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1 Introduction

In standard decision theory, consumer preferences are usually defined over bundles of prod-
ucts rather than over single products (Debreu (1959), Varian (1992), and Mas-Colell et al.
(1995)), allowing for both substitutability and complementarity. Despite important exceptions
(Manski and Sherman (1980), Hendel (1999), Dubé (2004), Gentzkow (2007), and Thomassen
et al. (2017)), the models routinely used to estimate demand rely on the assumption that each
of the products purchased in a bundle is chosen independently, precluding the possibility of
complementarity and potentially leading to incorrect estimates and counterfactuals.

Models of demand for bundles face non-trivial identification challenges (Gentzkow, 2007),
even in settings with a limited number of products (Fox and Lazzati (2017) and Allen and
Rehbeck (2019)). Moreover, the estimation of demand for bundles is subject to a challenge of
dimensionality: the number of parameters can be too large to be handled numerically even with
parsimonious specifications (Berry et al., 2014). These difficulties forced empirical researchers
either to focus on applications with a limited number of products (typically two or three) or
to make restrictive assumptions on the parameters capturing potential synergies among the
products within bundles (typically a common parameter for all bundles and individuals).1

We tackle these challenges and propose empirical methods that are practically useful in
applications with more than a few products. In particular, we study the identification and
estimation of a mixed logit model of demand for bundles with endogenous prices given obser-
vations on bundle-level market shares. Our arguments hinge on the affine relationship between
the utilities of single products and of bundles typical of models along the lines of Gentzkow
(2007)’s: the average utility of any bundle equals the sum of the average utilities of the single
products plus an extra term capturing their potential demand synergies. This utility structure
allows (i) for a novel identification approach based on the existence of exogenous but potentially
unobserved cost shifters and (ii) to alleviate the challenge of dimensionality in estimation by
means of a new demand inverse in the presence of complementarity.

Our approach is based on a symmetry assumption about the average demand synergies
across markets: while the demand synergies for any specific bundle may be unobserved and
heterogeneous across individuals, their average is required to be constant across markets with
the same observable characteristics (e.g., demographics and prices). Importantly, we propose a
specification test for this symmetry assumption on the basis of partial identification methods
that can be performed prior to the estimation of the full model. Under this symmetry assump-
tion and regularity conditions similar to Rothenberg (1971), we derive necessary and sufficient
rank conditions for the local identification of the model with endogenous prices. This result
formalizes Gentzkow (2007)’s insight that, when the average demand synergies are “similar”

1Throughout the paper, we refer to the parameters capturing the potential synergies among products within
bundles simply as demand synergies or demand synergy parameters.
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across markets, the availability of data on many markets will help identification. The “neces-
sity” part of the result is informative about the limits of identification in models of demand
for bundles: the separate identification of demand synergies and of the distribution of random
coefficients is not immediate, and one needs observations on “enough” markets to achieve it.

We provide novel sufficient conditions for the global identification of the model with endoge-
nous prices to hold almost everywhere. Our argument combines three main ingredients: a finite
number of elements in the identification set, an essential real analytic property of the mixed logit
model, and the existence of exogenous cost shifters. We assume that the identification set does
not have infinitely many elements and, building on Chernozhukov et al. (2007) and on Romano
and Shaikh (2012), propose testable conditions to verify this in practice. We show that the
mixed logit market share function is real analytic with respect to the market-product specific
average utilities. This further shrinks the identification set in the presence of exogenous varia-
tion in the market-product specific average utilities. We then demonstrate that cost shifters can
provide the required exogenous variation when the endogenous prices are generated by a large
class of pure components and mixed bundling price-setting models.2 We finally attain global
identification almost everywhere by assuming the existence of exogenous cost shifters that are
potentially unobserved but identifiable from observed market shares and prices. One can then
interpret our identification strategy as based on the existence of “unobserved” but “identifiable”
instruments, the exogenous cost shifters.

We propose a Maximum Likelihood Estimator (MLE) to be implemented with observed
bundle-level market shares subject to sampling error and robust to price endogeneity. We
account for sampling error to accommodate the typical necessity of computing bundle-level
market shares from a sample of household-level purchases (as in Gentzkow (2007), Kwak et al.
(2015), Grzybowski and Verboven (2016), Ruiz et al. (2017), and Ershov et al. (2018)). The
estimation of demand for bundles is subject to a well known challenge of dimensionality: the
number of market-product specific average utility parameters and of demand synergy parame-
ters can be too large to be handled numerically (Berry et al., 2014)). We tackle this practical
bottleneck by a novel demand inverse designed to handle complementarity among products in
models along the lines of Gentzkow (2007)’s. For any given value of the other parameters,
we establish a one-to-one mapping between the observed product-level market shares and the
market-product specific average utilities.3 This enables to concentrate out of the likelihood
the potentially large number of market-product specific average utilities and to substantially

2For classic treatments of pure components and mixed bundling pricing strategies, see Adams and Yellen
(1976), Lewbel (1985), McAfee et al. (1989). For more recent contributions, see Armstrong and Vickers (2010),
Chu et al. (2011), Armstrong (2013), and Zhou (2017).

3Demand inverses at the bundle-level can simply rely on the classic results by Berry (1994) and Berry et al.
(2013) as long as the bundles in the demand system are substitutes. However, if some of the products are
complements, these classic results do not imply the invertibility of the demand system at the product-level. Our
product-level demand inverse is instead based on the P -matrix property of Gale and Nikaido (1965), which does
not require the products to be substitutes.
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simplify the MLE’s numerical search: in our application, the numerical search is reduced from
approximately 12000 to 130 parameters. We show that our assumptions for global identification
guarantee consistency and asymptotic normality of this estimator.

We illustrate our methods in the context of the ready-to-eat (RTE) cereal industry in the
USA. We revisit the classic studies by Nevo (2000, 2001), and allow for Hicksian complementar-
ity among different RTE cereal brands in demand estimation.4 The households in our data are
observed to purchase two or more different brands of RTE cereals in approximately 20% of their
shopping trips. Our data record purchases rather than consumption: the purchases of different
RTE cereal brands during the same shopping trip can clearly be motivated beyond synergies in
consumption. For example, if households face shopping costs for each visit to a store, one-stop
shopping may be preferred to multi-stop shopping (Pozzi (2012) and Thomassen et al. (2017)).
Moreover, if households delegate grocery shopping to one person, then preference for variety
may lead to the purchase of multiple brands on any shopping trip to accommodate the different
needs of the household (Hendel (1999) and Dubé (2004)).

Our model encompasses these alternative mechanisms: the demand synergies are catch-
all parameters that may reflect, for example, synergies in consumption, shopping costs, and
preference for variety. We try to distinguish empirically the contribution of some of these
possible mechanisms to the estimated demand synergies. Our results show that demand for
RTE cereals exhibits substantial Hicksian complementarity and that around 75% of it does not
seem to be explained by shopping costs or by preference for variety. We compare our estimation
results from the full model to those from a model of demand for single brands (similar to
Nevo (2000, 2001)) and show that ignoring Hicksian complementarity may result in misleading
demand estimates and counterfactuals (see also Fosgerau et al. (2019)). In particular, estimates
from the full model support the classic Cournot (1838)’s insight that, in the presence of Hicksian
complementarity, mergers can be welfare enhancing; while those from a standard model that
does not allow for it predict that mergers are detrimental for consumer surplus.

Related Literature. There is a growing empirical literature leveraging the estimation of
demand for bundles. Manski and Sherman (1980) study households’ choices of motor vehi-
cle holdings; Hendel (1999) studies preference for variety for personal computers, while Dubé
(2004) and Chan (2006) for soft carbonated drinks; Nevo et al. (2005) study the decision of
libraries to subscribe to economics and business journals; Gentzkow (2007) and Gentzkow et al.
(2014) investigate competition and complementarity among newspapers; Augereau et al. (2006)
the returns from adoption of technological standards; Liu et al. (2010) and Grzybowski and
Verboven (2016) the complementarity among telecommunication services; Crawford and Yu-

4Following Samuelson (1974) and Gentzkow (2007), we rely on the classic Hicksian notion of complementar-
ity: we consider two brands as complements whenever their cross-price elasticity of (compensated) demand is
negative. For recent discussions on complementarity in empirical models of demand, see Manzini et al. (2018),
Dubé (2019), and Iaria and Wang (2019).

4



rukoglu (2012) and Crawford et al. (2018) the problem of bundling and vertical restraints in
cable television, while Ho et al. (2012) in the video rental industry; Kretschmer et al. (2012)
study the adoption of complementary innovations; Lee et al. (2013) the complementarity be-
tween milk and RTE cereals; Song et al. (2017) the relationship between mergers and inter-firm
bundling in the pharmaceutical industry; Ruiz et al. (2017) propose a machine learning model
of demand for bundles, Thomassen et al. (2017) study the problem of transportation costs
in grocery shopping; Ershov et al. (2018) the complementarity between potato chips and soft
carbonated drinks; and Fosgerau et al. (2019) the complementarity between different brands of
RTE cereals. We add to this empirical literature by providing novel identification and estima-
tion methods for models along the lines of Gentzkow (2007)’s, specifically accounting for price
endogeneity and alleviating the challenge of dimensionality inherent in estimation.

The global identification of non-linear models is notoriously complex to demonstrate (Newey
and McFadden (1994) and Lewbel (2019)). Researchers typically resume to non-verifiable
abstract conditions (Rothenberg (1971), Bowden (1973), and Komunjer (2012)) or focus on
weaker identification concepts altogether, such as local identification (Rothenberg (1971), Sar-
gan (1983), and Lewbel (2012)) or partial identification (Manski (1989), Manski (2003), and
Chesher and Rosen (2017)). We contribute to this literature by providing sufficient conditions
for global identification that are testable (on the basis of partial identification methods), rooted
in economic theory (to address price endogeneity), and weaker than the classics (Rothenberg
(1971), Bowden (1973), and Komunjer (2012)). The relative advantage of our conditions fol-
lows from a real analytic property we show to be satisfied by mixed logit models given any
distribution of random coefficients (parametric or non-parametric), which allows us to relax
the strict concavity of the likelihood function (or similar criterion functions). Fox et al. (2012)
and il Kim (2014) also exploit the real analytic properties of logit models to achieve global
identification, but in more restrictive frameworks. il Kim (2014) shows the real analytic prop-
erty for multinomial logit and for nested logit models, while Fox et al. (2012) show it for mixed
logit models with random coefficients defined over compact supports—thereby ruling out, for
example, normal and the log-normal distributions.

In the context of identification of models of demand for bundles, we add to the discussions
by, for example, Fox and Lazzati (2017) and Allen and Rehbeck (2019). Fox and Lazzati
(2017) propose sufficient conditions for the non-parametric identification of demand for bundles
(and binary games of complete information) on the basis of additively separable excluded
regressors. Allen and Rehbeck (2019) instead study the non-parametric identification of a
large class of demand models, among which demand for bundles, by exploiting variation in
the substitution and complementarity patterns among different products. While these papers
make fewer distributional assumptions and can be preferred in situations with small choice sets
and exogenous regressors, our arguments apply more readily to cases with larger choice sets,
endogenous prices, and in general lead to practically convenient estimators.
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Our mixed logit model of demand for bundles can be seen as a special case of the general
non-parametric framework by Berry and Haile (2014). Berry and Haile (2014)’ identification
argument relies on the availability of observed instruments both to pin down the distribution
of random coefficients and to address price endogeneity. In contrast, Gentzkow (2007)’s util-
ity structure allows us to propose a complementary identification strategy based on unobserved
instruments: we rely on the existence of “unobserved” but “identifiable” cost shifters and on con-
ditional symmetry restrictions among the average demand synergies across markets. While less
general in abstract terms, our arguments are more applicable to cases with limited observability
of instruments and give rise to sizeable computational advantages in estimation.5

Our estimator contributes to the modern literature on the estimation of demand systems
started by Berry et al. (1995) (henceforth BLP). For example, Berry et al. (2004b), Freyberger
(2015), and Armstrong (2016b) investigate the asymptotic properties of GMM estimators of
demand systems with endogenous prices. While these GMM estimators are more widely appli-
cable provided the availability of observable instruments, in the context of demand for bundles
our MLE represents a numerically convenient alternative in which the instruments need to exist
but do not need to be observed. More recently, Compiani (2019) proposes a non-parametric
estimator of demand models that accommodates complementarity among products. There is a
trade-off between our proposed estimator and Compiani (2019)’s. His non-parametric estimator
is more flexible than ours, but it is subject to a curse of dimensionality that may constrain its
applicability to settings with small choice sets. Our MLE is less affected by dimensionality and
can be implemented with larger choice sets.

Since Berry (1994), the identification and the estimation of demand systems with endoge-
nous prices has been relying on the ability to “invert” market share equations to uniquely
determine the implied product-specific average utilities—the so called demand inverse. A stan-
dard requirement for the invertibility of demand systems is for the products to be substitutes,
see Berry et al. (2013). This requirement can be problematic in contexts with complementary
products: for example, in a model of demand for bundles of newspapers, Fan (2013) rules out
by assumption any complementarity in order to rely on the classic demand inverse by Berry
(1994) at the newspaper-level. Our novel demand inverse addresses this issue and allows to
invert product-level market share equations in the presence of complementarity.

Organization. In the next section, we introduce model and notation. In sections 3 and 4,
we present—respectively—our local and global identification results. In section 5, we propose
our demand inverse and a related MLE. In section 6, we explore the practical relevance of our
methods with an empirical illustration. In section 7, we conclude the paper with some final

5The classic identification argument based on observed instruments requires the performance of high-
dimensional demand inverses at the bundle-level, while our argument based on unobserved instruments al-
lows for the performance of demand inverses only at the product-level. In practice, this implies the numerical
inversion of a lower-dimensional demand system and leads to large computational advantages.
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remarks. In appendix section 8, we report all the proofs and additional results.

2 Model and Notation

Imagine a cross-section of T independent markets denoted by T, where each market t ∈ T is
populated by i = 1, ..., I individuals. Individual i in market t makes purchases exclusively in
market t and is a different person from individual i in any other market t′ 6= t. For individuals
in market t, let Jt be the set of j = 1, ..., Jt market-specific products that can be purchased in
isolation or in bundles. Let Ct = Ct1∪{0} be the choice set specific to market t, which includes:
the collection of “inside” options Ct1 and the “outside” option j = 0 (i.e., the option not to
purchase any product). In turn, the collection of inside options is defined as Ct1 = Jt ∪ Ct2,
whereCt2 denotes the set of market-specific bundles of products. The set of all available bundles
across all markets is C2 = ∪Tt=1Ct2. We refer to the cardinality of these sets as: Ct = |Ct|,
Ct1 = |Ct1|, Ct2 = |Ct2|, and C2 = |C2|. We denote by b any element of the choice set Ct,
whereby some abuse of notation b may refer to a bundle, a single product, or the outside option.

The indirect utility of individual i in market t from purchasing product j is:

Uitj = uitj + εitj

= δtj + µitj + εitj and

Uit0 = εit0,

(1)

where uitj = δtj + µitj, δtj is the market t-specific average utility of product j ∈ Jt, µitj is
an unobserved individual-specific utility deviation from δtj, while εitj and εit0 are error terms.
Throughout the paper, we treat the market t-specific average utilities as parameters to be
identified and estimated. One can however reduce the number of parameters by using observable
characteristics and making additional functional form assumptions.6

To ease exposition, when b is a bundle, we refer to the products it contains as j ∈ b.
Following Gentzkow (2007), the indirect utility of individual i in market t from purchasing
bundle b ∈ Ct2 is:

Uitb =
∑
j∈b

uitj + Γitb + εitb

=
∑
j∈b

(δtj + µitj) + Γtb + (Γitb − Γtb) + εitb

=
∑
j∈b

δtj + Γtb +

[∑
j∈b

µitj + ζitb

]
+ εitb

= δtb(Γtb) + µitb + εitb,

(2)

6We provide more detail on this while discussing price endogeneity at the end of this section.
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where Γitb is the individual-specific demand synergy among the products in bundle b, which
we specify as Γitb = Γtb + ζitb. Γtb is the average demand synergy for the products in bundle b
among the individuals in market t and ζitb is an unobserved individual-specific deviation from
this average. δtb(Γtb) =

∑
j∈b δtj + Γtb is the market t-specific average utility for bundle b, µitb

is an unobserved individual-specific deviation from δtb(Γtb), and εitb is an error term.
The demand synergy parameter Γitb captures the extra utility individual i in market t

obtains from purchasing the products in bundle b jointly rather than separately. When Γitb > 0,
the utility of the bundle is super-modular with respect to the utilities of the single products
and, from i’s perspective, joint purchase brings more utility. Conversely, when Γitb < 0,
from i’s perspective the separate purchase of each j ∈ b brings more utility than their joint
purchase. As we discuss below, in applications with observable bundle-specific characteristics
(e.g., bundle-specific discounts), one can specify Γitb in terms of these characteristics.

We now turn to the distributional assumptions for the unobserved components of utility:
µitb =

∑
j∈b µitj + ζitb and εitb for each b ∈ Ct. We assume that µitb can be specified as a

function of a vector of random coefficients βit, so that µitb = µitb(βit), and that βit is distributed
according to F (·; ΣF ), where ΣF is a finite-dimensional parameter in a connected compact set
ΘΣF ⊂ RP . As is typical, µitb(·) can also be a function of observable demographics (e.g., i’s
income) and/or observable market-, product-, and bundle-specific characteristics (e.g., the price
of bundle b in market t). The error term εitb is assumed to be i.i.d. Gumbel.

Even though we make the assumption that εitb is i.i.d. Gumbel, as shown by McFadden and
Train (2000), under mild regularity conditions any discrete choice model derived from random
utility maximization can be approximated arbitrarily well by mixed logit models of the kind we
consider. In addition, note that our mixed logit model is a generalization of Gentzkow (2007)’s,
which restricts F (·; ΣF ) to be a normal distribution and Γitb = Γb for all i’s and t’s. We
add a layer of unobserved heterogeneity to the individual preferences specific to each bundle:
for reasons unobserved to the econometrician, the products in any bundle can exhibit positive
demand synergies for some individuals and negative for others.

Denote the market t-specific average utility vector by δt(Γt) = (δtb(Γtb))b∈Ct1 and the vector
collecting all the market t-specific average demand synergies by Γt. δt(Γt) does not only list the
t-specific average utilities of bundles b ∈ Ct2, but also those of the single products b ∈ Ct1\Ct2

(where Ct1 \Ct2 = Jt): given that any single product has zero demand synergies, our notation
for b = j ∈ Ct1 \Ct2 is just δtb(Γtb) = δtj. Given our distributional assumptions, the market
share function of b ∈ Ct for individuals in market t takes the mixed logit form:

stb(δt(Γt); ΣF ) =

∫
sitb(δt(Γt), βit)dF (βit; ΣF )

=

∫
eδtb(Γtb)+µitb(βit)∑

b′∈Ct e
δtb′ (Γtb′ )+µitb′ (βit)

dF (βit; ΣF ),

(3)
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where sitb(δt(Γt), βit) is individual i’s purchase probability of b in market t given βit.

Complementarity and Substitutability. Following Samuelson (1974) and Gentzkow (2007),
we rely on the classic notion of Hicksian complementarity: we consider two products as com-
plements (substitutes) whenever their cross-price elasticity of demand is negative (positive).7

In a model similar to (3) with two products, j and k, and constant demand synergy parameters
Γit(j,k) = Γ(j,k), Gentzkow (2007) shows that j and k are complements (substitutes) whenever
Γ(j,k) > 0 (Γ(j,k) < 0). On the one hand, with more products and heterogeneous demand syner-
gies, the relationship between Hicksian complementarity and Γitb is less clear-cut and the topic
of ongoing research (Iaria and Wang, 2019). On the other, though, standard models of demand
for single products—obtained by constraining Γitb = −∞ for all i’s, t’s, and b ∈ Ct2—rule out
the possibility of Hicksian complementarity and force any two products to be substitutes. In
this paper, we take a pragmatic approach and regard the complementarity or substitutability
between products as an empirical question to be answered after the estimation of model (3).

Interpretation of Demand Synergies. Model (3) is agnostic about the exact meaning
of Γitb, which is a catch-all parameter that can reflect, for example, synergies in consumption,
shopping costs, and preference for variety. In Gentzkow (2007)’s demand for on-line and printed
newspapers, Γitb captures synergies in the consumption of the different news outlets. However,
demand synergies—and consequently Hicksian complementarity—can also arise, for example,
because of shopping costs (Pozzi (2012) and Thomassen et al. (2017)) or preference for variety
within households (Hendel (1999) and Dubé (2004)). If individuals face shopping costs every
time they visit a store, they may prefer to purchase all of their products at once rather than
over several trips (one-stop shoppers). Moreover, if households delegate grocery shopping to
one person, then preference for variety may lead to the purchase of multiple products on
any shopping trip to accommodate the different needs within the household. Our model can
rationalize shopping costs with positive demand synergies and, as we show in Appendix 8.1,
preference for variety with some additional structure on the demand synergy parameters.

Random Intercepts and Demand Synergies. As argued by Gentzkow (2007), the random
intercepts (µitj)

Jt
j=1 play an important conceptual role in the identification of demand synergies

in mixed logit models of demand for bundles. Without random coefficients, the Independence
from Irrelevant Alternatives (IIA) property would imply that the relative predicted market
shares of any two bundles do not depend on the characteristics of any other bundle. Removing
from the choice set a bundle almost identical to the preferred one (e.g., same products but one)

7In our application, we rule out income effects so that gross complementarity (in terms of elasticities of
Marshallian demands) and Hicksian complementarity (in terms of elasticities of compensated demands) coincide.
For discussions about complementarity in models of demand for bundles similar to those studied here, see
Manzini et al. (2018), Dubé (2019), and Iaria and Wang (2019).
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or a bundle completely different from it (e.g., only different products) would equivalently have no
impact on the remaining relative predicted market shares. The random intercepts mitigate this
limitation in an intuitive way: the indirect utilities of all bundles including product j will share
the random intercept µitj, so that bundles with a larger overlap of products will also have more
correlated indirect utilities. Disentangling demand synergies from these random intercepts is
the key identification challenge in models of demand for bundles: as shown by Gentzkow (2007),
not accounting for possible correlations across the indirect utilities of bundles with overlapping
products may lead to finding spurious demand synergies and Hicksian complementarities.

Average Utilities and Price Endogeneity. We treat the average utility δtj as a fixed
effect to be identified and estimated, being unspecific about its exact dependence on price and
other observed or unobserved market-product specific characteristics. For example, following
Berry (1994) and BLP, a classical linear specification is δtj = xtjτ + αptj + ξtj, where xtj is
a vector of exogenous observed characteristics, ptj is the observed price, (τ, α)T is a vector of
preference parameters, and ξtj is a residual unobserved to the econometrician but observed to
both individuals and price-setting firms. In this context, endogeneity arises whenever prices
are chosen by firms on the basis of (ξtj)

Jt
j=1.

Our local identification arguments are robust to cases of price endogeneity in which, for any
bundle b, the source of endogeneity is confined to δtb(Γtb) =

∑
j∈b δtj+Γtb, with Γtb constrained

to be constant across markets with the same market-bundle specific observables. In particular,
as detailed in Assumption 2 below, we require Γtb = Γb + g(xtb, ptb; Σg), where Γb is a bundle-
specific fixed effect and g(·, ·; Σg) is a function parametrized by Σg of the observed characteristics
xtb and of the observed price surcharge/discount ptb (the difference between the price of bundle
b and

∑
j∈b ptj). For example, one can specify g(·, ·; Σg) as g(xtb, ptb; τ, α) = xtbτ + αptb.

While our assumptions on Γtb allow δtj to be any arbitrary function of (xtj, ptj, ξtj), they
restrict the functional form of the market-bundle specific unobservables on the basis of which
firms choose prices. For instance, with the above linear specifications for δtj and Γtb, we have
δtb(Γtb) = (xtb+

∑
j∈b xtj)τ+α(ptb+

∑
j∈b ptj)+

∑
j∈b ξtj+Γb, with the market-bundle specific

unobservable restricted to
∑

j∈b ξtj + Γb.
Our global identification arguments further require restrictions on δtj and on the price-

setting model. As detailed in section 4.2, we require: (i) the average utility δtj to be additively
separable in ξtj and an arbitrary function of (xtj, ptj) and (ii) the existence of exogenous cost
shifters that are unobserved to the econometrician but identifiable from observed market shares
and prices.
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3 Local Identification

Suppose that the econometrician observes without error the market shares stb of each b ∈ Ct1

for each independent market t = 1, ..., T .8,9 We focus on the case of a fixed number of products
Jt and of a fixed number of independent markets T . We do not consider the case of panel data
with repeated observations for each market. Similar to Berry and Haile (2014), our notion of
identification concerns the conditions under which

stb(δ′t(Γ
′
t); Σ′F ) = stb

subject to Γ′tb = δ′tb(Γ′tb)−
∑
j∈b

δ′tj,b ∈ Ct2
(4)

has a unique solution for t ∈ T and b ∈ Ct1, where δ′t(Γ′t) = (δ′tb(Γ′tb))b∈Ct1 and stb(δ′t(Γ
′
t); Σ′F )

is defined in (3). Define the Jt × 1 market t-specific vector δtJt = (δtj)j∈Jt , and the Ct1 × 1

market t-specific vectors st(·; Σ′F ) =
(
stb(·; Σ′F )

)
b∈Ct1

and st = (stb)b∈Ct1 .

Definition 1. Model (3) is locally identified if and only if there exists a neighbourhood V of
the true parameters (δ1J1 , ..., δTJT ,Γ1, ...,ΓT ,ΣF ) such that (δ1J1 , ..., δTJT ,Γ1, ...,ΓT ,ΣF ) is the
unique solution to (4) in V .

Definition 1 constrains our discussion of identification to the existence of a unique solution to
system (4) in mixed logit model (3). We will refer to the existence of multiple solutions to
this specific problem as to lack of identification. Because of the non-linear nature of model (3),
we start by studying the problem of local identification. In section 4, we then investigate the
problem of global identification, which requires stronger assumptions.

Building on Berry et al. (2013), our identification arguments rely on demand inverses derived
from (4). Define the inverse market share for market t ∈ T as:

s−1
t (·; ΣF ) =

(
s−1
tb (·; ΣF )

)
b∈Ct1

: St1 ⇒ RCt1 , (5)

where s−1
tb (·; ΣF ) is the inverse market share for market t = 1, ..., T and b ∈ Ct1, and

St1 = {(stb)b∈Ct1 : stb ∈ (0, 1),
∑
b∈Ct1

stb < 1}

is the set of all feasible market share vectors for market t ∈ T. The next Assumption imposes
some regularity conditions on the parametric distribution of the random coefficients (first re-
quirement) and that the products belonging to any bundle can also be purchased individually
(second requirement).

8This is only for the purpose of identification, in estimation we consider the case of observed market shares
subject to sampling error.

9Sher and Kim (2014), Allen and Rehbeck (2019), and Wang (2019) study a different identification problem,
where only the product-level market shares, rather than the bundle-level market shares, are observed.
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Assumption 1.

1. The density of βit,
dF (βit;Σ

′
F )

dβit
, is continuously differentiable with respect to Σ′F for any βit.

