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have worse health outcomes. I combine individual-level micro data from DHS surveys for 14 sub-
Saharan African countries with a novel high-resolution dataset on the spatial distribution of ethnic
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the spatial distribution of ethnic groups using an iterative proportional fitting algorithm. Using a time-
varying ethnicity fixed effects framework to curb unobserved heterogeneity across ethnic groups, I
show that children whose mothers are linguistically more distant from their neighbours face higher
mortality rates and are shorter in stature. The pernicious effects of linguistic distance are more
pronounced in areas where malaria is endemic. I argue that higher linguistic distance impedes the
transmission of information. Consistent with this interpretation, mothers who are linguistically more
distant from their neighbours are less likely to receive health-related information. Linguistic
distances driven by splits that occurred thousands of years ago are more relevant than more
recent splits.
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1 Introduction

What are the individual-level consequences of living in ethnically diverse societies? A vast body

of literature has established the role of ethnic heterogeneity in economic performance (Alesina

and Ferrara, 2005). However, the focus has often been on investigating the consequences of ethnic

heterogeneity at an aggregate level (such as country, district, or city) using aggregate indices

of diversity, rather than on an individual level. The most commonly used aggregate indices

include fractionalization (Easterly and Levine, 1997; Alesina et al., 2003), polarization (Esteban

and Ray, 1994, 1999; Montalvo and Reynal-Querol, 2005), and genetic diversity (Ashraf and

Galor, 2013b). For instance, ethnic fractionalization describes the probability that two randomly

selected individuals from a given region belong to two different ethnic groups. All individuals,

regardless of their ethnicity, face the same level of ethnic fractionalization in a region. This

approach disregards the possibility of individual-specific heterogeneity in the consequences of

living in diverse regions. In contrast, this paper focuses on the concept of individual-level ethnic

distance to identify precisely which individuals lose out within a particular region, even if they

face the same level of ethnic diversity in the aggregate. Ethnic distance measures how ethnically

different an individual is from others living in the same region. Unlike aggregate measures, it is

specific to an individual’s ethnicity and geographic location within a region.1

In this study, I combine high-quality individual-level micro data from the Demographic

and Health Surveys (DHS) for fourteen sub-Saharan African countries with a novel dataset

on the spatial distribution of ethnic groups at the level of approximately 1 km × 1 km. The

spatial distribution data are constructed using an iterative proportional fitting algorithm recently

developed by Desmet et al. (2020). Exploiting the individual mother’s location, ethnicity (which

I map to languages from the Ethnologue database) and the spatial distribution of language

groups, I construct individual-level ethnic distances of the mothers from people living around

them. Following a burgeoning trend in the literature, I measure the ethnic distance between

any given pair of ethnic groups by the degree of difference between the languages spoken by

the two groups.2 The distance metric is based on the number of branches shared between any

two languages according to Ethnologue language trees. Instead of taking a stand on what the

1This builds on a well-established macro literature that demonstrates how ethnic distances impede trade and
the diffusion of innovation and technology, thereby negatively affecting economic development (Guiso et al., 2009;
Spolaore and Wacziarg, 2016, 2009).

2See, for instance, Fearon (2003), Desmet et al. (2012), Desmet et al. (2009), Esteban et al. (2012a), Esteban
et al. (2012b) and Laitin and Ramachandran (2016). Since I measure ethnic distance using linguistic distance,
the terms ethnic distance and linguistic distance will be used interchangeably throughout the paper.
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appropriate neighbourhood or region for calculating these distances ought to be, I calculate

the distances by drawing circles of different radii around the mothers. Then, using a time-

varying ethnicity fixed effects framework, I investigate how the mother’s ethnic distance from

her neighbours affects her children’s health outcomes. This allows me to curb the effects of

unobserved heterogeneity across ethnic groups such as ethnic advantage or dominance of certain

groups (Kramon and Posner, 2016; Burgess et al., 2015; Franck and Rainer, 2012), as well as

within-group genetic diversity (Arbatlı et al., 2015).

My primary finding is that the children of mothers who are ethnically distant from their

neighbours experience higher mortality rates. This effect is stronger for individuals who have

never migrated from their village of birth. Considering a circle of 50 km in radius around the

mother, a one SD increase in linguistic distance leads to 14 additional child deaths (approxi-

mately 3.3% SD) for the non-migrant group. The corresponding number for the migrant group

is four additional child deaths (1% SD). Next, using recently constructed disaggregated spatial

data on malaria suitability (Kiszewski et al., 2004; McCord and Anttila-Hughes, 2017), I find

that malaria suitability worsens the pernicious effects of linguistic distance on child mortality.

For the non-migrant sample, a one SD increase in linguistic distance when malaria suitability is

one SD above its average value leads to 34 additional child deaths compared to the 14 additional

child deaths for the average level of malaria suitability.

Following the ethnic networks literature (Larson and Lewis, 2017; Fisman et al., 2017; Pon-

gou, 2009), I hypothesize that information does not flow smoothly across ethnic lines; thus,

individuals who are ethnically distant from their neighbours suffer adverse effects. I uncover

several pieces of evidence in support of this hypothesis. Delving deeper into the heterogeneity

by migration status, I find that linguistically distant individuals who have never migrated are

less likely to have heard of oral rehydration for treating children with diarrhoea, to have received

tetanus injections and iron tablets during pregnancy, to have washed hands before making their

meals, and to know when to seek medical help for their children.

The increased strength of the results for individuals who have never migrated might itself

indicate that individual ethnic distances impose barriers to accessing information related to

health. Individuals who have moved from other places are more likely to have acquired health

information in their previous place of residence, which I cannot observe. However, individuals

who have never moved have acquired knowledge related to health in their current place of

residence. Hence, linguistic distance affects them more profoundly than migrants.3 The more

3Furthermore, individuals with the possibility to move might choose to relocate to more favourable locations.
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profound effects of linguistic distance on child health in malaria-endemic areas might also indicate

an information channel. For instance, it may suggest that linguistically distant mothers do not

have access to best-practice information about preventing or treating malaria, resulting in higher

child mortality among them in malaria-endemic areas. Furthermore, maternal linguistic distance

also has strong and robust negative effects on child height, which is an important marker of

child health.This lends further credence to the hypothesis that linguistic distance impedes the

flow of information, as information is crucial for child height (Thomas et al., 1991).4 Finally,

using survey data collected by Larson and Lewis (2017) as part of an experiment that seeded

information in different Ugandan villages, I provide evidence that information is less likely to

pass on to individuals who are linguistically more distant from their neighbours, even in an

experimental setting.5

I investigate several alternative channels through which linguistic distance from one’s neigh-

bours might be injurious to health. First, using data on access to public goods such as education,

water, and electricity, I investigate whether linguistically distant individuals face more discrim-

ination in accessing these public goods. I find no evidence supporting a direct discrimination

channel. Next, using the share of coethnics living in a mother’s vicinity, I investigate whether

linguistic distance captures the role of kin networks and resource sharing within close-knit eth-

nic communities rather than imposing information barriers. I do not unearth any evidence in

favour of this hypothesis either. Finally, in the spirit of Buckles and Hungerman (2013), I in-

vestigate whether selection can provide an alternative explanation of why linguistic distance

worsens health outcomes, but find no evidence to support this. More specifically, I do not find

any evidence suggesting that women who are more linguistically distant from their neighbours

and have children are different from those who do not have children.

Another possible explanation could be that individuals speaking different languages do not

understand each other. Public health papers have underscored that minorities such as Hispanics

However, I find that migrants generally have higher linguistic distance from their neighbours in addition to
experiencing higher child mortality rates.

4Linguistic distance might impede access to other types of information including information on feeding-
practices, which are crucial for child health (Malhotra, 2012; UNICEF, 2012), but which I cannot measure in the
current study.

5More generally, a large number of papers underscore that easier information flows within ethnic groups is one
of the main reasons behind the ability of ethnic groups to act collectively. For instance, the coethnic advantage
of socially sanctioning other group members (Fearon and Laitin, 1996; Miguel and Gugerty, 2005) draws from
the coethnic informational advantage of learning when a group member defects and also on how to locate the
defectors to mete out punishment. The ease of information dissemination among coethnics also facilitates the
spread of incendiary rumours (Varshney, 2003), viable rebel group formation (Larson and Lewis, 2018), access to
credit (Fafchamps, 2000; Fisman et al., 2017), fidelity decisions (Pongou, 2009), and access to knowledge networks
(Romani, 2004).
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in the US (Singleton and Krause, 2009; Flores, 2006) or asylum seekers in Europe (Bischoff

and Denhaerynck, 2010) face communication barriers when seeking medical attention because

they speak a different language from the medical staff. An analysis that varies the values of

a parameter that determines how fast the distance between any two languages declines as the

number of shared branches increases suggests the irrelevance of mutual intelligibility of two

languages in explaining the findings. Languages become unintelligible quite quickly as they

move a few branches away from each other in the language tree. Rather, I uncover evidence

suggesting the importance of deeper cleavages arising from splits that occurred thousands of

years ago.6 Building on the ethnic networks literature, I argue that individuals are reluctant to

pass on information to others who are linguistically distant from them.7

The empirical analysis relies on controlling for a rich set of control variables and fixed effects.8

All specifications include controls for aggregate levels of ethnic diversity such as fractionalization

or polarization.9 Controlling for ethnicity- and religion-specific fixed effects purge heterogeneity

in unobservable characteristics across ethnic or religious groups. The inclusion of time-varying

ethnicity fixed effects allows me to rule out explanations based on political ethnic favouritism

(Kramon and Posner, 2016; Burgess et al., 2015; Franck and Rainer, 2012; Kudamatsu, 2009) as

well as purging the effects of within-group genetic diversity (Arbatlı et al., 2015). The inclusion

of time-varying region fixed effects rules out the possibility of region-specific transfers benefiting

certain ethnic groups at the cost of others (De Luca et al., 2017; Dickens, 2016). Further, using

the heuristics of Altonji et al. (2005) and incorporating insights from Oster (2017), I show that

the results are unlikely to be driven by selection on unobservable variables. If anything, selection

on unobservable variables drives the main coefficient of interest away from zero.

Finally, I construct additional variables to rule out several potential confounders. First, I

show that the effects of linguistic distance are not explained by differences in individual-level

6This is in line with some existing papers that find that coarser divisions matter more for civil conflicts (Desmet
et al., 2012) and market integration (Fenske et al., 2017).

7Several papers have established the correlation of ethnicity with networks. For instance, Larson and Lewis
(2017) show that individuals in Ugandan villages form networks on the basis of ethnicity. Fafchamps (2000)
shows how ethnicity affects access to trade and bank credit through network effects in the form of socialization
and information sharing in Kenyan and Zimbabwean firms. Again, Romani (2004) shows that ethnic minorities
in Ivory Coast are less likely to access and benefit from extension services because they have lower access to
information networks.

8The controls include several birth-specific variables such as child gender and birth order; mother-specific
variables such as education and wealth; religion fixed effects; and time-varying region and ethnicity fixed effects.

9The inclusion or exclusion of aggregate measures of ethnic diversity, with or without weighting by distance,
does not affect the results. While data unavailability prevents the inclusion of controls for genetic diversity, recent
papers have highlighted that genetic diversity spans measures of ethnic fractionalization (Ashraf and Galor, 2013a,
2018). Furthermore, while Ashraf and Galor (2018) find that the effect of genetic diversity trumps the effect of
genetic distance, I find that linguistic distance trumps linguistic diversity.
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genetic distance (Spolaore and Wacziarg, 2016), or cultural distance (Giuliano and Nunn, 2018).

I also construct an index of distance from the dominant group in the region and pit it against my

measure of average linguistic distance that considers all individuals residing in the region when

constructing linguistic distance.10 Average linguistic distance comes out to be both economically

and statistically more significant compared to distance from the dominant group.

In addition to the ethnic networks literature mentioned previously, this paper contributes

to two other strands of the literature. First, I contribute to the literature that demonstrates

the role of ethnic and cultural distances in economic outcomes (Spolaore and Wacziarg, 2009,

2016; Guiso et al., 2009; Desmet et al., 2017). This literature is largely agnostic about specific

mechanisms and how exactly ethnic barriers operate. My micro-level analysis demonstrates how

ethnic distance might act as a barrier to health information, leading to higher child mortality

rates among linguistically distant groups. A related nascent strand of the micro literature high-

lights the ways in which ethnic distance affects economic development through human capital

accumulation (Laitin and Ramachandran, 2016; Shastry, 2012), trade flows (Isphording and

Otten, 2013), literacy and labour market outcomes of immigrants (Isphording, 2014), market

integration (Fenske et al., 2017), and the effectiveness of counterinsurgency policies (Armand

et al., 2017). I introduce a spatial dimension at the individual level and highlight an information

channel, both of which are novel in the literature.

Second, this paper contributes to a sizeable body of literature investigating the effects of

ethnic diversity on different political economy outcomes.11 While most of the literature is at the

cross-country level, there has been a recent surge in the number of studies investigating political

economy outcomes at the local level, such as: Alesina et al. (1999) (U.S. cities); Dahlberg et al.

(2012) (Swedish municipalities); Munshi and Rosenzweig (2015) (wards in India); Algan et al.

(2016) (apartment blocks in France); Montalvo and Reynal-Querol (2017) (1◦ × 1◦ pixels in

Africa); and Desmet et al. (2020) (local interaction at the 5 km × 5 km cell level and public

goods outcomes at the national level). In contrast, I focus on individual-level ethnic distances,

controlling for ethnic diversity at the local level in addition to a rich set of other controls.12

10This tests whether the relevant dimension of distance is that between the centre and the periphery, rather
than that between the peripheral groups themselves (Desmet et al., 2017). Following Francois et al. (2015) I
assign dominance to the most populous group.

11See Easterly and Levine (1997), Ashraf and Galor (2013b), Miguel and Gugerty (2005), Habyarimana et al.
(2007), and Alesina et al. (2003). See also Desmet et al. (2012), Desmet et al. (2009), and Esteban et al. (2012a,b)
for aggregate cross-country diversity measures incorporating ethnic distances.

12Another strand of the literature highlights the pernicious effects of ethnic inequality, defined as the inequality
in well-being across ethnic groups that coexist, on economic growth (Alesina et al., 2016), public goods (Baldwin
and Huber, 2010), and civil conflicts (Mitra and Ray, 2014; Gomes, 2015). This paper shows how ethnic distance
may exacerbate ethnic inequality in health outcomes in Africa.
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2 Data

This paper aims to estimate the effects of the ethnic distance of a mother from the people living

around her on her children’s health outcomes. For this purpose, I require the mother’s GPS

location, her ethnicity, and the spatial distribution of ethnic groups around her. This section

explains how the different variables were constructed and discusses their data sources.13

2.1 Spatial Distribution of Ethnic Groups

For the spatial distribution of ethnic groups, I rely on a high-resolution global database recently

constructed by Desmet et al. (2020). They combine two sources of data using an iterative

proportional fitting (IPF) algorithm to construct their final high-resolution (5 km × 5 km)

dataset. For the spatial distribution of population, they rely on the LandScan database. At a

resolution of 1 km × 1 km (approximately at the equator), LandScan is the finest resolution

global population distribution database currently available. For information on ethnic groups

they use the 17th edition of the Ethnologue database (Lewis et al., 2014), from the World

Language Mapping System (WLMS), which maps 6,905 distinct linguistic groups worldwide

and is the most comprehensive database on linguistic groups currently available. The linguistic

groups are represented in the form of polygons across space, where each polygon represents the

traditional homeland of a particular linguistic group. Areas where multiple languages are spoken

are represented by overlapping polygons. Ethnologue also provides the total population of each

linguistic group within a particular political boundary.14

Following Desmet et al. (2020), I combine the above two sources of data using an IPF

algorithm to generate a distribution of languages at a 1 km × 1 km grid-cell level for the 14

countries in my sample. Using the IPF algorithm, which is widely used in statistics, ensures that

while allocating languages to cells, the total population of each country, the population of each of

the cells, and the population speaking each of the languages in every country add up to precise,

consistent totals.15 Alternative attempts in the literature to generate the spatial distribution of

languages, such as that of Matuszeski and Schneider (2006), do not ensure the consistency of

population totals. Furthermore, they also disregard languages that are considered widespread

13The sample comprises fourteen countries (Appendix Figure M1). See Appendix A.1 for more details.
14One alternative to the Ethnologue data would be the Geo-Referencing of Ethnic Groups (GREG) database

(Weidmann et al., 2010) based on the Atlas Narodov Mira. However, these data are far less detailed, containing
information on only 929 language groups compared to Ethnologue’s nearly 7000 groups.

15Section A.2 provides details of the IPF algorithm.
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by Ethnologue, nor languages for which Ethnologue only provides a point as the location rather

than a polygon. Finally, other sources of sub-national data on ethnic diversity including Alesina

and Zhuravskaya, 2011 (district level for 92 countries), and Gershman and Rivera, 2018 (around

400 first level administrative regions in 36 countries of sub-Saharan Africa) are not available at

the disaggregated cell-level.16

2.2 Linguistic Distance

I measure the ethnic distance between any given pair of ethnic groups by the degree of difference

between the languages spoken by the two groups. I first match the ethnicity of each mother,

which is provided by the DHS, to the unique language spoken by her ethnic group.17 Then,

following a wide stream of papers, I use a distance metric based on the number of branches

shared between any two languages from tree diagrams based on the Ethnologue database.18

The distance between two languages i and v, using this approach is defined as:

τiv = 1−
(
l

m

)δ
(1)

where l is the number of shared branches between languages i and v; m is the maximum number

of branches between any two languages; and δ is the decay factor, which is a parameter that

determines how fast the distance declines as the number of shared branches increases. Not

all languages in the Ethnologue database have the same number of branches connecting them

to their proto-language. Following the empirical literature, I assume that all languages went

through intermediate states, starting from the proto-languages of their respective families, before

reaching their current form. This approach adds m − x branches to any language which has a

distance of x to its proto-language, before calculating distances.19

The decay factor δ measures, “how much more distant [one should] consider two languages

from different families to be relative to languages that belong to the same family” (Desmet et al.,

16Desmet et al. (2020) demonstrate high correlations of IPF-based diversity measures with the census-based
measures of Gershman and Rivera (2018): 0.80 at the region level and 0.95 at the country level.

17Appendix A.1 provides the list of countries and DHS surveys used in the paper. Appendix A.3 provides the
exact procedure used to map languages to ethnic groups.

18See, for instance, Fearon (2003), Desmet et al. (2012), Desmet et al. (2009), Esteban et al. (2012a), Esteban
et al. (2012b), Laitin and Ramachandran (2016), and Gershman and Rivera (2018) for a similar approach.

19Please refer to Desmet et al. (2012) for a more detailed discussion of the issue. There are other ways of
measuring linguistic distances, for instance, using the proportion of cognates in any two languages (Dyen et al.,
1992; Isphording, 2014). However, the advantage of using the Ethnologue language trees is that my spatial
distribution of languages data are based on the same Ethnologue database.
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2009). The literature contains no consensus on what the value of δ should be. While in their

empirical exploration Desmet et al. (2009) find that values of δ between 0.04 and 0.10 perform

well and select a δ of 0.05, Fearon (2003) uses a δ of 0.5. In the absence of a theoretical basis for

choosing one value of δ over another, I examine the data and find that lower values of δ perform

better than higher values. I consequently fix δ at 0.0025. As I will later show, choosing a δ of

0.05 like Desmet et al. (2009) leads to qualitatively similar results. However, a high value of

δ, like that chosen by Fearon (2003), leads to insignificant results. I discuss the implications of

this finding in more detail in Section 4.2.

To understand what the different values of δ imply in practice, consider the two Bantu

languages of Gikuyu and Kiembu, both of which are spoken in Kenya. Both belong to the

Niger-Congo language family and have the following language family structure: Niger-Congo,

Atlantic-Congo, Volta-Congo, Benue-Congo, Bantoid, Southern, Narrow Bantu, Central, E,

Kikuyu-Kamba (Lewis et al., 2014). Taking a δ of 0.5 following Fearon (2003), the distance

between them is 0.2254. Now consider the distance between Gikuyu and the Nilotic language

Dholuo, which is also spoken in Kenya, but belongs to the Nilo-Saharan language family and

has the following language family structure: Nilo-Saharan, Eastern Sudanic, Nilotic, Western,

Luo, Southern, Luo-Acholi, Luo (Lewis et al., 2014). The distance between them is 1. On the

other hand, considering a δ of 0.05 following Desmet et al. (2009), the distance between Gikuyu

and Kiembu becomes 0.00252, whereas that between Gikuyu and Dholuo continues to be 1.

Finally, choosing a δ of 0.0025 implies a distance of 0.0013 between Gikuyu and Kiembu while

that between Gikuyu and Dholuo remains 1.20

The final analysis requires calculating the average linguistic distance of each mother in the

sample from others living around her. Instead of taking a stand on what region or geographic

aggregation should be more appropriate, I calculate linguistic distance by drawing circles of dif-

ferent radii around the mothers. The final spatial distribution dataset from Section 2.1 provides

the total population and the shares of individuals belonging to different ethnic groups for every

1 km × 1 km grid-cell for each of the 14 countries in the dataset. Using the GPS location of

each mother provided by DHS, I draw circles around each mother and obtain the estimated

population size and ethnicity shares for each circle. For instance, consider an individual living

in the south-east corner of Mali, where four different languages are spoken (see Figure 1). In

this context, for circles around any mother who resides in the region, the final dataset provides

20Appendix Figure M8 provides simulations of how distances between any two languages change as they share
different numbers of branches ranging from 0 to 15, for different values of δ.
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the total population n, in addition to the numbers p1 (Mamara Senoufo speakers), p2 (Northern

Bobo Madare speakers), p3 (Maasina Fulfulde speakers) and p4 (Bamanankan speakers), where

pj > 0 ∀j = 1(1)4; and
∑

j pj = n.

The linguistic distance LDi, for mother i (who speaks language i) from all other individuals

in the circle is given by:

LDi =
1

n

n∑
v=1

τiv (2)

where n individuals live in the circle and v represents the language groups of each of those n

individuals. The function τiv is defined by formula (1). While the baseline specifications use

the average linguistic distance of each mother from her neighbours defined by equation (2) as

the main variable of interest, the empirical section explores other alternatives (sections 5.4 and

6.2).21

2.3 Linguistic Diversity

I measure ethnic diversity using either an index of ethno-linguistic fractionalization (ELF)

(Alesina et al., 2003), or an index of ethno-linguistic polarization (ELP) (Esteban and Ray,

1994, 1999; Montalvo and Reynal-Querol, 2005). ELF gives the probability that two randomly

selected individuals from a given region speak two different languages. ELP, on the other hand,

measures how far the distribution of the linguistic groups in a given region is from the bipolar

distribution (i.e. the (1/2, 0, 0, ... , 0, 1/2) distribution) which represents the highest level of

polarization (Montalvo and Reynal-Querol, 2005).

