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Abstract

We present novel identification and estimation results for a mixed logit model of demand for
bundles with endogenous prices given bundle-level market shares. Our approach hinges on an
affine relationship between the utilities of single products and of bundles, on an essential real
analytic property of the mixed logit model, and on the existence of exogenous cost shifters. We
propose a new demand inverse in the presence of complementarity that enables to concentrate
out of the likelihood function the (potentially numerous) market-product specific average utilities,
substantially alleviating the challenge of dimensionality inherent in estimation. To illustrate the use
of our methods, we estimate demand and supply in the US ready-to-eat cereal industry, where the
proposed MLE reduces the numerical search from approximately 12000 to 130 parameters. Our
estimates suggest that ignoring Hicksian complementarity among different products often
purchased in bundles may result in misleading demand estimates and counterfactuals.
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1 Introduction

In standard decision theory, consumer preferences are usually defined over bundles of prod-
ucts rather than over single products (Debreu (1959), Varian (1992), and Mas-Colell et al.
(1995)), allowing for both substitutability and complementarity. Despite important exceptions
(Manski and Sherman (1980), Hendel (1999), Dubé (2004), Gentzkow (2007), and Thomassen
et al. (2017)), the models routinely used to estimate demand rely on the assumption that each
of the products purchased in a bundle is chosen independently, precluding the possibility of
complementarity and potentially leading to incorrect estimates and counterfactuals.

Models of demand for bundles face non-trivial identification challenges (Gentzkow, 2007),
even in settings with a limited number of products (Fox and Lazzati (2017) and Allen and
Rehbeck (2019)). Moreover, the estimation of demand for bundles is subject to a challenge of
dimensionality: the number of parameters can be too large to be handled numerically even with
parsimonious specifications (Berry et al., 2014). These difficulties forced empirical researchers
either to focus on applications with a limited number of products (typically two or three) or
to make restrictive assumptions on the parameters capturing potential synergies among the
products within bundles (typically a common parameter for all bundles and individuals).!

We tackle these challenges and propose empirical methods that are practically useful in
applications with more than a few products. In particular, we study the identification and
estimation of a mixed logit model of demand for bundles with endogenous prices given obser-
vations on bundle-level market shares. Our arguments hinge on the affine relationship between
the utilities of single products and of bundles typical of models along the lines of Gentzkow
(2007)’s: the average utility of any bundle equals the sum of the average utilities of the single
products plus an extra term capturing their potential demand synergies. This utility structure
allows (i) for a novel identification approach based on the existence of exogenous but potentially
unobserved cost shifters and (ii) to alleviate the challenge of dimensionality in estimation by
means of a new demand inverse in the presence of complementarity.

Our approach is based on a symmetry assumption about the average demand synergies
across markets: while the demand synergies for any specific bundle may be unobserved and
heterogeneous across individuals, their average is required to be constant across markets with
the same observable characteristics (e.g., demographics and prices). Importantly, we propose a
specification test for this symmetry assumption on the basis of partial identification methods
that can be performed prior to the estimation of the full model. Under this symmetry assump-
tion and regularity conditions similar to Rothenberg (1971), we derive necessary and sufficient
rank conditions for the local identification of the model with endogenous prices. This result

formalizes Gentzkow (2007)’s insight that, when the average demand synergies are “similar”

!Throughout the paper, we refer to the parameters capturing the potential synergies among products within
bundles simply as demand synergies or demand synergy parameters.



across markets, the availability of data on many markets will help identification. The “neces-
sity” part of the result is informative about the limits of identification in models of demand
for bundles: the separate identification of demand synergies and of the distribution of random
coefficients is not immediate, and one needs observations on “enough” markets to achieve it.

We provide novel sufficient conditions for the global identification of the model with endoge-
nous prices to hold almost everywhere. Our argument combines three main ingredients: a finite
number of elements in the identification set, an essential real analytic property of the mixed logit
model, and the existence of exogenous cost shifters. We assume that the identification set does
not have infinitely many elements and, building on Chernozhukov et al. (2007) and on Romano
and Shaikh (2012), propose testable conditions to verify this in practice. We show that the
mixed logit market share function is real analytic with respect to the market-product specific
average utilities. This further shrinks the identification set in the presence of exogenous varia-
tion in the market-product specific average utilities. We then demonstrate that cost shifters can
provide the required exogenous variation when the endogenous prices are generated by a large
class of pure components and mixed bundling price-setting models.? We finally attain global
identification almost everywhere by assuming the existence of exogenous cost shifters that are
potentially unobserved but identifiable from observed market shares and prices. One can then
interpret our identification strategy as based on the existence of “unobserved” but “identifiable”
instruments, the exogenous cost shifters.

We propose a Maximum Likelihood Estimator (MLE) to be implemented with observed
bundle-level market shares subject to sampling error and robust to price endogeneity. We
account for sampling error to accommodate the typical necessity of computing bundle-level
market shares from a sample of household-level purchases (as in Gentzkow (2007), Kwak et al.
(2015), Grzybowski and Verboven (2016), Ruiz et al. (2017), and Ershov et al. (2018)). The
estimation of demand for bundles is subject to a well known challenge of dimensionality: the
number of market-product specific average utility parameters and of demand synergy parame-
ters can be too large to be handled numerically (Berry et al., 2014)). We tackle this practical
bottleneck by a novel demand inverse designed to handle complementarity among products in
models along the lines of Gentzkow (2007)’s. For any given value of the other parameters,
we establish a one-to-one mapping between the observed product-level market shares and the

3

market-product specific average utilities.”> This enables to concentrate out of the likelihood

the potentially large number of market-product specific average utilities and to substantially

2For classic treatments of pure components and mixed bundling pricing strategies, see Adams and Yellen
(1976), Lewbel (1985), McAfee et al. (1989). For more recent contributions, see Armstrong and Vickers (2010),
Chu et al. (2011), Armstrong (2013), and Zhou (2017).

3Demand inverses at the bundle-level can simply rely on the classic results by Berry (1994) and Berry et al.
(2013) as long as the bundles in the demand system are substitutes. However, if some of the products are
complements, these classic results do not imply the invertibility of the demand system at the product-level. Our
product-level demand inverse is instead based on the P-matrix property of Gale and Nikaido (1965), which does
not require the products to be substitutes.



simplify the MLE’s numerical search: in our application, the numerical search is reduced from
approximately 12000 to 130 parameters. We show that our assumptions for global identification
guarantee consistency and asymptotic normality of this estimator.

We illustrate our methods in the context of the ready-to-eat (RTE) cereal industry in the
USA. We revisit the classic studies by Nevo (2000, 2001), and allow for Hicksian complementar-
ity among different RTE cereal brands in demand estimation.* The households in our data are
observed to purchase two or more different brands of RTE cereals in approximately 20% of their
shopping trips. Our data record purchases rather than consumption: the purchases of different
RTE cereal brands during the same shopping trip can clearly be motivated beyond synergies in
consumption. For example, if households face shopping costs for each visit to a store, one-stop
shopping may be preferred to multi-stop shopping (Pozzi (2012) and Thomassen et al. (2017)).
Moreover, if households delegate grocery shopping to one person, then preference for variety
may lead to the purchase of multiple brands on any shopping trip to accommodate the different
needs of the household (Hendel (1999) and Dubé (2004)).

Our model encompasses these alternative mechanisms: the demand synergies are catch-
all parameters that may reflect, for example, synergies in consumption, shopping costs, and
preference for variety. We try to distinguish empirically the contribution of some of these
possible mechanisms to the estimated demand synergies. Our results show that demand for
RTE cereals exhibits substantial Hicksian complementarity and that around 75% of it does not
seem to be explained by shopping costs or by preference for variety. We compare our estimation
results from the full model to those from a model of demand for single brands (similar to
Nevo (2000, 2001)) and show that ignoring Hicksian complementarity may result in misleading
demand estimates and counterfactuals (see also Fosgerau et al. (2019)). In particular, estimates
from the full model support the classic Cournot (1838)’s insight that, in the presence of Hicksian
complementarity, mergers can be welfare enhancing; while those from a standard model that

does not allow for it predict that mergers are detrimental for consumer surplus.

Related Literature. There is a growing empirical literature leveraging the estimation of
demand for bundles. Manski and Sherman (1980) study households’ choices of motor vehi-
cle holdings; Hendel (1999) studies preference for variety for personal computers, while Dubé
(2004) and Chan (2006) for soft carbonated drinks; Nevo et al. (2005) study the decision of
libraries to subscribe to economics and business journals; Gentzkow (2007) and Gentzkow et al.
(2014) investigate competition and complementarity among newspapers; Augereau et al. (2006)
the returns from adoption of technological standards; Liu et al. (2010) and Grzybowski and

Verboven (2016) the complementarity among telecommunication services; Crawford and Yu-

4Following Samuelson (1974) and Gentzkow (2007), we rely on the classic Hicksian notion of complementar-
ity: we consider two brands as complements whenever their cross-price elasticity of (compensated) demand is
negative. For recent discussions on complementarity in empirical models of demand, see Manzini et al. (2018),
Dubé (2019), and Iaria and Wang (2019).



rukoglu (2012) and Crawford et al. (2018) the problem of bundling and vertical restraints in
cable television, while Ho et al. (2012) in the video rental industry; Kretschmer et al. (2012)
study the adoption of complementary innovations; Lee et al. (2013) the complementarity be-
tween milk and RTE cereals; Song et al. (2017) the relationship between mergers and inter-firm
bundling in the pharmaceutical industry; Ruiz et al. (2017) propose a machine learning model
of demand for bundles, Thomassen et al. (2017) study the problem of transportation costs
in grocery shopping; Ershov et al. (2018) the complementarity between potato chips and soft
carbonated drinks; and Fosgerau et al. (2019) the complementarity between different brands of
RTE cereals. We add to this empirical literature by providing novel identification and estima-
tion methods for models along the lines of Gentzkow (2007)’s, specifically accounting for price
endogeneity and alleviating the challenge of dimensionality inherent in estimation.

The global identification of non-linear models is notoriously complex to demonstrate (Newey
and McFadden (1994) and Lewbel (2019)). Researchers typically resume to non-verifiable
abstract conditions (Rothenberg (1971), Bowden (1973), and Komunjer (2012)) or focus on
weaker identification concepts altogether, such as local identification (Rothenberg (1971), Sar-
gan (1983), and Lewbel (2012)) or partial identification (Manski (1989), Manski (2003), and
Chesher and Rosen (2017)). We contribute to this literature by providing sufficient conditions
for global identification that are testable (on the basis of partial identification methods), rooted
in economic theory (to address price endogeneity), and weaker than the classics (Rothenberg
(1971), Bowden (1973), and Komunjer (2012)). The relative advantage of our conditions fol-
lows from a real analytic property we show to be satisfied by mixed logit models given any
distribution of random coefficients (parametric or non-parametric), which allows us to relax
the strict concavity of the likelihood function (or similar criterion functions). Fox et al. (2012)
and il Kim (2014) also exploit the real analytic properties of logit models to achieve global
identification, but in more restrictive frameworks. il Kim (2014) shows the real analytic prop-
erty for multinomial logit and for nested logit models, while Fox et al. (2012) show it for mixed
logit models with random coefficients defined over compact supports—thereby ruling out, for
example, normal and the log-normal distributions.

In the context of identification of models of demand for bundles, we add to the discussions
by, for example, Fox and Lazzati (2017) and Allen and Rehbeck (2019). Fox and Lazzati
(2017) propose sufficient conditions for the non-parametric identification of demand for bundles
(and binary games of complete information) on the basis of additively separable excluded
regressors. Allen and Rehbeck (2019) instead study the non-parametric identification of a
large class of demand models, among which demand for bundles, by exploiting variation in
the substitution and complementarity patterns among different products. While these papers
make fewer distributional assumptions and can be preferred in situations with small choice sets
and exogenous regressors, our arguments apply more readily to cases with larger choice sets,

endogenous prices, and in general lead to practically convenient estimators.



Our mixed logit model of demand for bundles can be seen as a special case of the general
non-parametric framework by Berry and Haile (2014). Berry and Haile (2014)’ identification
argument relies on the availability of observed instruments both to pin down the distribution
of random coefficients and to address price endogeneity. In contrast, Gentzkow (2007)’s util-
ity structure allows us to propose a complementary identification strategy based on unobserved
instruments: we rely on the existence of “unobserved” but “identifiable” cost shifters and on con-
ditional symmetry restrictions among the average demand synergies across markets. While less
general in abstract terms, our arguments are more applicable to cases with limited observability
of instruments and give rise to sizeable computational advantages in estimation.’

Our estimator contributes to the modern literature on the estimation of demand systems
started by Berry et al. (1995) (henceforth BLP). For example, Berry et al. (2004b), Freyberger
(2015), and Armstrong (2016b) investigate the asymptotic properties of GMM estimators of
demand systems with endogenous prices. While these GMM estimators are more widely appli-
cable provided the availability of observable instruments, in the context of demand for bundles
our MLE represents a numerically convenient alternative in which the instruments need to exist
but do not need to be observed. More recently, Compiani (2019) proposes a non-parametric
estimator of demand models that accommodates complementarity among products. There is a
trade-off between our proposed estimator and Compiani (2019)’s. His non-parametric estimator
is more flexible than ours, but it is subject to a curse of dimensionality that may constrain its
applicability to settings with small choice sets. Our MLE is less affected by dimensionality and
can be implemented with larger choice sets.

Since Berry (1994), the identification and the estimation of demand systems with endoge-
nous prices has been relying on the ability to “invert” market share equations to uniquely
determine the implied product-specific average utilities—the so called demand inverse. A stan-
dard requirement for the invertibility of demand systems is for the products to be substitutes,
see Berry et al. (2013). This requirement can be problematic in contexts with complementary
products: for example, in a model of demand for bundles of newspapers, Fan (2013) rules out
by assumption any complementarity in order to rely on the classic demand inverse by Berry
(1994) at the newspaper-level. Our novel demand inverse addresses this issue and allows to

invert product-level market share equations in the presence of complementarity.

Organization. In the next section, we introduce model and notation. In sections 3 and 4,
we present—respectively—our local and global identification results. In section 5, we propose
our demand inverse and a related MLE. In section 6, we explore the practical relevance of our

methods with an empirical illustration. In section 7, we conclude the paper with some final

5The classic identification argument based on observed instruments requires the performance of high-
dimensional demand inverses at the bundle-level, while our argument based on unobserved instruments al-
lows for the performance of demand inverses only at the product-level. In practice, this implies the numerical
inversion of a lower-dimensional demand system and leads to large computational advantages.



remarks. In appendix section 8, we report all the proofs and additional results.

2 Model and Notation

Imagine a cross-section of T' independent markets denoted by T, where each market t € T is
populated by ¢« = 1, ..., [ individuals. Individual ¢+ in market ¢ makes purchases exclusively in
market ¢ and is a different person from individual 7 in any other market ¢’ # ¢. For individuals
in market ¢, let J; be the set of j =1, ..., J; market-specific products that can be purchased in
isolation or in bundles. Let C; = C;;U{0} be the choice set specific to market ¢, which includes:
the collection of “inside” options C;; and the “outside” option j = 0 (i.e., the option not to
purchase any product). In turn, the collection of inside options is defined as Cy;; = J; U Cyo,
where C;y denotes the set of market-specific bundles of products. The set of all available bundles
across all markets is Cy = UthlCtg. We refer to the cardinality of these sets as: C; = |Cyl,
Cyn = |Cul, Cip = |Cya|, and Cy = |Cy|. We denote by b any element of the choice set Cy,
whereby some abuse of notation b may refer to a bundle, a single product, or the outside option.

The indirect utility of individual ¢ in market ¢ from purchasing product j is:

Uit = Witj + €irj
= (5153' + Wit; + €itj and (1)

Uito = €ito,

where w;; = 04 + plirj, 0¢; is the market t-specific average utility of product j € J, pui; is
an unobserved individual-specific utility deviation from d;, while €;; and €5 are error terms.
Throughout the paper, we treat the market t-specific average utilities as parameters to be
identified and estimated. One can however reduce the number of parameters by using observable
characteristics and making additional functional form assumptions.®

To ease exposition, when b is a bundle, we refer to the products it contains as 7 € b.
Following Gentzkow (2007), the indirect utility of individual 7 in market ¢ from purchasing
bundle b € Cy, is:

Ui = _ titj + Tiw + €irp

JjE€EDb
= Z(étj + pitj) + Lo + (Litb — I'iw) + €ip

< @)
= Z 0y +T'ep + Z titj + Citb | + ity

jeb jeb

= 0w (Tb) + fiw + Eitb,

6We provide more detail on this while discussing price endogeneity at the end of this section.



where I';, is the individual-specific demand synergy among the products in bundle b, which
we specify as 'y, = ' + Gun- ['ip 18 the average demand synergy for the products in bundle b
among the individuals in market ¢ and (;, is an unobserved individual-specific deviation from
this average. dp(I'ip) = D ich dtj + ' is the market t-specific average utility for bundle b, ju;s,
is an unobserved individual-specific deviation from d;(I'sp,), and e;, is an error term.

The demand synergy parameter I';;, captures the extra utility individual ¢ in market ¢
obtains from purchasing the products in bundle b jointly rather than separately. When I";;, > 0,
the utility of the bundle is super-modular with respect to the utilities of the single products
and, from i’s perspective, joint purchase brings more utility. Conversely, when I';y, < 0,
from i’s perspective the separate purchase of each j € b brings more utility than their joint
purchase. As we discuss below, in applications with observable bundle-specific characteristics
(e.g., bundle-specific discounts), one can specify Iy, in terms of these characteristics.

We now turn to the distributional assumptions for the unobserved components of utility:
Lith = D jeb Mity T Cip and e for each b € C;. We assume that p;,p can be specified as a
function of a vector of random coefficients f3;;, so that pu, = pin(Bit), and that 5 is distributed
according to F'(-;Xr), where ¥ is a finite-dimensional parameter in a connected compact set
Ox, C RP. As is typical, u(+) can also be a function of observable demographics (e.g., i’s
income) and /or observable market-, product-, and bundle-specific characteristics (e.g., the price
of bundle b in market ¢). The error term &y, is assumed to be i.i.d. Gumbel.

Even though we make the assumption that e;;, is i.i.d. Gumbel, as shown by McFadden and
Train (2000), under mild regularity conditions any discrete choice model derived from random
utility maximization can be approximated arbitrarily well by mixed logit models of the kind we
consider. In addition, note that our mixed logit model is a generalization of Gentzkow (2007)’s
which restricts F'(;Xr) to be a normal distribution and 'y, = T’y for all i’s and t’s. We
add a layer of unobserved heterogeneity to the individual preferences specific to each bundle:
for reasons unobserved to the econometrician, the products in any bundle can exhibit positive
demand synergies for some individuals and negative for others.

Denote the market ¢-specific average utility vector by §;(I't) = (0s(I'th) Jbec,, and the vector
collecting all the market t-specific average demand synergies by I';. §;(I';) does not only list the
t-specific average utilities of bundles b € C;s, but also those of the single products b € Cy; \ Cyo
(where Cyy \ Cyp = J;): given that any single product has zero demand synergies, our notation
for b=j € Cy \ Cyz is just & (I'sw) = 0yj. Given our distributional assumptions, the market
share function of b € C,; for individuals in market ¢ takes the mixed logit form:

Stb(5t(rt)§ ZF) = /Sitb(5t(rt)7ﬁit)dF(ﬁit; EF)

eOtb (Lib)+1itn (Bit) (3)
/Zb/ec eIenr (U tb’)+ﬂitb’(ﬁit)dF(6it;EF)’




where s;1,(0:(I'¢), Bi¢) is individual i’s purchase probability of b in market ¢ given (.

Complementarity and Substitutability. Following Samuelson (1974) and Gentzkow (2007),
we rely on the classic notion of Hicksian complementarity: we consider two products as com-

plements (substitutes) whenever their cross-price elasticity of demand is negative (positive).”
In a model similar to (3) with two products, j and k, and constant demand synergy parameters
Litiiey = T'(jky, Gentzkow (2007) shows that j and k are complements (substitutes) whenever
gy >0 (I'jx <0). On the one hand, with more products and heterogeneous demand syner-
gies, the relationship between Hicksian complementarity and ', is less clear-cut and the topic
of ongoing research (Iaria and Wang, 2019). On the other, though, standard models of demand
for single products—obtained by constraining [';;;, = —oo for all i’s, t’s, and b € C;;—rule out
the possibility of Hicksian complementarity and force any two products to be substitutes. In
this paper, we take a pragmatic approach and regard the complementarity or substitutability

between products as an empirical question to be answered after the estimation of model (3).

Interpretation of Demand Synergies. Model (3) is agnostic about the exact meaning
of I'yp, which is a catch-all parameter that can reflect, for example, synergies in consumption,
shopping costs, and preference for variety. In Gentzkow (2007)’s demand for on-line and printed
newspapers, [, captures synergies in the consumption of the different news outlets. However,
demand synergies—and consequently Hicksian complementarity—can also arise, for example,
because of shopping costs (Pozzi (2012) and Thomassen et al. (2017)) or preference for variety
within households (Hendel (1999) and Dubé (2004)). If individuals face shopping costs every
time they visit a store, they may prefer to purchase all of their products at once rather than
over several trips (one-stop shoppers). Moreover, if households delegate grocery shopping to
one person, then preference for variety may lead to the purchase of multiple products on
any shopping trip to accommodate the different needs within the household. Our model can
rationalize shopping costs with positive demand synergies and, as we show in Appendix 8.1,

preference for variety with some additional structure on the demand synergy parameters.

Random Intercepts and Demand Synergies. As argued by Gentzkow (2007), the random
intercepts (uitj)j;l play an important conceptual role in the identification of demand synergies
in mixed logit models of demand for bundles. Without random coefficients, the Independence
from Irrelevant Alternatives (ITA) property would imply that the relative predicted market
shares of any two bundles do not depend on the characteristics of any other bundle. Removing

from the choice set a bundle almost identical to the preferred one (e.g., same products but one)

"In our application, we rule out income effects so that gross complementarity (in terms of elasticities of
Marshallian demands) and Hicksian complementarity (in terms of elasticities of compensated demands) coincide.
For discussions about complementarity in models of demand for bundles similar to those studied here, see
Manzini et al. (2018), Dubé (2019), and Iaria and Wang (2019).



or a bundle completely different from it (e.g., only different products) would equivalently have no
impact on the remaining relative predicted market shares. The random intercepts mitigate this
limitation in an intuitive way: the indirect utilities of all bundles including product j will share
the random intercept i, so that bundles with a larger overlap of products will also have more
correlated indirect utilities. Disentangling demand synergies from these random intercepts is
the key identification challenge in models of demand for bundles: as shown by Gentzkow (2007),
not accounting for possible correlations across the indirect utilities of bundles with overlapping

products may lead to finding spurious demand synergies and Hicksian complementarities.

Average Utilities and Price Endogeneity. We treat the average utility d;; as a fixed
effect to be identified and estimated, being unspecific about its exact dependence on price and
other observed or unobserved market-product specific characteristics. For example, following
Berry (1994) and BLP, a classical linear specification is 6;; = xyT + apyj + &;, where zy; is
a vector of exogenous observed characteristics, py; is the observed price, (7, )" is a vector of
preference parameters, and &; is a residual unobserved to the econometrician but observed to
both individuals and price-setting firms. In this context, endogeneity arises whenever prices
are chosen by firms on the basis of (ftj)jtzl.

