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1. INTRODUCTION

A defining feature of many of the most profitable companies in the 21st century is
scale. For example, the song catalog for the music service Spotify contains over 50 million
songs.1 The online retailer Amazon.com sells close to 120 million unique products.2 The
movie streaming service Netflix has over 130 million subscribing customers.3 This pro-
liferation of products and customers would be impossible to manage if humans did not
have help in the form of information technology. Large scale databases and algorithms
for decision making are now an essential ingredient of high-tech business management.

The benefits of this revolution are clear. For example, one consequence of this tech-
nology has been the creation of the most valuable companies in human history. At the
same time consumers benefit from recommendation systems engineered for customized
product assortments, ease of purchase, peer reviews, online price comparisons etc.

An obvious question to ask is if there are any downsides to algorithmic business man-
agement? An emerging literature seeks to document so-called "algorithmic bias" (e.g.,
Lambrecht and Tucker (2019), Hajian et al. (2016))—the notion that algorithms may dis-
criminate among users based on race, age, sexual orientation etc. If this is true, regulators
may want to force companies to "de-bias" their algorithms.

In this paper we analyze another unforeseen consequence of algorithmic management:
The possibility that companies may end up colluding through algorithms. The context
we study is pricing—an area where online retailers increasingly use machine learning
algorithms (’White House’, 2015). These algorithms set real-time prices for an array of
products where the retailer has incomplete demand information. In this setting each
algorithm is an automated field experiment that learns about potential profit (“explo-
ration”) and set the product’s profit-maximizing price (“exploitation”). These algorithms
are called multi-armed bandits (where each "arm" is a price). Given the complexity and
scale of online retail, field experiments in this context are typically analyzed assuming the
focal firm is a monopolist (or - alternatively - best-responding to fixed priced of competi-
tors). Chen et al. (2016) study the best selling product on Amazon.com and estimate only
2.4% of sellers run pricing algorithms that consider competitive prices. Recent academic
pricing field studies including Cheung et al. (2017); Dubé and Misra (2017) assume no
competitive response to pricing decisions.4 This assumption greatly reduces complexity:
it simplifies the problem to that of a single choice variable (own price), and estimating a

1https://newsroom.spotify.com/company-info/
2https://www.scrapehero.com/number-of-products-on-amazon-april-2019/
3https://www.cnn.com/2019/01/17/media/netflix-earnings-q4/index.html
4See section 4 of den Boer (2015) for an more complete overview of dynamic monopoly pricing with un-
known demand.
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profit curve which is only a function of the firm’s own price. A consequence of this sim-
plicity is that theoretically optimal algorithms include index algorithms (Gittins, 1989;
Weber, 1992; Auer et al., 2002). These algorithms calculate an index for every arm based
on the past performance of the arm (mean, variance and number of times played). In each
round, the algorithm simply selects the arm with the highest current index.

In this paper we analyze the outcome if competing firms all use an independent multi-
armed bandit indexing algorithm outlined above—and act as if they are in a monopolistic
market—but in reality price into an oligopolistic market. In keeping with the bandit anal-
ogy, we call pricing in each period an “experiment.” In particular, we study what long
run prices would result in such a setting. Of course, since a seller’s demand (and therefore
profit) at a particular price depends on competitors’ prices, each seller’s implicit statistical
model is misspecified.

We show that the long-run prices that result depend on the informational value (or
signal to noise ratio) of the underlying pricing experiments. In markets where price ex-
periments have low information value, the resulting long-run prices are statistically indis-
tinguishable from Nash Equilibrium prices, and the misspecified models achieve nearly
the first best profits. However, in markets where price experiments have high informa-
tion value, market prices are supra-competitive. We show that more informative pric-
ing experiments result in correlated price experiments across firms. Competitive prices,
therefore, become correlated unobservables in each firms’ pricing algorithm. By not ac-
counting for the existing competitive pricing, each firm’s price sensitivity will have an
upward bias, resulting in supra-competitive prices.

We are not the first to argue that algorithms might induce collusive pricing behavior.
A growing body of literature has raised concerns about this possibility—see for example
the white paper (OECD, 2017) listing policy-makers’ concerns, and the review article of
Harrington (2018) on how competition law should adapt. Recent influential papers such
as Calvano et al. (2019, 2018) have identified settings in which pricing algorithms can lead
to supra-competitive outcomes. Theses results are a part of a large theoretical literature
on repeated games argues that collusive pricing can result in equilibrium (see e.g. Mailath
and Samuelson (2006) for a textbook exposition), and a long line of empirical literature
starting with Green and Porter (1984) suggests that such strategies are indeed observed
in practice.

