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Abstract

We develop a network model of conflict in which players are involved in different battles. A
negative shock in one locality affects the conflict in this locality but may also increase battles in
path-connected localities depending on the location of the battle in the network and the strength of
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local natural disasters on battles in Africa. We construct a novel panel-dataset that combines geo-
referenced information about battle events and natural disasters at the monthly level for 5,944
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resolution, natural disasters are formidable exogenous shocks that affect the costs and benefits of
fighting in a locality. We find that natural disasters decrease battle incidence in the affected locality
and that this effect persists over time and space. This mitigating effect appears to be more
pronounced in more developed localities. As highlighted by the model, these results can be
explained by the fact that natural disasters divert fighting activity to surrounding localities,
particularly those that are connected via geographic and road networks.
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1 Introduction

In 2014, over half of the world’s conflict incidents took place in Africa, despite it having only

16% of the global population (Cilliers, 2015). One feature of African conflicts is that they

often start off as relatively small, localized events but then spread quickly to neighboring

regions as well as across borders, sometimes resulting in long lasting intra and interstate

wars.

This study aims to explore the spatial aspects of the nexus between local economic

shocks and violent conflicts. We theoretically and empirically analyze the consequences of

a negative exogenous shock on the incidence of conflict in a locality as well as its spillover

effects in a spatial network.

First, we develop a model in which a set of players are involved in different battles.

These battles are connected through a network1 and each player has to decide how much

effort to exert in each battle. The probability of winning a battle is determined by the

standard Tullock contest success function (CSF) so that the higher the effort, the higher

the chance of winning the battle. Because the model is quite general and the best response

functions are not linear, we focus on a specific network structure to derive some comparative

statics results. In a star network, there are two districts (or battles) and three players, one

of which is involved in two battles. We show that a negative shock in one district reduces the

battle intensity in this district but increases it in path-connected districts depending on the

location of the battle in the network and the strength of each agent involved in each battle.

The mechanism behind this result is that the central agent (i.e., the agent involved in two

battles) must re-allocate efforts in both battles in order to maximize total payoff; whereas,

the other two agents must respond optimally to the re-allocation.

We then empirically test the results of this model. Our identification strategy exploits

1For overviews on the economics of networks, see Jackson (2008) and Jackson et al. (2017).
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the exogenous variation in local natural disasters as negative economic shocks that locally

increase the costs and decrease the benefits of fighting. We construct a novel panel dataset

at the district-month level for 5,944 African ADM2 (second subnational) units, over the

period from 1989 to 2015, that combines geo-referenced data on battle events and disaster

occurrences. The dataset’s fine degree of spatial and temporal resolution allows us to include

a large set of district × year fixed effects and thereby control, in the most flexible way, for

a wide range of unobservable variables that might simultaneously drive battle and disaster

incidents. Our estimates enable us to identify the within district-year variation in local battle

events that is due to disaster shocks in each month. We only use natural disasters that occur

suddenly (e.g. floods, storms) and exclude droughts, which often have a lengthy onset and

are likely to be endogenous to local conflict even at the monthly level.

In a first step, we use our empirical approach to identify the short-term effects in each

month and the following month as well as the cumulative effects in the following 12-months

in the directly affected district. We find that local disaster events systematically decrease

the likelihood of a local battle. This effect is economically and statistically significant and

persistent over time. We then present evidence that supports our claim that disaster events

decrease battle incidence by increasing the cost of fighting and decreasing the benefits of

fighting locally.

In the second step, we estimate a spatial econometric model to analyze the spatial

spillover effects of local natural disasters on battle incidence in other districts. Our results

show that, in contrast with the direct local effects which materialize in the very short run (as

represented by the fine monthly level of temporal granularity), spatial spillovers of battle

activities become prominent in the medium to long run. Indeed, we observe that local

disasters divert battle activity to surrounding districts only at the yearly level of temporal

aggregation. Moreover, we observe that battle spillovers occur in the same year if districts

are linked by a road network and in the following year if districts are linked by geographic
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proximity. These results seem quite intuitive as roads provide an accessible means through

which the spillovers can spread. When the connection is not through roads, it takes extra

effort and planning for battles to be relocated, suggesting a longer time lag for spillovers to

happen. Our empirical analysis further highlights the role of mining activity on the spatial

dynamics of conflict spillovers. First, mining activity in the disaster-affected locality tends

to decrease the chance that the combat activity will shift to neighboring localities. Second,

disasters tend to increase the likelihood of conflict in those neighboring localities that are

home to mining activities.

Following the results of our theoretical model, which highlights the importance of a

locality’s characteristics in the diffusion process, we explore the mechanisms behind these

results. To do this, we include the characteristics of a locality in terms of economic activity

(nighttime light), mining, and agricultural activities. We show that, if a locality has a mining

activity, it will experience positive battle spillovers from the neighboring localities only if

they are linked by roads.

More generally, our result shows that a local negative shock increases (decreases) the

costs (benefits) of fighting and can spread to other areas and is relevant to policy-makers.

Indeed, to reduce the risk of escalation, national governments and international organizations

often try to contain the initial local conflict through military interventions that either increase

the costs of or decrease the benefits from fighting in a specific locality. However, once larger

forces move into an area and clear it from insurgents, fighting often flares up in other areas.

These types of interventions can have the unintended effect of spreading conflict to previously

unaffected areas and potentially dragging new parties into the violent conflict. As such, a

more structured and deeper understanding of these spatial interactions can potentially help

to build more informed policy strategies in the context of localized violence in Africa.

Our study contributes to various strands of literature. First, there is a large body
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of theoretical literature on conflicts (for an overview, see Kovenock and Roberson, 2012),

which, more recently, has been using network theory (Goyal and Vigier, 2014; Jackson and

Nei, 2015; Franke and Öztük, 2015; Hiller, 2017; König, et al., 2017; Kovenock and Roberson,

2018; Huremovic, 2019; Xu et al., 2019). Our theoretical model is different because agents

are involved in multiple battles and we focus on the spillover effects of a negative shock in

the network of conflicts. There is also a smaller body of empirical literature on networks and

conflicts (Dell, 2015; König, et al., 2017; Brangewitz et al., 2019; Eubank, 2019; Kovenock

et al., 2019). The study closest to ours is König, et al.’s (2017), who develop and test a

model that investigates how a network of military alliances and enmities affects the intensity

of a conflict. Using data from the Second Congo War, they show that the intensity of a

conflict can be reduced through dismantling specific fighting groups, weapon embargoes,

and interventions aimed at pacifying animosity among groups. Our model and empirical

test are different as we model and test whether a negative shock in each district has an effect

on that district and how it propagates to other path-connected districts.