Our local identification arguments are robust to cases of price endogeneity in which, for any
bundle b, the source of endogeneity is confined to d;p(I'ip) = > ich 0tj+T ', with I'y, constrained
to be constant across markets with the same market-bundle specific observables. In particular,
as detailed in Assumption 2 below, we require I'n, = I'y + g(Z, Pib; 2y), where I'y, is a bundle-
specific fixed effect and g(+, -; 2,) is a function parametrized by 3, of the observed characteristics
xy and of the observed price surcharge/discount py, (the difference between the price of bundle
b and Zjebptj)' For example, one can specify g(-,-;2,) as g(ZTb, Dib; T, @) = TpT + AP
While our assumptions on ['y, allow d;; to be any arbitrary function of (zy,p:j, &), they
restrict the functional form of the market-bundle specific unobservables on the basis of which
firms choose prices. For instance, with the above linear specifications for d;; and I'y,, we have
Op(Tw) = (ﬂb*'zjeb xtj)T—i-Oz(ptb-i-zjeb Ptj) +Zjeb &+, with the market-bundle specific
unobservable restricted to Zjeb & + .

Our global identification arguments further require restrictions on d;; and on the price-
setting model. As detailed in section 4.2, we require: (¢) the average utility d,; to be additively
separable in &; and an arbitrary function of (x4, py;) and (i7) the existence of exogenous cost
shifters that are unobserved to the econometrician but identifiable from observed market shares

and prices.
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3 Local Identification

Suppose that the econometrician observes without error the market shares 4;, of each b € Cyy
for each independent market t = 1, ..., T.8:? We focus on the case of a fixed number of products
Jiy and of a fixed number of independent markets 7T'. We do not consider the case of panel data
with repeated observations for each market. Similar to Berry and Haile (2014), our notion of

identification concerns the conditions under which

st (0;(I); Ef) = 3w
subject to I, = 0y, () — Z 0, b € Cyy (4)
jeb
has a unique solution for t € T and b € Cyy, where 6;(I'}) = (8, (}y,) )bec,, and s (9,(17%); %)
is defined in (3). Define the J; x 1 market t-specific vector dy3, = (04;);eg,, and the Cy x 1

market ¢-specific vectors s,(+; %) = (s (- ZlF))bectl and 3; = (Jb)becy, -

Definition 1. Model (3) is locally identified if and only if there exists a neighbourhood V' of
the true parameters (013,, ..., 073, 1, ..., I'py Xp) such that (613, ..., 073,, 11, ..., ['r, Xp) is the

unique solution to (4) in V.

Definition 1 constrains our discussion of identification to the existence of a unique solution to
system (4) in mixed logit model (3). We will refer to the existence of multiple solutions to
this specific problem as to lack of identification. Because of the non-linear nature of model (3),
we start by studying the problem of local identification. In section 4, we then investigate the
problem of global identification, which requires stronger assumptions.

Building on Berry et al. (2013), our identification arguments rely on demand inverses derived

from (4). Define the inverse market share for market ¢t € T as:
5;1(.; ZF) = (3;)1(.; EF))bGCtl : Stl = RCﬂ’ (5)
where s, (+; ¥r) is the inverse market share for market t = 1,...,T and b € C;, and

Stl = {(dtb)bectl DI € (07 1)7 Z Ip < 1}

beCyq

is the set of all feasible market share vectors for market ¢ € T. The next Assumption imposes
some regularity conditions on the parametric distribution of the random coefficients (first re-
quirement) and that the products belonging to any bundle can also be purchased individually

(second requirement).

8This is only for the purpose of identification, in estimation we consider the case of observed market shares

subject to sampling error.
9Sher and Kim (2014), Allen and Rehbeck (2019), and Wang (2019) study a different identification problem,
where only the product-level market shares, rather than the bundle-level market shares, are observed.
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Assumption 1.

1. The density of By, %, is continuously differentiable with respect to X' for any Bi.

2. If b € Cy, then j € J; for any j € b.

The next Lemma verifies the sufficient conditions by Berry et al. (2013) for the bundle-level

demand inverse (5) to be a continuously differentiable function.
Lemma 1.

e For any given X € Oy, the inverse market share (5) is a function: for each 3; € Sy,

there exists a unique 0, € R such that s,(8}; %) = ;.

e Given Assumption 1, the inverse market share, s;*(3];X), is continuously differentiable
with respect to (3;,X%) in a neighbourhood of (34, %F).

Proof. See Appendix 8.2. O]

In the online supplement, we illustrate that even simple versions of model (3) raise identification
concerns. First, we show that without further restrictions on I'; or additional external infor-
mation, model (3) can hardly be identified. Second, we discuss three examples that highlight
Gentzkow (2007)’s insight: when I'; = I, the availability of purchase data for multiple markets

will help identification. In what follows, we study identification under this restriction.

Assumption 2. T'y, = Iy +9(2m, piv; £y) fort € T and b € Cyo, where I'y, is a bundle-specific
fixed effect, x4, a vector of observed market-bundle specific characteristics, py, an observed price
surcharge/discount for the joint purchase of the products in the bundle, and g(-,-;3,) a function

of (T, Prw) known up to and continuously differentiable with respect to ¥, € Ox, C RP.

Assumption 2 restricts the variation in 'y, across markets to be fully captured by the variation in
the observables (x,, ps,) through the parametric function g(zsm, pw; £4). This allows to reduce
the dimensionality of the collection of average demand synergies from ZtT:l Ci to D + Cy and
in particular to treat I', as a bundle-specific fixed effect to be identified and estimated. Note
that, even though Assumption 2 requires all markets with given (zu,pw) to have the same
average demand synergy I'y, + ¢(Zb, Pib; 2g), each individual in each market is allowed to have
a specific demand synergy deviation (s, so that I';s, may potentially differ across individuals
for any given market and bundle. Moreover, as we illustrate below, in applications with a large
number of markets with overlapping choice sets, Assumption 2 potentially leads to many over-
identifying moment restrictions and can be weakened, so to allow for more flexible specifications
of I'tp. In those cases, one could for example specify (I'w, i) = (I'ip, X1y) for ¢t = 1,..., 17,
(Tib, Xtg) = (T'op, Xoy) for t = T1 + 1, ..., Ty, and so on until each ¢ belonged to one of () groups
of “similar” markets with (I'1p, X14) # (I'ab, Xag) # ... # (Do, Xqg)-
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Remark 1. Assumption 2 gives rise to testable implications and can be verified in practice.
In Appendiz 8.7, we present a specification test that builds on partial identification methods.
FEssentially, the proposed test checks whether there exists at least one profile of parameters
(01315 ey 0737, U1,y ooy, Ty ) satisfying Assumption 2 that solves demand system (4). A rejec-

tion of the test is evidence against Assumption 2 and highlights its incoherence with the data.

The presence of random coefficients, i.e. dim(Xg) > 0, leads system (4) to have more un-
knowns than equations, introducing an identification problem not present in multinomial logit
models. In general demand systems where the indirect utilities of different alternatives have
no particular relationships, this dimensionality issue is typically addressed by including addi-
tional instruments beyond those necessary to address price endogeneity. However, in the case
of Gentzkow (2007)’s demand for bundles, the specific structure that links the indirect utilities
of bundles to those of single products allows to reduce dimensionality from within the system.
Assumption 2 embodies this strategy: by imposing a symmetry restriction among the aver-
age demand synergies across markets, the model can be identified without requiring additional
instruments to those necessary to address price endogeneity.

Due to Lemma 1 and Assumption 2, at the true parameters X and market shares 4;, one

can re-express the first line of system (4) as:

Z 0tj + Db + (@, Pv; Bg) = s, (9 X)), for bundle b € Cpy
jeb (6)
0y = St_jl(dt; Y.r), for product j € b.

By substituting (6) into the second line of (4), one gets:

I'y = St_bl(ét; EF) - Z St_jl(dt; ZF) - g(xtbaptb; Zg)a (7)

j€b
for t € T and bundle b € Cy,. Note that the left-hand side of system (7) does not depend on
market ¢, while the right-hand side does. Consequently, at the true parameters ¥ = (X5, %),

true market shares of any two markets, 4; and 4, and any b € C;; N Cyo, one obtains:

5531(3:5; Yp)— Z St_jl(dt; Xr) — (T, Dib; Eg) = st_’tl)(dt’; Yp)— Z St_/;(ﬁt’; Xr) — 9(Tew, Prb; Zg)-
JjE€b JE€EDb
(8)

Our identification strategy exploits all such moment conditions for any pair of markets t # ¢’ and
any b € C;sNCys. As we will see below, under certain conditions, these moment restrictions can
uniquely determine the true parameters ¥ = (X5, X,). Then, due to (7), the true parameters
Y = (Xp,%,) can uniquely determine the remaining portion I'y, of the true demand synergies,

for any b € Cyy. Denote ¢4(2,) = (9(Ttb, Pb; Xg))bec,,- Finally, because of Lemma 1, one can
uniquely recover 0;(I' + g:(3,)) = (611, -+, 0tg,, (0 (Db + 9(Ztbs Pib: 24g)) JbeCys )-
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Note that for any b € C,, there exists ¢ such that b € C;3. Then, for any b € Cs, define
T, = {t : b € Cp,t € T}. If Ty has more than one element, we order them from ¢; to
tiT,|- By applying the right-hand side of (7) to t, and to t,41 and by taking the difference, for

a=1,..,|Tp| — 1, we then obtain |T},| — 1 moment conditions:'°

M, $0:8) = [530 (305 50) — Y 50530 55) — 5. b (9105 )
j€b
|Tp|—1
+) st (3 T) + 9T b Pra b Bh) — 9(en, Prab; i) ;
j€b a=1

mb(E’; d)|2/:2; =0.

Moment conditions (9) rely on relationship (7) and the fact that markets ¢, and ¢, have the
same bundle-specific fixed effect I',. As a consequence, at the true parameter values >/’ = X,
mp(X;9)|wex = (I’b—Fb)LT:bl‘_l = 0. Define m(¥') = m(X'; 3) as a function of X' = (X3, X)) €
Oy = Oy, x Oy, that stacks together the above moment conditions for all the bundles with
|Tp| > 2: m(X') = (mu(X';9))bec,,/Ty|>2- We then have m(¥')[sy—y = 0, which consists of
> beCy, Ty >2 (ITb| — 1) moment conditions with P + D = dim(X’) unknowns.

In what follows, inspired by Rothenberg (1971), we show that full column rank condition

rank(%;l)ﬂz,zz = dim(X) = P + D is necessary and sufficient for identification among the
rank reqular ¥ € Ox.'11? Rank regularity is a broader concept than full column rank: if
om(x)

W}E’:E is of full column rank, then ¥ is rank regular.?

Theorem 1. Local Identification: Suppose Assumptions 1 and 2 hold, and ¥ € Oy, is rank

reqular for 8"5(22,,). Then, model (3) is locally identified if and only if%

sv_y, 18 of full column

rank.

Proof. See Appendix 8.5 ]

10For notational simplicity, we suppress the dependence of the moment conditions from the market-bundle
specific observables (Tsb, pib) ;-
om(x2)
a3

1%} € Oy is rank regular for the continuously differentiable function if there exists a neighbourhood

U of 3 such that rank(a",(;(;/)) = rank(arg(zz,l)) s_y, for each ¥’ € U.

12Rothenberg (1971) shows the usefulness of the concept of rank regularity for local identification in non-linear
models. Our Theorem 1 adapts Rothenberg (1971)’s Theorem 1 (p. 579) to our environment. Note that the
concept of rank regularity is not vacuous in our context and there is plenty of such points: the set of rank

regular points of 873(;,:/) is open and dense in Oy. For a proof of this property, see Appendix 8.3.

7 T ’ ’
B3In fact, [am(z )] [am(z )] has positive determinant at ¥’ = ¥. Moreover, 22&) is continuously differ-

o B 57

! T !
entiable with respect to ¥’. Then, the determinant of [873(22, )} |:0m(2/] )} is also continuous with respect to

%
Y and therefore positive in a neighbourhood of ¥’ = 3. As a consequence, 8”5(22,,) is of full column rank in a

neighbourhood of ¥’ = ¥ and has constant rank P + D in the same neighbourhood of ¥/ = X.
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Theorem 1 establishes the link between the number of markets with overlapping choice sets
and the local identification of model (3). Note that, if the number of markets with bundle b
available in the choice set increases, so that |Tp| becomes larger, then the number of moment
conditions in (9) increases. In this sense, Theorem 1 formalizes the intuition that having
data on additional markets with overlapping choice sets, or analogously on larger overlapping
choice sets for certain markets, will help identification. Specifically, suppose that ¥ is rank
regular and that its dimension, P + D, is greater than the number of moment conditions,
S becsryf>2 (ITb| = 1). Then, the rank of 22|
> becy,my>2 ([Th |, — 1), which in turn is smaller than the number of its columns, P+ D. As a
255 s
While theoretically useful, the concept of rank regularity is abstract and not easily verifiable.

cannot exceed the number of its rows,

consequence, is not of full column rank and model (3) is not identified.

The next Corollary shows that whenever the dimension of ¥ is larger than the number of
om(")
By

moment conditions and the Jacobian matrix is of full row rank, then ¥ is rank

ESS
regular and model (3) is not identified.!*

Corollary 1. Lack of Local Identification: Suppose Assumptions 1 and 2 hold, and the
number of moment conditions, 3 ycc, ip,>2 (| To| — 1) is strictly smaller than the dimension of
Y, P+ D. Then, if the Jacobian matriz %;,)
identified.

s_y, 18 of full row rank, model (3) is not locally

Proof. See Appendix 8.6. ]

4 Global Identification

Up to this point, we have focused on the local uniqueness of solutions to system (9). Without
any further restriction, the set of solutions to system (9) over the entire domain of parameters
may not be singleton. There are at least two approaches to dealing with this global multiplic-
ity. Partial identification, which entails the characterization of the set of global solutions to
system (9), i.e. the identified set, and global identification, which consists in strengthening the
conditions for local identification until the identified set is singleton over the entire domain of
parameters. We opt for the second approach and, in what follows, discuss sufficient conditions
for global identification. Our choice is motivated by estimation convenience: as detailed in
section 5, our global identification conditions imply a convenient MLE.

Denote by m(%'; Ty) moment conditions (9) constructed from the subset of markets To C T
and evaluated at ¥' = (X7, %} ). The starting point of our global identification argument is to

restrict the number of solutions to system (9) with the following testable Assumption:

MNote that lack of local identification is the strongest negative result one can get: if the model is not locally
identified, then for sure it will not be globally identified.
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Assumption 3. There exists To C T such that m(¥'; Ty) = 0 has a finite number of solutions

m @Z-

Assumption 3 alleviates the severity of the identification problem to a finite collection of obser-
vationally equivalent candidates. All of our global identification results go through also in the
more general case of a countable collection of solutions. However, for notational simplicity, we
limit our exposition to the finite case. Assumption 3 implies local identification, but is weaker
than the typical rank conditions used to achieve global identification. For example, the classic
results by Rothenberg (1971) require the Jacobian of the gradient of the log-likelihood function
to be non-singular everywhere, so that the log-likelihood function is strictly concave (Bowden,
1973). While strict concavity is guaranteed by logit and probit models (Amemiya (1985) pp.
273-274), it is not by mixed logit models. Coherently with mixed logit model (3), Assumption

3 does not impose strict concavity of the log-likelihood function.

Remark 2. While Assumption 8 is high-level, in Appendix 8.7 we present a verifiable suffi-
om(X;To)
)3

at any of the solutions to m(¥X'; To) = 0. Building on the partial identification methods by
Chernozhukov et al. (2007) and by Romano and Shaikh (2012), in Appendiz 8.7 we also pro-

pose a testing procedure to verify this sufficient condition in practice. A rejection of the test is

cient condition that implies it (Proposition 2): 15 of full column rank when evaluated

evidence in support of Assumption 3.

Assumption 3 is not new to the global identification literature and is also used, for example, by
Komunjer (2012). To obtain global identification, Komunjer (2012) additionally requires the
moment function to have non-negative Jacobian and to be proper.!> We avoid these further

restrictions by relying on the following real analytic property of the mixed logit model.'®

Theorem 2. Real Analytic Property: For any F, s,(0;; F) is real analytic with respect to
8 in R fort=1,...,T.

Proof. See Appendix 8.8. O

Theorem 2 shows the market share function of the mixed logit model to be real analytic with
respect to the average utilities given any distribution of random coefficients (parametric or
non-parametric). Fox et al. (2012) and il Kim (2014) also exploit the real analytic properties
of logit models to achieve global identification, but in more restrictive frameworks. il Kim
(2014) shows the real analyticity of multinomial logit and nested logit models (section IV),

while Fox et al. (2012) show it for mixed logit models with random coefficients defined over

5A function f : X — Y between two topological spaces is proper if the preimage of every compact set in Y’
is compact in X.

16 A function f: 2 — R is real analytic in X if for each 2o € L, there exists a neighbourhood U of xy such
f (")(10)(
= (x

n!

that f(z) is equal to its Taylor expansion y .~ , — )™ for any z € U.
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compact supports (Lemma 5 and section 6)—thereby ruling out, for example, the normal and
log-normal distributions.

While our local identification results do not rely on the nature of the variation in dg,,
our global identification depends on whether the variation in d;3, is exogenous across markets:
price endogeneity restricts this variation and leads to additional difficulties. To overcome these
difficulties, we propose the use of mild restrictions on the price-setting model. In what follows,

we treat separately the simpler case of exogenous variation in d3,, and that of price endogeneity.

4.1 Exogenous Average Utilities

Here we consider the case of exogenous variation in d,3, across markets. Given Assumption 3,
denote the finite set of solutions to m(3'; Tp) = 0 in Oy by S = {¥" : r = 0, ..., R}, where
Y0 = (X%, %)) represents the true value ¥ = (Xp,%,). On the basis of Lemma 1, define the
corresponding I'" for r = 0, 1, ..., R. The real analytic property of s,(d}; ¥%) allows to eliminate
the extra solutions X", r = 1,..., R, by exploiting the additional variation provided by o3,
for t € T\ Ty. Intuitively, the real analytic property guarantees that .S is non-singleton, i.e.
lack of identification, only on a union of R zero measure sets of d;3,, t € T \ Ty. Because
the union of any finite number of zero measure sets has still zero measure, the real analytic
property—combined with Assumption 3—ensures global identification almost everywhere given
the additional variation provided by d,3,, t € T \ T.

Define the set of matrices M = {M, : t =1, ..., T}, where each M, is a matrix of dimension
Cio X Cy1. Remember that Cys is the number of bundles and C;; the number of inside options
(i.e., bundles plus single products). M; is made of two sub-matrices: M; = [M}, M?]. M} is
a matrix of —1’s and 0’s of dimension Cj, X J;, where the columns represent single products
and the rows bundles. Each row of M} identifies with —1’s the product composition of the
corresponding bundle. M? is instead an identity matrix I of dimension Cjy x Cje, with the
rows corresponding to bundles. For example, suppose the choice set (without outside option)
in market ¢ to be {1,2,3,(1,2),(1,3),(2,3)} and the corresponding average utility vector to be
& = (0e1, 012, 013, 01(1,2), 02(1,3), Or(2,3)) > with Cyy = 6 and Cyp = 3. Then,

-1 -1 0 1
Mi=1|-1 0 -1 0
0

0
1
0 -1 -1 0

= o O

Remember that ¢:(X;) = (9(Ttb, Pib; Xy))bec,, and that §(I + g:(X;)) = (0w, (dn(Tb +

g(xtbaptb; Eg)))beCw)a where 6tb(Fb + g(xtbuptb; Eg)) = Zjeb 6tj + Fb + g(xtbuptb; Eg) For
r=1,..., R, define:

AP = {(013,)em\1, - Tt € T\ Tp such that Mys; " (s,(6,(T° + gt(Zg)); YO N AT + g (37)}.
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Denote by d7), the true value of d;5, for which s;(0,(I"° + g¢(X)); £%) = 4; and define A =

1D
m?”:].,...,RAr .

Theorem 3. Global Identification with Exogenous Prices: Suppose Assumptions 1-3
hold and Oy, is compact. Then, it follows that:

o System (9) has a unique solution in Ox, and model (3) is globally identified if and only if
(003, )eem\Ty € AP,

o If AIP £ forr =1,..., R, then the Lebesque measure of Xiem 1, R \ AP is zero.
Proof. See Appendix 8.9. O]

While the first result of Theorem 3 provides necessary and sufficient conditions for global
identification, the second underlines their practical usefulness. The set AP is “very large” and
will include the true (0%y,)ieT\T, in “almost all” cases: global identification will be achieved

almost everywhere.

4.2 Endogenous Prices

We now extend the global identification results from Theorem 3 to the case of endogenous prices,
where the variation in d;5, across markets is restricted by the price-setting behaviour of firms.
We add mild restrictions to the price-setting model and assume the existence of exogenous
cost shifters that are unobserved to the econometrician but identifiable from observed market
shares and prices. Berry and Haile (2014) rely on a similar restriction (Assumption 7b, p. 1769)
for the global identification of a simultaneous system of demand and supply by instrumental
variables. However, because of the specific utility structure of model (3) under Assumption 2,
our argument is different and does not require the instrumental variables (i.e., the cost shifters)
to be observed to the econometrician but only to be identifiable.

Similar to BLP, we specify the average utility d;; as additively separable in a systematic
component and an unobserved residual: §;; = Ay (2, pij) + &, with x,; a vector of observed
exogenous characteristics, p;; the observed endogenous price, Ay;(+,-) any arbitrary function of
(w45, pj) (potentially different across markets and products), and &; a residual unobserved to
the econometrician. Even though we rely on the additive separability of A;(z¢;, pi;) and &;, the
target of our identification is still their sum d;;. Endogeneity arises whenever firms choose prices
(also) on the basis of the market-specific residuals, which we denote by &3, = (&;);e3, € R
Because we essentially treat each d,; as a fixed effect, price endogeneity complicates global
identification to the extent that it constrains the variation of d,5, across markets (the key
identifying variation used in Theorem 3). As an extreme example, suppose that prices are

chosen so that Ayj(x4;, pr;) = —&;, then 6;; = 0 for every t and j. This rules out any variability
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in d:3,, introducing the need for alternative sources of identification. To simplify exposition, in
what follows we sometimes drop the dependence on Ay; (x4, prj) from our notation.

Here we discuss the case of pure components pricing, where each firm chooses the prices of
the individual products it owns and the price of any bundle is given by the sum of the prices of
its components. With pure components pricing, the econometrician observes the prices of the
individual products piy, = (ptj);ea,, while the price surcharges/discounts for the joint purchase
of products in bundles are all constrained to zero, so that pg, = 0 and g, (2}) = g (T, 0; 2
fort =1,....,T and b € Cyy. As we illustrate in the online supplement, our arguments can
be readily modified to accommodate alternative pricing strategies such as mixed bundling (see
Armstrong (2016a) for a survey on non-linear pricing).!”

