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1. Introduction 
This paper studies rational bubbles in non-linear dynamic stochastic general equilibrium (DSGE) 

model of the macroeconomy. The term ‘rational bubbles’ refers to multiple equilibria arising 

from the absence of a transversality condition (TVC) for aggregate capital. The lack of TVC can 

be due to an overlapping generations structure with finitely-lived households (see below). If a 

TVC is imposed, all models studied here have a unique solution. I consider models whose 

aggregate static equations and aggregate Euler equations are identical to those of standard Real 

Business Cycle (RBC) models with capital accumulation, but I assume that there is no TVC for 

aggregate capital. Agents have rational expectations. Rational bubbles in the models here reflect 

self-fulfilling fluctuations in agents’ expectations about future investment.  

A key finding is that rational bubbles in the non-linear macro models here are bounded. 

The bounded nature of bubbles, in non-linear models, makes them a novel candidate for 

explaining business cycles. I construct bounded bubbles that feature recurrent boom-bust cycles 

characterized by persistent investment and output expansions which are followed by abrupt 

contractions in real activity. Numerical simulations show that bounded rational bubbles in non-

linear macro models can generate persistent fluctuations of real activity, and capture key 

business cycle stylized facts; the unconditional mean of real activity is close to the no-bubble 

steady state. Both closed and open economies are analyzed. A central finding for a nonlinear 

two-country model is that, with integrated financial markets, bounded bubbles must be perfectly 

correlated across countries. Global bubbles may, thus, help to explain the synchronization of 

international business cycles. 

 The boundedness of rational bubbles reflects non-linear effects. Linearized versions of 

the business cycle models considered here have a unique stable solution that satisfies the TVC.   

Rational bubbles (no-TVC solutions) in the linearized models are explosive, i.e. their expected 

trajectories tend to ±∞ . Explosive rational bubbles were first studied by Blanchard (1979) who 

considered simple linear asset pricing models without TVC (see also Blanchard and Watson 

(1982)). Explosive rational bubbles in linear(ized) models are problematic. The accuracy of a 

linear model approximation can deteriorate sharply when the economy departs substantially from 

the point of approximation. In a macro model with decreasing returns to capital, explosive 

trajectories of capital and output are infeasible, as the capital stock cannot grow beyond a 

maximum level. A linearized model does not take this constraint into consideration, and it may 
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also violate non-negativity constraints on consumption and output. By contrast, the present 

analysis of bounded rational bubbles in non-linear models takes decreasing returns and boundary 

conditions into account. The non-linear model solutions presented here remain accurate when the 

economy deviates significantly from steady state (for several models discussed below, exact 

closed form solutions are provided).  

Like Blanchard (1979), I assume a bubble process with two states: the economy can 

either be in a ‘boom’ state or in a ‘bust’ (crash) state. In a boom, capital investment and output 

diverge positively from the no-bubble decision rule that holds under the TVC (saddle path). High 

investment during a boom is sustained by agents’ belief that, with positive probability, 

investment will continue to grow next period, thereby depressing future consumption and raising 

the (expected) future marginal utility-weighted return of capital. In a bust, investment drops 

abruptly, and thereby reverts towards the no-bubble decision rule. Busts are triggered by self-

fulfilling downward revisions of expected future investment. Transitions between booms and 

busts are prompted by a random sunspot, and occur with an exogenous probability.  

As pointed out above, I assume economies without transversality condition (TVC). 

Standard DSGE models postulate an optimizing infinitely-lived representative household. The 

set of optimality conditions of an infinitely-lived household’s decision problem includes a TVC 

that stipulates that the value of aggregate capital has to be zero, at infinity. The TVC (in 

conjunction with static equilibrium conditions and Euler equations) defines a unique equilibrium, 

in standard DSGE models. I present a novel overlapping generations (OLG) structure with 

finitely-lived households that has the same aggregate static conditions and the same aggregate 

Euler equations as standard DSGE models. However, there is no TVC for aggregate capital in 

that OLG structure. The key features of this OLG structure are: (i) complete risk sharing among 

contemporaneous generations; (ii) newborn agents receive an endowment (from older 

generations) such that the consumption of newborns represents a time-invariant share of 

aggregate consumption. This OLG structure allows to generate rational bubbles in tractable non-

linear DSGE models suitable for calibration to quarterly data. (Non-linear OLG business cycle 

models without the two key features mentioned above are typically much more cumbersome, due 

to the implied heterogeneity of generations, which makes stochastic analysis very difficult.)      

The results here are also relevant for research on numerical solution methods for DSGE 

models. Linearized DSGE models with a unique stable solution are the workhorses of modern 
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quantitative macroeconomics (see, e.g., King and Rebelo (1999), Kollmann et al. (2011a,b) for 

overviews). This paper presents non-linear DSGE models (without TVC) that have multiple 

stable solutions, although the linearized versions of those models have a unique stable solution, 

as the number of eigenvalues (of the linearized state-space form) outside the unit circle equals 

the number of non-predetermined variables (Blanchard and Kahn (1980), Prop. 1). The classic 

Blanchard and Kahn (1980) condition for the existence and uniqueness of a stable solution for 

linear rational expectations models is, thus, irrelevant for non-linear models. Standard non-linear 

numerical solution methods for non-linear DSGE models (see overview in Judd (1998)) do not 

impose the TVC. Detecting TVC violations can be extremely difficult, in non-linear stochastic 

economies (those violations can be caused by very low-probability events in a distant future). 

The results presented here suggest that the set of stable non-linear model solutions, without TVC, 

can be much larger than hitherto understood.    

A large literature has studied linearized DSGE models with multiple stationary sunspot 

equilibria. These multiple equilibria arise if the number of eigenvalues (of the linearized state-

space form) outside the unit circle is less than the number of non-predetermined variables 

(Blanchard and Kahn (1980), Prop. 3).1 Linearized models may exhibit stationary sunspot 

equilibria if increasing returns and/or externalities (e.g., Schmitt-Grohé (1997), Benhabib and 

Farmer (1999)), financial frictions (e.g., Martin and Ventura (2018)) or certain OLG structures 

(e.g., Woodford (1986), Galí (2018)) are assumed. The equilibria studied in these papers satisfy 

transversality conditions (TVC). The specific features and calibrations that deliver stationary 

sunspot equilibria in linearized models can be debatable.2 By contrast, the paper here presents 

multiple equilibria in non-linear DSGE models--without the features that were just mentioned; as 

discussed above, the linearized versions of the models here have a unique stable solution.   

The notion of a rational bubble introduced by Blanchard (1979) has been highly 

influential in the literature on asset prices (e.g., see Mussa (1990) and Stracca (2004) for 

references).3 However, so far, this notion has had much less impact on structural 

macroeconomics.  

                                                 
1 See Taylor (1977) for an early example of a model with sunspots, due to the presence of ‘too many’ stable roots. 
2 E.g., increasing returns/externalities need to be sufficiently strong; in OLG models the steady state interest rate has 
to be smaller than the trend growth rate (r<g)  etc. Note that r>g holds, in the novel OLG structure developed in the 
paper here. Linearized versions of the OLG structure here have a unique stable solution.   
3 Google Scholar records 2615 cites (01/2020) for Blanchard (1979) and its companion paper Blanchard and Watson (1982).   
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Ascari et al. (2019) study temporarily explosive bubbles, in a standard linearized  three-

equation New Keynesian macro model (without capital accumulation). The authors assume 

bounded rationality, and postulate that, once an explosive path reaches a threshold, the economy 

reverts permanently to its unique saddle path. Under fully rational expectations, the future switch 

to the saddle path would, from the outset, rule out the emergence of bubbles.4 By contrast, the 

present analysis considers stable (bounded) bubbles in non-linear models. Limited rationality is 

not needed to generate stable bubble equilibria, in the present framework. The paper here 

considers economies with capital, but the analysis abstracts from nominal rigidities and monetary 

policy. In ongoing work, I am exploring rational bounded bubbles in non-linear economies with 

Keynesian features.  

 Multiple equilibria due to non-linearities are also studied by Holden (2016a,b) who 

shows that multiple equilibria can exist when occasionally binding constraints, OBC (such as a 

zero-lower-bound constraint for the interest rate) are integrated into an otherwise linear DSGE 

model (the linear model has a unique stable solution when the OBC is ignored). By contrast, the 

analysis here considers fully non-linear models. The multiple equilibria described here have a 

‘bubbly’ dynamics that differs from the dynamics studied by Holden (2016a,b). 5  

 The bubble equilibria discussed in this paper imply that the distribution of endogenous 

variables is heteroscedastic: the conditional variance of forecast errors of future endogenous 

variables is greater, the longer a boom driven by self-fulfilling expectations has lasted. In this 

sense, the present paper is related to Bacchetta et al. (2012) who study a stylized asset pricing 

model in which bounded stock price bubbles can arise if the sunspot shock and the asset price are 

heteroscedastic. The work here highlights the importance of heteroscedasticity of real activity, 

for generating bounded bubble equilibria, in non-linear DSGE business cycle models. 

 Section 2 discusses bounded rational bubbles that arise in the Long and Plosser (1983) 

RBC model, when the TVC is dropped. That model assumes a closed economy with log utility, a 

Cobb-Douglas production function and full capital depreciation. Exact closed form solutions 

with bubbles can be derived for that model. The subsequent Sections show how rational bubble 

equilibria can be constructed in richer, more realistic non-linear RBC models. Section 3 
                                                 
4 In their quantitative model, Ascari et al. (2019) set the threshold (that triggers reversion to the stable saddle path) at 
a very large value, so that switches to the stable saddle path occur in a distant future. The authors assume that those 
faraway future switches are disregarded by agents, in the model.  
5 Holden highlights indeterminacy of the length of time during which the OBC binds, and he focuses on fluctuations 
in the vicinity of the OBC.   
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considers a non-linear closed economy RBC model with incomplete capital depreciation. 

Sections 4 and 5 study rational bubbles in non-linear two-country RBC models. 

 

2. Rational bubbles in a Long-Plosser RBC economy without TVC 
Following Long and Plosser (1983), this Section considers a closed economy with time-

separable preferences. The period utility function is  ( ) ln( ),t tu C C=  where tC  denotes 

consumption in period t. The production function is:  

                                                               t t tY K αθ= , 0 1α< < ,                                                         (1) 

where , ,t t tY K θ  are output, capital and exogenous total factor productivity (TFP). For simplicity, 

I assume that labor hours are constant and normalized to unity (the next Sections allow for 

variable hours).  The resource constraint is  

                                                                    ,t t tC I Y+ =                                                                   (2) 

where tI  is (gross) investment. Investment equals next period’s capital stock, 1,t tI K +=  as the 

capital depreciation rate is 100%. The Euler equation for capital is 

1 1 1{ '( )/ '( )} / 1,t t t t tE U C U C Y Kβ + + +∂ ∂ =  where 0 1β< <  is the subjective discount factor. Thus,  

                                                        1 1 1( / ) / 1t t t t tE C C Y Kβ α+ + + = .                                                       (3) 

Substitution of the resource constraint into the Euler equation gives an expectational difference 

equation in the investment/output ratio 1/ :t t tZ K Y+≡  

                            1( , ) 1,t t tE H Z Z+ =   with 1 1( , ) [(1 )/(1 )]/t t t t tH Z Z Z Z Zαβ+ +≡ − − .                            (4) 

Long and Plosser (1983) assume an infinitely-lived representative household. The necessary and 

sufficient optimality conditions of that household’s decision problem are the household’s 

resource constraint and Euler equation (summarized by (4)) and a transversality condition (TVC) 

that requires that the value of the capital stock is zero, at infinity: 1lim '( ) 0.t t tE u C Kτ
τ τ τβ→∞ + + + =  

Note that 1 1'( ) / /(1 ).t t t t t tu C K K C Z Z+ += = −  It can readily be seen that t tZ αβ ∀=  satisfies (4) and the 

TVC. This solution corresponds to the textbook solution of the Long-Plosser model (e.g., 

Blanchard and Fischer (1989)). Under that solution, consumption and investment are time-

invariant shares of output: (1 ) ,t tC Yαβ= −  1t tK Yαβ+ =   .t∀    
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 In what follows, I postulate that there is no TVC. This gives rise to multiple equilibria. I 

refer to a process { }tZ  that solves (4), but that differs from the textbook solution (derived under 

the TVC), as a rational bubble equilibrium, or (rational) bubble, for short. Thus, rational 

bubbles feature an investment/output ratio that differs from αβ. Bubbles violate the TVC.6  

 Throughout this paper, the term ‘rational bubbles’ refers to (multiple) equilibria, 

due to the absence of a transversality condition (TVC) for aggregate capital. If the TVC is 

imposed, all models studied in this paper have a unique solution.  

The lack of TVC can be justified by the assumption that the economy has an overlapping 

generations (OLG) population structure with finitely-lived agents. Not-for-Publication Appendix 

A presents a novel OLG structure with finitely-lived agents that has the same aggregate resource 

constraint and the same aggregate Euler equation as a Long-Plosser economy inhabited by an 

infinitely-lived representative agent. Thus equations (1)-(4) continue to hold in that OLG 

structure. At the end of her life, each individual agent holds zero assets. As agents have a finite 

horizon, the (infinite-horizon) TVC for aggregate capital is not an equilibrium condition, in the 

OLG structure. Two key features of this OLG structure are: (I) Complete risk sharing among 

contemporaneous generations. (II) Newborn agents receive an endowment such that the 

consumption of newborns represents a time-invariant share of aggregate consumption.7 

Assumptions (I) and (II) yield simple non-linear dynamic relations among aggregate variables 

that allow to easily solve for those aggregates. This OLG structure, thus, allows to generate 

rational bubble equilibria in tractable non-linear DSGE models suitable for calibration to 

quarterly data. (OLG business cycle models without the two key features mentioned above are 

typically much more cumbersome, due to the implied heterogeneity of generations, which makes 
                                                 
6 The decision problem of the infinitely-lived representative household assumed by Long and Plosser has a unique 
solution, as that problem is a well-behaved concave programming problem. Thus, tZ αβ=  ∀t is the only solution that 

satisfies (4) and the TVC. Hence, any bubble process tZ αβ≠  satisfying (4) violates the TVC. Under the bubble 
process (9) below, tZ  approaches 1 if a long uninterrupted string of  ‘boom’ sunspots  is realized, which entails large 
positive values of /(1 ).t tZ Z−  This only happens with a very small probability, but it causes the TVC to be violated. 
7 The endowment of newborn is financed by transfers from older generations. See Not-for-Publication Appendix A 
for a discussion of transfer schemes that ensure a time-invariant consumption share of the newborn generation. In 
reality, all societies make significant transfers to young generations (e.g., through health and education spending as 
well as bequests). Those transfers are motivated by altruism and social norms (that are not explicitly modeled in the 
theoretical framework here). Empirically, in advanced countries, the per capital consumption of children and 
younger consumers (twenties) has closely tracked that of middle aged households (forties), while the consumption 
of older households has shown slightly faster trend growth, during recent decades. Changes in the relative 
consumption of different age groups are dwarfed by changes in the aggregate consumption level.  For time series on 
consumption by age cohorts see, e.g., d’Albis et al. (2019) [data for France] and Saito (2001) [US, UK and Japan].  
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non-linear stochastic analysis very difficult. Without assumptions (I),(II), approximate 

aggregation across generations may still be possible, based on linearization (e.g., Galí (2018)). 

The focus of the present paper is on rational bubbles in non-linear models. Thus, aggregation 

based on linear approximations is not useful here.) 

Besides assuming an OLG structure, another motivation for disregarding the TVC is that 

detecting TVC violations may be very difficult, in non-linear stochastic economies that are more 

complicated than the Long-Plosser economy, i.e. in models for which no closed form solution 

exists (see below). TVC violations can be caused by very low-probability events in a distant 

future. Agents may thus lack the cognitive/computing power to detect deviations from the TVC 

(see discussion in Blanchard and Watson (1982)), so that bubble equilibrium can arise.   