2. If b ∈ Ct2, then j ∈ Jt for any j ∈ b.

The next Lemma verifies the sufficient conditions by Berry et al. (2013) for the bundle-level
demand inverse (5) to be a continuously differentiable function.

Lemma 1.

• For any given Σ′F ∈ ΘΣF , the inverse market share (5) is a function: for each st ∈ St1,
there exists a unique δ′t ∈ RCt1 such that st(δ′t; Σ′F ) = st.

• Given Assumption 1, the inverse market share, s−1
t (s′t; Σ′F ), is continuously differentiable

with respect to (s′t,Σ
′
F ) in a neighbourhood of (st,ΣF ).

Proof. See Appendix 8.2.

In the online supplement, we illustrate that even simple versions of model (3) raise identification
concerns. First, we show that without further restrictions on Γt or additional external infor-
mation, model (3) can hardly be identified. Second, we discuss three examples that highlight
Gentzkow (2007)’s insight: when Γt = Γ, the availability of purchase data for multiple markets
will help identification. In what follows, we study identification under this restriction.

Assumption 2. Γtb = Γb+g(xtb, ptb; Σg) for t ∈ T and b ∈ Ct2, where Γb is a bundle-specific
fixed effect, xtb a vector of observed market-bundle specific characteristics, ptb an observed price
surcharge/discount for the joint purchase of the products in the bundle, and g(·, ·; Σg) a function
of (xtb, ptb) known up to and continuously differentiable with respect to Σg ∈ ΘΣg ⊆ RD.

Assumption 2 restricts the variation in Γtb across markets to be fully captured by the variation in
the observables (xtb, ptb) through the parametric function g(xtb, ptb; Σg). This allows to reduce
the dimensionality of the collection of average demand synergies from

∑T
t=1Ct2 to D+C2 and

in particular to treat Γb as a bundle-specific fixed effect to be identified and estimated. Note
that, even though Assumption 2 requires all markets with given (xtb, ptb) to have the same
average demand synergy Γb + g(xtb, ptb; Σg), each individual in each market is allowed to have
a specific demand synergy deviation ζitb, so that Γitb may potentially differ across individuals
for any given market and bundle. Moreover, as we illustrate below, in applications with a large
number of markets with overlapping choice sets, Assumption 2 potentially leads to many over-
identifying moment restrictions and can be weakened, so to allow for more flexible specifications
of Γtb. In those cases, one could for example specify (Γtb,Σtg) = (Γ1b,Σ1g) for t = 1, ..., T1,
(Γtb,Σtg) = (Γ2b,Σ2g) for t = T1 + 1, ..., T2, and so on until each t belonged to one of Q groups
of “similar” markets with (Γ1b,Σ1g) 6= (Γ2b,Σ2g) 6= ... 6= (ΓQb,ΣQg).
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Remark 1. Assumption 2 gives rise to testable implications and can be verified in practice.
In Appendix 8.7, we present a specification test that builds on partial identification methods.
Essentially, the proposed test checks whether there exists at least one profile of parameters
(δ1J1 , ..., δTJT ,Γ1, ...,ΓT ,ΣF ) satisfying Assumption 2 that solves demand system (4). A rejec-
tion of the test is evidence against Assumption 2 and highlights its incoherence with the data.

The presence of random coefficients, i.e. dim(ΣF ) > 0, leads system (4) to have more un-
knowns than equations, introducing an identification problem not present in multinomial logit
models. In general demand systems where the indirect utilities of different alternatives have
no particular relationships, this dimensionality issue is typically addressed by including addi-
tional instruments beyond those necessary to address price endogeneity. However, in the case
of Gentzkow (2007)’s demand for bundles, the specific structure that links the indirect utilities
of bundles to those of single products allows to reduce dimensionality from within the system.
Assumption 2 embodies this strategy: by imposing a symmetry restriction among the aver-
age demand synergies across markets, the model can be identified without requiring additional
instruments to those necessary to address price endogeneity.

Due to Lemma 1 and Assumption 2, at the true parameters ΣF and market shares st, one
can re-express the first line of system (4) as:∑

j∈b

δtj + Γb + g(xtb, ptb; Σg) = s−1
tb (st; ΣF ), for bundle b ∈ Ct2

δtj = s−1
tj (st; ΣF ), for product j ∈ b.

(6)

By substituting (6) into the second line of (4), one gets:

Γb = s−1
tb (st; ΣF )−

∑
j∈b

s−1
tj (st; ΣF )− g(xtb, ptb; Σg), (7)

for t ∈ T and bundle b ∈ Ct2. Note that the left-hand side of system (7) does not depend on
market t, while the right-hand side does. Consequently, at the true parameters Σ = (ΣF ,Σg),
true market shares of any two markets, st and st′ , and any b ∈ Ct2 ∩Ct′2, one obtains:

s−1
tb (st; ΣF )−

∑
j∈b

s−1
tj (st; ΣF )− g(xtb, ptb; Σg) = s−1

t′b(st′ ; ΣF )−
∑
j∈b

s−1
t′j (st′ ; ΣF )− g(xt′b, pt′b; Σg).

(8)
Our identification strategy exploits all such moment conditions for any pair of markets t 6= t′ and
any b ∈ Ct2∩Ct′2. As we will see below, under certain conditions, these moment restrictions can
uniquely determine the true parameters Σ = (ΣF ,Σg). Then, due to (7), the true parameters
Σ = (ΣF ,Σg) can uniquely determine the remaining portion Γb of the true demand synergies,
for any b ∈ Ct2. Denote gt(Σg) = (g(xtb, ptb; Σg))b∈Ct2 . Finally, because of Lemma 1, one can
uniquely recover δt(Γ + gt(Σg)) = (δt1, ..., δtJt , (δtb(Γb + g(xtb, ptb; Σg)))b∈Ct2).
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Note that for any b ∈ C2, there exists t such that b ∈ Ct2. Then, for any b ∈ C2, define
Tb = {t : b ∈ Ct2, t ∈ T}. If Tb has more than one element, we order them from t1 to
t|Tb|. By applying the right-hand side of (7) to ta and to ta+1 and by taking the difference, for
a = 1, ..., |Tb| − 1, we then obtain |Tb| − 1 moment conditions:10

mb(Σ′F ,Σ
′
g; s) =

[
s−1
tab

(sta ; Σ′F )−
∑
j∈b

s−1
taj

(sta ; Σ′F )− s−1
ta+1b

(sta+1 ; Σ′F )

+
∑
j∈b

s−1
ta+1j

(sta+1 ; Σ′F ) + g(xta+1b, pta+1b; Σ′g)− g(xtab, ptab; Σ′g)

]|Tb|−1

a=1

,

mb(Σ′; s)|Σ′=Σ = 0.

(9)

Moment conditions (9) rely on relationship (7) and the fact that markets ta and ta+1 have the
same bundle-specific fixed effect Γb. As a consequence, at the true parameter values Σ′ = Σ,
mb(Σ′; s)|Σ′=Σ = (Γb−Γb)

|Tb|−1
a=1 = 0. Define m(Σ′) = m(Σ′; s) as a function of Σ′ = (Σ′F ,Σ

′
g) ∈

ΘΣ = ΘΣF × ΘΣg that stacks together the above moment conditions for all the bundles with
|Tb| ≥ 2: m(Σ′) = (mb(Σ′; s))b∈C2,|Tb|≥2. We then have m(Σ′)|Σ′=Σ = 0, which consists of∑

b∈C2,|Tb|≥2 (|Tb| − 1) moment conditions with P +D = dim(Σ′) unknowns.
In what follows, inspired by Rothenberg (1971), we show that full column rank condition

rank(∂m(Σ′)
∂Σ′

)
∣∣
Σ′=Σ

= dim(Σ) = P + D is necessary and sufficient for identification among the
rank regular Σ ∈ ΘΣ.11,12 Rank regularity is a broader concept than full column rank: if
∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

is of full column rank, then Σ is rank regular.13

Theorem 1. Local Identification: Suppose Assumptions 1 and 2 hold, and Σ ∈ ΘΣ is rank
regular for ∂m(Σ′)

∂Σ′
. Then, model (3) is locally identified if and only if ∂m(Σ′)

∂Σ′

∣∣
Σ′=Σ

is of full column
rank.

Proof. See Appendix 8.5
10For notational simplicity, we suppress the dependence of the moment conditions from the market-bundle

specific observables (xtb, ptb)Tt=1.
11Σ ∈ ΘΣ is rank regular for the continuously differentiable function ∂m(Σ′)

∂Σ′ if there exists a neighbourhood
U of Σ such that rank(∂m(Σ′)

∂Σ′ ) = rank(∂m(Σ′)
∂Σ′ )

∣∣
Σ′=Σ

for each Σ′ ∈ U .
12Rothenberg (1971) shows the usefulness of the concept of rank regularity for local identification in non-linear

models. Our Theorem 1 adapts Rothenberg (1971)’s Theorem 1 (p. 579) to our environment. Note that the
concept of rank regularity is not vacuous in our context and there is plenty of such points: the set of rank
regular points of ∂m(Σ′)

∂Σ′ is open and dense in ΘΣ. For a proof of this property, see Appendix 8.3.
13In fact,

[
∂m(Σ′)
∂Σ′

]T [
∂m(Σ′)
∂Σ′

]
has positive determinant at Σ′ = Σ. Moreover, ∂m(Σ′)

∂Σ′ is continuously differ-

entiable with respect to Σ′. Then, the determinant of
[
∂m(Σ′)
∂Σ′

]T [
∂m(Σ′)
∂Σ′

]
is also continuous with respect to

Σ′ and therefore positive in a neighbourhood of Σ′ = Σ. As a consequence, ∂m(Σ′)
∂Σ′ is of full column rank in a

neighbourhood of Σ′ = Σ and has constant rank P +D in the same neighbourhood of Σ′ = Σ.
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Theorem 1 establishes the link between the number of markets with overlapping choice sets
and the local identification of model (3). Note that, if the number of markets with bundle b

available in the choice set increases, so that |Tb| becomes larger, then the number of moment
conditions in (9) increases. In this sense, Theorem 1 formalizes the intuition that having
data on additional markets with overlapping choice sets, or analogously on larger overlapping
choice sets for certain markets, will help identification. Specifically, suppose that Σ is rank
regular and that its dimension, P + D, is greater than the number of moment conditions,∑

b∈C2,|Tb|≥2 (|Tb| − 1). Then, the rank of ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

cannot exceed the number of its rows,∑
b∈C2,|Tb|≥2 (|Tb| − 1), which in turn is smaller than the number of its columns, P +D. As a

consequence, ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

is not of full column rank and model (3) is not identified.
While theoretically useful, the concept of rank regularity is abstract and not easily verifiable.

The next Corollary shows that whenever the dimension of Σ is larger than the number of
moment conditions and the Jacobian matrix ∂m(Σ′)

∂Σ′

∣∣
Σ′=Σ

is of full row rank, then Σ is rank
regular and model (3) is not identified.14

Corollary 1. Lack of Local Identification: Suppose Assumptions 1 and 2 hold, and the
number of moment conditions,

∑
b∈C2,|Tb|≥2 (|Tb| − 1) is strictly smaller than the dimension of

Σ, P +D. Then, if the Jacobian matrix ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

is of full row rank, model (3) is not locally
identified.

Proof. See Appendix 8.6.

4 Global Identification

Up to this point, we have focused on the local uniqueness of solutions to system (9). Without
any further restriction, the set of solutions to system (9) over the entire domain of parameters
may not be singleton. There are at least two approaches to dealing with this global multiplic-
ity. Partial identification, which entails the characterization of the set of global solutions to
system (9), i.e. the identified set, and global identification, which consists in strengthening the
conditions for local identification until the identified set is singleton over the entire domain of
parameters. We opt for the second approach and, in what follows, discuss sufficient conditions
for global identification. Our choice is motivated by estimation convenience: as detailed in
section 5, our global identification conditions imply a convenient MLE.

Denote by m(Σ′;T0) moment conditions (9) constructed from the subset of markets T0 ( T

and evaluated at Σ′ = (Σ′F ,Σ
′
g). The starting point of our global identification argument is to

restrict the number of solutions to system (9) with the following testable Assumption:
14Note that lack of local identification is the strongest negative result one can get: if the model is not locally

identified, then for sure it will not be globally identified.
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Assumption 3. There exists T0 ( T such that m(Σ′;T0) = 0 has a finite number of solutions
in ΘΣ.

Assumption 3 alleviates the severity of the identification problem to a finite collection of obser-
vationally equivalent candidates. All of our global identification results go through also in the
more general case of a countable collection of solutions. However, for notational simplicity, we
limit our exposition to the finite case. Assumption 3 implies local identification, but is weaker
than the typical rank conditions used to achieve global identification. For example, the classic
results by Rothenberg (1971) require the Jacobian of the gradient of the log-likelihood function
to be non-singular everywhere, so that the log-likelihood function is strictly concave (Bowden,
1973). While strict concavity is guaranteed by logit and probit models (Amemiya (1985) pp.
273-274), it is not by mixed logit models. Coherently with mixed logit model (3), Assumption
3 does not impose strict concavity of the log-likelihood function.

Remark 2. While Assumption 3 is high-level, in Appendix 8.7 we present a verifiable suffi-
cient condition that implies it (Proposition 2): ∂m(Σ′;T0)

∂Σ′
is of full column rank when evaluated

at any of the solutions to m(Σ′;T0) = 0. Building on the partial identification methods by
Chernozhukov et al. (2007) and by Romano and Shaikh (2012), in Appendix 8.7 we also pro-
pose a testing procedure to verify this sufficient condition in practice. A rejection of the test is
evidence in support of Assumption 3.

Assumption 3 is not new to the global identification literature and is also used, for example, by
Komunjer (2012). To obtain global identification, Komunjer (2012) additionally requires the
moment function to have non-negative Jacobian and to be proper.15 We avoid these further
restrictions by relying on the following real analytic property of the mixed logit model.16

Theorem 2. Real Analytic Property: For any F , st(δt;F ) is real analytic with respect to
δt in RCt1, for t = 1, ..., T .

Proof. See Appendix 8.8.

Theorem 2 shows the market share function of the mixed logit model to be real analytic with
respect to the average utilities given any distribution of random coefficients (parametric or
non-parametric). Fox et al. (2012) and il Kim (2014) also exploit the real analytic properties
of logit models to achieve global identification, but in more restrictive frameworks. il Kim
(2014) shows the real analyticity of multinomial logit and nested logit models (section IV),
while Fox et al. (2012) show it for mixed logit models with random coefficients defined over

15A function f : X → Y between two topological spaces is proper if the preimage of every compact set in Y
is compact in X.

16A function f : X → R is real analytic in X if for each x0 ∈ X, there exists a neighbourhood U of x0 such
that f(x) is equal to its Taylor expansion

∑∞
n=0

f(n)(x0)
n! (x− x0)n for any x ∈ U .
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compact supports (Lemma 5 and section 6)—thereby ruling out, for example, the normal and
log-normal distributions.

While our local identification results do not rely on the nature of the variation in δtJt ,
our global identification depends on whether the variation in δtJt is exogenous across markets:
price endogeneity restricts this variation and leads to additional difficulties. To overcome these
difficulties, we propose the use of mild restrictions on the price-setting model. In what follows,
we treat separately the simpler case of exogenous variation in δtJt , and that of price endogeneity.

4.1 Exogenous Average Utilities

Here we consider the case of exogenous variation in δtJt across markets. Given Assumption 3,
denote the finite set of solutions to m(Σ′;T0) = 0 in ΘΣ by S = {Σr : r = 0, ..., R}, where
Σ0 = (Σ0

F ,Σ
0
g) represents the true value Σ = (ΣF ,Σg). On the basis of Lemma 1, define the

corresponding Γr for r = 0, 1, ..., R. The real analytic property of st(δ′t; Σ′F ) allows to eliminate
the extra solutions Σr, r = 1, ..., R, by exploiting the additional variation provided by δtJt
for t ∈ T \ T0. Intuitively, the real analytic property guarantees that S is non-singleton, i.e.
lack of identification, only on a union of R zero measure sets of δtJt , t ∈ T \ T0. Because
the union of any finite number of zero measure sets has still zero measure, the real analytic
property—combined with Assumption 3—ensures global identification almost everywhere given
the additional variation provided by δtJt , t ∈ T \T0.

Define the set of matrices M = {Mt : t = 1, ..., T}, where each Mt is a matrix of dimension
Ct2 × Ct1. Remember that Ct2 is the number of bundles and Ct1 the number of inside options
(i.e., bundles plus single products). Mt is made of two sub-matrices: Mt = [M1

t ,M
2
t ]. M1

t is
a matrix of −1’s and 0’s of dimension Ct2 × Jt, where the columns represent single products
and the rows bundles. Each row of M1

i identifies with −1’s the product composition of the
corresponding bundle. M2

t is instead an identity matrix I of dimension Ct2 × Ct2, with the
rows corresponding to bundles. For example, suppose the choice set (without outside option)
in market t to be {1, 2, 3, (1, 2), (1, 3), (2, 3)} and the corresponding average utility vector to be
δt = (δt1, δt2, δt3, δt(1,2), δt(1,3), δt(2,3))

T, with Ct1 = 6 and Ct2 = 3. Then,

Mt =

−1 −1 0 1 0 0

−1 0 −1 0 1 0

0 −1 −1 0 0 1

 .
Remember that gt(Σg) = (g(xtb, ptb; Σg))b∈Ct2 and that δt(Γ + gt(Σg)) = (δtJt , (δtb(Γb +

g(xtb, ptb; Σg)))b∈Ct2), where δtb(Γb + g(xtb, ptb; Σg)) =
∑

j∈b δtj + Γb + g(xtb, ptb; Σg). For
r = 1, ..., R, define:

∆ID
r = {(δtJt)t∈T\T0 : ∃t ∈ T \T0 such that Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); Σ0

F ); Σr
F ) 6= Γr + gt(Σ

r
g)}.
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Denote by δ0
tJt

the true value of δtJt for which st(δt(Γ
0 + gt(Σ

0
g)); Σ0

F ) = st and define ∆ID =

∩r=1,...,R∆ID
r .

Theorem 3. Global Identification with Exogenous Prices: Suppose Assumptions 1–3
hold and ΘΣ is compact. Then, it follows that:

• System (9) has a unique solution in ΘΣ and model (3) is globally identified if and only if
(δ0
tJt

)t∈T\T0 ∈ ∆ID.

• If ∆ID
r 6= ∅ for r = 1, ..., R, then the Lebesgue measure of ×t∈T\T0RJt \∆ID is zero.

Proof. See Appendix 8.9.

While the first result of Theorem 3 provides necessary and sufficient conditions for global
identification, the second underlines their practical usefulness. The set ∆ID is “very large” and
will include the true (δ0

tJt
)t∈T\T0 in “almost all” cases: global identification will be achieved

almost everywhere.

4.2 Endogenous Prices

We now extend the global identification results from Theorem 3 to the case of endogenous prices,
where the variation in δtJt across markets is restricted by the price-setting behaviour of firms.
We add mild restrictions to the price-setting model and assume the existence of exogenous
cost shifters that are unobserved to the econometrician but identifiable from observed market
shares and prices. Berry and Haile (2014) rely on a similar restriction (Assumption 7b, p. 1769)
for the global identification of a simultaneous system of demand and supply by instrumental
variables. However, because of the specific utility structure of model (3) under Assumption 2,
our argument is different and does not require the instrumental variables (i.e., the cost shifters)
to be observed to the econometrician but only to be identifiable.

Similar to BLP, we specify the average utility δtj as additively separable in a systematic
component and an unobserved residual: δtj = ∆tj(xtj, ptj) + ξtj, with xtj a vector of observed
exogenous characteristics, ptj the observed endogenous price, ∆tj(·, ·) any arbitrary function of
(xtj, ptj) (potentially different across markets and products), and ξtj a residual unobserved to
the econometrician. Even though we rely on the additive separability of ∆tj(xtj, ptj) and ξtj, the
target of our identification is still their sum δtj. Endogeneity arises whenever firms choose prices
(also) on the basis of the market-specific residuals, which we denote by ξtJt = (ξtj)j∈Jt ∈ RJt .
Because we essentially treat each δtj as a fixed effect, price endogeneity complicates global
identification to the extent that it constrains the variation of δtJt across markets (the key
identifying variation used in Theorem 3). As an extreme example, suppose that prices are
chosen so that ∆tj(xtj, ptj) = −ξtj, then δtj = 0 for every t and j. This rules out any variability
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in δtJt , introducing the need for alternative sources of identification. To simplify exposition, in
what follows we sometimes drop the dependence on ∆tj(xtj, ptj) from our notation.

Here we discuss the case of pure components pricing, where each firm chooses the prices of
the individual products it owns and the price of any bundle is given by the sum of the prices of
its components. With pure components pricing, the econometrician observes the prices of the
individual products ptJt = (ptj)j∈Jt , while the price surcharges/discounts for the joint purchase
of products in bundles are all constrained to zero, so that ptb = 0 and gtb(Σ′g) = gtb(xtb, 0; Σ′g)

for t = 1, ..., T and b ∈ Ct2. As we illustrate in the online supplement, our arguments can
be readily modified to accommodate alternative pricing strategies such as mixed bundling (see
Armstrong (2016a) for a survey on non-linear pricing).17

Denote by ctJt = (ctj)j∈Jt ∈ RJt
+ a vector of cost shifters, one for each of the products in

market t. These cost shifters could for example be the marginal costs of the products sold
in market t. Similar to ξtJt , also the cost shifters ctJt are assumed to be unobserved to the
econometrician. In this sense, cost shifters can be seen as “unobserved” instruments: their
existence provides exogenous identifying variation, but they do not need to be observed to the
econometrician. As for the case of exogenous average utilities, we propose a characterization of
the set of unobservables (ξtJt , ctJt) that suffices for the global identification of (δtJt ,Γ,Σ).

Let Dtξ×Dtc denote the domain of (ξtJt , ctJt) for t ∈ T. Suppose that the firms in market t
choose prices according to pure components given the true (Γ0,Σ0) and (ξtJt , ctJt) ∈ Dtξ ×Dtc.
Denote the set of equilibrium prices given ξtJt and ctJt by ptJt(ξtJt , ctJt) ⊆ RJt

+ , given ξtJt by
Pt(ξtJt) = ∪ctJt∈DtcptJt(ξtJt , ctJt), and the grand collection of all possible equilibrium prices by
Pt = ∪ξtJt∈DtξPt(ξtJt). The vector of observed prices is an equilibrium of the price-setting
model, so that ptJt ∈ ptJt(ξtJt , ctJt).

Assumption 4.

• (Cost Shifters at the Product-Level) Dtc is open in RJt for t ∈ T.

• (Identifiability of Cost Shifters) ctJt is a C1 function of (ξtJt , ptJt) ∈ {(ξ′tJt , p
′
tJt

) : ξ′tJt ∈
Dtξ, p

′
tJt
∈ Pt(ξtJt)}: ctJt = φt(ξtJt , ptJt).

The second part of Assumption 4 resembles Assumption 7b by Berry and Haile (2014) and
is the key to our global identification with price endogeneity. Berry and Haile (2014) show
that their Assumption 7b is implied by a variety of common price-setting models of oligopoly
with differentiated products (Remark 1, p. 1766). Their result follows from the assumption
of “connected substitutes” on the demand system (Definition 1, p. 1759): loosely speaking,
this rules out any negative cross-price elasticity between any two products. In the case of

17With mixed bundling pricing, every firm chooses one price for each bundle it sells and the price of any
bundle of products owned by different firms is the sum of the prices of its components. In this case, the price
surcharge/discount for the joint purchase of products in bundles, ptb, may differ from zero for any t and b ∈ Ct2.
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pure components pricing, the relevant demand system has only Jt product-level equations (the
system of product-level market shares) rather than Ct1 bundle-level equations. While model (3)
satisfies the connected substitutes property at the bundle-level, it may not at the product-level
(i.e., products may be complements) and hence Remark 1 by Berry and Haile (2014) does not
apply to our case.

By combining the bundle-level connected substitutes property with the specific utility struc-
ture of model (3) under Assumption 2, in Appendix 8.10 we show that Assumption 4 is satisfied
by common pure components pricing models. We show that it is consistent with any num-
ber of firms (monopoly, duopoly, or oligopoly) playing a complete information simultaneous
Bertrand-Nash game with any profile of demand synergies (substitutability and/or comple-
mentarity). Importantly, Assumption 4 leaves the cardinality of ptJt(ξtJt , ctJt) unrestricted: the
price-setting model is allowed to have a unique, several, or infinitely many equilibria.

Denote by st(δ
′
t(Γ
′ + gt(Σ

′
g)); p

′
tJt
,Σ′F ) the market share function in market t evaluated

at prices p′tJt = (p′tj)j∈Jt and structural parameters (δ′tJt ,Γ
′,Σ′), and remember that δ′tj =

∆′tj(xtj, ptj) + ξ′tj for each j ∈ Jt. Given Assumption 3, define for each r = 1, ..., R:

ΞID
r = {(ξtJt , ctJt)t∈T\T0 :∃t ∈ T \T0 such that Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) 6= Γr + gt(Σ

r
g)

for any ptJt ∈ ptJt(ξtJt , ctJt)}.

and ΞID = ∩Rr=1ΞID
r . We make the following technical Assumption:

Assumption 5. For every r = 1, ..., R, there exists t ∈ T \ T0, so that for almost every
ptJt ∈ Pt, there exists ξ′tJt, such that Γr +gt(Σ

r
g) 6= Mts

−1
t (st(δ

′
t(Γ

0 +gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ).

Even though Assumption 5 is abstract, it is implied by more concrete conditions. The following
Corollary shows that, for example, by strengthening the real analytic property of mixed logit
models from Theorem 2, Assumption 5 is satisfied:

Corollary 2. Suppose that the following conditions hold:

• For r = 1, ..., R, ΞID
r 6= ∅.

• For any t ∈ T \T0 and (Γ,Σ), st(δ′t(Γ + gt(Σg)); p
′
tJt
,ΣF ) is real analytic with respect to

(δ′tJt , p
′
tJt

).

Then, Assumption 5 holds.

Proof. See Appendix 8.11.

Corollary 2 tightens the real analyticity of the market share function to hold also with respect
to the prices p′tJt (in addition to the average utilities δ′tJt). If price enters the indirect utility
linearly (as is typical in applied work), then Corollary 2 will hold when the price coefficient is
for example constant, or bounded, or when its moments increase at most exponentially.
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Denote by (ξ0
tJt
, c0
tJt
, p0

tJt
) the true value of (ξtJt , ctJt , ptJt) for which st(δt(Γ0+gt(Σ

0
g)); p

0
tJt
,Σ0

F ) =

st. We now present the main identification result of the paper.

Theorem 4. Global Identification with Endogenous Prices: Suppose Assumptions 1–4
hold and ΘΣ is compact. Then, it follows that:

• If (ξ0
tJt
, c0
tJt

)t∈T\T0 ∈ ΞID, system (9) has a unique solution in ΘΣ and model (3) is globally
identified.

• If Assumption 5 holds, the Lebesgue measure of ×t∈T\T0 [Dtξ ×Dtc] \ ΞID is zero.

Proof. See Appendix 8.12.

As for Theorem 3, the first part of Theorem 4 provides sufficient conditions for global identifica-
tion, while the second highlights that global identification will be achieved almost everywhere.