Second, we relate to the literature that analyzes the causes and spread of violent con-

flicts, which has been the subject of a vast body of literature in economics and other social

sciences (see the overviews by Rigterink, 2010, and Ray and Esteban, 2017). There is,

first, an important body of literature using national data that follows the grievance or

opportunity cost model (Collier and Hoeffler, 2004), which predicts a negative relationship

between income shocks and the probability of a battle. Accordingly, higher incomes lead

to fewer battles, because the opportunity cost of battle is high (e.g. Blattman and Miguel,

2010, Besley and Persson 2011). By the same argument, lower incomes lead to a higher

probability of battles occurring, as people have “nothing to lose” following a battle (Miguel

et al., 2004; Chassang and Padró i Miquel, 2009; Ciccone, 2011; Couttenier and Soubeyran,

2014; Hodler and Raschky 2014; Harari and La Ferrara, 2018). Some country-level studies,

such as Bosker and de Ree (2014), also look at the spillover effects of civil wars. They provide
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empirical evidence that cross-border battle spillovers are an important factor in explaining

the pattern of battle clusters.

There is also a more recent generation of economic studies that has focused on the

localized nature of conflict events. These studies contain theoretical and empirical analyses

of how local positive (e.g. Dube and Vargas, 2013; Berman and Couttenier, 2015; Fjelde,

2015; Berman et al., 2017; McGuirk and Burke, 2017) and negative (e.g. Harari and La

Ferrara, 2018; Berman et al., 2020) economic shocks influence the likelihood of local conflict.

Although the focus of the theoretical models and empirical analyses in these studies is on the

local effects of shocks on conflict, most of them include an empirical section that investigates

whether these local shocks trigger violence in neighboring localities.

Our study is more closely related to the latter literature. For example, Harari and La

Ferrara (2018) find that negative weather shocks in agricultural growing seasons increase the

likelihood of battles and show that the most likely mechanism is the opportunity cost channel.

By contrast, Berman et al. (2017) use the exogenous variation in world mineral prices to

identify the causal effect of positive shocks to local mining wealth on battles. Both studies

find that these exogenous shocks not only increase battle incidence in the directly affected

area but also create spatial battle spillovers to neighboring regions. McGuirk and Burke

(2017) study the effect of plausibly exogenous global food price shocks on local violence

across the African continent. They find that in food-producing areas, higher food prices

reduce battles over the control of territory (“factor battle”) and increase battles over the

appropriation of surplus (“output battle”). They argue that this difference arises because

higher prices raise the opportunity cost of soldiering for producers, while simultaneously

inducing net consumers to appropriate increasingly valuable surplus as their real wages fall.

We complement this strand of the literature along three dimensions. First, we develop a

theoretical framework that explicitly models the spatial spillovers using a network approach.
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Second, our empirical analysis extends the level of disaggregation of these studies temporally,

by analyzing the spillovers at the district-month level and for different types of networks.

Third, whereas most existing studies exploit exogenous variations in factors that increase

the likelihood of a battle locally, we focus on local and spatial spillover effects of exogenous

events that decrease the likelihood of a battle locally. Particularly, our study highlights the

importance of mining activity as a determinant of local conflict in Africa (e.g. Berman et al.

2017). We show that, following a negative shock, belligerents are less likely to shift combat

activity away from an affected mining locality. However, if spatial combat spillovers occur,

they are more likely to occur in neighboring localities that are home to a mining operation.

Finally, we contribute to the largely empirical literature on the relationship between

natural disasters and conflicts. This body of literature considers the economic effects of

natural disasters, both at the micro (Mottalebab et al., 2015) and macro (Deryugina and

Hsiang 2014; Hsiang et al. 2017; Hsiang and Jina 2014) levels. Yet others consider the effect

of climate shocks on battles (Miguel et al., 2004; Hsiang et al., 2013; Hodler and Raschky,

2014; Couttenier and Soubeyran, 2014; Mach et al. 2019). Most of these studies, however,

focus on temperature and precipitation shocks and are implemented at a more aggregate

level in both temporal (i.e. yearly or growing season) and spatial (i.e. country) dimensions.

Our study contributes to this literature by introducing a novel geo-referenced data set of

natural disasters of all types, at a very fine spatial and temporal resolution (i.e. district-

month level), which allows us to better investigate the mechanisms at play in determining

the relationship between natural disasters and battles.

The remainder of the paper is organized as follows. Section 2 develops the theoretical

framework for our analysis. Section 3 describes the data and provides some descriptive

statistics. Sections 4 presents the empirical analysis of the direct effect of a natural disaster

on battles. Section 5 empirically analyzes spillover effects. Finally, Section 6 concludes. All

proofs of the theoretical model can be found in the Online Appendix A. We provide additional
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figures in the Online Appendix B. Online Appendix C reports on several robustness checks.

2 Theory

We develop a simple network model that provides a mechanism showing how a negative

shock on a district affects the battle not only in this district but also in the neighboring

districts.

2.1 The general model

Players, districts, and battles Consider a set of players (which can be local military forces

or militia) and different possible battles between them. The network represents the nodes

(players) and the links (battles) between them. We use n = 1, 2, 3, · · · , i, j, · · · , to denote

players and α = a, b, c, · · · , to denote battles. The set of players is denoted by N , with

N = |N | ≥ 2, and the set of battles by T , with T = |T | ≥ 1.

Network We use an N × T matrix Γ = (γαi ) to represent the battle structure. Specifically,

we let γαi = 1 if player i is part of battle α; otherwise γαi = 0. Each player can be part of

multiple battles and different battles may involve different subsets of players. Let N α = {i ∈

N : γαi = 1} ⊆ N denote the set of participants (players) in battle α. Let nα = |N α| ≥ 2

denote its cardinality. Similarly, let Ti = {α ∈ T : γαi = 1} ⊆ T denote the set of battles

that player i takes part in. Let ti = |Ti| ≥ 1 denote the cardinality. Clearly, i ∈ N α if and

only if α ∈ Ti.