 

2.1. Rational bubbles in the linearized model 

Linearization of (4) around Z αβ=  gives:  

                                             1t t tE z zλ+ = , with t tz Z Z≡ −  and 1/( ) 1.λ αβ≡ >                                   (5)             

λ, the eigenvalue of (5), exceeds unity. The model has one non-predetermined variable ( ).tz  As 

the number of eigenvalues greater than one equals the number of non-predetermined variables, 

the linearized model has a unique non-explosive solution (Blanchard and Kahn (1980), Prop. 1) 

given by 0tz = , i.e. tZ αβ= t∀ , which corresponds to the textbook solution of the Long-Plosser 

model (with TVC).  Blanchard (1979) pointed out that a linear model of form (5) is also solved 

by a bubble process { }tz  such that     

            1 [ /(1 )]t tz zλ π+ = − ⋅  with probability 1 π−   and 1 0tz + =  with probability π   (0<π<1).       (6) 

If 0,tz ≠  then next period the system continues to diverge with probability 1 ,π−  while a 

‘bust’ (return to the no-bubble solution z=0) occurs with probability π. Process (6) implies that 

after a bust, non-zero values of z never arise again, i.e. the bubble is ‘self-ending’. Recurrent 

(never-ending) bubbles obtain if a bust implies a value 0:μ≠ 1 ( )/(1 )t tz zλ μπ π+ = − −  with 

probability 1-π  and 1tz μ+ =  with probability π. 

An important feature of rational bubbles in the linearized model (5) is that the expected 

path of the investment/output ratio explodes: lims t t sE z→∞ + = ±∞  when 0.tz ≠  This explosiveness 
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greatly limits the appeal of rational bubbles in the linearized model. Note that the investment/ 

output ratio tZ  is bounded by 0 and 1: an infinite investment ratio is not feasible. The linear 

approximation (on which (5) is based) neglects this constraint. A linear approximation is thus not 

suitable for studying rational bubbles.   

 

2.2. Rational bubbles in the non-linear model 

By contrast to the linearized model, the non-linear model can produce bounded bubbles with 

0 1.tZ≤ ≤  Note that the non-linear model (4) holds for any process { }tZ   such that  

                                                      1 1[(1 )/(1 )]/ 1 ,t t t tZ Z Zαβ ε+ +− − = +                                                (7) 

where 1tε +  is an Euler equation forecast error with zero conditional mean: 1 0.t tEε + =  1tε +  reflects 

unanticipated changes in 1tZ +  that are driven by changes in households’ expectations about the 

future path 1{ } .t s sZ + >  (7) can be written as:  

                                             1 1 1( , ) 1 (1/ 1)/(1 ).t t t t tZ Z Zε αβ ε+ + +=Λ ≡ − − +                                         (8) 

1tZ +  is strictly increasing and strictly concave in both tZ  and in 1tε + , for 1 1.tε + >−  The 

strict concavity reflects decreasing returns and the convexity of the marginal utility of 

consumption (prudence). Figure1 plots 1tZ +  as a function of ,tZ  and that for three values of  the 

Euler equation forecast error 1:tε +  1 0tε + =  (thick black curve), 1 0.5tε + =  and 1 0.5tε + =−  (thin 

dashed curves). Throughout this paper, I set α=1/3 and β=0.99, so that αβ=0.33. These parameter 

values are standard in quarterly business cycle models.  

 

2.2.1. Deterministic economy 

Consider first a deterministic economy, in which 1 0tε + =  holds ∀t, so that the investment/output 

ratio obeys 1 ( ,0)t tZ Z+ =Λ  (see thick black curve labelled 1' 0 'tε + =  in Fig. 1). The graph of 

1 ( ,0)t tZ Z+ =Λ  shows combinations of tZ  and 1tZ +  that are consistent (in a deterministic 

economy) with the date t Euler equation and with the resource constraints at t and t+1. A rise in 

tZ  increases investment and lowers consumption at date t, which raises the marginal utility of 

consumption at t; output at t+1 rises too, while the marginal product of capital at t+1 falls. The 
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household’s Euler equation thus implies that the marginal utility of consumption at t+1 has to 

increase, which calls for a fall in consumption at t+1. Thus, a rise in tZ  has to be followed by a 

fall in the consumption/output ratio at t+1, and hence by an increase in 1tZ +  (the investment/ 

output ratio at t+1). This explains the positive relation between tZ  and 1.tZ +   

The function 1 ( ,0)t tZ Z+ =Λ  cuts the 45-degree line at αβΖ=  and 1.Ζ=  The slope of the 

function is 1/(αβ)>1, at the no-bubble solution .αβΖ=  In a deterministic economy, a  realization 

t αβΖ <  puts the investment ratio on a monotone trajectory that reaches Z=0 in finite time; a  

realization t αβΖ >  induces a monotone path that asymptotes to Z=1 (without ever reaching Z=1).   

 

2.2.2. Stochastic bubbles 

I now show that the Long-Plosser economy without TVC has stochastic bubble equilibria that 

feature recurrent, bounded fluctuations. These equilibria do not converge to Z=0 or Z=1.  

Trajectories that lead to Z=0 (zero capital and output: economic ‘extinction’), or that converge to 

Z=1 (zero consumption share) seem empirically irrelevant. Standard DSGE macro analysis 

focuses on recurrent fluctuations in economic activity driven by exogenous stationary shocks 

to TFP (and other fundamentals). Therefore, this paper concentrates on recurrent bubbles, i.e. 

bubbles that are not self-ending and that do not lead to economic extinction.   

When tZ αβ< , then the law of motion (8) implies that the economy can hit a zero-capital 

corner solution in subsequent periods (see Fig. 1). Once the zero-capital corner is reached, 

output, investment and consumption remain at zero forever. Thus, a recurrent stochastic bubble 

must feature an investment/output ratio that always stays in the interval [ ,1).αβ  The bubble 

equilibria studied here thus exhibit capital over-accumulation (the investment/output ratio being 

at least as large as in the textbook no-bubble equilibrium that holds under the TVC). In contrast, 

(explosive) rational bubbles in the linearized model can be positive or negative.  

By analogy to the Blanchard (1979) bubble, I assume that there are two possible states at 

t+1, with a negative and a positive realization of the Euler equation forecast error 1tε + , 

respectively. These two states indicate a ‘bust’ and a ‘boom’ at t+1. Let 1tε +  take these values:  
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tε−   and /(1 )tε π π⋅ −  with exogenous probabilities π  and 1 ,π−  respectively, where [0,1)tε ∈  

and  0<π <1. 1tZ +  then takes these two values with probabilities π  and 1 :π−   

            1 ( , )L
t t tZ Z ε+ ≡Λ −  and 1 ( , /(1 ))H

t t tZ Z ε π π+ ≡Λ −  with 1 1 1.L H
t tZ Z+ +≤ ≤                              (9) 

 

Recurrent rational bubbles 

In the spirit of the recurrent Blanchard-style bubble process in the linearized model (see above), I 

assume that when an investment bust occurs in period t+1, then agents choose an  

investment/output ratio 1
L
tZ +  that is close to the no-bubble investment/output ratio αβ:  

1 ,L
tZ αβ+ = +Δ  where 0Δ>  is a small positive constant. ∆>0 is needed to generate recurrent 

bubbles. ∆=0 would imply that bubbles are self-ending, while ∆<0 would entail that the 

economy will ultimately hit the zero-capital corner (see above).8  

When 1
L
tZ αβ+ = +Δ  is assumed, the first equation shown in (9) pins down tε−  as a 

function of ;tZ  this then determines 1
H
tZ + . Let 1 ( )H

t tZ Z+ =Ψ  denote the (unique) value of 1
H
tZ +  that 

is associated with .tZ   

Under the assumed bubble process, the date t Euler equation (4) can be expressed as  

                                      1( , ) (1 ) ( , ) 1.H
t t tH Z H Z Zπ αβ π ++Δ + − =                                        (10) 

1 ( )H
t tZ Z+ =Ψ  solves this Euler equation. For [ ,1]tZ αβ∈ + Δ , the function Ψ  has these 

properties: (i) ' 0,Ψ >  '' 0;Ψ <   (ii) ( ) 1;t tZ Z< Ψ ≤  (iii) ( ,0) ( ).t tZ ZΛ < Ψ  Thus, 1
H
tZ +  is a strictly 

increasing and strictly concave function of .tZ  Property (ii) ensures that if [ ,1),tZ αβ∈ +Δ  then 

[ ,1)Zτ αβ∈ +Δ  holds ∀τ>t.  

Consider an economy that starts in period t=0, with an exogenous  initial capital stock 

0.K  Let tu  be an exogenous i.i.d. sunspot that takes values 0 and 1 with probabilities π and 1-π, 

respectively (0<π <1). Then the following process for the investment/output ratio 0{ }t tZ ≥  is a 

                                                 
8 Assume 0Δ=  (so that 1 )L

tZ αβ+ =  and consider what happens when .tZ αβ=  The first equation shown in (9) then 

becomes ( , )tαβ αβ ε≡Λ −  which implies 0,tε =  so that 1 1 ,H L
t tZ Z αβ+ += = i.e. Z is stuck at αβ in all subsequent periods. 

Setting 0Δ>  rules out that absorbing state.  
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recurrent rational bubble: 0 [ ,1)Z αβ∈ +Δ ;    1 1
L

t tZ Z αβ+ += ≡ +Δ  if 1 0tu + =  and 1 1
H

t tZ Z+ +=  if 1 1,tu + =  

for t≥0, where 1 ( )H
t tZ Z+ =Ψ  solves the date t  Euler equation (10).    

The investment/output ratio in the initial period, 0Z , does  not obey the recursion that 

governs the investment ratio in subsequent periods. 0Z  is indeterminate. However, 

0 [ ,1)Z αβ∈ +Δ  has to hold to ensure that investment/output ratios in all subsequent periods are in 

the interval [ ,1).αβ +Δ  9 Given a sequence 0{ } ,t tZ ≥  the path of capital 1 0{ }t tK + ≥  can be generated 

recursively (for the given initial capital stock 0K ) using 1 1 ( )t t t tK Z K αθ+ +=  for t≥0.  

In a deterministic economy, the investment-output ratio would rise steadily and converge 

to unity, after a value t αβΖ >  has been realized. In a stochastic bubble equilibrium, an 

uninterrupted infinite sequence of investment booms (u=1) would asymptotically drive the 

investment/output ratio to unity. Of course, an uninterrupted boom run has zero probability. At 

any time, the investment output ratio can drop to αβ+∆, with probability π. This ensures that the  

investment/output ratio undergoes recurrent fluctuations. If the bust probability π is sufficiently 

big and if ∆>0 is close to zero, then bubbles induce fluctuations of real activity that remain most 

of the time near the steady state of the no-bubble economy. This is the case in the stochastic 

simulations reported below. 

What expectations sustain the rational bubble equilibrium? Agents expect at date t  that 

1tZ +  will equal  1
L
tZ αβ+ = +Δ  or 1 ( )H

t tZ Z+ =Ψ  with probabilities π and 1-π, respectively, where the 

values of 1
L
tZ +  and 1

H
tZ +  are known at t. At  t+1, agents are free to select a value of 1tZ +  that 

differs from 1
L
tZ +  or 1

H
tZ + ; however, in a bubble equilibrium, they chose not to do so because a 

choice 1 1 1{ , }L H
t t tZ Z Z+ + +∈  is ‘validated’ by their date t+1 expectations about  2.tZ +  Assume that a 

bust occurs in t+1 1( 0),tu + =  so that agents choose  1 ;tZ αβ+ = +Δ  in equilibrium, this choice is 

sustained by agents’ expectation (at t+1) that 2tZ +  will equal αβ+Δ  or ( )αβΨ +Δ  with 

probabilities π  and 1-π, respectively. By contrast, if a boom occurs at t+1 1( 1),tu + =  then 

                                                 
9 In the stochastic simulations discussed below, I set 0Z αβ= +Δ .  The effect of 0Z on subsequent simulated values 
vanishes fast. 0Z does not noticeably affect simulated moments over a long simulation run.    
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agents choose 1 1 ( )H
t t tZ Z Z+ += ≡Ψ ; this choice is supported by the expectation (at t+1) that 2tZ +  will 

equal αβ+Δ  or  1( ) ( ( ))H
t tZ Z+Ψ = Ψ Ψ  with probabilities π  and 1-π, respectively. Note that 

( ) ( ( ))tZαβΨ +Δ < Ψ Ψ . This shows that, in a boom (at t+1), agents are more optimistic about 

2tZ +  than in a bust (at t+1). As in Blanchard (1979), booms and busts reflect hence self-

fulfilling variations in agents’ expectations about the future state of the economy. An investment 

boom [bust] is triggered by a more [less] optimistic assessment of next period’s investment/ 

output ratio.  

 

2.2.3. Quantitative results: bubble equilibrium 

I next discuss numerical simulations. To assess whether a rational bubble alone can generate a 

realistic business cycle, I assume that TFP is constant. The bust probability is set at 0.5.π =  I set 
610 ,−Δ=  as that value produces standard deviations of real activity (HP filtered) in the empirical 

range. As indicated above, α=1/3 and β=0.99 is assumed in all simulations.  

Panel (1) of Fig. 2 plots 1 ,L
tZ αβ+ = +Δ  1 ( )H

t tZ Z+ =Ψ  and the conditional mean

1 1 1(1 ) ,L H
t t t t t tE Z Z Zπ π+ + += + −   as functions of .tZ  Also shown in Panel (1) is the value of 1tZ +  that 

would obtain in a deterministic economy 1( 0) :tε + = 1 ( ,0).t tZ Z+ =Λ  In the stochastic bubble 

equilibrium, the investment/output ratio grows between t and t+1 1( )t tZ Z+ >  when a boom 

occurs at t+1 1( 1);tu + =  when there is a bust at t+1 1( 0),tu + =  the investment rate either remains 

unchanged at αβ +Δ  (if )tZ αβ= +Δ , or it drops to 1tZ αβ+ = +Δ  (if ).tZ αβ> +Δ   

Fig. 2 shows that 1 ( )H
t tZ Z+ =Ψ  is a steeply increasing function of tZ . In a bubble 

equilibrium, a sequence of booms (u=1) generates, thus, a succession of rapid increases in the 

investment/output ratio; this is followed by an abrupt contraction once a bust (u=0) occurs. By 

contrast, a sequence of busts keeps the investment ratio at the lower bound .αβ +Δ  10 

                                                 
10 The variance of the forecast error 1tε +  is an increasing function of ,tZ  i.e. 1tε +  is heteroscedastic. The 

conditional variance of 1tZ +  is likewise increasing in .tZ  
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The strict concavity of the recursion 1 1( , )t t tZ Z ε+ +=Λ  with respect to the Euler equation 

forecast error 1tε +  (see (8))  implies that 1 ( ,0)t t tE Z Z+ <Λ ; thus, the conditional mean of the date 

t+1 investment ratio 1t tEZ +  is strictly below the value of 1tZ +  that would obtain in a deterministic 

economy ( ( ,0)).tZΛ  The unconditional mean of the investment ratio is ( ) 0.3333E Z =  which is 

very close to (but greater than) αβ +∆. 11 

 

Business cycle statistics 

Panel (2) of Fig. 2 shows representative simulated paths of output (Y, continuous black line), 

consumption (C, red dashed line) and investment (I, blue dash-dotted line). The Figure shows 

that the bubble model generates sudden, but short-lived, expansions in output and investment. 

During the expansion phase of a bubble, the rapid rise in investment is accompanied by a 

contraction in consumption.  

Table 1 (Row (a)) reports model-generated standard deviations (in %) and cross-

correlations of HP filtered logged time series of output (Y), consumption (C) and investment (I); 

also shown are mean values of these variables and of the investment/output ratio (Z). All model-

generated business cycle statistics reported in Table 1 (and in subsequent Tables) are based on 

one simulation run of T=10000 periods. The reported theoretical business cycle statistics are 

median statistics computed across rolling windows of 200 periods.12 Mean values (of Y,C,I and 

Z) are computed using the whole simulation run (T periods) and expressed as % deviations of the 

deterministic steady state (of the no-bubble economy).  