We contribute to this literature by identifying a novel channel/mechanism by which
such supra-competitive pricing may occur. Calvano et al. (2019, 2018) show that algorith-
mic collusion can occur in settings where firms observe each others prices. By contrast,
in our setting, each algorithm/firm do not observe competitors’ prices, a requirement in
the channels identified in the extant literature. We show that collusion can materialize
even in this case. Our result is related to Cooper et al. (2015) who also show non-Nash
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outcomes as the limit prices if duopoly sellers set prices from a misspecifed monopoly
model. Unlike our model, they assume prices are set as the static optimal prices from the
OLS demand estimates without any experimentation5.

We believe the identification of this novel channel is useful not only in theory, but also
raises novel concerns for managers and policy makers. In our setting firms indepen-
dently choose algorithms which use misspecified models of the underlying demand sys-
tem (here where firms’ algorithms assume they are effectively monopolies, although the
true market is oligopolistic). Each firm use these algorithms to structure ’relevant learn-
ing’ (Aghion et al., 1991), or learning about profit at the most profit relevant prices. Our
results show that when multiple firms employ identical algorithms, then learning can be
focused away from competitive prices resulting in supra-competitive prices. Jointly, firms
may have an incentive to be “willfully misspecified.” The question then, is whether all
firms choosing such misspecified models constitutes a concern for competition policy.

Finally, there has been an increased interest in understanding outcomes in settings
of interest where agents are somehow misspecified. For instance in Spiegler (2006) or
Spiegler (2013) society misunderstands the relationship between outcomes and the ac-
tions of strategic agents, which affects the actions the latter take in equilbrium and result-
ing outcomes (in the former, in the context of a market for quacks, in the latter with impli-
cations to the reforms taken by a policitican); see Spiegler (2011) for a textbook overview
in the context of industrial organization. Liang (2018) studies outcomes in games of in-
complete information where agents behave like statisticians and have limited informa-
tion.There is a larger literature which studies the outcomes when agents are modeled
as statisticians or machine learners, e.g., Al-Najjar (2009), Al-Najjar and Pai (2014), Ace-
moglu et al. (2016) and Cherry and Salant (2018). Finally, the paper of Olea et al. (2019)
studies a setting where agents with different misspecified models compete in an auction
after attempting to learn from a common dataset, and tries to understand how the mis-
spefication helps/ handicaps them in terms of auction outcomes. We contribute to this
literature both by considering a new form of misspecification motivated by complexity/
computational rather than behavioral concerns, and studying outcomes in this context.

The remainder of this paper is organized as follows: Section 2 describes the general set-
up and assumptions. Section 3 outlines our main results via a set of simulations. Section
4 contains our theoretical results (in a stylized setting) and lays out the mechanism by
which supra-competitive prices result. Section 5 we re-analyze Amazon.com pricing data
from Chen et al. (2016) and argue that the observed correlations in prices are consistent
with our simulations. Section 6 concludes, further situates our results in the literature,
and discusses avenues for future research.

5An implication of this model is that even if the sellers’ model was correct (e.g., each seller was a monopo-
list), the limit price need not converge to the correct optimal price.
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2. COMPETITIVE BANDITS SETUP

In this section, we explicitly state the key demand and supply assumptions in our
analysis. These assumptions define both the objective functions and the informational
assumptions for the agents. We consider two symmetric single-product firms with a con-
stant marginal cost (set to zero). Firms compete by setting prices in each period.

We assume that each firm’s demand is static and stable, a common assumption in em-
pirical and theoretical and work, and field experiments: see e.g. Besbes and Zeevi (2009),
Dubé and Misra (2017), Misra et al. (2019), Calvano et al. (2019). Static demand rules out
a large number of potential consumer dynamics, such as preference learning, uncertainty,
strategic consumers and stockpiling. These assumptions are important in our setting as
we focus on the firms’ learning about the demand (equivalently, profit) curve by price ex-
perimentation. If the demand were not static, then the pricing field experiment described
would be biased by assumption.

We assume that the demand is initially unknown to the firms. We assume there is a
discrete set of potential prices P = {p1, p2, . . . pK} that each firm can charge. The formal
results are for K = 2, but we show that similar results obtain in simulations more gen-
erally. A period of the algorithm can be considered as a fixed interval of time (e.g., 15
minutes), as is common in the operations research literature (Besbes and Zeevi, 2009), or
a fixed number of consumers (e.g., 100 consumers), as is common in the Marketing litera-
ture (Misra et al., 2019). Upon setting a price (running an experiment), the firm observes
profit (with sampling error) in that period, but observes neither the rival firm’s price,
nor the quantity it sold. Equivalently, the firm observes competitors’ price/quantity but
ignores these in its own statistical model.