5 Estimation

We propose a Maximum Likelihood Estimator (MLE) to be implemented with observed bundle-
level market shares subject to sampling error and robust to price endogeneity. We account
for sampling error to accommodate the typical necessity of computing bundle-level market
shares from a sample of household-level purchases (as in Gentzkow (2007), Kwak et al. (2015),
Grzybowski and Verboven (2016), Ruiz et al. (2017), and Ershov et al. (2018)). We consider
asymptotics over the number of individuals I within each market, keeping fixed the number of
markets and bundles, and demonstrate that our identification conditions imply the proposed
MLE to be consistent and asymptotically normal.

Even though theoretically attractive, the standard MLE of model (3) is subject to a challenge
of dimensionality even under Assumption 2: the number of demand parameters can still be too
large to be handled numerically (Berry et al., 2014). As an example, suppose that in every
market there are J products and individuals purchase bundles of size K. Without further
restrictions, model (3) under Assumption 2 would imply JK demand synergy parameters Γ, P
parameters ΣF for the distribution of random coefficients, D parameters Σg for the function gt,
and J × T average utility parameters (δ1J1 , ..., δTJT ). The estimation of JK + P + D + J × T
parameters may be hard, especially because identification requires a large T .

We propose to reduce the dimensionality of the MLE’s numerical search by means of a
novel demand inversion specific to Gentzkow (2007)’s model that concentrates (δ′1J1

, ..., δ′TJT )

out of the likelihood function.18 As a consequence, our proposed MLE effectively reduces the
numerical search from (δ′1J1

, ..., δ′TJT ,Γ
′,Σ′), i.e. JK + P + D + J × T parameters, to (Γ′,Σ′),

i.e. JK + P +D parameters.
18As we clarify below, our demand inverse differs from the classic one by Berry (1994) and Berry et al. (2013),

which in our context corresponds to the demand inverse presented in Lemma 1.
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Remark 3. Our estimation discussion focuses on the case of exogenous average utilities. How-
ever, when the assumptions from the previous section hold and the model is globally identified,
the estimation results presented below will also hold for the case of price endogeneity with no
modification. The exogenous cost shifters that play the role of instruments in our identification
arguments need to exist but do not need to be observed. The estimation of (δ′1J1

, ..., δ′TJT ,Γ
′,Σ′)

will not require the “explicit” use of instruments also in the presence of price endogeneity.

5.1 Invertibility of Product-Level Market Shares

Here we propose a novel demand inverse designed to handle complementarity among products
in models along the lines of Gentzkow (2007)’s. For any given value of the other parameters,
we establish a one-to-one mapping between the observed product-level market shares and the
market-product specific average utilities. We then illustrate how this demand inverse can be
used to greatly simplify the practical implementation of the MLE of demand for bundles.

Define the observed product-level market share of product j ∈ Jt as stj. =
∑

b∈Ct1:j∈b stb

and denote the vector stacking stj. for all products in market t by stJt. = (stj.)j∈Jt . Similarly,
define the product-level market share function of each product j ∈ Jt as stj.(δ′tJt ; Γ′,Σ′) =∑

b∈Ct1:j∈b stb(δ′t(Γ
′+gt(Σ

′
g)); Σ′F ) and denote the vector stacking stj.(δ′tJt ; Γ′,Σ′) for all products

in market t by stJt.(·; Γ′,Σ′) = (stj.(·; Γ′,Σ′))j∈Jt .

Theorem 5. Demand Inverse: Suppose that Assumptions 1 and 2 hold. Then, for any
(Γ′,Σ′) ∈ ΘΓ ×ΘΣ, there exists at most one δ′tJt such that stJt.(δ′tJt ; Γ′,Σ′) = stJt..

Proof. See Appendix 8.13.

When (Γ′,Σ′) is equal to the true value (Γ,Σ), Theorem 5 implies that the only δ′tJt that satisfies
stJt.(δ

′
tJt

; Γ,Σ) = stJt. is the true δtJt . As a result, the function stJt.(·; Γ,Σ) is globally invertible.
When (Γ′,Σ′) 6= (Γ,Σ), it is possible that there is no δ′tJt such that stJt.(δ′tJt ; Γ′,Σ′) = stJt..19

Because the existence of some δ′tJt that rationalizes the observed product-level market shares
can always be verified numerically (following the procedure outlined below), in what follows we
assume it and denote the bijection mapping stJt. to δ′tJt by:

δ′tJt = s−1
tJt.

(stJt.; Γ′,Σ′)

= δtJt.(stJt.; Γ′,Σ′).

Theorem 5 differs from the classic demand inverse by Berry (1994) (then generalized by Berry
et al. (2013)). In our context, Berry (1994) implies a bijection between the observed bundle-level

19For example, a model of demand for single products (i.e., Γ′ = −∞) cannot rationalize situations in which
the sum of the observed product-level market shares is larger than one. (This can happen because the same
stb contributes to the product-level market share of any j ∈ b, giving rise to “multiple counting” of stb when
summing stj. over j.) In such cases, the demand inverse is therefore not feasible when evaluated at Γ′ = −∞.
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market shares and the full vector of market-bundle specific average utilities. We rely on this
classic demand inverse throughout the paper and, for completeness, adapt it to our framework
in Lemma 1. Differently, Theorem 5 establishes a bijection between a transformation of the
observed bundle-level market shares—the product-level market shares—and a sub-vector of the
market-bundle specific average utilities—the market-product specific average utilities. While
the invertibility of the product-level market shares on the basis of Berry (1994) would require
the products to be substitutes, Theorem 5 applies also to the case of complementary products.

5.2 A Maximum Likelihood Estimator

We now allow for the possibility that observed market shares are subject to sampling error, due
for example to the necessity of measuring them from household-level purchase data. Denote
by Itb the number of individuals in market t observed to choose b and by ŝtb = Itb

I
the

corresponding observed market share. To simplify exposition, in what follows we drop any
notational dependence from the observables and denote gt(Σ′g) = (g(xtb, ptb; Σ′g))b∈Ct2 . The
log-likelihood function evaluated at (δ′1J1

, ..., δ′TJT ,Γ
′,Σ′) can be written as:

`I(δ
′
1J1
, ..., δ′TJT ,Γ

′,Σ′; ŝ1, ..., ŝT ) =
T∑
t=1

∑
b∈Ct

ŝtb log stb(δ′t(Γ
′ + gt(Σ

′
g)); Σ′F ), (10)

where ŝt = (ŝtb)b∈Ct for t = 1, ..., T . Denote the domain of the parameters by Θ = Θδ×ΘΓ×ΘΣ,
where Θδ, ΘΓ, and ΘΣ are compact. Given Theorem 5, we propose the following MLE that
concentrates (δ1J1 , ..., δTJT ) out of the log-likelihood function:

(Γ̂, Σ̂) ≡ argmax(Γ′,Σ′)∈ΘΓ×ΘΣ
`I((δtJt.(ŝtJt.; Γ′,Σ′))Tt=1,Γ

′,Σ′; ŝ1, ..., ŝT ),

= argmax(Γ′,Σ′)∈ΘΓ×ΘΣ
`cI(Γ

′,Σ′; ŝ1, ..., ŝT )

δ̂tJt ≡ δtJt.(ŝtJt.; Γ̂, Σ̂), t = 1, ..., T.

(11)

To simplify notation, denote the true parameters (δ1J1 , ..., δTJT ,Γ,Σ) by θ = (θδ,Γ,Σ) and the
MLE (θ̂δ, Γ̂, Σ̂) by θ̂. The next Theorem establishes the asymptotic properties of θ̂.

Theorem 6. MLE estimator: Suppose Assumptions 1–3 hold, the true (δtJt)t∈T\T0 ∈ ∆ID,
ŝtb

p−→ stb for t = 1, ..., T , b ∈ Ct, and the standard regularity conditions detailed in Appendix
8.14 hold. Then:

• (Consistency) θ̂ p−→ θ.

• (Asymptotic Normality) There exist matrices W1,W2 > 0 such that
√
I(θ̂δ − θδ)

d−→
N(0,W1) and

√
I[(Γ̂, Σ̂)− (Γ,Σ)]

d−→N(0,W2).

Proof. See Appendix 8.14.
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Estimator (11) is neither a standard MLE nor a concentrated MLE. A standard MLE would
maximize (10) with respect to (δ,Γ,Σ), while (11) only maximizes it with respect to (Γ,Σ).
Differently from a concentrated MLE, which also would maximize (10) only with respect to
(Γ,Σ), estimator (11) is however not as efficient as the standard MLE. The demand inverse
from Theorem 5 only uses observed product-level market shares (rather than bundle-level), and
this causes a loss of information in the process of concentrating out θδ from the log-likelihood
function. MLE (11) trades-off computational ease against estimation efficiency.

Implementation. In the spirit of BLP, the demand inverse from Theorem 5 enables to break
down the numerical search for (δ1J1 , ..., δTJT ,Γ,Σ) into two steps that can be solved sequentially
while implementing (11):

Step 1. For any given guess of (Γ′,Σ′) and market t = 1, ..., T , compute δ′tJt = δtJt.(ŝtJt.; Γ′,Σ′)

by the Newton-Raphson method as the unique solution to system stJt.(δ
′
tJt

; Γ′,Σ′) = ŝtJt..

To implement the Newton-Raphson method, note that the derivative
∂stJt.(δ

′
tJt

;Γ′,Σ′)

∂δ′tJt
=

[I -M1T
t ]

∂stCt1
∂δ′tCt1

[I -M1T
t ]T is everywhere symmetric and positive-definite, where M1

t is
defined prior to Theorem 3. Because the solution to the system is guaranteed to be at
most unique, whenever the algorithm finds one, the numerical search can end.20 Given this

solution, compute the derivative ∂δtJt.
∂(Γ′,Σ′)

= −
[
∂stJt.
∂δ′tJt

]−1 [ ∂stJt.
∂(Γ′,Σ′)

]
and move on to Step 2. In

case the algorithm cannot find a solution, then Theorem 5 implies that (Γ′,Σ′) 6= (Γ,Σ):
try a new guess of (Γ′,Σ′) and go back to the beginning of Step 1.

Step 2. Plug δ′tJt for t = 1, ..., T from Step 1 into `I((δ
′
tJt

)t=1,...,T ,Γ
′,Σ′; ŝ1, ..., ŝT ) and obtain

`cI(Γ
′,Σ′; ŝ1, ..., ŝT ). Compute its derivative with respect to (Γ′,Σ′), ∂`cI

∂(Γ′,Σ′)
=
∑T

t=1
∂`I
∂δ′tJt

∂δtJt.
∂(Γ′,Σ′)

+

∂`I
∂(Γ′,Σ′)

. Check whether the current guess of (Γ′,Σ′) numerically maximizes `cI(Γ′,Σ′; ŝ1, ..., ŝT ).

If yes, the current value of the parameters is θ̂. If not, use ∂`cI
∂(Γ′,Σ′)

to numerically search
for a new guess of (Γ′,Σ′) and go back to Step 1.

6 Empirical Illustration

We illustrate our methods in the context of the ready-to-eat (RTE) cereal industry in the USA.
We revisit the classic studies by Nevo (2000, 2001), and allow for Hicksian complementarity
among different brands in demand estimation. The households in our data are observed to
purchase two or more different RTE cereal brands in approximately 20% of their shopping trips.
In the data, we observe purchases rather than consumption. In terms of purchases, demand for
bundles can arise for reasons different from synergies in consumption (as in Gentzkow (2007)):

20For a useful discussion about the Newton-Raphson method in the context of demand estimation, see Conlon
and Gortmaker (2019).
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shopping costs (as in Pozzi (2012) and Thomassen et al. (2017)) and preference for variety (as
in Hendel (1999) and Dubé (2004)) represent two likely alternatives.

Our model can rationalize shopping costs with positive demand synergies and, as we show
in Appendix 8.1, preference for variety with some additional structure on the demand synergy
parameters. We try to distinguish empirically the relative contribution of these mechanisms
to the estimated demand synergies. Our results show that demand for RTE cereals exhibits
substantial Hicksian complementarity and that around 75% of it does not seem to be explained
by shopping costs or by preference for variety. We compare our estimation results from the
full model to those from a model of demand for single brands (similar to Nevo (2000, 2001))
and show that ignoring Hicksian complementarity may result in misleading demand estimates
and counterfactuals. Despite the different econometric approach and data, our results are in
line with those by Fosgerau et al. (2019), who also document Hicksian complementarity among
different RTE cereal brands in the USA.

6.1 Data and Definitions

We use household-level and store-level IRI data on ready-to-eat (RTE) cereals for the period
2008-2011 for the city of Pittsfield in the USA. We report a succinct description of the data
used and refer the reader to Bronnenberg et al. (2008) for a more thorough discussion.

We focus on the I = 2897 households who are observed to purchase RTE cereals at least
once from 2008 until 2011. For these households, we observe some demographics (e.g., income
group and family size) and a panel of shopping trips r = 1, ..., 756663 to 7 different grocery
stores over a period of 208 weeks. A shopping trip is defined as a purchase occasion of a
household to a grocery store in a given day. Each shopping trip records all the Universal
Product Codes (UPCs) purchased by a household across all product categories sold by the
store: during 83256 of these, RTE cereals are observed to be purchased. We define a market as
a store-week combination t = 1, ..., 1431.

Over the sample period, the households are observed to purchase 1173 different UPCs
of RTE cereals. For feasibility, we reduce the number of different RTE cereal products by
collecting UPCs into what we call brands. We define J = 16 different brands on the basis
of producers and ingredients. We classify producers into six groups: General Mills, Kellogg’s,
Quaker, Post, Small Producers, and Private Labels. The first four correspond to the four
largest RTE cereal producers, “Small Producers” correspond to the remaining producers, and
“Private Labels” correspond to the UPCs directly branded by the retailers (i.e., the stores). We
collect the UPCs of each of the producers into three types on the basis of their ingredients:
cereal type R refers to “Regular,” F/W to “Fiber/Whole Grain,” and S to “Added Sugar.”
Table 7 in Appendix 8.15 lists these RTE cereal brands and their average market shares across
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the shopping trips with some RTE cereal purchase.21 We use the store-level data to compute
brand-level prices for each brand j and store-week combination t, ptj. Each ptj is computed as
the average price per 16oz across the UPCs belonging to brand j in store-week t.

We make the standard assumption that RTE cereal purchases do not determine store choice
and take store choice as exogenous in our econometric model. We consider household i to choose
the outside option, which we denote by j = 0, whenever no RTE cereal brand is purchased
during shopping trip r (in general, something must be purchased for a shopping trip to be in
the data). Around 89% of all shopping trips do not involve any purchase of RTE cereals.

During each shopping trip r, a household i is considered to purchase RTE cereal brand j

whenever they are observed to purchase at least a UPC of brand j. Households are considered
to purchase bundles only when purchasing at least two different brands of RTE cereals during
the same shopping trip. In our view, this is a conservative measure of households’ demand for
bundles.22 For computational convenience, we focus our analysis on the shopping trips with
observed purchases of at most two different RTE cereal brands, thus discarding 3.27% of the
shopping trips with some RTE cereal purchase. In 17.69% of the shopping trips with some RTE
cereal purchase, households are observed to purchase two different brands of RTE cereals.

Table 1 describes how the average bundle size purchased changes among households with
different observable characteristics. The top panel of Table 1 shows that larger families are more
likely to purchase larger bundles. This accords to the idea of preference for variety by Hendel
(1999) and Dubé (2004): in order to satisfy more heterogeneous preferences (e.g., different
genders and ages), larger households are more likely to purchase a wider variety of RTE cereal
brands on each shopping trip. The central panel of Table 1 highlights the potential relevance of
shopping costs, as suggested by Pozzi (2012) and Thomassen et al. (2017): households observed
to shop with a higher frequency (facing lower shopping costs) are less likely to purchase bundles
of different RTE cereal brands on any shopping trip.23 The bottom panel of Table 1 divides the
households into three income groups and does not suggest any apparent relationship between
the level of income and average purchased bundle size.24

21Market shares are computed over the shopping trips observed in each store-week combination.
22For instance, the purchases of different RTE cereal brands across different shopping trips within the same

t are considered as independent purchases of single brands rather than bundles. To keep the dimensionality of
the problem manageable, we do not count as bundles the purchases of multiple units of the same brand within
the same shopping trip. Accommodating either less conservative definitions of bundles or purchases of multiple
units of the same brand would not represent any conceptual challenge for the proposed methods.

23We compute the “weekly shopping frequency” as the average number of shopping trips per week for each
household over the entire four-year period of our sample. The median among the 2897 households is 1.80
shopping trips per week.

24We create the three income groups on the basis of 12 income classes originally provided in the IRI data,
which are ordered in increasing level of income from 1 to 12. We code as “low income” the classes 1-4, “medium
income” the classes 5-8, and we group in “high income” the remaining classes 9-12.
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Table 1: Average Number of Different Brands per Shopping Trip

#Households Ave. Bundle Size
Family Size

1 732 1.12
2 1184 1.16
≥ 3 981 1.22

Weekly Shopping Frequency
(0, 2] 1779 1.19
(2, 3] 810 1.17
> 3 308 1.14

Income Group
low 679 1.18

medium 1169 1.16
high 1049 1.19

Notes: The Table shows the distribution of family size, weekly shopping frequency,
and income group among the 2897 households in our data. See text for the definitions
of these variables. For each value of these variables, we report the average number
of different RTE cereal brands observed to be purchased per shopping trip by the
corresponding households.

We construct choice sets at the level of the store-week t: any household during any shopping
trip in t is assumed to face choice set Ct. This is made of three components: single brands,
bundles of size 2, and the outside option. From the store-level data, we observe which of the
16 brands of RTE cereals are available in each store-week t. Denote this set of available brands
by Jt. Households can also purchase bundles (j1, j2) ∈ (Jt × Jt)\{(k1, k2)|k1 = k2} made of
pairs of different RTE cereal brands. Finally, households may decide not to purchase any RTE
cereal brand, j = 0. By combining these purchase possibilities, the choice set faced during all
shopping trips in t is Ct = {0} ∪ Jt ∪ (Jt × Jt)\{(k1, k2)|k1 = k2}.25

6.2 Model Specification

Any household i is observed going on several shopping trips, each taking place in a specific
store-week combination t (our definition of market). The indirect utility of household i by

25The choice set Ct also excludes those bundles that are never purchased during any of the shopping trips
in t. Even though all brands in Jt have positive market shares by construction, some combination of brands
(j1, j2) from (Jt × Jt)\{(k1, k2)|k1 = k2} may not be observed to be jointly purchased.
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purchasing brand j ∈ Jt during shopping trip r in market t is:

Uirtj = uitj + εirtj

= δtj + µitj + εirtj,

µitj = −ptj exp(dαi α + vi) + ηij

(12)

where uitj = δtj + µitj, δtj is market t-specific average utility for RTE cereal brand j ∈ Jt,
µitj is a household i-specific utility deviation from δtj, and εirtj is an idiosyncratic error term.
ptj is the price of brand j in store-week combination t, and dαi α + vi is a vector of household
i-specific price coefficients made of two components: an observable part that is a function of
the household characteristics dαi (to be detailed in the next section) and an unobserved random
component vi. ηij is an unobserved household i-specific preference for brand j, which is constant
across i’s shopping trips and potentially correlated across brands.

Specification (12) encapsulates the entire effect of price ptj in the household i-specific µitj.
In terms of the notation used in section 4.2, this implies ∆tj(ptj, xtj) = 0 and δtj = ξtj. Even
though we use household-level data, we face price endogeneity if, for instance, the producer of
RTE cereal brand j sets price ptj taking the average utility δtj into consideration. Our proposed
estimator essentially addresses this endogeneity problem by treating the average utility δtj for
each brand j in each market t as a fixed effect.

The indirect utility of i by purchasing bundle b during shopping trip r in market t is:

Uirtb =
∑
j∈b

uitj + Γib + εirtb

=
∑
j∈b

(δtj + µitj) + Γb + ζib + εirtb

=
∑
j∈b

δtj + Γb +

[∑
j∈b

µitj + (dγi γ + ζ̃ib)

]
+ εirtb

= δtb + µitb + εirtb,

(13)

where δtb =
∑

j∈b δtj + Γb is market t-specific average utility for bundle b, µitb is household
i-specific utility deviation from δtb, Γib is household i-specific demand synergy among the
brands in bundle b, and εirtb is an idiosyncratic error term. The demand synergy parameter
Γib = Γb+ζib captures the extra utility household i obtains from buying the RTE cereal brands
in bundle b jointly rather than separately. It is the sum of Γb, common to all households,
and of ζib = dγi γ + ζ̃ib, where dγi γ is a function of observed household characteristics dγi (to
be detailed in the next section) and ζ̃ib is an unobserved random component. Because of
pure components pricing, i.e. ptb = 0, and the absence of other bundle-specific observed
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product characteristics, i.e. xtb = 0, we constrain function g(·, ·|Σg) = 0 (see Assumption
2).26 We attempt to empirically distinguish the relative contribution to Γib of two alternative
mechanisms. In particular, we specify dγi γ to include measures of family size (to proxy for
preference for variety) and of average weekly shopping frequency (to proxy for shopping costs).

Finally, the indirect utility of household i by choosing the outside option during shopping
trip r in market t is assumed to be:

Uirt0 = εirt0. (14)

Suppose that εirt0 and the εirtb’s are i.i.d. Gumbel. Express µitb = µitb(βi) as a function of
the unobservable βi = (vi, ηi, ζ̃i) = (vi, (ηij)j∈J, (ζ̃ib)b∈B).27 Then, given βi and (δtJt , α, γ,Γ) =

((δtj)j∈Jt , α, γ, (Γb)b∈B), household i’s purchase probability of b ∈ Ct during shopping trip r

in market t is:

sirtb(δtJt , α, γ,Γ; βi) =
eδtb+µitb(βi)∑

b′∈Ct e
δtb′+µitb′ (βi)

. (15)

We assume βi = (vi, ηi, ζ̃i) to be normally distributed and denote its c.d.f. by Φ(·; ΣF ). Let
yitrb ∈ {0, 1} be an indicator for whether household i purchased b during shopping trip r in
market t, with

∑
b∈Ct yitrb = 1. Let Ti denote the set of markets for which we observe shopping

trips by household i. For each t ∈ Ti, define Rit as the set of shopping trips by household i that
took place in market t. By integrating over the distribution of βi, we obtain the likelihood of
i’s observed purchases yi = (yitrb)t∈Ti,r∈Rit,b∈Ct :

Li(δ1J1 , ...δTJT , α, γ,Γ,ΣF ; yi) =

∫ ∏
t∈Ti

∏
r∈Rit

∏
b∈Ct

(sirtb(δtJt , α, γ,Γ; βi))
yitrb dΦ(βi; ΣF ). (16)

By aggregating over the I = 2897 households, the likelihood function for the entire set of
observed purchases is:

LI(δ1J1 , ...δTJT , α, γ,Γ,ΣF ; y1, ..., yI) =
2897∏
i=1

Li(δ1J1 , ...δTJT , α, γ,Γ,ΣF , yi). (17)

We estimate the demand parameters (δ1J1 , ...δTJT , α, γ,Γ,ΣF ) on the basis of MLE (11) derived
from likelihood function (17).28 To get a sense of the practical advantages implied by our novel
demand inverse, in the current application the proposed MLE reduces the numerical search
(with respect to a standard MLE) from 12351 to 133 parameters, i.e. (α, γ,Γ,ΣF ).

26We follow Nevo (2000, 2001) in assuming that RTE cereal producers set prices at the brand-level rather
than at the bundle-level (i.e., pure components pricing): households purchasing multiple RTE cereal brands
during the same shopping trip are assumed to pay the sum of the prices of the single brands.

27J and B are defined as, respectively, the union of all Jt and of all (Jt×Jt)\{(k1, k2)|k1 = k2} for t = 1, ..., T .
28Even though (17) is expressed in terms of individual purchases (y1, ..., yI) rather than of sampled market

shares (ŝ1, ..., ŝT ), it can be easily shown that the corresponding MLE satisfies the conditions of Theorem 6.
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Restricted Models. In what follows, we refer to the model specified in (15)-(17) as to the
full model of demand for bundles. To better evaluate the practical relevance of allowing for
complementarity, we also estimate two restricted versions of the full model.

In the first restricted model, we constrain Γib = 0 in estimation for all i’s and b’s. A com-
parison of the full model with this first restricted model highlights the importance of controlling
for the demand synergies Γib while keeping everything else unchanged. Despite the absence of
demand synergies, this restricted model can still give rise Hicksian complementarity.29

In the second restricted model, we rule out Hicksian complementarity by constraining Γib =

−∞ in estimation for all i’s and b’s. In other words, choice sets are restricted not to include
any bundle. This amounts to specifying a standard model of demand for single RTE cereal
brands (along the lines of Nevo (2000, 2001)) with choice set Ct = {0} ∪ Jt in each t. This
second restricted model is estimated on the basis of the same purchase observations as the other
two models. However, the observations are used differently: the second restricted model does
not differentiate between simultaneous (during the same shopping trip) and sequential (during
different shopping trips) purchases of different brands.

6.3 Estimates of Demand for RTE Cereal Bundles

In this section, we present our estimation results for the full model. We postpone a comparison
of the estimation results from the three different models to the next two sections, where we
discuss price elasticities and counterfactual simulations.

We capture observed heterogeneity in price sensitivity − exp(dαi α+vi) by dαi , a vector of nine
mutually exclusive dummies indicating household i’s income group (low, medium, and high)
and family size (one, two, and larger than two). Unobserved heterogeneity in price sensitivity
is instead captured by the random coefficient vi, which we assume to be i.i.d. normal with
standard deviation σv. For each of the three estimated models, the top panel of Table 2 reports
estimates of the average price sensitivity E[− exp(dαi α+vi)|dαi ] for each value of dαi . These results
do not seem to suggest any systematic heterogeneity in price sensitivity among households with
different incomes and family sizes.

We specify the RTE cereal brand-specific random intercepts as ηij = ηi,type+η̃ij, where ηi,type
captures household i’s unobserved and correlated preferences across cereal types {R,F/W, S}
and η̃ij captures i.i.d. unobserved preference for brand j. Remember that cereal type R refers
to “Regular,” F/W to “Fiber/Whole Grain,” and S to “Added Sugar.” Note that any two brands
with similar ingredients will share the same ηi,type. We assume η̃ij to be distributed normal with

29In this first restricted model, the cross-price elasticities can still be negative because the choice set Ct =
{0} ∪ Jt ∪ (Jt × Jt)\{(k1, k2)|k1 = k2} is not complete. Ct would be complete if it included also the bundles
made of two units of the same brand. Gentzkow (2007)’s Proposition 1 at page 719, which states that a positive
demand synergy is necessary and sufficient for Hicksian complementarity, only applies to models with complete
choice sets.
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standard deviation ση̃. Following Gentzkow (2007), we also assume (ηi,R, ηi,F/W , ηi,S) to be dis-
tributed jointly normal with standard deviations and pairwise correlations denoted by, respec-
tively, σηtype and corrtype,type′ , type, type′ ∈ {R,F/W, S}. We allow single-person households
and multi-person households to have different joint normal distributions of (ηi,R, ηi,F/W , ηi,S).
We assume η̃ij and ηi,type to be mutually independent.
The estimates of the distribution of ηij and of the other random coefficients are reported in
the central panel of Table 2. Overall, the estimates are highly significant and underline the
importance of controlling for unobserved heterogeneity, not only in terms of price sensitivity, but
also of brand-specific random intercepts and of demand synergies (we return to these in more
detail below). Households’ unobserved preferences for healthier F/W and children S cereal
brands are positively correlated, while unobserved preferences for regular R cereal brands seem
to correlate negatively with both F/W and S cereal brands. Households of different family
sizes do not seem to have systematically different distributions of (ηi,R, ηi,F/W , ηi,S).