To evaluate the model predictions, Table 1 also reports US historical business statistics 

based on HP filtered quarterly data for the period 1968q1-2017q4 (see Row (b)). The empirical 

standard deviations of GDP, consumption and investment are 1.47%, 1.19% and 4.96%, 

                                                 
11 1t tE Z +  is an increasing and strictly concave function of :tZ  1 ( ),t t tE Z Zζ+ =  ' 0, '' 0.ζ ζ> <  The graph of 1t tE Z +  

intersects the 45-degree line at 0.599.tZ =  The unconditional mean ( )E Z is (much) smaller than that point of 
intersection, due to the strict concavity of ζ    ( ( ) ( ( )) ( ( ))E Z E Z E Zζ ζ= <  ).  
12 Rolling 200-periods windows of simulated series are used to compute model-predicted moments, as the historical 
business cycle statistics shown in Table 1 pertain to a sample of 200 quarters (see below). For each 200-periods 
window of artificial data, I computed standard deviations and correlation, using logged series (HP filtered in the 
respective window). Table 1 reports median values, across windows, of these standard deviations and correlations.  
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respectively. In the data, consumption and investment are strongly procyclical; these variables 

and GDP are highly serially correlated. 

The model-predicted standard deviations of output, consumption and investment are  

1.14%, 2.35% and 3.41%, respectively (see Row (a) of Table 1). Thus, the model underpredicts 

slightly the empirical volatility of output and investment; however, consumption is more volatile 

in the model than in the data. In the model, consumption and investment are procyclical; output 

and investment are predicted to be positively serially correlated, while consumption is predicted 

to be negatively autocorrelated. In the bubble economy, average output and investment are 0.5% 

and 2.3% higher than in the steady state of the no-bubble economy, while consumption is 0.3% 

lower. Thus, the unconditional mean of these endogenous variables is close to steady state.  

Capital over-accumulation (compared to the no-bubble equilibrium) implies that the 

bubble economy is ‘dynamically inefficient’, due to violation of the transversality condition 

(TVC). Abel et al. (1989) propose an empirical test of dynamic efficiency. Their key insight is 

that, in a dynamically efficient economy, income generated by capital (i.e. output minus the 

wage bill) exceeds investment. Abel et al. (1989) show that, in annual US data, this condition is 

met in all years of their sample (1929-1985). The US historical sample average of the (capital 

income-investment)/GDP ratio is 13.41%.  

In the bubbly Long-Plosser economy, the (capital income – investment)/GDP ratio is 

positive in 96.4% of all quarters, but the average ratio is slightly negative, -0.12%. Note that, in 

the no-bubble version of the Long-Plosser economy, the (capital income – investment)/GDP 

ratio equals (1 ) 0.33%,α β− = which is only slightly greater than zero, and much smaller than the 

empirical ratio. Thus, even modest dynamic inefficiency produces a negative mean capital 

income – investment gap. As shown below, RBC models with incomplete capital depreciation 

can generate bubble equilibria with sizable positive mean capital income – investment gaps.   

 

3. Rational bubbles in an RBC model with incomplete capital depreciation (no TVC) 
I next show how rational bubble equilibria can be constructed in a richer, more realistic non-

linear RBC model with incomplete capital depreciation and variable labor.  

As before, I postulate that there is no TVC for capital. The period utility function is 

( , ) ln( ) ln(1 ),t t t tU C L C L= +Ψ⋅ −  0,Ψ> where 0 1tL≤ ≤  are hours worked. The household’s total time 
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endowment (per period) is normalized to one, so 1 tL−  is leisure.13 The resource constraint and 

the output technology are  

                                            1 (1 )t t t tC K Y Kδ++ = + −  with 1( ) ( ) ,t t t tY K Lα αθ −=                                   (11) 

where 0 1δ< <  is the capital depreciation rate. tθ  (TFP) is exogenous and follows the bounded 

AR(1) process 1 1ln( ) ln( ) ,t t t
θθ ρ θ ε+ += +  0 1,ρ≤ <  where 1t

θε +  is a white noise that equals θσ−  or θσ  

with probability ½ ( 0).θσ ≥  The standard deviation of the 1t
θε +  is thus .θσ

14  The economy has 

these efficiency conditions  

                                                     /(1 ) (1 ) ( ) ( )t t t t tC L K Lα αα θ −Ψ − = −   and                                    (12) 

                                          1 1
1 1 1 1{ / }( ( ) ( ) 1 ) 1.t t t t t tE C C K Lα αβ αθ δ− −
+ + + + + − =                                     (13) 

(12) indicates that the household’s marginal rate of substitution between leisure and consumption 

is equated to the marginal product of labor, while (13) is the date t Euler equation for capital.   

 (11) and (12) pin down consumption and hours worked as functions of 1, , :t t tK K θ+   

                                                  1( , , )t t t tC K Kγ θ+=  and 1( , , ).t t t tL K Kη θ+=                                      (14) 

Substituting these expressions into the Euler equation gives:  

                                                  2 1 1( , , , , ) 1t t t t t tE H K K K θ θ+ + + = ,   where                                     (15) 

1 1
2 1 1 1 2 1 1 1 1 2 1 1( , , , , ) { ( , , )/ ( , , )}( ( ) ( ( , , )) 1 ).t t t t t t t t t t t t t t t tH K K K K K K K K K Kα αθ θ β γ θ γ θ αθ η θ δ− −

+ + + + + + + + + + + +≡ + −     

The model thus boils down to an expectational difference equation in capital. Given a 

process for capital that solves (15), one can use (14) to determine consumption, hours and output.  

The conventional no-bubble model solution (that obtains when the TVC for capital is imposed) is 

described by a unique decision rule 1 ( , )t t tK Kλ θ+ =   (e.g., Schmitt-Grohé and Uribe (2004)). I 

assume that there is no TVC. A rational bubble equilibrium is a process { }tK  that satisfies (15) 

but that deviates from the no-bubble decision rule (and violates the TVC). Throughout the 

following analysis, I focus on recurrent rational bubbles, i.e. on rational bubbles that are not self-

ending and that do not lead to zero capital.  
                                                 
13The upper bound on labor hours implies that capital and output are bounded. Some widely used preference 
specifications (e.g., ( , ) ln( ) ( ) , 0, 1)t t t t tU C L C L Lμ μ= −Ψ⋅ ≥ > do not impose an upper bound on labor. Then rational 
bubbles may induce unbounded growth of hours, capital and output.  
14 The discrete distribution of the TFP innovation ensures that the TFP process is bounded, and it simplifies the 
computation of conditional expectations (Euler equations) in the numerical model solution.  
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Recurrent rational bubbles 

By analogy to the bubble process in the Long-Plosser economy without TVC (Sect. 2), I consider 

bubble equilibria in which the capital stock 1tK +  takes one of two values: 1 1 1{ , }L H
t t tK K K+ + +∈  with 

exogenous probabilities π  and ,π1−  respectively (0<π<1), where 1 ( , ) ,L
t t tK K eλ θ Δ
+ =  for a small 

constant ∆. With probability π , the capital stock thus takes a value close to the no-bubble 

decision rule (as in the bubbly Long-Plosser model). An exogenous i.i.d. sunspot (independent of 

TFP) determines whether 1
L
tK +  or 1

H
tK +  is realized (see below). At date t, agents anticipate that 

2,tK +  too takes one of two values 2 2 2{ , }L H
t t tK K K+ + +∈  with probabilities π and 1-π, respectively, 

with 2 1 1( , ) .L
t t tK K eλ θ Δ
+ + +=  The date t Euler equation (15) can thus be written as:  

    1 1 1 1 2 1 1( ( , ) , , , , ) (1 ) ( , , , , ) 1H
t t t t t t t t t t t t tE H K e K K E H K K Kπ λ θ θ θ π θ θΔ

+ + + + + + ++ − ⋅ =  for 1 1 1{ , }.L H
t t tK K K+ + +∈     (16)  

Throughout the following analysis, I set ∆>0, as ∆>0 is needed to generate recurrent 

bubbles. As in the Long-Plosser economy (without TVC), bubbles are self-ending or ultimately 

hit the zero capital corner, when ∆≤0.  

Consider an economy that starts in period t=0, with an exogenous initial capital stock 0.K  

Let tu  be an exogenous i.i.d. sunspot that takes values 0 and 1 with probabilities π and 1 ,π−  

respectively (0<π<1). tu  is independent of TFP. Then the following process for capital 0{ }t tK ≥  is 

a recurrent rational bubble: 2 2 1( , )L
t t t tK K K eλ θ Δ
+ + += ≡  if 1 0tu + =  and 2 2

H
t tK K+ +=  if 1 1,tu + =  for t≥0, 

where 2
H
tK +  satisfies the date t  Euler equation (16). 15 

As in the bubbly Long-Plosser economy (without TVC), the dynamics of capital reflects 

self-fulfilling variations in agents’ expectations about future capital. Due to decreasing returns to 

capital and bounded TFP, the paths of capital and output are bounded. An uninterrupted 

sequence of investment booms (driven by an infinite string of u=1 sunspot realizations) would 

drive the capital towards its upper bound. However, an uninterrupted boom has zero probability. 

                                                 
15 Note that 2

L
tK +   depends on 1.tθ +  The numerical simulations below consider bubbles in which, conditional on date 

t information, a TFP innovation at t+1 has an equiproportional effect on 2
L
tK +  and on 2.H

tK +  Specifically, 

2 2 ,H LH
t t tK Ks+ += ⋅ where 0H

ts >  is in the date t information set. This greatly simplifies the computation of bubbles.  

Solving for H
ts  (at each date) pins down the equilibrium capital process. See Not-for-Publication Appendix B 
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At any time, the capital stock can revert towards the no-bubble decision rule, with probability π. 

For small values of ∆ and a sufficiently high bust probability π (as assumed in the simulations 

discussed below), capital and output remain close to the range of the no-bubble equilibrium, 

most of the time, and the unconditional mean of endogenous variables is close to the no-bubble 

steady state.  

Not-for-Publication Appendix B provides further discussions of the bubble model and 

describes the numerical method used to solve it.  

 

3.1. Quantitative results 

I again set 1/3, 0.99.α β= =  The capital depreciation rate is set at 0.025.δ =  The preference 

parameter Ψ  (utility weight on leisure) is set so that the Frisch labor supply elasticity is unity, at  

steady state.16 Parameters in this range are conventional in quarterly macro models (e.g., King 

and Rebelo (1999)). I set the autocorrelation of TFP at 0.979,ρ=  while the standard deviation of 

TFP innovations is set at 0.72%,θσ =  as suggested by King and Rebelo (1999). All numerical 

simulations discussed below assume 610 .−Δ=  That value generates standard deviations of real 

activity that are roughly in line with empirical statistics. I report results for two values of the bust 

probability: π=0.2 and π=0.5.   

Table 2 reports simulated business cycle statistics (of HP filtered variables) for several 

model variants (see Cols. (1)-(10)), as well as historical US business cycle statistics (Col. (11)). 

Standard deviations (in %) of output (Y), consumption (C), investment (I) and hours worked (L) 

are shown, as well as correlations of these variables with output, autocorrelations and mean 

values. The Table also reports the mean of the (capital income-investment)/GDP ratio, as well as 

the fraction of periods in which this ratio is positive.   

Cols. (1)-(4) of Table 2 pertain to bubble model variants with just bubble (sunspot)  

shocks (constant TFP assumed). Cols. (5)-(8) consider bubble model variants with joint bubble 

and TFP shocks. Cols. (9)-(10) assume a no-bubble model (TVC imposed) with TFP shocks.17 

Cols. (1),(3),(5),(7) assume a bust probability π=0.5, while Cols. (2),(4),(6),(8) assume π=0.2. 

                                                 
16 (12) implies that the Frisch labor supply elasticity (LSE) with respect to the real wage (marginal product of labor) 
is (1 )/LSE L L= −  at the steady state, where L are steady state hours worked. Ψ  is set such that L=0.5,  as then  LSE=1.  
17The no-bubble model is solved using a second-order Taylor approximation, as it is well-know that this 
approximation is very accurate for standard (no-bubble) RBC models (e.g., Kollmann et al. (2011a,b)). 
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Cols. labelled ‘Unit Risk Aversion’ (‘Unit RA’) assume log utility, ( , ) ln( ) ln(1 ).t t t tU C L C L= +Ψ⋅ −  

Columns labelled ‘High RA’ assume greater risk aversion: ( , ) ln( ) ln(1 ),t t t tU C L C C L= − +Ψ⋅ −  

where C is a constant that is set at 0.8 times steady state consumption. The ‘High RA’ 

preferences imply that consumption has a strictly positive lower bound: 0;tC C≥ >  in the ‘High 

RA’ case, the coefficient of relative risk aversion is 5, at steady state consumption. 

Fig. 3 shows simulated paths of output (Y, continuous black line), consumption (C, red 

dashed line), investment (I, dark blue dash-dotted line) and hours worked (L, light blue dotted 

line). Panel (i) (for i=1,..,10) of Fig. 3 assumes the model variant considered in Col. (i) of Table 

2. The Y, C and I series plotted in Fig. 3 are normalized by steady state output (of the no-bubble 

economy); hours worked (L) are normalized by steady state hours. The same sequence of 

sunspots is fed into each of the bubble model variants with the same bust probability; also, the 

same sequence of TFP innovations is fed into each model variant with TFP shocks.   

 Col. (1) of Table 2 assumes a variant of the bubble model with unit risk aversion and a 

bust probability π=0.5; fluctuations are just driven by bubble shocks (constant TFP assumed). 

The predicted standard deviations of output, consumption, investment and hours worked are 

0.49%, 1.08%, 4.29% and 0.74%, respectively. In line with the historical data, investment is 

predicted to be more volatile than output. However, the model (with unit risk aversion) predicts 

that consumption is more volatile than output, which is counterfactual. The model also predicts 

that consumption is negatively correlated with output (a positive bubble shock raises investment; 

this crowds out consumption, which raises labor supply and thereby boosts output).18 However, 

the model predicts that investment and hours worked are strongly procyclical, as is consistent 

with the data. In the model, output, consumption, investment and hours worked are positively 

serially correlated, but predicted autocorrelations (about 0.35) are smaller than the empirical 

autocorrelations (about 0.9).  

Panel (1) of Fig. 3 shows simulated paths driven just by bubble shocks, for the bubble 

model with unit risk aversion and π=0.5. We see that the bubble equilibrium generates booms in 

output, labor hours and investment that are relatively infrequent and brief. This explains the low 

predicted autocorrelation of real activity. In most periods, output, consumption, investment and 

output remain close to (slightly above) the steady state levels of the no-bubble economy.  
                                                 
18 This is a familiar feature of flex-wage models driven by investment shocks; e.g., Coeurdacier et al. (2011). 
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A lower bust probability π=0.2 generates more persistent booms in real activity. For an 

economy with just bubble shocks, this is illustrated in Col. (2) of Table 2, where a unit risk 

aversion and π=0.2 are assumed (see also Panel (2) of Fig. 3). The autocorrelation of real activity 

is now about 0.6. Consumption is again predicted to be more volatile than output.  

Model variants with ‘High Risk Aversion (RA)’ utility generate less consumption 

volatility—those variants capture the fact that consumption is less volatile than output; see Cols. 

(3) and (4) of Table 2 (and Panels (3) and (4) of Fig. 3), where π=0.5 and π=0.2 are assumed.  

In summary, the bubble model with constant TFP can generate persistent fluctuations, as 

well as a realistic volatility of output and aggregate demand components.  

The no-bubble model driven by stochastic TFP shocks underpredicts the volatility of real 

activity, but it captures the fact that consumption is less volatile than output, while investment is 

more volatile (see Table 2, Cols. (9) and (10)).  In the no-bubble model, consumption and 

investment are pro-cyclical; furthermore, real activity is highly serially correlated 

The bubble economy with joint bubble shocks and TFP shocks generates fluctuations in 

real activity that are more volatile than the fluctuations exhibited by the no-bubble economy (see 

Table 2, Cols. (5)-(8)). In this sense, the bubble equilibrium with TFP shocks is closer to the 

historical business cycle moments.   

Panels (5)-(10) of Fig. 3 show that the effect of bubbles on simulated series is clearly 

noticeable (compared to the no-bubble economy with TFP shocks): the bubble economy exhibits 

more rapid, short-lived, increases in investment, labor hours and output.  