In notation: In period t, each firm j sets a price pj,t ∈ P. The firm observes a resulting
profit πj,t ∈ R+. The additional complication is that in our setting firms do not observe
(or, ignore the effect of) competitors’ prices. That is to say that each firm’s statistical
model is πj,t = π∗(pj,t) + ε j,t, where π∗() is the true stable expected profit and ε j,t is
a small sample error or noise from the experiment at time t. However, in truth, πj,t =

π∗(pj,t, p−j,t) + ε j,t. In words, firms’ models are misspecified: they attribute the effect of
competitors’ prices (p−j,t) on own profits to be arising from noise from nature.

Viewing each possible price as an arm in a multi-armed bandit (MAB) problem, we
suppose that each firm runs an MAB algorithm to balance learning for future profits and
current profits. The objective function of such an the algorithm is to minimize statistical
regret, defined as the difference between average profits achieved with the algorithm and
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the ex-post optimal profits. The literature provides theoretical analysis and mathematical
guarantees of these algorithms.6

The bandit algorithm we will use is the UCB algorithm (Upper Confidence Bound),
originally due to Auer (2002). This provides an asymptotically optimal non-parametric
MAB solution (Agrawal, 1995; Auer et al., 2002): that is to say, (1) it is guaranteed to find
the optimal arm without any further assumptions in any MAB problem, and (2) no other
algorithm achieves lower regret. In our context, this means that a monopoly seller using
a UCB algorithm for pricing is guaranteed to find the monopoly optimal price without
any parametric assumptions on the relationship between prices and profits. The idea of
this kind of algorithm is to maintain an index for each arm. The basic algorithm, for each
arm pk, at each period t tracks the empirical average of the profit from that arm far πk,t,
and the number of times that arm has been pulled nk,t. The index of arm k at period t,
Ik,t is defined as πk,t +

√
2 ln t
nk,t

(the index of an arm that has never been pulled is defined
as ∞). In every period, the algorithm experiments with the price with the current highest
index, randomizing if there is a tie.

Viewing the profit draws from a given arm as i.i.d. draws from a distribution of un-
known mean, this index tracks the upper-bound of a confidence interval of this unknown
mean. A simple concentration argument tells us that, in period t, the true expected mean
reward of any arm k is lower than the current index Ik,t with probability (1− 1

t ).
A price is thus experimented if either the empirical average of past profits from that

price is high (exploitation), or nk,t is low relative to t, i.e. that price has not been used
sufficiently often to be confident about its reward (exploration).

3. SIMULATION RESULTS

In this section we describe the details of our simulations to test implications of inde-
pendent competing firms running pricing algorithm.

3.1. Simulation settings

For our main results we consider the algorithm called UCB-tuned.7 For each price (pk)

in period t we calculate the index is defined below, and select the price with the highest

6For an overview, see Sutton and Barto (1998). For applications in similar settings, see Hauser et al. (2009)
for a marketing application, and Misra et al. (2019) for pricing.
7In the appendix section A.1, we show our results are robust to considering the untuned version (Auer et al.,
2002) called UCB1. Note the tuned version is shown to have better empirical performance—for example,
see Auer et al. (2002) (general) or Misra et al. (2019) (application to demand learning). We also show that
our results are robust to other index algorithms, namely the Gittins index (Gittins, 1989; Brezzi and Lai,
2002).
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index:

Vk,t = π2
k,t − π̄2

k,t +

√
2 log t

nk,t
,

UCB-tunedk,t = π̄k,t +

√
log t
nk,t

min
(

1
4

, Vk,t

)
,

where nk,t is the number of periods where the firm has charged price pk up to period t
and π̄k,t is the empirical mean of profits in those periods. In this algorithm, Vk,t can be in-
terpreted as the empirical variance plus an exploration bonus that depends on (decreases
with) the number of times price pk has been experimented with. Further, we account
for the UCB improvement (Auer and Ortner, 2010), we allows for arm elimination. We
eliminate an arm k if upper confidence bound of the arm is lower than the mean minus
exploration bonus (i.e. the “lower confidence bound”) of another arm.

We consider a parametric data generating process and allow firms to run independent
UCB algorithms. To be explicit, the DGP is known to us (the researcher), but not to the
firms: the firms run UCB which is purely non-parametric. The UCB algorithm considers
(undiscounted) finite time regret, this requires a pre-specification of the number of peri-
ods the algorithm will be run.8 In all our simulations we consider the algorithms running
for 2 million periods and analyze the outcomes of the last 1,000 periods as the “long run.”9

To put this in context, in a setting which the firm’s statistical model is indeed correct (i.e.
the firm is truly a monopolist),

In the main simulation, we assume a linear demand model:

d∗j (pj, p−j) = α− βpj + γp−j(1)

Under this assumption, the competitive and joint-monopoly (i.e., collusive) prices can be
analytically computed. They are:

Competitive: pD =
α

2β− γ

Collusive: pM =
α

2(β− γ)

In any experiment (t) a firm observes a noisy estimate of the true profit, i.e.,

πt(pj, p−j) = pjd∗j (pj, p−j) + ε j,t,

8In a setting with infinite time, there is no trade-off between learning and earning as once found the best
arm will be played for an infinite time.
9To check robustness, in the appendix section A.1 we present results when the number of periods is in-
creased to 10 million. Our results are statistically indistinguishable from those presented in the main re-
sults.
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but their models are misspecified, which is to say they think they are observing

πt(pj) = pjd∗j (pj) + ε j,t.