We specify the demand synergy of household i for bundle b as:

Γib =Γb + dγi γ + ζ̃ib

=Γb + γ21{family sizei = 2}+ γ≥31{family sizei ≥ 3}
+ γs1{normal shopping frequencyi}+ ζ̃ib,

(18)

where 1{·} is the indicator function and “normal shopping frequencyi” denotes whether the
average weekly shopping frequency of household i lies below the 95th percentile.30 Parameter
γk captures systematic differences between the average demand synergies of households of family
size k and single-person households. We include family size in the specification of Γib as a proxy
for preference for variety. γs instead measures differences in the average demand synergies
between households observed to shop at a normal frequency, i.e. in the bottom 95% of the
distribution, and households who shop very often, i.e. in the top 5% of the distribution. We
control for normal shopping frequency in (18) as a proxy for larger shopping costs. These are
meant to rationalize the purchase patterns documented in Table 1: larger families may have
to satisfy more heterogeneous preferences within the household, while more frequent shoppers
may be less likely to purchase multiple brands on any shopping trip. ζ̃ib represents a i-specific
unobserved component of demand synergy for bundle b, which we assume to be i.i.d. normal
with standard deviation σζ̃ . ζ̃ib allows for the possibility that the brands in bundle b have
positive demand synergies for some households and negative for others. Estimates of the Γb’s
are reported in Table 3, while estimates of the remaining demand synergy parameters are
reported in the bottom panel of Table 2.

30In our sample of households, the 95th percentile of the average weekly shopping frequency (i.e., the average
number of shopping trips in a week) is 3.67.
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Table 2: Demand Estimates for Full and Restricted Models

Full Model Restricted Model 1 Restricted Model 2
Γib = 0 Γib = −∞

Average Price Sensitivities
low income, family size = 1 −0.44

(0.164)
−0.49
(0.196)

−1.27
(0.180)

family size = 2 −0.47
(0.175)

−0.51
(0.202)

−1.30
(0.185)

family size ≥ 3 −0.39
(0.147)

−0.38
(0.151)

−1.17
(0.167)

medium income, family size = 1 −0.47
(0.174)

−0.52
(0.210)

−1.29
(0.183)

family size = 2 −0.42
(0.157)

−0.46
(0.183)

−1.27
(0.180)

family size ≥ 3 −0.49
(0.183)

−0.49
(0.195)

−1.31
(0.185)

high income, family size = 1 −0.39
(0.146)

−0.43
(0.173)

−1.20
(0.170)

family size = 2 −0.42
(0.157)

−0.45
(0.180)

−1.26
(0.179)

family size ≥ 3 −0.40
(0.150)

−0.41
(0.165)

−1.25
(0.177)

Random Coefficients
price, σv 0.36

(0.004)
0.39

(0.004)
0.14

(0.002)

brand intercepts, ση̃ 0.87
(0.005)

0.87
(0.005)

0.81
(0.005)

demand synergies, σζ̃ 0.06
(0.010)

Single-Person Households
σηR 0.50

(0.037)
0.47

(0.046)
0.20

(0.037)

σηF/W 0.54
(0.014)

0.52
(0.024)

0.65
(0.017)

σηS 0.96
(0.030)

0.90
(0.034)

0.97
(0.030)

corrR,F/W −0.86
(0.014)

−0.84
(0.016)

−0.89
(0.012)

corrR,S −0.52
(0.042)

−0.60
(0.044)

−0.61
(0.036)

corrF/W,S 0.29
(0.042)

0.41
(0.056)

0.47
(0.044)

Multi-Person Households
σηR 0.10

(0.016)
0.37

(0.016)
0.45

(0.015)

σηF/W 0.54
(0.008)

0.70
(0.008)

0.86
(0.009)

σηS 0.96
(0.017)

1.10
(0.017)

1.24
(0.015)

corrR,F/W −0.93
(0.006)

−0.91
(0.006)

−0.95
(0.004)

corrR,S −0.79
(0.016)

−0.73
(0.015)

−0.78
(0.010)

corrF/W,S 0.73
(0.019)

0.81
(0.011)

0.85
(0.008)

Demand Synergies, γ
family size= 2, γ2 0.14

(0.017)

family size≥ 3, γ≥3 0.36
(0.015)

normal shop. freq., γs 0.001
(0.012)

Notes: Each column of the Table reports estimates from one of three model specifications: the full model,
restricted model 1 (which constrains Γib = 0 in estimation), and restricted model 2 (which constrains
Γib = −∞ in estimation, i.e. standard demand model for single brands). The top panel reports the
estimated average price sensitivity E[− exp(dαi α + vi)|dαi ] for each value of dαi and the corresponding

standard deviation (in brackets), computed as
√
Var[exp(dαi α + vi)|dαi ]. The central panel reports es-

timates of the parameters characterizing the distribution of the random coefficients, while the bottom
panel those of the demand synergy parameters associated to different family sizes and weekly shopping
frequencies. For the estimates in the central and bottom panel, standard errors are reported in brackets.
Cereal type R refers to “Regular,” F/W to “Fiber/Whole Grain,” and S to “Added Sugar.”
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The estimates from Table 3 suggest that several pairs of RTE cereal brands have positive
Γb’s.31 Importantly for competition policy, as we will explore in the next section, there appear
to be positive Γb’s not only among brands within the same producer, but also among brands
sold by different producers. For example, the first column of Table 3 shows that single-person
households exhibit positive demand synergies between General Mills and most of the 15 re-
maining brands. Moreover, in line with the evidence from Table 1, the estimated demand
synergy shifters γ2 and γ≥3 from the bottom panel of Table 2 are positive and increasing in
family size, i.e. γ≥3 ≥ γ2. We interpret this as evidence of preference for variety: larger fam-
ilies exhibit more positive demand synergies among different RTE cereal brands than smaller
families. Intuitively, larger families may be more likely to purchase different brands in order to
satisfy more heterogeneous RTE cereal tastes within the household (e.g., adults and children of
different ages). Differently, γs is positive but not significantly different from zero, highlighting
that—after controlling for everything else—households with different shopping frequencies are
similarly likely to purchase bundles of different brands on any shopping trip. The standard de-
viation σζ̃ of the random coefficient ζ̃ib is estimated to be small but significant, suggesting the
presence of household-specific heterogeneity in demand synergies beyond differences in family
size and weekly shopping frequency.

Evidence in Support of Assumption 2. As discussed in Remark 1, Assumption 2 can
be verified in practice. In Appendix 8.7, we present a specification test for Assumption 2 that
builds on partial identification methods. A rejection of the test is evidence against Assumption
2. In the context of our empirical illustration, the test statistic evaluated at the estimates from
Tables 2 and 3 is 9910, which is smaller than the critical value for rejection at the 10% level,
21081 (a chi-square with 20819 degrees of freedom). This strongly suggests that ΘI(T) in (31)
is not empty, providing reassuring evidence in support of Assumption 2.

6.4 Hicksian Complementarity and Demand Synergies

Table 4 reports the average (across markets) estimated own- and cross-price elasticities of
demand from the full model. Each entry reports the percent change in the brand-level market
share of the column RTE cereal brand with respect to a 1% increase in the price of the row RTE
cereal brand. Given the estimated market share function ŝtb for each b ∈ Ct1 in market t, the
estimated brand-level market share function of brand j ∈ Jt is defined as ŝtj. =

∑
b∈Ct1:j∈b ŝtb.

Table 4 provides pervasive evidence of Hicksian complementarity. For example, the first column
shows that households exhibit statistically significant complementarity between General Mills
and several of the 15 remaining brands. According to intuition, Hicksian complementarity
seems to be more pronounced among those brands with larger positive Γb (see Table 3).

31Note that these estimates come from the full model, neither of the restricted models allows for demand
synergies. See the Table notes for an interpretation of the missing values.
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In our specification, Hicksian complementarity among different RTE cereal brands can
be explained by alternative mechanisms: correlation in the unobserved preferences for sin-
gle brands (ηij), preference for variety (γ2 and γ≥3), shopping costs (γs), bundle-specific fixed
effects (Γb’s)—which, among other things, may account for synergies in consumption—, and
residual unobserved heterogeneity (ζ̃tb). To shed light on the relative contributions of these
mechanisms, we sequentially “switch them off” from the estimated full model and re-compute
the cross-price elasticities. Table 5 summarizes the results.

Different from Gentzkow (2007), the unobserved preferences for single brands (ηij) con-
tribute to the substitutability among RTE cereal brands (−2.00%), possibly because of the
negative correlation between ηi,R and both ηi,F/W and ηi,S (see Table 2). The average of the
cross-price elasticities instead increases (becoming less negative) as we progressively switch off
the various components of Γib: residual unobserved heterogeneity (+0.09%), shopping costs
(+0.05%), and especially preference for variety (+15.22%).

However, the most dramatic changes occur when we further set the bundle-specific fixed
effects Γb’s either to zero (+54.94%) or to −∞ (+31.69%). While this is expected in the case of
Γib = −∞ (standard demand model for single brands), the average of the cross-price elasticities
already changes from negative (complementarity) to positive (substitutability) when setting
each Γib to zero. Collectively, these results suggest that most of the estimated complementarity
is explained by preference for variety and by the bundle-specific fixed effects.

Standard models of demand for single brands rule out Hicksian complementarity among
different RTE cereal brands and restrict the cross-price elasticities to be positive. Ignoring the
presence of complementarity among different brands may lead to incorrect demand estimates
and misleading price elasticities. In order to quantify the extent of this problem, we compare
the price elasticities computed on the basis of the estimates from the full model (Table 4) to
those computed on the basis of the estimates from the restricted models (Supplement Tables
8 and 9).32 Several of the estimated cross-price elasticities have opposite signs, mistakenly
suggesting substitutability rather than complementarity among different pairs of RTE cereal
brands. To further explore the economic consequences of accounting for complementarity in
demand estimation, in the next section we compare some counterfactual simulations implied
by estimates from the full model to those implied by the estimates from the restricted models.

32Demand estimates from the full model can be found in the first column of Table 2 and in Table 3, while
those from the restricted models can be found in the second and third columns of Table 2 (the restricted models
do not include demand synergies).
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Table 5: Cross-Price Elasticities and Demand Synergies

Average Relative Change
Estimated Full Model −0.0126 −
Estimated Full Model, then switch off ηij −0.0130 −2.00%

Estimated Full Model, then switch off ηij and ζ̃ib −0.0130 0.09%

Estimated Full Model, then switch off ηij, ζ̃ib, and γs −0.0130 0.05%

Estimated Full Model, then switch off ηij, ζ̃ib, γs, γ2, and γ≥3 −0.0100 15.22%

Estimated Full Model, switch off ηij and set Γib = 0 0.0007 54.94%

Estimated Full Model, switch off ηij and set Γib = −∞ 0.0068 31.69%

Note: The Table reports the average (across markets) of the cross-price elasticities of all pairs of different RTE cereal brands.
All the cross-price elasticities are obtained from the full model, where the estimated parameters in the specification of Γib
from (18) are “switched off” sequentially. For example, the third row is obtained from the estimated full model by setting
the standard deviations of ηij and ζ̃ib to zero, while the fourth is obtained by further setting the estimated γs to zero. The
column “Relative Change” reports the percent change in the average of the cross-price elasticities from any two consecutive
rows: for instance, the relative change from the fourth row to the fifth is 15.22%.

6.5 Counterfactuals and Comparisons with Standard Model

Here we evaluate the economic relevance of allowing for Hicksian complementarity by comparing
some counterfactuals from the full model, with Γib as in (18), to those from two restricted
models: restricted model 1, which constrains Γib = 0 in estimation, and restricted model 2—
the standard demand model for single brands—, which constrains Γib = −∞ in estimation
thereby forcing substitutability. For the counterfactuals, we take the observed scenario of pure
components pricing and oligopolistic competition among RTE cereal producers as a reference
(see Nevo (2000, 2001) for the institutional details), and simulate the changes in prices, profits,
and consumer surplus implied by different market structures.33

The results of these counterfactuals are reported in Table 6. The Table reports relative
changes in prices (top panel), profits (central panel), and consumer surplus (bottom panel)
associated with each of three counterfactual market structures (columns) as simulated by each
of the three estimated models (rows). We consider four alternative market structures: “com-
petition,” where we suppose that each single brand is owned and sold by a different (fictional)
producer (for a total of 16 producers); “oligopoly,” which corresponds to the observed oligopolis-
tic competition among six producers; “duopoly,” where we suppose that five of the producers
(General Mills, Kellogg’s, Quaker, Post, and the Small Producers) perfectly collude and com-
pete as one against the private labels (whose prices are chosen by the retailer); and “monopoly,”

33Given our estimates of demand and marginal costs, we simulate each profile of counterfactual prices—
independently for each market—using the necessary first order conditions for a Nash equilibrium of the corre-
sponding pure components pricing game. For example, in a monopoly, the same agent chooses a specific price
for each single brand so to maximize industry profits.
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where we suppose that the six producers perfectly collude as a monopolist.
The simulation results from the full model confirm the classic insight by Cournot (1838):

mergers between producers selling complementary brands can be socially desirable. In pure
components pricing, the prices of all single brands—and consequently of all bundles—decrease
as the level of competition weakens: while industry-level profit remains basically unchanged,
consumer surplus increases with market concentration. As market structure becomes more
concentrated, producers internalize more of the externalities due to complementarity and con-
sequently choose lower prices, as can be seen from the relative increase in consumer surplus
from −5.27% for competition to +7.62% for monopoly.

Strikingly, the restricted models produce opposite predictions: as market structure becomes
more concentrated, prices increase and consumer surplus decreases. As shown in Supplement
Tables 8 and 9, both restricted models predict positive cross-price elasticities and therefore sub-
stitutability among any pair of RTE cereal brands. Not surprisingly then, any merger between
producers selling substitutable brands will lead to higher prices and ultimately hurt consumers.
These results underline the economic importance of allowing for both substitutability and com-
plementarity in demand estimation: while estimates from the full model provide supportive
evidence for the classic Cournot (1838)’s insight that mergers can be welfare enhancing, those
from a standard model that does not allow for Hicksian complementarity can only predict that
mergers will be detrimental for consumer surplus.

38



Table 6: Counterfactual Simulations

Competition Oligopoly Duopoly Monopoly
Price change
Full Model +8.08%

(1.35%)
0% −5.03%

(1.16%)
−5.34%

(1.65%)

Restricted Model 1, Γib = 0 −0.54%
(0.03%)

0% +3.69%
(0.21%)

+5.26%
(0.30%)

Restricted Model 2, Γib = −∞ −0.56%
(0.10%)

0% +4.17%
(0.72%)

+6.06%
(1.07%)

Profit change
Full Model −0.47%

(0.04%)
0% +0.27%

(0.03%)
+0.30%

(0.05%)

Restricted Model 1, Γib = 0 −0.03%
(0.002%)

0% +0.10%
(0.003%)

+0.12%
(0.004%)

Restricted Model 2, Γib = −∞ −0.36%
(0.01%)

0% +1.64%
(0.03%)

+2.00%
(0.03%)

Consumer Surplus change
Full Model −5.27%

(0.22%)
0% +6.29%

(0.37%)
+7.62%

(0.62%)

Restricted Model 1, Γib = 0 +0.49%
(0.01%)

0% −3.23%
(0.04%)

−4.54%
(0.06%)

Restricted Model 2, Γib = −∞ +1.53%
(0.01%)

0% −11.94%
(0.07%)

−16.41%
(0.09%)

Notes: The Table reports average counterfactual changes in prices (top panel), profits (central panel), and con-
sumer surplus (bottom panel) of pure components pricing under alternative simulated market structures with
respect to the observed oligopoly. Each column refers to a specific market structure: the second column refers to
the observed oligopoly in the data while the others refer to simulated counterfactuals (see text for details). Each
row refers to one of three model specifications: the full model, restricted model 1 (which constrains Γib = 0 in
estimation), and restricted model 2 (which constrains Γib = −∞ in estimation, i.e. standard demand model for
single brands). The standard errors associated to the estimated relative changes are in brackets and obtained from
a parametric bootstrap as in Nevo (2000, 2001) with 50 draws.

7 Conclusions

We present a novel identification and estimation strategy of a mixed logit model of demand for
bundles with endogenous prices given observations on bundle-level market shares. We propose
a novel demand inverse in the presence of complementarity that allows to concentrate out
of the likelihood function the (potentially numerous) market-product specific average utilities
and to substantially alleviate the challenge of dimensionality inherent in estimation. Finally,
we estimate demand and supply in the US ready-to-eat cereal industry, where our estimator
reduces the numerical search from approximately 12000 to 130 parameters. Our results suggest
that ignoring Hicksian complementarity among products often purchased in bundles may result
in misleading demand estimates and counterfactuals.

Our identification and estimation arguments are developed for mixed logit models with
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parametric distributions of random coefficients. In light of the well known challenge of dimen-
sionality that affects the estimation of demand for bundles (Berry et al. (2014)), our priority
is to propose estimation methods that can be practically useful in applications that involve
more than a few products. While our parametric assumptions clearly help in alleviating the
challenge of dimensionality in estimation, they require the econometrician to take a stand on
the functional form of the distribution of random coefficients. An avenue for future research is
the study of the semi-parametric identification of mixed logit models of demand for bundles,
where the distribution of random coefficients is allowed to be non-parametric and more robust
against misspecification.

The implementation of our methods requires the observation of bundle-level market shares
rather than of the more readily available aggregate market shares of single products. Even
though direct measures of bundle-level market shares are widely available only for a few in-
dustries, such as media and telecommunication (Crawford and Yurukoglu (2012) and Crawford
et al. (2018)), it is usually possible to construct indirect measures of bundle-level market shares
from samples of household-level purchases (Gentzkow (2007), Kwak et al. (2015), Grzybowski
and Verboven (2016), Ruiz et al. (2017), and Ershov et al. (2018)). In some important indus-
tries, however, only measures of aggregate market shares of single products are widely available
(e.g., the car industry, see Berry et al. (1995, 2004a)) even though households are known to
purchase bundles of products (Manski and Sherman (1980)). When only aggregate market
shares of single products are available, our proposed methods do not apply. An important
direction for future research is thus the identification and estimation of models of demand for
bundles on the basis of aggregate market shares of single products (see Sher and Kim (2014),
Allen and Rehbeck (2019), and Wang (2019)).
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8 Appendix

8.1 Hendel (1999) and Dubé (2004) as Special Cases of Model (3)

In this Appendix, we illustrate that the model of preference for variety originally proposed by
Hendel (1999) in the context of demand for computers and then applied by Dubé (2004) in the
context of demand for soft drinks is a special case of model (3). In particular, Hendel (1999)’s
model is a version of model (3) in which each demand synergy parameter Γitb is restricted to
be negative in a special way. Hendel (1999)’s model is about individuals who go shopping less
often than they consume. During any purchase occasion, individuals may buy several units of
different products in anticipation of the various consumption occasions they will face before the
next shopping trip. Suppose there are J different products and denote by J their collection.
Denote by 0 the outside option, the choice of consuming none of the J products. Denote by
Ri ∈ N the maximal number of units of any product that individual i can consume during any
consumption occasion, and by Ki the number of consumption occasions in between any two
shopping trips. On any consumption occasion, Hendel (1999) assumes that different products
are perfect substitutes, so that each individual will effectively choose a certain number of units
of at most one product j. As a consequence, the actual choice set faced by individual i on any
consumption occasion can be defined as:

Ai = {(j, ..., j)︸ ︷︷ ︸
q

: for j ∈ J, q = 1, ..., Ri} ∪ {0},

where q is the number of units of any product j that could be consumed on this consumption
occasion and 0 is the outside option. Then, individual i’s choice set during any purchase
occasion is:

Ci = Ai × ...×Ai︸ ︷︷ ︸
Ki

,

where each element of Ci is a bundle of size up to Ri ×Ki. To ease exposition, we represent
each bundle b ∈ Ci by b = (jk, qk)

Ki
k=1, where (jk, qk) refers to the chosen product and to the

corresponding number of units on consumption occasion k. Denote by (jk, qk) = (0, 0) the
decision of not consuming anything on consumption occasion k.

For the rest of this Appendix, we focus on Dubé (2004)’s notation, which specializes Hendel
(1999)’s model to the case of demand for bundles in grocery shopping. Following Dubé (2004)’s
equation (2) at page 68, denote by (Ψijkkqk)

αSi the indirect utility of individual i from choosing
(jk, qk) on consumption occasion k: Ψijkk is i’s perceived quality for product jk on consumption
occasion k, Si is an i-specific scaling factor, and α ∈ (0, 1) captures the curvature of the utility
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function.34 Moreover, denote by pjk the price of one unit of product jk and by yi the income of
individual i. Then, from Dubé (2004)’s equation (6) at page 69, the indirect utility of individual
i from purchasing bundle b = ((j1, q1), ..., (jKi , qKi)) ∈ Ci is:

Uib =

Ki∑
k=1

(Ψijkkqk)
αSi −

Ki∑
k=1

pjkqk + yi

=

Ki∑
k=1

(Ψijkkqk)
αSi +

Ki∑
k=1

(Ψijkk)
αSiqk −

Ki∑
k=1

(Ψijkk)
αSiqk −

Ki∑
k=1

pjkqk + yi

=

Ki∑
k=1

(Ψijkkqk)
αSi +

Ki∑
k=1

qk∑
q=1

(Ψijkk)
αSi −

Ki∑
k=1

(Ψijkk)
αSiqk −

Ki∑
k=1

qk∑
q=1

pjk + yi

=

Ki∑
k=1

qk∑
q=1

[(Ψijkk)
αSi − pjk ] +

Ki∑
k=1

(Ψijk)
αSi[q

α
k − qk] + yi

=

Ki∑
k=1

qk∑
q=1

uijkk + Γib + yi,

(19)

where uijkk = (Ψijkk)
αSi − pjk and Γib =

∑Ki
k=1(Ψijkk)

αSi[q
α
k − qk]. The sum over qk on the

right hand side of (19) is zero when qk = 0. Note that Dubé (2004) assumes Ψijkk ≥ 0. As
a consequence, the demand synergy Γib will be constrained to be strictly negative as long as
Ψijkk > 0. Dubé (2004)’s demand model is therefore a special case of model (3) with non-
positive demand synergies and without the i.i.d. Gumbel error terms.

8.2 Proof of Lemma 1

To prove the first statement, we show that given a distribution function for βit, F (·; Σ′F ), there
exists a unique δ′t ∈ RCt1 for t = 1, ..., T that solves st(δ′t; Σ′F ) = st. This is equivalent to showing
that given F (·; Σ′F ), the market share function st(·; Σ′F ) is invertible for t = 1, ..., T . Because
our arguments with regard to the first statement do not depend on whether F is parametric or
non-parametric, hereafter we denote F (·; Σ′F ) simply by F .

Given a distribution F , for market t = 1, ..., T , define the Jacobian matrix of the market
share function st(·;F ) from (3) by:

Jt(δ′t;F ) =
∂st
∂δ′t

(δ′t;F ) =

(
∂stb
∂δ′tb′

(δ′t;F )

)
b,b′∈Ct1

. (20)

34Note that Dubé (2004)’s equation (2) at page 68 reports the direct utility function defined over the entire
vector (qjk)Jj=1 of possible units for each product j ∈ J on consumption occasion k. However, because of the
assumption of perfect substitutes mentioned earlier, positive units qjk > 0 will be chosen for at most one product
j on any consumption occasion k. For this reason, here we simplify the discussion and immediately consider
the indirect utility of choosing (jk, qk) with qjkk = qk.
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Corollary 2 from Berry et al. (2013) provides sufficient conditions for the invertibility of differ-
entiable market share functions. We now verify that market share function (3) satisfies the two
sufficient conditions of Corollary 2 from Berry et al. (2013): (a) weak substitutes (Assumption
2 in Berry et al. (2013)) and (b) non-singularity of the Jacobian matrix Jt(δ′t;F ). We first
compute Jt(δ′t;F ) for b,b′ ∈ Ct1,b 6= b′:

∂stb
∂δ′tb

(δ′t;F ) =

∫
sitb(δ′t; βit)(1− sitb(δ′t; βit))dF (βit)

∂stb
∂δ′tb′

(δ′t;F ) = −
∫
sitb(δ′t; βit)sitb′(δ

′
t; βit)dF (βit).

(21)

As discussed by Berry et al. (2013), the weak substitutes condition does not rule out comple-
mentarity in a discrete choice model in which alternatives are defined as bundles, as in demand
model (3). In practice, the weak substitutes condition requires that for all t = 1, ..., T and
b ∈ Ct1, stb(δ′t;F ) be weakly decreasing in δ′tb′ for any b′ 6= b,b′ ∈ Ct1. This is immediate
from the second equation in (21). In what follows, we verify that Jt(δ′t;F ) is non-singular.

Define the Ct1 × 1 vector sit(δ′t; βit) = (sitb(δ′t; βit))b∈Ct1 . By using (21), we can re-write
Jt(δ′t;F ) as:

Jt(δ′t;F ) =

∫ [
Diag(sit(δ

′
t; βit))− sit(δ′t; βit)sit(δ′t; βit)T

]
dF (βit), (22)

where Diag(sit(δ
′
t; βit)) is a diagonal matrix with the elements of sit(δ′t; βit) on the main diagonal.

We first show that the symmetric matrix Diag(sit(δ
′
t; βit)) − sit(δ

′
t; βit)sit(δ

′
t; βit)

T is positive-
definite. This is equivalent to showing that its eigenvalues are all positive. Note that every
element of sit(δ′t; βit) is strictly positive and that their sum is strictly less than one:

sitb(δ′t; βit) > 0,∑
b∈Ct1

sitb(δ′t; βit) < 1.

Denote any of the eigenvalues of Diag(sit(δ
′
t; βit))−sit(δ′t; βit)sit(δ′t; βit)T by λ and its correspond-

ing (non-degenerate) eigenvector by x. Without loss of generality, suppose that the maximal
element of vector x in absolute value is its first element x1 6= 0:

|x1| ≥ |xb| for any b ∈ Ct1.
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Then, we have:[
Diag(sit(δ

′
t; βit))− sit(δ′t; βit)sit(δ′t; βit)T

]
x = λx

=⇒ sitb(δ′t; βit)xb − sitb(δ′t; βit)
∑

b′∈Ct1

sitb′(δ
′
t; βit)xb′ = λxb, for all b ∈ Ct1

=⇒ sit1(δ′t; βit)x1 − sit1(δ′t; βit)
∑

b′∈Ct1

sitb′(δ
′
t; βit)xb′ = λx1

=⇒ λ = sit1(δ′t; βit)

(
1−

∑
b′∈Ct1 sitb′(δ

′
t; βit)xb′

x1

)
≥ sit1(δ′t; βit)

(
1−

∣∣∣∣
∑

b′∈Ct1 sitb′(δ
′
t; βit)xb′

x1

∣∣∣∣)
≥ sit1(δ′t; βit)

(
1−

∑
b′∈Ct1 sitb′(δ

′
t; βit)|xb′|

|x1|

)
≥ sit1(δ′t; βit)

(
1−

∑
b′∈Ct1

sitb′(δ
′
t; βit)

)
> 0.