Consider the following figure, which represents a star network:

a b1
2 3

Figure 1: A star network

8



The matrix Γ representing the network depicted in Figure 1 is given by:

Γ =


1 1

1 0

0 1


where rows correspond to players and columns to battles. We see that player 1 engages in a

battle with players 2 and 3; whereas, player 2 engages in battle a with player 1 and player

3 engages in battle b with player 1. We have: N = {1, 2, 3}, T = {a, b}, N a = {1, 2},

N b = {1, 3}, T1 = {a, b}, T2 = {a}, T3 = {b}.

Districts From the network, we can aggregate the players and the battles to obtain a

district. We can define a connectivity matrix Ω = (ωab) such that ωab ∈ [0, 1] if a link exists

between two districts a and b and ωab = 0 otherwise. For example, in the star network of

Figure 1, there are two districts: district a, which encompasses players 1 and 2 and where

battle a takes place, and district b, which is made of players 1 and 3, and where battle b

takes place, so that ωab > 0. This can be represented as follows:

district a district b

1
2 3

Figure 2: A star network

Of course, any other district representation can be made from Figure 1. In the empirical

analysis, a district will be defined by its geographical position and there will be a link between

two districts if there is a road between them and thus ωab > 0.2 For example, in Figure 2,

there are two districts a and b and they are geographically adjacent to each other (i.e.,

2In the empirical analysis, we also use the inverse distance between two districts to define a link between
them.
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there is a road between them). In that case, there are two layers of proximity, which involve

different actors: (i) the battle proximity where, as in Figure 1, a link is when two players have

a battle with each other; this is captured by the matrix Γ, (ii) the geographical proximity

where, as in Figure 2, there is a link between two districts when they are spatially adjacent

to each other; this is captured by the matrix Ω.

Payoffs Taking the battle structure Γ as given, player i’s strategy is to choose a nonnegative

effort xαi for each battle α ∈ Ti she is involved in. Thus, player i’s strategy is a vector

xi = {xαi }α∈Ti ∈ Rti
+. Given player i’s strategy xi, we denote x = (x1, · · · ,xn) ∈ Rn̄

+ as

the whole strategy profile, and xα = {xαi }i∈Nα ∈ Rna

+ as the effort vector in battle α. Here

n̄ =
∑

α∈T n
α =

∑
i∈N ti =

∑
i∈N ,α∈T γ

α
i denote the dimension of strategy profile x.

The payoff function of player i ∈ N is equal to:

Πi(xi,x−i) =
∑
α∈Ti

vαpαi (xα)− Ci(xi), (1)

which is just the net expected value of winning the battle(s). Indeed, in (1), pαi (xα) is the

probability of winning battle α for player i. It is given by the following Tullock CSF:

pαi (xα) =
xαi∑

j∈Nα x
α
j

. (2)

Moreover, each battle α generates a benefit vα > 0 for the player who wins the battle. This

value might vary across battles. Finally, there is a total cost of Ci(xi), which depends on all

the efforts player i exerts in each battle she is involved in.

Note that, in the data, we only observe the total battle at the district level and the

geographical link between districts and analyze how a negative shock (disaster) on a district

affects the total battle in the different districts that are spatially connected. We do not,

however, observe the players involved in battles in each district. Consider Figure 2. In our
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model, this translates by studying how a decrease in va (the value of battle a) affects xa1 +xa2,

the total battle in district a, and xb1 + xb3, the total battle in the (spatially) adjacent district

b.

Nash equilibrium Let us solve the Nash equilibrium of this game for any network and any

player. We are interested in the pure strategy Nash equilibrium of this battle game. A

strategy profile x∗ = (x∗1, · · · ,x∗n) is an equilibrium of the battle game if for every player

i ∈ N ,

Πi(x
∗
i ,x

∗
−i) ≥ Πi(xi,x

∗
−i), ∀xi. (3)

Because this model is very general and the best response functions are non-linear, it is

difficult to characterize the Nash equilibrium of this game and to derive comparative statics

results. Because we have in mind an empirical application, we would like to derive some

properties of this equilibrium for specific networks that we could test empirically. We will

mainly consider the star network of Figure 1 or Figure 2 because it is tractable and still

provides all the intuition we need for our empirical analysis.3

2.2 Star network

2.2.1 The model

Consider the star network depicted in Figure 1 where α = a, b (two battles and three players).

Given the network structure, the strategies of the players are: x1 = (xa1, x
b
1), x2 = (xa2) and

x3 = (xb3). To keep the model tractable, we assume that the cost function is quadratic so

that each player’s payoff can be written as:

3We have also investigated other more complex network structures such as a bridge network and showed
that our main results remain qualitatively the same.
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Π1(x1,x−1) =va
xa1

xa1 + xa2
+ vb

xb1
xb1 + xb3

− s1

2
(xa1 + xb1)2,

Π2(x2,x−2) =va
xa2

xa1 + xa2
− s2

2
(xa2)2,

Π3(x3,x−3) =vb
xb3

xb1 + xb3
− s3

2
(xb3)2.

(4)

2.2.2 Equilibrium analysis

Even in this simple network structure, closed-form expressions of the Nash equilibrium efforts

are not possible, but we can use the first-order conditions (FOCs) of players to characterize

the Nash equilibrium. Let

F1(xa1, x
b
1, x

a
2) :=

∂Π1

∂xa1
=

vaxa2
(xa1 + xa2)2

− s1(xa1 + xb1), (5)

F2(xa1, x
b
1, x

b
3) :=

∂Π1

∂xb1
=

vbxb3
(xb1 + xb3)2

− s1(xa1 + xb1), (6)

F3(xa1, x
a
2) :=

∂Π2

∂xa2
=

vaxa1
(xa1 + xa2)2

− s2x
a
2, (7)

F4(xb1, x
b
3) =

∂Π3

∂xb3
=

vbxb1
(xb1 + xb3)2

− s3x
b
3. (8)

We have the following results:4

Proposition 1. Consider the star network depicted in Figure 1 and the payoff functions

4All the proofs of the theoretical model can be found in Appendix A.
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given by (4). Then, there exists a unique interior Nash equilibrium (xa∗1 , x
b∗
1 , x

a∗
2 , x

a∗
3 ) that

simultaneously solves:



F1(xa∗1 , x
b∗
1 , x

a∗
2 ) = 0

F2(xa∗1 , x
b∗
1 , x

b∗
3 ) = 0

F3(xa∗1 , x
a∗
2 ) = 0

F4(xb∗1 , x
b∗
3 ) = 0

(9)

Given the existence, uniqueness, and interiority of the Nash equilibrium, we are inter-

ested in the effect on the shock of the valuations va and vb on the battle levels of each district.