In our simulations, we set the value of α = 0.48, β = 0.9, γ = 0.6. With these value the
duopoly and monopoly prices are PD = 0.4 and PM = 0.8. The firms decide between 91
discrete prices between $0.10 to $1.00, i.e. P = {0.10, 0.11, . . . , 0.99, 1.00}.

As we previewed earlier, our results suggest that the long-run distribution of prices de-
pend on the informativeness of the price experiments, i.e. the magnitude of the noise. To
that end, we vary the distributional assumptions about error term, ε j,t. In all simulations
we will assume that ε j,t ∼ U[−1

δ , 1
δ ], where we vary the value of δ across simulations. If δ

is small (large) then the experiment is uninformative (informative). δ signifies the signal
to noise ratio (SNR) in an experiment (by construction the highest signal is 1.0). In our
simulation experiments, we vary SNR between 1

10 (large noise), and 10 (large signal).

3.2. Main Results

Our main results are shown in figure 1. The dark grey bars represent a setting with
two competing single product firms, and the light grey bars represent a setting with a
monopolist jointly maximizing profits for both products. The top panel considers the
long run prices from our simulations. For all levels of SNR the long-run price when the
firm is a monopoly is not statistically distinguishable from the true monopoly price of 0.8.
With a small SNR the long-run prices in a duopoly are not statistically different from the
Nash equilibrium price, 0.4. However, as the SNR increases, we find that the estimated
duopoly price increases to supra-competitive levels. When the SNR levels are large, the
estimated duopoly prices are statistically different from the Nash equilibrium, and in-
deed, statistically indistinguishable from the full-information joint monopoly (collusive)
outcome. This suggests that in markets where pricing experiments are very (less) infor-
mative, independent algorithms will result in long-run prices that are supra-competitive
(competitive). In appendix section A.1 shows this result is robust to a different demand
systems (logit demand system) and a different index algorithm (Gittins index). Our main
findings continue to hold in both these simulations: markets with low (high) SNR, inde-
pendent bandits result in competitive (supra-competitive) resultant prices.

[Figure 1 about here.]

To understand the mechanics that generate supra-competitive duopoly prices we con-
sider the joint distribution of long-run prices. Figure 2 displays the distribution of long-
run duopoly prices by SNR. Our point of emphasis here is the shape of the distribution,
and how this changes with SNR. With small SNR value, the shape of this distribution is
that of independent prices while as the SNR increases the shape changes to correlated
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prices across the two firms. 10 In section 4, we explain both the origins of this correlation,
and how it impacts long-run prices.

[Figure 2 about here.]

This suggests that alternative pricing algorithms that force no (force large) correlation
in prices should result in competitive (supra-competitive) prices, across all SNR settings.
The long run prices for such alternative algorithms are shown in figure 3. The top panel
of this figure corresponds to the market outcomes when both firms induce random price
experimentation with the heuristic-based ε-greedy algorithm. In this algorithm at period
t, with probability ε (we set ε to be 0.01) the firm sets a randomly selected price, otherwise,
the firm sets the price with the highest mean profits from past experiments. Consistent
with this intuition, we find the long-run prices are indistinguishable from competitive
Nash Equilibrium prices for all levels of SNR. The bottom panel of this figure corresponds
to the market outcomes where we force a correlation of 1 between the firms’ prices. Here,
we consider a setting where one firm uses the UCB algorithm for pricing (as in our main
results) and the other firm price matches in real time. The competitive outcomes are
indistinguishable from the monopoly outcomes for all levels of SNR.

[Figure 3 about here.]

4. THEORETICAL FOUNDATIONS

In this section, we explain the theoretical basis for the results above. In the appendix
section A.2 we explain the mechanism by a simple intuition for the implication of corre-
lated prices. This is incomplete as the correlation of prices is endogenously generated by
the algorithm. We provide correct theoretical foundations in a setting where each firm
chooses between two prices, i.e. k = 2.