In the bubble economies considered here, the unconditional mean of endogenous 

variables is again close to the no-bubble steady state (as in the Long-Plosser economy with 

bubbles studied in Sect. 2).19 For all variants of the bubble economy with incomplete capital 

depreciation considered in Table 2, the average (capital income – investment)/GDP ratio is 

positive and large (unlike in the Long-Plosser model); the average ratio ranges between 8.5% 

and 9.2%, and it is only slightly smaller than the value of that ratio in the no-bubble steady state, 

9.59%.20 Capital income exceeds investment in close to 100% of all periods. This highlights the 

difficulty of detecting violations of the TVC (dynamic inefficiency), as discussed above. 

                                                 
19In Tables 2-4, mean values of Y,C,I,L are reported as %  deviations from the no-bubble steady state. The mean 
(capital income – investment)/GDP ratio (see below) is not expressed as a % deviation from steady state.  
20In the bubble economy, the steady state (capital income – investment)/GDP ratio is αr/(δ+r) where r=(1-β)/β is the 
steady state interest rate.  
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4. Rational bubbles in a Dellas two-country RBC economy (no TVC) 
I next study bubbles in open economies. This Section considers Dellas’ (1986) two-country RBC 

model. The Dellas model is a two-country version of the Long and Plosser (1983) model, as it 

also assumes log utility, Cobb-Douglas production functions and full capital depreciation. Like 

the Long-Plosser model, the Dellas model has an exact closed form solution. I construct rational 

bubbles that arise when there is no transversality condition (TVC), in the Dellas economy.  

Assume a world with two symmetric countries, referred to as Home (H) and Foreign (F), 

respectively. The household of country i=H,F  has log preferences of the type assumed in the 

closed economy RBC model of Sect. 3. Thus, her period utility is: , , ,( , ) ln( ) ln(1 ),i t t i t i tU C L C L= +Ψ⋅ −  

0,Ψ>   where ,i tC  and ,i tL  are consumption and hours worked. Each country is specialized in the 

production of a distinct tradable intermediate good. Country i’s intermediate good production 

function is 1
, , , ,( ) ( ) ,i t i t i t i tY K Lα αθ −=  where ,i tY , ,i tθ , ,i tK  are the intermediate good output, TFP and 

capital in country i. Capital and labor are immobile internationally. TFP is exogenous and 

follows a bounded Markov process. The country i household combines local and imported 

intermediates into a non-tradable final good, using the Cobb-Douglas aggregator 
1

, , ,( / ) ( /(1 ))ji
i t i t i tZ y yξ ξξ ξ −= ⋅ − , i≠j,  where ,

j
i ty  is the amount of intermediate  j used by country i. 

There is local bias in final good production: 1
2 1.ξ< <  The country i final good is used for 

consumption, , ,i tC  and investment, , :i tI , , , .i t i t i tZ C I= +  Due to full capital depreciation, the capital 

stock at t+1 equals investment at t: , 1 , .i t i tK I+ =  The price of country i’s final good ,( )i tP  equals its 

marginal cost: 1
, , ,( ) ( ) ,i t i t j tP p pξ ξ−= ⋅   i≠j,  where ,j tp  is the price of intermediate good j. Country i’s 

demand functions for domestic and imported intermediates are: 1
, , , ,( / )i
i t i t i t i ty p P Zξ −= ⋅  and 

1
, , , ,(1 ) ( / )j
i t j t i t i ty p P Zξ −= − ⋅ ,  for .j i≠  Market clearing for intermediate goods requires  

                                                        , , , ,i i
H t F t i ty y Y+ =  for i=H,F.                                                      (17) 

Country i’s terms of trade and real exchange rate are , , ,/i t i t j tq p p≡  and , , ,/ ,i t i t j tRER P P≡  with i≠j.  

The model assumes complete international financial markets, so that consumption risk is 

efficiently shared across countries. In equilibrium, the ratio of Home to Foreign households’ 

marginal utilities of consumption is, thus, proportional to the Home real exchange rate 
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(Kollmann, 1991, 1995; Backus and Smith, 1993). With log utility, this implies that Home 

consumption spending is proportional to Foreign consumption spending: , , , , ,H t H t F t F tP C P C=Λ⋅

where Λ  is a date- and state-invariant term that reflects the (relative) initial wealth of the two 

countries. I assume that the two countries have the same initial wealth, i.e. Λ=1.  Thus:  

                                                            , , , , .H t H t F t F tP C P C=                                                            (18) 

Each household equates the marginal rate of substitution between leisure and 

consumption to the marginal product of labor, expressed in units of consumption, which implies  

                                                , , , , , ,/(1 ) ( / )(1 )( / ).i t i t i t i t i t i tC L p P Y LαΨ − = −                                           (19) 

Country i’s Euler equation for domestic physical capital is:  

                                              , , 1 , 1 , 1 , 1 , 1( / )[( / ) / ] 1t i t i t i t i t i t i tE C C p P Y Kβ α+ + + + + = ,                                     (20)                     

where the term in square brackets is country i’s marginal product of capital at date t+1, expressed 

in units of  the country i  final good. Substitution of the intermediate good demand functions into 

the market clearing condition for intermediates (17) gives:  

                    , , , , , , 1 , , , , 1( ) (1 ) ( )i t i t i t i t i t i t j t j t j t j tp Y P C P K P C P Kξ ξ+ += ⋅ + + − ⋅ +   for i,j=H,F;  j≠i.              (21) 

Let , , , 1 , ,/( )i t i t i t i t i tP K P Cκ +≡  denote country i’s investment/consumption ratio. Using (18),(21), the 

labor supply and Euler equations (19),(20) can be written as  

                               , , , ,/(1 ) ((1 )/ ) {1 (1 ) }i t i t i t j tL L α ξκ ξ κ− = − Ψ ⋅ + + −  for i=H,F;  j≠i ,                       (22) 

           , 1 , 1 ,(1 (1 ) )t H t F t H tEαβ ξκ ξ κ κ+ +⋅ + + − =   and , 1 , 1 ,(1 (1 ) )t H t F t F tEαβ ξ κ ξκ κ+ +⋅ + − + = .       (23)        

The deterministic steady state investment/consumption ratio is /(1 ).κ αβ αβ≡ −   Let , ,i t i tκ κ κ≡ −  

denote the deviation of ,i tκ  from its steady state value. The Euler equations (23) imply:  

               , 1 , 1 ,( (1 ) )t H t F t H tEαβ ξκ ξ κ κ+ +⋅ + − =   and  , 1 , 1 ,((1 ) )t H t F t F tEαβ ξ κ ξκ κ+ +⋅ − + = .           (24) 

         This gives     , 1 ,

, 1 ,

t H t H t

t F t F t

E
B

E

κ κ

κ κ
+

+

⎡ ⎤ ⎡ ⎤
= ⋅⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
, with 

(1 )1 .
(1 )(2 1)

B
ξ ξ
ξ ξαβ ξ

− −⎡ ⎤
≡ ⋅⎢ ⎥− −− ⎣ ⎦

                    (25) 

The eigenvalues of B are 1/( )Sλ αβ≡  and 1/( (2 1)),Dλ αβ ξ≡ −  with 1.D Sλ λ> > (1/(2 1) 1ξ− >  as 1
2 1.)ξ< <  

As both eigenvalues exceed 1, the only non-explosive solution of (25) is , 0i tκ =  i.e. , /(1 ),i tκ αβ αβ= −  
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∀t, i=H,F. This solution satisfies Home and Foreign TVCs. Dellas (1986) focuses on the no-

bubble solution.   

 

4.1. Rational bubbles  

I now study rational bubble equilibria with , 0i tκ ≠ that arise when there is no TVC. I show that 

the Dellas economy without TVC has bubble equilibria that feature recurrent, bounded 

fluctuations of capital, hours worked, output and consumption. These equilibria do not converge 

to zero capital or zero consumption. If the Home or Foreign capital stock ever fell to zero, then 

capital and output in both countries would remain stuck at zero in all subsequent periods. Such 

trajectories seem empirically irrelevant. The goal of the analysis here is to construct bubble 

equilibria with recurrent fluctuations in real activity, and thus I focus on bubbles with strictly 

positive capital.  

As shown below, any strictly positive process for Home and Foreign capital that satisfies 

the Euler equations (23),(24) has to be such that  

                                                     , , 0 .H t F t tκ κ= ≥ ∀                                                           (26) 

Thus, the bubbly investment/consumption ratio has to be always at least as large as the steady 

state ratio. Also, the bubble process has to be identical across the two countries. To see this, let 

, ,t H t F tS κ κ≡ +  and , ,t H t F tD κ κ≡ −  be the sum and the difference of the two countries’ investment/ 

consumption ratios, expressed as deviations from steady state. (25) implies 1t t S tE S Sλ+ = ⋅  and 

1t t D tE D Dλ+ = ⋅ , where Sλ  and Dλ   are the eigenvalues of B. Note that 1
, 2 ( )H t t tD Sκ = ⋅ +  and 

1
, 2 ( ).F t t tS Dκ = ⋅ −  Thus, 1

, 2 ( ) { (1/(2 1)) }s s
t H t s S t tE S Dκ λ ξ+ = ⋅ + −  and 1

, 2 ( ) { (1/(2 1)) },s s
t F t s S t tE S Dκ λ ξ+ = − −

where I use the fact that /(2 1).D Sλ λ ξ= −  As 1Sλ >  and 1/(2 1) 1,ξ− >   a necessary condition for non-

negativity of ,H τκ , ,F τκ  in all future dates and states τ≥t is 0tD =  and 0.tS ≥  This implies (26). 21 

 Intuitively, a (positive) bubble that e.g. occurs solely in the Home country ,( 0)H tκ >  

would trigger an improvement in the Home terms of trade, and a rise in the Home trade deficit, 
                                                 
21 0tD ≠  would imply ,lims t H t sE κ→∞ + =−∞  or ,lims t F t sE κ→∞ + = −∞ ; with strictly positive probability, ,H τκ  or  ,F τκ  

would thus be negative at some date(s) τ≥t. Setting  0tD =  shows that 0tS <  would imply ,lims t H t sE κ→∞ + =−∞  and 

,lims t F t sE κ→∞ + = −∞ , so that  , 0H τκ <  and/or  , 0F τκ <  would hold with positive probability at some date(s) τ≥t.   
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due to growing intermediate imports by Home, fueled by the bubble-induced boom in Home 

investment. This would put Foreign investment on a downward trajectory. If the Home bubble 

lasted sufficiently long, the Foreign capital stock would ultimately reach zero. Thus, a recurrent 

bubble (with strictly positive capital) cannot occur just in one country. 22 Why do bubbles have to 

be identical in the two countries? The reason is that any difference between domestic and foreign 

investment/consumption ratios at date t ( 0)tD≠  would trigger a larger expected difference in 

period t+1; thus, the expected cross-country difference would explode, and that at a faster rate 

than the sum of these two-country’s investment/consumption ratios (as ).D Sλ λ>  This would drive 

capital to zero, in one of the countries, in future periods τ>t.   

In what follows, I thus assume that (26) holds. Let , ,t H t F tκ κ κ= =  denote the common 

investment/consumption ratio in both countries, and let t tκ κ κ≡ −  be its deviation from the steady 

state ratio κ. The Home and Foreign Euler equations (24) imply  

                                                                1 .t t tEαβ κ κ+ =                                                                (27) 

 

Recurrent rational bubbles 

By analogy to the bubble equilibria discussed in previous Sections, I assume that 1tκ +  takes two 

values: 1 1{ , }H
t tκ κ+ +∈ Δ  with exogenous probabilities π  and 1 ,π−  respectively, with 0<π<1 and 

0.Δ>  0Δ>  ensures that the bubble is recurrent (not self-ending) and that it does not lead to zero 

capital. (As in the bubbly Long-Plosser model, ∆=0 would imply that bubbles are self-ending; 

with ∆<0, the capital stock would ultimately fall to zero.)  

Consider a world economy that starts in period t=0, with exogenous initial capital stocks  

,0 ,0, .H FK K  Let tu  be an exogenous i.i.d. sunspot that takes values 0 and 1 with probabilities π  

and 1-π,  respectively (0<π<1). Then the following process for the investment/ consumption 

ratio 0{ }t tκ ≥  is a recurrent rational bubble: 1tκ + =Δ    if 1 0tu + =  and 1 1
H

t tκ κ+ +=  if 1 1,tu + =  for t≥0, 

                                                 
22Note from the Foreign Euler condition shown in (24) (see second equation) that if , 0H tκ >  and , 1 0t H tE κ + >  hold, 

then , , 1 0F t t F tEκ κ += =  is impossible.  Thus a bubble cannot occur just in country H.   



25 
 

where 1
H
tκ +  solves the date t  Euler equation (27).  Note that (27) implies 1{ (1 ) } ,H

ttαβ π π κ κ+Δ+ − =  

and so 1 ( )/( (1 )).H
ttκ κ αβπ αβ π+ = − Δ −  If tκ ≥Δ holds, then 1 .H

ttκ κ+ >  23 

 Given { },tκ one can solve for hours, consumption, investment and output, using the static 

equilibrium conditions. , ,t H t F tκ κ κ= = implies that labor hours are identical across countries (see 

(22)), and that investment and output, valued at market prices, are equated across countries:

, , 1 , , 1H t H t F t F tP K P K+ += , , , , , .H t H t F t F tp Y p Y=  As consumption, valued at market prices, is likewise 

equated across countries (see (18)), net exports are zero. Country i’s terms of trade equal the 

inverse of i’s relative output: , , , , ,/ / ,i t i t j t j t i tq p p Y Y≡ =  j≠i. Consumption and investment obey 

, , , ,(1/(1 ))( / )i t t i t i t i tC p P Yκ= +  and , 1 , .i t t i tK Cκ+ =  As 1 1
, , , , ,/ ( ) ( / )i t i t i t j t i tp P q Y Yξ ξ− −= =  with j≠i, we find:                       

1
, 1 , ,( /(1 ))( ) ( )H t t t H t F tK Y Yξ ξκ κ −
+ = + , 1

, 1 , ,( /(1 ))( ) ( ) .F t t t H t F tK Y Yξ ξκ κ −
+ = +  Note that the { }tκ  process is 

unbounded. However 1/(1 )tκ+  and /(1 )t tκ κ+  are strictly positive and bounded; it can be seen  

(from preceding formulae) that this implies that capital, output and consumption are bounded.  

 

4.2. Quantitative results 

Table 3 reports simulated business statistics for the two-country Dellas model with bubbles (Cols. 

(1)-(3)); also shown are historical business statistics (Col. (4)).  Historical standard deviations, 

correlations with GDP and autocorrelations are based on US data, 1968q1-2017q4; historical 

cross-country correlations are correlations between the US and the Euro Area, 1970q1-2017q4    

Empirically, the US real exchange rate is about 2.5 times as volatile as US output; US net 

exports (normalized by GDP) are countercyclical. Real activity is positively correlated across the 

US and the Euro Area. The cross-country correlations of output and investment are close to 0.5; 

the cross-country correlations of consumption and employment are slightly lower (0.39). 

I again set 1/3, 0.99.α β= =  The share of spending devoted to domestic intermediates is 

set at ξ=0.9.24 I set the bust probability at π=0.5. Δ  is set at 62.227 10−× , as this parallels the 

                                                 
23 The 0κ  ratio (initial period) is indeterminate. 0κ ≥Δ  has to hold to ensure that tκ ≥Δ  ∀t>0. 
24This is consistent with the fact that the mean US trade share (0.5×(imports+exports)/GDP) was 10% in 1968-2017.  
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calibration of the investment bust in the bubbly Long-Plosser closed economy model (Sect. 2), 

and generates a realistic volatility of output.25 

Versions of the two-country model with TFP shocks assume that Home and Foreign TFP 

follow the autoregressive process that Backus et al. (1994) estimated using quarterly TFP series 

for the US and an aggregate of European economies: 

                                       , 1 , , 1

, 1 , , 1

ln ln.906 .088
,

ln ln.088 .906
H t H t H t

F t F t F t

θ

θ

θ θ ε
θ θ ε

+ +

+ +

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⋅ + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                                     (28) 

where , 1 , 1,H t F t
θ θε ε+ + are white noises with , 1 , 1( ) ( ) 0.852%,H t F tStd Stdθ θε ε+ += = , 1 , 1( , ) 0.258.H t F tCorr θ θε ε+ + = I 

assume a discrete distribution of the TFP innovations, to ensure that the TFP process is 

bounded.26 (28) implies that TFP is a highly persistent process, and that there are delayed 

positive cross-country spillovers (positive off-diagonal elements of the autoregressive matrix).  