To address the issue of which linguistic groups should be used as primitives in the calculation

of the diversity indices, I follow the recent literature (Desmet et al., 2012, 2020; Gershman and

Rivera, 2018) and calculate these indices at different levels of aggregation of the Ethnologue

language trees. There are 15 possible levels, with Level 1 being the most disaggregated. Formally,

the two measures of ELF and ELP, in region j and at linguistic aggregation level k, are defined

as follows:

21As evident from the Mali example above, multiple linguistic homelands overlap or border each other in the
Ethnologue-based spatial distribution data (e.g. Figure 1). This leads to heterogeneity at the local level and
subsequently individuals have non-zero linguistic distance from people around them even if they reside in their
ethnic homeland. However, some individuals possibly reside in the linguistic homelands of others either because
they are themselves migrants or are children of migrants.
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Fractionalization: ELF kj = 1−
n∑
i=1

[ski(j)]
2. (3)

Polarization: ELP kj = 4

n∑
i=1

[ski(j)]
2[1− ski(j)]. (4)

where ski(j) is the proportion of the population speaking language i at linguistic aggregation level

k in the geographic region j. As in the case of linguistic distance, I calculate these measures of

diversity at the circle level by drawing circles of different radii around the mothers.22

2.4 Genetic and Cultural Distance

I measure individual-level genetic distance using the FST index (Spolaore and Wacziarg, 2016)

based on the Pemberton et al. (2013) data. Combining eight different datasets covering 645

common microsatellite loci, Pemberton et al. (2013) construct a single dataset on genetic dis-

tance for 267 worldwide populations.23 I map each group from Pemberton et al. (2013) to an

Ethnologue group for all of Africa. I linearly interpolate and extrapolate information on genetic

distance for missing groups using geographic distance.

I measure cultural distance using the extended version of Murdock’s ethnographic atlas,

extended by Giuliano and Nunn (2018). First, I extend a mapping of groups from Murdock

(1967) to the Ethnologue groups by Giuliano and Nunn (2018) for all ethnic groups in my

sample. Then I construct a cultural distance variable measuring the proportion of variables

from Murdock’s atlas which are different across any two groups.24

2.5 Individual-level Data on Health and Other Characteristics

The individual-level child health data are based on the Demographic and Health Surveys (DHS).

Funded by the U.S. Agency for International Development (USAID), the DHS has been conduct-

ing surveys in developing countries since the 1980s. By interviewing a nationally representative

sample of women of childbearing age (15 to 49), the DHS collect data on all the children these

22Furthermore, Appendix H.4 calculates distance-weighted measures of diversity inspired by Greenberg (1956),
Duclos et al. (2004) and Esteban and Ray (2011).

23The other possibility was using the Cavalli-Sforza et al. (1994) dataset. However, the coverage of the Pem-
berton et al. (2013) dataset is much broader. See discussion in Spolaore and Wacziarg (2016).

24See Desmet et al. (2017) for a similar approach.
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women have ever given birth to, including those who did not survive until the time of the in-

terview. The standardized components of the DHS questionnaires can be used to compile cross

country micro datasets.

2.5.1 Child Mortality

Child mortality is the death of a child under the age of five. If a child dies before reaching

one year of age, it is termed infant mortality. If a child fails to survive the first month after

its birth, it is termed neonatal mortality. Appendix Figure M6 plots the 28,993 DHS clusters

that show the geographic locations of the 208,898 individual mothers whose children’s survival

outcomes I use in this study. Figure 2 shows the locations of the individual mothers in the case

of Mali, along with the 25 km circles around the mothers’ locations and the language groups in

the background.

2.5.2 Other Health Outcomes

I use a host of additional child- and mother-level variables from the DHS data as either outcome

or control variables. Outcome variables include the height-for-age z-score (HAZ), the weight-

for-age z-score (WAZ), whether the child is stunted (defined as the child being less than 2

standard deviations of HAZ), immunizations received (polio, DPT, measles, tetanus, BCG, and

full immunization), whether the mother received iron tablets during pregnancy, antenatal visits,

and if the delivery was done by a doctor or a nurse (i.e. skilled birth attendance). Section 3

provides the full list of control variables.

2.5.3 Migration

The DHS make available a variable that gives the “number of years the respondent has lived in

the village, town, or city where she was interviewed.” Exploiting this question enables me to de-

termine which individuals have always lived in the DHS cluster where they were interviewed and

which individuals have moved there from elsewhere. The migration status variable is available

for 13 of the 14 countries and 25 of the 30 surveys used in the study.25 Of the 208,898 mothers in

the sample, the migrant status variable is available for 167,130, of which another 2,822 mothers

are identified as temporary visitors rather than residents and consequently dropped from the

25The variable is missing from one of the four surveys for Burkina Faso, one of the three surveys for Ethiopia,
one of the two surveys for Guinea, one of the two surveys for Senegal, and from the only survey used for Uganda.
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sample. Hence, I have information on the migrant status of 164,209 mothers.

2.5.4 Access to Information and Public Goods

The DHS surveys ask each respondent whether they have either heard of or used an oral rehy-

dration product to treat children with diarrhoea. Using the responses to this question, I create

a 0-1 binary variable called ORS, which takes the value 1 if the individual has either heard of

or used an oral rehydration solution to treat children with diarrhoea, or 0 if not. This question

serves as a test for access to health-related knowledge or information.

I also exploit information on whether the respondent’s household has access to electricity,

whether the household has access to water (defined as requiring less than 30 minutes to reach a

water source), the individual’s educational attainment, and whether the individual is literate or

not. Among these, electricity access, water access, and literacy are binary variables, taking the

value 1 if the individual has access to electricity or water or is literate, and 0 if not. Educational

attainment is a categorical variable taking the values 0 (no education), 1 (incomplete primary

education), 2 (completed primary education), 3 (incomplete secondary education), 4 (completed

secondary education), or 5 (higher education). These variables allow me to measure access to

public goods in general.

2.6 Malaria Suitability

I measure malaria suitability using a malaria stability index originally constructed by Kiszewski

et al. (2004). Their index provides a time-invariant measure of predicted historical malaria

exposure. More recently, McCord and Anttila-Hughes (2017) made these data publicly available

at a 5 km × 5 km grid-cell level raster format. I first extract these data for the 14 countries

that constitute my sample and then standardize the index to construct a standardized index of

malaria suitability for the countries in my sample.26

3 Econometric Specification

To measure the effect of maternal linguistic distance (LD) from her neighbours on her children’s

health outcomes, I estimate the following model as the baseline specification:

yiet = αw + αr + αet + αRt + β1 LDie + β2 ELFi + β3 Xit + β4 Xi + εiet (5)

26See Appendix Figure M7 for a spatial representation of these data for the 14 countries in my sample.
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where yiet is the mortality outcome of child i born to a mother belonging to ethnicity e in the

year t. It is a binary variable, taking the value of 1 if the child dies before reaching the age of

five and 0 if the child survives until at least the age of five. In some of the analyses, other child

health variables such as infant mortality, neonatal mortality, HAZ, stunting, and WAZ, replace

child mortality as the dependent variable.

The LDie variable is the primary variable of interest and provides the linguistic distance of

the mother of child i belonging to ethnicity e from people living within circles of different radii

around her (see Section 2.3). The ELFi variable gives the linguistic fractionalization in the

circles of different radii around the mother. ELFi is later replaced with alternative measures of

diversity as part of the robustness checks. To calculate the linguistic distance, and the diversity

measures such as ELF, I use circles of different radii, namely 25, 50, 75, 100, 125, 150, 175, 200,

and 250 km around the mother.

The variables Xit and Xi come from the literature on child mortality and have been found to

be important for child mortality.27 Xit includes birth-specific variables, namely a female child

dummy, mother’s age at birth, mother’s age at birth squared, multiple birth indicator, birth

order, birth order squared, short birth spacing prior to the birth, and short birth spacing after

the birth. Xi includes mother-specific variables, namely the location of the mother in the form of

an urban dummy, and dummies for her educational attainment and her family’s wealth index.28

Xi also includes the mother’s geographic distance from the capital (to control for isolation) and

the logged population in the circle (to control for population density).

The inclusion of the time-varying region fixed effects, αRt, purge the effects of geographic and

environmental advantages of some regions, region-specific shocks such as conflict and natural

calamities, and region-specific transfers from the centre that benefit certain ethnic groups at the

cost of others (De Luca et al., 2017; Dickens, 2016). Religion-specific fixed effects, represented

by αr, control for differences in religious beliefs and practices among different individuals. The

inclusion of the time-varying ethnicity fixed effects, αet, controls for unobserved heterogeneity

across ethnic groups. This allows me to identify the effect of ethnic distance on child mortality

that is not driven by ethnicity-specific characteristics such as the ethnic dominance of certain

groups or cultural differences leading to differences in health practices between different groups.

Moreover, since these ethnic group-specific fixed effects are time varying, having a coethnic at

27See, for example, Kudamatsu (2009), Baird et al. (2011), and Franck and Rainer (2012).
28The wealth index is a categorical variable taking values from 1 (lowest wealth level) to 5 (highest wealth

level).
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the helm of the country does not affect my results (Kramon and Posner, 2016). Finally, αw

controls for the survey-wave specific fixed effects.

I use a linear probability model to estimate equation (5) and cluster standard errors at

the regional level for the 109 regions in the sample.29 The main coefficient of interest β1 gives

the effect of maternal linguistic distance from her neighbours on the probability of her children

dying before reaching the age of five. Due to various possible endogeneity concerns, giving a

causal interpretation to β1 is not straightforward. Furthermore, I cannot use mother-specific

fixed effects since the ethnic distance variable does not vary across time for the same mother.

However, I am able to control for a host of maternal and birth characteristics, which alleviate

endogeneity concerns to a great extent. Moreover, I later use insights from Altonji et al. (2005)

and Oster (2017) to demonstrate that the results are not driven by selection on unobservable

variables, allowing for a more causal interpretation of β1.

Appendix Tables A2–A7 provide the descriptive statistics of the variables used in the study.

Appendix Table A8 provides the correlations between the aggregate diversity measures of ELF

and ELP (at four different levels of aggregation), and the LD variables (for the three alternative

values of δ) at the individual mother level. Appendix Table A9 provides the correlation between

ELF and ELP at different levels of aggregation. The final sample comprises 14 countries and a

total of 30 surveys with information on the births and deaths of over 860,000 children of 206,076

mothers.30 For the child mortality variable I consider only those children who have already

reached the age of five by the day of sampling, since I cannot know whether those younger than

five would subsequently survive until the age of five. Hence, the child mortality sample contains

information on 654,672 children.31

4 Results

4.1 Mother’s Ethnic Distance and Child Mortality

Table 1 presents the first set of results. It provides estimates of the effect of maternal linguistic

distance from the people living around her on child mortality, while controlling for overall ELF

and a host of other variables. I consider a radius of 50 km around the mother to compute the

LD and ELF variables, and a decay factor δ of 0.0025 for the LD variable. Column 1 provides a

29Appendix I shows that results are robust to clustering standard errors by either ethnicity or both ethnicity
and region together instead of region alone.

30See Appendix A.1 for a list of countries and DHS surveys used.
31I also exclude mothers who are identified as temporary visitors from the sample.
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parsimonious specification, controlling only for the survey wave, and time-varying region fixed

effects.32 Column 2 adds ethnic group fixed effects. Column 3 adds individual-level controls

listed in Section 3 (also listed in the table notes). Column 4 adds the logged population of the

circle and logged distance to the capital. Finally, column 5 adds time-varying ethnic group fixed

effects and represents my most complete and hence most preferred specification.33

Table 1 demonstrates that LD significantly increases the probability of child death, which

effect is robust to a host of controls. ELF, if anything, has a negative effect on child mortality.

This implies that, on the one hand, the children of mothers who are linguistically distant from

others living around them have a higher mortality rate. On the other hand, the children of moth-

ers living in more linguistically fractionalized localities face lower rates of mortality. However,

while LD has a significant effect on child mortality, ELF does not.

In Table 1, I calculate the linguistic distance of the mother from all individuals living in a

circle with a 50 km radius around her. Using the complete specification from column 5 in Table

1, Table 2 presents results for alternative radii ranging from 25 km to 250 km. The results remain

relatively similar, although the effect size shows a marginal increase for higher radii. Depending

on the radius of the circle, a one SD increase in LD increases child mortality by 1.6–2.6% SD.

This implies that a one SD increase in LD leads to 6.6–10.5 additional child deaths per 1000 live

births. Considering a radius of 50 km, as is the case in Table 1, a one SD increase in LD leads

to approximately 8.2 additional deaths per 1000 live births, an SD of approximately 2%.34

My analysis includes all births in the entire maternal history of the mother. One possible

concern with using retrospective data is recall bias. This stems from the fact that women might

be less likely to accurately remember more distant births and deaths. To minimize recall bias

I replicate my baseline results using births and deaths occurring in the 10 years preceding the

date of the survey (following Baird et al., 2011 and Kudamatsu et al., 2012). The results remain

qualitatively similar.35

As discussed in Section 2.1, the spatial distribution of linguistic groups is based on an IPF

algorithm combining two different datasets. Appendix H.3 computes linguistic distance and

32Comparing two women residing in the same DHS cluster but who have different levels of linguistic distance
from the majority could be the ideal natural experiment. However, I choose to use region fixed effects rather
than DHS cluster fixed effects because of the lack of sufficient variability in the data within each DHS cluster.
Appendix Table F5 presents results with DHS-cluster fixed effects.

33I use a consistent sample in all columns of Table 1. Allowing for different samples in different columns based
on the availability of different variables does not affect the results (see Appendix Table B2).

34Appendix Table C1 provides the marginal effects for each of the nine circles of alternative radii.
35Results not provided and are available from the author upon request.
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ELF using cluster-level information on ethnic groups from the DHS survey data. In particular,

Appendix Table H5 shows that using measures of LD and ELF based on data from the DHS

cluster in which the mother lives, along with nearby clusters within the specified circular radius

around her (50km in this case), yield economically and statistically comparable results. Further,

the correlation between the IPF-based LD and the DHS cluster-level LD is 0.8.36

4.2 Varying the Decay Factor δ

For Tables 1 and 2, I calculate linguistic distance using a decay factor δ of 0.0025. Appendix

Tables B1 and B3, replicate the results from Tables 1 and 2 for three alternative values of δ,

namely δ = 0.0025 (Panel 1), δ = 0.05 à la Desmet et al. (2009) (Panel 2) and δ = 0.50 à la

Fearon (2003) (Panel 3). Appendix Tables B1 and B3 demonstrate that the results are a lot

more robust for δ = 0.0025 compared to δ = 0.05, which in turn leads to more robust results

compared to δ = 0.50. My choice of a lower δ = 0.0025 for the main analysis is based on this

result. The following paragraphs explore the possible implications of this finding in more detail.

As explained in Section 2.3, the decay factor δ is a parameter that determines how fast

the distance between any two languages declines as the number of shared branches increases.

Under lower values of δ, as soon as two languages share a single branch, their distance falls more

rapidly than under higher values of δ. However, subsequently, as the number of shared branches

increases, the decline in distance is not as drastic, being comparable to higher values of δ even

though the actual magnitudes of the distances differ.37 This implies that my results are driven

by the divisions in broad language families. In other words, splits that occurred thousands of

years ago are more relevant than more recent splits. This is in line with Desmet et al. (2012),

who show that, for explaining civil conflicts, higher values of aggregation matter more than

lower values of aggregation of ELF. In the same vein, Fenske et al. (2017) find that the coarse

divisions between languages explains market integration in colonial India.38

The relevance of lower rather than higher values of δ provides two insights. First, small

36For the sake of transparency, Appendix Table H5 also shows results based on using only the cluster-level
information. However, as discussed in Appendix H.3 these do not yield high quality measures.

37Appendix Figure M8 provides simulations of how distances between any two languages change as they share
different numbers of branches ranging from 0 to 15, for different values of δ.

38The assumption that coarse linguistic divisions represent splits going back thousands of years follows a long
established body of literature (Darwin, 1859; Cavalli-Sforza et al., 1988; Gray and Atkinson, 2003; Belle and
Barbujani, 2007; Desmet et al., 2012). Furthermore, language trees such as the ones from Ethnologue were
constructed by linguists primarily to capture the time that has passed since the populations speaking these
languages split from each other (Desmet et al., 2012). However, the assumption that linguistic division at the
highest levels go back thousands of years is not crucial to my results.
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differences across dialects of the same language or minor differences in closely related languages

do not matter. Second, the issue is not one of the mutual intelligibility of two languages.

Languages become unintelligible quite quickly as they move a few branches away from each

other in the language tree. Thus, if it were a matter of intelligibility, then varying the δ would

not have mattered. Rather, the importance of deeper cleavages arising from splits that occurred

thousands of years ago might indicate other potential explanations. I interpret it as a sign of

linguistic distance acting as a barrier to information between individuals who are linguistically

very distant. I hypothesize that individuals are less willing to pass on information to others

belonging to groups that speak languages that split from each other thousands of years ago. It

is possible that such individuals belong to different networks and hence do not interact with each

other, even if they live in close proximity. It is also possible that even if such individuals interact

they are more reluctant to pass on information to each other. While I cannot directly confirm

this hypothesis using the DHS data, it is in line with a vast body of literature on ethnic networks

that argues that ethnicity imposes a barrier to information transmission and that individuals

are less likely to pass on information to persons belonging to other ethnic groups (Larson and

Lewis, 2017). Following up on this hypothesis, in Section 6, I demonstrate that ethnically distant

individuals are less likely to receive information in an experimental setting.

For the analyses that follow, I always use the most comprehensive specification contained in

column 5 of Table 1, fix the decay factor δ at 0.0025 and calculate the LD and ELF variables

using a radius of 50 km around the mother, unless otherwise specified.

4.3 Other Health Outcomes

So far, my focus has been on child mortality, or the death of a child before the age of five. Other

relevant variables include infant mortality (defined as the child dying before reaching the age

of one) and neonatal mortality (the child dying before reaching one month of age). Columns 1

and 2 of Table 3 provide the results for infant and neonatal mortality. In general, the results are

similar, with LD significantly increasing both infant and neonatal mortality. ELF continues to

have a negative effect on mortality outcomes and is significant at the 10% level for the neonatal

mortality variable.39

Columns 3–5 of Table 3 investigate the impact of LD on the child’s HAZ, the probability of

the child being stunted, and the child’s WAZ. The results demonstrate that linguistic distance

39In results not provided, I find that the ELF variable is not robust to changing the circle radius. These results
are available from the author upon request.
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has a strong and significant effect on child height, whether measured by HAZ or the stunting

status of the child. LD also reduces child weight as measured by WAZ, but the effect is not

statistically significant. ELF continues to have a benign effect on the different variables and

significantly improves WAZ.

Appendix Table D1 investigates whether the mother received tetanus injections during preg-

nancy, whether the child received measles immunization, polio vaccination, or DPT immuniza-

tion, and whether the mother received iron tablets during pregnancy. Among these variables,

LD significantly (at the 10% level) reduces the probability of the mother taking iron tablets

during pregnancy. LD does not have a significant effect on any of the other variables.40

4.4 Heterogeneous Effects

4.4.1 Migration

A possible concern in estimating the effects of ethnic distance on child mortality is spatial sorting.

If individuals realize that being linguistically distant to one’s neighbours is a disadvantage, they

might try to sort themselves into neighbourhoods where they are less linguistically distant from

others. Given various barriers to movement (e.g., transportation costs), perfect sorting is not

observed in reality. Rather, in spite of population movements, ethnic populations tend to reside

in their respective historical homelands (Michalopoulos and Papaioannou, 2014). Even in the

face of large-scale population displacements caused by civil wars, individuals try to return to their

historical ethnic homelands (Glennerster et al., 2013).41 However, if individuals are actually able

to move to places where they are less distant from others, then, if anything, I am underestimating

the effects of ethnic distance on child mortality. This is borne out by the data.

Table 6 investigates the heterogeneity of the results by migrant status. Column 1 of Table

6 first uses a 0–1 binary variable indicating migrant status as the dependent variable. It shows

that being a migrant reduces the effect of LD on child mortality. In other words, the effects

of being linguistically distant are worse for children of mothers who have never moved from

their village of birth. Column 2 directly checks for heterogeneity by the continuous variable

40Please refer to Appendix D.3 for additional variables. Appendix L reports p-values adjusted for multiple
comparisons following seven alternative methods.

41Almost 55% of the Afrobarometer Survey respondents lived in their ethnic group’s ancestral homeland at the
time of the survey (Nunn and Wantchekon, 2009). Again, Gershman and Rivera (2018) show how sub-national
ethnic diversity is stable across several decades in sub-Saharan Africa. More importantly, they find that changes in
diversity at the sub-national level are not correlated with changes in economic conditions (Gershman and Rivera,
2018).
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that measures how many years the mother has lived in her current village of residence. This

again shows that the effects of LD on child mortality are much stronger for individuals who have

resided in their current village of residence for longer.42

Finally, columns 3 and 4 restrict the sample to individuals who have moved and individuals

who have never moved from their village of residence, respectively. These two columns demon-

strate that the results are driven by non-migrants rather than migrants. The coefficient on LD

is much bigger and more statistically significant for the non-migrant sample. For a circle with

a radius of 50 km around the mother, a one SD increase in LD leads to around 14 additional

child deaths per 1000 live births, or an approximately 3.3% SD in the non-migrant sample. This

stands in sharp contrast to the approximately four additional child deaths per 1000 live births

(around 1% SD) in the migrant sample for a similar one SD increase in LD. The corresponding

figures for the full sample are 8.2 deaths per 1000 live births, which is 2% of the SD.43

The two panels of Appendix Tables D2 and D3 provide the differences in the effects of LD

on other variables by splitting the sample by migrants and non-migrants. In particular, Table

D2 shows the impact of LD on infant mortality, neonatal mortality, the HAZ, whether the child

is stunted, and the WAZ. Table D3 examines the effects of LD on whether the mother received

tetanus injections during pregnancy, whether the child received measles immunization, polio

vaccination, or DPT immunization, and finally whether the mother received iron tablets during

her pregnancy. I find that LD consistently worsens the various health outcomes in the non-

migrant sample, rather than the migrant sample. These results indicate that linguistic distance

has a more detrimental effect on the health outcomes of mothers who have never moved from

their village of birth, and that my results are driven by the non-migrant sample.

It is conceivable that migrants choose to relocate to places where they are less linguistically

distant from others. Hence, the migrant sample might, in general, have a lower average linguistic

distance from their neighbours than the non-migrant sample. Appendix Table D5 investigates

the correlates of migrant status and shows the opposite: migrants have a higher linguistic

distance from their neighbours than non-migrants.44 Clearly, if anything, migration biases my

results away from zero; without migration my results would have been much stronger.

42Appendix Table G4 shows that the heterogeneity by years lived in village of residence possibly picks up the
effect of an individual’s age. While the heterogeneity by migrant status remains robust, the heterogeneity by
years lived disappears when controlling for an interaction of LD with age. Furthermore, the pernicious effects of
LD are further exacerbated for older individuals in both the migrant and non-migrant samples.

43For circles of alternative radii ranging from 25 km to 250 km, a one SD increase in LD leads to approximately
11.5–19.2 additional child deaths per 1000 live births in the non-migrant sample (3.3–4.2 additional deaths in the
migrant sample). Please refer to Appendix Table C1 for more details.

44Moreover, migrants tend to be more concentrated in urban areas, and are wealthier.
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4.4.2 Malaria Suitability

In recent research, Cervellati et al. (2016) argue that ancestral exposure to malaria might have

increased the benefits of isolation and thereby encouraging interaction in small groups. This in

turn might have reinforced ethnicities in Africa leading to the persistence of ethnic diversity in

the continent. This section investigates the implications of these findings for the current study.