Note that the system (9) is highly non-linear and, therefore, there are no explicit expres-

sions for the equilibrium. Instead, we apply the implicit function theorem to the system

(9) in order to derive the comparative statics results. Before performing these exercises, the

following lemma will help us interpret our results.

Lemma 1. For v > 0, s > 0, define

z(x, y) =
vx

x+ y
− s

2
x2. (10)

For each y > 0, there exists a unique maximizer x∗(y) = arg maxx>0 z(x, y). Moreover, x∗(y)

is first increasing, then decreasing, with sign∂x
∗

∂y
= sign(x∗ − y).

We can see from equations (5)–(8) that Lemma 1 describes the best response function

x∗(·). In particular, Lemma 1 shows that x∗(·) first increases with y up to the maximum,

which occurs at x∗ = y, and then decreases. There is therefore a non-monotonic bell shaped

relationship between the efforts of two players involved in the same battle. Figure 3 depicts

this relationship.

To see the implication of this Lemma, for example, consider the first-order condition
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Figure 3: Best response function x∗(y)

of xa2, that is, F3(xa∗1 , x
a∗
2 ) = 0. Using Lemma 1, we know that the sign of

∂xa∗2
∂xa1

is the

same as the sign of (xa∗2 − xa∗1 ) and that the relationship is bell-shaped where the maximum

occurs at xa∗2 = xa∗1 . Indeed, when xa∗1 < xa∗2 , which means that player 1 is “weak” because

pa1(xa1, x
a
2) = xa1/(x

a
1 + xa2), the probability of winning battle a for player 2, is greater than

50%, then player 2’s best response to an increase of xa∗1 , is to increase her effort xa2. By

contrast, when xa∗1 > xa∗2 , we are on the decreasing part of the relationship because player

2 is now the “weak”player in battle a because she has a lower chance of winning the battle.

Therefore, when player 1 increases her effort, player 2’s best response is to decrease her

effort. Indeed, player 2 knows that her marginal chance of winning the battle is lower and

thus basically gives up by reducing her effort.

Observe that Lemma 1 provides the best response function of a player within an isolated

battle and, hence, abstracts from the general equilibrium effects, that is, the link between

battles through the cost function. In our model, a player may have multiple battles, For

example, for player 1, who is involved in battles a and b, her cost function, C1(xa1, x
b
1) =

s1
2

(xa1 + xb1)2, is convex in her total effort xa1 + xb1. This implies that increasing effort in one

battle leads to higher marginal cost of effort in the other battle, that is, ∂2C1

∂xa1∂x
b
1

= s1 > 0.

This is not captured by Lemma 1, but we need to take this into account in the calculation

of our comparative statics results.
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2.2.3 Comparative statics: Negative shock on a district

As stated above, we do not observe the players involved in each battle in each district in

the data. However, we observe the total battle in each district. Consider Figure 2. In this

section, we will study how a decrease in va and a negative shock on district a, affects xa1 +xa2,

the total battle in district a, xb1 + xb3, and the total battle in the (spatially) adjacent district

b.5 To understand the mechanism behind the results, we will also study how a decrease in

va affects the effort of each player involved in each battle.

Proposition 2. Consider the star network depicted in Figures 1 and 2 and the payoff func-

tions given by (4). When va, the value of battle a, decreases,

1. both players 1 and 2 decrease their efforts in battle a, that is,
∂xa∗1
∂va

> 0 and
∂xa∗2
∂va

> 0,

2. the total battle intensity in district a reduces, that is,
∂(xa∗1 +xa∗2 )

∂va
> 0,

3. player 1 increases her effort in battle b, that is,
∂xb∗1
∂va

< 0,

4. the total effort of players involved in battles a and b decreases, that is,
∂(xa∗1 +xb∗1 )

∂va
> 0,

5. the effect on the effort of player 3 in battle b is ambiguous, that is,
∂xb∗3
∂va

T 0. Particu-

larly, sign
∂xb∗3
∂va

= sign(xb
∗

1 − xb∗3 ).

6. the total battle intensity in district b increases, that is,
∂(xb∗1 +xb∗3 )

∂va
< 0.

The first result of this proposition is straightforward. When va, the value of battle a,

decreases, both players involved in battle a spend less effort in that battle and, thus, xa1 and

xa2 decrease. This leads to the fact that the total effort in battle a is reduced (result 2).

Moreover, because C1(xa1, x
a
2), player 1’s cost, and vb, the value of battle b, are fixed,

player 1’s incentive in battle b is higher because lower xa1 decreases her marginal cost in

5Without loss of generality, we focus on district a as the analysis for district b is similar because of the
symmetry of the locations of these two districts.
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battle b. Indeed, efforts xa1 and xb1 are strategic substitutes because

∂2Π1

∂xa1∂x
b
1

= − ∂2C1

∂xa1∂x
b
1

= −s1 < 0. (11)

consequently, when va decreases, player 1 increases xb1, her effort in battle b (result 3).

However, the aggregate effort of player 1 still goes down as the decrease in battle a dominates

the increase in battle b (result 4).