We prove our result in a model where each firm only chooses between two prices,
pH > pL. A firm’s observed profit when it charges price px and its competitor charges
py, for x, y ∈ {H, L}, is πxy + ε. Here, ε is a mean-0 shock, independently drawn across
periods. The pricing structure therefore implies πLH > πHH and πLL > πHL, i.e. charging
the low price is a dominant strategy for each firm. However, both firms charging the high
price results in higher joint profits, i.e. πHH > πLL. Putting this together, we have that
the true game for both firms is essentially a prisoner’s dilemma.

10Numerically, we can see this as the decrease in the median difference between the two firms prices (top
left of the chart), this decreases from 0.15 to 0.00. Alternatively, we consider the percentage of simulations in
which resultant prices are within 1c of each other (bottom left of chart). Again we see this number increase
from 3% in the low SNR setting to 69% in the high SNR setting. This suggests that the signal strength of
experiments is critical to coordinating prices across different algorithms.
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Both firms do not know the true π, indeed, their statistical models are misspecified in
that they assume the profit when they charge price px is πx + ε. They both run UCB algo-
rithms, so from each agent j’s perspective, in any period t, the relevant part of past play
can be summarized by four numbers: for each price px, the empirical average of profits
in past periods where px was charged, πx,t, and the number of times it was charged, nx,t.
Note that nH,t + nL,t = (t− 1) by definition. The UCB algorithm calculates an index for
each price x ∈ {H, L} as

Ix,t = πx,t +

√
2 ln t
nx,t

,

and always pulls the arm with the highest index. By definition, the index of an arm that
has never been pulled is ∞, i.e. every arm is pulled at least once before any arm is pulled
twice. It will be clear from the proofs that follow that similar results obtain for other
“index” algorithms, where indices are deterministic functions of π and n.

We study this system analytically for the extreme case where the noise in the demand
system vanishes, i.e, demand in each period is a deterministic function of prices. Our
results for each of these cases mirror correlated-past-price intuition in Section A.2. Infor-
mally, when the noise in the demand vanishes, we show that price paths end up corre-
lated (even though the algorithms are independent) and prices converge to the (pH, pH)

collusive outcome. Formally:

THEOREM 1. Suppose the true demand function is deterministic and both firms use independent
UCB alogrithms. Then,

(1) the prices are always exactly correlated from the third period onward (i.e. in any period
t ≥ 3, either both firms charge pH or both firms charge pL), and

(2) the fraction of times in the first t periods that either seller charges pL converges to 0 as t
grows large.

PROOF. To see this, let us simulate the evolution of the UCB algorithm. By the definition
of UCB, each firm will, in the first two periods, experiment exactly once with each of the
two prices pH and pL. There are now exactly two possible classes histories at the end of
the first two rounds:

(1) Matched prices, i.e. (pH, pH) in one round, (pL, pL) in the other.
(2) Mismatched price, i.e., (pL, pH) and (pH, pL) in the other.

We consider each of these in turn.
10
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Case 1: Matched Prices Note that at the end of the first 2 periods, the “state”11 of each
firm’s algorithm can be summarized as: (πHH, 1, πLL, 1). To see part (1) of Theorem 1,
note that the algorithms and demand system are deterministic, and both firms’ algorithms
share a common state at the end of period 2. Therefore the firms will take the same action
in period 3, and then inductively, in every subsequent period.

Now πHH > πLL, both firms will charge the high price as long as.

πHH +

√
2 ln t
t− 2

> πLL +
√

2 ln t

Or, πHH − πLL >
√

2 ln t
(

1− 1√
t− 2

)
Note that for some t large enough this inequality will be violated (as the right hand side
is strictly increasing in t and the left hand side is constant), however, since demand is
deterministic, it will be violated at the same time for both firms. At such t, both firms will
switch to charging pL. In period t + 1, the state of both firms’ algorithms will therefore
be (πHH, (t− 2), πLL, 2). However, since (1) pH was chosen in t-1 and (2) the exploration
bonus decreases with the number of attempts,12 we must have

πHH − πLL >
√

2 ln(t + 1)
(

1√
2
− 1√

t− 2

)
.

In other words, both firms will immediately switch back to charging pH. Further, both
firms will charge pL for the nth time in period tn s.t.

πHH − πLL <

√
2 ln(tn)

n− 1
−

√
2 ln(tn)

tn − n
.

Therefore n cannot be larger than O(ln tn) as it grows large. As a result n
tn

goes to 0 as n
grows large.

Case 2: Mismatched Prices As in Case 1, at the end of the first two periods, the two
firms share a common state, (πHL, 1, πLH, 1). As a result both firms take the same action
in period 3, and then inductively in every subsequent period. This shows (1) of Theorem
1.