First, column 1 of Table 7 shows that the results are unaffected by adding a control for

malaria suitability.This rules out that the LD variable captures the effects of malaria suitability,

which can itself directly affect child mortality. Next, column 2 unearths evidence of heterogeneity

in the effects of LD on child mortality by malaria suitability, but not in the direction suggested

by Cervellati et al. (2016). Following their hypothesis, one might expect some positive effects of

being linguistically distant in the presence of malaria. However, Table 7 uncovers evidence that

malaria suitability exacerbates the pernicious effects of linguistic distance on child mortality. A

one SD increase in LD when malaria suitability is one SD above its average value leads to 25

additional child deaths compared to the eight additional child deaths for the average level of

malaria suitability. The corresponding number for the non-migrant sample is approximately 34

additional child deaths.45

Malaria might be correlated with other variables such as Tse Tse suitability. Appendix J,

however, establishes the robustness of heterogeneity by malaria suitability to the inclusion of

controls for LD × Tse Tse suitability, LD × crop suitability, LD × Population and LD × Urban

Residence in the same specification. Again, if child mortality is greater in malaria-prone areas

then the effect of LD might be driven by the larger variance of the dependent variable in these

areas. Column 1 of Table 7 shows that child mortality is not significantly higher in areas with

higher levels of malaria suitability, allaying such concerns.

The results are not necessarily contradictory to the findings of Cervellati et al. (2016). His-

torically there might have been some advantages to interacting in small groups in malaria-prone

areas. However, in present times, isolation might impede access to modern medical practices

for treating and preventing malaria.46 In particular, linguistically distant mothers might not

have access to best-practice information about malaria, leading to higher child mortality among

them in malaria-prone areas.47 Furthermore, 57% of child deaths from malaria are due to

45Appendix Table C2 provides the full set of marginal effects and standardized βs.
46The Kiszewski et al. (2004) measure is a time-invariant measure of malaria suitability (see Section 2.6). Areas

where malaria was more prevalent in the past are also areas where malaria is more prevalent in the present.
47Appendix Table J4 shows that linguistically distant individuals living in malaria endemic areas are more likely
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under-nutrition (Bryce et al., 2005). Lack of knowledge on nutrition among linguistically dis-

tant mothers can exacerbate the negative effects of malaria by worsening nutritional outcomes

for their children.48 Hence, while there might have been some benefits from ancestral exposure

to malaria for linguistically distant mothers, in present circumstances they seem to be at a

disadvantage.

4.4.3 Heterogeneity by other variables

Appendix Table G1 explores the possibility of heterogeneity in the effects of linguistic distance

by other observable variables such as child’s gender, place of residence (urban or rural), mother’s

educational attainment, ELF, ELP, population, distance from the capital, and wealth. I find no

evidence of heterogeneity by any of the aforementioned variables.

5 Robustness Checks and Alternative Explanations

5.1 Are the Results Driven by Ethnic Diversity?

Ethnic diversity, which is usually measured by ethnolinguistic fractionalization (ELF), has often

been found to have a negative effect on different socio-economic outcomes.49 In contrast to the

LD variable, the circle-level ELF variable seems to have a more benign effect on health outcomes.

However, the effect is almost never statistically significant. Recent literature has underscored the

importance of the level at which the linguistic groups enter the ELF calculations (Desmet et al.,

2012). In order to incorporate this insight, I follow the recent literature (Desmet et al., 2012,

2020; Gershman and Rivera, 2018), and calculate ELF at different levels of aggregation based

on the Ethnologue language trees, with 15 possible levels.To avoid making arbitrary decisions

about the appropriate level of aggregation, I consider a range of levels of aggregation, including

Levels 15, 10, 5, and 2. This ensures that I have a high level of aggregation (given by Level 2), a

medium level of aggregation (given by Level 5), and a lower level of aggregation (given by Level

10). I also include results for the most disaggregated level of ELF (given by Level 15), which is

also the basic ELF used in the previous tables.

to possess and use bednets. Hence, the lack of access or use of bednets is unlikely to be the channel. However,
Appendix Table K3 finds linguistically distant mothers (non-migrant sample) to be less likely to be able to decide
by themselves whether their child should be taken for medical treatment when child is seriously ill. This could
be a potential channel through which malaria affects such individuals more adversely.

48Table 3 shows that linguistic distance worsens nutrition-dependent anthropometric outcomes such as stunting.
49See, for example, Alesina et al. (2003), Alesina et al. (1999), and Easterly and Levine (1997).
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Columns 1–4 of Panel 1 of Table 4 show that the results do not change regardless of the

level of aggregation at which ELF enters the specification. Column 5 shows that ELF in general

is not significant, even if I do not include LD in the specification. However, LD continues to be

significant, regardless of the level of aggregation at which ELF is calculated, and its absolute

magnitude barely changes. Column 6 includes a quadratic term for ELF, following Ashraf and

Galor (2013b) and Gomes (2019), who argue that diversity has a hump shaped effect on economic

development. LD continues to have a significant effect on child mortality, whereas ELF does not

have any significant effects. Finally, column 7 shows that the results are qualitatively unchanged

even if I do not control for ELF.

While ELF has traditionally been used to measure ethnic diversity, some papers have high-

lighted the relevance of ethnic polarization (ELP) rather than fractionalization, particularly in

the context of intergroup conflict (Montalvo and Reynal-Querol, 2005).50 Panel 2 of Table 4

reruns the estimations described for Panel 1, but using ELP at different levels of aggregation

instead of ELF. Columns 1–4 control for ELP at different levels of aggregation. Column 5 in-

cludes ELP by omitting LD. Column 6 includes a quadratic term for ELP and, finally, column

7 includes a specification controlling for both ELF and ELP together (following Montalvo and

Reynal-Querol, 2005). LD continues to have a significant and robust effect on child mortality.51

5.2 Are the Results Explained by Ethnic favouritism?

Kramon and Posner (2016) show that having a coethnic as president during one’s school-age

years leads to better schooling outcomes for children. Franck and Rainer (2012) provide evidence

of similar ethnic favouritism for the educational and child mortality outcomes of ethnic groups

in 18 sub-Saharan African countries. The inclusion of time-varying ethnicity fixed effects rules

out the possibility of such ethnic favouritism driving the results in the current context.52 The

ethnicity fixed effects also purge any possible effects of within-group genetic diversity (Arbatlı

et al., 2015).

The recent literature has also discussed region-specific transfers from the centre that benefit

certain ethnic groups at the cost of others (De Luca et al., 2017; Dickens, 2016). Burgess et al.

(2015) show that, during less democratic periods in Kenya, there is ethnic favouritism in road

50Appendix Table A9 demonstrates a high correlation between ELF and ELP.
51Appendix H.4 demonstrates robustness to controlling for linguistic distance-weighted ELF and ELP measures

following Greenberg (1956), Duclos et al. (2004), and Esteban and Ray (2011).
52This is line with Kudamatsu (2009), who found no evidence of ethnic favouritism on infant mortality in

Guinea.
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building in regions that share the ethnicity of the president. I include region-specific year fixed

effects in all specifications to rule out the confounding effects of such region-specific transfers.

5.3 Genetic and Cultural Distance

Table 5 investigates whether the results are about language per se, or whether linguistic distance

is a proxy for broader cultural and genetic distances. Table 5 controls for cultural distance and

genetic distance entering either separately or together in the specification with linguistic distance.

While linguistic distance continues to have a significant effect on child mortality, neither cultural

distance nor genetic distance has any significant effects on child mortality regardless of whether

linguistic distance enters the specification. In specifications that include either one or both

of cultural and genetic distance together with linguistic distance, linguistic distance clearly

dominates cultural and genetic distance.53

5.4 Distance from the Dominant Group

My LD variable (equation (2)) measures the average linguistic distance of an individual from all

other individuals living around her in circles of different radii. If information were indeed the

channel, then this approach implicitly assumes that the best-practice knowledge about health

resides randomly in the population in some group(s). Hence, the higher an individual’s average

distance is from the population around her, the less likely she is to have access to the best-practice

information. Another equally plausible alternative is that the best-practice information resides

with the dominant group. In this case, the linguistic distance from the dominant group would

be the relevant metric.54 In order to explore this second possibility, Appendix E calculates

a variable measuring distance from the dominant group (DD) and compares it with the LD

variable. In line with the findings of Francois et al. (2015), who show that political power in

Africa is proportional to group size, I assign dominance to the group with the largest size within

the circle. While my results using DD are similar to those using LD, I find LD to be both

statistically and economically more significant than DD.55

53These results are consistent with Fenske et al. (2017), who also find that including genetic distance in the
same specification as linguistic distance does not remove the effects of linguistic distance.

54In this case the relevant dimension of distance would be between the centre and the periphery, but not between
the peripheral groups themselves (Desmet et al., 2017).

55Given the conceptual appeal of the DD measure, Appendix E replicates all the main tables from the paper
using DD instead of LD.
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5.5 Selection on Unobservables

My identification strategy relies on controlling for a rich set of observable control variables and

fixed effects. In order to understand how selection on unobservable variables might be driving

my results, I turn to the methodology developed by Altonji et al. (2005) and Bellows and Miguel

(2009), who present new estimation strategies that can be used when strong prior information

regarding the exogeneity of the variable of interest is unavailable. Following their heuristics,

I check for coefficient stability while moving from a specification with a parsimonious set of

controls to the full set of controls.

I find that the coefficients become substantially larger when controlling for more observables,

which implies that selection on unobservables pushes the estimates away from zero. Following

Oster (2017), I also verify that the R2 becomes substantially larger when moving from the

restricted to unrestricted regressions. See, for instance, the movement in the coefficient for LD

and R2 while moving from columns 1 to 5 in Table 1. Hence, if I could have controlled for

the unobserved variables that might bias my results, my estimated beta coefficients would have

become much larger and my results would have been further strengthened.56

6 Channels

6.1 Linguistic Distance as a Barrier to Information

One possible explanation for why linguistic distance worsens health outcomes could be that it

acts as a barrier to health-related information. For instance, linguistically distant mothers might

not receive the information on best practices about how to rear their children, perhaps due to

lack of communication with groups who are very different to them. Another, though not the

only other, possibility is that linguistically distant mothers have worse access to public goods

in general, arising from, for instance discrimination, which harms their children’s health. This

section provides some evidence in favour of the former hypothesis.

In order to understand whether linguistic distance acts as a barrier to information, I exploit

the DHS question about whether the respondent has heard of the oral rehydration product (ORS)

for treating children with diarrhoea. Diarrhoea is the second leading cause of child mortality

causing 1.9 million child deaths every year.57 Oral rehydration therapy is the cornerstone of

56The full set of results from this section are not provided and are available from the author upon request.
57See Rehydration Project (23/04/2014) and WHO (02/05/2017).
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treatment for diarrhoea (Victora et al., 2000). To measure access to public goods in general,

I exploit information on access to four different public goods: access to electricity, access to

water, the individual’s educational attainment, and whether the individual is literate or not.

For instance, lower levels of literacy or educational attainment among linguistically distant

mothers might indicate lower levels of access to schools.58

The previous sections uncovered evidence of stronger effects for non-migrants. Moreover,

given the possibility that migrants might have acquired their knowledge on ORS in a location

other than the one in which they currently reside, I split the sample by migrant status. Table 8

examines whether linguistic distance impedes educational attainment, literacy, access to water,

electricity, and, finally, knowledge about ORS. The two panels present results for the sample split

by migrant status. The LD variable does not have a significant effect on any of the variables,

except for the ORS variable in the non-migrant sample. Hence, while LD does not impede

general access to public goods, it poses a barrier to information about ORS, in particular for

individuals who have never moved from their place of birth.59

The above findings suggest that individuals who are linguistically distant from others living

around them have less access to information, leading to higher rates of mortality for their

children. However, linguistically distant individuals do not necessarily face lower levels of access

to public goods in general.60 Furthermore, my results are driven by individuals who have never

moved from their place of residence rather than individuals who have migrated from their place

of birth. This further supports my interpretation of access to information being the channel.

If ethnic distance is a barrier to knowledge and information about how to take care of one’s

children, it is important to understand where individuals might acquire such information. If

individuals have moved from some other place to their current place of residence, then it is

likely that they have already acquired such information elsewhere. Hence, linguistic distance

in the place of their current residence would do little to affect their children’s health outcomes

unless LD affected discrimination in general rather than imposing information barriers.61

58These variables are outcome variables and not direct measures of public good provision. Hence, these results
are amenable to other interpretations.

59Appendix K.3 examines the effects of linguistic distance on additional variables: hand washing behaviour
(i.e. whether the respondent washed their hands before preparing their previous meal), knowledge about when
to seek medical treatment, knowledge about where to seek medical treatment, knowledge about the curability of
tuberculosis. I find that linguistic distance reduces the probability that individuals: washed their hands before
making their last meal; and know when to seek medical help by themselves, in the non-migrant sample.

60Since region-specific transfers might benefit certain ethnic groups (Burgess et al., 2015; Dickens, 2016), there
might exist more across-region variation in ethnic group specific public good access than within-region variation.
However, removing region fixed effects does not change the primary results from this section (Appendix F.1).

61Appendix G.2 shows that within the migrant sample the pernicious effects of LD are not dependent on either
how long the migrants have lived in their current place of residence or the age at which they migrated, even
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Next, to investigate further the information barriers faced by linguistically-different minori-

ties, I use survey data from Ugandan villages collected by Larson and Lewis (2017). They

establish that ethnicity is a barrier to information and that individuals are less likely to pass

on information to persons belonging to other ethnic groups. They use an experimental setting

that seeds identical information in two different villages of Uganda. “The seeded information

was that in three days an event would be held at which all adults in attendance would receive a

valuable block of soap in exchange for taking a survey” Larson and Lewis (2017). Following up

on their results, I use their individual-level data and show that individuals who are linguistically

distant from their neighbours are less likely to have heard about the advertised event (Appendix

Table K1). This lends further support to the information channel theory.

6.2 The Role of Kin Networks and Resource Sharing

Above, I have argued that higher linguistic distance acts as a barrier to health-related informa-

tion. Alternatively, rather than information barriers, linguistic distance could be capturing the

role of kin networks and resource sharing within close-knit ethnic communities. I investigate

this possibility by using the share or the count of other coethnic mothers or other coethnics in

general within the radius of interest. Appendix Table H1 shows that variables measuring the

presence of coethnics do not have any statistically significant effects on child mortality. Fur-

thermore, controlling for these variables does not affect the coefficients of my linguistic distance

variable, nor is there evidence of heterogeneity by these variables.62 Hence, overall the evidence

points more towards LD representing information barriers, rather than resource sharing within

close-knit ethnic communities.63

6.3 The Role of Selection

Selection can provide another possible explanation of why linguistic distance worsens health

outcomes. Women who are more linguistically distant to their neighbours and have children

might be different from those who are linguistically more distant and do not have children.

Appendix Table K2 tests this possibility by running regressions with mother-level characteristics

though older migrants are less likely to know about ORS and face higher child mortality rates.
62Appendix Table H1 further shows that the results are similar using the geographic distance from coethnics

instead of the number or proportion of coethnics.
63In the same vein, Appendix Table H2 demonstrates that using a continuous LD measure yields more significant

results compared to a 0-1 binary measure. This highlights that the intensive margin is more relevant than the
extensive margin.
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on the left hand side (in the spirit of Buckles and Hungerman, 2013). I do not find evidence of

selection.

7 Conclusion

Child mortality rates are still unacceptably high, particularly in sub-Saharan Africa. Nineteen

thousand children die worldwide every day before reaching the age of five. The highest rates of

child mortality are still concentrated in sub-Saharan Africa, where one in every nine children die

before reaching the age of five. This is not only more than 16 times the average for developed

regions (1 in 152) but also substantially higher than in South Asia (1 in 16), which has the

second-highest rates of child mortality (UNICEF, 2012). Not surprisingly, reducing child mor-

tality was part of the Millennium Developmental Goals and is currently part of the Sustainable

Development Goals.

In this paper, I created a high-quality individual-level micro database from the Demographic

and Health Surveys and combined it with a novel dataset on the spatial distribution of ethnic

groups at the level of approximately 1 km× 1 km for 14 sub-Saharan African countries. I mapped

individual-level ethnicities to languages and calculated how ethnically distant an individual

is from her neighbours. Subsequently, I demonstrated that the children of mothers who are

ethnically distant from their neighbours face a higher probability of dying before reaching the

age of five and that those who survive are shorter in stature. Further, I demonstrated that

children of ethnically distant mothers fare even worse in malaria-endemic areas and are less

likely to be aware of oral rehydration therapy, which can be of critical importance to their

children. Finally, using experimental data, I established that information is less likely to flow to

linguistically distant individuals more generally.

One clear policy implication from my paper is that, in order to reduce child mortality

rates in Africa, policy-makers need to target ethnic minorities, who may be losing out solely

because they speak a language distant from that spoken by their neighbours. Ensuring the

dissemination of health information to ethnic minorities, who currently appear to not have

access to such information, could help to achieve the Sustainable Development Goal of reducing

child mortality.
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Tables

Table 1: Mother’s Linguistic Distance and Child mortality: 50 km Radius

(1) (2) (3) (4) (5)
δ = 0.0025
Linguistic Distance 50 KM 0.0270∗∗∗ 0.0403∗∗ 0.0431∗∗∗ 0.0438∗∗∗ 0.0435∗∗∗

(0.00916) (0.0158) (0.0135) (0.0135) (0.0133)
ELF 50 KM -0.00315 -0.00406 -0.00548 -0.00662 -0.00739

(0.0101) (0.00971) (0.00894) (0.00830) (0.00823)
Observations 653666 653666 653666 653666 653666
R2 0.089 0.091 0.145 0.145 0.154

Survey-wave FE Y Y Y Y Y
Region × Year FE Y Y Y Y Y
Ethnicity FE N Y Y Y N
Religion FE N N Y Y Y
Individual Controls N N Y Y Y
Geographic isolation N N N Y Y
Ethnicity × Year FE N N N N Y

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses
are clustered at the region level. The dependent variable is the individual child-
level mortality outcome. The numbers after linguistic distance and ELF indicate the
radius of the circle around the mother in which these variables have been calculated.
The individual controls include female child dummy, mother’s age at birth, mother’s
age at birth squared, multiple birth indicator, birth order, birth order squared, short
birth spacing prior to the birth, short birth spacing after the birth, the location of
the mother in the form of an urban dummy, dummies for her educational attainment
and her families’ wealth index. Geographical isolation controls include the distance
of the mother’s location from the capital and the logged population in the circle.

Table 2: Mother’s Linguistic Distance and Child mortality: Alternative radii

(1) (2) (3) (4) (5) (6) (7) (8)
25 km 75 km 100 km 125 km 150 km 175 km 200 km 250 km

δ = 0.0025
Linguistic Distance 0.0347∗∗∗ 0.0474∗∗∗ 0.0487∗∗ 0.0528∗∗ 0.0537∗∗ 0.0540∗∗ 0.0543∗∗ 0.0522∗∗

(0.00964) (0.0177) (0.0192) (0.0205) (0.0226) (0.0229) (0.0227) (0.0236)
ELF -0.00372 -0.00893 -0.0112 -0.00540 0.00393 0.0104 0.0134 -0.0135

(0.00620) (0.00996) (0.0122) (0.0131) (0.0138) (0.0156) (0.0184) (0.0258)
Observations 653666 653666 653666 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at the region
level. The dependent variable is the individual child-level mortality outcome. The numbers in the column
headings indicate the radius of the circle around the mother in which the linguistic distance and ELF have
been calculated. All columns include controls for survey-wave FE, region × year FE, ethnicity × year FE,
religion FE, individual controls and geographic isolation controls described in the notes of Table 1.
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Table 3: Mother’s Linguistic Distance and Other Child Health Variables

(1) (2) (3) (4) (5)
infant neonatal HAZ stunted WAZ

Linguistic Distance 0.0204∗∗∗ 0.00725∗∗∗ -0.0875∗∗ 0.0313∗∗ -0.0497
(0.00601) (0.00235) (0.0381) (0.0132) (0.0317)

ELF -0.00291 -0.00357∗ 0.0233 -0.00605 0.101∗∗

(0.00445) (0.00194) (0.0504) (0.0169) (0.0409)
Observations 815267 861386 141475 141475 141475
R2 0.097 0.069 0.205 0.153 0.161

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses
are clustered at the region level. The column headings indicate the individ-
ual child-level dependent variable for each specification. These are: infant
mortality, neonatal mortality, height-for-age Z-score (HAZ), stunting, and the
weight-for-age Z-score (WAZ). A circle of radius 50 km has been considered
for calculating the linguistic distance and ELF variables. All columns include
controls for survey-wave FE, region × year FE, ethnicity × year FE, religion
FE, individual controls and geographic isolation controls described in the notes
of Table 1.

Table 4: Mother’s Linguistic Distance and child mortality: Robustness for aggregate diversity

(1) (2) (3) (4) (5) (6) (7)
ELFL15 ELFL10 ELFL5 ELFL2 ONLYELF ELFSQ NOELF

Linguistic Distance 0.0435∗∗∗ 0.0426∗∗∗ 0.0430∗∗∗ 0.0435∗∗∗ 0.0428∗∗∗ 0.0414∗∗∗

(0.0133) (0.0133) (0.0125) (0.0119) (0.0131) (0.0143)
ELF -0.00739 -0.00403 -0.00584 -0.00733 -0.00272 0.00339

(0.00823) (0.00757) (0.0115) (0.0135) (0.00955) (0.0213)
ELF squared -0.00956

(0.0254)
Observations 653666 653666 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154 0.154 0.154

ELPL15 ELPL10 ELPL5 ELPL2 ONLYELP ELPSQ Both
Linguistic Distance 0.0410∗∗∗ 0.0417∗∗∗ 0.0425∗∗∗ 0.0442∗∗∗ 0.0411∗∗∗ 0.0444∗∗∗

(0.0140) (0.0140) (0.0136) (0.0131) (0.0140) (0.0131)
ELP 0.00177 -0.00170 -0.00369 -0.00697 0.00396 -0.00679 0.0146∗

(0.00699) (0.00630) (0.00688) (0.00572) (0.00745) (0.0201) (0.00854)
ELP squared 0.00929

(0.0192)
ELF -0.0201∗∗

(0.0101)
Observations 653666 653666 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154 0.154 0.154

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at the region level.
The dependent variable is the individual child-level mortality outcome. In Panel 1 (Panel 2): column 1
controls for ELF (ELP) at aggregation Level 15; column 2 for ELF (ELP) at aggregation Level 10; column
3 for ELF (ELP) at aggregation Level 5; column 4 for ELF (ELP) at aggregation Level 2; column 5 for
ELF (ELP) at aggregation Level 15, without LD; column 6 for ELF (ELP) at aggregation Level 15,and its
square term. In column 7 of Panel 1, I do not control for ELF or ELP. In column 7 of Panel 2, I include
both ELF and ELP. A circle of radius 50 km has been considered for calculating the linguistic distance
and ELF variables. All columns include controls for survey-wave FE, region × year FE, ethnicity × year
FE, religion FE, individual controls and geographic isolation controls described in the notes of Table 1.

38



Table 5: Mother’s Linguistic Distance, Cultural Distance, Genetic Distance and Child mortality

(1) (2) (3) (4) (5) (6)
Linguistic Distance 0.0435∗∗∗ 0.0485∗∗∗ 0.0446∗∗∗ 0.0486∗∗∗

(0.0133) (0.0146) (0.0137) (0.0142)
Cultural Distance 0.0113 -0.0543 -0.0567

(0.0480) (0.0412) (0.0503)
Genetic Distance -0.0600 -0.227 0.0254

(0.228) (0.246) (0.293)
Observations 653666 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154 0.154

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are
clustered at the region level. The dependent variable is the individual child-level
mortality outcome. The column heading indicates the robustness test undertaken. A
circle of radius 50 km has been considered for calculating the linguistic, cultural and
genetic distance variables. Linguistic distance is based on author’s own calculations
from the Ethnologue dataset. Genetic distance is measured by the FST index (Spo-
laore and Wacziarg, 2016) constructed by the author using genetic distance data from
Pemberton et al. (2013). Cultural distance was constructed by the author, based on
matching Ethnologue linguistic groups with Murdock’s Ethnographic atlas, extending
a mapping by Giuliano and Nunn (2018). All columns include controls survey-wave
FE, region × year FE, ethnicity × year FE, religion FE, ELF in the circle, individual
controls and geographic isolation controls described in the notes of Table 1.