Col. 1 of Table 3 considers a version of the bubble model with just bubble shocks 

(constant TFP assumed). Col. 2 assumes a bubble model with joint bubble and TFP shocks, while 

Col. 3 assumes a no-bubble model (TVC imposed) with TFP shocks.    

The bubble model with constant TFP predicts that output, consumption, investment and 

hours are identical across countries, i.e. these variables are perfectly correlated across countries 

(see Col. 1). The dynamics of these variables corresponds, thus, to that predicted by the 

corresponding bubbly Long-Plosser closed economy (see Sect. 2). E.g., like its closed-economy 

counterpart, the Dellas economy with bubbles predicts that consumption is more volatile than 

output.27 Because of the predicted perfect correlation of Home and Foreign output, the terms of 

trade and the real exchange rate are constant, when there are just bubble shocks.  

 The no-bubble Dellas model with TFP shocks generates realistic output and consumption 

variability (see Col. 3, Table 3); however, investment, hours worked and the real exchange rate 

are less volatile than in the data (hours are constant). The no-bubble model with TFP shocks 

generates fluctuations in output, consumption and investment that are positively correlated across 

                                                 
25 62.227 10−Δ= ×  implies that, in a bust, the ratio of investment spending divided by nominal GDP, 

, , , 1 , , /(1 )/( ) t ti t i t i t i t i tZ P K p Y κ κ+ = +≡ exceeds its steady state value αβ  by the amount 610 ,−  as in the closed economy.  
26 , 1 , 1 , 1,H t H t F ta bθε ν ν+ + += ⋅ + ⋅ , 1 , 1 , 1F t H t F tb aθε ν ν+ + += ⋅ + ⋅   where , 1,H tν +  , 1F tν +  are independent random variables that equal 1 

or -1 with probability  0.5. I set a=0.8447%, b=0.1108% to match the stated standard dev. and corr. of  , 1 , 1, .H t F t
θ θε ε+ +   

27 The Dellas economy assumes endogenous labor. Hours worked rise in response to a positive bubble shock. This is 
why real activity is more volatile than in the closed economy (Long-Plosser) model with fixed labor of Sect. 2.  
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countries. The predicted cross-country correlation of output (0.39) is smaller than the empirical 

correlation (0.53), while predicted cross-country correlations of consumption and investment 

(0.56) are higher than the corresponding empirical correlations (about 0.4).  

Note that all model variants predict a zero trade balance. The bubble economy with joint 

bubble shocks and TFP shocks (Col. 2) generates higher cross-country correlations of output, 

consumption and investment than the no-bubble economy (Col. 3). Also, the presence of TFP 

shocks implies that the real exchange rate shows non-negligible fluctuations (while the real 

exchange rate is constant in the bubble model with constant TFP, as discussed above).   

 

5. Rational bubbles in a two-country RBC model with incomplete capital 
depreciation (no TVC) 
This Section discusses rational bubbles in a more general two-country RBC model that 

resembles the classic International RBC model proposed by Backus et al. (1994). This model 

cannot be solved in closed form. It assumes incomplete capital depreciation, a CES final good 

aggregator, and it allows for non-unitary risk aversion. Other model features are identical to 

those of the Dellas model. Thus, each country is specialized in the production of a distinct 

tradable good. In each country, domestic and imported tradables are combined into a non-

tradable final good used for consumption and investment. Complete global financial markets are 

assumed. The law of motion of Home and Foreign TFP is again given by (28).  

As in the closed economy RBC model of Sect. 3, I assume the period utility function

, , ,( , ) ln( ) ln(1 ),i t t i t i tU C L C C L= − +Ψ⋅ −  0.C ≥  The country i final good is generated from domestic 

and imported intermediates using a CES aggregator: 1/ ( 1)/ 1/ ( 1)/ /( 1)
, , ,[ ( ) (1 ) ( ) ] ,i j

i t i t i tZ y yφ φ φ φ φ φ φ φξ ξ− − −= ⋅ + − ⋅  

j≠i, where φ  is the substitution elasticity between domestic and imported intermediates. There is 

local bias in final good production: 1
2 1.ξ< < The price of country i’s final good ,( )i tP  now is 

1 1 1/(1 )
, , ,[ ( ) (1 ) ( ) ]i t i t j tP p pφ φ φξ ξ− − −= ⋅ + − ⋅ , j≠i, while country i’s demand functions for domestic and 

imported inputs are , , , ,( / )i
i t i t i t i ty p P Zφξ −= ⋅  and  , , , ,(1 ) ( / ) .j

i t j t i t i ty p P Zφξ −= − ⋅  The law of motion of 

country i’s capital stock is , 1 , ,(1 ) ,i t i t i tK K Iδ+ = − +  where 0 1δ< <  is the capital depreciation rate. 

The final good market clearing condition in country i  is , , , .i t i t i tZ C I= +  
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The static equilibrium conditions allow to solve for date t consumption, labor and terms 

of trade , , ,, ,i t i t i tC L q  as functions of both countries’ capital stocks in t and t+1 and of date t  

productivity. By substituting these functions into the two countries’ capital Euler equations, one 

can write the Euler equations as expectational difference equations in Home and Foreign capital:   

                                                2 1 1( , , , , ) 1t t t t t tiE H K K K θ θ+ + + =   for i=H,F,                                  (29) 

where , ,( , )t H t F tK K K≡  and , ,( , )t H t F tθ θ θ≡  are vectors of Home and Foreign capital and TFP, 

respectively. The function iH  maps 10R+  into R. 

The no-bubble solution of the model (that obtains when TVCs are imposed) is described 

by decision rules , 1 ( , )i t i t tK Kλ θ+ =  that map date t capital and TFP into capital at date t+1. 

Assume that there is no transversality condition (TVC) for capital, which makes rational 

bubbles possible. I consider a bubble process that parallels the bubbles in previous Sections. 

Assume that capital , 1i tK +  takes one of two values: , 1 , 1 , 1{ , }L H
i t i t i tK K K+ + +∈ , with probabilities π and 

1-π, respectively, where  , 1 ( , ) .L
i t i t tK K eλ θ Δ
+ = ⋅  Like in previous models, ∆>0 is required to 

generate recurrent bubbles. As in the Dellas economy with complete financial markets, the 

bubble has to be perfectly synchronized across countries. Hence, , 1
H
H tK +  and , 1

H
F tK +   are realized 

together (and so are , 1
L
H tK +  and , 1).L

F tK +  (The superscripts ‘H’ (boom) and ‘L’ (bust) refer to the 

state of the bubble, while the subscripts ‘H’ (Home) and ‘F’ (Foreign) refer to the country.)  

Consider a world economy that starts at date t=0, with exogenous initial capital stocks 

,0 ,0, .H FK K  Let tu  be an exogenous i.i.d. sunspot that takes values 0 and 1 with probabilities π  

and  1-π, respectively (0<π<1). Then the following process for Home and Foreign capital stocks 

, , 0{ , }H t F t tK K ≥  is a recurrent rational bubble:  

(a) , 2 , 2 1 1( , )L
i t i t i t tK K K eλ θ Δ
+ + + += ≡ ⋅   for i=H,F  if 1 0,tu + =  for t≥0;   

(b) , 2 , 2
H

i t i tK K+ +=  for i=H,F, if 1 1,tu + =  for t≥0, where , 2 , 2,H H
H t F tK K+ +  satisfy date t Euler equations (29).  

(Not-for-Publication Appendix C provides further discussions.) 
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5.1. Quantitative results 

As in Sect. 3, I set 1/3, 0.99, 0.025.α β δ= = =  Ψ  (utility weight on leisure) is again set so that the 

Frisch labor supply elasticity is unity, at the steady state. As in the calibration of the Dellas 

model, the local spending bias parameter is set at 0.9.ξ =  The substitution elasticity between 

domestic and imported intermediates is set at 1.5;φ=  that value is consistent with estimated price 

elasticities of aggregate trade flows and it has been widely used in International RBC models 

(e.g., Backus et al. (1994)).  The parameters of the bubble process are the same as in the closed 

economy model (with incomplete capital depreciation) studied in Sect. 3; thus, ∆ is again set at 
610 ,−Δ=  and two values of the bust probability are considered: π=0.2 and π=0.5. 

Predicted business cycle statistics generated by the two-country RBC model with 

incomplete capital depreciation are shown in Table 4. Cols. labelled ‘Unit Risk Aversion’ (or 

‘Unit RA’) assume log utility (minimum consumption set at 0).C=   In Cols. labelled ‘High RA’, 

C is set at 0.8 times steady state consumption (implied risk aversion, at steady state: 5).  

Cols. (9) and (10) of Table 4 show simulated business cycle statistics for versions of the 

no-bubble model (TVC imposed) driven by TFP shocks. The simulations confirm findings that 

are well known from the International RBC literature (e.g., Backus et al. (1994), Kollmann 

(1996)): a complete markets no-bubble model driven by TFP shocks can capture the historical 

volatility of output and investment, but it underpredicts the empirical volatility of the real 

exchange rate. The no-bubble model here reproduces the fact that net exports are countercyclical. 

However, the model-predicted cross-country correlations of output and investment are markedly 

lower than the corresponding historical correlations. By contrast, the model predicts that 

consumption is highly correlated across countries. The low predicted cross-country correlation of 

output reflects the fact that, with complete financial markets, a positive shock to Home 

productivity raises Foreign consumption, which reduces Foreign labor supply, and thus lowers 

Foreign output, on impact (while Home output increases).28  

 Simulated business cycle statistics for the bubble economy with just bubble shocks 

(constant TFP) are reported in Cols. (1)-(4) of Table 4. Standard deviations, correlations with 

domestic GDP, autocorrelations and mean values are identical to the corresponding statistics for 

                                                 
28The no-bubble variant of the Dellas model driven by TFP shocks generates higher cross-country output 
correlations (see Col. (3) of Table 3) because, in that variant, hours worked are constant. 
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the closed economy bubble model (with incomplete capital depreciation) studied in Sect. 3 (see 

Cols. (1)-(4) of Table 2). This is due to the fact that, in the two-country model with complete 

markets, bubbles are perfectly correlated across countries; with just bubble shocks, real activity 

is thus perfectly correlated across countries, the terms of trade are constant and net exports are 

zero. The predicted volatility of output and consumption induced by bubble shocks (Cols. (1)-(4) 

of Table 4) is roughly comparable to volatility in the no-bubble model with TFP shocks (Cols. 

(9),(10)), but the volatility of hours worked is higher in the bubble economy.   

 Predicted business cycle statistics for the bubble economy, with simultaneous bubble 

shocks and TFP shocks, are shown in Cols. (5)-(8) of Table 4. With joint bubble shocks and TFP 

shocks, the predicted volatility of real activity is higher, and thus generally closer to the data, 

than the volatility generated by the no-bubble model with TFP shocks. The model with joint 

bubble and TFP shocks is especially successful at matching the positive empirical cross-country 

correlations of output and investment, and the counter-cyclicality of the trade balance; however 

the predicted cross-country consumption correlation is too high, when compared to the data.  

 Fig. 4 shows simulated sample paths for the model version with ‘High Risk Aversion’ 

and a bust probability π=0.2.  Panels (1) and (2) of the Figure show results for the bubble 

economy with just bubble shocks, and for the bubble economy with joint bubble and TFP 

shocks, respectively. Panel (3) of Fig. 4 pertains to a no-bubble economy with TFP shocks; in 

that variant, the negative cross-country correlation of high-frequency output and investment 

fluctuations is clearly discernible. Bubble shocks induce relatively widely spaced output and 

investment booms that are perfectly correlated across countries (see Panel (1)). In the bubble 

economy with joint bubble and TFP shocks, output and investment are markedly more 

synchronized across countries than in the no-bubble economy with TFP shocks (see Panel (2)).  

 

6. Conclusion 
This paper constructs bounded rational bubbles in non-linear DSGE models of the 

macroeconomy. The term ‘rational bubbles’ refers to multiple equilibria due to the absence of a 

transversality condition (TVC) for capital. The lack of TVC can be justified by assuming an 

OLG structure with finitely-lived agents. Bounded rational bubbles provide a novel perspective 

on the drivers and mechanisms of business cycles. This paper studies bubble equilibria in which 

the economy undergoes boom-bust cycles characterized by persistent investment and output 
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expansions which are followed by abrupt contractions in real activity. Importantly, the existence 

of multiple stable bubble equilibria is due to non-linear effects. Linearized versions of the 

models considered here have a unique stable solution.  In contrast to explosive rational bubbles 

in linear models (Blanchard (1979)), the rational bubbles in non-linear models considered here 

are bounded. Both closed and open economies are analyzed. It is shown that rational bubbles in 

non-linear models can generate persistent fluctuations of real activity and capture key business 

cycle stylized facts. In a two-country model with integrated financial markets, rational bubbles 

must be perfectly correlated across countries. Global bubbles may, thus, help to explain the 

international synchronization of international business cycles.  
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Table 1. Long-Plosser model (closed economy) with bubbles: business cycle statistics 
 
                              Standard dev. %              Corr. with Y          Autocorrelations     Mean [% deviation from SS] 
 Y C I C I Y C I Y C I Z 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
 
(a)  Predicted business cycle statistics 
                   1.14 2.35 3.41 0.38 0.43 0.42 -0.19 0.42 0.54 -0.34 2.35 1.01 
 
(b) Historical business cycle statistics 
 1.47 1.19 4.96 0.87 0.92 0.87 0.89 0.92  
 
Notes: Row (a) reports simulated business cycle statistics for a Long-Plosser economy with bubbles (no transversality 
condition); see Sect. 2 of paper.  Y: output; C: consumption; I: investment; Z: investment/output ratio.  

In the simulated model, fluctuations are just driven by bubble shocks (constant TFP assumed). Bust probability π=0.5.   
The model-predicted business cycle statistics are based on one simulation run of T=10000 periods. The reported 

simulated standard deviations, correlations with output and autocorrelations pertain to medians of statistics across rolling 
windows of 200 periods. Simulated series were logged and HP filtered (the HP filter was applied separately for each 
window of 200 periods). ‘Means’ are sample averages over the total sample of T periods; means are expressed as % 
deviations from the deterministic steady state of the no-bubble economy.   

Row (b) reports US historical business cycle statistics (quarterly data), 1968q1-2017q4. The empirical data are taken 
from BEA NIPA (Table 1.1.3). Y: GDP; C: ‘Personal consumption expenditures’; I: ‘Fixed investment’.    
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Table 2. Closed economy RBC model (incomplete capital depreciation): business cycle statistics  
         Bubble model (no TVC)                   

Bubble shocks; no TFP shocks Bubble & TFP shocks                    No-bubble model  
  Unit Risk aversion   High RA Unit RA High RA TFP shocks  
 π=0.5 π=0.2 π=0.5 π=0.2 π=0.5 π=0.2 π=0.5 π=0.2 Unit RA  High RA Data 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)  
 

Standard deviations [in %] 
Y 0.49 1.16 0.68 1.43 1.27 1.60 0.98 1.57 1.14 0.72 1.47  
C 1.08 2.63 0.29 0.61 1.16 2.71 0.38 0.72 0.49 0.26 1.19 
I 4.29 9.38 3.22 6.51 5.38 9.85 3.86 6.72 3.33 2.20 4.96 
L 0.74 1.73 1.04 2.18 0.82 1.70 1.05 2.22 0.34 0.30 1.06 
 

Correlations with GDP 
C -0.97 -0.95 -0.99 -0.98 0.04 -0.54 0.01 -0.62 0.95 0.99 0.87 
I  0.98 0.96 0.99 0.99 0.89 0.86 0.97 0.98 0.99 0.99 0.92  
L 0.99 0.97 0.99 0.99 0.79 0.81 0.45 0.82 0.98 -0.96 0.82 
 

Autocorrelations 
Y 0.36 0.63 0.35 0.62 0.65 0.68 0.57 0.66 0.71 0.70 0.87 
C 0.33 0.60 0.35 0.62 0.43 0.62 0.53 0.65 0.76 0.72 0.89 
I 0.36 0.63 0.37 0.64 0.53 0.65 0.51 0.65 0.70 0.70 0.92 
L 0.34 0.61 0.35 0.62 0.45 0.62 0.41 0.63 0.70 0.74 0.92 
 

Means [% deviation from no-bubble steady state] 
Y 1.41 2.80 1.25 2.12 1.37 2.75 1.31 2.17 0.00 0.00 -- 
C 0.73 1.39 0.33 0.55 0.68 1.34 0.33 0.55 0.00 0.00 -- 
I  3.62 7.33 4.22 7.19 3.61 7.28 4.44 7.40 0.00 0.00 -- 
L 0.36 0.74 -0.02 -0.02 0.34 0.73 0.01 -0.03 0.00 0.00 -- 
 

Mean (capital income – investment)/GDP  [in %] 
 9.12 8.75 8.93 8.54 9.16 8.78 8.92 8.53 9.58 9.58 13.42 
 

Fraction of periods with (capital income > investment)  [in %] 
 99.20 96.31 99.55 97.72 99.20 96.43 99.37 97.74 100 100 100 
Notes:  This Table reports simulated business cycle statistics for a closed economy RBC model with full capital 
depreciation (see Sect. 3 of paper). Y: output (GDP); C: consumption ; I: investment; L: hours worked.  