Consider any subsequent period where both firms have charged the high price nH times
and the low price nL times. The corresponding indices in period t = nH + nL + 1 are:

IH,t =

(
1

nH
πHL +

nH − 1
nH

πHH

)
+

√
2 ln t
nH

11The state variables are (1) average profits for price H, (2) the number of times price H has been charged,
(3) average profits for price L, and (4) the number of times price L has been charged

12Formally, (1) piHH − πLL >
√

2 ln(t− 1)
(

1− 1√
t−3

)
, and (2)

∂
(

1√
x−

K√
x+1

)
∂x < 0, ∀K < 1.
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IL,t =

(
1

nL
πLH +

nL − 1
nL

πLL

)
+

√
2 ln t

nL

Observe that the first term of the first equality is increasing to πHH as nH grows large,
while the first term of the second is decreasing to πLL. Part (2) of Theorem 1 now follows
from an analogous argument to that above. �

Of course, our result is shown for the specific case two possible prices, deterministic
demand, and when both sellers use the UCB algorithm. These features makes the sys-
tem easy to study analytically. However, the mechanics of this proof, and the intuition
provided above, should illustrate how similar phenomena should obtain more generally
(and indeed, why such results obtain in the simulations we conducted previously). Es-
sentially independent algorithms can end up having correlated price paths. Since the
algorithms are misspecified, this results in an omitted variable bias (the omitted variable
being the competitor’s price), and an overestimate of own price sensitivity. The absence
of sufficiently large demand shocks to force independent experimentation then results
in this being self-reinforcing. Both sellers’s algorithms then settle on high prices, even
though this is neither the equilibrium of the underlying game, or indeed, even the best
response given the competitor’s strategy. When demand shocks are small and the sellers’
algorithms are close to deterministic, such mis-learning may occur and the competing
firms may settle down on charging collusive prices. This could occur forever (as in the
Theorem above), or with small amounts of noise, may occur for arbitrarily long periods
or with very high probability.

So when does such coordination fail? Essentially, demand has to be stochastic enough
to prevent both firms from settling in to the correlated price paths displayed above. It
should be clear that with highly stochastic demand, the early stages of experimentation
under UCB will be close to independent/ stochastic for many periods. Since charging
pL is a dominant strategy in the underlying pricing game, both agents will learn this
and their associated index of pL will be higher, and their historical average payoff when
playing pL will converge to πLL by standard concentration inequalities. Subsequently,
the stochastic differences in their estimates of the payoff under pH will ensure that both
players are unlikely to switch to playing pH at the same time. As a result, the historical
average when playing pH will fall to πHL < πLL, and therefore the path of play will
feature both players playing the low price almost always in the limit. How much noise/
stochasticity is needed in demand to ensure this happens with high probability is a subject
left for future research.

12
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5. EMPIRICAL RELEVANCE

To provide empirical relevance of our results, we re-analyze pricing data from Chen
et al. (2016). These data include a price tracker for best-selling products on Amazon.com
in two web crawls from September 15, 2014 to December 8, 2014 and from August 11,
2015 and September 21, 2015. In each web-crawl individual sellers’ prices and ratings
were collected every 25 minutes. For each product, we define the top two sellers as sellers
the highest listings (defined by page and rank within the page) with Prime shipping (to
remove variation in shipping prices and times). We consider 830 products with variations
in prices for both sellers.

We consider two measures of interest: (1) pairwise correlations in prices for the top two
sellers over time and (2) the relative prices of the top two sellers versus all other sellers.
For each product we define the relative price as the mean price for the top 2 sellers minus
the mean price for all other sellers. The results are shown in top row of figure 4. The top
left chart plots the distribution of pairwise correlations and shows that the distribution is
bi-modal with modes near 0 and 1. This is consistent with our simulation settings, where
correlations were either near 0 (small SNR) or near 1 (large SNR)13. The top right chart
plots the distribution of relative prices. The median relative price in the data is −$1.04
(the top two sellers price $1.04 below the average price of all other sellers), however there
is large cross-sectional variation across products.

To investigate the cross-sectional variation across products, we consider a proxy for the
variance in demand shocks (i.e., the magnitude of δ in our model). For this we consider
the variance in number of new product reviews per day for each product. Intuitively,
if agents leave reviews at roughly the same rate, then variance in rate of new reviews
equates to variance in demand. The charts in the bottom row of figure 4 plot the CDF (cu-
mulative distribution) for the products with the lowest demand variation (lowest 25%)
versus all other products. The bottom left chart shows the CDF of pairwise correlations
and the bottom right chart shows the CDF for relative prices. We observe that the CDF
for products with the lowest demand variation is shifted to the right for both charts (sta-
tistically significant for relative prices). This suggests that the top two sellers for products
with the lowest demand variation have (a) a higher correlation in prices over time and (b)
higher relative prices relative to other sellers.