Table 6: Mother’s Linguistic Distance and Child mortality: Heterogeneity by Migration Status

(1) (2) (3) (4)
HetMigrant HetYearsLived Migrants NMigrants

Linguistic Distance 0.0577∗∗∗ 0.0341∗∗∗ 0.0198∗∗ 0.0758∗∗∗

(0.0148) (0.0114) (0.00935) (0.0137)
Het. Variable 0.00610∗∗∗ -0.000348∗∗∗

(0.00166) (0.0000718)
Linguistic Distance × Het. Variable -0.0185∗∗ 0.000555∗∗

(0.00819) (0.000270)
Observations 521217 521217 278952 241309
R2 0.163 0.163 0.177 0.167

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are
clustered at the region level. The dependent variable is the individual child-level mortality
outcome. In column 1 the Het. Variable refers to the 0-1 migrant status of the mother;
in column 2 it refers to the continuous variable indicating how many years the mother
has been living in the village where she was interviewed. In column 3 (column 4), I
restrict the sample to only children of mothers who are migrants (non-migrants). A
circle of radius 50 km has been considered for calculating the linguistic distance and ELF
variables. All columns include controls for survey-wave FE, region × year FE, ethnicity
× year FE, religion FE, individual controls and geographic isolation controls described
in the notes of Table 1.
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Table 7: Mother’s Linguistic Distance, Malaria Suitability and Child mortality

(1) (2) (3) (4)
Full Sample Migrants NMigrants

Linguistic Distance 0.0435∗∗∗ 0.0408∗∗∗ 0.0196∗∗ 0.0642∗∗∗

(0.0133) (0.00845) (0.00874) (0.00948)
Malaria Suitability 0.00377 0.00213 0.00181 0.000896

(0.00426) (0.00420) (0.00580) (0.00410)
ELF -0.00753 -0.00752 -0.0166∗ -0.00687

(0.00828) (0.00821) (0.00887) (0.0101)
Linguistic Distance × Malaria Suitability 0.0173∗∗∗ 0.00419 0.0218∗∗∗

(0.00560) (0.00500) (0.00715)
Observations 653666 653666 278952 241309
R2 0.154 0.154 0.177 0.167

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clus-
tered at the region level. The dependent variable is the individual child-level mortality
outcome. Malaria Suitability is measured by the malaria stability index originally con-
structed by Kiszewski et al. (2004). Columns 1 and 2 use the full sample of mothers. In
column 3 (column 4), I restrict the sample to only children of mothers who are migrants
(non-migrants). A circle of radius 50 km has been considered for calculating the linguistic
distance and ELF variables. All columns include controls for survey-wave FE, region ×
year FE, ethnicity × year FE, religion FE, individual controls and geographic isolation
controls described in the notes of Table 1.

Table 8: Public Goods, Information and Linguistic Distance: Migrants vs. Non-Migrants

(1) (2) (4) (5) (6)
education literacy water electricity ORS

Migrants
Linguistic Distance 0.0277 0.0101 -0.0352 0.0312 0.00154

(0.0795) (0.0362) (0.0271) (0.0190) (0.0178)
ELF -0.0198 -0.0278∗∗ 0.0565∗ -0.0171 -0.0190

(0.0311) (0.0138) (0.0294) (0.0127) (0.0330)
Observations 90456 71929 74748 89536 88542
R2 0.458 0.423 0.112 0.548 0.206

Non-Migrants
Linguistic Distance 0.000477 0.0121 -0.0352 0.00731 -0.0841∗∗

(0.0667) (0.0265) (0.0271) (0.0186) (0.0374)
ELF 0.0704 0.0561∗ 0.0565∗ -0.00774 -0.00560

(0.0545) (0.0294) (0.0294) (0.00942) (0.0308)
Observations 73681 60445 74748 72936 72648
R2 0.474 0.391 0.112 0.546 0.242

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses
are clustered at the region level. The column headings indicate the indi-
vidual mother-level dependent variable for each specification. These are:
educational attainment, literacy, access to water, access to electricity and
knowledge about ORS. A circle of radius 50 km has been considered for
calculating the linguistic distance and ELF variables. All columns include
controls for survey-wave FE, region FE, ethnicity FE, religion FE, year
of birth FE, dummies for wealth index, and geographic isolation controls
described in the notes of Table 1.
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Figures

Figure 1: Example of Overlapping Language Polygons

Notes: This map plots the linguistic groups in the south-eastern region of Mali from the
Ethnologue database. Polygons of different colours represent the different linguistic areas. The
polygon highlighted in blue demarcates the linguistic homeland of the Mamara Senoufo language
speakers. In the light blue shaded polygon in the south-east corner of the map, there are no
other languages spoken apart from Mamara Senoufo. In the polygon with a darker shade of
blue, just north of this area, both Mamara Senoufo and Northern Bobo Madare are spoken. In
the green shaded polygon in the centre of the map, Mamara Senoufo and Maasina Fulfulde are
spoken. Finally, in the pink shaded polygon in the west, Mamara Senoufo is spoken with two
other languages, namely Maasina Fulfulde and Bamanankan.
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Figure 2: Example of DHS Clusters and circles for Mali

Notes: This map plots the linguistic groups of Mali from the Ethnologue database (See Ap-
pendix Figure M3). The red dots represent the locations of the mother’s (DHS clusters) for Mali
and the circles around them represent 25 km circles around the mothers.
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FOR ONLINE PUBLICATION

APPENDIX for “The Health Costs of Ethnic Distance: Evidence from

Sub-Saharan Africa”

A Data Appendix

A.1 DHS Countries and Surveys Used

In this study, I use 30 DHS surveys from 14 sub-Saharan African countries. These are listed

in Table A1. These countries and surveys were chosen based on the availability of the GPS

coordinates and ethnicities of the mothers, and other covariates. In particular, countries and

surveys for which a one to one matching for a large number of the ethnicities was not possible

had to be omitted from the sample.

Table A1: Study Sample

Country DHS surveys used

Benin 1996, 2001

Burkina Faso 1993, 1998-99, 2003, 2010

Ethiopia 2000, 2005, 2011

Ghana 1993, 2998, 2003, 2008

Guinea 1999, 2005

Kenya 2003, 2008

Malawi 2000, 2004, 2010

Mali 1995-96, 2001, 2006

Namibia 2000

Niger 1998

Senegal 2005, 2010-11

Sierra Leone 2008

Uganda 2011

Zambia 2007

For example, Cameroon has multiple DHS surveys (namely, 1991, 1998, 2004 and 2011).

For the 1991 survey, the only two ethnicities provided are Cameroonian and others. Hence,

for my purposes, this survey is unusable. So is the 1998 survey, which did not collect GPS

data. The 2011 survey has a more disaggregated division of ethnic groups, but they are still too

broad to allow a one to one matching with languages. For instance, some of the ethnicities con-

sist of three or four groups combined together, for instance, “arab-choa/peulh/haoussa/kanuri”,

“cotier/ngoe/oroko” or “beti/bassa/mbam.” This makes a one-to-one ethnicity-to-language map-
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ping impossible. The 2004 survey contained more disaggregated data on ethnic groups, but a

sizeable proportion of the respondents remained unmapped. Hence, Cameroon had to be dis-

carded altogether. Several other countries and surveys had to be discarded for similar reasons.

A full list is available from the author upon request.

A.2 The Iterative Proportional Fitting Algorithm

This section explains the iterative proportional fitting (IPF) algorithm used to construct the

spatial distribution of language groups at the 1 km × 1 km resolution grid-cell level. The

procedure was initially developed by Desmet et al. (2020), to whom the following explanation

is heavily indebted.

First, consider an illustrative example. Figure M2 plots the polygons representing the lin-

guistic regions in the 14 countries in my sample, based on the Ethnologue database. The

polygons of different colours represent the different language groups. There are many regions

in these countries where multiple languages are spoken, which are represented by overlapping

polygons. Unfortunately, these overlapping polygons are not distinguishable in the map. In

order to illustrate this possibility consider an example from Mali. Figure M3 gives the linguistic

map of Mali. The area outlined in blue in the south-eastern corner of the country is the lin-

guistic homeland of the Mamara Senoufo speakers. Figure 1 from the main paper zooms into

this region. Notice that, while Mamara Senoufo is spoken in the entire area bordered in blue,

there are various possible overlaps with other languages. First, in the light blue–shaded polygon

in the south-eastern corner of the map, Mamara Senoufo is the only language spoken. In the

polygon shaded a darker blue, just north of this area, both Mamara Senoufo and Northern Bobo

Madare are spoken. In the green-shaded polygon in the centre of the map, Mamara Senoufo and

Maasina Fulfulde are spoken. Finally, in the pink-shaded polygon in the west, Mamara Senoufo

is spoken along with two other languages, namely Maasina Fulfulde and Bamanankan. The IPF

algorithm takes into account all of these possibilities.

I now expand on this example from Mali to explain the process of generating the final spatial

distribution of language groups in more detail. While Figure M3 provides the map of linguistic

regions in Mali, Figure M4 plots Mali’s population distribution at the 1 km × 1 km level using

data from LandScan. Figure M5 overlays the language polygons on the population distribution

for Mali. Based on the data generated from this combined map, and the information on total

populations pertaining to each language group in the country (provided by Ethnologue), the
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IPF algorithm allocates languages to each 1 km × 1 km grid-cell following the steps listed in the

next paragraphs. I repeat this exercise for each of the 14 countries in my sample to construct

the spatial distribution of linguistic groups for these countries.

Start by considering a country with M linguistic groups and K grid cells of 30 arc seconds ×

30 arc seconds resolution (which is approximately 1 km × 1 km at the equator). The objective

is to allocate each of these M linguistic groups to each of the K grid cells, such that the total

population per cell and the total population per language correspond to their actual values.

Following Desmet et al. (2020), I exploit three pieces of information: the number of people

living in each grid cell (from LandScan); the number of speakers of each language in each

country (from Ethnologue); and whether a language is spoken or not in any given grid cell

(obtained by rasterizing the digitized version of the Ethnologue database).

The information described above yield three matrices corresponding to the three distinct

pieces of information. First, using the LandScan data leads to matrix NK×1, the elements of

which give the total population in each of the K cells. The Ethnologue dataset allows the

construction of two matrices: matrix L1×M , the elements of which give the number of speakers

of each language in the country and the binary matrix BK×M the elements of which take the

values 1 or 0 denoting whether or not the language corresponding to the column is spoken in

the cell corresponding to the row. The following steps from Desmet et al. (2020) describe the

iterative proportional fitting algorithm that exploits this information:

1. “Step 0. Define T (0) = B.

2. Step 1. For each location `, assign a share T (2n−2)(`, i)/
∑

j T (2n−2)(`, j) to language i.

Hence,

T (2n−1)(`, i) =
T (2n−2)(`, i)∑
j T (2n−2)(`, j)

N (`, 1),

where n = 1, 2, . . . refers to the times the algorithm has iterated through Steps 1 and 2.

3. Step 2. For each language i, assign a share T (2n−1)(`, i)/
∑

k T (2n−1)(k, i) to cell `. Hence,

T (2n)(`, i) =
T (2n−1)(`, i)∑
k T (2n−1)(k, i)

L(1, i)

4. Step 3. Go through Step 1 and Step 2 until T (2n−1)(`, i) converge to T (2n)(`, i) for all `

and i” (Desmet et al., 2020).
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Step 1 ensures that the allocation satisfies the marginals on cell populations, that is,
∑

j T (2n−1)(`, j) =

N (`, 1). Step 2, on the other hand, ensures that the allocation satisfies the marginals on the

language populations, that is,
∑

k T (2n)(k, i) = L(1, i). For instance, the first time the algorithm

undertakes Step 1, each cell’s population is divided equally between the different languages that

are spoken in that cell. For instance, consider the example that four languages are spoken in

a cell, then the first time the algorithm undertakes Step 1, each language is assigned 25% of

that cell’s population. Similarly, Step 2 ensures that the sum of the population allocated to a

language is equal to the actual total number of speakers of that language (Desmet et al., 2020).

The iterative proportional fitting algorithm described above provides the cell level allocation

of language speakers: T (2n)(`, i). The algorithm is guaranteed to converge if the three matrices

L, N and B are fully consistent with each other. However, in the presence of small inconsistencies

between the three matrices due to minor imprecision in the data from the different sources, the

algorithm need not necessarily converge. For instance, one likely source of imperfection arises

from the possibility that the Ethnologue language polygons are not entirely accurate and that

there are minor imperfections in the locations of the language borders. Following Desmet et al.

(2020), I replace the 0 values in the binary matrix B by 0.000001 to allow for such imprecision.

This modification ensures that the iterative proportional fitting algorithm converges despite

minor inconsistencies in the matrices (Fienberg, 1970).2

A.3 Ethnicity and Language Matching

This section lists the steps undertaken to match ethnic groups from the DHS to languages from

Ethnologue. A full list of ethnicity and language matching is available upon request.

• If the name of an ethnicity from the DHS is identical to a language name from Ethnologue,

then I already have the required language and no further mapping is needed. For instance,

Kalenjin is both an ethnicity and a language spoken in Kenya.

• If the name of an ethnicity from the DHS is an alternative name for a language group

from Ethnologue, the former is simply renamed to the latter. This provides the required

language, and no further mapping is needed. For instance, Kissi is the name of an eth-

nic group in Kenya, in addition to being an alternative name for the Ekgussii language.

2Please refer to Desmet et al. (2020) for a more detailed discussion of these issues. For further reading on
the iterative proportional fitting algorithm, please refer to Bishop et al. (1975), Deming and Stephan (1940), and
Fienberg (1970).
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Similarly, Peulh is an alternative name for the Borgu Fulfulde language spoken in Benin.

• Some of the names of ethnic groups contained in the DHS are also the names of languages

from Ethnologue, but the spellings differ across the two sources. In this case, the language

assignation is trivial. For instance, the Afar and Amharic language groups from Ethiopia

are spelt as Affar and Amhara, respectively, in the DHS.

• In some instances, the DHS provides macro language groups in the ethnicity field. In these

cases, I assign one of the actual languages that form part of the macro language group to

the entire group. Since distances are based on the number of shared branches, assigning a

different language from the same group does not change the actual distance. For instance,

to the Luhya group in Kenya, I assign the Lubukusu language.

• For some groups I follow Jim Fearon’s classifications (originally from Fearon (2003)). For

example, the San group in Namibia is assigned the Haikom language. Similarly, the Diola

group in Senegal is assigned the Jola-Fonyi language.

• In a very small number of cases the same ethnicity name from the DHS referred to one of

several closely related languages listed in Ethnologue. For instance, Limba in Sierra Leone

could refer to either East Limba or West-Central Limba. I randomly assign it to East

Limba. But since both East Limba and West-Central Limba are closely related and share

precisely the same number of branches with any other language, this should not make a

difference in the actual linguistic distance calculations.
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A.4 Descriptive Statistics

Table A2: Child-Level Summary Statistics

Variable Mean Std. Dev. Min. Max. N
Child Death 0.228 0.42 0 1 654672
Infant Death 0.12 0.325 0 1 816268
Neonatal Death 0.055 0.229 0 1 862358
Height-for-Age Score -1.571 1.746 -6 5.99 141673
Weight-for-Age Score -1.182 1.304 -5.98 4.97 141673
Stunting 0.409 0.492 0 1 141673
Tetanus Vaccine 0.703 0.457 0 1 154814
Measles 0.844 0.810 0 3 196789
Polio Vaccine 0.278 0.448 0 1 182048
DPT Vaccine 0.466 0.499 0 1 161085
Iron Tablets 0.697 0.459 0 1 115590
Migrant 0.539 0.498 0 1 686231
Years lived in cluster 23.078 14.461 0 50 686231
Urban Residence 0.224 0.417 0 1 862358
Female Child 0.49 0.5 0 1 862358
Age At Birth 25 6.425 8 50 862358
Age At Birth Squared 666.292 348.533 64 2500 862358
Multiple Birth 0.032 0.177 0 1 862358
Birth Order Number 3.448 2.317 1 18 862358
Birth Order Number Squared 17.256 22.557 1 324 862358
Short Birth Spacing Prior 0.209 0.407 0 1 862358
Short Birth Spacing Post 0.209 0.407 0 1 862358
Highest educational level 0.424 0.664 0 3 862352
Educational Attainment 0.582 1.02 0 5 862352
Years of Education 1.997 3.405 0 26 862028
Log(Distance to the Capital) 5.13 1.217 -2.614 7.221 862358
Wealth Index 2.867 1.399 1 5 862358
Child’s Birth Year 1992.274 9.366 1955 2011 862358
Mother’s Birth Year 1968.416 9.572 1943 1996 862358
Log(Population) in 25 km 12.09 1.307 3.849 15.238 862358
Log(Population) in 50 km 13.272 1.164 6.137 15.665 862358
Log(Population) in 75 km 13.958 1.093 6.971 16.011 862358
Log(Population) in 100 km 14.428 1.045 7.467 16.346 862358
Log(Population) in 125 km 14.771 1.007 8.176 16.57 862358
Log(Population) in 150 km 15.036 0.974 8.582 16.87 862358
Log(Population) in 175 km 15.258 0.943 8.893 17.046 862358
Log(Population) in 200 km 15.437 0.915 9.332 17.188 862358
Log(Population) in 250 km 15.728 0.871 10.161 17.433 862358

Table A3: Mother Level Summary Statistics

Variable Mean Std. Dev. Min. Max. N
ORS Knowledge 0.761 0.426 0 1 205794
Educational Attainment 0.782 1.189 0 5 208896
Water Access 0.656 0.475 0 1 182482
Electricity Access 0.186 0.389 0 1 204920
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Table A4: Summary Statistics for LD variables

Variable Mean Std. Dev. Min. Max.
δ = 0.0025
Linguistic distance in 25 km 0.073 0.191 0 1
Linguistic distance in 50 km 0.077 0.189 0 1
Linguistic distance in 75 km 0.081 0.19 0 1
Linguistic distance in 100 km 0.083 0.191 0 1
Linguistic distance in 125 km 0.087 0.194 0 1
Linguistic distance in 150 km 0.089 0.196 0 1
Linguistic distance in 175 km 0.092 0.197 0 1
Linguistic distance in 200 km 0.095 0.199 0 1
Linguistic distance in 250 km 0.1 0.202 0 1
δ = 0.05 à la Desmet et al. (2012)
Linguistic distance in 25 km 0.094 0.178 0 1
Linguistic distance in 50 km 0.1 0.176 0 1
Linguistic distance in 75 km 0.105 0.177 0 1
Linguistic distance in 100 km 0.109 0.179 0 1
Linguistic distance in 125 km 0.113 0.182 0 1
Linguistic distance in 150 km 0.117 0.184 0 1
Linguistic distance in 175 km 0.12 0.186 0 1
Linguistic distance in 200 km 0.124 0.188 0 1
Linguistic distance in 250 km 0.131 0.192 0 1
δ = 0.50 à la Fearon (2003)
Linguistic distance in 25 km 0.277 0.247 0 1
Linguistic distance in 50 km 0.294 0.235 0 1
Linguistic distance in 75 km 0.31 0.228 0 1
Linguistic distance in 100 km 0.323 0.224 0 1
Linguistic distance in 125 km 0.337 0.221 0 1
Linguistic distance in 150 km 0.349 0.219 0 1
Linguistic distance in 175 km 0.359 0.216 0 1
Linguistic distance in 200 km 0.369 0.213 0 1
Linguistic distance in 250 km 0.388 0.208 0.002 1

N 862358
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Table A5: Summary statistics for ELF variables

Variable Mean Std. Dev. Min. Max.
ELF at Level 2 in 25 km 0.179 0.187 0 0.786
ELF at Level 2 in 50 km 0.207 0.193 0 0.792
ELF at Level 2 in 75 km 0.224 0.198 0 0.793
ELF at Level 2 in 100 km 0.238 0.199 0 0.802
ELF at Level 2 in 125 km 0.251 0.2 0 0.776
ELF at Level 2 in 150 km 0.262 0.2 0 0.779
ELF at Level 2 in 175 km 0.272 0.201 0 0.772
ELF at Level 2 in 200 km 0.281 0.201 0 0.773
ELF at Level 2 in 250 km 0.295 0.202 0 0.758
ELF at Level 5 in 25 km 0.245 0.236 0 0.871
ELF at Level 5 in 50 km 0.285 0.242 0 0.868
ELF at Level 5 in 75 km 0.313 0.247 0 0.87
ELF at Level 5 in 100 km 0.333 0.25 0 0.873
ELF at Level 5 in 125 km 0.353 0.251 0 0.866
ELF at Level 5 in 150 km 0.37 0.251 0 0.864
ELF at Level 5 in 175 km 0.384 0.25 0 0.854
ELF at Level 5 in 200 km 0.398 0.249 0 0.84
ELF at Level 5 in 250 km 0.42 0.248 0.001 0.838
ELF at Level 10 in 25 km 0.384 0.26 0 0.917
ELF at Level 10 in 50 km 0.457 0.25 0 0.906
ELF at Level 10 in 75 km 0.507 0.238 0 0.9
ELF at Level 10 in 100 km 0.542 0.225 0 0.898
ELF at Level 10 in 125 km 0.572 0.213 0 0.907
ELF at Level 10 in 150 km 0.596 0.199 0 0.913
ELF at Level 10 in 175 km 0.618 0.185 0 0.918
ELF at Level 10 in 200 km 0.637 0.17 0 0.921
ELF at Level 10 in 250 km 0.667 0.144 0.008 0.921
ELF at Level 15 in 25 km 0.408 0.27 0 0.918
ELF at Level 15 in 50 km 0.487 0.262 0 0.921
ELF at Level 15 in 75 km 0.54 0.25 0 0.937
ELF at Level 15 in 100 km 0.576 0.236 0 0.932
ELF at Level 15 in 125 km 0.607 0.222 0 0.938
ELF at Level 15 in 150 km 0.631 0.207 0 0.941
ELF at Level 15 in 175 km 0.653 0.192 0 0.944
ELF at Level 15 in 200 km 0.672 0.178 0 0.944
ELF at Level 15 in 250 km 0.702 0.152 0.008 0.938

N 862358
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Table A6: Summary statistics for ELP variables