Denote by ¢, = (¢ij)jes, € R;’: a vector of cost shifters, one for each of the products in
market ¢. These cost shifters could for example be the marginal costs of the products sold
in market ¢. Similar to &;,, also the cost shifters ¢, are assumed to be unobserved to the
econometrician. In this sense, cost shifters can be seen as “unobserved” instruments: their
existence provides exogenous identifying variation, but they do not need to be observed to the
econometrician. As for the case of exogenous average utilities, we propose a characterization of
the set of unobservables (&3,, ¢;3,) that suffices for the global identification of (d,3,,T, 3).

Let Dy X Dy denote the domain of (&,, ¢ig,) for t € T. Suppose that the firms in market ¢
choose prices according to pure components given the true (I'%, X°) and (&3,, ¢13,) € Dige X Dy
Denote the set of equilibrium prices given &3, and c;3, by peg, (€., cis,) € R, given &5, by
P.(&3,) = Ueus, e DePt3, (&13,, 13, ), and the grand collection of all possible equilibrium prices by
P; = U, ep, Pi(§a,). The vector of observed prices is an equilibrium of the price-setting

model, so that py, € pig, (&, a,)-
Assumption 4.
e (Cost Shifters at the Product-Level) Dy. is open in R’ fort € T.

e (Identifiability of Cost Shifters) ¢y, is a C function of (&s,,p3,) € {(&3,,P13,) : &3, €
Dt&yp:t,]t S Pt(fm)}-’ Ct3, = ¢t(£tJt7tht)'

The second part of Assumption 4 resembles Assumption 7b by Berry and Haile (2014) and
is the key to our global identification with price endogeneity. Berry and Haile (2014) show
that their Assumption 7b is implied by a variety of common price-setting models of oligopoly
with differentiated products (Remark 1, p. 1766). Their result follows from the assumption
of “connected substitutes” on the demand system (Definition 1, p. 1759): loosely speaking,

this rules out any negative cross-price elasticity between any two products. In the case of

1"With mixed bundling pricing, every firm chooses one price for each bundle it sells and the price of any
bundle of products owned by different firms is the sum of the prices of its components. In this case, the price
surcharge/discount for the joint purchase of products in bundles, p;p,, may differ from zero for any ¢t and b € Cy,.
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pure components pricing, the relevant demand system has only .J; product-level equations (the
system of product-level market shares) rather than Cy; bundle-level equations. While model (3)
satisfies the connected substitutes property at the bundle-level, it may not at the product-level
(i.e., products may be complements) and hence Remark 1 by Berry and Haile (2014) does not
apply to our case.

By combining the bundle-level connected substitutes property with the specific utility struc-
ture of model (3) under Assumption 2, in Appendix 8.10 we show that Assumption 4 is satisfied
by common pure components pricing models. We show that it is consistent with any num-
ber of firms (monopoly, duopoly, or oligopoly) playing a complete information simultaneous
Bertrand-Nash game with any profile of demand synergies (substitutability and/or comple-
mentarity). Importantly, Assumption 4 leaves the cardinality of p.g, (&13,, cig,) unrestricted: the
price-setting model is allowed to have a unique, several, or infinitely many equilibria.

Denote by s;(6;(I" + g+(2})); pts,, X%) the market share function in market ¢ evaluated
at prices piy, = (pi;)jes, and structural parameters (dj,,1",%¥'), and remember that d;; =

ALi(x4j, pej) + &, for each j € J;. Given Assumption 3, define for each r = 1,..., R

EiD = {(&3,, ¢t )eem\1, 13t € T '\ T such that Mts;l(st(ét(Fo + gt(zg))§thta 2%)?1%.]” Yp) AT+ gt(Eg)
for any puy, € pua, (§1a,, cea,) }-

and 2P = N =P We make the following technical Assumption:

Assumption 5. For every r = 1,...,R, there exists t € T \ Tq, so that for almost every
Pis, € Py, there eaists €, such that T" + gi(S5) # Mysy (51 (01T + gu(E0): s S%); by, T )-

Even though Assumption 5 is abstract, it is implied by more concrete conditions. The following
Corollary shows that, for example, by strengthening the real analytic property of mixed logit

models from Theorem 2, Assumption 5 is satisfied:
Corollary 2. Suppose that the following conditions hold:
o Forr=1,..R, =’ £.

e Foranyt € T\ Ty and (I',X), 5,(6;(I" + g:(Xg)); pi3,, Xr) is real analytic with respect to
<5£Jt’p;.]t)'
Then, Assumption 5 holds.
Proof. See Appendix 8.11. O

Corollary 2 tightens the real analyticity of the market share function to hold also with respect
to the prices pj;, (in addition to the average utilities d;;,). If price enters the indirect utility
linearly (as is typical in applied work), then Corollary 2 will hold when the price coefficient is

for example constant, or bounded, or when its moments increase at most exponentially.
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Denote by (&,, i3, . pty,) the true value of (&3,, ¢, pr, ) for which St(5t(F°+gt(22)); Pi,s TF) =

J;. We now present the main identification result of the paper.

Theorem 4. Global Identification with Endogenous Prices: Suppose Assumptions 1—4
hold and Oy is compact. Then, it follows that:

o If (&), ety € 2P, system (9) has a unique solution in O, and model (3) is globally
identified.

o If Assumption 5 holds, the Lebesque measure of Xiem1,[Die X Dye] \ EIP is zero.
Proof. See Appendix 8.12. m

As for Theorem 3, the first part of Theorem 4 provides sufficient conditions for global identifica-

tion, while the second highlights that global identification will be achieved almost everywhere.

5 Estimation

We propose a Maximum Likelihood Estimator (MLE) to be implemented with observed bundle-
level market shares subject to sampling error and robust to price endogeneity. We account
for sampling error to accommodate the typical necessity of computing bundle-level market
shares from a sample of household-level purchases (as in Gentzkow (2007), Kwak et al. (2015),
Grzybowski and Verboven (2016), Ruiz et al. (2017), and Ershov et al. (2018)). We consider
asymptotics over the number of individuals I within each market, keeping fixed the number of
markets and bundles, and demonstrate that our identification conditions imply the proposed
MLE to be consistent and asymptotically normal.

Even though theoretically attractive, the standard MLE of model (3) is subject to a challenge
of dimensionality even under Assumption 2: the number of demand parameters can still be too
large to be handled numerically (Berry et al., 2014). As an example, suppose that in every
market there are J products and individuals purchase bundles of size K. Without further
restrictions, model (3) under Assumption 2 would imply J¥ demand synergy parameters I', P
parameters X for the distribution of random coefficients, D parameters ¥, for the function g,
and J x T average utility parameters (d13,, ..., 073,.). The estimation of JX + P+ D+ J x T
parameters may be hard, especially because identification requires a large T'.

We propose to reduce the dimensionality of the MLE’s numerical search by means of a
novel demand inversion specific to Gentzkow (2007)’s model that concentrates (&1, ..., 07y,.)
out of the likelihood function.'® As a consequence, our proposed MLE effectively reduces the
numerical search from (0y,,..., 075, 1", %), ie. JE + P+ D+ J x T parameters, to (I",Y),
i.e. JK + P+ D parameters.

18 As we clarify below, our demand inverse differs from the classic one by Berry (1994) and Berry et al. (2013),
which in our context corresponds to the demand inverse presented in Lemma 1.
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Remark 3. Our estimation discussion focuses on the case of exogenous average utilities. How-
ever, when the assumptions from the previous section hold and the model is globally identified,
the estimation results presented below will also hold for the case of price endogeneity with no
modification. The exogenous cost shifters that play the role of instruments in our identification
arguments need to exist but do not need to be observed. The estimation of (813, ..., 07y, 1", %)

will not require the “explicit” use of instruments also in the presence of price endogeneity.

5.1 Invertibility of Product-Level Market Shares

Here we propose a novel demand inverse designed to handle complementarity among products
in models along the lines of Gentzkow (2007)’s. For any given value of the other parameters,
we establish a one-to-one mapping between the observed product-level market shares and the
market-product specific average utilities. We then illustrate how this demand inverse can be
used to greatly simplify the practical implementation of the MLE of demand for bundles.

Define the observed product-level market share of product j € J; as 3y = D ... jeb Itb
and denote the vector stacking J,; for all products in market ¢ by 43, = (44;.)jeg,. Similarly,
define the product-level market share function of each product j € J; as s (d;5,; 1", %) =
> bec,jeb Stb (0 (17 +0:(25)); X%) and denote the vector stacking s; (d;5,; 1", ) for all products
in market ¢ by sug, (17, %") = (s45.(: 17, X)) jes, -

Theorem 5. Demand Inverse: Suppose that Assumptions 1 and 2 hold. Then, for any
(I",X') € ©r x Og, there exists at most one &5, such that sy, (0;5,;1",X") = 443,..

Proof. See Appendix 8.13. O]

When (I", ¥') is equal to the true value (I', XJ), Theorem 5 implies that the only d;5, that satisfies
513,.(013,; 1, 38) = 443, is the true é,3,. As aresult, the function s, .(+; I', ¥) is globally invertible.
When (I,%') # (I, %), it is possible that there is no d;;, such that sy, (0y,; 7, %) = 9,5,.."
Because the existence of some d;5, that rationalizes the observed product-level market shares
can always be verified numerically (following the procedure outlined below), in what follows we

assume it and denote the bijection mapping 4,5,. to d;5, by:

7, = s, (B35 T, %)
= 5tJt.(3tJt.§ I Z/)-

Theorem 5 differs from the classic demand inverse by Berry (1994) (then generalized by Berry
et al. (2013)). In our context, Berry (1994) implies a bijection between the observed bundle-level

YFor example, a model of demand for single products (i.e., I' = —oc) cannot rationalize situations in which
the sum of the observed product-level market shares is larger than one. (This can happen because the same
J+p contributes to the product-level market share of any j € b, giving rise to “multiple counting” of 44, when
summing 4, over j.) In such cases, the demand inverse is therefore not feasible when evaluated at IV = —ooc.
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market shares and the full vector of market-bundle specific average utilities. We rely on this
classic demand inverse throughout the paper and, for completeness, adapt it to our framework
in Lemma 1. Differently, Theorem 5 establishes a bijection between a transformation of the
observed bundle-level market shares—the product-level market shares—and a sub-vector of the
market-bundle specific average utilities—the market-product specific average utilities. While
the invertibility of the product-level market shares on the basis of Berry (1994) would require

the products to be substitutes, Theorem 5 applies also to the case of complementary products.

5.2 A Maximum Likelihood Estimator

We now allow for the possibility that observed market shares are subject to sampling error, due
for example to the necessity of measuring them from household-level purchase data. Denote
by I, the number of individuals in market ¢ observed to choose b and by 35 = I‘Tb the
corresponding observed market share. To simplify exposition, in what follows we drop any

notational dependence from the observables and denote g;(X%}) = (9(7wm, Pi; X;))bec,,- The

log-likelihood function evaluated at (&yy,, ..., 075,,[", %) can be written as:
T
Cr(8gys o O T 580, 7) = ) S log s (6T + g1(S)); ), (10)
t=1 beC,

where 3; = (3 )pec, fort = 1,...,T. Denote the domain of the parameters by © = G5 x O x Oy,
where ©4, Or, and Oy, are compact. Given Theorem 5, we propose the following MLE that

concentrates (13, ..., 073,) out of the log-likelihood function:

(f, f)) = argmax p sy eerxexgj((étJt.(jt_]t.; SN T, Y5 5, ., d7),
I.=)
= argmax(p,z,)egrX@gﬁﬁ(f", 531, ., 97) (11)
StJt = 5tJt.(3tJt.;fa i), t= 1, ,T

To simplify notation, denote the true parameters (d1j,, ..., 073, [, X) by 6 = (05, ', ¥) and the
MLE (é(g, f, f]) by 6. The next Theorem establishes the asymptotic properties of 6.

Theorem 6. MLE estimator: Suppose Assumptions 1-3 hold, the true (0i3,)iem\1, € AP,

b s fort =1,...,T, b € Cy, and the standard reqularity conditions detailed in Appendiz
8.14 hold. Then:

e (Consistency) 0 25 6.

o (Asymptotic Normality) There exist matrices Wi, Wy > 0 such that \/7(@5 — bs) 4
N (0,W1) and VI[(D,2) — (I, 8)] 5 40, Wh).

Proof. See Appendix 8.14. O]
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Estimator (11) is neither a standard MLE nor a concentrated MLE. A standard MLE would
maximize (10) with respect to (d,I", %), while (11) only maximizes it with respect to (I",X).
Differently from a concentrated MLE, which also would maximize (10) only with respect to
(T, %), estimator (11) is however not as efficient as the standard MLE. The demand inverse
from Theorem 5 only uses observed product-level market shares (rather than bundle-level), and
this causes a loss of information in the process of concentrating out 65 from the log-likelihood

function. MLE (11) trades-off computational ease against estimation efficiency.

Implementation. In the spirit of BLP, the demand inverse from Theorem 5 enables to break
down the numerical search for (01, ..., d73,, [, £) into two steps that can be solved sequentially

while implementing (11):

Step 1. For any given guess of (I",X') and market ¢t = 1,...,T, compute &5, = d¢g,.(313,.; 17, 2)

by the Newton-Raphson method as the unique solution to system s;3,.(0;5,; 1", X") = 34,
8StJt ((St.] ,F Z) o

852%

To implement the Newton-Raphson method, note that the derivative

T -MM] g;fctl [T -M!T is everywhere symmetric and positive-definite, where M} is

defined prior ‘o Theorem 3. Because the solution to the system is guaranteed to be at

most unique, whenever the algorithm finds one, the numerical search can end.?’ Given this

1
solution, compute the derivative a?f‘%?) =— [8;;%.] [ 6?;’,5”%‘,)] and move on to Step 2. In
) tJy ’

case the algorithm cannot find a solution, then Theorem 5 implies that (I",%') # (I', X):
try a new guess of (IV,¥’) and go back to the beginning of Step 1.

Step 2. Plug 4y, for t = 1,...,T from Step 1 into 51((5£Jt)t=1,..‘,T,F/,E';31, ..., d7) and obtain

05(T7,%; 31, ..., 37). Compute its derivative with respect to (I, %), % =37, a?f’ a?gf%/)—l—
o

oI, %)
If yes, the current value of the parameters is 0. 1f not, use a(w

. Check whether the current guess of (I, X’) numerically maximizes ¢5(I”, %'; 31, ..., 37).

C
75 to numerically search

for a new guess of (I, %) and go back to Step 1.

6 Empirical Illustration

We illustrate our methods in the context of the ready-to-eat (RTE) cereal industry in the USA.
We revisit the classic studies by Nevo (2000, 2001), and allow for Hicksian complementarity
among different brands in demand estimation. The households in our data are observed to
purchase two or more different RTE cereal brands in approximately 20% of their shopping trips.
In the data, we observe purchases rather than consumption. In terms of purchases, demand for

bundles can arise for reasons different from synergies in consumption (as in Gentzkow (2007)):

20For a useful discussion about the Newton-Raphson method in the context of demand estimation, see Conlon
and Gortmaker (2019).
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shopping costs (as in Pozzi (2012) and Thomassen et al. (2017)) and preference for variety (as
in Hendel (1999) and Dubé (2004)) represent two likely alternatives.

Our model can rationalize shopping costs with positive demand synergies and, as we show
in Appendix 8.1, preference for variety with some additional structure on the demand synergy
parameters. We try to distinguish empirically the relative contribution of these mechanisms
to the estimated demand synergies. Our results show that demand for RTE cereals exhibits
substantial Hicksian complementarity and that around 75% of it does not seem to be explained
by shopping costs or by preference for variety. We compare our estimation results from the
full model to those from a model of demand for single brands (similar to Nevo (2000, 2001))
and show that ignoring Hicksian complementarity may result in misleading demand estimates
and counterfactuals. Despite the different econometric approach and data, our results are in
line with those by Fosgerau et al. (2019), who also document Hicksian complementarity among
different RTE cereal brands in the USA.

6.1 Data and Definitions

We use household-level and store-level IRI data on ready-to-eat (RTE) cereals for the period
2008-2011 for the city of Pittsfield in the USA. We report a succinct description of the data
used and refer the reader to Bronnenberg et al. (2008) for a more thorough discussion.

We focus on the I = 2897 households who are observed to purchase RTE cereals at least
once from 2008 until 2011. For these households, we observe some demographics (e.g., income
group and family size) and a panel of shopping trips r = 1, ..., 756663 to 7 different grocery
stores over a period of 208 weeks. A shopping trip is defined as a purchase occasion of a
household to a grocery store in a given day. Each shopping trip records all the Universal
Product Codes (UPCs) purchased by a household across all product categories sold by the
store: during 83256 of these, RTE cereals are observed to be purchased. We define a market as
a store-week combination ¢t =1, ..., 1431.

Over the sample period, the households are observed to purchase 1173 different UPCs
of RTE cereals. For feasibility, we reduce the number of different RTE cereal products by
collecting UPCs into what we call brands. We define J = 16 different brands on the basis
of producers and ingredients. We classify producers into six groups: General Mills, Kellogg’s,
Quaker, Post, Small Producers, and Private Labels. The first four correspond to the four
largest RTE cereal producers, “Small Producers” correspond to the remaining producers, and
“Private Labels” correspond to the UPCs directly branded by the retailers (i.e., the stores). We
collect the UPCs of each of the producers into three types on the basis of their ingredients:
cereal type R refers to “Regular,” F//W to “Fiber/Whole Grain,” and S to “Added Sugar.”
Table 7 in Appendix 8.15 lists these RTE cereal brands and their average market shares across
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the shopping trips with some RTE cereal purchase.?! 'We use the store-level data to compute
brand-level prices for each brand j and store-weeck combination ¢, p;;. Each p;; is computed as
the average price per 160z across the UPCs belonging to brand j in store-week t.

We make the standard assumption that RTE cereal purchases do not determine store choice
and take store choice as exogenous in our econometric model. We consider household 7 to choose
the outside option, which we denote by j = 0, whenever no RTE cereal brand is purchased
during shopping trip 7 (in general, something must be purchased for a shopping trip to be in
the data). Around 89% of all shopping trips do not involve any purchase of RTE cereals.

During each shopping trip r, a household ¢ is considered to purchase RTE cereal brand j
whenever they are observed to purchase at least a UPC of brand j. Households are considered
to purchase bundles only when purchasing at least two different brands of RTE cereals during
the same shopping trip. In our view, this is a conservative measure of households’ demand for
bundles.?? For computational convenience, we focus our analysis on the shopping trips with
observed purchases of at most two different RTE cereal brands, thus discarding 3.27% of the
shopping trips with some RTE cereal purchase. In 17.69% of the shopping trips with some RTE
cereal purchase, households are observed to purchase two different brands of RTE cereals.

Table 1 describes how the average bundle size purchased changes among households with
different observable characteristics. The top panel of Table 1 shows that larger families are more
likely to purchase larger bundles. This accords to the idea of preference for variety by Hendel
(1999) and Dubé (2004): in order to satisfy more heterogeneous preferences (e.g., different
genders and ages), larger households are more likely to purchase a wider variety of RTE cereal
brands on each shopping trip. The central panel of Table 1 highlights the potential relevance of
shopping costs, as suggested by Pozzi (2012) and Thomassen et al. (2017): households observed
to shop with a higher frequency (facing lower shopping costs) are less likely to purchase bundles
of different RTE cereal brands on any shopping trip.2> The bottom panel of Table 1 divides the
households into three income groups and does not suggest any apparent relationship between

the level of income and average purchased bundle size.?*

21 Market shares are computed over the shopping trips observed in each store-week combination.

22For instance, the purchases of different RTE cereal brands across different shopping trips within the same
t are considered as independent purchases of single brands rather than bundles. To keep the dimensionality of
the problem manageable, we do not count as bundles the purchases of multiple units of the same brand within
the same shopping trip. Accommodating either less conservative definitions of bundles or purchases of multiple
units of the same brand would not represent any conceptual challenge for the proposed methods.

23We compute the “weekly shopping frequency” as the average number of shopping trips per week for each
household over the entire four-year period of our sample. The median among the 2897 households is 1.80
shopping trips per week.

24We create the three income groups on the basis of 12 income classes originally provided in the IRI data,
which are ordered in increasing level of income from 1 to 12. We code as “low income” the classes 1-4, “medium
income” the classes 5-8, and we group in “high income” the remaining classes 9-12.
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Table 1: Average Number of Different Brands per Shopping Trip

#Households Ave. Bundle Size

Family Size

1 732 1.12

2 1184 1.16

>3 981 1.22

Weekly Shopping Frequency

(0,2] 1779 1.19

(2, 3] 810 1.17

>3 308 1.14

Income Group

low 679 1.18
medium 1169 1.16
high 1049 1.19

Notes: The Table shows the distribution of family size, weekly shopping frequency,

and income group among the 2897 households in our data. See text for the definitions

of these variables. For each value of these variables, we report the average number

of different RTE cereal brands observed to be purchased per shopping trip by the

corresponding households.
We construct choice sets at the level of the store-week ¢: any household during any shopping
trip in ¢ is assumed to face choice set C;. This is made of three components: single brands,
bundles of size 2, and the outside option. From the store-level data, we observe which of the
16 brands of RTE cereals are available in each store-week ¢. Denote this set of available brands
by J;. Households can also purchase bundles (ji,72) € (J; X J)\{(k1, k2)|k1 = k2} made of
pairs of different RTE cereal brands. Finally, households may decide not to purchase any RTE
cereal brand, j = 0. By combining these purchase possibilities, the choice set faced during all

shopping trips in ¢ is C; = {0} U J, U (J; X J)\{(k1, ko) |k1 = ko }.%°

6.2 Model Specification

Any household 7 is observed going on several shopping trips, each taking place in a specific

store-week combination ¢ (our definition of market). The indirect utility of household i by

25The choice set C; also excludes those bundles that are never purchased during any of the shopping trips
in t. Even though all brands in J; have positive market shares by construction, some combination of brands
(J1,J2) from (J; x J:)\{(k1, k2)|k1 = k2} may not be observed to be jointly purchased.
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purchasing brand j € J; during shopping trip r in market ¢ is:

Uirtj = Wity + Eirtj

= 04 + Mitj + Eirts) (12)

pit; = —Prj exp(di a4 v;) + 1035

where w;; = 0y + pitj, ¢ is market t-specific average utility for RTE cereal brand j € Jy,
fit; is a household i-specific utility deviation from ¢;;, and €;,; is an idiosyncratic error term.
pt; is the price of brand j in store-week combination ¢, and df'a + v; is a vector of household
i-specific price coefficients made of two components: an observable part that is a function of
the household characteristics d (to be detailed in the next section) and an unobserved random
component v;. 7;; is an unobserved household i-specific preference for brand j, which is constant
across i’s shopping trips and potentially correlated across brands.

Specification (12) encapsulates the entire effect of price p; in the household i-specific 1.
In terms of the notation used in section 4.2, this implies Ay;(py;, 2¢5) = 0 and §;; = &;. Even
though we use household-level data, we face price endogeneity if, for instance, the producer of
RTE cereal brand j sets price p;; taking the average utility d;; into consideration. Our proposed
estimator essentially addresses this endogeneity problem by treating the average utility d;; for
each brand j in each market ¢ as a fixed effect.