Both these trends in the Amazon.com data are consistent with our results where we
find that markets with the higher SNR (lower noise) have the higher correlations in prices
and higher levels of prices. Of course, since we do not observe (a) the algorithms used by

13We investigate if high correlations due to sellers identified as ‘algorithmic competitive sellers’ in Chen
et al. (2016). We find that seller pairs with no identified sellers have a higher median correlation (0.54), than
seller pairs with one (0.22) or two (0.14) identified sellers. This suggests that the higher correlations are not
due to algorithmic competitive sellers.
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sellers on Amazon, (b) demand for each product, (c) supply conditions (marginal costs),
and (d) the Chen et al. (2016) dataset has a non-random selection of products, we do not
assert that these correlations and prices are uniquely due to the mechanism described in
our paper.

[Figure 4 about here.]

6. CONCLUSION

With the growth of e-commerce, we have seen increased usage of algorithms automat-
ing pricing decisions. The pricing algorithm runs automated field experiments to learn
about the demand curve and each product’s profit-maximizing price. Given the complex-
ity and scale of online markets, field experiments typically assume firms are monopolists
or oligopolists best-responding to fixed competitors’ prices. This assumption greatly re-
duces complexity, however results in a misspecifed pricing algorithm. In this paper, we
study outcomes in an oligopoly setting if all competing sellers independently use such
misspecified algorithms for pricing.

We show that the long-run prices that result depend critically on the informational
value (signal to noise ratio) of pricing experiments. If low, the long-run price are compet-
itive and misspecified algorithms achieve nearly first best profits. However, if high, the
long-run prices are supra-competitive. We show this occurs via a novel channel: com-
petitors’ algorithms’ prices end up running correlated experiments. Therefore, sellers’
misspecified models overestimate own price sensitivity, resulting in higher prices. We be-
lieve the identification of this novel channel raises novel concerns for competition policy.
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APPENDIX A. ONLINE APPENDIX

A.1. Robustness

Figure 5 shows robustness to the specific algorithm in the main paper. (1) We show
that our results are robust to using the UCB-untuned (Auer et al., 2002) and the number
of rounds to run the algorithm. (2) The UCB is based on a finite time analysis of the MAB
problem and requires an ex ante specification of number of rounds. In this figure, we run
the algorithm for 10 million rounds to show the robustness of our results. The results are
statistically indistinguishable from the main results in figure 1.

The UCB index for the online appendix is given by

UCB-untunedkt = π̄kt +

√
2 log t

nkt

In the top panel of 5 we show that our results are robust to considering the UCB-
untuned algorithm. Note consistent with the prior literature (including in Auer et al.
(2002)) the untuned version of the algorithm takes longer to converge and requires a
larger number of rounds (10 million). The bottom panel of 5 we show that our results
are robust to considering 10 million round with the the UCB-untuned algorithm (as op-
posed on 2 million in the main paper)

[Figure 5 about here.]

Figure 6 shows the robustness of our results in two ways. First, we consider a dif-
ferent demand systems (logit demand system). Second, we use a different MAB index
algorithm (Gittins index). Our main findings (see figure 1) are replicated in both these
simulations: markets with low (high) SNR, independent bandits result in competitive
(supra-competitive) resultant prices.

[Figure 6 about here.]

A.2. Some almost correct intuition

For a first intuition about why this phenomenon obtains recall that in our simulations
the true data generation process is that demand as given by a linear demand model:

dj,t = α− βpj,t + γp−j,t + ε j,t.

Demand is observed with an additional small sample econometric error (ε j,t). The key
complication in our setup is that the firm does not observe the competitive firm’s price
(p−j,t). Therefore the firm cannot distinguish the econometric error (ε j,t) from the compet-
ing firm’s price (p−j,t).
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In a departure from the bandit procedure we considered before, suppose the firm esti-
mates a linear demand model

dj,t = α̂− β̂pj,t + ε j,t,

and then prices optimally given the estimated model. Notice that the firm’s statistical
model is different from the true data generating process. This can result in a bias in the
estimate of the main parameter of interest, i.e. β. The magnitude of this bias depends on
the historical correlation between the prices of the two firms (pj,t and p−j,t). If these are
highly positively correlated then bias will be an upward bias, leading to higher (lower in
absolute value) estimated price sensitivity and supra-competitive prices.

To see this consider two thought experiments:

(1) Past prices are perfectly correlated: As t grows large, since past prices are perfectly
correlated, by a law of large numbers, we have that α̂ = α and β̂ = β − γ. The
optimal price of firm j given these estimates is therefore

p∗j =
α̂j

2β̂ j
=

α

2(β− γ)
.

(2) Past prices are uncorrelated: As t grows large, by a law of large numbers, we have
α̂ = α + γp−j,t and β̂ = β. The optimal price of firm j given these estimates is
therefore

p∗j =
α̂j

2β̂ j
=

α + γ p̄−j,t

2β
.