The fifth result of this proposition is more complex and one needs to use Lemma 1 to

understand this result. Indeed, when va decreases, player 1 decreases her effort in battle a

and increases xb1, her effort in battle b. However, player 3’s effort in battle b, depends on

whether she is “weak”or “strong”in that battle. By the Chain rule,

∂xb∗3
∂va

=
∂xb∗3
∂xb∗1

∂xb∗1
∂va︸︷︷︸
<0

By Lemma 1, sign
∂xb∗3
∂xb∗1

= sign(xb∗3 − xb∗1 ), therefore, sign
∂xb∗3
∂va

= sign(xb
∗

1 − xb∗3 ). Intuitively,

if player 3 is “weak”, for example, because she has a very high marginal cost s3, so that her

effort xb∗3 is lower than xb
∗

1 , then a decrease in va will increase player 1’s effort in battle b

xb∗1 . As a best response, player 3 lowers her effort xb∗3 . The opposite occurs if player 3 is

“strong”in battle b.

The last result, where the intensity of the total battle in district b reduces, is because

the direct effect of a decrease in va on battle a for player 1 is stronger than the indirect effect

on battle b for player 3, even when the latter leads to more effort.

In summary, a negative shock to district a (i.e., a decrease in va) leads to a smaller

battle in district a but a bigger battle in district b. Player 1’s total effort decreases whereas

player 3’s effort can increase or decrease. The first result demonstrates that a negative local
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shock on district a has an effect on the adjacent district b through the general equilibrium

effect. The mechanism behind this result is that the central player (or the player involved

in many battles) must re-allocate efforts in both battles in order to maximize total payoff,

whereas other players must respond optimally.

In Figure 4, we illustrate our results by plotting the four efforts of the different players

when va increases.6 Consistent with Proposition 2, an increase in va leads to a big increase

for the players in district a, that is both xa2, the effort of player 2 in battle a (blue curve) and

xa1, the effort of player 1 in battle a (red curve) increase. We can also see that the effect of

an increase of va is much smaller for the adjacent district b because xb1 (dotted orange curve)

slightly decreases, whereas xb3 (solid black curve) is nearly unaffected. This is because, in

this example, the effect of va does not spill over to player 3 involved in another battle.

1 2 3 4
v
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0.0

0.5

1.0

1.5

effort

x
1

a

x
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b

x
2

a

x
3

b

Figure 4: The effect of an increase of va on the effort of each agent involved in battles in the
network described in Figure 1

More generally, our comparative statics results highlight the importance of three aspects

of the model: (i) the cost linkage for a player/district participating in multiple battles, (ii)

6We use the following values for the parameters: vb = 1, s1 = 0.35, s2 = 0.35, and s3 = 0.7.

17



the relative position of a district within a given battle, and (iii) the non-monotonic best

response function of each player.

We would now like to bring this model to the data. In particular, we would like to test

parts 2 and 6 of Proposition 2, that is: (i) how a negative shock (a decrease in va in the

model and a disaster in the data) on a given district affects the total battle in this district

and (ii) how this negative shock affects the total battle in the (spatially) adjacent districts.

Our answer to (i) is that the total battle in the affected district decreases because there are

less resources to grab. Our answer to (ii) is that battles in spatially adjacent districts will

increase, especially if the same player is involved in different battles and will fade away the

longer the geographical distance from the district directly affected by the disaster is.

Clearly, as we will see below, in reality, spatial networks of districts are much more

complex than those described in Figure 2 and the effect of a disaster can spread beyond

the adjacent districts. However, the results of this simple network model goes beyond the

star network and, even for more complex network structures, the intuition of the direct and

indirect effect of a disaster on the total battles of districts and connected districts is similar.

3 Data

We use observations at the second, subnational administrative unit (ADM2, henceforth

“districts”) level, and the final dataset consists of 5,944 districts from 53 African countries

over the period from 1989 to 2015.7 We use two main units of observation, that is, district-

year and district-month, to test Proposition 2 of the theoretical model, which shows how

natural disasters (negative shock on vα) affect the incidence of battles in own and adjacent

(path-connected) districts.

7This is available for most countries, except Egypt and Libya, where boundaries were only available at
the ADM1 level. We address any concern about differences in the size of administrative units by using
district-year fixed effects.
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3.1 Battles

Data on battles is obtained from the Uppsala Conflict Data Program’s (UCDP) Georefer-

enced Event Dataset (Croicu and Sundberg, 2017). This data set provides information on

violent events across the world from 1989 to 2016, covering individual events of organized

violence, which are geo-coded down to the level of individual villages, with temporal dura-

tions disaggregated to the daily level. Violent events are categorized based on whether they

were “state-based violence”, “non-state violence” or “one-sided violence”. Accordingly, for

each individual violent event, there is information on the place and date of the event, actors

participating in the event, and estimates of fatalities.

Using the information on the precise location (i.e., latitude, longitude) of the violent

event in the dataset, we first conduct a spatial analysis8 where we geolocate each battle

in the ADM2 districts. We then aggregate all such battle events at the district-year and

district-month levels.

Our main indicator of a battle takes the form of a binary variable, which assumes a

score of one if a battle leading to at least one death occurred in district i in the given time

period, and zero otherwise.9 Figure B.1 in Appendix B displays the distribution of battles

in Africa over our sample period.

3.2 Natural Disasters

We capture a negative shock in a district, that is, a decrease in va in the theoretical model,

through the occurrence of a natural disaster in that district. Data on natural disasters

are drawn from the Emergency Events Database (EM-DAT) (see Guha-Sapir et al., 2016),

8This procedure was implemented in ArcMap 10.5
9Much of the existing work (see Blattman and Miguel, 2010) uses two (annual) death-based indicators

of battle, i.e., battles leading to at least one death, and battles leading to at least 25 deaths. Because our
paper uses spatially and temporally disaggregated data, we prefer the former than the latter.
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which is a global database on natural and technological disasters, containing data on the

occurrence and effects of over 22,000 global mass disasters from 1900 to date. Any natural or

man-made disaster where either (i) 10 or more people died, or (ii) 100 or more people were

affected, or (iii) a state of emergency was declared, or (iv) a call for international assistance

was made, is included in the dataset. For each natural disaster, there is information on,

among others, location, disaster type, date, number of deaths, number of people affected,

the estimated damage, as well as on whether aid from the Office of US Foreign Disaster

Assistance (OFDA) was received following a disaster.10

The natural disaster category in EM-DAT is divided into 6 sub-groups, which, in turn,

cover 15 disaster types and more than 30 sub-types. For our study’s purpose, we consider

natural disasters classified as geophysical (e.g., earthquake, volcanic activity), meteorological

(e.g., extreme temperature, storm), hydrological (e.g., flood, landslide), climatological (e.g.,

wildfire), or extraterrestrial (space weather). We do not include in our analysis natural

disasters classified as biological, such as epidemics or insect infestations. We also exclude

droughts for two reasons. First, droughts are typically spread across multiple ADM2 districts,

therefore the effects of a drought are not entirely local. Second, droughts can (albeit with

a marginal probability) be the result of human actions. For instance, if a party to a battle

gains control over the water supply of a district, a drought might arise, and this is then

endogenous to the battle incidence.