The indirect utility of ¢ by purchasing bundle b during shopping trip r in market ¢ is:

Uirtb = E Uitj + Ui + Eiren

j€b
= Z(ét]’ + pitj) + I'b + Gb + €irep

jeb (13)
= Z 0pj + Ty + Z pitj + (d]y + Eib) + €irtb

j€b jeb

= Ob + it + Eirth,

where dy, = > ieb 0¢j + I'p is market t-specific average utility for bundle b, 14, is household
i-specific utility deviation from d;,, I';, is household i-specific demand synergy among the
brands in bundle b, and &;,4, is an idiosyncratic error term. The demand synergy parameter
;b = 'y +(p captures the extra utility household ¢ obtains from buying the RTE cereal brands
in bundle b jointly rather than separately. It is the sum of I'y,, common to all households,
and of G, = dly + (b, where dy is a function of observed household characteristics d] (to
be detailed in the next section) and @b is an unobserved random component. Because of

pure components pricing, i.e. pgp = 0, and the absence of other bundle-specific observed
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product characteristics, i.e. xp = 0, we constrain function g¢(-,-|3,;) = 0 (see Assumption
2).26 We attempt to empirically distinguish the relative contribution to I';y, of two alternative
mechanisms. In particular, we specify d]v to include measures of family size (to proxy for
preference for variety) and of average weekly shopping frequency (to proxy for shopping costs).

Finally, the indirect utility of household ¢ by choosing the outside option during shopping

trip r in market ¢ is assumed to be:
UirtO = &irto- (14)

Suppose that ;4 and the g;.4p’s are i.i.d. Gumbel. Express pyp = pan(5;) as a function of
the unobservable 3; = (Uz‘, U Ez) = (’Ui, (nij>jeJa (Eﬂo)beB)-27 Then, given f3; and ((st-LH a, 7, F) =
((9¢j)jes,, @, 7, (I'b)ben), household i’s purchase probability of b € C, during shopping trip r

in market ¢ is:
eOtbt+Hitb (Bi)

Sirtb (0t @, 7, 15 B;) = Zb’eC Ot i (Bi) (15)
t

We assume §; = (vi,m,@-) to be normally distributed and denote its c.d.f. by ®(-;Xr). Let
Yirb € {0,1} be an indicator for whether household i purchased b during shopping trip r in
market t, with Zbect Yitrb = 1. Let T; denote the set of markets for which we observe shopping
trips by household i. For each t € T;, define R;; as the set of shopping trips by household 7 that
took place in market ¢. By integrating over the distribution of (3;, we obtain the likelihood of

., )
i’s observed purchases y; = (Vitrb )teT; reRi beCy

Li<51J17 '-'6TJTaa7’yaF> 2F7y2) = / H H H (8iTtb(5tJt7a7’yvr;ﬁi))yi”b dq)(ﬂzaEF) (16)

teT; reR;+ beCy

By aggregating over the I = 2897 households, the likelihood function for the entire set of

observed purchases is:

2897
LI(61J17 "'5TJT705777F7 EF;yh "'7y1) = H Li((sl-]l’ ...(STJT,OL,’)/,F, EF7yi)' (17)

i=1

We estimate the demand parameters (413, ...073,, @, 7, 1", X ) on the basis of MLE (11) derived
from likelihood function (17).2% To get a sense of the practical advantages implied by our novel
demand inverse, in the current application the proposed MLE reduces the numerical search
(with respect to a standard MLE) from 12351 to 133 parameters, i.e. (a,v, [, Xp).

26We follow Nevo (2000, 2001) in assuming that RTE cereal producers set prices at the brand-level rather
than at the bundle-level (i.e., pure components pricing): households purchasing multiple RTE cereal brands
during the same shopping trip are assumed to pay the sum of the prices of the single brands.

27J and B are defined as, respectively, the union of all J; and of all (J; x J¢)\{(k1, k2)|k1 = ko} fort =1,...,T.

ZEven though (17) is expressed in terms of individual purchases (yi, ...,ys) rather than of sampled market
shares (31, ..., 37), it can be easily shown that the corresponding MLE satisfies the conditions of Theorem 6.
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Restricted Models. In what follows, we refer to the model specified in (15)-(17) as to the
full model of demand for bundles. To better evaluate the practical relevance of allowing for
complementarity, we also estimate two restricted versions of the full model.

In the first restricted model, we constrain I';;, = 0 in estimation for all i’s and b’s. A com-
parison of the full model with this first restricted model highlights the importance of controlling
for the demand synergies I';, while keeping everything else unchanged. Despite the absence of
demand synergies, this restricted model can still give rise Hicksian complementarity.2”

In the second restricted model, we rule out Hicksian complementarity by constraining I';;, =
—o0 in estimation for all i’s and b’s. In other words, choice sets are restricted not to include
any bundle. This amounts to specifying a standard model of demand for single RTE cereal
brands (along the lines of Nevo (2000, 2001)) with choice set C; = {0} U J; in each ¢. This
second restricted model is estimated on the basis of the same purchase observations as the other
two models. However, the observations are used differently: the second restricted model does
not differentiate between simultaneous (during the same shopping trip) and sequential (during

different shopping trips) purchases of different brands.

6.3 Estimates of Demand for RTE Cereal Bundles

In this section, we present our estimation results for the full model. We postpone a comparison
of the estimation results from the three different models to the next two sections, where we
discuss price elasticities and counterfactual simulations.

We capture observed heterogeneity in price sensitivity — exp(d¥a+wv;) by d, a vector of nine
mutually exclusive dummies indicating household i’s income group (low, medium, and high)
and family size (one, two, and larger than two). Unobserved heterogeneity in price sensitivity
is instead captured by the random coefficient v;, which we assume to be i.i.d. normal with
standard deviation o,. For each of the three estimated models, the top panel of Table 2 reports
estimates of the average price sensitivity E[— exp(dfa+uv;)|d$] for each value of d*. These results
do not seem to suggest any systematic heterogeneity in price sensitivity among households with
different incomes and family sizes.

We specify the RTE cereal brand-specific random intercepts as 1;; = 1; type +1ij, Where 1; type
captures household i’s unobserved and correlated preferences across cereal types {R, F'//W, S}
and 7);; captures i.i.d. unobserved preference for brand j. Remember that cereal type R refers
to “Regular,” F'/W to “Fiber/Whole Grain,” and S to “Added Sugar.” Note that any two brands

with similar ingredients will share the same 7; typ.. We assume 7;; to be distributed normal with

29In this first restricted model, the cross-price elasticities can still be negative because the choice set C; =
{0y UJ U Ty x T)\{(k1, k2)|k1 = ko} is not complete. C; would be complete if it included also the bundles
made of two units of the same brand. Gentzkow (2007)’s Proposition 1 at page 719, which states that a positive
demand synergy is necessary and sufficient for Hicksian complementarity, only applies to models with complete
choice sets.
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standard deviation o;;. Following Gentzkow (2007), we also assume (7; g, 7;,r/w 7i,5) to be dis-
tributed jointly normal with standard deviations and pairwise correlations denoted by, respec-
tively, oy, and corrype typer; type, type’ € {R, F)/W,S}. We allow single-person households
and multi-person households to have different joint normal distributions of (1 g, 7i,r/w, M,s)-
We assume 7);; and 1); type to be mutually independent.

The estimates of the distribution of 7;; and of the other random coefficients are reported in
the central panel of Table 2. Overall, the estimates are highly significant and underline the
importance of controlling for unobserved heterogeneity, not only in terms of price sensitivity, but
also of brand-specific random intercepts and of demand synergies (we return to these in more
detail below). Households’ unobserved preferences for healthier F'/WW and children S cereal
brands are positively correlated, while unobserved preferences for regular R cereal brands seem
to correlate negatively with both F'/WW and S cereal brands. Households of different family
sizes do not seem to have systematically different distributions of (; g, ;. r7/w, 0i,s)-

We specify the demand synergy of household ¢ for bundle b as:

Tib =Dy + d]v + Gy
=Ty + e 1{family size; = 2} + y>31{family size, > 3} (18)
+ vs1{normal shopping frequency,} + éb,

where 1{-} is the indicator function and “normal shopping frequency,” denotes whether the
average weekly shopping frequency of household i lies below the 95" percentile.?* Parameter
v captures systematic differences between the average demand synergies of households of family
size k and single-person households. We include family size in the specification of I';, as a proxy
for preference for variety. <, instead measures differences in the average demand synergies
between households observed to shop at a normal frequency, i.e. in the bottom 95% of the
distribution, and households who shop very often, i.e. in the top 5% of the distribution. We
control for normal shopping frequency in (18) as a proxy for larger shopping costs. These are
meant to rationalize the purchase patterns documented in Table 1: larger families may have
to satisfy more heterogeneous preferences within the household, while more frequent shoppers
may be less likely to purchase multiple brands on any shopping trip. @'b represents a ¢-specific
unobserved component of demand synergy for bundle b, which we assume to be i.i.d. normal
with standard deviation o;. @b allows for the possibility that the brands in bundle b have
positive demand synergies for some households and negative for others. Estimates of the I'y’s
are reported in Table 3, while estimates of the remaining demand synergy parameters are

reported in the bottom panel of Table 2.

30Tn our sample of households, the 95" percentile of the average weekly shopping frequency (i.e., the average
number of shopping trips in a week) is 3.67.
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Table 2: Demand Estimates for Full and Restricted Models

Full Model Restricted Model 1  Restricted Model 2

Fib =0 Fib = —00
Average Price Sensitivities
low income, family size = 1 —0.44 —0.49 —1.27
(0.164) (0.196) (0.180)
family size = 2 —0.47 —0.51 —1.30
(0.175) (0.202) (0.185)
family size > 3 —0.39 —0.38 —-1.17
(0.147) (0.151) (0.167)
medium income, family size =1 —0.47 —0.52 —1.29
(0.174) (0.210) (0.183)
family size = 2 —0.42 —0.46 —1.27
(0.157) (0.183) (0.180)
family size > 3 —0.49 —0.49 —1.31
(0.183) (0.195) (0.185)
high income, family size = 1 —0.39 —0.43 —1.20
(0.146) (0.173) (0.170)
family size = 2 —0.42 —0.45 —1.26
(0.157) (0.180) (0.179)
family size > 3 —0.40 —0.41 —1.25
(0.150) (0.165) (0.177)
Random Coefficients
price, oy, 0.36 0.39 0.14
(0.004) (0.004) (0.002)
brand intercepts, o5 0.87 0.87 0.81
(0.005) (0.005) (0.005)
demand synergies, o 13 0.06
(0.010)
Single-Person Households
Ong 0.50 0.47 0.20
(0.037) (0.046) (0.037)
0.54 0.52 0.65
Tnr/w (0.014) (0.024) (0.017)
Ong 0.96 0.90 0.97
(0.030) (0.034) (0.030)
COITR F/W —0.86 —0.84 —0.89
(0.014) (0.016) (0.012)
COITR, 5 —0.52 —0.60 —0.61
(0.042) (0.044) (0.036)
0.29 0.41 0.47
Cortr/w,s (0.042) (0.056) (0.044)
Multi-Person Households
Ong 0.10 0.37 0.45
y (0.016) (0.016) (0.015)
0.54 0.70 0.86
Tnr/w (0.008) (0.008) (0.009)
Ong 0.96 1.10 1.24
(0.017) (0.017) (0.015)
COITR /W —0.93 —0.91 —0.95
(0.006) (0.006) (0.004)
COITR, S —-0.79 —0.73 —0.78
(0.016) (0.015) (0.010)
0.73 0.81 0.85
COTLE/wW,S (0.019) (0.011) (0.008)
Demand Synergies, v
family size= 2, 2 0.14
(0.017)
family size> 3, 0.36
Y =023 (0.015)
normal shop. freq., vs 0.001
(0.012)
Notes: Each column of the Table reports estimates from one of three model specifications: the full model,
restricted model 1 (which constrains I';, = 0 in estimation), and restricted model 2 (which constrains
I';b = —oo in estimation, i.e. standard demand model for single brands). The top panel reports the

estimated average price sensitivity E[— exp(d§'a + v;)|d§*] for each value of df¥ and the corresponding

standard deviation (in brackets), computed as ,/Var[exp(d$a + v;)|d{]. The central panel reports es-
timates of the parameters characterizing the distribution of the random coefficients, while the bottom
panel those of the demand synergy parameters associated to different family sizes and weekly shopping
frequencies. For the estimates in the central and bottom panel, standard errors are reported in brackets.
Cereal type R refers to “Regular,” F/W to “Fiber/Whole Grain,” and S to “Added Sugar.”
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The estimates from Table 3 suggest that several pairs of RTE cereal brands have positive
I'y’s.3t Importantly for competition policy, as we will explore in the next section, there appear
to be positive I'y’s not only among brands within the same producer, but also among brands
sold by different producers. For example, the first column of Table 3 shows that single-person
households exhibit positive demand synergies between General Mills and most of the 15 re-
maining brands. Moreover, in line with the evidence from Table 1, the estimated demand
synergy shifters v, and >3 from the bottom panel of Table 2 are positive and increasing in
family size, i.e. 7>3 > 72. We interpret this as evidence of preference for variety: larger fam-
ilies exhibit more positive demand synergies among different RTE cereal brands than smaller
families. Intuitively, larger families may be more likely to purchase different brands in order to
satisfy more heterogeneous RTE cereal tastes within the household (e.g., adults and children of
different ages). Differently, 75 is positive but not significantly different from zero, highlighting
that—after controlling for everything else—households with different shopping frequencies are
similarly likely to purchase bundles of different brands on any shopping trip. The standard de-
viation oz of the random coefficient fib is estimated to be small but significant, suggesting the
presence of household-specific heterogeneity in demand synergies beyond differences in family

size and weekly shopping frequency.

Evidence in Support of Assumption 2. As discussed in Remark 1, Assumption 2 can
be verified in practice. In Appendix 8.7, we present a specification test for Assumption 2 that
builds on partial identification methods. A rejection of the test is evidence against Assumption
2. In the context of our empirical illustration, the test statistic evaluated at the estimates from
Tables 2 and 3 is 9910, which is smaller than the critical value for rejection at the 10% level,
21081 (a chi-square with 20819 degrees of freedom). This strongly suggests that ©,(T) in (31)

is not empty, providing reassuring evidence in support of Assumption 2.

6.4 Hicksian Complementarity and Demand Synergies

Table 4 reports the average (across markets) estimated own- and cross-price elasticities of
demand from the full model. Each entry reports the percent change in the brand-level market
share of the column RTE cereal brand with respect to a 1% increase in the price of the row RTE
cereal brand. Given the estimated market share function S, for each b € C;; in market ¢, the
estimated brand-level market share function of brand j € J; is defined as 5, = Zbecﬂ; jcb Stb.
Table 4 provides pervasive evidence of Hicksian complementarity. For example, the first column
shows that households exhibit statistically significant complementarity between General Mills
and several of the 15 remaining brands. According to intuition, Hicksian complementarity

seems to be more pronounced among those brands with larger positive I'y, (see Table 3).

3INote that these estimates come from the full model, neither of the restricted models allows for demand
synergies. See the Table notes for an interpretation of the missing values.
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In our specification, Hicksian complementarity among different RTE cereal brands can
be explained by alternative mechanisms: correlation in the unobserved preferences for sin-
gle brands (n;;), preference for variety (v, and 7>3), shopping costs (7;), bundle-specific fixed
effects (I'py’s)—which, among other things, may account for synergies in consumption—, and
residual unobserved heterogeneity (Etb). To shed light on the relative contributions of these
mechanisms, we sequentially “switch them oft” from the estimated full model and re-compute
the cross-price elasticities. Table 5 summarizes the results.

Different from Gentzkow (2007), the unobserved preferences for single brands (7;;) con-
tribute to the substitutability among RTE cereal brands (—2.00%), possibly because of the
negative correlation between 7; g and both 7; p/w and ;s (see Table 2). The average of the
cross-price elasticities instead increases (becoming less negative) as we progressively switch off
the various components of I';p: residual unobserved heterogeneity (+0.09%), shopping costs
(+0.05%), and especially preference for variety (+15.22%).

However, the most dramatic changes occur when we further set the bundle-specific fixed
effects I'y’s either to zero (+54.94%) or to —oo (+31.69%). While this is expected in the case of
I'p = —oo (standard demand model for single brands), the average of the cross-price elasticities
already changes from negative (complementarity) to positive (substitutability) when setting
each I';, to zero. Collectively, these results suggest that most of the estimated complementarity
is explained by preference for variety and by the bundle-specific fixed effects.

Standard models of demand for single brands rule out Hicksian complementarity among
different RTE cereal brands and restrict the cross-price elasticities to be positive. Ignoring the
presence of complementarity among different brands may lead to incorrect demand estimates
and misleading price elasticities. In order to quantify the extent of this problem, we compare
the price elasticities computed on the basis of the estimates from the full model (Table 4) to
those computed on the basis of the estimates from the restricted models (Supplement Tables
8 and 9).32 Several of the estimated cross-price elasticities have opposite signs, mistakenly
suggesting substitutability rather than complementarity among different pairs of RTE cereal
brands. To further explore the economic consequences of accounting for complementarity in
demand estimation, in the next section we compare some counterfactual simulations implied

by estimates from the full model to those implied by the estimates from the restricted models.

32Demand estimates from the full model can be found in the first column of Table 2 and in Table 3, while
those from the restricted models can be found in the second and third columns of Table 2 (the restricted models
do not include demand synergies).
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Table 5: Cross-Price Elasticities and Demand Synergies

Average Relative Change

Estimated Full Model —0.0126 —

Estimated Full Model, then switch off n;; —0.0130 —2.00%
Estimated Full Model, then switch off 7;; and (i, —0.0130 0.09%
Estimated Full Model, then switch off n;;, é«b, and v, —0.0130 0.05%
Estimated Full Model, then switch off 7;;, Cibs Vs, V2, and >3 —0.0100 15.22%
Estimated Full Model, switch off n;; and set I';, = 0 0.0007 54.94%
Estimated Full Model, switch off 7;; and set I'y, = —o0 0.0068 31.69%

Note: The Table reports the average (across markets) of the cross-price elasticities of all pairs of different RTE cereal brands.
All the cross-price elasticities are obtained from the full model, where the estimated parameters in the specification of I';p
from (18) are “switched off” sequentially. For example, the third row is obtained from the estimated full model by setting
the standard deviations of n;; and Cib to zero, while the fourth is obtained by further setting the estimated 7s to zero. The
column “Relative Change” reports the percent change in the average of the cross-price elasticities from any two consecutive

rows: for instance, the relative change from the fourth row to the fifth is 15.22%.

6.5 Counterfactuals and Comparisons with Standard Model

Here we evaluate the economic relevance of allowing for Hicksian complementarity by comparing
some counterfactuals from the full model, with I';, as in (18), to those from two restricted
models: restricted model 1, which constrains I';;, = 0 in estimation, and restricted model 2—
the standard demand model for single brands—, which constrains I';;, = —oo in estimation
thereby forcing substitutability. For the counterfactuals, we take the observed scenario of pure
components pricing and oligopolistic competition among RTE cereal producers as a reference
(see Nevo (2000, 2001) for the institutional details), and simulate the changes in prices, profits,
and consumer surplus implied by different market structures.®

The results of these counterfactuals are reported in Table 6. The Table reports relative
changes in prices (top panel), profits (central panel), and consumer surplus (bottom panel)
associated with each of three counterfactual market structures (columns) as simulated by each
of the three estimated models (rows). We consider four alternative market structures: “com-
petition,” where we suppose that each single brand is owned and sold by a different (fictional)
producer (for a total of 16 producers); “oligopoly,” which corresponds to the observed oligopolis-
tic competition among six producers; “duopoly,” where we suppose that five of the producers
(General Mills, Kellogg’s, Quaker, Post, and the Small Producers) perfectly collude and com-

pete as one against the private labels (whose prices are chosen by the retailer); and “monopoly,”

33Given our estimates of demand and marginal costs, we simulate each profile of counterfactual prices—
independently for each market—using the necessary first order conditions for a Nash equilibrium of the corre-
sponding pure components pricing game. For example, in a monopoly, the same agent chooses a specific price
for each single brand so to maximize industry profits.
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where we suppose that the six producers perfectly collude as a monopolist.

The simulation results from the full model confirm the classic insight by Cournot (1838):
mergers between producers selling complementary brands can be socially desirable. In pure
components pricing, the prices of all single brands—and consequently of all bundles—decrease
as the level of competition weakens: while industry-level profit remains basically unchanged,
consumer surplus increases with market concentration. As market structure becomes more
concentrated, producers internalize more of the externalities due to complementarity and con-
sequently choose lower prices, as can be seen from the relative increase in consumer surplus
from —5.27% for competition to +7.62% for monopoly.

Strikingly, the restricted models produce opposite predictions: as market structure becomes
more concentrated, prices increase and consumer surplus decreases. As shown in Supplement
Tables 8 and 9, both restricted models predict positive cross-price elasticities and therefore sub-
stitutability among any pair of RTE cereal brands. Not surprisingly then, any merger between
producers selling substitutable brands will lead to higher prices and ultimately hurt consumers.
These results underline the economic importance of allowing for both substitutability and com-
plementarity in demand estimation: while estimates from the full model provide supportive
evidence for the classic Cournot (1838)’s insight that mergers can be welfare enhancing, those
from a standard model that does not allow for Hicksian complementarity can only predict that

mergers will be detrimental for consumer surplus.
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Table 6: Counterfactual Simulations

Competition Oligopoly Duopoly Monopoly

Price change

Full Model +8.08% 0% -5.03% —5.34%
(1.35%) (1.16%) (1.65%)

Restricted Model 1, ', = 0 —0.54% 0% +3.69%  +5.26%
(0.03%) (0.21%) (0.30%)

Restricted Model 2, I';, = —o0 —0.56% 0% +4.17%  +6.06%
(0.10%) (0.72%) (1.07%)

Profit change

Full Model —0.47% 0%  +0.27%  +0.30%
(0.04%) (0.03%) (0.05%)

Restricted Model 1, I';p, = 0 —0.03% 0% +0.10%  +0.12%
(0.002%) (0.003%) (0.004%)

Restricted Model 2, ', = —oo —0.36% 0% +1.64%  +2.00%
(0.01%) (0.03%) (0.03%)

Consumer Surplus change

Full Model —5.27% 0% +6.29% +7.62%
(0.22%) (0.37%) (0.62%)

Restricted Model 1, I';;, =0 +0.49% 0% -3.23% —4.54%
(0.01%) (0.04%) (0.06%)

Restricted Model 2, I';, = —o0 +1.53% 0% —11.94% —16.41%
(0.01%) (0.07%) (0.09%)

Notes: The Table reports average counterfactual changes in prices (top panel), profits (central panel), and con-
sumer surplus (bottom panel) of pure components pricing under alternative simulated market structures with
respect to the observed oligopoly. Each column refers to a specific market structure: the second column refers to
the observed oligopoly in the data while the others refer to simulated counterfactuals (see text for details). Each
row refers to one of three model specifications: the full model, restricted model 1 (which constrains I';p = 0 in
estimation), and restricted model 2 (which constrains I';p, = —oco in estimation, i.e. standard demand model for
single brands). The standard errors associated to the estimated relative changes are in brackets and obtained from

a parametric bootstrap as in Nevo (2000, 2001) with 50 draws.