Any eigenvalue of Diag(sit(δ
′
t; βit))− sit(δ′t; βit)sit(δ′t; βit)T is thus strictly positive: for any v ∈

RCt1 ,
vT[Diag(sit(δ

′
t; βit))− sit(δ′t; βit)sit(δ′t; βit)T]v > 0.

As a consequence,

vTJt(δ′t;F )v =

∫
vT[Diag(sit(δ

′
t; βit))− sit(δ′t; βit)sit(δ′t; βit)T]vdF (βit)

> 0.

Thus, given F , for any δ′t ∈ RCt1 , Jt(δ′t;F ) is positive-definite and non-singular. Because both
conditions (a) and (b) of Corollary 2 by Berry et al. (2013) are satisfied, then the market share
function st(δ′t;F ) is invertible with respect to δ′t, for t = 1, ..., T . This completes the proof of
the first statement.

We now prove the second statement of the Lemma. According to Assumption 1, the den-
sity function dF (βit;Σ

′
F )

dβit
is continuously differentiable with respect to Σ′F . As a consequence,

st(δ
′
t; Σ′F ) − s′t is continuously differentiable with respect to (δ′t, s

′
t,Σ

′
F ). As we showed above,

the Jacobian matrix ∂[st(δ′t;Σ
′
F )−s′t]

∂δ′t

∣∣
(δ′t,s

′
t,Σ
′
F )=(δt,st,ΣF )

= Jt(δt;F (·; ΣF )) is invertible. Then, accord-
ing to the Implicit Function Theorem, in a neighbourhood of (δt, st,ΣF ), for any (s′t,Σ

′
F ) there

exists a unique δ′t such that st(δ′t; Σ′F ) = s′t and s
−1
t (s′t; Σ′F ) = δ′t is continuously differentiable

with respect to (s′t,Σ
′
F ). This completes the proof of the second statement.
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8.3 Proof of Rank Regularity Property

Without loss of generality, suppose that ΘΣ ⊂ Υ is a compact set, where Υ ⊂ RP+D is a
topological space of RP+D. Moreover, according to Assumption 1, ∂m(Σ′)

∂Σ′
is continuous with

respect to Σ′ ∈ Υ. According to Property 4 from Lewis (2009), the set of rank regular points
for ∂m(Σ′)

∂Σ′
is open and dense in Υ. This completes the proof.

8.4 Preliminaries for Theorem 1

Here we report a preliminary Lemma useful to prove Theorem 1.

Lemma 2. If Assumptions 1 and 2 hold, and the Jacobian matrix ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

is of full column
rank, then Σ is locally uniquely determined by moment conditions (9).

Proof. The differentiability of moment conditions (9) with respect to Σ′ follows from the second
statement of Lemma 1 and the differentiability of g(Σg) with respect to Σg in Assumption 2.
It then suffices to show that the true Σ is the unique local solution to m(Σ′) = 0. From the
definition of model (3), m(Σ) = 0. We prove the result by contradiction.

Suppose that Σ is not the unique local solution to m(Σ′) = 0. As a consequence, there
exists a sequence of ΣN such that ΣN → Σ as N → ∞, and m(ΣN) = 0. Because m(Σ′) is
continuously differentiable in a neighbourhood of Σ′ = Σ, by applying the first-order Taylor
expansion, we have:

m(ΣN) = m(Σ) +
∂m(Σ′)

∂Σ′

∣∣∣∣
Σ′=Σ

(ΣN − Σ) + o(|ΣN − Σ|),

∂m(Σ′)

∂Σ′

∣∣∣∣
Σ′=Σ

ΣN − Σ

|ΣN − Σ|
= −o(|ΣN − Σ|)

|ΣN − Σ|
,

(23)

where o(|ΣN − Σ|) is such that lim
N→∞

o(|ΣN−Σ|)
|ΣN−Σ| = 0. Note that ΣN−Σ

|ΣN−Σ| belongs to the unit

sphere in RP+D, which is compact. Then, there exists a subsequence
{

ΣN`−Σ

|ΣN`−Σ|

}
and v ∈

RP+D with |v| = 1, such that ΣN`−Σ

|ΣN`−Σ| → v. By applying the second equation of (23) to the

subsequence
{

ΣN`−Σ

|ΣN`−Σ|

}
, and by combining ΣN` → Σ and the continuous differentiability of

m(·) in a neighbourhood of Σ, we obtain ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

v = 0. Because ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

is of full
column rank, any vector x ∈ RP+D that satisfies ∂m(Σ′)

∂Σ′

∣∣
Σ′=Σ

x = 0 must be zero. Then v = 0,
which contradicts the fact that |v| = 1. As a consequence, Σ is the unique local solution to
m(Σ′) = 0.

8.5 Proof of Theorem 1

Sufficiency. We prove sufficiency by contradiction. Suppose that model (3) is not locally
identified: there exists a sequence of solutions to system (4), (δN1J1

, ..., δNTJT ,Γ
N ,ΣN) 6= (δ1J1 , ..., δTJT ,Γ,Σ)
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for any N , such that (δN1J1
, ..., δNTJT ,Γ

N ,ΣN) → (δ1J1 , ..., δTJT ,Γ,Σ) as N → ∞. Applying (6)
and (7) to each element of the sequence, one obtains:

δNtb(ΓNb ) + g(xtb, ptb; ΣN
g ) = s−1

tb (st; ΣN
F ),

δNtj = s−1
tj (st; ΣN

F ), j ∈ b,

ΓNb = s−1
tb (st; ΣN

F )−
∑
j∈b

s−1
tj (st; ΣN

F )− g(xtb, ptb; ΣN
g ).

(24)

Then, by constructing moment conditions (9) for each element of the sequence, we have
m(Σ′)|Σ′=ΣN = 0 for any N . Because the Jacobian matrix ∂m(Σ′)

∂Σ′

∣∣
Σ′=Σ

is of full column
rank, according to Lemma 2, then Σ is uniquely locally determined by moment conditions
(9). Hence, there exists N0 such that for all N ≥ N0, ΣN = Σ. Because of the third
equation of (24), then for all N ≥ N0, ΓNb = Γb. Moreover, because of the first two equa-
tions of (24), we have δNtb = δtb, for all N ≥ N0, t = 1, ..., T and b ∈ Ct1. As a con-
sequence, (δN1J1

, ..., δNTJT ,Γ
N ,ΣN) = (δ1J1 , ..., δTJT ,Γ,Σ) for all N ≥ N0, which contradicts

(δN1J1
, ..., δNTJT ,Γ

N ,ΣN) 6= (δ1J1 , ..., δTJT ,Γ,Σ) for any N .

Necessity. To simplify notation, denote the number of moment conditions
∑

b∈C2,|Tb|≥2 (|Tb| − 1)

by Q and the rank of ∂m(Σ′)
∂Σ′

)
∣∣
Σ′=Σ

by r. According to the definition of rank regularity in footnote
11, there exists a neighbourhood of the true Σ, U , such that rank(m(Σ′)

∂Σ′
) = rank(m(Σ′)

∂Σ′
)
∣∣
Σ′=Σ

= r

for each Σ′ ∈ U . By applying the Constant Rank Theorem at Σ′ = Σ, there are open sets
U1, U2 ⊂ RP+D and U3 ⊂ RQ and diffeomorphisms φ : U1 → U2 , ψ : U3 → U3 such that
Σ ∈ U1 ⊂ U and ψ ◦m ◦ φ−1(x′) = (x′1, . . . , x

′
r, 0, . . . , 0) for all x′ ∈ U2.35

Define x = (x1, ..., xP+D) = φ(Σ) and a sequence {xN = (xN1 , ..., x
N
P+D)} such that xN` = x`,

for ` = 1, ..., r and xN` = x` + 1
N
, for N large enough so that xN 6= x and xN ∈ U2. Note that

ψ ◦m ◦ φ−1(x) = (x1, ...xr, 0, . . . , 0)

= (xN1 , ...x
N
r , 0, . . . , 0)

= ψ ◦m ◦ φ−1(xN)

(25)

and that
ψ ◦m ◦ φ−1(x) = ψ ◦m ◦ φ−1(φ(Σ))

= ψ ◦m(Σ)

= ψ(0).

(26)

As a consequence, ψ ◦ m ◦ φ−1(xN) = ψ(0). Because ψ is a diffeomorphism, we obtain
m(φ−1(xN)) = 0. Because φ and its inverse φ−1 are diffeomorphisms and x 6= xN → x = φ(Σ)

as N → ∞, we construct a sequence ΣN = φ−1(xN) → φ−1(x) = Σ with ΣN 6= Σ such that
35For the details of the Constant Rank Theorem, see Theorem 7.1 by Boothby (1986).

52



m(ΣN) = 0 for each N . According to (24) from the proof of sufficiency, given ΣN , we can
construct a (δN1J1

, ..., δNTJT ,Γ
N ,ΣN) such that it is a solution to (4). Consequently, model (3) is

not locally identified and this concludes the proof.

8.6 Proof of Corollary 1

Because ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

is of full row rank, then the positive definite matrix
[
∂m(Σ′)
∂Σ′

] [
∂m(Σ′)
∂Σ′

]T ∣∣
Σ′=Σ

is not singular and its determinant Det
([

∂m(Σ′)
∂Σ′

] [
∂m(Σ′)
∂Σ′

]T ∣∣
Σ′=Σ

)
is positive. Moreover, since

∂m(Σ′)
∂Σ′

is continuous with respect to Σ′, Det
([

∂m(Σ′)
∂Σ′

] [
∂m(Σ′)
∂Σ′

]T)
is also continuous with respect

to Σ′ and is positive in a neighbourhood of Σ′ = Σ. This implies that ∂m(Σ′)
∂Σ′

is of full row rank

in a neighbourhood of Σ′ = Σ, and its rank, rank
(
∂m(Σ′)
∂Σ′

)
, is constant and equal to the number

of rows in ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

. Consequently, Σ is rank regular for ∂m(Σ′)
∂Σ′

. Note that the number of
rows in ∂m(Σ′)

∂Σ′

∣∣
Σ′=Σ

is equal to the number of moment conditions
∑

b∈C2,|Tb|≥2 (|Tb| − 1) and
it is strictly smaller than the dimension of Σ. The latter is equal to the number of columns in
∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

. Then, ∂m(Σ′)
∂Σ′

∣∣
Σ′=Σ

is not of full column rank. According to Theorem 1, model (3)
is not locally identified and this concludes the proof.

8.7 Testing Procedures for Assumption 2 and Assumption 3

In this section, we develop testing procedures for Assumptions 2 and 3 on the basis of partial
identification methods. For a given subset of markets T0 ⊂ T, the identification set of θ =

((δtJt)t∈T0 ,Γ,ΣF ,Σg) is defined by the moment equalities:

stb(δt(Γ + gt(Σg)); ΣF ) = stb, (27)

for t ∈ T0 and b ∈ Ct1, where gt(Σg) = (g(xtb, ptb; Σg))b∈Ct2 and δt(Γ+gt(Σg)) = (δt1, ..., δtJt , (δtb(Γb+

g(xtb, ptb; Σg)))b∈Ct2). We denote by Θ(T0) the identification set of θ defined by (27) and by
Q((st)t∈T0 , θ

′) the following criterion function:

Q((st)t∈T0 , θ
′) =

∑
t∈T0

(st(δ
′
t(Γ
′ + gt(Σ

′
g)); Σ′F )− st)

TΩ−1
t (st(δ

′
t(Γ
′ + gt(Σ

′
g)); Σ′F )− st). (28)

Note that Q((st)t∈T0 , θ
′) = 0 if and only if θ′ ∈ Θ(T0). Denote by Itb the number of individuals

in market t observed to choose b and by ŝtb = Itb
I

the corresponding observed market share.
As I increases to infinity, ŝtb

p−→ stb and
√
I(ŝt− st)

p→N(0,Ωt) for t = 1, ..., T , b ∈ Ct, where
Ωt = (ωtbb′)b,b′∈Ct1 with ωtbb′ = stb(1 − stb) when b = b′ and ωtbb′ = −stbstb′ otherwise.
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Denote by Ω̂t an estimator of Ωt that satisfies Ω̂t
p→ Ωt and

√
I(Ω̂t − Ωt) = Op(1).36 We then

define the sample counterpart of criterion function Q(·) as:

QI((ŝt)t∈T0 , θ
′) =

∑
t∈T0

(st(δ
′
t(Γ
′ + gt(Σ

′
g)); Σ′F )− ŝt)

TΩ̂−1
t (st(δ

′
t(Γ
′ + gt(Σ

′
g)); Σ′F )− ŝt). (29)

Testing Procedure for Assumption 2. In this section, we maintain T0 = T. Note that
Assumption 2 holds if and only if Θ(T) 6= ∅, i.e., there is at least a profile of θ that satisfies
moment equalities (27). Hence, we propose a specification test on the basis of the following
hypotheses:

H0 : Θ(T) 6= ∅ versus H1 : Θ(T) = ∅. (30)

Denote by q1−α∑
t∈T Ct1

the 1− α quantile of χ2
(∑

t∈TCt1
)
and define the following random set:

ΘI(T) = {θ′ ∈ Θ : I ·QI((ŝt)t∈T, θ
′) ≤ q1−α∑

t∈T Ct1
}. (31)

If ΘI(T) = ∅, then we reject H0 from (30).

Proposition 1. Under H0 from (30), lim sup
I→∞

sup
θ′∈Θ(T)

Pr [ΘI(T) = ∅] ≤ α.

Proof. Under H0 from (30), for any θ′ ∈ Θ(T), we have:

Pr [ΘI(T) = ∅] ≤ Pr [θ′ /∈ ΘI(T)]

= Pr
[
I ·QI((ŝt)t∈T, θ

′) > q1−α∑
t∈T Ct1

]
= Pr

[∑
t∈T

[√
I(st − ŝt)

]T
Ω̂−1
t

[√
I(st − ŝt)

]
> q1−α∑

t∈T Ct1

]
.

(32)

Since Ω̂t
p→ Ωt (and hence Ω̂−1

t
p→ Ω−1

t ) and
√
I(ŝt − st)

p→N(0,Ωt), for t ∈ T, we obtain:

∑
t∈T

[√
I(st − ŝt)

]T
Ω̂−1
t

[√
I(st − ŝt)

]
d→ χ2

(∑
t∈T

Ct1

)
.

Note that the probability on the right-hand side of (32) converges to α and does not depend
on θ′. Then,

lim sup
I→∞

sup
θ′∈Θ(T)

Pr [ΘI(T) = ∅] ≤ α.

The proof is completed.
36Such an estimator can be Ω̂t = (ω̂tbb′)b,b′∈Ct1 , where ω̂tbb′ = ŝtb(1−ŝtb) when b = b′ and ω̂tbb′ = −ŝtbŝtb′

otherwise.

54



Testing Procedure for Assumption 3. In this section, we assume that Θ(T) 6= ∅ and
therefore that Θ(T0) 6= ∅ for any T0 ⊂ T. Given T0, we first derive a consistent estimator for
Θ(T0):

Lemma 3. Define a sequence of random sets:

C(aI) = {θ′ ∈ Θ : I ·QI((ŝt)t∈T0 , θ
′) ≤ aI},

where aI ≥ 0 satisfies aI →∞ and aI
I
→ 0. Then,

lim
I→∞

inf
θ′∈Θ(T0)

Pr [Θ(T0) ⊂ C(aI)] = 1

and
lim
I→∞

sup
θ′∈Θ(T0)

dH(Θ(T0),C(aI)) = 0,

where dH(·, ·) is the Hausdorff metric: dH(A,B) = supa∈A infb∈B |a− b|+ supb∈B infa∈A |b− a|.

Proof. See Theorem 3.1 by Chernozhukov et al. (2007).

The choice of aI is up to the econometrician. For example, one can choose aI = ln I (see
Chernozhukov et al. (2007) for a detailed discussion). In what follows, we focus on situations
in which Θ(T0) contains only interior points of Θ. While Assumption 3 is abstract and not
easy to test directly, we propose the following Condition and show that it implies Assumption
3:

Condition 1. There exists T0 ( T such that ∂m(Σ′;T0)
∂Σ′

is of full column rank when evaluated
at any of the solutions to m(Σ′;T0) = 0.

Remark 4. Denote by ΘΣ(T0) the set of solutions to m(Σ′;T0) = 0. Since the true parameters
Σ0 ∈ ΘΣ(T0), Condition 1 implies that ∂m(Σ′;T0)

∂Σ′
is of full column rank when evaluated at

Σ′ = Σ0. As a consequence, model (3) is locally identified according to Theorem 1.

Remark 5. As shown in section 3, θ′ ∈ Θ(T0) holds if and only if m(Σ′;T0) = 0. Then,
ΘΣ(T0) is the projection of Θ(T0) along the dimensions of Σ. Moreover, because of Lemma
3, the projection of C(an) along the dimensions of Σ also defines a consistent estimator for
ΘΣ(T0) which covers asymptotically ΘΣ(T0) with probability 1 and that we denote by CΣ(an).

The next Proposition shows that Condition 1 is sufficient for Assumption 3:

Proposition 2. If Condition 1 holds, then Assumption 3 holds.

Proof. We prove this by contradiction. Denote the solution set of m(Σ′;T0) = 0 in ΘΣ by S.
Suppose that S contains infinitely many elements. Because S is a closed subset of the compact
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set ΘΣ, S is itself compact. Consequently, because S has infinitely many elements, then there
exists an accumulation point Σ′0 ∈ S: in any neighbourhood of Σ′0, we can find another Σ

′′
0 ∈ S,

i.e. another solution to m(Σ′;T0) = 0. Due to Assumption 3, we know that at Σ′0 ∈ S, the
corresponding Jacobian matrix ∂m(Σ′;T0)

∂Σ′ Σ′=Σ′0
is of full column rank. Then, locally, Σ′ = Σ′0

must be the unique solution to m(Σ′;T0) = 0. This contradicts Σ′0 being an accumulation
point in S.

We then propose a test for Assumption 3 on the basis of the following hypotheses:

H0 : Condition 1 does not hold. versus H1 : Condition 1 holds. (33)

H0 from (33) is equivalent to the hypothesis that there exists some θ′ ∈ Θ(T0) such that
∂m(Σ′;T0)

∂Σ′
is rank deficient when evaluated at Σ′ = (Σ′F ,Σ

′
g). Define the following function:

Assumption 6. Suppose that J((s′t)t∈T0 ,Σ
′) : ×t∈T0St ×ΘΣ → R+ ∪ {0} satisfies:

• J ≥ 0.

• J = 0 if and only if ∂m(Σ′;T0)
∂Σ′

is rank deficient.

where St = {s′t ∈ RCt1 : s′tb > 0 and
∑

b∈Ct1 s
′
tb < 1, b ∈ Ct1.}.

Example 1. The determinant function

J((s′t)t∈T0 ,Σ
′) = Det

([(
∂m(Σ′;T0)

∂Σ′

)T(
∂m(Σ′;T0)

∂Σ′

)])

Example 2. The minimal eigenvalue function

J((s′t)t∈T0 ,Σ
′) = inf

|λ|=1
λT

[(
∂m(Σ′;T0)

∂Σ′

)T(
∂m(Σ′;T0)

∂Σ′

)]
λ,

where λ is unit vector of dimension P +D.

Define the criterion function J∗((s′t)t∈T0) = inf
Σ′∈ΘΣ(T0)

J((s′t)t∈T0 ,Σ
′). Note that J∗((st)t∈T0) = 0

if and only if H0 from (33) holds. We then propose the following test statistic:

J∗I ((ŝt)t∈T0) = inf
Σ′∈CΣ(an)

J((ŝt)t∈T0 ,Σ
′) (34)

and the next two Theorems establish its properties.

Theorem 7. Suppose Assumptions 1, 2 and 6 hold. Moreover,
√
I(ŝt − st)

d→ N(0,Ωt) for
t ∈ T.
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• If J is continuous in ×t∈T0St × ΘΣ, then J∗I ((ŝt)t∈T0)
p→ J∗((st)t∈T0), uniformly for

θ ∈ Θ(T0).

• If J is Lipschitz continuous in ×t∈T0St×ΘΣ, then under H0 from (33),
√
I ·J∗I ((ŝt)t∈T0) =

Op(1).

Proof. For any θ ∈ Θ(T), on the stochastic event {Θ(T0) ⊂ C(aI)}, we can write:

J∗((st)t∈T0) = J((st)t∈T0 ,Σ
∗),

J∗I ((ŝt)t∈T0) = J((ŝt)t∈T0 ,Σ
∗
I),

(35)

where Σ∗ ∈ argmin
Σ′∈ΘΣ(T0)

J((st)t∈T0 ,Σ
′) and Σ∗I ∈ argmin

Σ′∈CΣ(aI)

J((ŝt)t∈T0 ,Σ
′). Note that Σ∗ ∈ Θ(T0) ⊂

CΣΣ(aI). Then, we have:

J∗I ((ŝt)t∈T0)− J∗((st)t∈T0) ≤ J((ŝt)t∈T0 ,Σ
∗)− J((st)t∈T0 ,Σ

∗). (36)

By construction, ΘΣ(T0) is a compact set. Then, there exists Σ̃∗I ∈ ΘΣ(T0) such that d(Σ∗I ,ΘΣ(T0)) =

d(Σ∗I , Σ̃
∗
I). Hence, we obtain:

J∗I ((ŝt)t∈T0)− J∗((st)t∈T0) =
[
J((ŝt)t∈T0 ,Σ

∗
I)− J((ŝt)t∈T0 , Σ̃

∗
I)
]

+
[
J((ŝt)t∈T0 , Σ̃

∗
I)− J((st)t∈T0 , Σ̃

∗
I)
]

+
[
J((st)t∈T0 , Σ̃

∗
I)− J((st)t∈T0 ,Σ

∗)
]

≥
[
J((ŝt)t∈T0 ,Σ

∗
I)− J((ŝt)t∈T0 , Σ̃

∗
I)
]

+
[
J((ŝt)t∈T0 , Σ̃

∗
I)− J((st)t∈T0 , Σ̃

∗
I)
]
.

(37)
According to Lemma 3, dH(Θ(T0),C(aI)) → 0 uniformly for θ ∈ Θ(T0). We then obtain
d(Σ∗I , Σ̃

∗
I)→ 0 uniformly for θ ∈ Θ(T0).

Suppose that J is continuous in ×t∈T0St×ΘΣ. Then, in a compact set S∗×Θ, where S∗ is
a compact neighbourhood of (st)t∈T0 , J is uniformly continuous. Together with d(Σ∗I , Σ̃

∗
I)→ 0

uniformly for θ ∈ Θ(T0), we obtain that the right-hand side of (36) and that of (37) converge
to 0 on {Θ(T0) ⊂ C(aI)}, uniformly for θ ∈ Θ(T0). Note that {Θ(T0) ⊂ C(aI)} holds
asymptotically with probability 1, uniformly for θ ∈ Θ(T0). This proves the first statement.

Suppose that J is Lipschitz continuous in ×t∈T0St × ΘΣ. Under H0 from (33), we have
J∗((st)t∈T0) = 0. Then, by applying the Mean Value Theorem on the right-hand side of (36),
we obtain that on {Θ(T0) ⊂ C(aI)}:

0 ≤ J∗I ((ŝt)t∈T0) = J∗I ((ŝt)t∈T0)− J∗((st)t∈T0)

≤ J((ŝt)t∈T0 ,Σ
∗)− J((st)t∈T0 ,Σ

∗) ≤ L|ŝ− s|,
(38)

where L is the Lipschitz constant of J(·). Then, by using
√
I(ŝt − st)

d→ N(0,Ωt), we obtain
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that:
0 ≤
√
I · J∗I ((ŝt)t∈T0) ≤ L|

√
I(ŝ− s)| = Op(1) (39)

and the second statement is proved.

We now illustrate how to approximate the quantiles of J∗I ((ŝt)t∈T0) under H0 from (33) by
bootstrap methods building on Romano and Shaikh (2012). Denote by PI

R = {P I
s : s ∈

RR, sr > 0,
∑R

r=1 sr = 1} the set of multinomial distributions with R outcomes out of I trials.
Define the distance ρ on PI

R as ρ(P I
s , P

I
s′) =

∑R
r=1 |sr − s′r| and PI = ×t∈T0P

I
Ct1

as the set of
joint distributions P = (P I

st)t∈T0 , where each P I
st is independently distributed across t ∈ T0.

Note that ρ can be extended to any P I = (P I
st)t∈T0 and QI = (P I

s′t
)t∈T0 in PI as: ρ(P,Q) =∑

t∈T0
ρ(P I

st , P
I
s′t

). For any I and any realization ω = (it)t∈T0 of P , we can define the non-
negative random variable J∗I (ω;P ) = J∗I (

(
it
I

)
t∈T0

). Denote the distribution function of J∗I (ω;P )

evaluated at x ≥ 0 by GI(x, P ).

Theorem 8. Suppose the same Assumptions of Theorem 7 hold. If J is Lipschitz continuous in
×t∈T0St×ΘΣ, then under H0 from (33), for any α1, α2 such that α1 ≥ 0, α2 ≥ 0, α1 +α2 < 1,

lim inf
I→∞

inf
θ∈Θ(T0)

Pr
[
G−1
I (α1, P̂

I) <
√
I · J∗I ((ŝt)t∈T0) ≤ G−1

I (1− α2, P̂
I)
]
≥ 1− α1 − α2,

where P̂ I = (P I
ŝt

)t∈T0.

Proof. Our proof builds on Theorem 2.4 of Romano and Shaikh (2012). It suffices to verify two
conditions. First, we show that for any sequences QI and P I in PI satisfying ρ(QI , P I) → 0,
we have:

lim
I→∞

sup
x≥0
{|GI(x,Q

I)−GI(x, P
I)|} → 0.

This can be seen from the construction of J∗I (ω;P ). For any x ≥ 0, we have:

GI(x, P ) = Pr [J∗I (ω;P ) ≤ x]

= PrP

[
(it)t∈T0 : J∗I

((
it
I

)
t∈T0

)
≤ x

]

= PrP

[
(it)t∈T0 : inf

Σ′∈CΣ(aI)
J

((
it
I

)
t∈T0

,Σ′

)
≤ x

]
= PrP

[
(it)t∈T0 : (it)t∈T0

∈N(x, J(·), aI , I,T0)
]
,

(40)

where N(x, J(·), aI , I,T0) is the set of realizations for which infΣ′∈CΣ(aI) J
((

it
I

)
t∈T0

,Σ′
)
≤ x
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holds. Then, given (x, J(·), aI , I,T0), we obtain:

|GI(x,Q
I)−GI(x, P

I)| = |PrQI
[
(it)t∈T0 : (it)t∈T0

∈N(x, J(·), aI , I,T0)
]

− PrP I
[
(it)t∈T0 : (it)t∈T0

∈N(x, J(·), aI , I,T0)
]
|

≤ ρ(QI , P I).