Variable Mean Std. Dev. Min. Max.
ELP at Level 2 in 25 km 0.329 0.33 0 1
ELP at Level 2 in 50 km 0.377 0.339 0 1
ELP at Level 2 in 75 km 0.407 0.341 0 1
ELP at Level 2 in 100 km 0.428 0.339 0 1
ELP at Level 2 in 125 km 0.45 0.337 0 1
ELP at Level 2 in 150 km 0.469 0.335 0 1
ELP at Level 2 in 175 km 0.485 0.333 0 1
ELP at Level 2 in 200 km 0.5 0.331 0 1
ELP at Level 2 in 250 km 0.521 0.328 0 1
ELP at Level 5 in 25 km 0.372 0.327 0 1
ELP at Level 5 in 50 km 0.426 0.326 0 1
ELP at Level 5 in 75 km 0.456 0.321 0 1
ELP at Level 5 in 100 km 0.476 0.312 0 1
ELP at Level 5 in 125 km 0.495 0.305 0 0.999
ELP at Level 5 in 150 km 0.512 0.299 0 0.998
ELP at Level 5 in 175 km 0.526 0.295 0 0.994
ELP at Level 5 in 200 km 0.538 0.293 0 0.995
ELP at Level 5 in 250 km 0.555 0.289 0.002 0.994
ELP at Level 10 in 25 km 0.504 0.292 0 1
ELP at Level 10 in 50 km 0.567 0.253 0 1
ELP at Level 10 in 75 km 0.599 0.219 0 1
ELP at Level 10 in 100 km 0.616 0.189 0 1
ELP at Level 10 in 125 km 0.626 0.161 0 0.99
ELP at Level 10 in 150 km 0.633 0.142 0 0.986
ELP at Level 10 in 175 km 0.64 0.133 0 0.978
ELP at Level 10 in 200 km 0.646 0.129 0 0.975
ELP at Level 10 in 250 km 0.651 0.128 0.016 0.974
ELP at Level 15 in 25 km 0.504 0.286 0 1
ELP at Level 15 in 50 km 0.555 0.246 0 1
ELP at Level 15 in 75 km 0.577 0.217 0 1
ELP at Level 15 in 100 km 0.587 0.193 0 0.994
ELP at Level 15 in 125 km 0.592 0.173 0 0.982
ELP at Level 15 in 150 km 0.595 0.163 0 0.979
ELP at Level 15 in 175 km 0.597 0.161 0 0.978
ELP at Level 15 in 200 km 0.599 0.162 0 0.975
ELP at Level 15 in 250 km 0.596 0.164 0.016 0.974

N 862358

Table A7: Summary statistics for Cultural and Genetic Distance variables

Variable Mean Std. Dev. Min. Max.
Cultural distance in 25 km 0.065 0.05 0 0.254
Cultural distance in 50 km 0.068 0.047 0 0.254
Cultural distance in 75 km 0.072 0.044 0 0.251
Cultural distance in 100 km 0.075 0.043 0 0.244
Cultural distance in 125 km 0.077 0.041 0 0.235
Genetic distance in 25 km 0.008 0.007 0 0.185
Genetic distance in 50 km 0.009 0.006 0 0.185
Genetic distance in 75 km 0.009 0.006 0 0.185
Genetic distance in 100 km 0.009 0.006 0 0.185
Genetic distance in 125 km 0.01 0.006 0 0.185

N 862358
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Table A8: Correlations of Linguistic Distance and diversity (206,076 observations (mothers))

Correlation of LD with ELF Correlation of LD with ELP

25 km 50 km 75 km 100 km 125 km 25 km 50 km 75 km 100 km 125 km
Aggregation
Level 2 0.34 0.37 0.38 0.39 0.40 0.31 0.32 0.33 0.33 0.34
Level 5 0.26 0.28 0.30 0.31 0.32 0.27 0.28 0.28 0.28 0.28
Level 10 0.15 0.15 0.16 0.17 0.18 0.14 0.11 0.07 0.03 -0.01
Level 15 0.13 0.13 0.13 0.14 0.16 0.13 0.09 0.05 0.01 -0.03

25 km 50 km 75 km 100 km 125 km 25 km 50 km 75 km 100 km 125 km
Level 2 0.39 0.42 0.44 0.44 0.44 0.35 0.37 0.37 0.37 0.36
Level 5 0.33 0.36 0.38 0.38 0.38 0.32 0.32 0.32 0.31 0.30
Level 10 0.23 0.23 0.24 0.24 0.24 0.19 0.15 0.09 0.03 -0.04
Level 15 0.22 0.22 0.22 0.22 0.22 0.17 0.12 0.05 -0.01 -0.08

δ = 0.5 25 km 50 km 75 km 100 km 125 km 25 km 50 km 75 km 100 km 125 km
Level 2 0.58 0.61 0.63 0.64 0.65 0.57 0.59 0.61 0.63 0.63
Level 5 0.58 0.60 0.63 0.64 0.65 0.57 0.58 0.59 0.60 0.60
Level 10 0.47 0.47 0.47 0.47 0.47 0.42 0.38 0.32 0.25 0.17
Level 15 0.47 0.47 0.47 0.47 0.48 0.40 0.33 0.24 0.13 0.02

Table A9: Correlations of ELF and ELP (28,839 DHS clusters)

25 km 50 km 75 km 100 km 125 km
Level 1 0.99 1.00 0.99 0.99 0.99
Level 2 0.98 0.98 0.97 0.97 0.96
Level 3 0.98 0.97 0.97 0.96 0.96
Level 4 0.95 0.95 0.94 0.94 0.93
Level 5 0.94 0.94 0.93 0.93 0.92
Level 6 0.94 0.93 0.92 0.91 0.91
Level 7 0.92 0.90 0.89 0.88 0.87
Level 8 0.91 0.89 0.88 0.86 0.85
Level 9 0.87 0.80 0.73 0.65 0.56
Level 10 0.84 0.76 0.65 0.52 0.37
Level 11 0.83 0.74 0.62 0.49 0.32
Level 12 0.83 0.75 0.62 0.49 0.32
Level 13 0.83 0.75 0.62 0.49 0.32
Level 14 0.83 0.75 0.62 0.49 0.32
Level 15 0.78 0.63 0.44 0.25 0.03
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B Varying Parameter Values

B.1 Varying the values of δ

Table B1: Mother’s Linguistic Distance and Child mortality: 50 km Radius

(1) (2) (3) (4) (5)
δ = 0.0025
Linguistic Distance 50 KM 0.0270∗∗∗ 0.0403∗∗ 0.0431∗∗∗ 0.0438∗∗∗ 0.0435∗∗∗

(0.00916) (0.0158) (0.0135) (0.0135) (0.0133)
ELF 50 KM -0.00315 -0.00406 -0.00548 -0.00662 -0.00739

(0.0101) (0.00971) (0.00894) (0.00830) (0.00823)
Observations 653666 653666 653666 653666 653666
R2 0.089 0.091 0.145 0.145 0.154

δ = 0.05 à la Desmet et al. (2012)
Linguistic Distance 50 KM 0.0199∗ 0.0351∗ 0.0389∗∗ 0.0402∗∗ 0.0398∗∗

(0.0103) (0.0183) (0.0158) (0.0159) (0.0157)
ELF 50 KM -0.00337 -0.00482 -0.00649 -0.00771 -0.00847

(0.00993) (0.00936) (0.00878) (0.00805) (0.00800)
Observations 653666 653666 653666 653666 653666
R2 0.089 0.091 0.145 0.145 0.154

δ = 0.50 à la Fearon (2003)
Linguistic Distance 50 KM -0.0131 -0.00692 0.00886 0.0100 0.01000

(0.00959) (0.0140) (0.0123) (0.0124) (0.0123)
ELF 50 KM 0.00511 0.00298 -0.00449 -0.00597 -0.00678

(0.00999) (0.00976) (0.00883) (0.00811) (0.00815)
Observations 653666 653666 653666 653666 653666
R2 0.089 0.091 0.145 0.145 0.154

Survey-wave FE Y Y Y Y Y
Region x Year FE Y Y Y Y Y
Ethnicity FE N Y Y Y N
Religion FE N N Y Y Y
Individual Controls N N Y Y Y
Geographic isolation N N N Y Y
Ethnicity × Year FE N N N N Y

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses
are clustered at the region level. The dependent variable is the individual child-level
mortality outcome. The numbers after linguistic distance and ELF indicate the radius
of the circle around the mother in which these variables have been calculated. The
three panels use three different decay factors δ for calculating LD as indicated in the
panel headings. The individual controls include female child dummy, mother’s age at
birth, mother’s age at birth squared, multiple birth indicator, birth order, birth order
squared, short birth spacing prior to the birth, short birth spacing after the birth, the
location of the mother in the form of an urban dummy, dummies for her educational
attainment and her families’ wealth index. Geographical isolation controls include
the distance of the mother’s location from the capital and the logged population in
the circle.

11



Table B2: Mother’s Linguistic Distance and Child mortality: 50 km Radius

(1) (2) (3) (4) (5)
δ = 0.0025
Linguistic Distance 50 KM 0.0271∗∗∗ 0.0402∗∗ 0.0430∗∗∗ 0.0437∗∗∗ 0.0435∗∗∗

(0.00908) (0.0158) (0.0135) (0.0135) (0.0133)
ELF 50 KM -0.00303 -0.00396 -0.00540 -0.00653 -0.00739

(0.0101) (0.00969) (0.00893) (0.00829) (0.00823)
Observations 654506 654502 654237 654237 653666
R2 0.090 0.092 0.146 0.146 0.154

δ = 0.05 à la Desmet et al. (2012)
Linguistic Distance 50 KM 0.0201∗ 0.0349∗ 0.0388∗∗ 0.0400∗∗ 0.0398∗∗

(0.0102) (0.0183) (0.0158) (0.0159) (0.0157)
ELF 50 KM -0.00327 -0.00471 -0.00640 -0.00762 -0.00847

(0.00989) (0.00934) (0.00877) (0.00805) (0.00800)
Observations 654506 654502 654237 654237 653666
R2 0.090 0.092 0.146 0.146 0.154

δ = 0.50 à la Fearon (2003)
Linguistic Distance 50 KM -0.0130 -0.00712 0.00876 0.00989 0.01000

(0.00958) (0.0140) (0.0123) (0.0124) (0.0123)
ELF 50 KM 0.00521 0.00315 -0.00438 -0.00585 -0.00678

(0.00995) (0.00974) (0.00882) (0.00810) (0.00815)
Observations 654506 654502 654237 654237 653666
R2 0.090 0.092 0.146 0.146 0.154

Survey-wave FE Y Y Y Y Y
Region x Year FE Y Y Y Y Y
Ethnicity FE N Y Y Y N
Religion FE N N Y Y Y
Individual Controls N N Y Y Y
Geographic isolation N N N Y Y
Ethnicity × Year FE N N N N Y

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses
are clustered at the region level. The dependent variable is the individual child-level
mortality outcome. The numbers after linguistic distance and ELF indicate the radius
of the circle around the mother in which these variables have been calculated. The
three panels use three different decay factors δ for calculating LD as indicated in the
panel headings. The individual controls include female child dummy, mother’s age at
birth, mother’s age at birth squared, multiple birth indicator, birth order, birth order
squared, short birth spacing prior to the birth, short birth spacing after the birth, the
location of the mother in the form of an urban dummy, dummies for her educational
attainment and her families’ wealth index. Geographical isolation controls include
the distance of the mother’s location from the capital and the logged population in
the circle.

12



B.2 Alternative radii

Table B3: Mother’s Linguistic Distance and Child mortality: Alternative radii

(1) (2) (3) (4) (5) (6) (7) (8)
25 km 75 km 100 km 125 km 150 km 175 km 200 km 250 km

δ = 0.0025
Linguistic Distance 0.0347∗∗∗ 0.0474∗∗∗ 0.0487∗∗ 0.0528∗∗ 0.0537∗∗ 0.0540∗∗ 0.0543∗∗ 0.0522∗∗

(0.00964) (0.0177) (0.0192) (0.0205) (0.0226) (0.0229) (0.0227) (0.0236)
ELF -0.00372 -0.00893 -0.0112 -0.00540 0.00393 0.0104 0.0134 -0.0135

(0.00620) (0.00996) (0.0122) (0.0131) (0.0138) (0.0156) (0.0184) (0.0258)
Observations 653666 653666 653666 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154

δ = 0.05 à la Desmet et al. (2012)
Linguistic Distance 0.0299∗∗ 0.0439∗∗ 0.0445∗∗ 0.0476∗ 0.0465∗ 0.0463∗ 0.0449 0.0466∗

(0.0118) (0.0204) (0.0223) (0.0240) (0.0268) (0.0276) (0.0279) (0.0276)
ELF -0.00407 -0.0104 -0.0125 -0.00695 0.00257 0.00943 0.0132 -0.0136

(0.00596) (0.00956) (0.0117) (0.0126) (0.0132) (0.0149) (0.0177) (0.0251)
Observations 653666 653666 653666 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154

δ = 0.50 à la Fearon (2003)
Linguistic Distance 0.00553 0.0119 0.0129 0.0128 0.0107 0.0105 0.0112 0.0240

(0.00987) (0.0143) (0.0156) (0.0179) (0.0206) (0.0223) (0.0243) (0.0262)
ELF -0.00227 -0.00868 -0.0110 -0.00445 0.00629 0.0140 0.0182 -0.0119

(0.00571) (0.00970) (0.0121) (0.0134) (0.0142) (0.0158) (0.0189) (0.0255)
Observations 653666 653666 653666 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at the region
level. The dependent variable is the individual child-level mortality outcome. The numbers in the column
headings indicate the radius of the circle around the mother in which the linguistic distance and ELF have
been calculated. The three panels use three different decay factors δ for calculating LD as indicated in the
panel headings. All columns include controls for survey-wave FE, region × year FE, ethnicity × year FE,
religion FE, individual controls and geographic isolation controls described in the notes of Table B1.
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C Marginal Effects

Table C1: Marginal Effects

Full Sample Migrants Non-Migrants
Circle Radius Child Deaths % of SD Child Deaths % of SD Child Deaths % of SD

25 km 6.62 1.58% 3.31 0.79% 11.49 2.67%
50 km 8.22 1.96% 4.19 1.00% 14.09 3.28%
75 km 9.00 2.14% 4.15 0.99% 16.37 3.80%

100 km 9.30 2.22% 4.26 1.01% 16.86 3.92%
125 km 10.21 2.43% 4.08 0.97% 18.62 4.33%
150 km 10.48 2.50% 3.82 0.91% 18.96 4.41%
175 km 10.61 2.53% 3.54 0.84% 19.20 4.46%
200 km 10.75 2.56% 3.97 0.95% 18.67 4.34%
250 km 10.51 2.50% 4.23 1.01% 17.35 4.03%

Notes: This table provides the marginal effects for the most comprehensive specification
indicated in Table 1 for circles of alternative radii around the mother. The leftmost panel
includes the full sample of mothers, the middle panel restricts the sample to only migrant
mothers, while the last panel restricts the sample to only non-migrant mothers.

Table C2: Marginal Effects accounting for Malaria Suitability

Full Sample Migrants Non-Migrants
Circle Radius Child Deaths % of SD Child Deaths % of SD Child Deaths % of SD

25 km 19.77 4.71% 7.87 1.88% 23.27 5.41%
50 km 25.05 5.97% 8.33 1.99% 33.71 7.83%
75 km 30.71 7.32% 10.34 2.46% 43.54 10.12%

100 km 32.23 7.68% 13.75 3.28% 44.07 10.24%
125 km 33.13 7.89% 13.18 3.14% 46.42 10.79%
150 km 33.95 8.09% 14.26 3.40% 48.28 11.22%
175 km 33.39 7.95% 14.15 3.37% 46.58 10.83%
200 km 31.32 7.46% 13.19 3.14% 43.54 10.12%
250 km 28.01 6.67% 11.56 2.76% 40.08 9.31%

Notes: This table provides the marginal effects a one SD increase in LD when the malaria
stability index is one SD above its average value for circles of alternative radii around the
mother. The actual specification is estimated in Table 7. The leftmost panel includes the
full sample of mothers (corresponding to Column 2 of Table 7), the middle panel restricts
the sample to only migrant mothers (corresponding to Column 3 of Table 7), while the last
panel restricts the sample to only non-migrant mothers (corresponding to Column 4 of Table
7).
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D Other Health Variables

D.1 Immunizations Full Sample

Table D1: Mother’s Linguistic Distance and Other Variables:

(2) (3) (4) (5) (6)
tetanus measles polio dpt iron

Linguistic Distance 0.0103 0.0233 0.0113 0.0232 -0.0449∗

(0.0214) (0.0279) (0.0152) (0.0173) (0.0248)
ELF 0.00982 0.0341 -0.0239 -0.0266 0.000799

(0.0212) (0.0242) (0.0209) (0.0234) (0.0198)
Observations 154650 196627 181890 160914 115498
R2 0.264 0.329 0.249 0.366 0.360

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in paren-
theses are clustered at the region level. The column headings indicate
the individual-level dependent variable for each specification. These are:
tetanus vaccination, measles immunization, polio vaccination, DPT vacci-
nation, and if the mother received iron tablets during pregnancy. A circle
of radius 50 km has been considered for calculating the linguistic distance
and ELF variables. All columns include controls for survey-wave FE, re-
gion FE, ethnicity FE, religion FE, year of birth, dummies for wealth
index, and geographic isolation controls described in the notes of Table
B1.
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D.2 Heterogeneity by Migrant Status: Additional Variables

Table D2: Mother’s Linguistic Distance and Other Variables 1: Migrants vs. Non-Migrants

(1) (2) (3) (4) (5)
infant neonatal HAZ stunted WAZ

Migrants
Linguistic Distance 0.00574 0.00297 -0.0468 0.0159 -0.0437

(0.00502) (0.00312) (0.0761) (0.0252) (0.0465)
ELF -0.00561 -0.00510∗ 0.00662 -0.00842 0.0644

(0.00512) (0.00290) (0.0548) (0.0189) (0.0422)
Observations 348759 368880 66230 66230 66230
R2 0.107 0.079 0.214 0.162 0.177

Non-Migrants
Linguistic Distance 0.0396∗∗∗ 0.0134∗∗∗ -0.129∗∗ 0.0426∗∗∗ -0.0465

(0.00869) (0.00329) (0.0619) (0.0134) (0.0440)
ELF -0.00315 -0.00351 0.106∗ -0.0218 0.163∗∗∗

(0.00530) (0.00282) (0.0582) (0.0220) (0.0580)
Observations 299028 315688 52477 52477 52477
R2 0.111 0.082 0.218 0.169 0.169

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses
are clustered at the region level. The column headings indicate the individ-
ual child-level dependent variable for each specification. These are: infant
mortality, neonatal mortality, height-for-age Z-score (HAZ), stunting, and the
weight-for-age Z-score (WAZ). Panel 1 (Panel 2) restricts the sample to only
migrants (non-migrants). A circle of radius 50 km has been considered for
calculating the linguistic distance and ELF variables. All columns include
controls for survey-wave FE, region × year FE, ethnicity × year FE, religion
FE, individual controls and geographic isolation controls described in the notes
of Table B1.
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Table D3: Mother’s Linguistic Distance and Other Variables 2: Migrants vs. Non-Migrants

(1) (2) (3) (4) (5)
tetanus measles polio dpt iron

Migrants
Linguistic Distance 0.0620∗∗ 0.00764 0.0252 0.0387∗ 0.0271

(0.0261) (0.0292) (0.0199) (0.0225) (0.0256)
ELF 0.00164 0.0209 -0.0336 -0.0513∗ 0.00384

(0.0260) (0.0281) (0.0255) (0.0279) (0.0255)
Observations 67000 83952 77421 69444 48693
R2 0.249 0.336 0.217 0.359 0.310

Non-Migrants
Linguistic Distance -0.0639∗ -0.0166 -0.00954 0.00510 -0.108∗∗∗

(0.0323) (0.0288) (0.0251) (0.0227) (0.0343)
ELF 0.0196 0.0224 -0.0170 -0.0178 -0.00390

(0.0272) (0.0370) (0.0215) (0.0274) (0.0249)
Observations 54496 69350 64774 58565 39198
R2 0.300 0.340 0.239 0.384 0.351

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in paren-
theses are clustered at the region level. The column headings indicate
the individual-level dependent variable for each specification. These are:
tetanus vaccination, measles immunization, polio vaccination, DPT vac-
cination, and if the mother received iron tablets during pregnancy. Panel
1 (Panel 2) restricts the sample to only migrants (non-migrants). A circle
of radius 50 km has been considered for calculating the linguistic distance
and ELF variables. All columns include controls for survey-wave FE, re-
gion × year FE, ethnicity × year FE, religion FE, individual controls and
geographic isolation controls described in the notes of Table B1.

17



D.3 Additional Health Variables

Table D4: Additional Health Variables

(1) (2) (3) (4)
BCG Antenatal Visits Full Immunization Skilled Birth Attd.

Full Sample
Linguistic Distance 0.0218 -0.0129 0.00394 0.0516∗

(0.0235) (0.0185) (0.0116) (0.0287)
ELF 0.0127 0.00151 -0.0196 0.00886

(0.0228) (0.0222) (0.0171) (0.0154)
Observations 199113 158482 183371 196254
R2 0.182 0.408 0.251 0.374

Migrants
Linguistic Distance 0.0227 0.0353 0.0156 0.0492

(0.0260) (0.0265) (0.0168) (0.0398)
ELF -0.0310 -0.00500 -0.0259 -0.0317

(0.0256) (0.0251) (0.0216) (0.0212)
Observations 85071 68941 78105 84528
R2 0.182 0.381 0.221 0.355

Non-Migrants
Linguistic Distance 0.00474 -0.0771∗∗∗ -0.0154 0.0505∗

(0.0297) (0.0252) (0.0167) (0.0276)
ELF 0.00108 -0.00620 -0.0104 0.0238

(0.0361) (0.0269) (0.0153) (0.0169)
Observations 70483 56454 65278 64530
R2 0.200 0.440 0.233 0.359

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clus-
tered at the region level. The column headings indicate the individual-level dependent
variable for each specification. These are: BCG vaccination, Antenatal visits, whether
the child received full immunization, and if the delivery was done by a doctor or a
nurse (i.e. skilled birth attendance). A circle of radius 50 km has been considered for
calculating the linguistic distance and ELF variables. All columns include controls for
survey-wave FE, region FE, ethnicity FE, religion FE, year of birth, dummies for wealth
index, and geographic isolation controls described in the notes of Table B1. Panel 1
uses the full sample, Panel 2 uses the migrant sample and Panel 3 uses the non-migrant
sample.
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D.4 Correlates of the Migrant Status

Table D5: Correlates of Migrant status

(1) (2) (3) (4) (5)
25 km 50 km 75 km 100 km 125 km

Linguistic Distance 0.0543∗∗∗ 0.0646∗∗∗ 0.0758∗∗∗ 0.0827∗∗∗ 0.0874∗∗∗

(0.0196) (0.0220) (0.0250) (0.0265) (0.0275)
ELF 0.00873 0.0234 0.00887 -0.00671 -0.0103

(0.0217) (0.0208) (0.0294) (0.0405) (0.0526)
urban 0.0616∗∗∗ 0.0575∗∗∗ 0.0569∗∗∗ 0.0570∗∗∗ 0.0570∗∗∗

(0.0162) (0.0160) (0.0161) (0.0161) (0.0161)
population -0.0104 -0.00225 0.00381 0.00287 -0.00140

(0.00631) (0.00725) (0.00871) (0.0101) (0.0111)
Log(Distance to capital) -0.0106 -0.00717 -0.00459 -0.00469 -0.00594

(0.0113) (0.0115) (0.0114) (0.0111) (0.0108)
wealth index=2 0.0116 0.0110 0.0108 0.0108 0.0109

(0.0105) (0.0104) (0.0105) (0.0104) (0.0104)
wealth index=3 0.0280∗∗ 0.0274∗∗ 0.0274∗∗ 0.0275∗∗ 0.0276∗∗

(0.0126) (0.0124) (0.0125) (0.0124) (0.0124)
wealth index=4 0.0693∗∗∗ 0.0681∗∗∗ 0.0679∗∗∗ 0.0681∗∗∗ 0.0682∗∗∗

(0.0177) (0.0174) (0.0174) (0.0173) (0.0174)
wealth index=5 0.159∗∗∗ 0.158∗∗∗ 0.158∗∗∗ 0.158∗∗∗ 0.158∗∗∗