7 Conclusions

We present a novel identification and estimation strategy of a mixed logit model of demand for
bundles with endogenous prices given observations on bundle-level market shares. We propose
a novel demand inverse in the presence of complementarity that allows to concentrate out
of the likelihood function the (potentially numerous) market-product specific average utilities
and to substantially alleviate the challenge of dimensionality inherent in estimation. Finally,
we estimate demand and supply in the US ready-to-eat cereal industry, where our estimator
reduces the numerical search from approximately 12000 to 130 parameters. Our results suggest
that ignoring Hicksian complementarity among products often purchased in bundles may result
in misleading demand estimates and counterfactuals.

Our identification and estimation arguments are developed for mixed logit models with
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parametric distributions of random coefficients. In light of the well known challenge of dimen-
sionality that affects the estimation of demand for bundles (Berry et al. (2014)), our priority
is to propose estimation methods that can be practically useful in applications that involve
more than a few products. While our parametric assumptions clearly help in alleviating the
challenge of dimensionality in estimation, they require the econometrician to take a stand on
the functional form of the distribution of random coefficients. An avenue for future research is
the study of the semi-parametric identification of mixed logit models of demand for bundles,
where the distribution of random coefficients is allowed to be non-parametric and more robust
against misspecification.

The implementation of our methods requires the observation of bundle-level market shares
rather than of the more readily available aggregate market shares of single products. Even
though direct measures of bundle-level market shares are widely available only for a few in-
dustries, such as media and telecommunication (Crawford and Yurukoglu (2012) and Crawford
et al. (2018)), it is usually possible to construct indirect measures of bundle-level market shares
from samples of household-level purchases (Gentzkow (2007), Kwak et al. (2015), Grzybowski
and Verboven (2016), Ruiz et al. (2017), and Ershov et al. (2018)). In some important indus-
tries, however, only measures of aggregate market shares of single products are widely available
(e.g., the car industry, see Berry et al. (1995, 2004a)) even though households are known to
purchase bundles of products (Manski and Sherman (1980)). When only aggregate market
shares of single products are available, our proposed methods do not apply. An important
direction for future research is thus the identification and estimation of models of demand for
bundles on the basis of aggregate market shares of single products (see Sher and Kim (2014),
Allen and Rehbeck (2019), and Wang (2019)).
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8 Appendix

8.1 Hendel (1999) and Dubé (2004) as Special Cases of Model (3)

In this Appendix, we illustrate that the model of preference for variety originally proposed by
Hendel (1999) in the context of demand for computers and then applied by Dubé (2004) in the
context of demand for soft drinks is a special case of model (3). In particular, Hendel (1999)’s
model is a version of model (3) in which each demand synergy parameter I';y, is restricted to
be negative in a special way. Hendel (1999)’s model is about individuals who go shopping less
often than they consume. During any purchase occasion, individuals may buy several units of
different products in anticipation of the various consumption occasions they will face before the
next shopping trip. Suppose there are J different products and denote by J their collection.
Denote by 0 the outside option, the choice of consuming none of the J products. Denote by
R; € N the maximal number of units of any product that individual ¢ can consume during any
consumption occasion, and by K; the number of consumption occasions in between any two
shopping trips. On any consumption occasion, Hendel (1999) assumes that different products
are perfect substitutes, so that each individual will effectively choose a certain number of units
of at most one product j. As a consequence, the actual choice set faced by individual 7 on any

consumption occasion can be defined as:

A =A{(j,.j): forjed, ¢=1,..,R}U{0},
N——

q

where ¢ is the number of units of any product j that could be consumed on this consumption
occasion and 0 is the outside option. Then, individual i’s choice set during any purchase

occasion 1s:

where each element of C; is a bundle of size up to R; x K;. To ease exposition, we represent
each bundle b € C; by b = (j, qx) kK:"l, where (ji, qx) refers to the chosen product and to the
corresponding number of units on consumption occasion k. Denote by (jk,qr) = (0,0) the
decision of not consuming anything on consumption occasion k.

For the rest of this Appendix, we focus on Dubé (2004)’s notation, which specializes Hendel
(1999)’s model to the case of demand for bundles in grocery shopping. Following Dubé (2004)’s
equation (2) at page 68, denote by (V;;,xqx)™S; the indirect utility of individual 7 from choosing
(Jk» qx) on consumption occasion k: W;;, 1 is i’s perceived quality for product j; on consumption

occasion k, S; is an i-specific scaling factor, and a € (0, 1) captures the curvature of the utility
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function.®® Moreover, denote by p;, the price of one unit of product ji and by y; the income of
individual 7. Then, from Dubé (2004)’s equation (6) at page 69, the indirect utility of individual
i from purchasing bundle b = ((j1,¢1), ..., (Jx,, qx;)) € C; is:

Ki i
Ub =Y (Vikq)*Si — ijk% + i

=1 =1

= (Wijrdn)Si + > (Vi) *Siqe — > (Wijr) S — D _ pjuts + i
=1 k=1 =1 =1
K Ki i qk

= Z( zjkak S + Z Z z]kk aS Z Z]kk S idk — Z ijk + Y; (19)
k=1 k=1 g=1 k=1 g=1
K; qk K;

:ZZ k)" Si — Dji] +Z i) “Silar — ] + v

q=1 k=1

= ZZ Uij. ke + Fib + Vi,
k=1 ¢q=1

=

where w;j,x = (V4j,6)*5 — p;, and Ty, = ZkK:il(\Ifijkk)o‘Si[q,‘j — qr). The sum over g on the
right hand side of (19) is zero when ¢, = 0. Note that Dubé (2004) assumes V;;,, > 0. As
a consequence, the demand synergy I';, will be constrained to be strictly negative as long as
Wiji

positive demand synergies and without the i.i.d. Gumbel error terms.

r > 0. Dubé (2004)’s demand model is therefore a special case of model (3) with non-

8.2 Proof of Lemma 1

To prove the first statement, we show that given a distribution function for g;;, F(-; ¥%), there
exists a unique 8, € R for t = 1,..., T that solves s;(6}; ¥%) = 4;. This is equivalent to showing
that given F(-;X%), the market share function s,(-; ¥%) is invertible for ¢ = 1,...,T. Because
our arguments with regard to the first statement do not depend on whether F' is parametric or
non-parametric, hereafter we denote F'(-; 3%) simply by F.

Given a distribution F', for market ¢ = 1, ..., T, define the Jacobian matrix of the market

share function s;(-; F') from (3) by:

&st aStb
J(0;; F) = = (0, F) = ( ((5’;F)> : (20)
n 86 ' aétb/ ' b,b’eCy1

34Note that Dubé (2004)’s equation (2) at page 68 reports the direct utility function defined over the entire
vector (qjk)le of possible units for each product j € J on consumption occasion k. However, because of the
assumption of perfect substitutes mentioned earlier, positive units g;; > 0 will be chosen for at most one product
j on any consumption occasion k. For this reason, here we simplify the discussion and immediately consider
the indirect utility of choosing (j, gx) With ¢j,x = g.
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Corollary 2 from Berry et al. (2013) provides sufficient conditions for the invertibility of differ-
entiable market share functions. We now verify that market share function (3) satisfies the two
sufficient conditions of Corollary 2 from Berry et al. (2013): (a) weak substitutes (Assumption
2 in Berry et al. (2013)) and (b) non-singularity of the Jacobian matrix J:(d;; F)). We first
compute J;(0;; F') for b,b’ € Cyy, b # b’

g;b (05 F) = /Sitb(@:; Bi) (1 — s (053 Bir) )AF (Bir)
tb
(21)
25853 (523 F) = - / Sitb((s;; @Lt)sz'tb' (5;,3 ﬁz‘t)dF(ﬁit)-

As discussed by Berry et al. (2013), the weak substitutes condition does not rule out comple-
mentarity in a discrete choice model in which alternatives are defined as bundles, as in demand
model (3). In practice, the weak substitutes condition requires that for all ¢t = 1,...,7 and
b € Cyu, sw(d;; F') be weakly decreasing in 6;,, for any b’ # b, b’ € C;. This is immediate
from the second equation in (21). In what follows, we verify that J;(d;; F') is non-singular.

Define the Cy x 1 vector s;(6}; Bit) = (Sim (55 Bit) Jvec,,- By using (21), we can re-write
J:(0y; F') as:

Ji(0; F) = / [Diag<5it(5£§ Bit)) — sit(03; Bie)sie (07 Bz‘t)T] dF (Bit), (22)

where Diag(s;(07; Bi¢)) is a diagonal matrix with the elements of s;;(d7; 5;;) on the main diagonal.
We first show that the symmetric matrix Diag(s;(6}; Bi¢)) — it (}; Bit)sit (015 Bi) T is positive-
definite. This is equivalent to showing that its eigenvalues are all positive. Note that every

element of s;(9;; B;;) is strictly positive and that their sum is strictly less than one:

Sitb(d’e; Bit) >0,
Z Sitb((s;;ﬁit) < L

bGCﬂ

Denote any of the eigenvalues of Diag(s;;(0}; Bit)) — sit(01; Bit)sit(}; Biz) T by A and its correspond-
ing (non-degenerate) eigenvector by . Without loss of generality, suppose that the maximal

element of vector z in absolute value is its first element z; # 0:

|z1| > |xp| for any b € Cyy.
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Then, we have:

[Diag(sit(&; Bit)) — Sz’t((%; 5it)5it(5£§ @'t)T} z =z
— Sz‘tb((sl/f; ﬁit)xb - Sitb((sjls;ﬁz‘t) Z Sitb'(5£; 6it)xb’ = ATy, forallb e Cy

b’eCy
— Sitl(é;; Bit)xl - Sitl(éz; 51)5) Z Sitb’(&;; Bit)xb, _ )\ml
b’eCu
! Sitb! 5/. it | Lo’
— A= Sitl((s;;ﬁit) (1 — Zb €Cu 7': ( t)/th) b )
1
! Sitb! 5/' it | T’
> Sztl t,ﬁlt ( ‘Zb €Cu ”b( taﬁzt) b )
L1
Sitb (O Tr
> Sitl 5tﬂﬁzt (1 Z b’eCu th( tuﬁzt” b ’)
|21
b'GCtl

>0

Any eigenvalue of Diag(s;(0}; Bit)) — it (}; Bit)si(01; Bi) T is thus strictly positive: for any v €
RC’zl
UT[Diag(sit((S;; ﬁzt)) - Sz‘t((;;% ﬁit)sit(éllf; Bit)T]U > 0.

As a consequence,

UTJt(CSé; F)U = /UT[Diag(Sz‘t(CS{»; /th)) - Sit(5£§ /Bit)sit(éllf; Bit)T]UdF(ﬁit)

> 0.

Thus, given F, for any 6] € R J,(d}; F') is positive-definite and non-singular. Because both
conditions (a) and (b) of Corollary 2 by Berry et al. (2013) are satisfied, then the market share
function s;(d}; F') is invertible with respect to d}, for t = 1,...,T. This completes the proof of
the first statement.

We now prove the second statement of the Lemma. According to Assumption 1, the den-
dF(Bit;)
apis
s¢(0; %) — 4; is continuously differentiable with respect to (07, 4;, ¥%). As we showed above,

Blee(%i2p)—21) B9 S = (5o 5r) J:(6; F'(+; X)) is invertible. Then, accord-

the Jacobian matrix 5
ing to the Implicit Function Theorem, in a neighbourhood of (4, 4¢, X ), for any (47, 3% ) there

sity function is continuously differentiable with respect to 7. As a consequence,

exists a unique &, such that s,(0);X%) = ) and s; ' (4]; %) = d is continuously differentiable

with respect to (47,3%). This completes the proof of the second statement.
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8.3 Proof of Rank Regularity Property

Without loss of generality, suppose that Oy C T is a compact set, where T C R+ is a

om(3)

topological space of RF*?. Moreover, according to Assumption 1, om is continuous with

oy
respect to 3’ € Y. According to Property 4 from Lewis (2009), the set of rank regular points
for 8"5(;,/) is open and dense in Y. This completes the proof.

8.4 Preliminaries for Theorem 1

Here we report a preliminary Lemma useful to prove Theorem 1.

Lemma 2. If Assumptions 1 and 2 hold, and the Jacobian matriz a(;l)

w_y. 8 of full column

rank, then ¥ is locally uniquely determined by moment conditions (9).
Proof. The differentiability of moment conditions (9) with respect to > follows from the second
statement of Lemma 1 and the differentiability of g(X,) with respect to 3, in Assumption 2.
It then suffices to show that the true ¥ is the unique local solution to m(%’) = 0. From the
definition of model (3), m(¥X) = 0. We prove the result by contradiction.

Suppose that 3 is not the unique local solution to m(¥X’) = 0. As a consequence, there
exists a sequence of ¥y such that Xy — ¥ as N — oo, and m(Xy) = 0. Because m(¥') is
continuously differentiable in a neighbourhood of ¥’ = ¥, by applying the first-order Taylor

expansion, we have:

om(X’
m(Ex) = m(D) + 22D (m - 5) - of| Sy - ),
=3
om()|  Iy-% oSy -3 (23)
oYY 2/22|2N_2| |EN—Z|

where o(|Sy — ) is such that lim 2Ex"2) — (. Note that EN = . belongs to the unit
N—oo DINERN
sphere in RP*P which is compact. Then, there exists a subsequence {%} and v €
4

R+ with |v| = 1, such that % — v. By applying the second equation of (23) to the
4
subsequence {%}, and by combining Xy, — X and the continuous differentiability of
£

om(%) _ om(X) .
o sl = 0. Because oy sy 18 of full

m(-) in a neighbourhood of ¥, we obtain

column rank, any vector x € RP*P that satisfies g a(;,‘v) sv_x® = 0 must be zero. Then v =0,
which contradicts the fact that |[v] = 1. As a consequence, ¥ is the unique local solution to
m(¥) = 0. m

8.5 Proof of Theorem 1

Sufficiency. We prove sufficiency by contradiction. Suppose that model (3) is not locally

identified: there exists a sequence of solutions to system (4), (07y,, ..., o0y, TN, EN) # (d13,, ..., 073, T, 2)
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for any N, such that (5{\51, ...,5]TVJT,TN,ZN) — (6134, -, 0735, 1, 2) as N — oo. Applying (6)

and (7) to each element of the sequence, one obtains:

6%(Fg) + g(xtbaptb; zéV) = 5;31(375; Zg),
55\-] = st_jl(dt;EN) jEb,

N N
Ty = sp (3 50) = > 55" (3 58) — (2w, piv; 5 )
Jj€b

(24)

Then, by constructing moment conditions (9) for each element of the sequence, we have
om(z")

o Ixr=x
rank, according to Lemma 2, then 3 is uniquely locally determined by moment conditions

(9). Hence, there exists Ny such that for all N > Ny, ¥V = Y. Because of the third
equation of (24), then for all N > Ny, 'Y = I'},. Moreover, because of the first two equa-
tions of (24), we have §) = dg,, for all N > Ny, t = 1,..,7 and b € Cy. As a con-
sequence, ((5{\_[]1,...,(5ZTVJT,FN,EN) = (013, -, 073,,1,2) for all N > Ny, which contradicts
(07, ...,5¥JT,FN, YN £ (8134, -y 073,, T, ) for any N.

m(¥X)|si—sy = 0 for any N. Because the Jacobian matrix is of full column

Necessity. To simplify notation, denote the number of moment conditions » ) i, 52 (| Th| —

by () and the rank of =5~ om 32/ ) s by r. According to the definition of rank regularity in footnote
11, there exists a neighbourhood of the true 2, U, such that rank(™ 62, ) = rank( 622,)) g =T

for each ¥’ € U. By applying the Constant Rank Theorem at ¥’ = 3, there are open sets
Up,Uy, C RPFP and U3 ¢ R? and diffeomorphisms ¢ : U; — U, , 1 : U3 — Us; such that
YeU cUandyomog¢ ()= (z,...,2.,0,...,0) for all 2’ € Uy.?

(Y

Define z = (21, ...,zp1p) = ¢(X) and a sequence {xN = (zV,...,a¥, p)} such that =) = z,,

for £ =1,...,r and ) =z, + %, for N large enough so that zV # x and 2V € U,. Note that

Yvomoo¢ Hz) = (21,..2,,0,...,0)
= (2, ..2Y,0,...,0) (25)

T

—pomog(a")

and that
Ypomog Hx)=vomog (X))
— pom(s) (26)
= (0).
As a consequence, ¥ o m o ¢~ 1 () = (0). Because v is a diffeomorphism, we obtain

m(¢~t(2)) = 0. Because ¢ and its inverse ¢! are diffeomorphisms and z # 2V — z = ¢(X)
as N — oo, we construct a sequence XV = ¢~ 1(zV) — ¢7'(x) = ¥ with ¥ # 3 such that

35For the details of the Constant Rank Theorem, see Theorem 7.1 by Boothby (1986).
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m(XN) = 0 for each N. According to (24) from the proof of sufficiency, given XV, we can
construct a (67 , ..., 00, 'V, XN) such that it is a solution to (4). Consequently, model (3) is

not locally identified and this concludes the proof.

8.6 Proof of Corollary 1

’ , n1T
Because ai;,(; ) sv_y, 18 of full row rank, then the positive definite matrix [&g—g)] [aig—g)] S
. . . . 8m(2/) 6m(2/) T . . .
is not singular and its determinant Det 557 557 s_y, | 18 positive. Moreover, since

/ / / T
8’:;(22, ) is continuous with respect to X', Det (|:8m(2 )} [8m(2 )] ) is also continuous with respect

(934 [2)34

to ¥’ and is positive in a neighbourhood of ¥’ = Y. This implies that 8"5(;,) is of full row rank
in a neighbourhood of ¥’ = ¥, and its rank, rank (%;l)) , is constant and equal to the number

of rows in 8”5(22,/) |2':2' 673(22,l). Note that the number of

67(3(22//) sy_s, 18 equal to the number of moment conditions » ., .2 (|Th| — 1) and

it is strictly smaller than the dimension of . The latter is equal to the number of columns in

om(X) om(X')
a7 }2/22' Then, == |w_y

is not locally identified and this concludes the proof.

Consequently, ¥ is rank regular for

rows in

is not of full column rank. According to Theorem 1, model (3)

8.7 Testing Procedures for Assumption 2 and Assumption 3

In this section, we develop testing procedures for Assumptions 2 and 3 on the basis of partial
identification methods. For a given subset of markets Ty C T, the identification set of 8 =

((0t3,)tet,, I', Xp, Ey) is defined by the moment equalities:
s (0(T + 9:(X9)); XF) = b, (27)

fort € Toand b € Cyy, where gt(Eg) = (g(l‘tb,ptb; Zg))bGCtQ and 6t(r+gt(zg>> = (5t1; ey Oty <5tb<rb+
(T, Pib; £y)))bec,, ) We denote by O(Ty) the identification set of § defined by (27) and by

Q((3¢)ter,,0') the following criterion function:

Q((3)iee, 0') = Y (se(0U(T" + go(2))): Bp) — 90) T (66T + 90(5)): Sp) — 21). (28)
teTo
Note that Q((¢)et,, @) = 0 if and only if & € ©(Ty). Denote by I, the number of individuals

in market ¢ observed to choose b and by 34, = Ith the corresponding observed market share.

As I increases to infinity, dup — 44 and \/_7(3t — 3¢) 2 N(0,) fort =1,....T, b € C;, where

Qt = (wtbb’)b,b’ECm with Wibh! = dtb(l — dtb) when b = b’ and Wibb! = —JtbItb’ otherwise.
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Denote by (), an estimator of O, that satisfies ; & Q, and \/T(Qt — ) = 0,(1).%® We then

define the sample counterpart of criterion function Q(-) as

Qr(()iery, ) = D (s:(0)(T" + gu(2))): Tp) — 3% (su(8(T + 9u(5})): Bp) — 30). (29)

teTyo

Testing Procedure for Assumption 2. In this section, we maintain Tqg = T. Note that
Assumption 2 holds if and only if ©(T) # (), i.e., there is at least a profile of 6 that satisfies

moment equalities (27). Hence, we propose a specification test on the basis of the following

hypotheses:
Hy : O(T) # 0 versus H; : ©(T) = 0. (30)
Denote by qZ . the 1 — a quantile of X2 (ZteT Cﬂ) and define the following random set:
OUT) = {#/ € ©: 1-Qul(3)ien,0) < a° o} (31)

If ©7(T) = 0, then we reject Hy from (30).

Proposition 1. Under Hy from (30), limsup sup Pr[0;(T) =0] < a.
I—00 0'€6(T)

Proof. Under Hy from (30), for any 6’ € ©(T), we have:
Pr[©/(T) = 0] <Pr[0 ¢ ©,(T)]
= Pr |:I . QI((gt)tET; 9/> > qlz?t:T Ct1:|

—Pr [Z [\/Y(at - Jt)]T ;! [\/f(at - 3t)] > gt Cﬂ] .

teT

(32)

Since € % Q, (and hence Q7' 5 Q7Y and VI(3, — ;) 2 #(0,€), for t € T, we obtain:

T .

S Vi3] 07 Vit - )] 4 (Zcﬂ)

teT

Note that the probability on the right-hand side of (32) converges to o and does not depend

on . Then,

limsup sup Pr[0;(T)=10] < a.
I—00 0'€0(T)

The proof is completed. O
36Such an estimator can be ), = (Dtbb! )b,b’eC,y » Where Wipty = dib(1—3sp) when b = b’ and Wby = —3Iib iy
otherwise.
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Testing Procedure for Assumption 3. In this section, we assume that O(T) # () and
therefore that ©(Ty) # () for any Ty C T. Given Ty, we first derive a consistent estimator for
@(T(]):

Lemma 3. Define a sequence of random sets:

%(GI> = {9/ € @ - Q[((gt)tETmel) S a]}7
where a; > 0 satisfies ar — oo and % — 0. Then,

lim inf Pr[O©(Ty) C €(as)] =1

I—000’€6(Ty)

and

lim sup dy(©(Ty), €(ar)) =0,

I—}OO@/eg(TO)

where dg (-, -) is the Hausdorff metric: dp(A, B) = sup,c 4 infrep |a — b| 4+ supyepinfaea |0 — al.
Proof. See Theorem 3.1 by Chernozhukov et al. (2007). O

The choice of a; is up to the econometrician. For example, one can choose a; = Inl (see
Chernozhukov et al. (2007) for a detailed discussion). In what follows, we focus on situations
in which ©(Ty) contains only interior points of ©. While Assumption 3 is abstract and not
easy to test directly, we propose the following Condition and show that it implies Assumption
3:

Condition 1. There exists Tog C T such that %;TO) 1s of full column rank when evaluated
at any of the solutions to m(3'; Ty) = 0.

Remark 4. Denote by ©x(Ty) the set of solutions to m(X'; Tg) = 0. Since the true parameters

Yo € Ox(Ty), Condition 1 implies that %E,FO) 18 of full column rank when evaluated at

¥ =%y. As a consequence, model (3) is locally identified according to Theorem 1.