The availability of EM-DAT data at the country level, however, is a challenge when con-

ducting a district-level analysis. We overcome this challenge by manually geocoding 1,016

natural disasters that occurred in Africa over the period from 1989 to 2015. Natural disas-

ters where the exact individual village or subnational district was identified were precisely

geocoded; whereas, those recorded as having occurred in larger geographic units were as-

10OFDA is an organizational unit within the United States Agency for International Development (USAID)
that is charged by the President of the United States with directing and coordinating international US
government disaster assistance.
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signed to all districts within that geographic unit. For each geocoded natural disaster, we

allocate a precision score, which assigns a value of 4 for precision at the district level (i.e.,

the highest level of precision), a value of 3 for precision at the provincial level, 2 at the state

level, and 1 at the country level (the lowest level of precision). We restrict our analysis to

natural disasters geocoded with a precision score of 3 or 4, which accounts for over 96%

of the total number of the geocoded natural disaster locations. Figure B.2 in Appendix B

displays the distribution of natural disasters in Africa.

Our preferred indicator for natural disasters is a binary variable that assumes a value

of 1 if a natural disaster occurred in district i in a time period, and zero otherwise. We also

generate two other indicators to reflect different disaster categories. Following Gassebner et

al. (2010) and Puzzello and Raschky (2014), we classify disasters that either (i) kill at least

1000 people, or (ii) affect at least 100,000 people in total, or (iii) cause damages of at least

one billion (real) dollars as large natural disasters, and all other disasters as small natural

disasters. Next, following Skidmore and Toya (2002), we generate indicators of climatic and

geologic disasters.11

3.3 Other covariates

We use three additional data sets to explore the mechanisms through which natural disasters

affect battle incidence.

First, we identify districts with high and low economic activity levels, using satellite

data on the intensity of nighttime lights, sourced from the National Oceanic and Atmospheric

Administration (NOAA). Nighttime luminosity has been identified as an indicator of the level

of economic activity, both at the national level (Henderson et al., 2012) and the subnational

11Geologic disasters include volcanic eruptions, natural explosions, avalanches, landslides, and earthquakes.
Climatic disasters include floods, cyclones, hurricanes, ice storms, snowstorms, tornadoes, typhoons, and
storms.
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level (Hodler and Raschky, 2014). NOAA provides annual data for the time period from

1992 onwards for output pixels that correspond to less than one square kilometer. The data

are presented on a scale from 0 to 63, with higher values implying more intense nighttime

lights.

We generate a time-invariant binary indicator as a proxy for the level of economic activity

in a district. This indicator is based on initial nighttime light, which is the nighttime light

value for the year 1992, the starting point of this data. Districts with a nighttime light value

of 10 and above in 1992 receive a score of 1 (high level of economic activity), and those with

a value of less than 10 in 1992 receive a score of 0 (low level of economic activity). Because

of its time-invariant nature, this variable filters out short-term negative shocks on economic

activity due to the occurrence of natural disasters, thereby addressing potential endogeneity

concerns. We identify 8% of the districts as displaying a high level of economic activity.

Second, we use data on mining activity in subnational districts in Africa, obtained from

the SNL Mining & Metals database. This database covers mining projects across Africa that

were active during our sample period. For each project, it contains information about the

point location, that is, the geographic coordinates, and the (potentially multiple) resources

extracted at this location. For this study’s purpose, we use the point locations of the mining

projects to assign them to districts and identify all districts where a mine was active for

at least one year during our sample period. We use this information to construct a time-

invariant indicator of mining activity, which is a binary variable that equals 1 if at least one

active mining project operated in the district over the period, and zero otherwise.12

Finally, we classify districts as agricultural and non-agricultural using the raw raster

data obtained from the Global Land Cover Characteristics Data Base Version 2.0.13 For

each district, we calculate the fraction of agriculturally suitable land and we classify districts

12Based on this definition, approximately 4% of African districts are considered mining districts in our
sample.

13https://lta.cr.usgs.gov/glcc/globdoc2 0

22



with over 50% agriculturally suitable land as agricultural. In our data, 29% of the districts

qualify as agricultural.

Table 1 provides descriptive statistics of the key variables, at the district, district-year,

and district-month levels.

[Table 1 about here]

3.4 Connectivity matrices

To test part 6 of Proposition 2, we follow Amarasinghe et al. (2018) and construct two14

spatial weighting matrices based on geographic and road connectivity.15

3.4.1 Geographic connectivity

The first form of connectivity we explore is based on the geography. We use the geographic

distance between districts to construct the weighted connectivity matrix, using the following

steps. We start by identifying the centroid of each district, and then proceed by calculating

the geodesic distance dic,jc connecting the centroids of districts i and j in country c. Next,

we use elevation data from GTOPO30 to measure the variability of altitude, eic,jc, along

the geodesic connecting the centroids of districts i and j, as per Acemoglu et al. (2015). In

the final step we calculate the inverse of the altitude-adjusted geodesic distance as d̃ic,jc =

1
dic,jc

(1 + eic,jc).

In using the inverse of the altitude-adjusted geodesic distance, we weight the geographic

connectivity between two districts along two dimensions. Accounting for variability in alti-

14In consideration of the rich ethnic diversity in Africa, we also analyzed the effects of ethnic connectivity
using data on the spatial distribution of ethnic homelands based on the work by Murdock (1959). However,
we did not find any systematic effects of ethnic connectivity on spatial conflict spillovers in our setting and
therefore we excluded this type of connectivity in the analysis.