Cols. (1)-(4) pertain to versions of the bubble model (no transversality condition, TVC) in which fluctuations are just 
driven by bubble shocks (constant TFP assumed). Cols. (5)-(8) pertain to versions of the bubble model, driven by 
simultaneous bubble and TFP shocks. Cols. (9)-(10) pertain to versions of the no-bubble model, driven by TFP shocks.  
‘Unit Risk Aversion’: log utility; ‘High Risk Aversion (RA)’: consumption utility given by ln( ),tC C−  with 0.C>  π : 
bust probability of bubble process. 

The model-predicted business cycle statistics are based on one simulation run of T=10000 periods (for each model 
version). Simulated standard deviations, correlations with output and autocorrelations pertain to medians of statistics 
across rolling windows of 200 periods. Series were logged and HP filtered (HP filter applied separately for each window 
of 200 periods).  ‘Means’ are sample averages over the total sample of T  periods. The ‘Fraction of periods with             
(capital income > investment)’  likewise pertains to the whole simulation run of T periods.  

Col. (11) reports US historical statistics (quarterly data). Statistics for Y,C,I: see Table 1. The empirical measure for ‘L’ 
is: ‘Total Employment’ (Source: CPS, as reported by FRED database, series CE160V). Historical statistics about ‘capital 
income – investment’: based on US annual data 1929-1985 reported by Abel et al. (1989)).   
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Table 3. Two-country Dellas model: business cycle statistics  
                Bubble model (no TVC)  
                Bubble shocks;    Bubble &  No-bubble Model 
              no TFP shocks      TFP shocks      TFP shocks      Data 
 (1) (2) (3) (4)  

Standard deviations [in %] 
Y 1.52 1.96 1.36 1.47  
C 1.86 2.22 1.28 1.19 
I 3.95 4.01 1.28 4.96 
L 0.97 0.97 0.00 1.06 
NX 0.00 0.00 0.00 0.43 
RER 0.00 1.23 1.23 3.66 
 

Correlations with domestic GDP 
C 0.25 0.57 0.99 0.87 
I  0.76 0.88 0.99 0.92    
L 0.50 0.31 -- 0.82 
NX -- -- --- -0.51 
RER -- -0.41 -0.54 -0.27 
 

Autocorrelations 
Y 0.63 0.77 0.80 0.87 
C -0.17 0.48 0.81 0.89 
I 0.41 0.66 0.81 0.92 
L 0.10 0.10 -- 0.92 
NX -- -- -- 0.78 
RER -- 0.75 0.75 0.81 
 

Cross-country correlations 
Y 1.00 0.68 0.39 0.53 
C 1.00 0.84 0.56 0.39 
I 1.00 0.95 0.56 0.45 
L 1.00 1.00 -- 0.39 
 

Means [% deviation from no-bubble steady state] 
Y 0.95 1.18 0.22 -- 
C -0.01 0.12 0.22 -- 
I  3.07 3.33 0.22 -- 
L 0.42 0.42 0.00 -- 
 

Mean (capital income – investment)/GDP  [in %] 
 -0.02 -0.02 0.33 13.42 
 

Fraction of periods with (capital income > investment)  [in %] 
 97.01 97.01 100.00 100.00       
Notes: This Table reports simulated business cycle statistics for a two-country RBC world (Dellas) with 
full capital depreciation (see Sect. 4 of paper). Y: GDP; C: consumption ; I: investment; L: labor input.  
NX: net exports/GDP; RER: real exchange rate. A rise in RER represents an appreciation.  
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Table 3. (continued)      
  

Col. (1) pertains to a version of the bubble model (no transversality condition, TVC) in which 
fluctuations are just driven by bubbles shocks (constant TFP assumed). Col. (2) pertains to a version of 
the bubble model, driven by simultaneous bubble and TFP shocks. The bubble process (Cols. 1 and 2) 
assumes a bust probability π=0.5.  Col. (3) pertains to a no-bubble model, driven by TFP shocks.  

The model-predicted business cycle statistics are based on one simulation run of T=10000 periods (for 
each model version). Simulated standard deviations, correlations with domestic GDP and autocorrelations 
pertain to medians of statistics across rolling windows of 200 periods. Series were logged (with exception 
of NX) and HP filtered (HP filter applied separately for each window of 200 periods).  ‘Means’ are 
sample averages over the total sample of T periods. The ‘Fraction of periods with (capital income > 
investment)’ likewise pertains to the whole simulation run of T periods.  

Col. (4) reports historical statistics. Historical standard deviations, correlations with domestic GDP and 
autocorrelations of GDP, consumption, investment, employment,  net exports and the real exchange rate 
are based on quarterly US data, 1968q1-2017q4  (see Tables 2 and 3).  The empirical measure of NX is: 
US nominal exports-imports (goods and services) divided by nominal GDP (from BEA NIPA Table 
1.1.5). Empirical measure of the US real exchange rate:  real effective exchange rate, REER (from BIS; 
1968:q1-1993q4: ‘narrow index’; 1994q1-2017q4: ‘broad index’; a quarterly average of the monthly BIS 
REER  series is used). Historical statistics about ‘capital income – investment’: based on US annual data 
1929-1985 reported by Abel et al. (1989)).   

Historical cross-country correlations (of Y,C,I,L) are correlations between US series and series for an 
aggregate of  the Euro Area for 1970q1-2017q4 (logged and HP filtered quarterly series). (Euro Area data 
are only available from 1970q1.) Source for EA data: ECB Area-wide Model (AWM) database (version 
Aug. 2018). (EWM series for Y,C,I,L: YER, PCR, ITR, LNN.)  
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Table 4. Two-country RBC model (incomplete capital depreciation): business cycle statistics  
 Bubble model (no TVC) 

Bubbles shocks; no TFP shocks Bubble & TFP shocks                   No-bubble model  
  Unit Risk aversion   High RA Unit RA High RA TFP shocks  
 π=0.5 π=0.2 π=0.5 π=0.2 π=0.5 π=0.2 π=0.5 π=0.2 Unit RA  High RA Data 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)  
Standard deviations [in %] 
Y 0.49 1.16 0.68 1.43 1.46 1.78 1.18 1.65 1.32 0.97 1.47  
C 1.08 2.63 0.29 0.61 1.18 2.79 0.41 0.70 0.56 0.31 1.19 
I 4.29 9.38 3.22 6.51 6.36 10.54 4.95 7.34 4.60 3.90 4.96 
L 0.74 1.73 1.04 2.18 0.88 1.79 1.13 2.24 0.44 0.62 1.06 
NX 0.00 0.00 0.00 0.00 0.16 0.16 0.13 0.13 0.16 0.13 0.43  
RER 0.00 0.00 0.00 0.00 0.32 0.32 0.44 0.44 0.32 0.44 3.66  
 

Correlations with domestic GDP 
C -0.97 -0.95 -0.99 -0.98 0.09 -0.46 0.03 -0.55 0.85 0.61 0.87 
I  0.98 0.96 0.99 0.99 0.90 0.88 0.97 0.98 0.95 0.96 0.92  
L 0.99 0.97 0.99 0.99 0.81 0.81 0.46 0.78 0.94 -0.01 0.82 
NX -- -- -- -- -0.53 -0.46 -0.58 -0.46 -0.58 -0.68 -0.51 
RER -- -- -- -- -0.44 -0.35 -0.58 -0.39 -0.48 -0.68 -0.27 
 

Autocorrelations 
Y 0.36 0.63 0.35 0.62 0.63 0.67 0.57 0.65 0.67 0.64 0.87 
C 0.33 0.60 0.35 0.62 0.46 0.62 0.57 0.65 0.75 0.71 0.89 
I 0.38 0.63 0.37 0.64 0.54 0.64 0.55 0.64 0.63 0.61 0.92 
L 0.34 0.61 0.35 0.62 0.46 0.62 0.48 0.64 0.63 0.69 0.92 
NX -- -- -- -- 0.61 0.61 0.66 0.66 0.61 0.66 0.78 
RER -- -- -- -- 0.84 0.84 0.81 0.81 0.84 0.81 0.82  
 

Cross-country correlations 
Y 1.00 1.00 1.00 1.00 0.29 0.54 -0.00 0.52 0.17 -0.46 0.53 
C 1.00 1.00 1.00 1.00 0.96 0.99 0.98 0.99 0.84 0.96 0.39 
I 1.00 1.00 1.00 1.00 0.27 0.74 -0.07 0.53 -0.35 -0.83 0.45 
L 1.00 1.00 1.00 1.00 0.63 0.92 0.85 0.96 -0.35 0.46 0.39 
 

Means [% deviation from no-bubble steady state] 
Y 1.41 2.80 1.25 2.12 1.65 3.02 1.45 2.29 0.00 0.00 -- 
C 0.73 1.39 0.33 0.55 0.95 1.60 0.44 0.65 0.00 0.00 -- 
I  3.62 7.33 4.22 7.19 3.93 7.61 4.72 7.61 0.00 0.00 -- 
L 0.36 0.74 -0.02 -0.02 0.35 0.73 0.09 0.05 0.00 0.00 -- 
 

Mean (capital income – investment)/GDP  [in %] 
 9.12 8.75 8.93 8.54 9.15 8.78 8.89 8.51 9.55 9.58 13.42 
 

Fraction of periods with (capital income > investment)  [in %] 
 99.20 96.31 99.55 97.72 99.20 96.45 99.44 97.75 100 100 100 
Notes: This Table reports simulated business cycle statistics for a two-country RBC model with incomplete capital 
depreciation (see Sect. 5 of paper). Y: GDP; C: consumption ; I: investment; L: labor input; NX: net exports/GDP; RER: 
real exchange rate. A rise in RER represents an appreciation.    
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Table 4. (continued)      

 
Cols. (1)-(4) pertain to versions of the bubble model (no transversality condition, TVC) in which fluctuations are just 

driven by bubbles (constant TFP assumed). Cols. (5)-(8) pertain to versions of the bubble model, driven by simultaneous 
bubble and TFP shocks.  Cols. (9)-(10) pertain to versions of the no-bubble model, driven by TFP shocks.  

‘Unit Risk Aversion’: log utility; ‘High Risk Aversion (RA)’: consumption utility given by ln( ),tC C−  with 0.C>  
π : bust probability of bubble process.  
The model-predicted business cycle statistics are based on one simulation run of T=10000 periods (for each model 

version). Simulated standard deviations, correlations of GDP and autocorrelations pertain to medians of statistics across 
rolling windows of 200 periods. Series were logged (with exception of NX) and HP filtered (HP filter applied separately 
for each window of 200 periods).  ‘Means’ are sample averages over the total sample of T periods. The ‘Fraction of 
periods with (capital income > investment)’ likewise pertains to the whole simulation run of T periods.  

 Col. (11) reports historical statistics (see Table 3).  
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Figure 1. Long & Plosser model:  The Figure plots the date t+1  investment/output ratio, 1,tZ +  as a function  

of  ,tZ  for 1 { 0.5;0;0.5}.tε + ∈ −   1tε + : Euler equation forecast error. The law of motion of Z is: 1 1( , ).t t tZ Z ε+ +=Λ  
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(1) ‘Boom’  value, 1,

H
tZ +  and ‘Bust’ value, 1,

L
tZ +  of  investment/output ratio at t+1, and expected value 1( ),t tE Z +  shown 

as functions of [ ,1).tZ αβ∈ +Δ ( ,0)tZΛ  is value of 1tZ +  in a deterministic economy (zero Euler equation forecast error).  
 
 

         
(2) Simulated paths           
 

Figure 2. Long & Plosser economy with bubbles (no transversality condition) 
Simulated series of output (Y, continuous black line), consumption (C, red dashed line) and investment (I, blue dash-
dotted line) are normalized by steady state output (see Panel (2)).   
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NOT FOR PUBLICATION APPENDICES 
● Appendix A (Not for Publication): OLG model  
The key contribution of this paper is to construct bounded bubbles in non-linear DSGE models 

without transversality condition (TVC) for aggregate capital. The lack of TVC can be justified 

by an overlapping generations (OLG) structure with finitely-lived households. This Appendix 

presents a novel OLG structure with finitely-lived agents that has the same aggregate static 

equations and the same aggregate Euler equation as a Long-Plosser economy inhabited by an 

infinitely-lived representative agent. At the end of her life, each agent holds zero assets, in the 

OLG structure. As agents have a finite horizon, the (infinite-horizon) TVC for aggregate capital 

is not an equilibrium condition in the OLG structure.  

 

The OLG structure provides thus a motivation for exploring rational bubbles (i.e. multiple 

equilibria due to the lack of TVC) in the Long-Plosser economy, and in other DSGE models.  

Two key features of the OLG structure considered here are: (I) complete risk sharing between 

contemporaneous generations. (II) Newborn agents receive an endowment such that 

consumption by newborns represents a time-invariant share of aggregate consumption. 

(Assumption (I) is also used by Galí (2018). Assumption (II) is novel, to the best of my 

knowledge.) 

 

OLG version of a Long-Plosser economy 

Following the Long-Plosser model discussed in Sect. 2, this Appendix assumes a closed 

economy with log utility, a Cobb-Douglas production function and full capital depreciation. 

Labor hours are constant; aggregate labor hours are normalized at unity. Generalization to CRRA 

utility, to the ‘High Risk Aversion’ utility function of Sect. 3.1, to incomplete capital 

depreciation, variable labor, and to a multi-country model is straightforward.  

 Assume that a measure 1 of agents is born each period. All agents live N<∞ periods. I 

refer to agents who are in the i-th period of their life at date t as ‘generation i’ at date t. 

Generation i at date t thus becomes generation i+1 at t+1. At each date, generation i accounts for 

a fraction 1/N of the population (for 1≤i≤N). All members of the same generation are identical. 

All agents have time-additive (log) utility and the same subjective discount factor, .β  Let ,i tc  
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denote the consumption of generation i  at date t. The expected life-time utility of the generation 

born at date t is 1
, 11

ln( ).N s
t s t ss

E cβ −
+ −=∑  Aggregate consumption at t is ,1

.N
i titC c

=
=∑   

Assume that technology and the aggregate resource constraint are the same as in the 

Long-Plosser model described in Sect. 2. Thus, 1( ) ( ) ,t t t tY K Lα αθ −=  where ,1

N
t i ti

K K
=

= ∑ is  the 

aggregate capital stock; ,i tK  is the capital stock owned by generation i, at the beginning of period 

t. tL is aggregate hours worked. Without loss of generality, assume that each generation supplies 

the same amount of labor, 1/N, so that 1,tL =  in equilibrium. The aggregate resource constraint is 

,t t tY C I= +  where tI  denotes aggregate (gross) investment. Because of full capital depreciation, 

the aggregate capital stock is 1 .ttK I+ =  Competitive firms rent capital from households and hire 

household labor. Thus the rental rate of capital, denoted , ,K tr equals the marginal product of 

capital: , / .t tK t Y Kr α=   

Assume that, at each date t, a complete set of state-contingent one-period bonds is traded. 