Remark 5. As shown in section 3, 8’ € ©(Ty) holds if and only if m(¥'; Tg) = 0. Then,
Ox(Ty) is the projection of ©(Ty) along the dimensions of 3. Moreover, because of Lemma
3, the projection of €(a,) along the dimensions of ¥ also defines a consistent estimator for

Ox(Ty) which covers asymptotically ©x(Ty) with probability 1 and that we denote by Ex(ay).
The next Proposition shows that Condition 1 is sufficient for Assumption 3:
Proposition 2. If Condition 1 holds, then Assumption 3 holds.

Proof. We prove this by contradiction. Denote the solution set of m(3'; Ty) = 0 in Oy by S.

Suppose that S contains infinitely many elements. Because S is a closed subset of the compact
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set Oy, S is itself compact. Consequently, because S has infinitely many elements, then there
exists an accumulation point ¥ € S: in any neighbourhood of ¥, we can find another ¥, € S,
i.e. another solution to m(¥’; Tg) = 0. Due to Assumption 3, we know that at X € S, the

am(>';To)

corresponding Jacobian matrix =5~ is of full column rank. Then, locally, ¥’ = X

wr=5)
must be the unique solution to m(X'; Ty) = 0. This contradicts ¥f, being an accumulation

point in S. O

We then propose a test for Assumption 3 on the basis of the following hypotheses:
Hy : Condition 1 does not hold. versus H; : Condition 1 holds. (33)

Hy from (33) is equivalent to the hypothesis that there exists some 6 € O(Ty) such that
Om(3'5To)

55— is rank deficient when evaluated at ¥' = (X7, 37 ). Define the following function:

Assumption 6. Suppose that J((3])iet,y, X') : XteT, St X O — R, U {0} satisfies:
e J>0.
e J =0 if and only if %;TO) 1s rank deficient.

where 8 = {37 € R 5, > 0 and Y o, 90, <1, b€ Cy .}

Example 1. The determinant function

(B ()

)

J((3})tery, X') = Det <

Example 2. The minimal eigenvalue function

. Om(X; To)\ " [ Om(X';T)
T ) )
‘]((d;&)tETm Zl) - |§\‘n:fl A [( oYy oYY >\’
where X\ is unit vector of dimension P+ D.
Define the criterion function J*((3})ier,) =  inf  J((3;)ieTy, &'). Note that J*((3¢)ier,) =0

3 €05 (To)
if and only if Hy from (33) holds. We then propose the following test statistic:

Ji((3)ier,) = _ inf  J((31)iem,, X) (34)

/€6y (an)
and the next two Theorems establish its properties.
Theorem 7. Suppose Assumptions 1, 2 and 6 hold. Moreover, \I(3; — 3;) LN N(0,8) for

teT.

56



o If J is continuous in Xer,S: X O, then JH(3)er,) — J((3)tex,), uniformly for
0 € ©(T).

o If J is Lipschitz continuous in X e, S X Oy, then under Hy from (33), VI-J;((3:)ier,) =
Op(1).

Proof. For any 6 € O(T), on the stochastic event {©(Ty) C €(as)}, we can write:

J*((3t)tery) = J((3t)tem,, X7,

i i (35)
J;((Jt>t€To> J(<dt)t€T07 27)7

where ¥* € argmin J((4;)ieT,, ) and X5 € argmin J((3;)ieT,, >’). Note that X* € O(Ty) C
E/EQE(TQ) Z/E%E(a])

@xX(ar). Then, we have:

Ji((30)tery) — " ((30)temy) < J((31)iemo, ) — J((3t)temy, B7)- (36)

By construction, Oy (Ty) is a compact set. Then, there exists 3% € Ox(T) such that d(X%, Ox(Ty)) =
d(¥%,3%). Hence, we obtain:

~

TH(Brems) = I (30rema) = | T (Greror 1) = T (Grere, 5] + [ T(Giers, £5) = T(3iemy, £

+ J((*%)tGToa i;) - J((‘jt)tGTov E*)]

> J(('Bt)tEToa Z;) - J(('Bt)tETm E?) + J(('Bt)tETm E?) - J(('jt)teTo’ Z;) .

(37)
According to Lemma 3, dg(©(Ty),€(ar)) — 0 uniformly for § € ©(Ty). We then obtain
d(¥%,3%) — 0 uniformly for 8 € O(T).

Suppose that J is continuous in Xe1,8; X Ox. Then, in a compact set §* x O, where §* is

a compact neighbourhood of (4;)ie,, J is uniformly continuous. Together with d(X%, %) — 0
uniformly for § € O(Ty), we obtain that the right-hand side of (36) and that of (37) converge
to 0 on {O(Ty) C ¥(as)}, uniformly for 6 € ©(Ty). Note that {0(Ty) C €(as)} holds
asymptotically with probability 1, uniformly for § € ©(Ty). This proves the first statement.

Suppose that J is Lipschitz continuous in X;e1,&; X ©x. Under Hy from (33), we have
J*((3t)tet,) = 0. Then, by applying the Mean Value Theorem on the right-hand side of (36),
we obtain that on {©(Ty) C €(as)}:

0 < J7((30)tey) = J7((31)iery) — J7((31)iem,)

. . (38)
‘](('jt)tETo’ Z*) - J((dt)tETov E*) S L|d - ‘j|7

IA

where L is the Lipschitz constant of J(-). Then, by using vI(4, — 4;) A H(0,€;), we obtain
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that:

0 < VT Ji((3)er,) < LIVI(S = 9)| = O,(1) (39)
and the second statement is proved. O

We now illustrate how to approximate the quantiles of J((J;)ier,) under Hy from (33) by
bootstrap methods building on Romano and Shaikh (2012). Denote by PL, = {P! : s €
RE s, >0, Zf” . Sr = 1} the set of multinomial distributions with R outcomes out of [ trials.
Define the distance p on PL as p(P!, PL) = 3% |s, — 5| and P! = Xier Pg,, as the set of
joint distributions P = (P! )ier,, where each P! is independently distributed across t € T.
Note that p can be extended to any P! = (P))ier, and Q' = (P})er, in P’ as: p(P,Q) =
> e, PP, PY). For any I and any realization w = (it)ier, of P, we can define the non-
negative random variable Jj (w; P) = J7((%) — ). Denote the distribution function of J; (w; P)

evaluated at x > 0 by G(z, P).

Theorem 8. Suppose the same Assumptions of Theorem 7 hold. If J is Lipschitz continuous in
X1eT, St X O, then under Hy from (33), for any oy, as such that a; >0, ag >0, ag +ag < 1,

liminf inf Pr|G7Y(ar, PT) < VI-Ji((3 )teTO)gG;m_aQ,PI)] >1—ay — as,

I—00 0€6(Ty)
pI _ (pl
where P = (P, )ier, -

Proof. Our proof builds on Theorem 2.4 of Romano and Shaikh (2012). It suffices to verify two
conditions. First, we show that for any sequences Q7 and P! in P! satisfying p(Q*, PT) — 0,

we have:

hm sup{|G(z,Q") — Gr(x, PT)|} = 0.

I—o0 x>0

This can be seen from the construction of J;(w; P). For any x > 0, we have:

Gi(z, P) = Pr[Jj(w; P) < x

= Prp |(it)teT, : J7 <(ift)ten> : x]

. 1 Z't /
—P : f 1 V)
Ip (Zt)tETU z/e%lz(af) ! <<I>t€T0 7 > -

= Prp [(it)ter, : (i it)er, € N (2, J (), ar, I, To)] ,

(40)

where A (x, J(-),ar, I, Ty) is the set of realizations for which infsyegy ay) J ((%)tGTO , E’) <z
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holds. Then, given (x, J(-),as, I, Ty), we obtain:

|Gi(z,Q") — Gi(z, P")| = [Pror [(it)iemy © (it)yer, € N (2, J(-), a1, I, Ty)]
— Prp: [(it)teTO 2 (i )teTO e N(x,J(), aI,I,TO)} |
< p(Q", P").

Because sup,~{|Gr(z, Q") — Gi(z, P1)[} < p(Q", P') and p(Q', P") — 0, the first condition is
verified. We now move on to verifying the second condition. For any sequence Pl e {(P])ier, :
5:(0:(C + g:(2,)); r) = 41, (05,1, 8p, By) € O(Ty)}, we have p(P’, P') £ 0. This condition
holds because J; converges in probability to 4, for any ¢t € Ty. This completes the proof. O

Finally, for 0 < a < 1, we propose the following rejection region for test (34):
{VI-J{((G)iem) > G7' (1 = a, P}

According to Theorem 7, test (34) has asymptotically unit power, uniformly for 6 € ©(T).
Moreover, according to Theorem 8, the size of test (34) is controlled by «, uniformly for
6 € O(T).

8.8 Proof of Theorem 2

For this result, our arguments do not depend on whether the distribution of random coefficients

is parametric or non-parametric and we then denote F'(-;Xr) simply by F. Remember that
Stb(5t;F) = /Sitb(5t;5it)dF(ﬁit)
5tb+ﬂztb (Bit)
/Zb/ C; e0ub! i (Bit) F(ﬁzt)

To prove the real analytic property of the market share function su,(d;; F'), it suffices to study
' sitb (6¢38it)

Ly 0
b
[lyec,, 99,

where [ is an integer and Zb'ectl lyr = 1. We first prove the following Lemma.

Lemma 4. For any non-negative integer [,

3181‘751)(57:; @‘t)

< Al
ot = o

sup
0t,Bit

where A; = (e — 1)ZZZ=0 (e—i)kk!‘
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i (5¢5B8it)

o8,

Proof. Define a; = sup . Note that:

Ot,Bit

eStb b (Bit) — Sith E eOtw THipnr (Bit)

b’eC;
Ol eStbtrirn (Bit)

8§ib
o (Sitb Zb’ect edtb! Thirw (Bit) )
aél

O tritn (Bit) —

— E Ck8 Sztba Zb’ 9o THipr (Bit)
l
8(5?13 85ibk

3 Sitb + b
v Syt +ipe (Bit) + Ck Sit et thieh (Bit)
" O 3 i m

s 6 Sitb
_ 1 —
o, ( Zq %, )

85itb
<1
o *Zq
-1

CLlSl—i-ZClka/k,

-1
ap 1 Qg 1

2 - k-
TIPSy aynY
k=0

8 sztb

Y

We now show that 3 < A; by induction. For [ = 0, the result holds trivially. For [ = 1, we

have a; = sup %ﬁ:m = sup [sip(1 — siup)| < L 1 < e= A;. Suppose that = < Ay holds for

0t Bt 0t, Bt
k=1,..,l —1. Note that A; = ll, +(e—1)A;_1 > A1, for any [ > 0. Then,

a 1 e 1
l k
A2 Sk 2
T _l!+;k!(l—k)!
-1
1 1
< a2 AT
k=0 19
Ll li 1 (42)
1
Sﬁ—f‘Al 1(6—1)
AL
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s (5¢38it)

o6k,

As a consequence, the inequality holds for any [ > 0 and a; = sup < Ajl!l. This
¢, Bt

completes the proof. O

The next Lemma controls the size of M.

)
Hb/gctl 8‘Stb/

Lemma 5. Suppose Cyy > 2. For any b € Cyy and | > 0,

_Cﬂe—l H lb’

b’eCy

alsitb(5t§ ﬂzt)
Hb’ectl a(;i'f)’,

where Y by =1.

b'eCu
Proof. We prove the result by induction. For [ = 0, the result holds trivially. For [ = 1, the
result follows directly from Lemma 4 with [ = 1. For [ = 2 and [,y = 2, according to Lemma 4,
S A22' For [ = 2 and lb/ = lb// = 1,b’ 7é b”:

2
0 52“[)
062,

we have ‘

e5tb+#itb(5it) = Sip § eétb/+ﬂitb/(5it)7

b’eC;
2¢. ) .
0= M e5tb'+ﬂitb/ (Bit) + eétb’+/‘itb’ (ﬁit)% + e5tb” +/‘izb"(ﬁit)% (43)
b
Ooppy Doppyr £ =, O 0oy
aQSitb s Osim s Osim
T = —Sib/me— — Sitb’ S
00y DOy 06 06
asztb 1 asitb 9?sitb Ositb 0sitb _1)12
By using 7 <land ’ <1, we have |55 | < | o o <2< [Cule—1))%.

Note that AQ = (e -1’1+ 2 —|— T T2 L 2) < [Cule - 1)]? for Cy; > 2. As a consequence, the

conclusion holds for | = 2 and Z lb/ = 2.
b’eCyy
Suppose that for k =0, ...,1 — 1 the inequality holds for any > [y = k. First, remember
b’eCy

that 4, = (e — 1)’22:0m, as defined in Lemma 4, is smaller than [Cy; (e — 1)]' because

Cy1 > 2. Then, the conclusion holds for any [ > 0 with [, = and l,» = 0, b” # b’. It remains

to show that the conclusion holds when there exist b’ and b” such that l,y > 0 and l,» > 0.
By taking [,-th derivatives of both sides of the first equation in (41) with respect to oy, we
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obtain:

Ib pOtb+Hith (Bit)
eétb+ﬂitb(6it) _ 0" Ot Hitb it
%
alb (Sitb Zb/ec €6tb’ AT (,3“))
= t
N l
aoty
Sitb alb Zb’ tb/ +vien (Bit) (44)
- Z b o 5 85lb -
= Y “2itb tb/+N¢tb/ it) | e ot irn (Bit c ;
b Ach
86“) prec k=0 aatb

Note that, by taking derivatives of both sides of equation (44) with respect to duy, b’ # b, the

left hand-side vanishes and we obtain:

Z o Ip—1

Ib+Hy . b otk o b k.

— 8 l Slztlb eétb//“ﬁuitb// (5it)_|_65tb/+#z‘tb/ (Bit) Ciu—i-edtb"'“itb(ﬁit) Clba S;ﬂ?'

b b E E -

85tb85tb/ b""eCy k=0 65 8(5tb, P 65 a(stb’
(45)

By taking [,-th derivatives with respect to &y, for all b’ € Cyy:

Iy, —
i b Il +k
& tb”‘Hthb” (Bit) tb"H‘ztb/ (Bit) Ck 9 Sitb’
+ —

Ly
Hb’ECtl a(gtb’ b""eCy b’eCyy k=0 85tb’ Hb”yéb’ ol) tb”
Ly —1 B
alSitb C al lb/+k?5. b’
o Z Sitb’ Z lb’ b
Hb’ectl 5tb’ b’eCy k=0 tb’ Hb”;éb’ 5tb”
_ Ol l AT, (46)
b’f !
Hb/ecﬂ Bétb, Z s Z 8%, Ty 95,20
= itb’ )
_ l |
Hb’EC b'eChy k=0 lb/ . k Hb”;éb’ lb/
s ! 0 o s
/ b/ — l
sup l_[b/ect1 85£/ Z Z — 6%, Tl 00 95,20,
— l |
5 | Hbreo, 0!~ V58, 5 lb' 6eie | K T Tprrsn B!
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Then, applying the conclusion for any k£ = 0,...,{ — 1 on the last equation in (46), we obtain:

8lsztb
Tlweo, %) tb, Il +k
sup C’ﬂ(e — I
0¢,Bit Hb’eC 11 ! b/ezc Z0 lb/ -
Iy
= [Ca(e — 1)) sz,cﬂe—l (47)
b/eCy k=1

< [Cule = 1)) Cp (Ot — 1)
< [Cule = 1] —1]
< [Cﬂ(e — ].)]l
Hence, the conclusion holds for > [l = [, and sup L", < [Cule = D'y eq,, b!
bIGCtl 5t ﬁzt Hb/ECtl a(stlb;/ “

for any [ > 0 and > [y =[. The proof is completed. O]
b'eCy

The size of the I-th derivative of sy, (d;; F') with respect to d; can then be controlled as:

al (5 B ('3l i 5 s i
Stb( ts ZZ/ S / Stb( t?/Blfj dF(ﬁZt>
[Toec, 99 Hb’eCtl 9opy (48)
Ctl 6 — 1 H lb/
b’eCyy
and, consequently, the Taylor expansion of sy, (.; ') at some d; around d; as:
< 01" > 1 L | 0% (6 F)

: Stb(0t;
35| 3 s | swtosr| <3 g Loalssl)
=L L/ect1 Dorp =L S = *, Hee, b [lyec, D0

<3 dChiCule - 1"
L=0
(49)

where d = |9, — &;|. Consequently, whenever d < d* = m the Taylor expansion (49)
tl

converges. Finally, by applying Taylor’s Theorem to the multivariate function su,(9;; F'), w
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obtain for any R > 0 and uniformly for |6, — &, < <-:

L

R
! 1 / a
sib(03 ) — Zﬁ [ > (G —5tb/)Wtb/ sub (013 F)

L=0 b’eCyy

8R+1Stb(§£; F)
Ly
Hb’ECtl 85tE’

1
R+1 2 :
= [Tt Pl
S ly=R+1 '

SdRJrl[Cﬂ(e . 1)]R+10ﬁ+1

—0.

In conclusion, the market share function s, (d}; F') is equal to its Taylor expansion and therefore

real analytic with respect to d;. This completes the proof.

8.9 Proof of Theorem 3

The necessity part of the first statement is immediate. To prove sufficiency, note that when
(6%, )tem\Ty € AP = NE AP for any r = 1,.., R there exists some market ¢ € T \ Ty such
that Mys; (34 5%) # I'" + g:(X7) and therefore m(X7; T) # 0 for r = 1,..., R. Remember that
the set of solutions to m(X'; Tg) =0 in Oy is S = {X" : r =0, ..., R}. Consequently, the set of
solutions to m(X';'T) = 0 is a subset of S. Given that m(X";T) # 0 for r = 1,..., R, and that
m(X%T) =0, ' = X% is the unique solution to system (9) in Ox. The remaining parameters
of model (3) can then be uniquely pinned down by the demand inverse from Lemma 1 and
model (3) is globally identified.

To prove the second statement, we first note that
XteT\ToRJt \ AP = Uf:l [XteT\ToRJt \ AiD} :
It is then sufficient to show that the Lebesgue measure of xteT\TORJt \ AP is zero. Note that

XtGT\TgRJt \A}P = {(5tJt)t€T\To : for any t € T\ Ty, MtSt_l(St(5t(F0 + gt(ES)); EOF)% Yp)=T1"+ gt(Eg)}
= xger\ro{0u, : Mys;  (5:(0(T° 4 gi(30)); £3); X%) = T7 + (7))}

= XtGT\ToZtTa

where Z] is the zero set of function Mys; ' (s:(0:(I° + g:(29)); £%); %) — I — g4(7). Because
AIP =£ (), there exists some t € T\ Ty for which the zero set Z7 C R’ i.e. M;s; " (s,(6,(I° +
9:(39)); X%); X)) — I — g(X7) is not equal to zero for some &5, € R”. It is then enough to
show that, for this specific Z] C R’t, the Lebesgue measure is zero.

For any I' and X, because s;(0,(I'); Xr) is a composition of two real analytic functions,
5:(T) : R7 — R and s,(+; Xr) : R — (0,1)% (from Theorem 2), it is itself a real analytic
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function from R’ to (0,1)%. Moreover, because s;(-;¥7%) is real analytic with respect to
5 € RO the inverse market share function from Lemma 1, s;'(-; %), is also real analytic
with respect to s, € (0,1)%'. Then, the composition of Ms, ' (s];5%) — I'" — g(X}) and
31 = 5(0(T° 4+ g (X9)); %) is also real analytic with respect to dyy, € R”. Consequently, Z;
is the zero set of the real analytic function M,s;*(s,(6,(I'° + 9(X9)); 25); X%) = I" — g(X7).
There are two cases to be considered. When M;s; ' (s,(8,(T° + ,(32)); 20.): %) — I — g4(30)
is a constant different from zero, Z] = () and it has zero Lebesgue measure. Similarly, when
Mys; (s (0:(T04g¢(39)); £%); £5) =" — g:(X7) is not a constant, according to Mityagin (2015),

ZT has also zero Lebesgue measure.3” This completes the proof.

8.10 Price-Setting Models Consistent with Assumption 4

Here we show that Assumption 4 is consistent with commonly employed pure components
pricing models with any profile of demand synergies (substitutability and/or complementarity).

To simplify notation, in this Appendix we drop the market index ¢. Denote by J; the
collection of products owned by firm f and by J_; the set of products owned by the other
firms, where J =J;UJ_; = {1,..., J} is the collection of all products available in the market.
Let ¢; denote the constant marginal cost of product j € J, pr = (pj)jes ; the vector of prices
chosen by firm f for the products it owns, and p_; = (pi)res_, the vector of prices chosen by
the other firms. With pure components pricing, the price of a bundle b is given by the sum of
the prices of its components p, = Y eb D where each p; is chosen by the firm that owns it.

Then, the profit function of firm f takes the following form:

wr(prp-g) = Y 5500 — ), (50)
JES
where s;.(p3) = > pos i sp(py) is the product-level market share function of product j and

ps = (p1,...,ps). Denote the ownership matrix = (a;;/); =1, where a;;; = 1if j and j" are

N
owned by the same firm and 0 otherwise. Under complete information, the necessary first-order

conditions for a Bertrand-Nash equilibrium in pure components are:

0sy.

[a—J © Q] (ps —c3) +53.(p3) =0, (51)
P

where ® denotes the Hadamard product, or element-by-element multiplication, sy. = (s,.(psy));ea

is the vector of product-level market share functions, py = (p;)jes, and ¢y = (¢;)jey. Given

different configurations of the ownership matrix, (51) specialize to different market structures

37"More generally, the zero set of a non-constant real analytic function defined on a P-dimensional domain
can be written as the union of j-dimensional sub-manifolds, with j ranging from 0 to P — 1. As a consequence,
the zero set has zero Lebesgue measure. For details, see the second statement of Theorem 6.3.3 (Lojasiewicz’s
Structure Theorem for Varieties) from Krantz and Parks (2002).
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such as monopoly, duopoly, or oligopoly.