(0.0359) (0.0353) (0.0353) (0.0353) (0.0354)
Education: incomplete primary 0.00526 0.00480 0.00484 0.00501 0.00506

(0.0115) (0.0114) (0.0114) (0.0113) (0.0114)
Education: complete primary 0.00289 0.00229 0.00223 0.00232 0.00233

(0.0192) (0.0189) (0.0189) (0.0189) (0.0190)
Education: incomplete secondary -0.00331 -0.00374 -0.00387 -0.00388 -0.00389

(0.0253) (0.0251) (0.0251) (0.0251) (0.0251)
Education: complete secondary 0.0346 0.0341 0.0342 0.0344 0.0344

(0.0386) (0.0383) (0.0383) (0.0383) (0.0383)
Education: higher 0.0194 0.0186 0.0184 0.0186 0.0187

(0.0337) (0.0335) (0.0335) (0.0335) (0.0334)
Observations 164141 164141 164141 164141 164141
R2 0.122 0.122 0.122 0.122 0.122

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at
the region level. The dependent variable is the migrant status of the mother. The column
headings indicate the radii of the circles around the mother used to construct the linguistic
distance, ELF and population variables. “No education” is the excluded category for the
educational attainment variable. All columns include controls for survey-wave FE, region
FE, ethnicity FE, religion FE, year of birth, and geographic isolation controls described in
the notes of Table B1.
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E Distance from Dominant Group

Table E1: Summary statistics for Distance from Dominant Group

Variable Mean Std. Dev. Min. Max.
Distance from Dominant Group in 25 km 0.054 0.222 0 1
Distance from Dominant Group in 50 km 0.056 0.227 0 1
Distance from Dominant Group in 75 km 0.058 0.23 0 1
Distance from Dominant Group in 100 km 0.061 0.236 0 1
Distance from Dominant Group in 125 km 0.064 0.242 0 1
Distance from Dominant Group in 150 km 0.066 0.246 0 1
Distance from Dominant Group in 175 km 0.066 0.245 0 1
Distance from Dominant Group in 200 km 0.064 0.241 0 1
Distance from Dominant Group in 250 km 0.064 0.241 0 1

N 862358

Table E2: Correlation of Distance from Dominant Group with Linguistic Distance

Linguistic Distance
25 km 50 km 75 km 100 km 125 km 150 km 175 km 200 km 250 km

Dominant Group distance 25 km 0.9077 0.8604 0.8087 0.7678 0.727 0.6917 0.6624 0.6364 0.6006
Dominant Group distance 50 km 0.8792 0.8718 0.8265 0.7822 0.7415 0.7062 0.6769 0.6498 0.6134
Dominant Group distance 75 km 0.8092 0.8508 0.8582 0.8299 0.7942 0.7614 0.732 0.7051 0.6648
Dominant Group distance 100 km 0.758 0.8108 0.846 0.8571 0.8287 0.7975 0.7677 0.7394 0.6938
Dominant Group distance 125 km 0.7177 0.7772 0.8246 0.8529 0.8596 0.8388 0.8118 0.7847 0.7364
Dominant Group distance 150 km 0.6961 0.7565 0.8044 0.8364 0.8577 0.8577 0.8369 0.8108 0.7635
Dominant Group distance 175 km 0.6682 0.7286 0.7766 0.8147 0.8431 0.8553 0.8516 0.8313 0.7878
Dominant Group distance 200 km 0.6168 0.6821 0.7362 0.7832 0.824 0.8452 0.8524 0.8482 0.8135
Dominant Group distance 250 km 0.601 0.6535 0.7006 0.7502 0.796 0.8258 0.8434 0.8513 0.8514
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Table E3: Mother’s Linguistic Distance, Dominant Distance and Child mortality

(1) (2) (3) (4)
Linguistic Distance 0.0435∗∗∗ 0.0458∗ 0.0811∗

(0.0133) (0.0250) (0.0452)
Dominant Distance -0.00187 0.0224∗∗∗ 0.0412

(0.0120) (0.00671) (0.0289)
Linguistic Distance × Dominant Distance -0.0849

(0.0604)
Observations 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are
clustered at the region level. The dependent variable is the individual child-level
mortality outcome. Linguistic Distance measures the average distance of the mother
from all individuals living around her in the circle. Dominant Distance measures her
distance from the dominant (largest in size) group in the circle. A circle of radius 50
km has been considered for calculating the Linguistic and Dominant distance vari-
ables. All columns control for: female child dummy, mother’s age at birth, mother’s
age at birth squared, multiple birth indicator, birth order, birth order squared, short
birth spacing prior to the birth, short birth spacing after the birth, the location of
the mother in the form of an urban dummy, dummies for her educational attainment
and her families’ wealth index, ELF in the circle, distance of the mother’s location
from the capital and the logged population in the circle.

Table E4: Public Goods, Information and Linguistic Distance vs. Dominant Distance

(1) (2) (3) (4) (5)
education literacy water electricity ORS

Dominant Distance -0.00151 0.0178 0.0322 0.00256 -0.0480∗∗

(0.0488) (0.0148) (0.0658) (0.0117) (0.0204)
Observations 73681 60445 74748 72936 72648
R2 0.474 0.391 0.112 0.546 0.242

Linguistic Distance 0.00757 -0.0295 -0.0339 0.0141 -0.0884
(0.0787) (0.0404) (0.0961) (0.0383) (0.0592)

Dominant Distance -0.00591 0.0348∗ 0.0322 -0.00564 0.00361
(0.0607) (0.0206) (0.0658) (0.0247) (0.0237)

Observations 73681 60445 74748 72936 72648
R2 0.474 0.391 0.112 0.546 0.242

Linguistic Distance -0.0158 -0.0405 -0.0339 -0.0138 -0.188
(0.127) (0.0624) (0.0961) (0.0378) (0.113)

Dominant Distance -0.0382 0.0188 0.0322 -0.0444 -0.136∗

(0.133) (0.0616) (0.0658) (0.0496) (0.0754)
Linguistic Distance × Dominant Distance 0.0600 0.0296 -0.0402 0.0719 0.258∗

(0.261) (0.115) (0.151) (0.0605) (0.155)
Observations 73681 60445 74748 72936 72648
R2 0.474 0.391 0.112 0.546 0.243

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at
the region level. The column headings indicate the individual mother-level dependent variable
for each specification. These are: educational attainment, literacy, access to water, access
to electricity and knowledge about ORS. Dominant Distance measures her distance from the
dominant (largest in size) group in the circle. A circle of radius 50 km has been considered
for calculating the Linguistic and Dominant distance variables. This table uses the sample of
non-migrant mothers. All columns include controls for survey-wave FE, region FE, ethnicity
FE, religion FE, year of birth FE, dummies for wealth index, ELF in the circle, distance of the
mother’s location from the capital and the logged population in the circle.
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Table E5: Marginal Effects for Distance from Dominant Group

Full Sample Migrants Non-Migrants
Circle Radius Child Deaths % of SD Child Deaths % of SD Child Deaths % of SD

25 km 4.17 0.99% 1.70 0.41% 7.88 1.83%
50 km 5.10 1.21% 3.18 0.76% 8.75 2.03%
75 km 6.15 1.47% 4.42 1.05% 10.23 2.38%

100 km 5.66 1.35% 4.74 1.13% 10.15 2.36%
125 km 6.39 1.52% 4.17 0.99% 10.97 2.55%
150 km 5.93 1.41% 2.34 0.56% 11.27 2.62%
175 km 5.28 1.26% 2.17 0.52% 10.82 2.51%
200 km 4.62 1.10% 1.28 0.30% 9.91 2.30%
250 km 4.06 0.97% 0.97 0.23% 7.56 1.76%

Notes: This table provides the marginal effects for the most comprehensive specification
indicated in Table 1 of the main paper for circles of alternative radii around the mother but
using Dominant Distance instead of Linguistic Distance as the main independent variable
(See Table E6 below). Dominant Distance is measured as distance from the dominant (largest
in size) group within the circle. The leftmost panel includes the full sample of mothers, the
middle panel restricts the sample to only migrant mothers, while the last panel restricts the
sample to only non-migrant mothers.
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Table E6: Mother’s Dominant Distance and Child mortality: 50 km Radius

(1) (2) (3) (4) (5)
Dominant Distance 50 km 0.0153∗∗ 0.0198∗∗∗ 0.0219∗∗∗ 0.0221∗∗∗ 0.0224∗∗∗

(0.00605) (0.00729) (0.00671) (0.00681) (0.00671)
ELF 50 km -0.00167 -0.00126 -0.00254 -0.00358 -0.00442

(0.0105) (0.0109) (0.00959) (0.00909) (0.00897)
Observations 653666 653666 653666 653666 653666
R2 0.089 0.091 0.145 0.145 0.154

Survey-wave FE Y Y Y Y Y
Region × Year FE Y Y Y Y Y
Ethnicity FE N Y Y Y N
Religion FE N N Y Y Y
Individual Controls N N Y Y Y
Geographic isolation N N N Y Y
Ethnicity × Year FE N N N N Y

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are
clustered at the region level. The dependent variable is the individual child-level
mortality outcome. The numbers after dominant distance and ELF indicate the
radius of the circle around the mother in which these variables have been calculated.
The individual controls include female child dummy, mother’s age at birth, mother’s
age at birth squared, multiple birth indicator, birth order, birth order squared, short
birth spacing prior to the birth, short birth spacing after the birth, the location of
the mother in the form of an urban dummy, dummies for her educational attainment
and her families’ wealth index. Geographical isolation controls include the distance
of the mother’s location from the capital and the logged population in the circle.

Table E7: Mother’s Dominant Distance and Child mortality: Alternative radii

(1) (2) (3) (4) (5) (6) (7) (8)
25 km 75 km 100 km 125 km 150 km 175 km 200 km 250 km

Dominant Distance 0.0187∗∗∗ 0.0268∗∗∗ 0.0240∗∗ 0.0265∗∗∗ 0.0242∗∗ 0.0216∗∗ 0.0193 0.0170
(0.00617) (0.00903) (0.01000) (0.00974) (0.0103) (0.0104) (0.0139) (0.0143)

ELF -0.00133 -0.00597 -0.00764 -0.00121 0.00867 0.0164 0.0206 -0.00646
(0.00664) (0.0111) (0.0135) (0.0150) (0.0161) (0.0183) (0.0204) (0.0266)

Observations 653666 653666 653666 653666 653666 653666 653140 649890
R2 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at the region
level. The dependent variable is the individual child-level mortality outcome. The numbers in the column
headings indicate the radius of the circle around the mother in which the dominant distance and ELF have
been calculated. All columns include controls for survey-wave FE, region × year FE, ethnicity × year FE,
religion FE, individual controls and geographic isolation controls described in the notes of Table B1.
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Table E8: Mother’s Dominant Distance and Other Child Health Variables

(1) (2) (3) (4) (5)
infant neonatal HAZ stunted WAZ

Dominant Distance 0.0111∗∗∗ 0.00489∗∗∗ -0.0205 0.0116 -0.0167
(0.00345) (0.00123) (0.0253) (0.00889) (0.0168)

ELF -0.00156 -0.00316 0.0141 -0.00315 0.0966∗∗

(0.00466) (0.00196) (0.0500) (0.0170) (0.0399)
Observations 815267 861386 141475 141475 141475
R2 0.097 0.069 0.205 0.153 0.161

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses
are clustered at the region level. The column headings indicate the individ-
ual child-level dependent variable for each specification. These are: infant
mortality, neonatal mortality, height-for-age Z-score (HAZ), stunting, and the
weight-for-age Z-score (WAZ). A circle of radius 50 km has been considered
for calculating the dominant distance and ELF variables. All columns include
controls for survey-wave FE, region × year FE, ethnicity × year FE, religion
FE, individual controls and geographic isolation controls described in the notes
of Table B1.

Table E9: Mother’s Dominant Distance and child mortality: Robustness for aggregate diversity

(1) (2) (3) (4) (5) (6) (7)
ELFL15 ELFL10 ELFL5 ELFL2 ONLYELF ELFSQ NOELF

Dominant Distance 0.0224∗∗∗ 0.0221∗∗∗ 0.0221∗∗∗ 0.0221∗∗∗ 0.0222∗∗∗ 0.0220∗∗∗

(0.00671) (0.00662) (0.00637) (0.00606) (0.00655) (0.00698)
ELF -0.00442 -0.000963 -0.00113 -0.000532 -0.00272 0.00419

(0.00897) (0.00840) (0.0130) (0.0157) (0.00955) (0.0212)
ELF squared -0.00663

(0.0254)
Observations 653666 653666 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154 0.154 0.154

ELPL15 ELPL10 ELPL5 ELPL2 ONLYELP ELPSQ BOTH
Dominant Distance 0.0218∗∗∗ 0.0220∗∗∗ 0.0222∗∗∗ 0.0226∗∗∗ 0.0218∗∗∗ 0.0225∗∗∗

(0.00688) (0.00688) (0.00676) (0.00655) (0.00687) (0.00672)
ELP 0.00298 -0.000248 -0.00140 -0.00388 0.00396 -0.00326 0.0132

(0.00723) (0.00659) (0.00743) (0.00657) (0.00745) (0.0201) (0.00868)
ELP squared 0.00677

(0.0191)
ELF -0.0158

(0.0112)
Observations 653666 653666 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154 0.154 0.154

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at the region level.
The dependent variable is the individual child-level mortality outcome. In Panel 1 (Panel 2): column 1
controls for ELF (ELP) at aggregation Level 15; column 2 for ELF (ELP) at aggregation Level 10; column
3 for ELF (ELP) at aggregation Level 5; column 4 for ELF (ELP) at aggregation Level 2; column 5 for
ELF (ELP) at aggregation Level 15, without LD; column 6 for ELF (ELP) at aggregation Level 15,and its
square term. In column 7 of Panel 1, I do not control for ELF or ELP. In column 7 of Panel 2, I include
both ELF and ELP. A circle of radius 50 km has been considered for calculating the dominant distance
and ELF variables. All columns include controls for survey-wave FE, region × year FE, ethnicity × year
FE, religion FE, individual controls and geographic isolation controls described in the notes of Table B1.
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Table E10: Mother’s Dominant Distance and Child mortality: Heterogeneity by Migration
Status

(1) (2) (3) (4)
HetMigrant HetYearsLived Migrants NMigrants

Dominant Distance 0.0327∗∗∗ 0.0169∗∗ 0.0122∗∗ 0.0402∗∗∗

(0.00708) (0.00643) (0.00557) (0.00593)
ELF -0.00758 -0.00758 -0.0153∗ -0.00102

(0.0100) (0.0100) (0.00908) (0.0120)
Het Var. 0.00555∗∗∗ -0.000325∗∗∗

(0.00150) (0.0000656)
Dominant Distance × Het. Variable -0.0140∗∗ 0.000325∗

(0.00547) (0.000175)
Observations 521217 521217 278952 241309
R2 0.163 0.163 0.177 0.167

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are
clustered at the region level. The dependent variable is the individual child-level mortality
outcome. In column 1 the Het. Variable refers to the 0-1 migrant status of the mother; in
column 2 it refers to the continuous variable indicating how many years the mother has
been living in the village where she was interviewed. In column 3 (column 4), I restrict the
sample to only children of mothers who are migrants (non-migrants). A circle of radius
50 km has been considered for calculating the dominant distance and ELF variables. All
columns include controls for survey-wave FE, region × year FE, ethnicity × year FE,
religion FE, individual controls and geographic isolation controls described in the notes
of Table B1.

Table E11: Mother’s Dominant Distance, Malaria Suitability and Child mortality

(1) (2) (3) (4)
Full Sample Migrants NMigrants

Dominant Distance 0.0224∗∗∗ 0.0228∗∗∗ 0.0126∗∗ 0.0354∗∗∗

(0.00670) (0.00483) (0.00552) (0.00550)
Malaria Suitability 0.00375 0.00307 0.00206 0.00208

(0.00424) (0.00424) (0.00586) (0.00423)
ELF -0.00455 -0.00475 -0.0154∗ -0.00132

(0.00901) (0.00888) (0.00909) (0.0119)
Dominant Distance × Malaria Suitability 0.0102∗∗∗ 0.00230 0.0107∗∗

(0.00343) (0.00373) (0.00444)
Observations 653666 653666 278952 241309
R2 0.154 0.154 0.177 0.167

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clus-
tered at the region level. The dependent variable is the individual child-level mortality
outcome. Malaria Suitability is measured by the malaria stability index originally con-
structed by Kiszewski et al. (2004). Columns 1 and 2 uses the full sample of mothers.
In column 3 (column 4), I restrict the sample to only children of mothers who are mi-
grants (non-migrants). A circle of radius 50 km has been considered for calculating the
dominant distance and ELF variables. All columns include controls for survey-wave FE,
region × year FE, ethnicity × year FE, religion FE, individual controls and geographic
isolation controls described in the notes of Table B1.
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Table E12: Public Goods, Information and Dominant Distance: Migrants vs. Non-Migrants

(1) (2) (4) (5) (6)
education literacy water electricity ORS

Migrants
Dominant Distance -0.0186 -0.00337 -0.0120 0.0120 -0.00406

(0.0442) (0.0183) (0.0153) (0.0118) (0.0111)
ELF -0.0157 -0.0265∗ 0.0540∗ -0.0148 -0.0186

(0.0319) (0.0139) (0.0290) (0.0129) (0.0328)
Observations 90456 71929 74748 89536 88542
R2 0.458 0.423 0.112 0.548 0.206

Non-Migrants
Dominant Distance -0.00151 0.0178 0.0322 0.00256 -0.0480∗∗

(0.0488) (0.0148) (0.0658) (0.0117) (0.0204)
ELF 0.0707 0.0558∗ 0.0554∗ -0.00701 -0.0118

(0.0533) (0.0287) (0.0281) (0.00892) (0.0323)
Observations 73681 60445 74748 72936 72648
R2 0.474 0.391 0.112 0.546 0.242

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses
are clustered at the region level. The column headings indicate the indi-
vidual mother-level dependent variable for each specification. These are:
educational attainment, literacy, access to water, access to electricity and
knowledge about ORS. A circle of radius 50 km has been considered for
calculating the dominant distance and ELF variables. All columns include
controls for survey-wave FE, region FE, ethnicity FE, religion FE, year
of birth FE, dummies for wealth index, and geographic isolation controls
described in the notes of Table B1.
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F Alternative Fixed Effects

F.1 No regional FE

Table F1: Public Goods, Information and Linguistic Distance: Migrants vs. Non-Migrants - No
Region FE

(1) (2) (4) (5) (6)
education literacy water electricity ORS

Migrants
Linguistic Distance 0.0112 0.00697 -0.0261 0.0104 -0.0253

(0.0765) (0.0334) (0.0277) (0.0311) (0.0200)
ELF 0.0146 0.0135 0.0427∗ 0.0105 -0.0110

(0.0397) (0.0200) (0.0252) (0.0247) (0.0286)
Observations 90456 71929 74748 89536 88542
R2 0.451 0.416 0.099 0.527 0.191

Non-Migrants
Linguistic Distance -0.0844 -0.00493 -0.0261 -0.00411 -0.104∗∗∗

(0.102) (0.0301) (0.0277) (0.0222) (0.0323)
ELF 0.132∗ 0.0687∗∗ 0.0427∗ 0.0150 0.000966

(0.0737) (0.0280) (0.0252) (0.0155) (0.0320)
Observations 73681 60445 74748 72936 72648
R2 0.456 0.382 0.099 0.526 0.225

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in paren-
theses are clustered at the region level. A circle of radius 50 km has been
considered for calculating the linguistic distance and ELF variables. All
columns include controls for survey-wave FE, region FE, ethnicity FE, re-
ligion FE, year of birth FE, dummies for wealth index, and geographic
isolation controls described in the notes of Table B1.
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Table F2: Public Goods, Information and Linguistic Distance: Full Sample - No Region FE

(1) (2) (4) (5) (6)
education literacy water electricity ORS

Linguistic Distance -0.0316 -0.00381 0.00275 -0.00446 -0.0530∗∗

(0.0740) (0.0290) (0.0294) (0.0271) (0.0242)
ELF 0.0550 0.0318 0.0266 0.0242 0.00678

(0.0515) (0.0216) (0.0196) (0.0200) (0.0270)
Observations 205986 168365 179965 203565 202924
R2 0.445 0.394 0.125 0.544 0.182

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses
are clustered at the region level. The column headings indicate the indi-
vidual mother-level dependent variable for each specification. These are:
educational attainment, literacy, access to water, access to electricity and
knowledge about ORS. A circle of radius 50 km has been considered for
calculating the linguistic distance and ELF variables. All columns include
controls for survey-wave FE, region FE, ethnicity FE, religion FE, year
of birth FE, dummies for wealth index, and geographic isolation controls
described in the notes of Table B1.