Because supx≥0{|GI(x,Q
I)−GI(x, P

I)|} ≤ ρ(QI , P I) and ρ(QI , P I)→ 0, the first condition is
verified. We now move on to verifying the second condition. For any sequence P I ∈ {(P I

st
)t∈T0 :

st(δt(Γ + gt(Σg)); ΣF ) = st, (δJ,Γ,ΣF ,Σg) ∈ Θ(T0)}, we have ρ(P̂ I , P I)
p→ 0. This condition

holds because ŝt converges in probability to st for any t ∈ T0. This completes the proof.

Finally, for 0 < α < 1, we propose the following rejection region for test (34):

{
√
I · J∗I ((ŝt)t∈T0) > G−1

I (1− α, P̂ I)}.

According to Theorem 7, test (34) has asymptotically unit power, uniformly for θ ∈ Θ(T0).
Moreover, according to Theorem 8, the size of test (34) is controlled by α, uniformly for
θ ∈ Θ(T0).

8.8 Proof of Theorem 2

For this result, our arguments do not depend on whether the distribution of random coefficients
is parametric or non-parametric and we then denote F (·; ΣF ) simply by F . Remember that

stb(δt;F ) =

∫
sitb(δt; βit)dF (βit)

=

∫
eδtb+µitb(βit)∑

b′∈Ct e
δtb′+µitb′ (βit)

dF (βit).

To prove the real analytic property of the market share function stb(δt;F ), it suffices to study
∂lsitb(δt;βit)∏
b′∈Ct1

∂δ
lb′
tb′

, where l is an integer and
∑

b′∈Ct1 lb′ = l. We first prove the following Lemma.

Lemma 4. For any non-negative integer l,

sup
δt,βit

∣∣∣∣∂lsitb(δt; βit)

∂δltb

∣∣∣∣ ≤ All!,

where Al = (e− 1)l
∑l

k=0
1

(e−1)kk!
.
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Proof. Define al = sup
δt,βit

∣∣∣∂lsitb(δt;βit)

∂δltb

∣∣∣. Note that:

eδtb+µitb(βit) = sitb
∑
b′∈Ct

eδtb′+µitb′ (βit)

eδtb+µitb(βit) =
∂leδtb+µitb(βit)

∂δltb

=
∂l(sitb

∑
b′∈Ct e

δtb′+µitb′ (βit))

∂δltb

=
l∑

k=0

Ck
l

∂ksitb
∂δktb

∂l−k
∑

b′∈Ct e
δtb′+µitb′ (βit)

∂δl−ktb

=
∂lsitb
∂δltb

∑
b′∈Ct

eδtb′+µitb′ (βit) +
l−1∑
k=0

Ck
l

∂ksitb
∂δktb

eδtb+µitb(βit),

∂lsitb
∂δltb

= sitb

(
1−

l−1∑
k=0

Ck
l

∂ksitb
∂δktb

)
,

∣∣∣∣∂lsitb∂δltb

∣∣∣∣ ≤ 1 +
l−1∑
k=0

Ck
l

∣∣∣∣∂ksitb∂δktb

∣∣∣∣ ,
al ≤ 1 +

l−1∑
k=0

Ck
l ak,

al
l!
≤ 1

l!
+

l−1∑
k=0

ak
k!

1

(l − k)!
.

(41)

We now show that al
l!
≤ Al by induction. For l = 0, the result holds trivially. For l = 1, we

have a1 = sup
δt,βit

∣∣∣∂sitb(δt;βit)
∂δtb

∣∣∣ = sup
δt,βit

|sitb(1− sitb)| ≤ 1
4
< e = A1. Suppose that ak

k!
≤ Ak holds for

k = 1, ..., l − 1. Note that Al = 1
l!

+ (e− 1)Al−1 > Al−1, for any l ≥ 0. Then,

al
l!
≤ 1

l!
+

l−1∑
k=0

ak
k!

1

(l − k)!

≤ 1

l!
+

l−1∑
k=0

Ak
1

(l − k)!

≤ 1

l!
+ Al−1

l−1∑
k=0

1

(l − k)!

≤ 1

l!
+ Al−1(e− 1)

= Al.

(42)
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As a consequence, the inequality holds for any l > 0 and al = sup
δt,βit

∣∣∣∂lsitb(δt;βit)

∂δltb

∣∣∣ ≤ All!. This

completes the proof.

The next Lemma controls the size of ∂lsitb(δt;βit)∏
b′∈Ct1

∂δ
lb′
tb′

.

Lemma 5. Suppose Ct1 ≥ 2. For any b ∈ Ct1 and l ≥ 0,∣∣∣∣∣ ∂lsitb(δt; βit)∏
b′∈Ct1 ∂δ

lb′
tb′

∣∣∣∣∣ ≤ [Ct1(e− 1)]l
∏

b′∈Ct1

lb′ !,

where
∑

b′∈Ct1
lb′ = l.

Proof. We prove the result by induction. For l = 0, the result holds trivially. For l = 1, the
result follows directly from Lemma 4 with l = 1. For l = 2 and lb′ = 2, according to Lemma 4,
we have

∣∣∣∂2sitb
∂δ2
tb′

∣∣∣ ≤ A22!. For l = 2 and lb′ = lb′′ = 1,b′ 6= b′′:

eδtb+µitb(βit) = sitb
∑
b′∈Ct

eδtb′+µitb′ (βit),

0 =
∂2sitb′′

∂δtb′∂δtb′′

∑
b′∈Ct

eδtb′+µitb′ (βit) + eδtb′+µitb′ (βit)
∂sitb
∂δtb′′

+ eδtb′′+µitb′′ (βit)
∂sitb
∂δtb′

,

∂2sitb
∂δtb′∂δtb′′

= −sitb′
∂sitb
∂δtb′′

− sitb′′
∂sitb
∂δtb′

,

(43)

By using
∣∣∣∂sitb∂δtb

∣∣∣ ≤ 1
4
< 1 and

∣∣∣∂sitb∂δtb′

∣∣∣ ≤ 1, we have
∣∣∣ ∂2sitb
∂δtb′∂δtb

∣∣∣ ≤ ∣∣∣∂sitb∂δtb

∣∣∣+ ∣∣∣∂sitb∂δtb′

∣∣∣ ≤ 2 ≤ [Ct1(e−1)]2.
Note that A2 = (e − 1)2(1 + 1

e−1
+ 1

2(e−1)2 ) ≤ [Ct1(e − 1)]2 for Ct1 ≥ 2. As a consequence, the
conclusion holds for l = 2 and

∑
b′∈Ct1

lb′ = 2.

Suppose that for k = 0, ..., l − 1 the inequality holds for any
∑

b′∈Ct1
lb′ = k. First, remember

that Al = (e − 1)l
∑l

k=0
1

(e−1)kk!
, as defined in Lemma 4, is smaller than [Ct1(e − 1)]l because

Ct1 ≥ 2. Then, the conclusion holds for any l > 0 with lb′ = l and lb′′ = 0, b′′ 6= b′. It remains
to show that the conclusion holds when there exist b′ and b′′ such that lb′ > 0 and lb′′ > 0.

By taking lb-th derivatives of both sides of the first equation in (41) with respect to δtb, we
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obtain:

eδtb+µitb(βit) =
∂lbeδtb+µitb(βit)

∂δlbtb

=
∂lb(sitb

∑
b′∈Ct e

δtb′+µitb′ (βit))

∂δlbtb

=

lb∑
k=0

Ck
lb

∂ksitb
∂δktb

∂lb−k
∑

b′∈Ct e
δtb′+µitb′ (βit)

∂δlb−ktb

=
∂lbsitb

∂δlbtb

∑
b′∈Ct

eδtb′+µitb′ (βit) + eδtb+µitb(βit)

lb−1∑
k=0

Ck
lb

∂ksitb
∂δktb

.

(44)

Note that, by taking derivatives of both sides of equation (44) with respect to δtb′ , b′ 6= b, the
left hand-side vanishes and we obtain:

0 =
∂lb+lb′sitb

∂δlbtb∂δ
lb′
tb′

∑
b′′∈Ct

eδtb′′+µitb′′ (βit)+eδtb′+µitb′ (βit)
lb′−1∑
k=0

Ck
l′b

∂lb+ksitb

∂δlbtb∂δ
k
tb′

+eδtb+µitb(βit)

lb−1∑
k=0

Ck
lb

∂k+lb′sitb

∂δktb∂δ
lb′
tb′

.

(45)
By taking lb′-th derivatives with respect to δtb′ , for all b′ ∈ Ct1:

0 =
∂lsitb∏

b′∈Ct1 ∂δ
lb′
tb′

∑
b′′∈Ct

eδtb′′+µitb′′ (βit) +
∑

b′∈Ct1

eδtb′+µitb′ (βit)
lb′−1∑
k=0

Ck
lb′

∂l−lb′+ksitb′

∂δktb′
∏

b′′ 6=b′ ∂δ
lb′′
tb′′

,

∂lsitb∏
b′∈Ct1 ∂δ

lb′
tb′

= −
∑

b′∈Ct1

sitb′

lb′−1∑
k=0

Ck
lb′

∂l−lb′+ksitb′

∂δktb′
∏

b′′ 6=b′ ∂δ
lb′′
tb′′

,

∂lsitb∏
b′∈Ct1

∂δ
lb′
tb′∏

b′∈Ct1 lb′ !
= −

∑
b′∈Ct1

sitb′

lb′−1∑
k=0

1

(lb′ − k)!

∂l−lb′+ksitb′

∂δk
tb′

∏
b′′ 6=b′ ∂δ

lb′′
tb′′

k!
∏

b′′ 6=b′ lb′ !
,

sup
δt,βit

∣∣∣∣∣∣∣
∂lsitb∏

b′∈Ct1
∂δ
lb′
tb′∏

b′∈Ct1 lb′ !

∣∣∣∣∣∣∣ ≤
∑

b′∈Ct1

lb′−1∑
k=0

1

(lb′ − k)!
sup
δt,βit

∣∣∣∣∣∣∣
∂l−lb′+ksitb′

∂δk
tb′

∏
b′′ 6=b′ ∂δ

lb′′
tb′′

k!
∏

b′′ 6=b′ lb′ !

∣∣∣∣∣∣∣ .

(46)
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Then, applying the conclusion for any k = 0, ..., l − 1 on the last equation in (46), we obtain:

sup
δt,βit

∣∣∣∣∣∣∣
∂lsitb∏

b′∈Ct1
∂δ
lb′
tb′∏

b′∈Ct1 lb′ !

∣∣∣∣∣∣∣ ≤
∑

b′∈Ct1

lb′−1∑
k=0

1

(lb′ − k)!
[Ct1(e− 1)]l−lb′+k

= [Ct1(e− 1)]l
∑

b′∈Ct1

lb′∑
k=1

1

k!
[Ct1(e− 1)]−k

≤ [Ct1(e− 1)]lCt1(e[Ct1(e−1)]−1 − 1)

≤ [Ct1(e− 1)]l[e(e−1)−1 − 1]

< [Ct1(e− 1)]l.

(47)

Hence, the conclusion holds for
∑

b′∈Ct1
lb′ = l, and sup

δt,βit

∣∣∣∣ ∂lsitb∏
b′∈Ct1

∂δ
lb′
tb′

∣∣∣∣ ≤ [Ct1(e − 1)]l
∏

b′∈Ct1 lb′ !

for any l > 0 and
∑

b′∈Ct1
lb′ = l. The proof is completed.

The size of the l-th derivative of stb(δt;F ) with respect to δt can then be controlled as:∣∣∣∣∣ ∂lstb(δt;F )∏
b′∈Ct1 ∂δ

lb′
tb′

∣∣∣∣∣ ≤
∫ ∣∣∣∣∣ ∂lsitb(δt; βit)∏

b′∈Ct1 ∂δ
lb′
tb′

∣∣∣∣∣ dF (βit)

≤ [Ct1(e− 1)]l
∏

b′∈Ct1

lb′ !

(48)

and, consequently, the Taylor expansion of stb(.;F ) at some δ′t around δt as:∣∣∣∣∣∣
∞∑
L=0

1

L!

[ ∑
b′∈Ct1

(δ′tb′ − δtb′)
∂

∂δtb′

]L
stb(δt;F )

∣∣∣∣∣∣ ≤
∞∑
L=0

1

L!
dL

∑
∑
lb′=L

L!∏
b′∈Ct1 lb′!

∣∣∣∣∣ ∂Lstb(δt;F )∏
b′∈Ct1 ∂δ

lb′
tb′

∣∣∣∣∣
≤

∞∑
L=0

dLCL
t1[Ct1(e− 1)]L,

(49)
where d = |δ′t − δt|. Consequently, whenever d < d∗ = 1

C2
t1(e−1)

, the Taylor expansion (49)
converges. Finally, by applying Taylor’s Theorem to the multivariate function stb(δ′t;F ), we
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obtain for any R > 0 and uniformly for |δ′t − δt| < d∗

2
:∣∣∣∣∣∣stb(δ′t;F )−

R∑
L=0

1

L!

[ ∑
b′∈Ct1

(δ′tb′ − δtb′)
∂

∂δtb′

]L
stb(δt;F )

∣∣∣∣∣∣
≤dR+1

∑
∑
lb′=R+1

1∏
lb′ !

sup|δ′t−δt|<d

∣∣∣∣∣∂R+1stb(δ′t;F )∏
b′∈Ct1 ∂δ

lb′
tb′

∣∣∣∣∣
≤dR+1[Ct1(e− 1)]R+1CR+1

t1

→0.

In conclusion, the market share function stb(δ′t;F ) is equal to its Taylor expansion and therefore
real analytic with respect to δ′t. This completes the proof.

8.9 Proof of Theorem 3

The necessity part of the first statement is immediate. To prove sufficiency, note that when
(δ0
tJt

)t∈T\T0 ∈ ∆ID = ∩Rr=1∆ID
r , for any r = 1, .., R there exists some market t ∈ T \ T0 such

that Mts
−1
t (st; Σr

F ) 6= Γr + gt(Σ
r
g) and therefore m(Σr;T) 6= 0 for r = 1, ..., R. Remember that

the set of solutions to m(Σ′;T0) = 0 in ΘΣ is S = {Σr : r = 0, ..., R}. Consequently, the set of
solutions to m(Σ′;T) = 0 is a subset of S. Given that m(Σr;T) 6= 0 for r = 1, ..., R, and that
m(Σ0;T) = 0, Σ′ = Σ0 is the unique solution to system (9) in ΘΣ. The remaining parameters
of model (3) can then be uniquely pinned down by the demand inverse from Lemma 1 and
model (3) is globally identified.

To prove the second statement, we first note that

×t∈T\T0RJt \∆ID = ∪Rr=1

[
×t∈T\T0RJt \∆ID

r

]
.

It is then sufficient to show that the Lebesgue measure of ×t∈T\T0RJt \∆ID
r is zero. Note that

×t∈T\T0RJt \∆ID
r = {(δtJt)t∈T\T0 : for any t ∈ T \T0, Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); Σ0

F ); Σr
F ) = Γr + gt(Σ

r
g)}

= ×t∈T\T0{δtJt : Mts
−1
t (st(δt(Γ

0 + gt(Σ
0
g)); Σ0

F ); Σr
F ) = Γr + gt(Σ

r
g)}

= ×t∈T\T0Z
r
t ,

where Zr
t is the zero set of function Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); Σ0

F ); Σr
F )− Γr − gt(Σr

g). Because
∆ID
r 6= ∅, there exists some t ∈ T \ T0 for which the zero set Zr

t ( RJt , i.e. Mts
−1
t (st(δt(Γ

0 +

gt(Σ
0
g)); Σ0

F ); Σr
F ) − Γr − gt(Σr

g) is not equal to zero for some δtJt ∈ RJt . It is then enough to
show that, for this specific Zr

t ( RJt , the Lebesgue measure is zero.
For any Γ and ΣF , because st(δt(Γ); ΣF ) is a composition of two real analytic functions,

δt(Γ) : RJt → RCt1 and st(·; ΣF ) : RCt1 → (0, 1)Ct1 (from Theorem 2), it is itself a real analytic
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function from RJt to (0, 1)Ct1 . Moreover, because st(·; Σr
F ) is real analytic with respect to

δt ∈ RCt1 , the inverse market share function from Lemma 1, s−1
t (·; Σr

F ), is also real analytic
with respect to s′t ∈ (0, 1)Ct1 . Then, the composition of Mts

−1
t (s′t; Σr

F ) − Γr − gt(Σ
r
g) and

s′t = st(δt(Γ
0 + gt(Σ

0
g)); Σ0

F ) is also real analytic with respect to δtJt ∈ RJt . Consequently, Zr
t

is the zero set of the real analytic function Mts
−1
t (st(δt(Γ

0 + gt(Σ
0
g)); Σ0

F ); Σr
F ) − Γr − gt(Σr

g).
There are two cases to be considered. When Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); Σ0

F ); Σr
F )− Γr − gt(Σr

g)

is a constant different from zero, Zr
t = ∅ and it has zero Lebesgue measure. Similarly, when

Mts
−1
t (st(δt(Γ

0 +gt(Σ
0
g)); Σ0

F ); Σr
F )−Γr−gt(Σr

g) is not a constant, according to Mityagin (2015),
Zr
t has also zero Lebesgue measure.37 This completes the proof.

8.10 Price-Setting Models Consistent with Assumption 4

Here we show that Assumption 4 is consistent with commonly employed pure components
pricing models with any profile of demand synergies (substitutability and/or complementarity).

To simplify notation, in this Appendix we drop the market index t. Denote by Jf the
collection of products owned by firm f and by J−f the set of products owned by the other
firms, where J = Jf ∪ J−f = {1, ..., J} is the collection of all products available in the market.
Let cj denote the constant marginal cost of product j ∈ J, pf = (pj)j∈Jf the vector of prices
chosen by firm f for the products it owns, and p−f = (pk)k∈J−f the vector of prices chosen by
the other firms. With pure components pricing, the price of a bundle b is given by the sum of
the prices of its components pb =

∑
j∈b pj, where each pj is chosen by the firm that owns it.

Then, the profit function of firm f takes the following form:

πf (pf , p−f ) =
∑
j∈f

sj.(pJ)(pj − cj), (50)

where sj.(pJ) =
∑

b:b3j sb(pJ) is the product-level market share function of product j and
pJ = (p1, ..., pJ). Denote the ownership matrix Ω = (ajj′)j,j′=1,...,J where ajj′ = 1 if j and j′ are
owned by the same firm and 0 otherwise. Under complete information, the necessary first-order
conditions for a Bertrand-Nash equilibrium in pure components are:[

∂sJ.
∂pJ
� Ω

]
(pJ − cJ) + sJ.(pJ) = 0, (51)

where� denotes the Hadamard product, or element-by-element multiplication, sJ. = (sj.(pJ))j∈J

is the vector of product-level market share functions, pJ = (pj)j∈J, and cJ = (cj)j∈J. Given
different configurations of the ownership matrix, (51) specialize to different market structures

37More generally, the zero set of a non-constant real analytic function defined on a P -dimensional domain
can be written as the union of j-dimensional sub-manifolds, with j ranging from 0 to P − 1. As a consequence,
the zero set has zero Lebesgue measure. For details, see the second statement of Theorem 6.3.3 (Lojasiewicz’s
Structure Theorem for Varieties) from Krantz and Parks (2002).
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such as monopoly, duopoly, or oligopoly.
The identifiability of cJ is determined by the invertibility of the matrix ∂sJ.

∂pJ
� Ω. As long

as ∂sJ.
∂pJ
� Ω is invertible, we obtain:

cJ = pJ +

[
∂sJ.
∂pJ
� Ω

]−1

sJ.(pJ).

We now show that for any ownership matrix, ∂sJ.
∂pJ
�Ω is invertible. Let p = (pJ, (pb)b∈C2) denote

the vector of prices for all single products and bundles in the choice set. Moreover, we assume
that pj enters linearly in uij = δj + µij(βi) with individual-specific coefficient αi < 0, which is
part of the vector of random coefficients βi. Then, by using the notation M1

t introduced prior
to Theorem 3, we can write:

∂sJ.
∂pJ

=

∫
[I M1T

t ]
∂si(βi)

∂pJ
dF (βi)

=

∫
αi[I -M1T

t ]
∂si(βi)

∂ui
[I -M1T

t ]TdF (βi),

(52)

where ui = (δb + µib(βi))b∈C1 . As shown in the proof of Lemma 1 (see Appendix 8.2), ∂si(βi)
∂ui

is positive-definite for any βi. Moreover, [I -M1T
t ] is of full row rank and therefore [I -M1T

t ]T

is of full column rank. Consequently, [I -M1T
t ]∂si(βi)

∂ui
[I -M1T

t ]T is positive-definite for any βi.
Because αi < 0, ∂sJ.

∂pJ
is negative-definite. Note that Ω is a symmetric block diagonal matrix that

contains only 1’s and 0’s. Then, ∂sJ.
∂pJ
�Ω is also block diagonal. Because each block is a principal

sub-matrix of ∂sJ.
∂pJ

, these blocks are also negative-definite. Then, ∂sJ.
∂pJ
� Ω is negative-definite

and thus invertible.

8.11 Proof of Corollary 2

Take Σ = Σr and Γ = Γr. Because st(δ′t(Γr + gt(Γ
r
g)); p

′
tJt
,Σr

F ) is real analytic with respect
to (δ′tJt , p

′
tJt

), then the inverse market share function, s−1
t (s′t; p

′
tJt
,Σr

F ), is real analytic with
respect to (s′t, p

′
tJt

). Consequently, Mts
−1
t (s′t; p

′
tJt
,Σr

F )−Γr−gt(Σr
g) is real analytic with respect

to (s′t, p
′
tJt

). Moreover, for Σ = Σ0 and Γ = Γ0, st(δ′t(Γ0 + gt(Γ
0
g)); p

′
tJt
,Σ0

F ) is real analytic with
respect to (δ′tJt , p

′
tJt

). Then, the compositionMts
−1
t (st(δ

′
t(Γ

0 +gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F )−Γr−

gt(Σ
r
g) is real analytic with respect to (δ′tJt , p

′
tJt

).
We now prove Corollary 2 by contradiction. Suppose that Assumption 5 does not hold.

Then, for some r = 1, ..., R and t ∈ T \T0, there exists a set P̃t ⊂ Pt such that P̃t has positive
Lebesgue measure and

Γr + gt(Σ
r
g) = Mts

−1
t (st(δ

′
t(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F )
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for any ξ′tJt ∈ RJt . We then obtain that the zero set of the real analytic functionMts
−1
t (st(δ

′
t(Γ

0+

gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F )− Γr − gt(Σr

g) is at least P̃t×RJt . Because the Lebesgue measure of
P̃t is positive, then the Lebesgue measure of P̃t × RJt is also positive. According to Mityagin
(2015), Mts

−1
t (st(δ

′
t(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F )−Γr− gt(Σr

g) is then constant and equal to
zero on Pt × RJt . This contradicts ΞID

r being non-empty. This completes the proof.

8.12 Proof of Theorem 4

Here we rely on the same notation for Mt as introduced prior to Theorem 3. Mt is a matrix of
dimension Ct2×Ct1. Remember that Ct2 is the number of bundles and Ct1 the number of inside
options (bundles plus single products). Mt is made of two sub-matrices: Mt = [M1

t ,M
2
t ]. M1

t is
a matrix of −1’s and 0’s of dimension Ct2×Jt, where the columns represent individual products
and the rows represent bundles. Each row of M1

i identifies with −1’s the product composition
of the corresponding bundle. M2

t is instead an identity matrix I of dimension Ct2 × Ct2, with
the rows corresponding to bundles.

The proof of the first statement is similar to that of Theorem 3. On the one hand, when
(ξ0
tJt
, c0
tJt

)t∈T\T0 ∈ ΞID = ∩Rr=1ΞID
r , for any r = 1, .., R there exists some market t ∈ T \T0 such

that Mts
−1
t (st; ptJt ,Σ

r
F ) 6= Γr + gt(Σ

r
g) and therefore m(Σr;T) 6= 0 for r = 1, ..., R.

Remember that the set of solutions to m(Σ′;T0) = 0 in ΘΣ is S = {Σr : r = 0, ..., R}.
Consequently, the set of solutions to m(Σ′;T) = 0 is a subset of S. Given that m(Σr;T) 6= 0

for r = 1, ..., R, and thatm(Σ0;T) = 0, Σ′ = Σ0 is the unique solution to system (9) in ΘΣ. The
remaining parameters of model (3) can then be uniquely pinned down by the demand inverse
from Lemma 1 and model (3) is globally identified.

To prove the second statement, we first note that

×t∈T\T0 [Dtξ ×Dtc] \ ΞID = ∪Rr=1

[
×t∈T\T0 [Dtξ ×Dtc] \ ΞID

r

]
.

It is then sufficient to show that the Lebesgue measure of ×t∈T\T0 [Dtξ×Dtc]\ΞID
r is zero. Note

that

×t∈T\T0 [Dtξ ×Dtc] \ ΞID
r = {(ξtJt , ctJt)t∈T\T0 :

for any t ∈ T \T0, Mts
−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) = Γr + gt(Σ

r
g)

for some ptJt ∈ ptJt(ξtJt , ctJt)}
= ×t∈T\T0{(ξtJt , ctJt) : Γr + gt(Σ

r
g) ∈Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt(ξtJt , ctJt),Σ

0
F ); ptJt(ξtJt , ctJt),Σ

r
F )

= ×t∈T\T0Z
+r
t ,

where Z+r
t is the zero set of (ξtJt , ctJt) such that Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F )−

Γr − gt(Σ
r
g) = 0 for some ptJt ∈ ptJt(ξtJt , ctJt). It then suffices to show that there exists a

t ∈ T \T0 such that the Lebesgue measure of Z+r
t is zero.
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The Lebesgue measure of Z+r
t in Dtξ ×Dtc is

me(Z+r
t ) =

∫
Dtξ×Dtc

1{Z+r
t }d(ctJt , ξtJt)

=

∫
Dtξ×Dtc

1{(ξtJt , ctJt) : Γr + gt(Σ
r
g) ∈Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt(ξtJt , ctJt),Σ

0
F ); ptJt(ξtJt , ctJt),Σ

r
F )}d(ξtJt , ctJt),

where 1{·} denotes the indicator function. Define Φ : (ξtJt , ptJt) → (ξtJt , φ(ξtJt , ptJt)). Ac-
cording to Assumption 4, Φ is a C1 mapping from (ξtJt , ptJt) ∈ {(ξ′tJt , p

′
tJt

) : ξ′tJt ∈ Dtξ, p
′
tJt
∈

Pt(ξtJt)} to (ξtJt , ctJt) ∈ Dtξ ×Dtc and onto. Let Card[Φ−1](ξtJt , ctJt) denote the cardinality of
the inverse image of Φ at (ξtJt , ctJt). Note that Card[Φ−1](ξtJt , ctJt) is equal to the number of
Nash equilibria of the pricing game at (ξtJt , ctJt) and therefore belongs to ∈ N+∪{∞} according
to Assumption 4. Then, by Theorem 1.16-2 of Ciarlet (2013) and Fubini’s Theorem, we obtain:

me(Z+r
t ) ≤

∫
Dtξ×Dtc

1{(ξtJt , ctJt) : Γr + gt(Σ
r
g) ∈Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt(ξtJt , ctJt),Σ

0
F ); ptJt(ξtJt , ctJt),Σ

r
F )}Card[Φ−1](ξtJt , ctJt)d(ξtJt , ctJt)

=

∫
{(ξ′tJt ,p

′
tJt

):ξ′tJt
∈Dtξ,p′tJt∈Pt(ξtJt )}

1{(ξtJt , ptJt) : Γr + gt(Σ
r
g) = Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F )}

∣∣∣∣ ∂ΦtJt

∂(ξtJt , ptJt)
(ξtJt , ptJt)

∣∣∣∣ d(ξtJt , ptJt)

=

∫
Pt

[∫
Pt(ξtJt )3ptJt

1{ξtJt : Γr + gt(Σ
r
g) = Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F )}

∣∣∣∣∂φtJt∂ptJt
(ξtJt , ptJt)

∣∣∣∣ dξtJt
]
dptJt .