This implies that, in equilibrium, the individual consumption growth rate between t and t+1 is 

equated, for all states of the world, across all agents who are alive in both periods (efficient risk 

sharing):   

                                     1, 1 , 2, 1 1,/ /i t i t t tc c c c+ + +=  for i=2,..,N-1.                                              (A.1) 

Let , , /i t i t tc Cλ ≡  denote the ratio of generation i’s consumption divided by aggregate consumption 

at t. I refer to ,i tλ as the ‘consumption share’ of generation i, in period t. (A.1) implies  

                                               1, 1 , 2, 1 1,/ /i t i t t tλ λ λ λ+ + +=  for i=2,..,N-1.                                              (A.2) 

(A.2) and the adding up constraint  

                                                                , 11
1N

i ti
λ +=

=∑                                                                (A.3) 

provide a system of N-1 equations in the N consumption shares at date t+1: 1, 1 2, 1 , 1, ,...,t t N tλ λ λ+ + + . 

Assume, henceforth, that the consumption share of newborn agents, during the first period of 

their life, is time-invariant: 1, 1tλ λ=  t∀ .  (A constant newborn consumption share can be sustained 

by allocating to newborns a suitable endowment financed by transfers from older generations; 
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see below.) Then we can use (A.2) and (A.3) to solve for the date t+1 consumption shares 

, 1 1,..,{ }i t i Nλ + = for given values of the date t shares , 1,..,{ } :i t i Nλ =   

                                    , ,1, 1 1(1 ) /(1 )i t N ti tλ λ λ λ+ + = − −  for i=1,..,N-1.                                       (A.4) 

(A.4) defines a system of difference equations in consumption shares. Given a time-invariant 

generation 1 consumption share 1λ , the consumption shares of generation i=2,..,N converges 

asymptotically to a constant consumption share iλ  (numerical experiments show that  

convergence to steady state shares is fast). The N steady state consumption shares obey 

                                     1 1(1 ) /(1 )i i Nλ λ λ λ+ = − −  for i=1,..,N-1.                                            

Given 1,λ  these equations  pin down unique consumption shares of generations i=2,..,N that are 

consistent with the adding up constraint 
1

1.N

i iλ=
=∑  The following discussion assumes that all 

generations’ consumption shares equal their steady state values.  

 

Euler equation 

The date t capital Euler equation of generation i=1,..,N-1 is , 1 , 1 1,t t t K tE rρ + + =  where , 1K tr +  is the 

gross rate of return (between t and t+1) on capital, while , 1 , 1, 1/t t i t i tc cρ β+ + +=  is the common 

intertemporal marginal rate of substitution (IMRS) between t and t+1 of these generations. (Full 

risk sharing implies that the IMRS is equated across contemporaneous generations;  see (A.1)). 

Note that  

                    1
, 1 , , 1 , 1 1, 1 1 11 2

/ ( )/( ) [(1 )/(1 )] / .N N
t t i t i t t N t t t N t ti i

c c C c C c C Cρ β β β λ λ−

+ + + + += =
= = − − = − − ⋅∑ ∑    

The Euler equation can thus be expressed as 

                             1 , 1( / ) 1,t t t K tE C C rβ + +× =  with 1(1 )/(1 ).Nβ β λ λ≡ × − −                                      

We hence see that, up to a rescaling of the subjective discount factor when 1 ,Nλ λ≠  this 

OLG model implies an ‘aggregate’ Euler equation (in terms of aggregate consumption) that has 

the same form as the Euler equation in an economy with an infinitely-lived representative 

household. If 1 1/ ,Nλ =  then 1/i Nλ =  holds for i=1,..,N, which implies .β β≡  In the special case 

where all generations have equal consumption shares, 1/ ,i Nλ =  the aggregate Euler equation of 

the OLG economy is thus identical to the Euler of an infinitely-lived representative household.  
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In the OLG structure, each agent holds zero assets, at the end of her life (see below). 

However, the (infinite-horizon) TVC for aggregate capital, 1lim '( ) 0,t t tE u C Kτ
τ τ τβ→∞ + + + =  is not 

an equilibrium condition in the OLG structure.    

 

Transfers to newborn agents: a simple example  

A resource transfer from older generations to the newborn generation is needed to support time-

invariant consumption shares. A variety of transfer schemes can be envisaged. I now present a 

simple transfer scheme that sustains equal consumption shares, 1/i Nλ =  for 1≤i≤N. I assume 

lump sum transfers, and denote the transfer made by generation i>1 to generation 1 by ,i tT .  

Assume that aggregate consumption and capital satisfy the resource constraint and Euler 

equation (1)-(3) of the Long-Plosser model (Sect. 2). Then, the capital Euler equations of 

generations i=1,..,N-1 are satisfied under equal consumption shares 1 , 1( ( / ) 1t t t K tE C C rβ + + =  implies 

that , 1, 1 , 1( / ) 1t i t i t K tE c c rβ + + +⋅ =  holds, when  , /i t tc C N=  and 1, 1 1/ ).i t tc C N+ + +=  

As postulated above, each generation provides 1/N units of labor. All generations thus 

have the same wage income, denoted by (1 ) / .t tW Y Nα≡ −  However, the newborn generation i=1 

has zero initial capital, 1, 0,tK = and thus zero capital income, while older generations have capital 

income. As households can invest their wealth in capital or in a complete set of state-contingent 

bonds, the composition of individual portfolios is indeterminate. I here discuss a symmetric 

equilibrium in which all generations hold zero state-contingent bonds, and in which generations 

i=1,..,N-1 make identical capital investments: 1, 1 1/( 1)i t tK K N+ + += − . The oldest generation, i=N,  

does not invest: 1, 1 0.N tK + + =  

In the symmetric equilibrium, the generations’ budget constraints at date t are as follows:  

For i=1:           1 ,2
/( 1) / .N

t t t i ti
K N C N W T+ =

− + = +∑   

For i=2,..,N-1: 1 , ,/( 1) / /( 1).t t t i t K t tK N C N W T r K N+ − + = − + −   

For i=N:          , ,/ /( 1).t t N t K t tC N W T r K N= − + −  
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Recall that , /K t t tr Y Kα= . Solving these budget constraints for transfers gives: 29 

, 1( )/( ( 1))i t t tT Y K N Nα += − × −  for i=2,..,N-1 and , 1/( ( 1)) / .N t t tT Y N N K Nα += × − +  

Equivalently:  

, , 1{ /( 1) /( 1)}/i t K t t tT r K N K N N+= − − −  for i=2,..,N-1  and  , , 1{ /( 1) }/ .N t K t t tT r K N K N+= − +   

Thus, generations i=2,..,N-1 transfer a fraction 1/N of their capital income net of capital 

investment to the newborn generation. The transfer by generation i=N corresponds to a fraction 

1/N of her capital income, plus a fraction 1/N of the aggregate capital stock. The total transfer 

received by the newborn generation is 12
{ /( 1)}/ .N

i t ti
T Y K N Nα +=
= + −∑  Hence, the total transfer is 

strictly positive. When N is large, the total transfer is close to capital income per generation, 

/ .tY Nα  That transfer compensates the newborn generation for her lack of capital income and 

allows her to consume and invest the same amount as older generations.  

 

More general analysis of  wealth and transfers 

I now provide a more general analysis of budget constraints, transfers and wealth. Taking 

account of state-contingent bonds, the date t budget constraint of generation i=1,..,N is:  

                           1 1, 1 1 1 1, 1 , , , , ,( ) ( ) ,t t i t t t i t i t i t i t K t t i tp S F S dS K c F K r W T+ + + + + + ++ + = + + −∫                     (A.5) 

where 1( )t tp S +  is the date t price of a bond that pays one units of output in period t+1 if and only 

if state of the world 1tS +  is realized at date t+1. 1, 1 1( )i t tF S+ + +  is the number of claims of this type 

held by generation i, at the end of period t. 30 For i>1,  ,i tT  is the lump sum transfer made by 

generation i to the newborn generation (i=1). 1, ,2

N
t i ti

T T
=

− = ∑  is the total transfer received by 

generation 1.  

Newborn agents have zero income from capital and state-contingent bonds, as 

0, 0, 0.t tK F= =  Agents in the last period of their life cannot issue claims that oblige them to make 

                                                 
29 Note that there are N generational budget constraints at date t. However, only N-1 of the budget constraints are 
linearly independent, when the aggregate resource constraint 1t t tK C Y+ + =  holds.  
30 , 1, 1 , ,, , , ,i t i t i t K t tc K T r W+ +  and ,i tF  depend on the state of the world tS . To simplify notation, I suppress the 
dependence of choice variables on the state of the world, unless confusion arises.    
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future payments, and it is not in their interest to acquire claims to future payments or to invest in 

physical capital.  Thus, 1, 1 0N tK + + =  and 1, 1 1( ) 0N t tF S+ + + =  1tS +∀ .   

Generations i=1,..,N-1 equate their probability-weighted intertemporal marginal rate of 

substitution to the prices of state-contingent claims: 1 1 1, 1 1 ,( ) ( ) '( ( )) / '( )t t t t i t t i tp S S u c S u cπ β+ + + + +=  

1tS +∀  where 1( )t tSπ +  is the conditional probability (density) of state 1,tS +  given date t 

information. Under the assumed log utility, ( ) ln( ),u c c= this first-order condition can be written 

as 1 1 , 1, 1 1( ) ( ) / ( )t t t t i t i t tp S S c c Sπ β+ + + + +=  for i=1,..,N-1. Financial market completeness implies thus 

the risk-sharing condition (A.1) among contemporaneous generations.   

Note that the price of state-contingent assets can be expressed as: 1 1 , 1( ) ( ) ,t t t t t tp S Sπ ρ+ + += which 

allows to write the budget constraint (A.5) as  , , , , ,, 1 1, 1 1, 1 .i t i t i t K t t i tt t i t i tt F K c F K r W TE ρ + + + + + −+ + = + +  

Let , , 1 1, 1i t t t t t i tH W E Hρ + + += +  and  , , , 1 1, 1i t i t t t t i tQ T E Qρ + + +=− +  denote the present value of generation 

i’s wage income and of her transfer income, respectively, with  1, 1 1, 1 0i t i tH Q+ + + += =  for i≥N. ,i tH  

and ,i tQ  are generation i’s human capital and her ‘transfer capital’, respectively. Using these 

definitions, we can write generation i’s budget constraint as   

                               , ,, 1 1, 1t i t i tt t i tE A c Aρ + + + + =  with , , , , , ,i t i t i t i t i t K tA F H Q K r≡ + + + .                        (A.6)      

,i tA  is generation i’s total wealth at the beginning of period t.  Agents hold zero assets at the end 

of their life, and thus generation N consumes her beginning-of-period assets: , ,N t N tc A= .  

Generation i=1,..,N  thus faces the present value budget constraint , , ,0

N i
i t t t t s i s t ss

A E cρ−

+ + +=
= ∑  

where , 1t tρ ≡  while the stochastic discount factor ,t t sρ +  is a product of the one-period-ahead 

stochastic discount factors defined above: 1
, 0 , 1

s
t t s t t

τ
τ τ τρ ρ= −

+ = + + +≡Π  for s≥1. Given efficient risk 

sharing across contemporaneous generations (see (A.1)), , , ,/s
t t s i t i s t sc cρ β+ + += holds for 0<s≤N-i. 

Thus , , 0

N i s
i t i t s

A c β−

=
= ∑  and hence 

                                     , , ,i t i i tc Aφ= ⋅  with   1(1 )/(1 )N i
iφ β β − +≡ − −    for i=1,..,N.                             
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Each period, generation i consumes thus a fraction iφ  of her wealth. iφ  is generation-specific, 

but time invariant. In an equilibrium with time-invariant generational consumption shares, the 

period t wealth of generation i equals thus , ( / )i t i i tA Cλ φ= .  The wealth share of generation i  is:  

                                               , ,1 1
/ ( / )/ ( / )N N

i t s t i i s ss s iA A λ φ λ φ κ
= =

= ≡∑ ∑ .                                       (A.7) 

Note that this wealth share is time-invariant. Thus, an equilibrium with time-invariant 

generational consumption shares exhibits time-invariant generational wealth shares. As pointed 

out above, the consumption share of newborn generations, 1,λ  pins down the (steady state) 

consumption shares of older generations, i.e.  iλ  is a function of 1 :λ  1( )i iλ λ=Λ  for i=2,..,N.  

There is, hence, a unique mapping from 1λ  to iκ , the wealth share of generation i:  

1 11
( ( )/ )/ ( ( )/ )N

i i i s ss
κ λ φ λ φ

=
= Λ Λ∑ . 

If the new-born generation is allocated a wealth share 1 1 1 11
( / )/ ( ( )/ )N

s ss
κ λ φ λ φ

=
= Λ∑ , then this 

sustains an equilibrium in which the consumption share of the new-born generation is 1.λ  A 

consumption allocation in which all generations have an identical consumption share 1/i Nλ =  is 

sustained by allocating to the newborn generation a wealth share 1 1 1
(1/ )/ 1/ .N

ss
κ φ φ

=
= ∑  As an 

example, assume that life lasts 80 years, i.e. N=320 quarters, and that the quarterly subjective 

discount factor is 0.99;β =  then the consumption allocation with equal consumption shares 

1/ 0.3125%i Nλ= =  requires a newborn wealth share of 1 0.4267%.κ =   

The newborn generation holds zero initial bonds and zero initial capital. Thus, the initial 

wealth of the newborn generation is the sum of her human capital and of her ‘transfer capital’ 

(see (A.6)): 1, 1, 1,t t tA H Q≡ + . Because 1, 1 1,t tc Aφ= , a time-invariant newborn consumption share 1λ  

obtains when newborn wealth equals 1, 1 1( / )t tA Cλ φ= . Thus, a time-invariant newborn consumption 

share 1λ  obtains if the present value of the newborn generation’s transfer income is 

1, 1 1 1,( / ) .t t tQ C Hλ φ= −  
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● Appendix B (Not for Publication)  
Rational bubble equilibria in the closed economy RBC model with incomplete 
capital depreciation (Sect. 3) 
This Appendix provided further discussions of the closed economy RBC model with incomplete 

capital depreciation (Sect. 3), and it also explains the numerical solution method.  

 

Bubble equilibrium 

A rational bubble equilibrium is a process for capital { }tK  that satisfies Euler equation (15) and 

that deviates from the no-bubble decision rule 1 ( , )t t tK Kλ θ+ = . A rational bubble violates the 

TVC.  By analogy to the bubble process in the Long-Plosser economy without TVC (see Sect. 

2.2), I consider bubble equilibria in which the capital stock 1tK +  takes one of two values: 

1 1 1{ , }L H
t t tK K K+ + +∈  with exogenous probabilities π and 1-π, respectively (0<π<1), where 

1 ( , ) ,L
t t tK K eλ θ Δ
+ =  for a small constant ∆. With probability π,  the capital stock thus takes a value 

close to the no-bubble decision rule (as in the bubbly Long-Plosser model). An exogenous i.i.d. 

sunspot (that is assumed independent of TFP) determines whether 1
L
tK +  or 1

H
tK +  is realized at t.   

At date t, agents anticipate that the capital stock set in t+1, 2,tK +  likewise takes one of 

two values: 2 2 2{ , }L H
t t tK K K+ + +∈  with probabilities π and 1-π, respectively, where 2 1 1( , ) .L

t t tK K eλ θ Δ
+ + +=  

The date t Euler equation (15) can thus be written as:  

    1 1 1 1 2 1 1( ( , ) , , , , ) (1 ) ( , , , , ) 1H
t t t t t t t t t t t t tE H K e K K E H K K Kπ λ θ θ θ π θ θΔ

+ + + + + + ++ − ⋅ =  for 1 1 1{ , }.L H
t t tK K K+ + +∈     (16)  

2 1 1( , )L
t t tK K eλ θ Δ
+ + +=  depends on 1.tθ +  The numerical simulations consider bubble 

equilibria in which, conditional on date t information, a TFP innovation at t+1 has an 

equiproportional effect on 2
L
tK +  and 2.