15In the theoretical model, we measure the connectivity between districts by their geographical proximity
but we could have measured it in other ways as we do in this section.
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tude, eic,jc, means we take into consideration the topology of the landscape. Accordingly,

districts connected through a level surface receive a higher connectivity score as opposed

to districts separated by a mountainous terrain. Additionally, by using the inverse of the

altitude-adjusted geodesic distance, we assign a higher weight to the connectivity between

districts located in close geographic proximity, as opposed to those located further away

from each other. In our empirical estimates, we construct multiple connectivity matrices

truncated at different cut-off distances from a district’s centroid. This implies that we can

identify the neighbors of district i lying within different radii from its centroid and, thereby,

determine the exact extent of the spatial spillovers.

3.4.2 Road connectivity

Given the importance of roads in maintaining links between districts, we construct a road-

based connectivity matrix. For this purpose, we use data on the primary and secondary

road network in Africa from OpenStreetMap (OSM).16 To generate a network graph of the

road network, we intersect these roads with district boundary polygons using the following

steps.17 First, we split the road polylines into segments whenever they intersect with a

district boundary. For each segment (edge) we calculate the road travel distance in km

between each intersection (node).18 Next, we identify the shortest path on the road segments

between each district and calculate the distance on that path. If districts A and B are

16OSM is an open-source mapping project where information about roads (and other objects) is crowd-
sourced by over two million volunteers worldwide, who can collect data using manual surveys, handheld GPS
devices, aerial photography, and other commercial and government sources. See https://openstreetmap.org
for more information and https://geofabrik.de for the shapefiles. We opted for the OSM instead of the
World Bank’s African Infrastructure Country Diagnostic (AICD) database because the AICD data does
not contain information for countries with Mediterranean coastline as well as Djibouti, Equatorial Guinea,
Guinea-Bissau, and Somalia. We accessed the OSM data in early 2016 and extracted information about
major roads (e.g., highways and motorways) for the African continent. Figure B.3 in Appendix B provides
a visualisation of the road network.

17The road connectivity analysis between ADM2 polygons was conducted in ArcMap 10.2 using arcpy.
The python scripts are available upon request.

18If the road starts/ends in a district, we calculate the distance between the start/end point and the
intersection.
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adjacent and connected via a major road, we assign a distance value of 1km. If districts

A and B are not adjacent, but connected via the road network, they are assigned the road

distance between the closest road and district boundary node of A and the closest road and

district boundary node of B (i.e., the road travel distance through the whole district that one

has to cross to get from district A to district B). The final road connectivity matrix assigns

a value equal to the inverse of the road distance in km between districts i and j if they are

connected via a major road, and 0 if they are not connected. As with the altitude-adjusted

inverse distance matrix, we again construct different weighting matrices by truncating at

different cutoff distances.

4 Direct effects of natural disasters on battles

4.1 Direct effects - district-year level analysis

In the first part of the empirical analysis, we estimate the direct effect of natural disasters on

battles in a district (Proposition 2, part 2). We conduct this estimation at two different levels

of aggregation, that is, district-year level and district-month level.19 For the district-year

level analysis, we use the following econometric specification:

Battleiy = β0DISiy + β1DISi,y−1 + γBattlei,y−1 + FEi + FEcy + εiy (12)

Panel unit i is districts in a given country c in year y. Our dependent variable Battleiy is a

binary variable that switches to one if there was at least one battle, resulting in at least one

death, in district i in year y, and zero otherwise. Our empirical proxy for the negative shock

is DISiy, which is a binary indicator that equals one if a natural disaster event occurred in

district i in year y, and zero otherwise. We also include the temporal lag of this independent

19Estimates at the country level are provided in Table C.1 of Appendix C.
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variable, that is, DISi,y−1, to evaluate the effect of a disaster on a battle after the time lag.

To separate the effect of autocorrelation of battles in the temporal dimension, we include

the temporal lag of the dependent variable, that is, Battlei,y−1 as a control in equation

(12).20 In our preferred specification, we include district (FEi) and country× year (FEcy)

fixed effects, which absorb time-invariant district-specific characteristics and time-variant

country-specific shocks, respectively. This relatively conservative set of fixed effects also

addresses the concern of non-random underreporting of natural disasters. Finally, εiy is an

error term.

The construction of a new data set of natural disasters incorporating their fine spatial

and temporal distribution provides us with a neat localized economic shock. Moreover, being

natural, they are by definition exogenous shocks, which minimizes any concern on potential

simultaneity. The exogeneity of the negative income shock, coupled with the comprehensive

set of fixed effects, allows us to causally interpret β0 and β1, the coefficients of interest. Our

model (part 2 of Proposition 2) predicts that these coefficients should be negative.

Table 2 displays our main results using data at the district-year level. Columns (1) to

(4) control for district and year fixed effects. As predicted by the theoretical model, we

observe that the coefficient of interest is negative and statistically significant at the 10%

level, for both the contemporary period and the first lag. More specifically, the results in

column (4) suggest that the occurrence of a natural disaster in district i in year y reduces

its battle probability in the same year by 0.79% and in the following year by 0.65%.

[Table 2 about here]

However, region and year fixed effects per se may be insufficient to claim a causal

20Including a lagged dependent variable in a fixed effects specification can result in the well-known Nickell
bias. Panel A in Table C.16 presents results of specifications without the lagged dependent variable as well
as results of an LDV model. The results show that the coefficients of our key explanatory variables remain
very similar.
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relationship between natural disasters and battles, as they do not adequately account for

country-wide time-varying events that affect battle probability. In columns (5) to (8) we

control for such unobservable variables using country-year fixed effects. We observe that

when controlling for country-year fixed effects, the negative effect of natural disasters on

battles is no longer statistically significant.21

These results indicate that aggregation of variables of interest at the yearly level does

not provide us with a comprehensive understanding of what happens at the finer temporal

resolutions.22 Given the high frequency of natural disasters and battles in Africa, it is

important to explore the effects that materialize within the short run. Our study addresses

this shortcoming in the existing literature by conducting an analysis at this fine temporal

resolution (i.e. monthly aggregation).

4.2 Direct effects - district-month level analysis

Therefore, to exploit the fine temporal granularity of our data, we use the following econo-

metric specification, where the time unit is month m in year y.

