquidity, and liquidity services fall. The drop in qt makes investment even cheaper,

leaving additional resources for the households to consume. Hence, consumption goes up.

Firms meet the additional demand by increasing utilization and hiring more labor.

The reduction in qt goes against the standard intuition that an improvement in financial

conditions (in this case, easier issuance of outside equity) should lead to a stock market

boom. Shi (2015) shows that this counterintuitive result is a general problem of models

with financial frictions.22 Guerrón-Quintana and Jinnai (2019b) use an endogenous-growth

mechanism to restore the dynamics in asset prices after a financial shock.

8.4 Uncertainty shock to the financial friction

With this background in place, we can move to discuss the impact of a financial uncer-

tainty shock uθ,t. We report our findings in Figure 8. A financial uncertainty shock makes it

more likely that θt will increase in the next period by a large amount. Since pledging capital

will be easier in the future than today, the household head orders entrepreneurs to postpone

investment and increase consumption today.

However, the probability that θt goes down significantly in the next period has increased

too. Under this scenario, the pledgeability of capital will decline sharply, making investment

more expensive. The entrepreneurs do not want to be caught in a situation of not having

enough resources to invest because of a tighter financial friction (θt down) and low installed

capital (resulting in low φqt(1 − δ(ut))st+1). This channel pushes investment up in the

current period, because, in such a way, there will be more installed capital to be used as

collateral in the next period. We can call this mechanism “precautionary investment.” The

economic intuition is related, but not equal, to the option value effect of investment under

irreversibility (Bernanke, 1983, and Dixit and Pindyck, 1994).

Because of the concavity of the utility function, the second scenario –the large drop in

θt– is more adverse for the household than the first one. Thus, the head of the household

instructs entrepreneurs to increase investment and the utilization of capital, and workers to

work longer hours. As in other cases, a higher investment lowers the price of capital and

the value of liquidity services. The household, as a response to the lower price of capital,

consumes more to smooth marginal utilities over time.

Finally, note that the expansion induced by an uncertainty shock to the financial friction

is larger than the effects of the other two uncertainty shocks (notice the scales in the vertical

axis of each panel). This quantitative result backs up the conjecture that the relations

22Similarly, this idea is also behind why models with bubbles can increase investment (Farhi and Ti-
role, 2012). Anything that increases the value of capital above “fundamentals” leads, in general, to more
investment. By giving capital a liquidity service, financial frictions tend to have this implication as well.

39



Figure 8: Impact of an increase in uncertainty on financial shock

 0 10 20 30

0

0.1

0.2

0.3

output

 0 10 20 30

0

0.02

0.04

consumption

 0 10 20 30

0

0.5

1

investment

 0 10 20 30

0

0.05

0.1

0.15

labor

 0 10 20 30

-0.2

-0.1

0
price of capital

 0 10 20 30

-0.4

-0.2

0
lambda

 0 10 20 30

0

0.2

0.4

utilt

 0 10 20 30

0

0.2

0.4

0.6

shock

NOTE: Variables correspond to percentage deviations from their steady states.

between financial markets and uncertainty are at the very core of how uncertainty operates

in terms of allocations. This point has already beeen highlighted in Fernández-Villaverde

et al. (2011) and Arellano et al. (2019), it is implicit in the empirical results in the VAR

estimated by Bloom (2009), and it motivates our next experiment.

8.5 Financial frictions and the propagation of uncertainty shocks

Given our previous discussion, a natural question is: how important are financial frictions

for the propagation of uncertainty shocks, even those that do not come from the financial

market?

To gauge this importance, we vary the degree of liquidity in the economy and report

our results in Figures 9-11. In each of these figures (again, with the same ordering of

variables that we followed in previous figures), we consider two scenarios: our benchmark

calibration (red solid line) and looser financial constraints (blue discontinuous line) where
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θ = 0.20, i.e., the mean pledgeability is roughly twice as high as in the benchmark calibration

and more outside equity can be issued (we keep θ at the same level as in the benchmark

calibration). Because of our calibration strategy, the looser financial constraint implies a

higher investment-to-capital ratio.

In the case of uncertainty shocks to preferences (Figure 9), the effect of modifying the

financial friction is quite small: output increases slightly more, but consumption, investment,

and labor remain roughly unchanged. The liquidity services increase substantially more, but

this has a minor impact on allocations.