Table F3: Within vs Across-Region Correlations: Public Goods, Information and Linguistic
Distance

Migrant Sample Non-Migrant Sample

Overall Across-Region Within-Region Overall Across-Region Within-Region
education 0.18 0.41 0.01 0.11 0.43 0.02
literacy 0.13 0.50 0.00 0.05 0.44 0.01
water -0.02 -0.12 -0.01 0.02 0.00 0.00
electricity 0.15 0.27 0.06 0.12 0.25 0.05
ORS 0.02 0.16 0.01 -0.03 0.22 0.01

Notes: This table provides the overall, across-region and within-region (unconditional) correlation
coefficients between linguistic distance and the four different public goods variables: educational
attainment, literacy, access to water, access to electricity; and the ORS variable. The left (right)
panel restricts the data to the migrant (non-migrant) sample. The column headings indicate the
type of correlation coefficient and the row headings indicate the variable with which the correlation
has been calculated. The overall correlation coefficient refers to the simple correlation between
the two variables of interest using the individual-level observations. To calculate the across-region
correlation coefficients I take averages at the region level for the 109 regions and then calculate the
correlation coefficient for the two variables of interest using the region-level observations. Finally,
to calculate the within-region correlation coefficient I calculate the correlations within each region
using the individual-level observations. This leads to approximately 109 correlation coefficients. I
then take the average (mean value) of these correlation coefficients to calculate the final within-
region correlation coefficient.
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Table F4: Within vs Across-Region Correlations: Public Goods, Information and Linguistic
Distance (Full Sample)

Full Sample
Overall Across-Region Within-Region

education 0.16 0.42 0.01
literacy 0.11 0.44 0.00
water 0.01 0.10 -0.02
electricity 0.11 0.24 0.05
ORS 0.00 0.22 0.01

Notes: This table provides the overall, across-region
and within-region (unconditional) correlation coeffi-
cients between linguistic distance and the four differ-
ent public goods variables: educational attainment,
literacy, access to water, access to electricity; and the
ORS variable for the full sample. The column head-
ings indicate the type of correlation coefficient and
the row headings indicate the variable with which the
correlation has been calculated. See notes to Table F3
for definitions of the alternative concepts of correla-
tion used in this table.
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F.2 DHS Cluster FE

Table F5: Mother’s Linguistic Distance and Child mortality: DHS cluster FE

(1) (2) (3) (4) (5)
25 km 50 km 75 km 100 km 125 km

Linguistic Distance 0.00373 0.00985 0.0140 0.0161∗ 0.0187∗

(0.00771) (0.00848) (0.00914) (0.00946) (0.00984)
Observations 653646 653646 653646 653646 653646
R2 0.182 0.182 0.182 0.182 0.182

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are
clustered at the DHS cluster level. The dependent variable is the individual
child-level mortality outcome. The column headings indicate the radii of the
circles around the mother used to construct the linguistic distance variable.
All columns include controls for survey-wave FE, region × year FE, ethnicity
× year FE, religion FE, individual controls described in the notes of Table B1.
The inclusion of DHS cluster FE implies that controls for ELF, urban dummy,
population and geographic isolation drop out.
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G Heterogeneity

G.1 Heterogeneity by Additional Variables

Table G1: Mother’s Linguistic Distance and Child mortality: Heterogeneity

(1) (2) (3) (4) (5) (6) (7) (8)
female urban education ELF ELP population lndist2cap wealth

Linguistic Distance 0.0439∗∗∗ 0.0470∗∗∗ 0.0454∗∗∗ 0.0365∗∗∗ 0.0364∗∗∗ 0.0456∗ 0.0245 0.0598∗∗

(0.0150) (0.0173) (0.0156) (0.0114) (0.0136) (0.0263) (0.0182) (0.0292)
Het. Variable -0.0180∗∗∗ -0.0148∗∗∗ -0.00398∗∗∗ -0.00827 0.00140 0.00581∗∗ 0.00405∗ -0.00911∗∗∗

(0.00136) (0.00302) (0.000405) (0.00797) (0.00700) (0.00260) (0.00219) (0.000998)
Interaction Term -0.000938 -0.00826 -0.000624 0.0139 0.00802 -0.000171 0.00356 -0.00477

(0.00572) (0.0141) (0.00166) (0.0312) (0.0197) (0.00247) (0.00247) (0.00583)
Observations 653666 653666 653413 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at the region level. The
dependent variable is the individual child-level mortality outcome. A circle of radius 50 km has been considered for
calculating the linguistic distance and ELF variables. The column headings indicate the Het. Variable included in the
specification. The individual controls include female child dummy, mother’s age at birth, mother’s age at birth squared,
multiple birth indicator, birth order, birth order squared, short birth spacing prior to the birth, short birth spacing after
the birth, the location of the mother in the form of an urban dummy, dummies for her educational attainment and her
families’ wealth index. Geographical isolation controls include the distance of the mother’s location from the capital and
the logged population in the circle.
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G.2 Heterogeneity by Migration years and Age of Migrant

Table G2: Mother’s Linguistic Distance and Child mortality: Heterogeneity by Age Migrated
and Residence Years

(1) (2) (3) (4) (5) (6)
Linguistic Distance 0.0196∗∗ 0.0196∗∗ 0.00536 0.0196∗∗ 0.0181∗ 0.0123

(0.00933) (0.00934) (0.00992) (0.00933) (0.00948) (0.0114)
Residence Years -0.00774∗∗∗ -0.00792∗∗∗

(0.00109) (0.00120)
Linguistic Distance × Residence Years 0.00185

(0.00428)
Veteran Migrant -0.0250∗∗∗

(0.00226)
Linguistic Distance × Veteran Migrant 0.0232∗∗∗

(0.00709)
Age Migrated 0.00732∗∗∗ 0.00674∗∗∗

(0.00103) (0.00112)
Linguistic Distance × Age Migrated 0.00577

(0.00401)
Old Migrant 0.00880∗∗∗

(0.00236)
Linguistic Distance × Old Migrant 0.0121

(0.00774)
Observations 278952 278952 278952 278952 278952 278952
R2 0.177 0.177 0.177 0.177 0.177 0.177

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at the region level. The
dependent variable is the individual child-level mortality outcome. A circle of radius 50 km has been considered for
calculating the linguistic distance variable. This table uses the sample of migrant mothers. All columns control for:
a female child dummy, mother’s age at birth, mother’s age at birth squared, multiple birth indicator, birth order,
birth order squared, short birth spacing prior to the birth, short birth spacing after the birth, the location of the
mother in the form of an urban dummy, dummies for her educational attainment, her families’ wealth index, distance
of the mother’s location from the capital, the logged population in the circle and ELF in the circle. The Residence
Years variable measures the standardized value of the number of years the migrant has lived in her current place of
residence. The Veteran Migrant variable is a binary 0-1 indicator variable which takes the value 1 if the migrant has
lived in her current village of residence for more than the median number of years in the sample. The Age Migrated
variable measures the standardized value of age at which migrant migrated to her current place of residence. The
Old Migrant variable is a binary 0-1 indicator variable which takes the value 1 if the migrant’s age at migration was
more than the median number of years in the sample.
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Table G3: ORS and Linguistic Distance: Heterogeneity by Age Migrated and Residence Years

(1) (2) (3) (4) (5) (6)
Linguistic Distance -0.0244 -0.0254 -0.0205 -0.0244 -0.0262 -0.0495

(0.0200) (0.0201) (0.0204) (0.0200) (0.0201) (0.0313)
Residence Years 0.00716∗∗ 0.00797∗∗

(0.00298) (0.00319)
Linguistic Distance × Residence Years -0.00739

(0.00775)
Veteran Migrant 0.00192

(0.00718)
Linguistic Distance × Veteran Migrant -0.0623∗∗

(0.0268)
Age Migrated -0.00684∗∗ -0.00791∗∗∗

(0.00285) (0.00273)
Linguistic Distance × Age Migrated 0.00914

(0.00930)
Old Migrant -0.00813

(0.00566)
Linguistic Distance × Old Migrant 0.0272

(0.0246)
Observations 88542 88542 88542 88542 88542 88542
R2 0.191 0.191 0.191 0.191 0.191 0.191

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at the region level.
The dependent variable is the individual mother-level ORS knowledge variable. A circle of radius 50 km has been
considered for calculating the linguistic distance variable. This table uses the sample of migrant mothers. All columns
include controls for survey-wave FE, region FE, ethnicity FE, religion FE, year of birth FE, dummies for wealth index,
and geographic isolation controls described in the notes of Table B1. The Residence Years variable measures the
standardized value of the number of years the migrant has lived in her current place of residence. The Veteran
Migrant variable is a binary 0-1 indicator variable which takes the value 1 if the migrant has lived in her current
village of residence for more than the median number of years in the sample. The Age Migrated variable measures
the standardized value of age at which migrant migrated to her current place of residence. The Old Migrant variable
is a binary 0-1 indicator variable which takes the value 1 if the migrant’s age at migration was more than the median
number of years in the sample.
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G.3 Heterogeneity by age

Table G4: Mother’s Linguistic Distance and Child mortality: Heteorgeneity by Migration &
Age at birth

(1) (2) (3) (4) (5) (6)
HetYearsLived HetYearsLived2 Migrants NMigrants Migrants age NMigrants age

Linguistic Distance 0.0341∗∗∗ 0.0393∗∗∗ 0.0198∗∗ 0.0758∗∗∗ 0.0222∗∗ 0.0767∗∗∗

(0.0114) (0.0116) (0.00935) (0.0137) (0.00938) (0.0138)
Residence Years -0.000348∗∗∗ -0.000331∗∗∗

(0.0000718) (0.0000720)
Linguistic Distance × Residence Years 0.000555∗∗ 0.000390

(0.000270) (0.000292)
Age -0.0349∗∗∗ -0.0359∗∗∗ -0.0332∗∗∗ -0.0395∗∗∗ -0.0347∗∗∗ -0.0402∗∗∗

(0.00218) (0.00223) (0.00210) (0.00282) (0.00209) (0.00287)
Age squared 0.0160∗∗∗ 0.0160∗∗∗ 0.0150∗∗∗ 0.0171∗∗∗ 0.0151∗∗∗ 0.0172∗∗∗

(0.000846) (0.000843) (0.000962) (0.00110) (0.000954) (0.00110)
Linguistic Distance × Age 0.0113∗∗ 0.0160∗∗ 0.00898∗

(0.00496) (0.00624) (0.00512)
Observations 521217 521217 278952 241309 278952 241309
R2 0.163 0.163 0.177 0.167 0.177 0.167

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at the region level. The dependent
variable is the individual child-level mortality outcome. A circle of radius 50 km has been considered for calculating the linguistic
distance variable. All columns control for: a female child dummy, mother’s age at birth, mother’s age at birth squared, multiple
birth indicator, birth order, birth order squared, short birth spacing prior to the birth, short birth spacing after the birth, the
location of the mother in the form of an urban dummy, dummies for her educational attainment, her families’ wealth index,
distance of the mother’s location from the capital, the logged population in the circle and ELF in the circle. The age variables
are standardized. The Residence Years variable measures the number of years the migrant has lived in her current place of
residence.
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H Alternative measures

H.1 Coethnics

Table H1: Mother’s Linguistic Distance and Child mortality: Kin Networks

(1) (2) (3) (4) (5) (6)
nCEMothers pCEMothers pCoethnic nCoethnic MotherDist CoethnicDist

Panel A: Coethnics without Linguistic Distance
Coethnic Var. 0.00420 0.00225 -0.159 0.00363 -0.00187 0.000795

(0.0268) (0.00630) (0.258) (0.00522) (0.00183) (0.00197)
Observations 653666 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154 0.154

Panel B: Coethnics with Linguistic Distance
Linguistic Distance 0.0436∗∗∗ 0.0457∗∗∗ 0.0435∗∗∗ 0.0468∗∗∗ 0.0475∗∗∗ 0.0456∗∗∗

(0.0133) (0.0130) (0.0133) (0.0134) (0.0142) (0.0138)
Coethnic Var. 0.00693 0.00635 0.00359 0.00827 -0.00387∗ -0.00150

(0.0269) (0.00553) (0.261) (0.00536) (0.00218) (0.00180)
Observations 653666 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154 0.154

Panel C: Interaction of Coethnics with Linguistic Distance
Linguistic Distance 0.0417∗∗∗ 0.0448∗∗∗ 0.0435∗∗∗ 0.0465∗∗∗ 0.0458∗∗∗ 0.0417∗∗∗

(0.0137) (0.0165) (0.0135) (0.0135) (0.0164) (0.0156)
Coethnic Var. 0.00597 0.00612 0.00313 0.00789 -0.00407∗ -0.00205

(0.0268) (0.00598) (0.282) (0.00556) (0.00221) (0.00217)
Linguistic Distance × Coethnic Var. 0.186 0.00333 0.00904 0.0132 0.00100 0.00261

(0.191) (0.0199) (1.541) (0.0370) (0.00339) (0.00378)
Observations 653666 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154 0.154

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at the region level.
The dependent variable is the individual child-level mortality outcome. The column heading indicates the coethnic
variable used in the specification. They are: nCEMothers: number of coethnic mothers in the circle; pCEMothers:
proportion of coethnic mothers in the circle; nCoethnic: number of coethnic individuals in the circle; pCoethnic:
proportion of coethnic individuals in the circle; MotherDist: average geographic (Euclidean) distance from coethnic
mothers in the country; CoethnicDist: average geographic (Euclidean) distance from all individuals belonging to the
same ethnicity in the country. All the measures based on the DHS data are weighted by the DHS sample weights. A
circle of radius 50 km has been considered for calculating the linguistic distance and coethnic variables. All columns
include controls for survey-wave FE, region × year FE, ethnicity × year FE, religion FE, ELF in the circle, individual
controls and geographic isolation controls described in the notes of Table B1.
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H.2 Measure of Simple LD

Table H2: Mother’s Linguistic Distance and Child mortality: Extensive vs. Intensive Margin

(1) (2) (3) (4)
Binary LD variable where

LD = 0 if LD > 0 LD > 0.001
LD = 0 LD < 0.001

LD -0.00172 -0.00102 0.0433∗∗∗ 0.0388∗∗∗

(0.00463) (0.00549) (0.0135) (0.0118)
Observations 653666 653666 577897 532199
R2 0.154 0.154 0.157 0.158

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors
in parentheses are clustered at the region level. The dependent
variable is the individual child-level mortality outcome. The col-
umn heading indicates the robustness test undertaken. Columns
1 and 2 use a binary measure of LD with LD equal to zero if
either LD = 0 (column 1) or LD < 0.001 (column 2). Otherwise
LD takes the value 1. Columns 3–4 use a continuous measure of
LD as used in the rest of the paper, but restricting the popula-
tion to mothers who have LD > 0 (column 3) and LD > 0.001
(column 4). A circle of radius 50 km has been considered for
calculating the linguistic distance variable. All columns include
controls survey-wave FE, region × year FE, ethnicity × year
FE, religion FE, ELF in the circle, individual controls and geo-
graphic isolation controls described in the notes of Table B1.

H.3 Cluster-based Spatial Distribution

As discussed in Section 2.1, the spatial distribution of linguistic groups is based on an iterative

proportional fitting algorithm combining different datasets. This section calculates LD and

ELF using cluster-level information on the ethnic groups from DHS survey data. I follow two

approaches. The first approach uses information from each DHS cluster along with nearby

clusters to predict the spatial distribution of ethnic groups within circles of different radii. This

is my preferred approach. The second approach uses only the information from the DHS cluster

of each mother without taking into consideration other nearby clusters. Appendix Table H3

provides the summary statistics and Appendix Table H4 provides the correlation of the IPF-

based LD and ELF variables with the cluster data-based LD and ELF variables. The correlation

of LD based on the iterative proportional fitting algorithm with the cluster-level LD based on

the first approach is approximately 0.8 and that based on the second approach is approximately

0.6 (for a circle of 50km radius). The high correlation of LD based on the IPF-based spatial

distribution and DHS survey data-based spatial distribution increases my faith on the IPF

algorithm-based data.

Panel A of Table H5 shows that using measures of LD and ELF using data from cluster of the
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mother’s location and the nearby clusters with the specified circular radius (50km in this case)

yield economically and statistically comparable results. Furthermore, the correlation between

the IPF based LD and the cluster level LD is of 0.8 (see Table H4). Panel B of Table H5 on the

other hand presents results based on using only the cluster-level information. The correlation

of LD based on this method with the IPF based LD is of 0.6 (see Table H4).

Measures of linguistic distance based on the spatial distribution of ethnic groups constructed

using the IPF algorithm combing the Ethnologue and the LandScan databases are better than

the DHS based measures due to several reasons. First, the DHS data are based on nationally-

representative surveys comparable across countries. Individual-level observations from these

data can be used as outcome variables. However, DHS is not the most appropriate source to

calculate the distribution of ethnic groups at a geographically disaggregated level, as it is not

representative at that level. The average DHS cluster does not have enough variation in terms

of number of groups. On the other hand, at the aggregate level Desmet et al. (2020) show

very high correlation of the IPF based data with the other census based data of Gershman and

Rivera (2018). Focusing on the regions for which Gershman and Rivera (2018) use census data,

Desmet et al. (2020) find correlations in local diversity of 0.80 at the regional level and 0.95 at

the country level.

Table H3: Summary statistics of cluster-based LD and ELF

Variable Mean Std. Dev. Min. Max.
LD (M1 un-weighted) 0.055 0.158 0 0.999
LD (M1 weighted) 0.047 0.162 0 1
LD (M2 un-weighted) 0.03 0.121 0 0.983
LD (M2 weighted) 0.024 0.125 0 1
ELF (M1 un-weighted) 0.467 0.221 0 0.884
ELF (M1 weighted) 0.245 0.213 0 0.815
ELF (M2 weighted) 0.142 0.204 0 0.857
ELF (M2 un-weighted) 0.268 0.254 0 0.875

N 206076
Notes: LD (IPF) and ELF (IPF) refer to linguistic distance
and ELF calculated using spatial distribution of language groups
based on the IPF algorithm. M1 refers to linguistic distance and
ELF calculated using data from the cluster of the mother’s loca-
tion along with nearby clusters within 50km around the mother.
M2 refers to using linguistic distance ELF calculated using us-
ing data from the cluster of the mother’s location alone without
considering nearby clusters. Weighted and un-weighted indicate
whether the observations have been weighted by DHS-provided
sample weights.
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Table H4: Cross-correlation of IPF with DHS

Variables LD (IPF)
LD (M1 unweighted) 0.773
LD (M1 weighted) 0.744
LD (M2 unweighted) 0.582
LD (M2 weighted) 0.527

Variables ELF (IPF)
ELF (M1 unweighted) 0.543
ELF (M1 weighted) 0.491
ELF (M2 unweighted) 0.194
ELF (M2 weighted) 0.165

Notes: See notes to Table H3 for
variable details.

Table H5: Mother’s Linguistic Distance and Child mortality: Cluster-based Measures

(1) (2) (3) (4) (5) (6)
Panel A: Cluster-based spatial distribution
Linguistic Distance 0.0334∗ 0.0416∗∗ 0.0334∗∗∗ 0.0416∗∗∗ 0.0334∗∗ 0.0416∗∗

(0.0181) (0.0203) (0.00746) (0.00889) (0.0167) (0.0188)
ELF -0.00140 0.00368 -0.00140 0.00368 -0.00140 0.00368

(0.00865) (0.00989) (0.00494) (0.00539) (0.00685) (0.00796)
Observations 653666 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154 0.154
Panel B: LD, ELF at the cluster Level
Linguistic Distance 0.0125 0.0166∗ 0.0125∗ 0.0166∗ 0.0125 0.0166∗

(0.0131) (0.00901) (0.00741) (0.00901) (0.0110) (0.00901)
ELF -0.000409 -0.00646 -0.000409 -0.00646 -0.000409 -0.00646

(0.00747) (0.00395) (0.00477) (0.00395) (0.00654) (0.00395)
Observations 653666 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154 0.154

Weighted measures Yes No Yes No Yes No
SE Cluster Region Region DHS cluster DHS cluster Ethnicity Ethnicity

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered
at level mentioned in the row labelled SE Cluster. The dependent variable is the individual
child-level mortality outcome. A circle of radius 50 km has been considered for calculating
the linguistic distance, ELF and population variables. The LD and ELF variables in Panel A
have been calculated using cluster-level information on the ethnic groups from DHS survey
data combining data from the cluster of the mother’s location as well as nearby clusters within
the specified circular radius (50km in this case). The LD and ELF variables in Panel B have
been calculated using cluster-level information on the ethnic groups from DHS survey data
exploiting data solely from the cluster of the mother’s location. The odd-numbered columns
weight the measures of LD and ELF with DHS-provided sample weights. The even-numbered
columns do not weight the measures of LD and ELF with DHS-provided sample weight. All
columns include controls survey-wave FE, region × year FE, ethnicity × year FE, religion
FE, ELF in the circle, individual controls and geographic isolation controls described in the
notes of Table B1.
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H.4 Measures of Diversity incorporating Distances

This section establishes the robustness of linguistic distance to controlling for distance-weighted

diversity indices. In particular, I calculate the Greenberg index of linguistic diversity (Greenberg,

1956), and an index of polarization incorporating based on Duclos et al. (2004) and Esteban and

Ray (2011). The Greenberg index of linguistic diversity (GIj)and the polarization index (PIj)

following Duclos et al. (2004) and Esteban and Ray (2011) are defined as follows:

GIj =
n∑
i=1

n∑
v=1

si(j)sv(j)τiv (5)

PIj =

n∑
i=1

n∑
v=1

[si(j)]
2sv(j)τiv (6)

where si(j) and sv(j) are the population shares of language groups i and v, and τiv is the distance

between languages i and v defined by formula (1). The Greenberg index can be thought of an

ELF index that incorporates continuous distances directly into the index and can be interpreted

as the expected linguistic distance between any two randomly selected individuals in the region

(Desmet et al., 2009). Likewise, the polarization index in equation (6) is similar to that defined

in equation (4), but incorporates the linguistic distance between the groups. Table H6 provides

the summary statistics for the new indices (for a circle of 50km radius around the mother) and

Table H7 provides the regression results controlling for the indices.

Table H6: Summary statistics for GI and PI

Variable Mean Std. Dev. Min. Max.
GI (δ = 0.0025) 0.075 0.131 0 0.634
GI (δ = 0.05) 0.102 0.129 0 0.65
GI (δ = 0.5) 0.269 0.177 0 0.758
PI (δ = 0.0025) 0.02 0.041 0 0.242
PI (δ = 0.05) 0.028 0.04 0 0.242
PI (δ = 0.05) 0.075 0.047 0 0.243

N 862358
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Table H7: Mother’s Linguistic Distance and Child mortality: Diversity with distances

(1) (2) (3) (4) (5) (6)
Linguistic Distance 0.0300∗∗ 0.0328∗∗∗ 0.0424∗∗∗ 0.0322∗∗ 0.0329∗∗ 0.0395∗∗∗

(0.0115) (0.0108) (0.0118) (0.0142) (0.0139) (0.0136)
GI (δ = 0.0025) 0.0406

(0.0284)
GI (δ = 0.05) 0.0306

(0.0293)
GI (δ = 0.5) -0.00371

(0.0151)
PI (δ = 0.0025) 0.125∗

(0.0670)
PI (δ = 0.05) 0.118∗

(0.0674)
PI (δ = 0.05) 0.0310

(0.0418)
Observations 653666 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154 0.154

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at
region level. The dependent variable is the individual child-level mortality outcome. A circle
of radius 50 km has been considered for calculating the linguistic distance, GI, PI and pop-
ulation variables. GI refers to the Greenberg index of linguistic diversity (Greenberg, 1956)
defined in equation (5) and was calculated using three alternative values of δ as highlighted
by the row labels. PI refers to the Polarization index of linguistic diversity (Duclos et al.,
2004; Esteban and Ray, 2011) defined in equation (6) and was calculated using three alter-
native values of δ as highlighted by the row labels. All columns include controls survey-wave
FE, region × year FE, ethnicity × year FE, religion FE, individual controls and geographic
isolation controls described in the notes of Table B1.
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I Alternative clustering of Standard Errors

Table I1: Mother’s Linguistic Distance and Child mortality: Alternative clustering of SE

(1) (2) (3) (4) (5)
25 km 50 km 75 km 100 km 125 km

Panel A: Cluster SE at ethnicity Level
Linguistic Distance 0.0347∗∗∗ 0.0435∗∗∗ 0.0474∗∗∗ 0.0487∗∗∗ 0.0528∗∗∗

(0.0103) (0.0136) (0.0170) (0.0184) (0.0200)
ELF -0.00372 -0.00739 -0.00893 -0.0112 -0.00539

(0.00544) (0.00735) (0.00862) (0.00996) (0.0118)
Observations 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154
Panel A: Cluster SE at ethnicity and region Level
Linguistic Distance 0.0347∗∗∗ 0.0435∗∗∗ 0.0474∗∗ 0.0487∗∗ 0.0528∗∗

(0.0117) (0.0160) (0.0207) (0.0224) (0.0240)
ELF -0.00372 -0.00739 -0.00893 -0.0112 -0.00540

(0.00626) (0.00848) (0.0103) (0.0124) (0.0140)
Observations 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parenthe-
ses are clustered at the ethnicity level in Panel A; and ethnicity and region
level in Panel B. The dependent variable is the individual child-level mortality
outcome. A circle of radius 50 km has been considered for calculating the
LD, ELF and population variables.All columns include controls survey-wave
FE, region × year FE, ethnicity × year FE, religion FE, ELF in the circle,
individual controls and geographic isolation controls described in the notes of
Table B1.
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J Malaria Robustness

Table J1: Mother’s Linguistic Distance, Malaria Suitability and Child mortality (Robustness)

(1) (2) (3) (4) (5) (6) (7)
est1 est2 est3 est4 est5 est6 est7

Linguistic Distance 0.0408∗∗∗ 0.0412∗∗∗ 0.0407∗∗∗ 0.0409∗∗∗ 0.0411∗∗∗ 0.0443∗∗∗ 0.0455∗∗

(0.00845) (0.00910) (0.00930) (0.00988) (0.0105) (0.0119) (0.0185)
Malaria Suitability 0.00213 0.00191 0.00164 0.00229 0.00212 0.00211 0.00177