H
tK +  Specifically, I postulate that 2 2,H H L

t t tK s K+ += ⋅ where 

0H
ts >  is in the date t information set. Thus, 2 1 1( , ) .H H

t t t tK s K eλ θ Δ
+ + += ⋅ 31 This greatly simplifies the 

computation of bubbles. Substituting the formula for 2
H
tK +  into the Euler equation (16) gives:  

                                                 
31 The AR(1) specification of TFP implies 1 1( ) exp( ),t t t

ρ θθ θ ε+ += ⋅  where 1t
θε +  is the TFP innovation at t+1. The chosen 

specification of 2 2,L H
t tK K+ +  implies that 2 1 2 1ln( )/ ln( )/ ;H L

t t t tK Kθ θε ε+ + + +∂ ∂ =∂ ∂ thus, an unexpected change in date t+1 
productivity affects 2

H
tK +  and 2

L
tK +  by the same (relative) amount.  
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      1 1 1 1 1 1 1 1( ( , ) , , , , ) (1 ) ( ( , ) , , , , ) 1H
t t t t t t t t t t t t t t tE H K e K K E H s K e K Kπ λ θ θ θ π λ θ θ θΔ Δ

+ + + + + + + ++ − ⋅ ⋅ = .   (B.1) 

Solving for a bubble equilibrium requires solving the Euler equation for the scalar .H
ts

The Euler equation (B.1) implies that H
ts  is a function of 1, ,t t tK K θ+ : 1( , , ).H H

t t t ts s K K θ+≡  Solving 

for H
ts pins down the equilibrium capital process. Given the equilibrium capital process, 

consumption, hours and output can be determined using (14).   

I set ∆>0, because a strictly positive ∆ is needed to generate recurrent bubbles. As in the 

Long-Plosser economy (without TVC), bubble are self-ending when ∆=0; by contrast, ∆<0 

implies that the capital stock ultimately reaches zero.  32 

Consider an economy that starts in period t=0, with an exogenous initial capital stock 0.K  

Let tu  be an exogenous i.i.d. sunspot that takes values 0 and 1 with probabilities π and 1 ,π−  

respectively (0<π<1). Assume that the sunspot is independent of TFP. Then the following 

process for capital 0{ }t tK ≥  is a recurrent rational bubble: 2 2 1( , )L
t t t tK K K eλ θ Δ
+ + += ≡  if 1 0tu + =  and 

2 2
H

t tK K+ +=  if 1 1,tu + =  for t≥0, where 2
H
tK +  satisfies the date t Euler equation.  

1K  (the capital stock set at t=0) does  not obey the recursion that governs the capital stock 

in subsequent periods. 1K  is indeterminate. In the numerical simulations below, I assume that 

agents choose 1 0 0( , )K K eλ θ Δ= . (The effect of 0K  and 1K  on endogenous variables in later 

periods vanishes as time progresses.)  

 

What expectations sustain the rational bubble equilibrium? 

As in the bubbly Long-Plosser economy (see Sect. 2), the dynamics of capital reflects self-

fulfilling variations in agents’ expectations about future capital. In a bubble equilibrium, the 

capital stock evolves in the following sequence:  

                                                 
32Consider the dynamics that obtains when  ∆=0. Assume a sunspot realization 0,tu =  so that (with ∆=0) 

1 1 ( , ).L
t t t tK K Kλ θ+ += ≡ Then Euler equation (B.1)  is solved by 1,H

ts =  so that 2 1 1( , )H
t t tK Kλ θ+ + += . This follows from the 

fact that 1, ,( ( ( ), ), ( ), ) 1t t t tt t tE H K K Kθ θλ λ θ λ+ =  (Schmitt-Grohé and Uribe (2004), eqn. (4)). Thus 2 22
H L
t ttK K K+ ++ == =

1 1( , )t tKλ θ+ +  and 1 ( , )t s t s t sK Kλ θ+ + + += also holds ∀ s>1. In all periods after a sunspot realization 0,tu =  the dynamics of 
the capital stocks is hence governed by the no-bubble decision rule, i.e. the bubble has ended.  
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At date t=0, agents select the capital stock 1 0 0( , )K K eλ θ Δ=  (by assumption; see above). 

They expect (at t=0) that the capital stock 2K  (chosen at date t=1) will equal 1 12 ( , )L K eK λ θ Δ=  or 

1 0 0 1 12 ( , , ) ( , )HH s K K K eK θ λ θ Δ= ⋅ , with probabilities π and 1-π, respectively. The indicated value of 

2
HK  solves the date t=0 Euler equation (by construction).  Thus, the stated date t=0 expectations 

(about 2 )K  sustain the chosen capital stock 1K .  

At t=1, agents select the values of the capital stock 2
LK  (if 1 0)u =  or 2

HK (if 1 1)u =  that 

were just stated. That choice is driven by agents’ expectations (at t=1) about 3K , the capital 

stock selected next period (t=2). When the sunspot is 1 0,u =  then agents expect that 3K  will 

equal 3 22( , )L LK eKλ θ Δ=  or 3 1 1 22 2( , , ) ( , ) ,H H L LK s K eK Kθ λ θ Δ= ⋅  with probabilities π and 1-π, 

respectively; given these expectations, a choice 2
LK  is consistent with the date t=1 Euler 

equation for 1 0.u =  When the 1 1u =  is realized, a choice 2
HK  is sustained by agents’ expectation 

that 3K  will equal 3 22( , )L HK eKλ θ Δ=  or 3 1 1 22 2( , , ) ( , ) ,H H H HK s K eK Kθ λ θ Δ= ⋅  with probabilities π and 

1-π;  given these expectations, a choice 2
HK  is consistent with the date t=1 Euler equation for 

1 1.u =  

The same process is repeated in all subsequent periods.  

 

Computational aspects 

I) Solving for consumption and labor hours using the static equations 

The static equations can be used to solve for consumption and labor hours as functions of capital 

and TFP (see (14) in Main text). Note that the labor supply equation (12) can be written as    

                                                    [(1 )/ ] ( ) ( ) (1 ).t t t t tC K L Lα αα θ −= − Ψ ⋅ −                                      (B.3) 

The date t resource constraint of the economy is 1 (1 )t t t tC K Y Kδ++ = + − , where 1( ) ( ) .t t t tY K Lα αθ −=   

Substituting (B.3) into the resource constraint gives:  

                         1
1[(1 )/ ] ( ) ( ) (1 ) ( ) ( ) (1 )t t t t t t t t tK L L K L K Kα α α αα θ θ δ− −
+− Ψ ⋅ − = + − − .                           
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Equivalently: 1, 21 ( ) ,t t tA L A Lα= ⋅ + ⋅ with 1, 1[ (1 ) ]/{[(1 )/ ] ( ) },t t t t tA K K K αδ α θ+≡− − − − Ψ ⋅ 2 [1 /(1 )].A α≡ +Ψ −  

For the assumed capital elasticity of output α=1/3, this (cubic) equation has a unique closed form 

solution for date t hours worked tL  as a function of 1, , .t t tK K θ+  Substitution of the formula for 

hours into (B.3) gives a closed form formula for consumption tC  (see (14)).  

  

II) Euler equation 

TFP is assumed to follow the AR(1) process 1 1ln( ) ln( ) , 0 1,t t t
θθ ρ θ ε ρ+ += + ≤ <  where 1t

θε +  is a 

discrete  innovation that equals 1t
θ

θε σ+ =−  or  1t
θ

θε σ+ =  with probability 1/2, respectively, where 

0.θσ ≥   1tθ +  thus equals 1 ( )tt e θσρθ θ+ =  or 1 ( )tt e θσρθ θ −
+ =  with probability 1/2. The Euler 

equation (B.2) can, thus, be written as:  
1 1

1 1 1 12 2

1 1
1 1 1 12 2

( ( ,( ) ) , , ,( ) , ) ( ( ,( ) ) , , ,( ) , )

(1 ) ( ( ,( ) ) , , ,( ) , ) ( ( ,( ) ) , , ,( ) , ) 1

{ }
{ }

t t t t t t t t t t t t

H H
t t t t t t t t t t t t t t

H K e e K K e H K e e K K e

H s K e e K K e H s K e e K K e

θ θ θ θ

θ θ θ θ

σ σ σ σρ ρ ρ ρ

σ σ σ σρ ρ ρ ρ

π λ θ θ θ λ θ θ θ

π λ θ θ θ λ θ θ θ

− −Δ Δ
+ + + +

− −Δ Δ
+ + + +

+

− ⋅ + ⋅ =
 (B.4) 

for 1 1 1{ ; }L H
t t tK K K+ + +∈ , where 1 ( , )L

t t tK K eλ θ Δ
+ =  and 1 1 1

H H L
t t tK s K+ − += .   

 

In the numerical simulations, I approximate the no-bubble decision rule λ  using a second-order 

(log-quadratic) Taylor expansion. Let  ( , )t tKλ θ  be the second-order Taylor expansion of the no-

bubble decision rule λ. In the numerical simulations, I thus define 1
L
tK +  as 1 ( , )L

t t tK Kλ θ+ ≡  ∀t. The 

simulations are hence based on a version of Euler equation (B.4) in which λ is replaced by λ : 

1 1
1 1 1 12 2

1 1
1 1 1 12 2

( ( ,( ) ) , , ,( ) , ) ( ( ,( ) ) , , ,( ) , )

(1 ) ( ( ,( ) ) , , ,( ) , ) ( ( ,( ) ) , , ,( ) , ) 1

{ }

{ }
t t t t t t t t t t t t

H H
t t t t t t t t t t t t t t

H K e e K K e H K e e K K e

H s K e e K K e H s K e e K K e

θ θ θ θ

θ θ θ θ

σ σ σ σρ ρ ρ ρ

σ σ σ σρ ρ ρ ρ

π λ θ θ θ λ θ θ θ

π λ θ θ θ λ θ θ θ

− −Δ Δ
+ + + +

− −Δ Δ
+ + + +

+

− ⋅ + ⋅ =
      

for 1 1 1{ ; }L H
t t tK K K+ + +∈ , where 1 ( , )L

t t tK K eλ θ Δ
+ =  and 1 1 1

H H L
t t tK s K+ − += .   

 

Conditional on 1, , ,t t tK K θ+  this equation can be used to determine .H
ts  I employ a bisection 

method for that purpose. 

Like the value of the bust probability π, the specification of the bust capital stock LK  is 

not tied down by economic theory. The only restriction is that the resulting law of motion for 
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capital has to be bounded and strictly positive. I verified that the bubble equilibrium constructed 

using λ  meets this criterion. For model variants with constant TFP, I also computed the no-

bubble decision rule 1 ( , )t tK Kλ θ+ =   using a shooting algorithm (Judd (1998), ch.10). The second-

order approximation and the shooting algorithm give no-bubble decision rules that are very 

close, even when capital tK  is far from the steady state. The resulting bubble equilibria too are 

very similar. Computing λ  is much faster. 

 

 

● Appendix C (Not for Publication) 
Rational bubble equilibria in the two-country economy RBC model with incomplete 
capital depreciation (Sect. 5) 
This Appendix provides further discussion of the two-country RBC model with incomplete 

capital depreciation (Sect. 5). The construction of rational bubbles parallels that in the closed 

economy RBC model with incomplete capital depreciation (Sect. 3).  

The static model equations allow to solve for date t consumption, hours worked and 

terms of trade , , ,, ,i t i t i tC L q  as functions of both countries’ capital stocks in t and t+1 and of date t  

productivity. By substituting these functions into the two countries’ capital Euler equations, one 

can write these Euler equations as expectational difference equations in Home and Foreign 

capital:   

                                                2 1 1( , , , , ) 1t t t t t tiE H K K K θ θ+ + + =   for i=H,F,                                  (29) 

where , ,( , )t H t F tK K K≡  and , ,( , )t H t F tθ θ θ≡  are vectors of Home and Foreign capital and TFP, 

respectively. The function iH  maps 10R+  into R. 

The no-bubble solution of the model (that obtains when transversality conditions are 

imposed) is described by decision rules , 1 ( , )i t i t tK Kλ θ+ =  for i=H,F.  Let 1 ( , )t t tK Kλ θ+ =  be the no-

bubble decision rule for the vector of Home and Foreign capital at t+1 (λ  maps 4R+  into 2R+ ). 

Assume that there is no transversality condition (TVC) for capital, which makes rational 

bubbles possible. I consider a bubble process that parallels the bubbles in previous Sections. 

Assume that capital , 1i tK +  takes one of two values: , 1 , 1 , 1{ , }L H
i t i t i tK K K+ + +∈ , with probabilities π and 
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1-π, respectively, where  , 1 ( , )L
i t i t tK K eλ θ Δ
+ = ⋅ , with ∆>0.  Like in previous models, ∆>0 is 

required to generate recurrent bubbles. An exogenous i.i.d. sunspot (that is assumed independent 

of TFP) determines whether , 1
L
i tK +  or , 1

H
i tK +  is realized (see below). Numerical experiments show 

that, as in the bubbly two-country Dellas model (Sect. 4), the bubble has to be perfectly 

synchronized across countries (bubbles that are not synchronized ultimately hit the zero capital 

corner). Thus, , 1
L
H tK +  and , 1

L
F tK +   must be realized together (and the same must be true of , 1

H
H tK +  

and , 1).H
F tK +  (Note that the superscripts ‘L’ and ‘H’ refer to the state of the bubble, while the 

subscripts ‘H’ (Home) and ‘F’ (Foreign) refer to the country.)   

Consider a world economy that starts at date t=0, with exogenous initial Home and 

Foreign capital stocks 0 ,0 ,0( , ).H FK K K=  Let tu  be an exogenous i.i.d. sunspot that takes values 0 

and 1 with probabilities π  and  1-π, respectively (0<π<1). Then the following process for Home 

and Foreign capital , , 0{ , }H t F t tK K ≥  is a recurrent rational bubble:  

(a) , 2 , 2 1 1( , )L
i t i t i t tK K K eλ θ Δ
+ + + += ≡ ⋅   for i=H,F  if 1 0,tu + =  for t≥0;   

(b) , 2 , 2
H

i t i tK K+ +=  for i=H,F, if 1 1,tu + =  for t≥0, where , 2 , 2,H H
H t F tK K+ +  satisfy date t Euler equations (29).  

The capital stocks set in period 0, ,1 ,1, ,H FK K do not obey the recursion that governs the 

capital stocks in subsequent periods. Thus, ,1iK  (i=H,F) is indeterminate. In the numerical 

simulations, I set ,1 0 0( , )i iK K eλ θ Δ= ⋅  for i=H,F.  

Following the specification of the closed economy RBC model in Sect. 3, I focus on 

equilibria in which, conditional on date t information, productivity innovations at t+1 have 

equiproportional effects on , 2
H
i tK +  and , 2.

L
i tK +  Thus: , 2 , , 2

H H L
i t i t i tK s K+ += ⋅  for i=H,F, where , 0H

i ts >  is in 

the date t  information set. This assumption greatly simplifies the computation of bubble 

equilibria. Using the formulae for , 2
L
i tK +  and , 2 ,H

i tK +  the date t Euler equation (29) can be 

expressed as:  

     1 1 1 1 1 1(( ( , ) , ( , ) ), , , , )t i H t t F t t t t t tE H K e K e K Kπ λ θ λ θ θ θΔ Δ
+ + + + + + +                        

, ,1 1 1 1 1 1)(1 ) (( ( , ) , ( , ) , , , , ) 1H H
t i H t H F t F t tt t t t t tE H s K e s K e K Kπ λ θ λ θ θ θΔ Δ

+ + + + + +⋅− ⋅ =    for i=H,F.        (C.1)   
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Given , 1 , 1,H t F tK K+ + , the date t Euler equations of both countries only feature two unknown 

endogenous variables in period t: ,
H
H ts  and , .H

F ts  Computing a bubble equilibrium requires solving 

the Home and Foreign Euler equations (C.1) for , ,,H H
H t F ts s , at each date t.  

 The TFP innovations are assumed to have a discrete distribution (see (28)). This makes it 

easy to compute the conditional expectations appearing in the Euler equation. In the numerical 

simulations, I approximate the no-bubble decision rule λ  using a second-order (log-quadratic) 

Taylor expansion (the same approach was used to solve the model of Sect. 3).     