Figure 9: Role of financial friction in propagation of uncertainty in preferences
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In contrast, a looser financial constraint has a significant impact on the propagation of

the productivity uncertainty shock (Figure 10) and in particular, to the uncertainty shock

to the financial friction (Figure 11).

The intuition for the case of the productivity uncertainty shock is straightforward. When

the financial friction is looser, the Oi-Hartman-Abel effect is weaker. The head of the house-
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Figure 10: Role of financial friction in propagation of productivity uncertainty
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hold can instruct entrepreneurs to invest more when the good productivity shock arrives,

and it does not need to accumulate as much capital in the expectation that such a shock

will arrive in the near future and we cannot invest as much as we desire.

The mechanism in the case of the financial friction uncertainty shock is related. If the

financial restriction is relaxed, the economy enjoys more liquidity, and entrepreneurs can

issue more equity against their new investment when the good shocks arrive. Entrepreneurs

are less concerned about a future decline in θ (because of higher uncertainty today). Hence,

they choose to increase investment by a smaller fraction than in the benchmark scenario,

and output rises much less.

In summary, our exercise illustrates that financial frictions make uncertainty shocks much

more significant. Based on this observation, we close this section with two conjectures for

future research. First, in the presence of household heterogeneity, such effects could be even

more significant. Second, the reason why many emerging economies have wilder business cy-
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Figure 11: Role of financial friction in propagation of uncertainty in financial shock
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cle fluctuations than advanced economies can be related, in part, to this interaction between

uncertainty shocks and financial frictions. Our prior is that emerging economies are subject

both to larger uncertainty shocks and tighter financial frictions.

9 Conclusion

In this paper, we have shown how uncertainty shocks can help us understand important

aspects of business cycle fluctuations. More concretely, we have investigated how uncertainty

shocks interact in a non-trivial way with financial frictions. By complicating future invest-

ment in physical capital, tighter financial frictions induce large contemporary reactions to

uncertainty shocks.

However, there is much that we can do in this literature. We now outline four avenues of

research. First, we can take this class of models to the next level, evaluating the interactions
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of financial frictions and heterogeneity in a context with changing volatility. Fernández-

Villaverde et al. (2019a) show the rich non-linear dynamics generated by the interaction of

financial frictions and heterogeneity and show how they are related to the underlying level

of uncertainty in the economy. However, the paper does not explore the role of transitory

uncertainty shocks.

Second, uncertainty shocks can also interact with models with a multiplicity of equi-

libria. An example of this interaction is in Fernández-Villaverde et al. (2019b). In most

models analyzed by the literature (including the one in this paper), the effect of uncer-

tainty shocks is transitory. In comparison, Fernández-Villaverde et al. (2019b) show that

changes in uncertainty can have considerable effects on the ergodic distributions of aggre-

gate variables. When the economy can fluctuate between two different equilibria, one with

high economic activity and low unemployment and one with low economic activity and high

unemployment, the level of uncertainty will determine how often we switch between these

two equilibria. Fernández-Villaverde et al. (2019b) deliver such results through search com-

plementarities, but there are many other ways to achieve the same outcome. Uncertainty

shocks can, therefore, have long-lasting effects.

Third, we need further explorations of the role of the endogeneity of uncertainty shocks.

Are business cycles driven by uncertainty shocks, or are uncertainty shocks driven by business

cycles, as argued, for example, by Bachmann and Moscarini (2011) and Bachmann et al.

(2013)? For example, Van Nieuwerburgh and Veldkamp (2006) have argued that when firms

produce less, the flow of new information to other agents in the economy slows down, and

uncertainty increases (imagine a situation where production decisions by firms inform other

agents about the productivity of a new technology; see Saijo, 2017). Or can we have a

situation where we face a mix of the two causality directions? For instance, an uncertainty

shock can lower economic activity and, with it, the flow of information.

Fourth, we should study in more depth the interaction between models of endogenous

growth and uncertainty shocks. At the core of endogenous growth models, we have tech-

nology adoption decisions that depend on valuations of future profits from such adoption.

By shifting such a valuation, uncertainty shocks can have permanent effects on the level of

output.

We hope to see many more papers coming in this literature during the next decade from

young and adventurous researchers.
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Álvarez, F. and U. J. Jermann (2005): “Using Asset Prices to Measure the Persistence

of the Marginal Utility of Wealth,” Econometrica, 73, 1977–2016.

Andreasen, M., J. Fernández-Villaverde, and J. Rubio-Raḿırez (2018): “The
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