Os3.
o © Q. As long

The identifiability of cy is determined by the invertibility of the matrix

9s3.
Opg

as ® € is invertible, we obtain:

883 -1
= —— o0 )
cy =p3y+ {8})‘1 ®© ] 53.(p3)

a‘;i‘ ®€Q is invertible. Let p = (pg, (pb)bec,) denote

We now show that for any ownership matrix,
the vector of prices for all single products and bundles in the choice set. Moreover, we assume
that p; enters linearly in u;; = §; + p;;(5;) with individual-specific coefficient ; < 0, which is
part of the vector of random coefficients 3;. Then, by using the notation M} introduced prior

to Theorem 3, we can write:

20 [ g sy

s o (52)
= [ault 35 P g Rar (),
aui
where u; = (dp + tib(5i))bec,. As shown in the proof of Lemma 1 (see Appendix 8.2), a‘zq(fi)

is positive-definite for any ;. Moreover, [I -M!] is of full row rank and therefore [I -M!*]T

is of full column rank. Consequently, [I —MtlT]asai—ffi)[I -M}TT is positive-definite for any £;.
Because a; < 0, ‘?)Z - is negative-definite. Note that {2 is a symmetric block diagonal matrix that
contains only 1’s and 0’s. Then, 82 -2 is also block diagonal. Because each block is a principal

0sy. . o .
e © Q2 is negative-definite

%;‘3‘, these blocks are also negative-definite. Then,

and thus invertible.

sub-matrix of

8.11 Proof of Corollary 2

Take ¥ = X" and I' = I'". Because s:(03(I" + g:(I'y)); pty,, XF) is real analytic with respect
to (dy,,P,3,), then the inverse market share function, s[l(dz;ngt,E}), is real analytic with
respect to (47, pjy,). Consequently, Mtst_l(dg;p;]t, Yp) —T7 —g4(3}) is real analytic with respect
to (37, p}y,)- Moreover, for ¥ = X% and T' = I, s4(03(I"° 4 g:(T')); P}y, X%) is real analytic with
respect to (d)5,,p}y,). Then, the composition Mys; ' (s¢(0;(T°+g:(39)); pea,, £%): pra,, Bf) =7 —
9:(%}) is real analytic with respect to (d;3,, Py, )-

We now prove Corollary 2 by contradiction. Suppose that Assumption 5 does not hold.
Then, for some r = 1,..., R and t € T'\ T, there exists a set P, C P, such that P, has positive

Lebesgue measure and

I" + g/(3y) = Mys; (s:(5,(T° + g6(2)); e, X)) iy, )
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for any &5, € R’*. We then obtain that the zero set of the real analytic function M;s; ' (s,(8;(T%+
9:(30)): Peae, B8); Pea,, X)) — I — g(X7) is at least P, x R”. Because the Lebesgue measure of
P, is positive, then the Lebesgue measure of P, x R is also positive. According to Mityagin
(2015), Mys; ' (se(6;(T° + g¢(39)); pea,» X%); pea,» Bf) —I™ — g4(37) is then constant and equal to

zero on P; x R, This contradicts ZIP being non-empty. This completes the proof.

8.12 Proof of Theorem 4

Here we rely on the same notation for M; as introduced prior to Theorem 3. M, is a matrix of
dimension Ciy X Ci;. Remember that Cjs is the number of bundles and C}; the number of inside
options (bundles plus single products). M; is made of two sub-matrices: M, = [M}, M?]. M} is
a matrix of —1’s and 0’s of dimension Cj, X .J;, where the columns represent individual products
and the rows represent bundles. Each row of M} identifies with —1’s the product composition
of the corresponding bundle. M? is instead an identity matrix I of dimension Ciy X Cjy, with
the rows corresponding to bundles.

The proof of the first statement is similar to that of Theorem 3. On the one hand, when
(€D, iy, ey, € EP =N EIP, for any r = 1, .., R there exists some market ¢ € T\ Ty such
that Mys; ' (35 ., XF) # 7 + g:(E5) and therefore m(X7;T) # 0 for r = 1,..., R.

Remember that the set of solutions to m(X;Ty) = 0in Og is S = {X" : r = 0,..., R}.
Consequently, the set of solutions to m(X’; T) = 0 is a subset of S. Given that m(¥";T) # 0
forr = 1,..., R, and that m(X% T) = 0, &' = X% is the unique solution to system (9) in ©x. The
remaining parameters of model (3) can then be uniquely pinned down by the demand inverse
from Lemma 1 and model (3) is globally identified.

To prove the second statement, we first note that

Xter\To [Die X Die) \ 27 = UL, [Xsem\o[Die X D] \ E°] .

It is then sufficient to show that the Lebesgue measure of X ;e\, [Dye X Dyl \ ZP is zero. Note
that

Xiem\mo[Dig X D] \ E° = {(&a,, ¢z e\,
for any t € T\ To, Mys;*(s:(5,(I° + gt(Zg));th” Y0 pug,, ) = T7 4 g:(%5)
for some py3, € 3, (&3,,¢13,)}
= Xem\rol (€a,rca,) + T+ gt(Eg) € Mzsfl(st(@(ro + gt(zg))§tht(€tJ” ) E%);Pt.]t(fm” 3.), )

— +r
= XteT\To Z;,

where Z;"" is the zero set of (£u,, ¢i3,) such that Mys; " (s¢(6,(T° + g:(32)): pea,, %) pa,» X5) —
I — gt(Zg) = 0 for some p3, € pu3,(&3,,¢i3,)- It then suffices to show that there exists a
t € T\ Ty such that the Lebesgue measure of Z;'" is zero.
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The Lebesgue measure of Z,™" in Dy X Dy is

me(Zf") = / 1{Zz+r}d(CtJf,7§tJr,)
Dye X Dt

= / (&) : T+ gi(3)) € Mysy (s1(00(T° + 90(30)); pea, (§a, €0a,), S0); pra, (G, €aa,), B50) Y (&, caa,),
Die X Die

where 1{-} denotes the indicator function. Define ® : (&3,,p3,) — (&3,, (&3, 0e3,)). Ac-
cording to Assumption 4, ® is a C'' mapping from (&3,,pi3,) € {(&3,.043,) © &3, € Die, iy, €
P(&3,)} to (&3, ¢i3,) € Die X Dy and onto. Let Card[®1](&3,, ¢13,) denote the cardinality of
the inverse image of ® at (&3,, ¢;3,). Note that Card[®1](&3,, ¢g,) is equal to the number of
Nash equilibria of the pricing game at (&;3,, ¢;3,) and therefore belongs to € N, U{oo} according
to Assumption 4. Then, by Theorem 1.16-2 of Ciarlet (2013) and Fubini’s Theorem, we obtain:

mff(Z;rr) < / {(&a,sca,) 0 T+ gz(Eg) € ;W,s,’l(sl(ﬁt(ro + .01(22))':1)[.],(&.]” ) Z?«“)?ML(&J“ ) Z%)}Card[‘bilkfuﬁCth)d(fLJ” ci3,)

Die X Dy
" . _ R 0P
:/ V{(&aerp) - T+ 6i(55) = Misy (58T + g:(39)); Praes S); puae, T) P B (&, pra)| (&, pea,)
(€, 73, )15, D1 iy, €P1(Era,)} (&e3,> pea,)
_ [/ o el 0 oY) 0, iy |90,
= &, o T+ g:(3)) = Mesy (se(3:(T7 + 6:(59)); e, X ) Pea, Xo) } T(@pri-]f) d&es, | dpa,-
JPy | I P(€a,)3pea, Py,

Suppose that Assumption 5 holds. Denote by Ay, = (A (245, ptj))jes,. Because 63, (A, &3,) =
Az, + &3, given pyg, (and therefore Ayy,) and by applying Theorem 2, we obtain that the mar-
ket share function s;(d;(I" + g¢(%})); pra,, X7%) is also real analytic with respect to &y, € R”.
Then, given p,j,, by the Inverse Function Theorem for real analytic functions, s; *(s,(6,(I° +
9 (E0): i3y, B%); pa, . X5 is real analytic with respect to &y,, and therefore Mys; " (s,(8,(I° +
9:(X9)): Deae, B%): Dea,, B) — I — g4(X}) is real analytic with respect to &;,. For each r =
1, ..., R, we focus on the market t € T \ T, that satisfies Assumption 5: for any py, € Py,
there exists &g, € Dy such that Mys; ' (s¢(6:(T° + g:(30)); pea,, £%): pra,, B5) # I7 + go(E0),
ie., Mys; ' (s(6,(T° + 9:(39)); Peae, B8); prae, B) — I — g¢(X5) is not always equal to zero in
Dye. Similar to the proof of the second statement of Theorem 3, {&, : Mtst_l(st(ét(FO +
9:(39)); e3> X8); P, ) = I 4 g4(X5) } has thus zero Lebesgue measure in Dy and

0 .
ap:jz (pt.]m ftJt)

1{&, - MtSt_l(St((St(FO + gt(ES));th” %) P, X)) =T + gt(Eg)} = 0 almost everywhere.

It then follows that

dey
L (peg,; &g, 10, 80)| déyg, = 0,

81%.1,,

fPt(ftJt)BPiJ,, l{gtJt : Mtst_l(st((si(ro + gt(zg));pt.]m Z%);pﬂw ZTF) =I"+ gt(Z;)}

and finally me(Z,"") < 0. Consequently, me(Z,”") = 0. This completes the proof.
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8.13 Proof of Theorem 5

We first introduce some notation. Denote the collection of demand synergies that can ratio-
nalize the observed product-level market shares 44, in market ¢ by OL(X) = {I" : 38}, €
R% such that su,.(0,5,;1",%') = 443,.} and across all T' markets by Or = Usrce,, Ny OL(X).
Define also Oy, = {X' : NL,04L(X') # 0}. OL and Ox collect the values of I" and of ¥ that
can rationalize the observed product-level market shares. When ¥ ¢ Oy, or IV ¢ NL,04L(Y),
then there exists no &;;, such that s.5, (65,;1", %) = 343, for any ¢t = 1,...,T (i.e., the demand
inverse is not defined at (I, ¥')). The remainder of the proof focuses on the case of X' € Oy, and
[ € NL,04L(X') (i.e., the demand inverse is defined at (I",Y’)), and in particular on showing
the uniqueness of the corresponding d;5, .

We rely on the same notation for M; as introduced prior to Theorem 3 and in the proof of
Theorem 4. Note that M is of full row rank and therefore M is of full column rank. Without
loss of generality, we prove Theorem 5 for market ¢.

Denote by 1 a vector of 1’s and define Sy(4:3,.) = {3ic,,  dic, = (Jib)beCrr I >
0, —M!Ts,,, < du3,., (M 3}c,, + 913,.,910,,)" 1 < 1}, as the collection of admissible vectors
of market shares of bundles consistent with the observed product-level market shares, 4.3, .
Given any 5£Ct2 € Si2(4:3,.) and observed product-level market shares 443, , we can construct
an admissible vector of market shares J; = ((9;;)jes,, 31c,,), Where 35, = 315 — >y cc,yijcb dib-

Because of Lemma 1, given ¥ we can invert 4, and obtain the corresponding d;, € R

52 = ((5£j)j€~]t’ (5£b)bECtZ)T
= s, (31 5p)

= 8;1((315]3 - Z 'jzb)jGJt? d;Ctg; E%)? where
beCiz:j€b
(53)

52]’ - St_jl((dtf - Z I1p)jedss chtz,; 5,
beCy2:jeb

O = 315)1((5tj. - Z J£1c>)j'eJta 520@ Xr)-
beCiz:jeb

Using the matrix M;, we can recover an admissible I', from d; by:

= Ms; (a1 — Z Iib)jedis dicy 2r) — 9 ()
beCya:jeb

= Mtst_l(MtszlfCtQ + (dgltﬁ 07 ceny O)T7 E/F) — gt(Z;)
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Consequently, for any 4;¢ , there exists a I', = I';(4;¢,,; 913,., 2') such that (53) holds. We now
compute from (54) the derivative of I', = I'(4{g,,; 913,., X’) With respect to )¢,

dFt 8571
ddl = M at/ (MtT‘jQCtQ (dtJt 70 0)T7 Z/F)MtT
tCi2
O0s -1 (55)
- [ Sz
Because %(52; %) is positive-definite and M is of full column rank, -9 is also positive-
t tC

definite and therefore positive quasi-definite for any 4;¢,, € Si2(343,.).38 Notté that Sy2(43,.) is
convex. According to Theorem 6 by Gale and Nikaido (1965), p. 88, I'} = I'i(d;c,,; 3t3,., &)
is globally invertible as a function of 4;c, € S;2(443,.) and therefore we can express 4;¢,,
as a function of I', € ©L, given 4,3, and X': 3ic,, = 51Cp(I't;3e3,.,%'). Then, by plugging
31,y = 510 (15 343,., X)) into (53), we can express each d;; from &;5, = (d;;)je, as a function of

the observed product-level market shares 4., :

6£J' = S;jl<(dtj' o Z déb)jGJw J£Ct2; Z/F>

beCya:j€b

- 8;1((615‘7 - Z §tb(F/; JtJtJ E/))je:LH gtCtQ (F/) jt.]z.’ El)? EIF)
beCia:j€b

= St_j.l(dt‘]t.; I, %)

and determine the remaining 0y, for each b € Cy by 0y, = Zjeb 0 + Ty + gib (T, Piv; X)),
so that s (04 (T" + g:(X})); XF) = p, for each b € Cy. Then, for any j € J;, we obtain
5¢5.(0y3,; 17, %) = 445 and finally:

Sth( tJt7F/ E) - 'jt.]t.‘

This shows existence. To prove uniqueness, suppose that there exists another 0y, # d;5, such
that s,5,.(6(5,;1",%") = 343,.. Then, 0] # 0;. Because X' is given, according to Lemma 1,
se(0f (1" + g:(2})); X) # s:(03(I" + g+(2)); X%). Moreover, because also 445,. is given, then
there must exist some b € Cyy for which s, (0} (I" + g:(%7)); X) # s (G (17" + g:(25)); XF).
This contradicts S;c,, (I'; 413,., &') being a function of I".

8.14 Proof of Theorem 6

We start by proving a useful Lemma. Denote the log-likelihood function evaluated at the

market shares observed without sampling error by:

38 A square matrix B is positive quasi-definite if %(B + B7T) is positive-definite.
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T
001y, s 075, T, 2 Z Z 3 log s (0;(T" + g:(2))); X7). (56)
=1 beC;

Lemma 6. If Assumptions 1-3 hold and the true (&3, )iem\T, € A™, then the true (d13,, ..., 0r3,, T, %)

is the unique mavimizer of £(81y,, ..., 075, ", ¥X") in ©.

Proof. We first show that £(d;,,...,07;,.,[", %) is maximized at the true (d13,,...,073,, 1, %).
Note that for any ¢t = 1,...,T and b € Cy, 3, = s (0:(I'+¢:(E,)); £r). Then, by using Jensen’s
inequality, for any (dy,, ..., 075, ", X’) we have:

S5, s Oy TS — 0013, .00 FE):iZéblogStb< L7+ 9 (%,)): )
A T e L T s (0T 04(5,)): B
T
Fa(S)): ) (57
<3 log 3 s T F 02 ) - 5T)
t=1 beCs stb (0 (I + gt(zg»a Zr)
<0

We now show the uniqueness by contradiction. Suppose that there exists a (81, , ..., 03,, L, X) #
(013, e, O73,, I, X) such that (Sljl, ...7STJT,f, %) is also a maximizer of 0013, 073, TV, ).
According to Jensen’s inequality (57), this is equivalent to having s, (;(T + g:(%)); 2r) = dum
for each t = 1,...,7 and b € C;;. As a consequence, we have mb(f};T) = 0 and hence
m(3; T) = 0 in addition to m(X; T) = 0. Note that 3 # ¥. Otherwise, by Lemma 1, O3, = 03,
and T = T and this would be inconsistent with (51J17...,StJT,f, ¥) # (013, ey 0735, [, 20).
However, because the true (d:3,)iem\1, € A™ Theorem 3 rules out the possibility of having

any other X different from ¥ for which system (9) holds, giving rise to a contradiction. O
We assume the following regularity conditions.
1. 6 is an interior point of ©;

2. g+(%) is twice continuously differentiable with respect to X, and the market share func-

tion s, (05; X%), t =1,...,T and b € Cy, is twice continuously differentiable with respect
to (0}, Xp);

3. VI3, — 3) LN A(0,€2) independently for ¢t = 1,..., T, where ), is positive-definite;

r T iti i _ ([Ologsip,  Ologsio
4. %, GUGY is positive-definite, where G, = ([*%; %10 | 9’=9)beCt1'
5 920 . ol
907 | gr—g 18 MON-singular.
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Condition 3 is compatible with cases in which the individuals in market ¢ make independent
purchase decisions. Condition 4 can be obtained when G, is a full row rank matrix for each
t=1,..,T. Define ¢¢(I", ¥’) on the basis of (56):

£C<F/7 El) = g((at.]n('jﬂn; Flv El))?:l; FI? E/)'

Throughout the proof, we assume that 6,3, (d:3,; I”, %) and d,3,.(33,.; 7, ') exist. As discussed
in the main text, existence can always be verified numerically during estimation. Provided
existence, then Theorem 5 guarantees that &3, (-;I",%’) is a global bijection. Our proof for
the consistency statement is mainly based on Theorem 2.1 by Newey and McFadden (1994),
according to which we need to verify four conditions.

1. (I',Y) is the unique maximizer of ¢¢(I',¥’) in O x Oy. Given Assumptions 1-3 and
that the true (d:3,)iem\1, € AP, Lemma 6 guarantees that the true (d13,, ..., 073,, [, X) is the
unique maximizer of £(&}y,,...,075,,[", %) in ©. Theorem 5 then implies that (T',X) is the

unique maximizer of ¢¢(I,3') in O x Oy.
2. Or x Oy is compact. This is guaranteed by the definition of ©.

3. (¢(I", %) is continuous with respect to (I",3') in O x Oyx. According to regularity condi-
tion 2, for any t = 1,...,7 and b € C;, the market share function sy, (9;; ¥%) is twice contin-
uously differentiable with respect to (J;, ¥%). Remember that 6 = (d13,,...,d73,,,X). Then,
0(0") in (56) is twice continuously differentiable in ©. Moreover, the inverse market share
function, s;!(4;;¥%) is continuous with respect to (4;, X% ), and therefore continuous with re-
spect t0 ((31b)becsy, 27). In addition, g,(%) is continuously differentiable with respect to 3If .
Then, I'y((4b)bec,,, > ), as defined in the proof of Theorem 5, is continuous with respect to
((9tb)becy,, > ). By applying the invertibility result from Theorem 5 and the continuous depen-
dence with respect to X', we obtain that d;3, (4;3,; 1", %) is continuous with respect to (IV, %').
Combining this with the continuity of £(6") in (56), we obtain the desired condition.

4. sup  |0(17, %5 5y, ..., 3p) — £9(TV, 2| & 0. Note that
(F/,E/)E@FXQE

sup [ (I, 5% 3y, .., 3r) — 061, X)) < supléy(0; 34, ..., 3r) — £(6))]

(I",5)€Or xOx, 6'cO

+ sup M(((StJt (‘jtJt 7F )Y ))t 1> F, > ) - E(((gt-]t(‘jtt]z-; Fl? E/))?:D F/’ Zl)'
(F/,E/)GQFX@E
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First, we prove that sup|¢;(6'; 31, ..., 37) — £(8")| £ 0. To see this, note that:
6'c0

Sup|61<0/; 317 SE) jT) - E(Q/>|

0'€cO
T T
Z Z tb log Stb P + gt 2, Z Z Itb log Stb((;;(f" + gt(Z'g)), Z/F)
t=1 beC;

t=1 beC;

= sup
0'cO

(58)

< sup |log Stb(5£(F + gi( 2/ 1 2) |Z Z Utb — bl
=10 S, =1 beC,

Because log s, (0 (I"+¢:(3})); ¥) is continuous in © and © is compact, log s, (6;(I"+9:(2)); ¥r)

is uniformly bounded in ©. Moreover, because both the number of markets, T, and C} are finite,

sup |log sy (6 (T —l—gt(E;));E};H < 00.

Note that 34 = a4 for t = 1,...,7 and b € C,. Then, the right-hand side of (58) converges to
zero in probability. Consequently, sup|[¢;(6'; 34, ..., 37) — £(8")] 5 0.

0'cO
Second, we prove

sup |€((5t~]t-(3t-]t-; Fla > ))t 1s F/ ) - €<<5t-]t ('jtJt 7F/ E/))t 1> FI ¥ )l _> 0. (59)

(F’,Z’)G@F XOxn

Note that for each t, d,5,.(4;5,; 1", ') is uniformly continuous with respect to (4;5, ,I", %) in a
compact set U,,; X Or x O, where U,,, is a compact neighbourhood of 4.3, . Moreover, 00
is uniformly continuous with respect to 6 € ©. Consequently, £((d;3,.(9;5, ;T7, %)=, IV, %) is
uniformly continuous with respect to ((3,5, )7_;,I",¥’). Because J;3, = 33, fort =1,..., T, we
obtain (59) and finally proved the desired condition.

According to Theorem 2.1 by Newey and McFadden (1994), the four conditions verified
above guarantee the consistency of (I',¥). By applying the invertibility result from Theorem 5
and Slutsky’s Theorem, 05 is also consistent. This completes the proof of consistency. The proof
of asymptotic normality is based on Theorem 3.1 by Newey and McFadden (1994), according

to which we need to verify the following six conditions.
1. ([,%) 3 (I, %). This has just been shown above.
2. (T',X) is an interior point of Or x Oy. This is guaranteed by regularity condition 1.

3. (5(I",%; 34, ..., 37) is twice continuously differentiable in O x Oy. According to regularity

condition 2, the market share function su,(d;;%%), t =1,...,7 and of b € Cy, is twice continu-
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ously differentiable with respect to (¢, ¥%.), the inverse market share function s, (3/; ¥/.) is thus
twice continuously differentiable with respect to (4;; X). Moreover, g;(2} ) is twice continuously
differentiable with respect to 3. As a consequence, by applying the invertibility result from
Theorem 5, we obtain that d5,.(4;5, ;1",%’) is twice continuously differentiable with respect
to (s;5,,1",%'). Because (§(I",%¥'; 3y, ..., d7) is a composition of £;(dy,,T",%'; 31, ..., I7) and of
63,.(345,; 17, %), and both functions are twice continuously differentiable, £5(I",X'; 3y, ..., i7) is
also twice continuously differentiable with respect to (I, %').

4. 1 converges to a centered normal distribution. We can write:

ar, 2/)| I/,5)=(I,%)
T

D613, ol
VIgm s rf ) ‘[Z oI, %) 05“ HET

[ 96 o1,
‘[(amz/))tl , I] o9

-----

It suffices to prove that /T % converges to a centered normal distribution at 6’ = 6.

Define (*(0') = > _pcc, 3tb 108 8m (01 (17 +g:(2})); 7). Note that £/(0') is maximized at 6’ = 0,

fort=1,...,T. As a consequence, g—g g_g =0fort=1,.,T. Then,
ol d log Os
I—I - \/7 3tb tb
oV 2
ror
. Olog s ol
=VI I 2 -
227 s
o
R dlog s . 0log sy
=VIY 1> [3m— 9w 0 |, [10 = 30] — 5 » (61)
t=1 |LbeCpy
T
. ol 0l
Y Vil o) [ Dl
t=1 beCy 0'=0
01 0l .
_ Z ({ Oglstb _ Oglsto} ) \/T[ét — 4.
t=1 90 90 0'=0/ beCy

where I denotes the identity matrix. According to regularity condition 3, v/ [3; — 34 4,

N(0,€2) independently for t = 1, ..., T. By using Slutsky’s Theorem, we obtain that \/7% |0,:9 4

(0,37, GGT), where 21 GiQ,GT is positive-definite according to regularity condition
o6

)

4. As a consequence, VI converges to a centered normal distribution.

(Ir,xN=(r,%)
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0248
B(F/,E/)Q

5. sup 20, where

(F/,E/)Eep XOx

(I, %) — H(IV, %)

62€<<5t-]t‘<dt~]t-; Fla El))?:l: F/: Z/)
8(F/ Z/)Q
02 log s4p 5t(5tJt ('5tJt 7F Z) IV + 9t<2/ )) D) )

- Z Z dib R o)) 2r)

t=1 beC,;

H(I',Y) =
(62)

where 6;(6e,.(313,: T, 57), I 4+90(3)) = (003, (33,3 T, 57), (206 015, (33,5 T, B+ T+ (355) Jbecis)-
Under regularity condition 2, H(I”,¥’) is continuous in O x Ox. Note that, similarly to (58),

we have:
sup O ()~ B, ¥
(v, 5)eorxeoy | O(I7, X)? 7 ’

(92 logéfb(ét(éfJf (df.]f 7F 2/) I +gf(2 )) p3Y )
oI, 572

< E sup
t=1,.. T;beC, (I =)€Or xOx

+ Z dp  sup

t=1,.. T)bec, ("Z)EOrxOx

|3t — dum|

02 10g [Stb(ét((st.]p(dt.]t} F/, Z/)a I+ gt(zf(,)ﬁ E/F) - Stb((st(éwt.(ﬁmt,; 1—\/7 X ) I+ gt(z )) b )]
8(1“/, 2/)2

(63)
Due to the twice continuous differentiability of sy, (d;; X') and of 43, (443,; 7, %) in the compact
set O X Oy, for t =1,...,T and b € C;, we have:

9 log S (0¢(0pa,. (Jea, s TV, 20), T + gt(zlg))é )
8(F’, 21)2

sup
(F’,E’)E@F XOxn

< 00.