(0.00420) (0.00416) (0.00417) (0.00423) (0.00420) (0.00420) (0.00419)
Linguistic Distance × Malaria Suitability 0.0173∗∗∗ 0.0175∗∗∗ 0.0178∗∗∗ 0.0172∗∗∗ 0.0174∗∗∗ 0.0174∗∗∗ 0.0177∗∗∗

(0.00560) (0.00553) (0.00564) (0.00588) (0.00591) (0.00563) (0.00624)
ELF -0.00752 -0.00791 -0.00799 -0.00776 -0.00751 -0.00777 -0.00850

(0.00821) (0.00846) (0.00832) (0.00820) (0.00826) (0.00810) (0.00822)
Urban Residence -0.0154∗∗∗ -0.0153∗∗∗ -0.0153∗∗∗ -0.0154∗∗∗ -0.0154∗∗∗ -0.0147∗∗∗ -0.0145∗∗∗

(0.00282) (0.00282) (0.00281) (0.00280) (0.00282) (0.00305) (0.00307)
Population 0.00708∗∗ 0.00716∗∗ 0.00718∗∗ 0.00689∗∗ 0.00703∗∗ 0.00711∗∗ 0.00688∗∗

(0.00296) (0.00298) (0.00298) (0.00292) (0.00291) (0.00300) (0.00287)
Tse Tse No. Species 0.00142

(0.00214)
Linguistic Distance × Tse Tse No. Species -0.000899

(0.00382)
Tse Tse Suitability 0.00585 0.00601

(0.00461) (0.00469)
Linguistic Distance × Tse Tse Suitability -0.000584 -0.00118

(0.00934) (0.0113)
Crop Suitability -0.00126 -0.00136

(0.00105) (0.00104)
Linguistic Distance × Crop Suitability -0.000223 0.000243

(0.00388) (0.00348)
Linguistic Distance × Population 0.000386 0.00118

(0.00365) (0.00489)
Linguistic Distance × Urban Residence -0.00825 -0.00907

(0.0139) (0.0156)
Observations 653666 653666 653666 653666 653666 653666 653666
R2 0.154 0.154 0.154 0.154 0.154 0.154 0.154

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at the region level. The dependent
variable is the individual child-level mortality outcome. Malaria Suitability is measured by the malaria stability index originally
constructed by Kiszewski et al. (2004). Different columns undertake different robustness tests by introducing interactions of
LD with: No. of Tse Tse species in the area (column 2), general Tse Tse suitability (a binary 0-1 variable) in the area (column
3), soil suitability for crops (column 4); population density (column 5), and an urban dummy (column 6). Finally, column 7
includes all the different interactions together (for Tse Tse suitability only one of the measures is used). A circle of radius 50
km has been considered for calculating the linguistic distance and ELF variables. All columns include controls for survey-wave
FE, region × year FE, ethnicity × year FE, religion FE, individual controls and geographic isolation controls described in the
notes of Table B1. Data on Tse Tse suitability have been downloaded from the FAO (27/03/2019). Soil suitability is measured
by the crop suitability index estimated for low input level rain-fed cereals downloaded from the FAO (28/03/2019).
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Table J2: Mother’s Linguistic Distance, Malaria Suitability and Child mortality: Migrant sample

(1) (2) (3) (4) (5) (6) (7)
Linguistic Distance 0.0196∗∗ 0.0166∗ 0.0154 0.0196∗∗ 0.0199∗∗ 0.0180 0.0121

(0.00874) (0.00965) (0.0103) (0.00960) (0.00976) (0.0109) (0.0161)
Malaria Suitability 0.00181 0.00192 0.00150 0.00205 0.00180 0.00184 0.00179

(0.00580) (0.00573) (0.00572) (0.00580) (0.00579) (0.00580) (0.00571)
Linguistic Distance × Malaria Suitability 0.00419 0.00368 0.00395 0.00410 0.00417 0.00413 0.00380

(0.00500) (0.00531) (0.00534) (0.00499) (0.00497) (0.00505) (0.00523)
Urban Residence -0.0160∗∗∗ -0.0160∗∗∗ -0.0159∗∗∗ -0.0159∗∗∗ -0.0160∗∗∗ -0.0163∗∗∗ -0.0163∗∗∗

(0.00315) (0.00316) (0.00312) (0.00312) (0.00315) (0.00320) (0.00316)
Population 0.0110∗∗∗ 0.0109∗∗∗ 0.0110∗∗∗ 0.0108∗∗∗ 0.0110∗∗∗ 0.0110∗∗∗ 0.0109∗∗∗

(0.00277) (0.00279) (0.00279) (0.00275) (0.00282) (0.00279) (0.00281)
Tse Tse No. Species -0.00152

(0.00220)
Linguistic Distance × Tse Tse No. Species 0.00460

(0.00339)
Tse Tse Suitability 0.000305 0.000255

(0.00583) (0.00590)
Linguistic Distance × Tse Tse Suitability 0.0127 0.0139

(0.0112) (0.0120)
Crop Suitability -0.00124 -0.00129

(0.00152) (0.00154)
Linguistic Distance × Crop Suitability 0.00000137 0.000185

(0.00428) (0.00403)
Linguistic Distance × Population 0.000499 -0.00116

(0.00373) (0.00441)
Linguistic Distance × Urban Residence 0.00319 0.00433

(0.0132) (0.0143)
Observations 278952 278952 278952 278952 278952 278952 278952
R2 0.177 0.177 0.177 0.177 0.177 0.177 0.177

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at the region level. The dependent
variable is the individual child-level mortality outcome. Malaria Suitability is measured by the malaria stability index originally
constructed by Kiszewski et al. (2004). Different columns undertake different robustness tests by introducing interactions of
LD with: No. of Tse Tse species in the area (column 2), general Tse Tse suitability (a binary 0-1 variable) in the area (column
3), soil suitability for crops (column 4); population density (column 5), and an urban dummy (column 6). Finally, column 7
includes all the different interactions together (for Tse Tse suitability only one of the measures is used). A circle of radius 50
km has been considered for calculating the linguistic distance and ELF variables. All columns include controls for survey-wave
FE, region × year FE, ethnicity × year FE, religion FE, individual controls and geographic isolation controls described in the
notes of Table B1. Data on Tse Tse suitability have been downloaded from the FAO (27/03/2019). Soil suitability is measured
by the crop suitability index estimated for low input level rain-fed cereals downloaded from the FAO (28/03/2019).
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Table J3: Mother’s Linguistic Distance, Malaria Suitability and Child mortality: Non-Migrant
sample

(1) (2) (3) (4) (5) (6) (7)
Linguistic Distance 0.0642∗∗∗ 0.0697∗∗∗ 0.0680∗∗∗ 0.0687∗∗∗ 0.0698∗∗∗ 0.0680∗∗∗ 0.0856∗∗∗

(0.00948) (0.00937) (0.00943) (0.0131) (0.0153) (0.0131) (0.0270)
Malaria Suitability 0.000895 0.000805 0.000587 0.000909 0.000791 0.000936 0.000568

(0.00410) (0.00412) (0.00412) (0.00412) (0.00408) (0.00411) (0.00413)
Linguistic Distance × Malaria Suitability 0.0218∗∗∗ 0.0202∗∗∗ 0.0213∗∗∗ 0.0229∗∗∗ 0.0222∗∗∗ 0.0216∗∗∗ 0.0222∗∗∗

(0.00715) (0.00664) (0.00677) (0.00838) (0.00815) (0.00715) (0.00826)
Urban Residence -0.0259∗∗∗ -0.0258∗∗∗ -0.0258∗∗∗ -0.0259∗∗∗ -0.0260∗∗∗ -0.0249∗∗∗ -0.0245∗∗∗

(0.00438) (0.00442) (0.00439) (0.00438) (0.00438) (0.00486) (0.00497)
Population 0.0100∗∗ 0.0104∗∗ 0.0104∗∗ 0.00977∗∗ 0.00938∗∗ 0.0101∗∗ 0.00936∗∗

(0.00403) (0.00401) (0.00397) (0.00395) (0.00367) (0.00409) (0.00359)
Tse Tse No. Species 0.00200

(0.00255)
Linguistic Distance × Tse Tse No. Species -0.00982

(0.00670)
Tse Tse Suitability 0.00688 0.00740

(0.00572) (0.00578)
Linguistic Distance × Tse Tse Suitability -0.0174 -0.0256

(0.0191) (0.0240)
Crop Suitability -0.000464 -0.000620

(0.00139) (0.00139)
Linguistic Distance × Crop Suitability -0.00593 -0.00439

(0.00742) (0.00713)
Linguistic Distance × Population 0.00465 0.00661

(0.00731) (0.00928)
Linguistic Distance × Urban Residence -0.0108 -0.0132

(0.0166) (0.0198)
Observations 241309 241309 241309 241309 241309 241309 241309
R2 0.167 0.167 0.167 0.167 0.167 0.167 0.167

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at the region level. The dependent
variable is the individual child-level mortality outcome. Malaria Suitability is measured by the malaria stability index originally
constructed by Kiszewski et al. (2004). Different columns undertake different robustness tests by introducing interactions of
LD with: No. of Tse Tse species in the area (column 2), general Tse Tse suitability (a binary 0-1 variable) in the area (column
3), soil suitability for crops (column 4); population density (column 5), and an urban dummy (column 6). Finally, column 7
includes all the different interactions together (for Tse Tse suitability only one of the measures is used). A circle of radius 50
km has been considered for calculating the linguistic distance and ELF variables. All columns include controls for survey-wave
FE, region × year FE, ethnicity × year FE, religion FE, individual controls and geographic isolation controls described in the
notes of Table B1. Data on Tse Tse suitability have been downloaded from the FAO (27/03/2019). Soil suitability is measured
by the crop suitability index estimated for low input level rain-fed cereals downloaded from the FAO (28/03/2019).
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Table J4: Bednet Possession and Use

Bednet Possession Bednet Use
Linguistic Distance 0.0327 0.0324 0.0345∗ 0.0635∗ 0.0636∗ 0.0534∗

(0.0300) (0.0298) (0.0207) (0.0350) (0.0350) (0.0281)
Malaria Malaria Suitability 0.0267 0.0230 -0.00652 -0.00980

(0.0192) (0.0197) (0.0170) (0.0176)
Linguistic Distance × Malaria Suitability 0.0349∗∗ 0.0311∗

(0.0141) (0.0169)
Observations 159084 159084 159084 106656 106656 106656
R2 0.322 0.322 0.322 0.195 0.195 0.195

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at the
region level. The dependent variable in columns 1–3 is bednet possession at the mother level, which
is based on the answer to the question “have bednet for sleeping.” The dependent variable in columns
4–6 is bednet use at the mother level, which is based on the answer to the question ”slept under bednet
last night”. Malaria Suitability is measured by the malaria stability index originally constructed by
Kiszewski et al. (2004). A circle of radius 50 km has been considered for calculating the linguistic
distance and ELF variables. All columns include controls for survey-wave FE, region FE, ethnicity FE,
religion FE, year of birth FE, dummies for wealth index, and geographic isolation controls described
in the notes of Table B1.
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K Channels

K.1 Information Treatment from Larson and Lewis (2017)

Table K1: Linguistic Distance and Information

(1) (2)
Linguistic Distance -46.09∗∗∗ -41.06∗∗

(15.10) (15.95)
Observations 440 379
R2 0.464 0.333

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Robust standard errors
in parentheses. All variables are based on survey data from Ugandan
villages collected by Larson and Lewis (2017). They use an experi-
mental setting that seeds identical information in two different villages
of Uganda. “The seeded information was that in three days an event
would be held at which all adults in attendance would receive a valuable
block of soap in exchange for taking a survey” Larson and Lewis (2017).
The dependent variable is a 0-1 binary variable which takes the value
of 1 if individuals have heard about the event that was announced by
the experimenters and 0 otherwise. A circle of radius 50 km has been
considered for calculating the linguistic distance variable. All columns
include controls for education, material of walls of house, type of job,
religion, gender, if respondent was a seed in the information spread
intervention, occupation, and age. Column 1 also includes a dummy
identifying whether the individual attended the soap event. Column 2
restricts the sample to individuals who did not attend the soap event.
Please refer to Larson and Lewis (2017) for further details.
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K.2 Selective Fertility

Table K2: Test for Selective Fertility

(1) (2) (3) (4) (5)
Education Partner’s Education Currently Working Worked Past Wealth Index

Linguistic Distance 0.0341 0.142∗∗ 0.0361 0.0383 0.0716
(0.0626) (0.0556) (0.0253) (0.0255) (0.0826)

ELF 0.0340 0.0415 0.0122 0.0305∗ 0.0937
(0.0436) (0.0507) (0.0159) (0.0165) (0.0770)

Observations 205986 193735 205704 196289 205988
R2 0.413 0.415 0.189 0.185 0.441

Female child Height Weight HAZ respondent No. of children
Linguistic Distance -0.00190 -0.221 0.482 -5.043∗ -0.0272

(0.00354) (0.162) (0.485) (2.763) (0.0631)
ELF -0.000480 -0.215∗ 0.157 -3.010 0.0363

(0.00364) (0.129) (0.256) (3.057) (0.0572)
Observations 861386 205988 205988 144728 205988
R2 0.012 0.331 0.378 0.162 0.545

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered at the region level.
The column headings indicate the individual mother-level dependent variable for each specification, except for
column 1 of panel 2 where the regression is at the child level and the dependent variable is at the child level.
The mother-level dependent variables are: educational attainment, partner0s educational attainment, current
work status, past work status, height in cms, weight in cms, height-for-age z-score, and total no. of children.
A circle of radius 50 km has been considered for calculating the linguistic distance and ELF variables. All
columns (except column 1 of panel 2) include controls for survey-wave FE, region FE, ethnicity FE, religion
FE, year of birth FE, dummies for wealth index, and geographic isolation controls described in the notes of
Table B1. Column 1 of panel 2 includes controls for survey-wave FE, region × year FE, ethnicity × year FE,
religion FE, individual controls and geographic isolation controls described in the notes of Table B1.
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K.3 Additional Information Variables

Table K3: Additional Information Variables

(1) (2) (3) (4)
Hand washing Seeking Medical Where to Go TB Curable

Panel 1. Full Sample
Linguistic Distance -0.0288 -0.00729 -0.0189 -0.00911

(0.0200) (0.0290) (0.0177) (0.0262)
Observations 71108 65301 63870 43030
R2 0.140 0.184 0.066 0.096
Panel 2. Migrant Sample
Linguistic Distance 0.0229∗∗ 0.0441 -0.0276 -0.0520∗∗

(0.00881) (0.0278) (0.0255) (0.0234)
Observations 35951 33253 33750 19766
R2 0.091 0.145 0.057 0.104
Panel 3. Non-Migrant Sample
Linguistic Distance -0.0718∗∗∗ -0.0562∗∗ -0.00221 0.0147

(0.0239) (0.0213) (0.0186) (0.0556)
Observations 34967 31886 29932 14065
R2 0.185 0.220 0.088 0.096

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses
are clustered at the region level. The column headings indicate the individual
mother-level dependent variable for each specification. The dependent variable in
column 1 is a binary 0-1 variable indicating whether the individual washed her
hands before preparing last meal. In column 2 it indicates whether the respondent
can decide by herself whether or not the child should be taken for medical treat-
ment when child is seriously ill. It takes the value of 1 if they answer either “yes”
or “depends” to the question and 0 if they answer “no”. In column 3 the depen-
dent variable asks if knowing where to go when they are sick is a major problem
preventing the respondent from getting a medical advice or treatment. It takes
the value of 0 if they answer “no problem” or “small problem” to the question
and 1 if they answer “big problem”. The dependent variable in column 4 is based
on a question that asks respondents if TB can be cured. It take the value 0 if they
answer “No” or “don’t know” and 1 if they answer “yes”. A circle of radius 50
km has been considered for calculating the linguistic distance and ELF variables.
All columns include controls for ELF, survey-wave FE, region FE, ethnicity FE,
religion FE, year of birth FE, dummies for wealth index, and geographic isolation
controls described in the notes of Table B1.
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L Adjustments for Multiple Comparisons

Table L1: Child-Level Regressions: Full Sample

p values

variable unadjusted bonferroni sidak holm holland hochberg simes yekutieli

Child 0.00 0.02 0.01 0.02 0.01 0.01 0.01 0.02

infant 0.00 0.02 0.01 0.02 0.01 0.01 0.01 0.02

neonatal 0.00 0.05 0.04 0.04 0.04 0.04 0.02 0.05

HAZ 0.02 0.36 0.31 0.26 0.23 0.26 0.07 0.24

stunted 0.02 0.30 0.26 0.24 0.22 0.24 0.07 0.24

WAZ 0.12 1.00 0.85 0.96 0.64 0.74 0.22 0.75

Tetanus 0.63 1.00 1.00 1.00 0.93 0.74 0.68 1.00

Measles 0.41 1.00 1.00 1.00 0.93 0.74 0.55 1.00

polio 0.46 1.00 1.00 1.00 0.93 0.74 0.56 1.00

dpt 0.18 1.00 0.95 1.00 0.76 0.74 0.31 1.00

iron tablets 0.07 1.00 0.68 0.73 0.53 0.68 0.16 0.53

bcg 0.36 1.00 1.00 1.00 0.93 0.74 0.53 1.00

antenatal visits 0.49 1.00 1.00 1.00 0.93 0.74 0.56 1.00

full immunization 0.74 1.00 1.00 1.00 0.93 0.74 0.74 1.00

skilled birth attendance 0.08 1.00 0.69 0.73 0.53 0.68 0.16 0.53

Notes: The p-values have been adjusted for multiple comparisons using seven different alternatives
based on Newson (2010).
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Table L2: Child-Level Regressions: Migrant Sample

p values (Migrant sample)

variable unadjusted bonferroni sidak holm holland hochberg simes yekutieli

Child 0.04 0.54 0.42 0.50 0.40 0.50 0.27 0.90

infant 0.26 1.00 0.99 1.00 0.93 0.79 0.48 1.00

neonatal 0.34 1.00 1.00 1.00 0.95 0.79 0.48 1.00

HAZ 0.54 1.00 1.00 1.00 0.95 0.79 0.58 1.00

stunted 0.53 1.00 1.00 1.00 0.95 0.79 0.58 1.00

WAZ 0.35 1.00 1.00 1.00 0.95 0.79 0.48 1.00

Tetanus 0.02 0.30 0.26 0.30 0.26 0.30 0.27 0.90

Measles 0.79 1.00 1.00 1.00 0.95 0.79 0.79 1.00

polio 0.21 1.00 0.97 1.00 0.92 0.79 0.48 1.00

dpt 0.09 1.00 0.75 1.00 0.70 0.79 0.45 1.00

iron tablets 0.29 1.00 0.99 1.00 0.94 0.79 0.48 1.00

bcg 0.39 1.00 1.00 1.00 0.95 0.79 0.48 1.00

antenatal visits 0.19 1.00 0.95 1.00 0.92 0.79 0.48 1.00

full immunization 0.35 1.00 1.00 1.00 0.95 0.79 0.48 1.00

skilled birth attendance 0.22 1.00 0.98 1.00 0.92 0.79 0.48 1.00

Notes: The p-values have been adjusted for multiple comparisons using seven different alternatives
based on Newson (2010).

Table L3: Child-Level Regressions: Non-Migrant Sample

p values (Non-Migrant sample)

variable unadjusted bonferroni sidak holm holland hochberg simes yekutieli

Child 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

infant 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

neonatal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HAZ 0.04 0.59 0.45 0.35 0.30 0.35 0.08 0.28

stunted 0.00 0.03 0.03 0.02 0.02 0.02 0.01 0.02

WAZ 0.29 1.00 0.99 1.00 0.88 0.87 0.44 1.00

Tetanus 0.05 0.76 0.54 0.41 0.34 0.41 0.10 0.32

Measles 0.57 1.00 1.00 1.00 0.96 0.87 0.71 1.00

polio 0.71 1.00 1.00 1.00 0.97 0.87 0.81 1.00

dpt 0.82 1.00 1.00 1.00 0.97 0.87 0.87 1.00

iron tablets 0.00 0.03 0.03 0.02 0.02 0.02 0.01 0.02

bcg 0.87 1.00 1.00 1.00 0.97 0.87 0.87 1.00

antenatal visits 0.00 0.05 0.04 0.03 0.03 0.03 0.01 0.02

full immunization 0.36 1.00 1.00 1.00 0.89 0.87 0.49 1.00

skilled birth attendance 0.07 1.00 0.67 0.50 0.40 0.50 0.12 0.39

Notes: The p-values have been adjusted for multiple comparisons using seven different alternatives
based on Newson (2010).
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Table L4: Mother-Level Regressions: : Non-Migrant Sample

p values

variable unadjusted bonferroni sidak holm holland hochberg simes yekutieli

Education 0.99 1.00 1.00 1.00 0.99 0.99 0.99 1.00

Literacy 0.65 1.00 0.99 1.00 0.96 0.99 0.87 1.00

Water 0.20 0.98 0.67 0.79 0.58 0.79 0.49 1.00

Electricity 0.70 1.00 1.00 1.00 0.96 0.99 0.87 1.00

ORS 0.03 0.14 0.13 0.14 0.13 0.14 0.14 0.31

Notes: The p-values have been adjusted for multiple comparisons using seven different al-
ternatives based on Newson (2010).
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M Appendix Figures

Figure M1: Countries used

Notes: This map plots the fourteen countries used in the study: Benin, Burkina Faso, Ethiopia,
Ghana, Guinea, Kenya, Malawi, Mali, Namibia, Niger, Senegal, Sierra Leone, Uganda, and
Zambia.
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Figure M2: Languages used

Notes: This map plots the linguistic groups for the fourteen countries used in the study from
the Ethnologue database. Polygons of different colours represent the different language groups.
Areas where multiple languages are spoken are represented by overlapping polygons, which are
not distinguishable in this map.
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Figure M3: The Languages of Mali

Notes: This map plots the linguistic groups of Mali from the Ethnologue database. Polygons
of different colours represent the different language groups. Areas where multiple languages are
spoken are represented by overlapping polygons, which are not distinguishable in this map. The
polygon highlighted in blue in the south-eastern corner of the map demarcates the linguistic
homeland of the Mamara Senoufo language speakers. Figure 1 from the main paper zooms into
this region.
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Figure M4: The Population of Mali

Notes: This map plots the population distribution of Mali from the LandScan database at
the 30 arc seconds x 30 arc seconds (approximately 1 km × 1 km at the equator) resolution.
The brighter (darker) pixels within the geographic boundaries of Mali represent more (less)
populated areas.
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Figure M5: Mali Overlay

Notes: This map overlays the language polygons for Mali from the Ethnologue database (see
Figure M3) on the population distribution of Mali from the LandScan database (See Figure M4).
Polygons of different colours represent the different language groups in the language group map.
Areas where multiple languages are spoken are represented by overlapping polygons, which are
not distinguishable in this map. The brighter (darker) pixels within the geographic boundaries
of Mali in the population map represent more (less) populated areas.
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Figure M6: Mothers’ Locations

Notes: This map plots the locations of the 28,839 DHS clusters where the 208,898 individual
mothers that comprise the sample used in this paper are located.
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Figure M7: Malaria Stability Index

Notes: This map plots the malaria stability index / malaria suitability index originally gener-
ated by Kiszewski et al. (2004) and made available in a 5 km × 5 km resolution raster format
by McCord and Anttila-Hughes (2017).
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Figure M8: Linguistic Distance for alternative values of the decay factor δ

Notes: This graph simulates how linguistic distance changes for alternative values of the decay
factor δ. The x-axis gives how many branches any two languages share and the y-axis gives the
corresponding values of linguistic distance for different values of δ.
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