Suppose that Assumption 5 holds. Denote by ∆tJt = (∆tj(xtj, ptj))j∈Jt . Because δtJt(∆tJt , ξtJt) =

∆tJt + ξtJt , given ptJt (and therefore ∆tJt) and by applying Theorem 2, we obtain that the mar-
ket share function st(δt(Γ

′ + gt(Σ
′
g)); ptJt ,Σ

′
F ) is also real analytic with respect to ξtJt ∈ RJt .

Then, given ptJt , by the Inverse Function Theorem for real analytic functions, s−1
t (st(δt(Γ

0 +

gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) is real analytic with respect to ξtJt , and therefore Mts

−1
t (st(δt(Γ

0 +

gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) − Γr − gt(Σ

r
g) is real analytic with respect to ξtJt . For each r =

1, ..., R, we focus on the market t ∈ T \ T0 that satisfies Assumption 5: for any ptJt ∈ Pt,
there exists ξtJt ∈ Dtξ such that Mts

−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) 6= Γr + gt(Σ

r
g),

i.e., Mts
−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) − Γr − gt(Σr

g) is not always equal to zero in
Dtξ. Similar to the proof of the second statement of Theorem 3, {ξtJt : Mts

−1
t (st(δt(Γ

0 +

gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) = Γr + gt(Σ

r
g)} has thus zero Lebesgue measure in Dtξ and

1{ξtJt : Mts
−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) = Γr + gt(Σ

r
g)}
∣∣∣∂φtJt∂ptJt

(ptJt ; ξtJt)
∣∣∣ = 0 almost everywhere.

It then follows that

∫
Pt(ξtJt )3ptJt

1{ξtJt : Mts
−1
t (st(δt(Γ

0 + gt(Σ
0
g)); ptJt ,Σ

0
F ); ptJt ,Σ

r
F ) = Γr + gt(Σ

r
g)}
∣∣∣ ∂ctJt∂ptJt

(ptJt ; ξtJt ,Γ
0,Σ0)

∣∣∣ dξtJt = 0,

and finally me(Z+r
t ) ≤ 0. Consequently, me(Z+r

t ) = 0. This completes the proof.
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8.13 Proof of Theorem 5

We first introduce some notation. Denote the collection of demand synergies that can ratio-
nalize the observed product-level market shares stJt. in market t by Θ̄t

Γ(Σ′) = {Γ′ : ∃δ′tJt ∈
RJt such that stJt.(δ′tJt ; Γ′,Σ′) = stJt.} and across all T markets by Θ̄Γ = ∪Σ′∈ΘΣ

∩Tt=1 Θ̄t
Γ(Σ′).

Define also Θ̄Σ = {Σ′ : ∩Tt=1Θ̄t
Γ(Σ′) 6= ∅}. Θ̄t

Γ and Θ̄Σ collect the values of Γ′ and of Σ′ that
can rationalize the observed product-level market shares. When Σ′ /∈ Θ̄Σ or Γ′ /∈ ∩Tt=1Θ̄t

Γ(Σ′),
then there exists no δ′tJt such that stJt.(δ′tJt ; Γ′,Σ′) = stJt. for any t = 1, ..., T (i.e., the demand
inverse is not defined at (Γ′,Σ′)). The remainder of the proof focuses on the case of Σ′ ∈ Θ̄Σ and
Γ′ ∈ ∩Tt=1Θ̄t

Γ(Σ′) (i.e., the demand inverse is defined at (Γ′,Σ′)), and in particular on showing
the uniqueness of the corresponding δ′tJt .

We rely on the same notation for Mt as introduced prior to Theorem 3 and in the proof of
Theorem 4. Note that Mt is of full row rank and therefore MT

t is of full column rank. Without
loss of generality, we prove Theorem 5 for market t.

Denote by 1 a vector of 1’s and define St2(stJt.) = {s′tCt2 : s′tCt2 = (s′tb)b∈Ct2 , s
′
tb >

0,−M1T
t s′tCt2 < stJt., (M

1T
t s′tCt2 + stJt., s

′
tCt2

)T1 < 1}, as the collection of admissible vectors
of market shares of bundles consistent with the observed product-level market shares, stJt..
Given any s′tCt2 ∈ St2(stJt.) and observed product-level market shares stJt., we can construct
an admissible vector of market shares s′t = ((s′tj)j∈Jt , s

′
tCt2

), where s′tj = stj. −
∑

b∈Ct2:j∈b s
′
tb.

Because of Lemma 1, given Σ′ we can invert s′t and obtain the corresponding δ′t ∈ RCt1 :

δ′t = ((δ′tj)j∈Jt , (δ
′
tb)b∈Ct2)T

= s−1
t (s′t; Σ′F )

= s−1
t ((stj. −

∑
b∈Ct2:j∈b

s′tb)j∈Jt , s
′
tCt2

; Σ′F ), where

δ′tj = s−1
tj ((stj. −

∑
b∈Ct2:j∈b

s′tb)j∈Jt , s
′
tCt2

; Σ′F ),

δ′tb = s−1
tb ((stj. −

∑
b∈Ct2:j∈b

s′tb)j∈Jt , s
′
tCt2

; Σ′F ).

(53)

Using the matrix Mt, we can recover an admissible Γ′t from δ′t by:

Γ′t + gt(Σ
′
g) = Mtδ

′
t,

Γ′t = Mtδ
′
t − gt(Σ′g)

= Mts
−1
t ((stj. −

∑
b∈Ct2:j∈b

s′tb)j∈Jt , s
′
tCt2

; Σ′F )− gt(Σ′g)

= Mts
−1
t (MT

t s
′
tCt2

+ (sTtJt., 0, ..., 0)T; Σ′F )− gt(Σ′g).

(54)

69



Consequently, for any s′tCt2 there exists a Γ′t = Γt(s
′
tCt2

; stJt.,Σ
′) such that (53) holds. We now

compute from (54) the derivative of Γ′t = Γt(s
′
tCt2

; stJt.,Σ
′) with respect to s′tCt2 :

dΓt
ds′tCt2

= Mt
∂s−1

t

∂s′t
(MT

t s
′
tCt2

+ (sTtJt., 0, ..., 0)T; Σ′F )MT
t

= Mt

[
∂st
∂δ′t

(δ′t; Σ′F )

]−1

MT
t .

(55)

Because ∂st
∂δ′t

(δ′t; Σ′F ) is positive-definite and MT
t is of full column rank, dΓt

ds′tCt2
is also positive-

definite and therefore positive quasi-definite for any s′tCt2 ∈ St2(stJt.).38 Note that St2(stJt.) is
convex. According to Theorem 6 by Gale and Nikaido (1965), p. 88, Γ′t = Γt(s

′
tCt2

; stJt.,Σ
′)

is globally invertible as a function of s′tCt2 ∈ St2(stJt.) and therefore we can express s′tCt2
as a function of Γ′t ∈ Θ̄t

Γ, given stJt. and Σ′: s′tCt2 = s̃tCt2(Γ′t; stJt.,Σ
′). Then, by plugging

s′tCt2 = s̃tCt2(Γ′; stJt.,Σ
′) into (53), we can express each δ′tj from δ′tJt = (δ′tj)j∈Jt as a function of

the observed product-level market shares stJt.:

δ′tj = s−1
tj ((stj. −

∑
b∈Ct2:j∈b

s′tb)j∈Jt , s
′
tCt2

; Σ′F )

= s−1
tj ((stj. −

∑
b∈Ct2:j∈b

s̃tb(Γ′; stJt.,Σ
′))j∈Jt , s̃tCt2(Γ′; stJt.,Σ

′); Σ′F )

= s−1
tj. (stJt.; Γ′,Σ′)

and determine the remaining δ′tb for each b ∈ Ct2 by δ′tb =
∑

j∈b δ
′
tj + Γ′b + gtb(xtb, ptb; Σ′g),

so that stb(δ′t(Γ
′ + gt(Σ

′
g)); Σ′F ) = s′tb for each b ∈ Ct1. Then, for any j ∈ Jt, we obtain

stj.(δ
′
tJt

; Γ′,Σ′) = stj. and finally:

stJt.(δ
′
tJt ; Γ′,Σ′) = stJt..

This shows existence. To prove uniqueness, suppose that there exists another δ′′tJt 6= δ′tJt such
that stJt.(δ′′tJt ; Γ′,Σ′) = stJt.. Then, δ′′t 6= δ′t. Because Σ′ is given, according to Lemma 1,
st(δ

′′
t (Γ′ + gt(Σ

′
g)); Σ′F ) 6= st(δ

′
t(Γ
′ + gt(Σ

′
g)); Σ′F ). Moreover, because also stJt. is given, then

there must exist some b ∈ Ct2 for which stb(δ′′t (Γ′ + gt(Σ
′
g)); Σ′F ) 6= stb(δ′t(Γ

′ + gt(Σ
′
g)); Σ′F ).

This contradicts s̃tCt2(Γ′; stJt.,Σ
′) being a function of Γ′.

8.14 Proof of Theorem 6

We start by proving a useful Lemma. Denote the log-likelihood function evaluated at the
market shares observed without sampling error by:

38A square matrix B is positive quasi-definite if 1
2 (B +BT) is positive-definite.
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`(δ′1J1
, ..., δ′TJT ,Γ

′,Σ′) =
T∑
t=1

∑
b∈Ct

stb log stb(δ′t(Γ
′ + gt(Σ

′
g)); Σ′F ). (56)

Lemma 6. If Assumptions 1–3 hold and the true (δtJt)t∈T\T0 ∈ ∆ID, then the true (δ1J1 , ..., δTJT ,Γ,Σ)

is the unique maximizer of `(δ′1J1
, ..., δ′TJT ,Γ

′,Σ′) in Θ.

Proof. We first show that `(δ′1J1
, ..., δ′IJT ,Γ

′,Σ′) is maximized at the true (δ1J1 , ..., δIJT ,Γ,Σ).
Note that for any t = 1, ..., T and b ∈ Ct, stb = stb(δt(Γ+gt(Σg)); ΣF ). Then, by using Jensen’s
inequality, for any (δ′1J1

, ..., δ′IJT ,Γ
′,Σ′) we have:

`(δ′1J1
, ..., δ′TJT ,Γ

′,Σ′)− `(δ1J1 , ..., δTJT ,Γ,Σ) =
T∑
t=1

∑
b∈Ct

stb log
stb(δ′t(Γ

′ + gt(Σ
′
g)); Σ′F )

stb(δt(Γ + gt(Σg)); ΣF )

≤
T∑
t=1

log
∑
b∈Ct

stb
stb(δ′t(Γ

′ + gt(Σ
′
g)); Σ′F )

stb(δt(Γ + gt(Σg)); ΣF )

≤ 0.

(57)

We now show the uniqueness by contradiction. Suppose that there exists a (δ̃1J1 , ..., δ̃tJT , Γ̃, Σ̃) 6=
(δ1J1 , ..., δTJT ,Γ,Σ) such that (δ̃1J1 , ..., δ̃TJT , Γ̃, Σ̃) is also a maximizer of `(δ′1J1

, ..., δ′IJT ,Γ
′,Σ′).

According to Jensen’s inequality (57), this is equivalent to having stb(δ̃t(Γ̃ + gt(Σ̃g)); Σ̃F ) = stb

for each t = 1, ..., T and b ∈ Ct1. As a consequence, we have mb(Σ̃;T) = 0 and hence
m(Σ̃;T) = 0 in addition to m(Σ;T) = 0. Note that Σ̃ 6= Σ. Otherwise, by Lemma 1, δ̃tJt = δtJt
and Γ̃ = Γ and this would be inconsistent with (δ̃1J1 , ..., δ̃tJT , Γ̃, Σ̃) 6= (δ1J1 , ..., δTJT ,Γ,Σ).
However, because the true (δtJt)t∈T\T0 ∈ ∆ID, Theorem 3 rules out the possibility of having
any other Σ̃ different from Σ for which system (9) holds, giving rise to a contradiction.

We assume the following regularity conditions.

1. θ is an interior point of Θ;

2. gt(Σ′g) is twice continuously differentiable with respect to Σ′g, and the market share func-
tion stb(δ′t; Σ′F ), t = 1, ..., T and b ∈ Ct, is twice continuously differentiable with respect
to (δ′t,Σ

′
F );

3.
√
I(ŝt − st)

d−→N(0,Ωt) independently for t = 1, ..., T , where Ωt is positive-definite;

4.
∑T

t=1 GtΩtG
T
t is positive-definite, where Gt =

([
∂ log stb
∂θ′

− ∂ log st0
∂θ′

] ∣∣
θ′=θ

)
b∈Ct1

.

5. ∂2`(θ′)
∂θ′2

∣∣
θ′=θ

is non-singular.

71



Condition 3 is compatible with cases in which the individuals in market t make independent
purchase decisions. Condition 4 can be obtained when Gt is a full row rank matrix for each
t = 1, ..., T . Define `c(Γ′,Σ′) on the basis of (56):

`c(Γ′,Σ′) = `((δtJt.(stJt.; Γ′,Σ′))Tt=1; Γ′,Σ′).

Throughout the proof, we assume that δtJt.(stJt.; Γ′,Σ′) and δtJt.(ŝtJt.; Γ′,Σ′) exist. As discussed
in the main text, existence can always be verified numerically during estimation. Provided
existence, then Theorem 5 guarantees that δtJt.(·; Γ′,Σ′) is a global bijection. Our proof for
the consistency statement is mainly based on Theorem 2.1 by Newey and McFadden (1994),
according to which we need to verify four conditions.

1. (Γ,Σ) is the unique maximizer of `c(Γ′,Σ′) in ΘΓ × ΘΣ. Given Assumptions 1–3 and
that the true (δtJt)t∈T\T0 ∈ ∆ID, Lemma 6 guarantees that the true (δ1J1 , ..., δTJT ,Γ,Σ) is the
unique maximizer of `(δ′1J1

, ..., δ′TJT ,Γ
′,Σ′) in Θ. Theorem 5 then implies that (Γ,Σ) is the

unique maximizer of `c(Γ′,Σ′) in ΘΓ ×ΘΣ.

2. ΘΓ ×ΘΣ is compact. This is guaranteed by the definition of Θ.

3. `c(Γ′,Σ′) is continuous with respect to (Γ′,Σ′) in ΘΓ ×ΘΣ. According to regularity condi-
tion 2, for any t = 1, ..., T and b ∈ Ct, the market share function stb(δ′t; Σ′F ) is twice contin-
uously differentiable with respect to (δ′t,Σ

′
F ). Remember that θ = (δ1J1 , ..., δIJT ,Γ,Σ). Then,

`(θ′) in (56) is twice continuously differentiable in Θ. Moreover, the inverse market share
function, s−1

t (st; Σ′F ) is continuous with respect to (st,Σ
′
F ), and therefore continuous with re-

spect to ((stb)b∈Ct2 ,Σ
′
F ). In addition, gt(Σ′g) is continuously differentiable with respect to Σ′g.

Then, Γt((stb)b∈Ct2 ,Σ
′), as defined in the proof of Theorem 5, is continuous with respect to

((stb)b∈Ct2 ,Σ
′). By applying the invertibility result from Theorem 5 and the continuous depen-

dence with respect to Σ′, we obtain that δtJt.(stJt.; Γ′,Σ′) is continuous with respect to (Γ′,Σ′).
Combining this with the continuity of `(θ′) in (56), we obtain the desired condition.

4. sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

|`cI(Γ′,Σ′; ŝ1, ..., ŝT )− `c(Γ′,Σ′)| p−→ 0. Note that

sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

|`cI(Γ′,Σ′; ŝ1, ..., ŝT )− `c(Γ′,Σ′)| ≤ sup
θ′∈Θ
|`I(θ′; ŝ1, ..., ŝT )− `(θ′)|

+ sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

|`((δtJt.(ŝtJt.; Γ′,Σ′))Tt=1,Γ
′,Σ′)− `((δtJt.(stJt.; Γ′,Σ′))Tt=1,Γ

′,Σ′)|
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First, we prove that sup
θ′∈Θ
|`I(θ′; ŝ1, ..., ŝT )− `(θ′)| p−→ 0. To see this, note that:

sup
θ′∈Θ
|`I(θ′; ŝ1, ..., ŝT )− `(θ′)|

= sup
θ′∈Θ

∣∣∣∣ T∑
t=1

∑
b∈Ct

ŝtb log stb(δ′t(Γ
′ + gt(Σ

′
g)); Σ′F )−

T∑
t=1

∑
b∈Ct

stb log stb(δ′t(Γ
′ + gt(Σ

′
g)); Σ′F )

∣∣∣∣
≤ sup

θ′∈Θ
t=1,...,T,b∈Ct

| log stb(δ′t(Γ
′ + gt(Σ

′
g)); Σ′F )|

T∑
t=1

∑
b∈Ct

|ŝtb − stb|.

(58)

Because log stb(δ′t(Γ
′+gt(Σ

′
g)); Σ′F ) is continuous in Θ and Θ is compact, log stb(δ′t(Γ

′+gt(Σ
′
g)); Σ′F )

is uniformly bounded in Θ. Moreover, because both the number of markets, T , and Ct are finite,

sup
θ′∈Θ

t=1,...,T,b∈Ct

| log stb(δ′t(Γ
′ + gt(Σ

′
g)); Σ′F )| <∞.

Note that ŝtb
p−→ stb for t = 1, ..., T and b ∈ Ct. Then, the right-hand side of (58) converges to

zero in probability. Consequently, sup
θ′∈Θ
|`I(θ′; ŝ1, ..., ŝT )− `(θ′)| p→ 0.

Second, we prove

sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

|`((δtJt.(ŝtJt.; Γ′,Σ′))Tt=1,Γ
′,Σ′)− `((δtJt.(stJt.; Γ′,Σ′))Tt=1,Γ

′,Σ′)| p→ 0. (59)

Note that for each t, δtJt.(s′tJt.; Γ′,Σ′) is uniformly continuous with respect to (s′tJt.,Γ
′,Σ′) in a

compact set UstJt.
×ΘΓ×ΘΣ, where UstJt.

is a compact neighbourhood of stJt.. Moreover, `(θ′)
is uniformly continuous with respect to θ′ ∈ Θ. Consequently, `((δtJt.(s′tJt.; Γ′,Σ′))Tt=1,Γ

′,Σ′) is
uniformly continuous with respect to ((s′tJt.)

T
t=1,Γ

′,Σ′). Because ŝtJt.
p→ stJt. for t = 1, ..., T , we

obtain (59) and finally proved the desired condition.
According to Theorem 2.1 by Newey and McFadden (1994), the four conditions verified

above guarantee the consistency of (Γ̂, Σ̂). By applying the invertibility result from Theorem 5
and Slutsky’s Theorem, θ̂δ is also consistent. This completes the proof of consistency. The proof
of asymptotic normality is based on Theorem 3.1 by Newey and McFadden (1994), according
to which we need to verify the following six conditions.

1. (Γ̂, Σ̂)
p−→ (Γ,Σ). This has just been shown above.

2. (Γ,Σ) is an interior point of ΘΓ ×ΘΣ. This is guaranteed by regularity condition 1.

3. `cI(Γ
′,Σ′; ŝ1, ..., ŝT ) is twice continuously differentiable in ΘΓ×ΘΣ. According to regularity

condition 2, the market share function stb(δ′t; Σ′F ), t = 1, ..., T and of b ∈ Ct, is twice continu-
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ously differentiable with respect to (δ′t,Σ
′
F ), the inverse market share function s−1

t (s′t; Σ′F ) is thus
twice continuously differentiable with respect to (s′t; Σ′F ). Moreover, gt(Σ′g) is twice continuously
differentiable with respect to Σ′g. As a consequence, by applying the invertibility result from
Theorem 5, we obtain that δtJt.(s′tJt.; Γ′,Σ′) is twice continuously differentiable with respect
to (s′tJt.,Γ

′,Σ′). Because `cI(Γ′,Σ′; ŝ1, ..., ŝT ) is a composition of `I(δtJt ,Γ′,Σ′; ŝ1, ..., ŝT ) and of
δtJt.(s

′
tJt.

; Γ′,Σ′), and both functions are twice continuously differentiable, `cI(Γ′,Σ′; ŝ1, ..., ŝT ) is
also twice continuously differentiable with respect to (Γ′,Σ′).

4.
√
I

∂`cI
∂(Γ′,Σ′)

∣∣
(Γ′,Σ′)=(Γ,Σ)

converges to a centered normal distribution. We can write:

√
I

∂`cI
∂(Γ′,Σ′)

=
√
I

T∑
t=1

∂δtJt.
∂(Γ′,Σ′)

∂`I
∂δtJt

+
∂`I

∂(Γ′,Σ′)

=

[(
∂δtJt.

∂(Γ′,Σ′)

)
t=1,...,T

I

]
√
I
∂`I
∂θ′

(60)

It suffices to prove that
√
I ∂`I
∂θ′

converges to a centered normal distribution at θ′ = θ.
Define `t(θ′) =

∑
b∈Ct stb log stb(δ′t(Γ

′+gt(Σ
′
g)); Σ′F ). Note that `t(θ′) is maximized at θ′ = θ,

for t = 1, ..., T . As a consequence, ∂`t
∂θ′

∣∣
θ′=θ

= 0 for t = 1, ..., T . Then,

√
I
∂`I
∂θ′

∣∣∣∣
θ′=θ

=
√
I

T∑
t=1

∑
b∈Ct

ŝtb
log ∂stb
∂θ′

∣∣∣∣
θ′=θ

=
√
I

T∑
t=1

[∑
b∈Ct

ŝtb
∂ log stb
∂θ′

∣∣∣∣
θ′=θ

− ∂`t

∂θ′

∣∣∣∣
θ′=θ

]

=
√
I

T∑
t=1

[ ∑
b∈Ct1

[ŝtb − stb]
∂ log stb
∂θ′

∣∣∣∣
θ′=θ

+ [ŝt0 − st0]
∂ log st0
∂θ′

∣∣∣∣
θ′=θ

]

=
T∑
t=1

∑
b∈Ct1

√
I [ŝtb − stb]

[
∂ log stb
∂θ′

− ∂ log st0
∂θ′

] ∣∣∣∣
θ′=θ

=
T∑
t=1

([
∂ log stb
∂θ′

− ∂ log st0
∂θ′

] ∣∣∣∣
θ′=θ

)
b∈Ct1

√
I [ŝt − st] .

(61)

where I denotes the identity matrix. According to regularity condition 3,
√
I [ŝt − st]

d−→
N(0,Ωt) independently for t = 1, ..., T . By using Slutsky’s Theorem, we obtain that

√
I ∂`I
∂θ′

∣∣
θ′=θ

d→
N(0,

∑T
t=1GtΩtG

T
t ), where

∑T
t=1GtΩtG

T
t is positive-definite according to regularity condition

4. As a consequence,
√
I

∂`cI
∂(Γ′,Σ′)

∣∣
(Γ′,Σ′)=(Γ,Σ)

converges to a centered normal distribution.
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5. sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

∣∣∣ ∂2`cI
∂(Γ′,Σ′)2 (Γ′,Σ′)−H(Γ′,Σ′)

∣∣∣ p−→ 0, where

H(Γ′,Σ′) =
∂2`((δtJt.(stJt.; Γ′,Σ′))Tt=1,Γ

′,Σ′)

∂(Γ′,Σ′)2

=
T∑
t=1

∑
b∈Ct

stb
∂2 log stb(δt(δtJt.(stJt.; Γ′,Σ′),Γ′ + gt(Σ

′
g)); Σ′F )

∂(Γ′,Σ′)2
,

(62)

where δt(δtJt.(stJt.; Γ′,Σ′),Γ′+gt(Σ
′
g)) = (δtJt.(stJt.; Γ′,Σ′), (

∑
j∈b δtj.(stJt.; Γ′,Σ′)+Γ′b+gtb(Σ′g))b∈Ct2).

Under regularity condition 2, H(Γ′,Σ′) is continuous in ΘΓ ×ΘΣ. Note that, similarly to (58),
we have:

sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

∣∣∣∣ ∂2`cI
∂(Γ′,Σ′)2

(Γ′,Σ′)−H(Γ′,Σ′)

∣∣∣∣
≤

∑
t=1,...,T,b∈Ct

sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

∣∣∣∣∂2 log stb(δt(δtJt.(stJt.; Γ′,Σ′),Γ′ + gt(Σ
′
g)); Σ′F )

∂(Γ′,Σ′)2

∣∣∣∣ |ŝtb − stb|

+
∑

t=1,...,T,b∈Ct

ŝtb sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

∣∣∣∣∣∂2 log
[
stb(δt(δtJt.(stJt.; Γ′,Σ′),Γ′ + gt(Σ

′
g)); Σ′F )− stb(δt(δtJt.(ŝtJt.; Γ′,Σ′),Γ′ + gt(Σ

′
g)); Σ′F )

]
∂(Γ′,Σ′)2

∣∣∣∣∣
(63)

Due to the twice continuous differentiability of stb(δ′t; Σ′) and of δtJt.(stJt.; Γ′,Σ′) in the compact
set ΘΓ ×ΘΣ, for t = 1, ..., T and b ∈ Ct, we have:

sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

∣∣∣∣∂2 log stb(δt(δtJt.(stJt.; Γ′,Σ′),Γ′ + gt(Σ
′
g)); Σ′F )

∂(Γ′,Σ′)2

∣∣∣∣ <∞.
Because ŝt

p−→ st for t = 1, ..., T , then the first part on the right-hand side of (63) converges
to zero in probability. For the second part, note that stb(δ′t(Γ

′ + gt(Σ
′
g)); ΣF ) is twice con-

tinuously differentiable with respect to (δ′Jt ,Γ
′,Σ′) and that δtJt.(s′tJt.; Γ′,Σ′) is twice contin-

uously differentiable with respect to (s′tJt.,Γ
′,Σ′) in a compact set UstJt.

× ΘΓ × ΘΣ, where
UstJt.

is a compact neighbourhood of stJt., for t = 1, ..., T and b ∈ Ct1, we then obtain that
∂2 log stb(δt(δtJt.(stJt.;Γ

′,Σ′),Γ′+gt(Σ′g));Σ′F )

∂(Γ′,Σ′)2 is uniformly continuous in UstJt.
×ΘΓ×ΘΣ. Combining this

with ŝt
p−→ st for t = 1, ..., T , we obtain that the second part on the right-hand side of (63) also

converges to zero in probability. Consequently, sup
(Γ′,Σ′)∈ΘΓ×ΘΣ

∣∣∣ ∂2`cI
∂(Γ′,Σ′)2 (Γ′,Σ′)−H(Γ′,Σ′)

∣∣∣ p−→ 0.
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6. H(Γ,Σ) = ∂2`c(Γ′,Σ′)
∂(Γ′,Σ′)2

∣∣
(Γ′,Σ′)=(Γ,Σ)

is non-singular. Note that

H(Γ′,Σ′) =
∂2`((δtJt.(stJt.; Γ′,Σ′))Tt=1,Γ

′,Σ′)

∂(Γ′,Σ′)2

=
T∑
t=1

[
∂δtJt.