Because J; = 4, for t = 1,...,T, then the first part on the right-hand side of (63) converges
to zero in probability. For the second part, note that su(0;(I" + g:(3))); Xp) is twice con-
tinuously differentiable with respect to (d3,,I",%') and that &5, (75, ;1", %) is twice contin-
uously differentiable with respect to (45, , F’ ;') in a compact set U,,; X Or X Oy, where

U, 1s a compact neighbourhood of 445,, for ¢ = 1,...,T7 and b € Cy;, we then obtain that
0% log s4b (6 (8¢3,. (33, T, 2") I 49:(5)));E)
8(F’,E’)2
with 4, & 4, for t = 1,...,T, we obtain that the second part on the right-hand side of (63) also

(I, ) — H(F’,E’)’ LN}

is uniformly continuous in U, 5, X Or X Ox. Combining this

converges to zero in probability. Consequently, sup

1o} F’ E’ AT’ =N2
(F/,E/)G@[‘X(‘)E ( )
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6. H(I,x)=2t02)

o )2 |(r' S)=(I'5) is non-singular. Note that

026(((5&%,(3&%'; Fla El))?:l? Fl? Z,)
8(1"/ Z/)2

ZT: 06,5, O ( 9043, )T+ 9043, 920
— | a(1, 3y a5z, \ (1", %) a(I", %) 06,y O(I7, 5)

t=1

H(IY) =

T
0%y,
+Z / / /
et 05 oI, /)2
i 9643, o’ o
£ (T, 3) O(T", )00y, O, )2

At (I',%) = (T, %), 01, = 63,.(343,; T, ) = 63, and 52— = 0. Then,
tJy

H(F,Z):[(%)t:1 i I] [%L:J(%lﬂ T Ir7

..........

I} is of full row rank and [828‘2(,2/)} is non-singular according to
T 0'=0

Because {(8?1%%/))
regularity condition 5, H(IT",X) is therefore non-singular.

All the six conditions of Theorem 3.1 by Newey and McFadden (1994) are satisfied and
there exists W5 such that v/I[(I', %) — (I, 2)] 4w (0, W3). By applying the invertibility result

from Theorem 5, we have:

\/T(St.]t - 615.],5) - \/7(5tJt.(3tJt.7 f? 2) - 5t.]t‘(3t.]t.7 Fa E) + 6tJt.(3tJt.7 F) E) - 5tJt.(‘jtJt.7 P) E))

_ 003, (3,; T, Y) VI, S) - (I,%)]

o) =)
003, (315, ;1,2 5
i (AR ( t~/]t- ) ) \/f(dt_]t_ - dtJt.)‘
adt‘]t. J;Jt.:dt‘]t‘

Using the following Taylor expansion of around (', X):

ZC
o’ 2/)

ol ol
oIV, X v zn=(1,%) 8(F’ P!

0215

0= 1
I, 2= (r2)+8(1“’,2’) I, 2=(I",%)

(T,2) — (I, %),
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we obtain

VIES) - rx) = - [ 24 RV
’ oI, N2 s =(F.5) oI, ¥ |l == %)
[ 2 -
oI, 32 [, sn=(.%)

) \/Y [gt — dt] .
0'=0/ beCy

.....

0043, [ i 0log s B 0log sy
o)., r — oo’ o6’

Since V1 (3; — 3;) converges to a centered normal distribution, by using Slutsky’s Theorem and
the consistency of St_]t and (f‘ , f]), we conclude that /T (St.]t — 03,) converges to a centered

normal distribution. This completes the proof.

8.15 Appendix Tables

Table 7: RTE Cereal Brands and Market Shares

RTE Cereal Brands Average Market Shares
General Mills Fiber/Whole Grain 34.99%
Kellogg’s Regular 8.46%
Fiber/Whole Grain 17.30%
Added Sugar 4.45%
Quaker Regular 1.42%
Fiber/Whole Grain 9.09%
Added Sugar 0.76%
Post Regular 0.04%
Fiber/Whole Grain 8.31%
Added Sugar 0.69%
Private Labels Regular 3.21%
Fiber/Whole Grain 3.12%
Added Sugar 2.01%
Small Producers Regular 0.14%
Fiber/Whole Grain 4.30%
Added Sugar 1.711%

Notes: The Table lists the 16 RTE cereal brands obtained by aggregating UPCs as
described in the text. For each brand, we report the average market share across the
83256 shopping trips with some RTE cereal purchases. Market shares are computed

over the shopping trips observed in each store-week combination.
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Some Intuition about Identification

In this Appendix, we illustrate that even simple versions of model (3) raise non-trivial identi-
fication issues. First, we show that without further restrictions on I';, model (3) can hardly be
identified. Second, we discuss three examples that highlight Gentzkow (2007)’s insight: when
I'y =T, the availability of purchase data for several markets helps identification.

Suppose there are only two products in each market ¢, J, = {1,2}. The indirect utility of
individuals in market ¢ by choosing b € {0,1,2,(1,2)} is:*

Uito = €ito,

Uin = 011 + Hir + Eina,

Uitz = 012 + 2 + Eir2,

Uir,2) = 01 + 0r2 + it + prie2 + Ue + Giur,2) + Sir1,2),

where the individual-specific demand synergy is I'jy1,2) = I't + Giy1,2), the vector of random
coefficients B; = (i1, ftit2, Cie(1,2)) is distributed according to F'(By; Xr), ¥p = (0,r), and g
is i.i.d. Gumbel. Suppose that the econometrician observes without error the market shares 44,
of each b € {0,1,2,(1,2)} for each market ¢t = 1,...,T. For any given observed market shares,
3¢ = (341, 912, 3¢(1,2)), we consider the model to be identified when the true structural parameters

(041,042, I't) and (o, 1) are the unique solution to the following system:

5t(041, 012, 2(1,2)(F;)5 o',r') = 3

65

for t = 1,..,T. Note that, because of the constraint &, (I'}) = &} + djp + I}, knowledge
of (01,0}, 1"}) is enough to pin down the {-specific average utility of bundle (1,2), &; 5 (I'}).
Even in this simple example, a formal discussion of identification on the basis of system (65)
would require to deal with cumbersome details, and these may prevent one from seeing the

main mechanism at work. We then investigate the behaviour of a linearized version of system

1University of Bristol and CEPR (alessandro.iaria@bristol.ac.uk) and CREST (ao.wang@ensae.fr).
390ption b = 0 corresponds to the choice of not purchasing any product, the outside option.
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(65) around the true ((6:(T¢))L,0,7). In the main text, we then show how the intuition from
the linearized system extends to the general version of the model.
We linearize system (65) around the true ((6;(T';))L,, o, 7):*°

st
—3( /t ) (o' — o, — 1)t
957 ) o )= (o,r) (66)

subject to d;(; o) () — 0y — 0o = T}

5£(F2) = (5t(Ft) +

for t = 1,...,T, where we denote transposition by T. Define M = (—1,—1,1) and Md;(I"}) =
52(172)@;) — ;1 — 0j5. Then, by multiplying the first line of (66) by M and by plugging in the

constraint, one obtains:

—1
0s,

T =T, + M2t
t 00", 7') | (g1 )= (0.r)

(o —a,r —r)t (67)
for t = 1,...,T. System (67) has T equations in T'+ 2 unknowns, I'; for t = 1,...,T and (o', r').
The system is under-determined and (66) does not have a unique solution. One way to reduce
the dimensionality of (67) is to add restrictions on I';. Building on Gentzkow (2007)’s insight,
we consider the case of I'y =T fort =1,...,T"

—1
0s,

M=+ M——
* d(a’,1")

(o — o, —r)T. (68)

(o’ " )=(o,r)

Note that because I'V and I" in (68) are no longer market specific, system (68) has T" equations in
only three unknowns, [V and (¢’,7"). By taking market 1 as a reference, one can then difference
out IV and T', and the admissible (¢’,r’) candidates are characterized by the following linear

system:
Y, Os; B Osy*
d(a’,r")  O(d’,r")

(o' —o,7 —1)T =0, (69)

(o/,r")=(o,r)

of t =2,....,T. If (¢/,7") is a solution to system (69), then given (¢’,7’) one can determine the
corresponding I from system (68). In turn, given (¢, ) and I, one can obtain the remaining
parameters (0}, 01,)_, from system (66). Collectively, these (§;(I"))L, and (¢, r’) constitute a

solution to system (66).

Example 1. Suppose there are two markets 7' = 2, t € {a, b}, and that r is known to equal
zero. The true structural parameters are (941, da2, 0p1, Op2, ', o) and the observed market shares

are d, = (Ja1, da2; da(1,2)) and Iy = (Jp1, Jp2, Jp(1,2))- Because 7 is assumed to be known and to

40The basis for this linearization follows from Lemma 1. Lemma 1 shows that the inverse market share
s; (30’7 is a function: for any given 4; and (¢/,7') in a neighbourhood of (o, r), there exists a unique &, such
that s;(8}; 0", ') = 4;. In addition, the dependence of &, = s; *(44;0”,7") on (¢/,7') is continuously differentiable.
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equal zero, system (69) simplifies to the equation:

M [&sbl 83;1}

oo’ oo’

(0/ =) =0, (70)
(o’,r")=(0,0)

where M = (—1,—1,1). Note that ¢’ = o is the unique solution to equation (70) as long as
M [8851 _ as;]

B 5 # 0. This condition can be re-written as:

(o',7")=(0,0)

~1 _ _ -1 — —
83,1(172) B Os, ! B 05,5 a31;(1,2) B 38b11 B asbzl (71)
do’ o’ 9o’ (o’,r")=(0,0) do’ da’ 9o’ (¢’ r")=(0,0) 7
or equivalently as:
Ol (34;0",71") Ol (3p; 07, 1")
T A : (72)
(o',7")=(0,0) (o’ ,r")=(0,0)

Condition (72) makes clear that, in order to achieve identification, the derivative of the recovered
demand synergies at the true parameters (o, 0) should be different when evaluated at 4, and at
4p. To the very minimum, condition (72) requires some variation across markets, in the sense

of 3, # 4. More broadly, given the stark non-linearity of W} (0! ) =(.0)’ the model will

=(
typically be identified whenever 4, # 4.

Example 2. Suppose there are two markets 7' = 2, t € {a, b}, and that both ¢ and r are
unknown. The true structural parameters are (d41, 042, 1, Op2, L', 0, 7) and the observed market

shares are (4,4, 45). System (69) simplifies to the following equation:

Osy ds; }

M L‘?(a’,r’) - 0(0’?7") (o' =o' —r) =0. (73)

(o' r")=(or)

is of size 1 x 2 and therefore not of full column rank.
(o', r")=(0o,r)

It then follows that any solution to equation (73) cannot be unique: in a neighborhood of (o, 1),

8551 . szt
Note that M |:8(0'/,T/) B(U/,T/)i|

there exist infinitely many (o’,7’)’s such that equation (73) holds.

Figure 1 provides a visual intuition about the lack of identification in this example. On
the left part of the Figure, the true 6,(I') and §,(T") lie on the plane A(T") depicted in blue,
which represents the set of §(I")’s that satisfy the constraints from system (65) evaluated at
the true demand synergy I'. These constraints pin down one of the three coordinates of each
(") € A(T), (") = (81, 92,91 + 52+ T'). On the right part of the Figure, the observed market
shares 4, and 4, lie on the manifold & in blue, which displays all the possible market share values
consistent with s(-; o, 7) and the true demand synergy I'. However, because equation (73) has
multiple (o/,7") solutions, 4, and 4, do not uniquely belong to &. As shown in the right part of

the Figure in red, for any solution to equation (73), (¢’,r’), also the corresponding manifold &’
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A(T) = 81,2y (T) — 841 — dg2 =T S s(A(D);0o,7m)

® 5p(I") = (p1 G2 Sp(1,2)(I))

] o &)(1) sTH(0l )

I = (%1 b2 j1;(1,2))

05/ (I') = s Y(sq;0",7")

AN(T) o';(lw(r’) — 84y — 61y =T
" s(A(T); 00 )

5a (') 65 (1)

5Ly 83 (1)

A(T)

Figure 1: An example of lack of identification

will be consistent with 4, and 4,. In turn, for given 4, and 4;, the inverse market share function,
s~ (:;07,1"), will map respectively to &/ (I") and to 6;(T") € A'(T") = s~ 1(§";07,7'") as depicted
in red on the left part of the Figure. In other words, there exists (0, ks, 051, 0po, Iy 07, 1") #
(01,042, Op1, Op2, L', 0, 7) which also solves system (65) and the model is not identified.
Example 3. Imagine a situation similar to Example 2 but with information on one additional
market, so that ' = 3, ¢t € {a, b, c}. The structural parameters are (341, da2, Op1, 02, Oc1, Oc2, ', 0, 1)

and the observed market shares are (44, 9, 4.). System (69) simplifies to:

_ a

3(0’, T/> 8(0”, T‘/)] (o' r")=(o,r)
M [ ds; ! ds;

(o' —o,r =)' =0

[ Os, ! Os~t

(74)

6(0-,7 T,) 8(0'/, T/):| (o' r")=(o,r)

(¢ —o,r —r)T =0.

Note that (o,7) is the unique solution to linear system (74) and the model is identified as long

as the 2 x 2 matrix

9s; ! sz !
M 8(0'?,7"’) - oo’ ,r")
M 95! 957! (75)

(o’ ,r")=(0o,r)
is of full column rank. In Example 2, the corresponding matrix in equation (73) was of size 1 x 2
and therefore not of full column rank. By adding one observation, 4., one obtains an additional

moment restriction (i.e., an additional row to the matrix) and consequently the possibility of
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A(T) = 81,2y (T) — 841 — dg2 =T S s(A(D);0o,7m)

® 5p(I") = (p1 G2 Sp(1,2)(I))

® 5. (") _
N .62:5_1(%;0/,7'/)
® 5, ()
/
/ o 8)(r") sTH(5al )
Iy = (%1 b2 j1;(1,2))
05, (') =s"(sa;0",7")
AN 65y gy (D) =64y — 8 =T
8§ s(A(T); 00 )
3a (') 6p(T) 5c(T)
A(T)
° S’C =5 (se50' ")
5Ly 83 (1)

A(T)

Figure 2: An example of identification

full column rank of matrix (75). The full column rank condition for the 2 x 2 matrix (75)
generalizes identification condition (72) from Example 1.

Figure 2 provides a visual intuition about how the additional observations on market ¢, 4.,
allow for the possibility of identification in this example (as opposed to the lack of identification
in Example 2). The main content of Figure 2 is similar to that of Figure 1, with the exception
of the additional 0.(I") € A(T") and the corresponding 4. € &. Differently from Example 2, the
additional 4. and the full column rank of (75) guarantee that there is no manifold &’ other than
S8 = s(A(T'); 0,7) that simultaneously contains 4,, 45, and .. In turn, for any (o’, ") # (o, 1),
the inverse market share function, s71(-; ¢/, 7’), will not simultaneously map 4,, 45, and 4, onto
the corresponding plane A’(I'). This is depicted in the left and the lower-left parts of Figure 2,
where (in red) &/ (I") and d,(I") lie on A/(I"), while (in black) . does not. As a consequence,
(0415 042, Ob1, 02, Oc1, de2, L', 0, 1) is the unique solution to system (65) and the model is identified.

These three examples highlight two general points about the identification of model (3).
First, as condition (75) illustrates, the task of recovering the full set of structural parameters
reduces to that of identifying the parameters of the distribution of random coefficients . This
directly follows from two features of system (65): the invertibility of the market share function

s¢(+;0’,1") and the common average demand synergy parameter I across markets in the moment
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restrictions 0y12)(F) — 0y — 2 =T, t = 1, ..., T.*' Second, as system (69) illustrates, whenever
the dimension of ¥z does not depend on the number of markets T', adding markets to the
dataset will help identification. Identification requires matrix (75) to be of full column rank. In
Example 2 the number of markets (i.e., number of rows plus one) is smaller than the dimension
of ¥ (i.e., number of columns), and identification can hardly be achieved. Differently, by
adding one market to the dataset, matrix (75) in Example 3 has as many rows as columns
and the model can be identified on the basis of the full column rank condition. Similarly, in
Example 1 identification can be achieved because, even though there are only two markets, > p

only contains one parameter, o, rather than two, o and r.

Global Identification with Mixed Bundling Pricing

Denote by B; C C;, the set of bundles whose single products all belong to the same firm and
by B; its cardinality. Note that, by definition, the bundles b € B, can have p;, # 0, while
b’ € C,;/B,; must have py, = 0. Define the following vectors of prices: the prices of single prod-
ucts and the price surcharges/discounts for the B; bundles by p.5,us, = ((ptj)ed,, (Ptv)ben, ), the
price surcharges/discounts for all bundles by pic,, = (Pt )beB,: (Ptb)becis/B, ), the prices of sin-
gle products and the price surcharges/discounts for all bundles by p;c,, = ((p1))jea:, (Pb)becys)-
Let the market share function in ¢ evaluated at prices pic,, = ((pt;)jea,; (Pip)bec,,) and struc-
tural parameters (05, 1", %) be s:(0;(I" + g:(Pic,,; Xy)); Pic, s 2r), the domain of the cost
shifters ci3,uB, = ((¢tj)jes,, (¢b)ben,) be D, and remember that 0 = Ay, py) + & for
each j € J;. Denote the set of equilibrium prices given &3, and ¢3,0B, by pi,us, (&3, Cta,uB,) C
R x RP: given &3, by Py(&,) = Uers,um, €DrcP3iuB: (&3, Cea,uB, ), and the grand collection of
all possible equilibrium prices by P; = Ug,; ep, Pi(&,). The vector of observed prices is an
equilibrium of the price-setting model, so that pi,uB, € pis,us, (£i3,, Cta,uB, )-

With respect to the case of pure components pricing, our identification argument addresses
the larger number of endogenous prices by requiring the existence of a proportionally larger
number of identifiable cost shifters. In particular, we require the existence of identifiable cost

shifters not only for the single products, but also for the bundles in B;.
Assumption 7.

e (Cost Shifters at the Bundle-Level) Dy, is open in R*TBt fort € T.

o (Identifiability of Cost Shifters) c;3,uB, i a C* function of (&3,, pig,uB,) € {(&s,. Pi3,uB,)
§£Jt S Dt£7p1/tJtUBt € Py(&u,)} cuaum, = ¢4(&ua,s Praus,)-

While Assumption 7 is more demanding than Assumption 4, we believe it to be realistic in many

situations. As discussed by Chu et al. (2011), mixed bundling pricing is logistically impractical

“Importantly, remember that the demand synergies [it(1,2) = Tt +Gig(1,2) are heterogeneous across individuals
and that only their averages I'; are constrained to be common across markets, so that I'y =T, ¢t =1,...,T.

83



for firms with more than a few products, because the number of separate bundles and prices to
be monitored and optimized increases exponentially with the number of products. Assumption
7 requires that the act of pricing any bundle of products differently from the sum of the prices of
its components entails an additional cost on the side of the firm: in terms of packaging, shelf and
storage space, data collection, computational power, surveillance at the cashiers, etc. Similar
to Assumption 4 for the case of pure components pricing, it can be shown that Assumption 7
is consistent with commonly employed mixed bundling pricing models: any number of firms
(monopoly, duopoly, or oligopoly) playing a complete information simultaneous Bertrand-Nash
game with any profile of demand synergies (substitutability and/or complementarity), and a
Pea,uB, (&3, cia,uB,) of unrestricted cardinality (the price-setting model is allowed to have a
unique, several, or infinitely many equilibria).
Define for each r =1, ..., R:

=ID _
:,r. = {(StJﬁ CtJtUBt)tGT\TO c XtET\To [th X Dtc] . El t - T \ TO SU_Ch that

Mysy  (5:(00(T% + g (Pecins £9)): Prcs Bp); Peca Bp) 7 I+ gi(Dicyy; Bf)

for any Pt3,UB, € PtJ,UB, <5tJt> CtJtuBt)}

=ID =ID .. . ..
and = = N =", Similar to Assumption 5 for pure components pricing, we propose the

following technical assumption for the case of mixed bundling:

Assumption 8. For every r = 1,...,R, there exists t € T \ Ty, so that for almost every
B, € Py = UgtJtGDtgﬁt(ftJt), there exists &jy,, such that I + g,(37) # Mys; (s.(05(T0 +
9t (DeCa; 29)); PrCor» Bp); PiCo» B

As Assumption 5, Assumption 8 also holds given a strengthening of the real analytic property

of mixed logit models:
Corollary 3. Suppose that the following conditions hold:
e Forr=1,...,R, E{D £ .

e For anyt € T\ Ty and (I',X), s:(0,(I' + g:(pece: Xg)); Prcy, 2r) is real analytic with

respect to (813,, Prcyy) and gi(pic,,; Xq) is real analytic with respect to pic,, -
Then, Assumption 8 holds.
Proof. The proof is similar to that of Corollary 2. [

Denote by (£}, ¢y, U, Pic,,) the true value of (&y,, ¢i3,uB,, Pec,,) for which
5:(0:(T° + 9¢(Phc,ys X9))i Phcy » SF) = 3

Theorem 9. Suppose Assumptions 1-3 and 7 hold, and Oy, is compact. Then, it follows that:
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o If (&), ¢ty,uB, )ieT\ Ty € EID, then system (9) has a unique solution in Oy, and model (3)
1s globally identified.

e If Assumption 8 holds, the Lebesque measure of Xyem\1,[Die X Dy \EID 18 zero.

Proof. Note that given Assumption 7, for any b € Cy;/By, pp = Zjebptj. Denote this

dependence as p;c,,/B, = PiC.2/B, (P3,) and then the market share function can be written as:

51(0{(T" 4 g1 (PecayB: (Pra,), PiBe; X)) Pea, B PiCea/By (Pe3,), B )-

Then, given (I",¥'), the dependence of s; on (&3,, ¢i3,uB,) is channeled through that of py3,uB,
on (&3,,t3,uB, ), as in Theorem 4. To prove Theorem 9, we can then apply the same arguments

as in the proof of Theorem 4 on (&y,, ¢13,uB, )- O
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