In steady-state, therefore, p̄−j,t = p∗−j =
α+γp∗j

2β . Substituting, we have

p∗j =
α + γ

α+γp∗j
2β

2β
,

=⇒ p∗j =
α

2β− γ
.

Note that in the second case, despite each firm’s model being misspecified, the resulting
long-run steady prices are exactly the full-information Nash equilibrium prices. In the
first case, both firms’ prices are exactly the full-information collusive/ joint-monopoly
prices.

While this intuition is suggestive of the mechanism, it is not fully consistent: the “long
run” outcome here depends on the correlation of prices in the past. However, these cor-
relations are endogenously determined by the prices charged in the past by both firms’
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algorithms. So which of these two cases is more representative of the outcome given the
exogenous environment and the algorithms used by the firms?
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FIGURE 1. Estimated median prices and percent of optimal profits by sim-
ulation setting. The dark gray bars represent a setting where two firms are
running simultaneous algorithms, while the light gray bars represent a set-
ting when a monopolist is jointly pricing the products. For each simulation,
we consider the last 1,000 periods out of 2 million periods. In the top chart,
the dashed lines reflect the competitive equilibrium prices; the solid lines
reflect monopoly prices. In the bottom chart, the dashed line reflects 100%
profit achieved.
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FIGURE 2. 2D Density plot of the distribution of prices for the two firms
across 500 MC simulations per scenario. Each chart represents a market
setting described by signal to noise ratio (SNR), a small SNR means large
noise and a large SNR means small noise. For each simulation, we consider
the median price charged in the last 1,000 rounds out of 2 million rounds.
The dashed lines reflect the competitive equilibrium prices; the solid lines
reflect monopoly prices. The light gray dotted line presents the 45-degree
line. The number on the top left of each chart shows the median difference
between the two firms’ prices, and a number of the bottom left represents
the percentage of simulations with the difference in price less than 1c.
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FIGURE 3. Estimated median prices by algorithm and level of competition.
The error bars represent 99% confidence interval for the estimated median
across MC simulations. The dark gray bars represent a setting where two
firms are running simultaneous algorithms, while the light gray bars rep-
resent a setting when a monopolist is jointly pricing the products. The top
panel corresponds to firms using the ε-greedy algorithm (ε = 0.01), and the
bottom panel corresponds to one firm using UCB and the other price match-
ing. For each simulation, we consider the median price charged in the last
1,000 period out of 2 million period. The dashed lines reflect the competitive
equilibrium prices; the solid lines reflect monopoly prices.
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FIGURE 4. Analysis of Amazon pricing data in Chen et al. (2016). The left
column consider pairwise correlations between the top 2 sellers (based on
highest listings) for each product. The right column considers prices de-
fined as the prices for the top two seller minus the mean price of all other
sellers. The top row plots histograms to show the distribution of the raw
data. The bottom chart considers the CDF of each measure by the num-
ber of new product reviews per hour (as a proxy for demand variation).
We consider the products with the lowest 25% of demand variation and all
other products. The two test preformed are the Kolmogorov-Smirnov Test
and the Wilcoxon-Mann-Whitney Test to see if the distributions are shifted
to the right for lower demand variation (the CDF of all other lies above that
of lowest 25% demand variation).
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FIGURE 5. Estimated median prices by algorithm and level of competition.
The error bars represent 99% confidence interval for the estimated median
across MC simulations. The dark gray bars represent a setting where two
firms are running simultaneous algorithms, while the light gray bars repre-
sent a setting when a monopolist is jointly pricing the products. For each
simulation, we consider the median price charged in the last 1,000 rounds
out of 10 million rounds. The dashed lines reflect the competitive equilib-
rium prices; the solid lines reflect monopoly prices.
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FIGURE 6. Estimated median prices by algorithm and level of competition.
Gittins Index Gittins (1979): linear demand model with using the closed
form Gittins index as suggested in Brezzi and Lai (2002), we assume a
Beta prior and approximate the profit as an aggregate Binomal distribution.
Note, this algorithm converges faster than the UCB and hence we consider
200,000 rounds. Logit demand model: uj = 4.1− 4.74pj + ε j for j ∈ {1, 2},
with an outside option u0 = ε0. with ε i.i.d. type 1 extreme value. Under this
demand system the NE price PD = 0.4 and the monopoly price is PM = 0.8.
The error bars represent 99% confidence interval for the estimated median
across MC simulations. The dark gray bars represent a setting where two
firms are running simultaneous algorithms, while the light gray bars repre-
sent a setting when a monopolist is jointly pricing the products. For each
simulation, we consider the median price charged in the last 1,000 rounds
in each MC. The dashed lines reflect the competitive equilibrium prices; the
solid lines reflect monopoly prices.
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