∂(Γ′,Σ′)

∂2`

∂δ
′2
tJt

(
∂δtJt.

∂(Γ′,Σ′)

)T

+
∂δtJt.

∂(Γ′,Σ′)

∂2`

∂δ′tJt∂(Γ′,Σ′)

]

+
T∑
t=1

∑
j∈Jt

∂`

∂δ′tj

∂2δtj.
∂(Γ′,Σ′)2

+
T∑
t=1

∂δtJt.
∂(Γ′,Σ′)

∂2`

∂(Γ′,Σ′)∂δ′tJt
+

∂2`

∂(Γ′,Σ′)2
.

At (Γ′,Σ′) = (Γ,Σ), δ′tJt = δtJt.(stJt.; Γ,Σ) = δtJt and ∂`
∂δ′tJt

= 0. Then,

H(Γ,Σ) =

[(
∂δtJt.

∂(Γ′,Σ′)

)
t=1,...,T

I

][
∂2`(θ′)

∂θ′2

]
θ′=θ

[(
∂δtJt.

∂(Γ′,Σ′)

)
t=1,...,T

I

]T
,

Because
[(

∂δtJt.
∂(Γ′,Σ′)

)
t=1,...,T

I

]
is of full row rank and

[
∂2`(θ′)
∂θ′2

]
θ′=θ

is non-singular according to

regularity condition 5, H(Γ,Σ) is therefore non-singular.
All the six conditions of Theorem 3.1 by Newey and McFadden (1994) are satisfied and

there exists W2 such that
√
I[(Γ̂, Σ̂)− (Γ,Σ)]

d−→N(0,W2). By applying the invertibility result
from Theorem 5, we have:

√
I(δ̂tJt − δtJt) =

√
I(δtJt.(ŝtJt., Γ̂, Σ̂)− δtJt.(ŝtJt.,Γ,Σ) + δtJt.(ŝtJt.,Γ,Σ)− δtJt.(stJt.,Γ,Σ))

=
∂δtJt.(ŝtJt.; Γ′,Σ′)

∂(Γ′,Σ′)

∣∣∣
(Γ′,Σ′)=(Γ̃,Σ̃)

√
I[(Γ̂, Σ̂)− (Γ,Σ)]

+
∂δtJt.(s

′
tJt.

; Γ,Σ)

∂s′tJt.

∣∣∣
s′tJt.

=s̃tJt.

√
I(ŝtJt. − stJt.).

Using the following Taylor expansion of ∂`cI
∂(Γ′,Σ′)

around (Γ,Σ):

0 =
∂`cI

∂(Γ′,Σ′)

∣∣∣
(Γ′,Σ′)=(Γ̂,Σ̂)

=
∂`cI

∂(Γ′,Σ′)

∣∣∣
(Γ′,Σ′)=(Γ,Σ)

+
∂2`cI

∂(Γ′,Σ′)2

∣∣∣
(Γ′,Σ′)=(Γ̃,Σ̃)

[(Γ̂, Σ̂)− (Γ,Σ)],
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we obtain

√
I[(Γ̂, Σ̂)− (Γ,Σ)] = −

[
∂2`cI

∂(Γ′,Σ′)2

∣∣∣
(Γ′,Σ′)=(Γ̃,Σ̃)

]−1√
I

∂`cI
∂(Γ′,Σ′)

∣∣∣
(Γ′,Σ′)=(Γ,Σ)

= −
[

∂2`cI
∂(Γ′,Σ′)2

∣∣∣
(Γ′,Σ′)=(Γ̃,Σ̃)

]−1

[(
∂δtJt.

∂(Γ′,Σ′)

)
t=1,...,T

I

]
T∑
t=1

([
∂ log stb
∂θ′

− ∂ log st0
∂θ′

] ∣∣∣∣
θ′=θ

)
b∈Ct1

√
I [ŝt − st] .

Since
√
I(ŝt− st) converges to a centered normal distribution, by using Slutsky’s Theorem and

the consistency of δ̂tJt and (Γ̂, Σ̂), we conclude that
√
I(δ̂tJt − δtJt) converges to a centered

normal distribution. This completes the proof.

8.15 Appendix Tables

Table 7: RTE Cereal Brands and Market Shares

RTE Cereal Brands Average Market Shares
General Mills Fiber/Whole Grain 34.99%

Kellogg’s Regular 8.46%
Fiber/Whole Grain 17.30%
Added Sugar 4.45%

Quaker Regular 1.42%
Fiber/Whole Grain 9.09%
Added Sugar 0.76%

Post Regular 0.04%
Fiber/Whole Grain 8.31%
Added Sugar 0.69%

Private Labels Regular 3.21%
Fiber/Whole Grain 3.12%
Added Sugar 2.01%

Small Producers Regular 0.14%
Fiber/Whole Grain 4.30%
Added Sugar 1.71%

Notes: The Table lists the 16 RTE cereal brands obtained by aggregating UPCs as
described in the text. For each brand, we report the average market share across the
83256 shopping trips with some RTE cereal purchases. Market shares are computed
over the shopping trips observed in each store-week combination.
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Some Intuition about Identification

In this Appendix, we illustrate that even simple versions of model (3) raise non-trivial identi-
fication issues. First, we show that without further restrictions on Γt, model (3) can hardly be
identified. Second, we discuss three examples that highlight Gentzkow (2007)’s insight: when
Γt = Γ, the availability of purchase data for several markets helps identification.

Suppose there are only two products in each market t, Jt = {1, 2}. The indirect utility of
individuals in market t by choosing b ∈ {0, 1, 2, (1, 2)} is:39

Uit0 = εit0,

Uit1 = δt1 + µit1 + εit1,

Uit2 = δt2 + µit2 + εit2,

Uit(1,2) = δt1 + δt2 + µit1 + µit2 + Γt + ζit(1,2) + εit(1,2),

(64)

where the individual-specific demand synergy is Γit(1,2) = Γt + ζit(1,2), the vector of random
coefficients βit = (µit1, µit2, ζit(1,2)) is distributed according to F (βit; ΣF ), ΣF = (σ, r), and εitb
is i.i.d. Gumbel. Suppose that the econometrician observes without error the market shares stb
of each b ∈ {0, 1, 2, (1, 2)} for each market t = 1, ..., T . For any given observed market shares,
st = (st1, st2, st(1,2)), we consider the model to be identified when the true structural parameters
(δt1, δt2,Γt) and (σ, r) are the unique solution to the following system:

st(δ
′
t1, δ

′
t2, δ

′
t(1,2)(Γ

′
t);σ

′, r′) = st

subject to δ′t(1,2)(Γ
′
t)− δ′t1 − δ′t2 = Γ′t

(65)

for t = 1, ..., T . Note that, because of the constraint δ′t(1,2)(Γ
′
t) = δ′t1 + δ′t2 + Γ′t, knowledge

of (δ′t1, δ
′
t2,Γ

′
t) is enough to pin down the t-specific average utility of bundle (1, 2), δ′t(1,2)(Γ

′
t).

Even in this simple example, a formal discussion of identification on the basis of system (65)
would require to deal with cumbersome details, and these may prevent one from seeing the
main mechanism at work. We then investigate the behaviour of a linearized version of system

1University of Bristol and CEPR (alessandro.iaria@bristol.ac.uk) and CREST (ao.wang@ensae.fr).
39Option b = 0 corresponds to the choice of not purchasing any product, the outside option.
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(65) around the true ((δt(Γt))
T
t=1, σ, r). In the main text, we then show how the intuition from

the linearized system extends to the general version of the model.
We linearize system (65) around the true ((δt(Γt))

T
t=1, σ, r):40

δ′t(Γ
′
t) = δt(Γt) +

∂s−1
t

∂(σ′, r′)

∣∣∣∣
(σ′,r′)=(σ,r)

(σ′ − σ, r′ − r)T

subject to δ′t(1,2)(Γ
′
t)− δ′t1 − δ′t2 = Γ′t

(66)

for t = 1, ..., T , where we denote transposition by T. Define M = (−1,−1, 1) and Mδ′t(Γ
′
t) =

δ′t(1,2)(Γ
′
t) − δ′t1 − δ′t2. Then, by multiplying the first line of (66) by M and by plugging in the

constraint, one obtains:

Γ′t = Γt +M
∂s−1

t

∂(σ′, r′)

∣∣∣∣
(σ′,r′)=(σ,r)

(σ′ − σ, r′ − r)T (67)

for t = 1, ..., T . System (67) has T equations in T + 2 unknowns, Γ′t for t = 1, ..., T and (σ′, r′).
The system is under-determined and (66) does not have a unique solution. One way to reduce
the dimensionality of (67) is to add restrictions on Γt. Building on Gentzkow (2007)’s insight,
we consider the case of Γt = Γ for t = 1, ..., T :

Γ′ = Γ +M
∂s−1

t

∂(σ′, r′)

∣∣∣∣
(σ′,r′)=(σ,r)

(σ′ − σ, r′ − r)T. (68)

Note that because Γ′ and Γ in (68) are no longer market specific, system (68) has T equations in
only three unknowns, Γ′ and (σ′, r′). By taking market 1 as a reference, one can then difference
out Γ′ and Γ, and the admissible (σ′, r′) candidates are characterized by the following linear
system:

M

[
∂s−1

t

∂(σ′, r′)
− ∂s−1

1

∂(σ′, r′)

] ∣∣∣∣
(σ′,r′)=(σ,r)

(σ′ − σ, r′ − r)T = 0, (69)

of t = 2, ..., T . If (σ′, r′) is a solution to system (69), then given (σ′, r′) one can determine the
corresponding Γ′ from system (68). In turn, given (σ′, r′) and Γ′, one can obtain the remaining
parameters (δ′t1, δ

′
t2)Tt=1 from system (66). Collectively, these (δ′t(Γ

′))Tt=1 and (σ′, r′) constitute a
solution to system (66).

Example 1. Suppose there are two markets T = 2, t ∈ {a, b}, and that r is known to equal
zero. The true structural parameters are (δa1, δa2, δb1, δb2,Γ, σ) and the observed market shares
are sa = (sa1, sa2, sa(1,2)) and sb = (sb1, sb2, sb(1,2)). Because r is assumed to be known and to

40The basis for this linearization follows from Lemma 1. Lemma 1 shows that the inverse market share
s−1
t (·;σ′, r′) is a function: for any given st and (σ′, r′) in a neighbourhood of (σ, r), there exists a unique δ′t such
that st(δ′t;σ′, r′) = st. In addition, the dependence of δ′t = s−1

t (st;σ
′, r′) on (σ′, r′) is continuously differentiable.
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equal zero, system (69) simplifies to the equation:

M

[
∂s−1

b

∂σ′
− ∂s−1

a

∂σ′

] ∣∣∣∣
(σ′,r′)=(σ,0)

(σ′ − σ) = 0, (70)

where M = (−1,−1, 1). Note that σ′ = σ is the unique solution to equation (70) as long as

M
[
∂s−1
b

∂σ′
− ∂s−1

a

∂σ′

] ∣∣∣∣
(σ′,r′)=(σ,0)

6= 0. This condition can be re-written as:[
∂s−1

a(1,2)

∂σ′
− ∂s−1

a1

∂σ′
− ∂s−1

a2

∂σ′

] ∣∣∣∣
(σ′,r′)=(σ,0)

6=

[
∂s−1

b(1,2)

∂σ′
− ∂s−1

b1

∂σ′
− ∂s−1

b2

∂σ′

] ∣∣∣∣
(σ′,r′)=(σ,0)

, (71)

or equivalently as:

∂Γ(sa;σ
′, r′)

∂σ′

∣∣∣∣
(σ′,r′)=(σ,0)

6= ∂Γ(sb;σ
′, r′)

∂σ′

∣∣∣∣
(σ′,r′)=(σ,0)

. (72)

Condition (72) makes clear that, in order to achieve identification, the derivative of the recovered
demand synergies at the true parameters (σ, 0) should be different when evaluated at sa and at
sb. To the very minimum, condition (72) requires some variation across markets, in the sense
of sa 6= sb. More broadly, given the stark non-linearity of ∂Γ(s′;σ′,r′)

∂σ′

∣∣
(σ′,r′)=(σ,0)

, the model will
typically be identified whenever sa 6= sb.

Example 2. Suppose there are two markets T = 2, t ∈ {a, b}, and that both σ and r are
unknown. The true structural parameters are (δa1, δa2, δb1, δb2,Γ, σ, r) and the observed market
shares are (sa, sb). System (69) simplifies to the following equation:

M

[
∂s−1

b

∂(σ′, r′)
− ∂s−1

a

∂(σ′, r′)

] ∣∣∣∣
(σ′,r′)=(σ,r)

(σ′ − σ, r′ − r)T = 0. (73)

Note that M
[

∂s−1
b

∂(σ′,r′)
− ∂s−1

a

∂(σ′,r′)

] ∣∣∣∣
(σ′,r′)=(σ,r)

is of size 1× 2 and therefore not of full column rank.

It then follows that any solution to equation (73) cannot be unique: in a neighborhood of (σ, r),
there exist infinitely many (σ′, r′)’s such that equation (73) holds.

Figure 1 provides a visual intuition about the lack of identification in this example. On
the left part of the Figure, the true δa(Γ) and δb(Γ) lie on the plane ∆(Γ) depicted in blue,
which represents the set of δ(Γ)’s that satisfy the constraints from system (65) evaluated at
the true demand synergy Γ. These constraints pin down one of the three coordinates of each
δ(Γ) ∈ ∆(Γ), δ(Γ) = (δ1, δ2, δ1 + δ2 + Γ). On the right part of the Figure, the observed market
shares sa and sb lie on the manifoldS in blue, which displays all the possible market share values
consistent with s(·;σ, r) and the true demand synergy Γ. However, because equation (73) has
multiple (σ′, r′) solutions, sa and sb do not uniquely belong to S. As shown in the right part of
the Figure in red, for any solution to equation (73), (σ′, r′), also the corresponding manifold S′
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s(·;σ,r)

s−1(·;σ′,r′)

∆(Γ) : δt(1,2)(Γ)− δt1 − δt2 = Γ

∆′(Γ′) : δ′t(1,2)(Γ
′)− δ′t1 − δ

′
t2 = Γ′

S : s(∆(Γ);σ,r)

S′ : s(∆′(Γ′);σ′,r′)

sa

sb =
(
sb1 sb2 sb(1,2)

)
δa(Γ)

δb(Γ) = (δb1 δb2 δb(1,2)(Γ))

δ′a(Γ′) = s−1(sa;σ′,r′)

δ′b(Γ
′)

∆(Γ)

∆′(Γ′)

δa(Γ) δb(Γ)

δ′a(Γ′) δ′b(Γ
′)

Figure 1: An example of lack of identification

will be consistent with sa and sb. In turn, for given sa and sb, the inverse market share function,
s−1(·;σ′, r′), will map respectively to δ′a(Γ′) and to δ′b(Γ′) ∈ ∆′(Γ′) = s−1(S′;σ′, r′) as depicted
in red on the left part of the Figure. In other words, there exists (δ′a1, δ

′
a2, δ

′
b1, δ

′
b2,Γ

′, σ′, r′) 6=
(δa1, δa2, δb1, δb2,Γ, σ, r) which also solves system (65) and the model is not identified.

Example 3. Imagine a situation similar to Example 2 but with information on one additional
market, so that T = 3, t ∈ {a, b, c}. The structural parameters are (δa1, δa2, δb1, δb2, δc1, δc2,Γ, σ, r)

and the observed market shares are (sa, sb, sc). System (69) simplifies to:

M

[
∂s−1

b

∂(σ′, r′)
− ∂s−1

a

∂(σ′, r′)

]
(σ′,r′)=(σ,r)

(σ′ − σ, r′ − r)T = 0

M

[
∂s−1

c

∂(σ′, r′)
− ∂s−1

a

∂(σ′, r′)

]
(σ′,r′)=(σ,r)

(σ′ − σ, r′ − r)T = 0.

(74)

Note that (σ, r) is the unique solution to linear system (74) and the model is identified as long
as the 2× 2 matrix  M

(
∂s−1
b

∂(σ′,r′)
− ∂s−1

a

∂(σ′,r′)

)
M
(

∂s−1
c

∂(σ′,r′)
− ∂s−1

a

∂(σ′,r′)

) 
(σ′,r′)=(σ,r)

(75)

is of full column rank. In Example 2, the corresponding matrix in equation (73) was of size 1×2

and therefore not of full column rank. By adding one observation, sc, one obtains an additional
moment restriction (i.e., an additional row to the matrix) and consequently the possibility of
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s(·;σ,r)

s−1(·;σ′,r′)

∆(Γ) : δt(1,2)(Γ)− δt1 − δt2 = Γ

∆′(Γ′) : δ′t(1,2)(Γ
′)− δ′t1 − δ

′
t2 = Γ′

S : s(∆(Γ);σ,r)

S′ : s(∆′(Γ′);σ′,r′)

sa

sc

sb =
(
sb1 sb2 sb(1,2)

)
δa(Γ)

δb(Γ) = (δb1 δb2 δb(1,2)(Γ))

δc(Γ)

δ′a(Γ′) = s−1(sa;σ′,r′)

δ̃′c = s−1(sc;σ
′,r′)

δ′b(Γ
′)

∆(Γ)

∆′(Γ′)

δa(Γ) δb(Γ) δc(Γ)

δ′a(Γ′)

δ̃′c = s−1(sc;σ
′,r′)

δ′b(Γ
′)

Figure 2: An example of identification

full column rank of matrix (75). The full column rank condition for the 2 × 2 matrix (75)
generalizes identification condition (72) from Example 1.

Figure 2 provides a visual intuition about how the additional observations on market c, sc,
allow for the possibility of identification in this example (as opposed to the lack of identification
in Example 2). The main content of Figure 2 is similar to that of Figure 1, with the exception
of the additional δc(Γ) ∈ ∆(Γ) and the corresponding sc ∈ S. Differently from Example 2, the
additional sc and the full column rank of (75) guarantee that there is no manifold S′ other than
S = s(∆(Γ);σ, r) that simultaneously contains sa, sb, and sc. In turn, for any (σ′, r′) 6= (σ, r),
the inverse market share function, s−1(·;σ′, r′), will not simultaneously map sa, sb, and sc onto
the corresponding plane ∆′(Γ′). This is depicted in the left and the lower-left parts of Figure 2,
where (in red) δ′a(Γ′) and δ′b(Γ′) lie on ∆′(Γ′), while (in black) δ̃′c does not. As a consequence,
(δa1, δa2, δb1, δb2, δc1, δc2,Γ, σ, r) is the unique solution to system (65) and the model is identified.

These three examples highlight two general points about the identification of model (3).
First, as condition (75) illustrates, the task of recovering the full set of structural parameters
reduces to that of identifying the parameters of the distribution of random coefficients ΣF . This
directly follows from two features of system (65): the invertibility of the market share function
st(·;σ′, r′) and the common average demand synergy parameter Γ across markets in the moment
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restrictions δt(1,2)(Γ)− δt1− δt2 = Γ, t = 1, ..., T .41 Second, as system (69) illustrates, whenever
the dimension of ΣF does not depend on the number of markets T , adding markets to the
dataset will help identification. Identification requires matrix (75) to be of full column rank. In
Example 2 the number of markets (i.e., number of rows plus one) is smaller than the dimension
of ΣF (i.e., number of columns), and identification can hardly be achieved. Differently, by
adding one market to the dataset, matrix (75) in Example 3 has as many rows as columns
and the model can be identified on the basis of the full column rank condition. Similarly, in
Example 1 identification can be achieved because, even though there are only two markets, ΣF

only contains one parameter, σ, rather than two, σ and r.

Global Identification with Mixed Bundling Pricing

Denote by Bt ⊆ Ct2 the set of bundles whose single products all belong to the same firm and
by Bt its cardinality. Note that, by definition, the bundles b ∈ Bt can have ptb 6= 0, while
b′ ∈ Ct2/Bt must have ptb′ = 0. Define the following vectors of prices: the prices of single prod-
ucts and the price surcharges/discounts for theBt bundles by ptJt∪Bt = ((ptj)j∈Jt , (ptb)b∈Bt), the
price surcharges/discounts for all bundles by ptCt2 = ((ptb)b∈Bt , (ptb)b∈Ct2/Bt), the prices of sin-
gle products and the price surcharges/discounts for all bundles by ptCt1 = ((ptj)j∈Jt , (ptb)b∈Ct2).
Let the market share function in t evaluated at prices p′tCt1 = ((p′tj)j∈Jt , (p

′
tb)b∈Ct2) and struc-

tural parameters (δ′tJt ,Γ
′,Σ′) be st(δ

′
t(Γ
′ + gt(p

′
tCt2

; Σ′g)); p
′
tCt1

,Σ′F ), the domain of the cost
shifters ctJt∪Bt = ((ctj)j∈Jt , (ctb)b∈Bt) be Dtc, and remember that δ′tj = ∆′tj(xtj, ptj) + ξ′tj for
each j ∈ Jt. Denote the set of equilibrium prices given ξtJt and ctJt∪Bt by ptJt∪Bt(ξtJt , ctJt∪Bt) ⊆
RJt

+ × RBt , given ξtJt by Pt(ξtJt) = ∪ctJt∪Bt∈DtcptJt∪Bt(ξtJt , ctJt∪Bt), and the grand collection of
all possible equilibrium prices by Pt = ∪ξtJt∈DtξPt(ξtJt). The vector of observed prices is an
equilibrium of the price-setting model, so that ptJt∪Bt ∈ ptJt∪Bt(ξtJt , ctJt∪Bt).

With respect to the case of pure components pricing, our identification argument addresses
the larger number of endogenous prices by requiring the existence of a proportionally larger
number of identifiable cost shifters. In particular, we require the existence of identifiable cost
shifters not only for the single products, but also for the bundles in Bt.

Assumption 7.

• (Cost Shifters at the Bundle-Level) Dtc is open in RJt+Bt for t ∈ T.

• (Identifiability of Cost Shifters) ctJt∪Bt is a C1 function of (ξtJt , ptJt∪Bt) ∈ {(ξ′tJt , p
′
tJt∪Bt) :

ξ′tJt ∈ Dtξ, p
′
tJt∪Bt ∈ Pt(ξtJt)}: ctJt∪Bt = φt(ξtJt , ptJt∪Bt).

While Assumption 7 is more demanding than Assumption 4, we believe it to be realistic in many
situations. As discussed by Chu et al. (2011), mixed bundling pricing is logistically impractical

41Importantly, remember that the demand synergies Γit(1,2) = Γt+ζit(1,2) are heterogeneous across individuals
and that only their averages Γt are constrained to be common across markets, so that Γt = Γ, t = 1, ..., T .
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for firms with more than a few products, because the number of separate bundles and prices to
be monitored and optimized increases exponentially with the number of products. Assumption
7 requires that the act of pricing any bundle of products differently from the sum of the prices of
its components entails an additional cost on the side of the firm: in terms of packaging, shelf and
storage space, data collection, computational power, surveillance at the cashiers, etc. Similar
to Assumption 4 for the case of pure components pricing, it can be shown that Assumption 7
is consistent with commonly employed mixed bundling pricing models: any number of firms
(monopoly, duopoly, or oligopoly) playing a complete information simultaneous Bertrand-Nash
game with any profile of demand synergies (substitutability and/or complementarity), and a
ptJt∪Bt(ξtJt , ctJt∪Bt) of unrestricted cardinality (the price-setting model is allowed to have a
unique, several, or infinitely many equilibria).

Define for each r = 1, ..., R:

Ξ
ID
r = {(ξtJt , ctJt∪Bt)t∈T\T0 ∈ ×t∈T\T0 [Dtξ ×Dtc] : ∃ t ∈ T \T0 such that

Mts
−1
t (st(δt(Γ

0 + gt(ptCt2 ; Σ0
g)); ptCt1 ,Σ

0
F ); ptCt1 ,Σ

r
F ) 6= Γr + gt(ptCt2 ; Σr

g)

for any ptJt∪Bt ∈ ptJt∪Bt(ξtJt , ctJt∪Bt)}

and Ξ
ID

= ∩Rr=1Ξ
ID
r . Similar to Assumption 5 for pure components pricing, we propose the

following technical assumption for the case of mixed bundling:

Assumption 8. For every r = 1, ..., R, there exists t ∈ T \ T0, so that for almost every
ptJt∪Bt ∈ Pt = ∪ξtJt∈DtξPt(ξtJt), there exists ξ′tJt, such that Γr + gt(Σ

r
g) 6= Mts

−1
t (st(δ

′
t(Γ

0 +

gt(ptCt2 ; Σ0
g)); ptCt1 ,Σ

0
F ); ptCt1 ,Σ

r
F ).

As Assumption 5, Assumption 8 also holds given a strengthening of the real analytic property
of mixed logit models:

Corollary 3. Suppose that the following conditions hold:

• For r = 1, ..., R, Ξ
ID
r 6= ∅.

• For any t ∈ T \ T0 and (Γ,Σ), st(δt(Γ + gt(ptCt2 ; Σg)); ptCt1 ,ΣF ) is real analytic with
respect to (δtJt , ptCt1) and gt(ptCt2 ; Σg) is real analytic with respect to ptCt2.

Then, Assumption 8 holds.

Proof. The proof is similar to that of Corollary 2.

Denote by (ξ0
tJt
, c0
tJt∪Bt , p

0
tCt1

) the true value of (ξtJt , ctJt∪Bt , ptCt1) for which
st(δt(Γ

0 + gt(p
0
tCt2

; Σ0
g)); p

0
tCt1

,Σ0
F ) = st.

Theorem 9. Suppose Assumptions 1–3 and 7 hold, and ΘΣ is compact. Then, it follows that:
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• If (ξ0
tJt
, c0
tJt∪Bt)t∈T\T0 ∈ Ξ

ID, then system (9) has a unique solution in ΘΣ and model (3)
is globally identified.

• If Assumption 8 holds, the Lebesgue measure of ×t∈T\T0 [Dtξ ×Dtc] \ Ξ
ID is zero.

Proof. Note that given Assumption 7, for any b ∈ Ct2/Bt, ptb =
∑

j∈b ptj. Denote this
dependence as ptCt2/Bt = ptCt2/Bt(ptJt) and then the market share function can be written as:

st(δ
′
t(Γ
′ + gt(ptCt2/Bt(ptJt), ptBt ; Σ′g)); ptJt∪Bt , ptCt2/Bt(ptJt),Σ

′
F ).

Then, given (Γ′,Σ′), the dependence of st on (ξtJt , ctJt∪Bt) is channeled through that of ptJt∪Bt
on (ξtJt , ctJt∪Bt), as in Theorem 4. To prove Theorem 9, we can then apply the same arguments
as in the proof of Theorem 4 on (ξtJt , ctJt∪Bt).

Supplement Tables
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