Battleiym =
τ=1∑
τ=0

βτDISiy,m−τ + γBattleiy,m−1 + FEm + FEiy + εiy,m (13)

The coefficients of interest are again βτ , which capture the effect of a natural disaster in

district i on the probability of a battle in i, in the current month and the next month,

respectively. We control for the potential temporal autocorrelation of battles by including

the lagged dependent variable Battleiy,m−1.23

21In Tables C.9 to C.11 in Appendix C, we conduct a number of robustness checks using alternative
definitions of the dependent and independent variables.

22Almost all existing work on battles and their causes use annual data.
23Panel B in Table C.16 presents the results of district-month specifications without the lagged dependent

variable as well as the results of the LDV model. The results show that the coefficients of our key explanatory
variables remain very similar.
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In addition to these key variables, we use two sets of fixed effects at this monthly level.

First, we include month of the year fixed effects (FEt), which account for season specific

shocks that can simultaneously influence the occurrence of natural disasters as well as battles.

Second, we also include a vector of district× year fixed effects, FEiy. This vector absorbs two

main sources of unobserved variation. First, it captures all district specific, time-invariant

characteristics that could explain between-district differences in battle prevalence as well as

exposure to natural disasters (i.e., topography). Second, it absorbs any unobserved shocks to

the district (and country) that could simultaneously drive battles and the disaster risk (i.e.,

changes to economic development at the national and subnational level; climatic phenomena

such as the El Nino/La Nina cycles).

Table 3 presents the empirical results at the district-month level. Observe that even at

this fine temporal resolution, the effect of a natural disaster in month m of year y on the

battle incidence of district i is always negative, as predicted by our model. This effect is

statistically significant at the 1% level when including district, year, and month fixed effects

separately (Columns (1) to (4)). It remains statistically significant at the 5% level, when we

include the stringent set of district × year fixed effects (Column (8)), which is our preferred

specification.24

[Table 3 about here]

The results in Tables 2 and 3, while confirming the proposition in our model, also high-

light a key empirical contribution of this study. Almost all studies on conflicts have so far

relied on data at the yearly level. We show, in Table 2, that there is no statistically signifi-

cant relationship between natural disasters and battles at the yearly level. The statistically

significant relationship is only observed at the disaggregated monthly level.

24In Tables C.2 to C.6 in Appendix C, we conduct a number of robustness checks at the district-month
level, using alternative definitions of the dependent and independent variables. Particularly, in Table C.2 we
show that the baseline estimates remain robust when using spatial HAC standard errors, allowing for spatial
correlation up to 100km and for infinite serial correlation.
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Temporal disaggregation not only enables us to measure the negative effect of natural

disasters on battles with greater precision, but also gives us the opportunity of examining the

persistence of this effect over the following months. We do this by extending the specification

in equation (13) to include up to 11 additional lags of the independent variable DISiy,m.

Figure 5 plots the point estimates and 90% confidence intervals for each monthly lag starting

with the effect in the current month. In Panel (a), we only include one autoregressive term

(i.e. Battleiy,m−1); whereas, in Panel (b), we include up to 11 autoregressive terms. We

observe in both panels that there is a persistent negative effect of natural disasters on battles,

spreading up to a 6 month lag.

Figure 5: The Effect of Natural Disasters on Battles Over Time—District-Month Level

(a) (b)

Notes: Dots on Panels (a) and (b) show the regression results using Eq. (13) and including up to 11 temporal lags of the
independent variable Disasteriym. Panel (b) further includes higher order autoregressive terms of up to 11 lags. Vertical lines
show the 90% confidence interval based on standard errors clustered at the country×year level.

4.3 Direct effects - mechanisms

Identifying that natural disasters decrease battle probability per se provides limited insights

as to the mechanisms driving this relationship. If, for example, policies are to be drafted
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based on this relationship, more information on the mechanisms would be needed. Therefore,

in this next part of our analysis, we provide some insight as to what drives the relationship

between natural disasters and battles. From the perspective of our theoretical model, this

means we investigate what is driving the decrease in the value of a battle, va.

For this purpose, we test the following equation:

Battleiym =
τ=2∑
τ=0

βτDISiy,m−τ +
τ=2∑
τ=0

θτ (DISiy,m−τ × Zi)

+γBattleiy,m−1 + FEiy + FEm + εiy,m

(14)

Here, Zi is a vector of time-invariant variables that contains information about different

characteristics of district i that can help us identify the mechanism through which the disaster

affects the costs and benefits of a battle. We examine three such channels. First, Lighti, a

binary variable that switches to 1 if the average nighttime light intensity in district i in 1992

is above 10, and 0 otherwise, as a proxy for the level of local economic activity. Second,

Minei, a binary variable that switches to 1 if district i is home to a mineral mine, and

0 otherwise. Third, Agrii, a binary variable that switches to 1 if district i has over 50%

agriculturally suitable land, and 0 otherwise.

Our theoretical model predicts that districts with more economic activity, agricultural

land, or mineral mines are more likely to be worth fighting over, to capture local rents

from economic activity or mineral resources or for strategic reasons. If a disaster hits those

districts, the damages are likely to be higher and therefore the benefits of fighting might be

lower as well.

In Table 4, we present the set of results that explain the heterogeneity of the disaster

effect along these channels that might affect the benefits of fighting in a particular area.

These results confirm the model prediction in the case of districts with high levels of economic

activity, as classified by nighttime light. We find that the disaster effect is larger in districts
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with more nighttime light activity. The effect of natural disasters is also more pronounced

in districts with a large fraction of agricultural land. We do not find an indication that the

location of mines affects the disaster shock effect on battles.

[Table 4 about here]

5 Natural disasters and battles: Spatial spillover ef-

fects

5.1 Spatial spillover effects - district-month level analysis

Considering the spatial distribution of both our dependent and independent variables, it is

likely that spatial spillovers of these variables occur across districts. In this second part of the

empirical analysis, we turn our attention to such spatial battle spillovers of natural disasters,

in order to test part 6 of Proposition 2. For this purpose, we use the following specification,

which takes the form of a spatial Durbin model that allows for spatial autoregressive processes

in the dependent and explanatory variables.

Battleiym =
t∑

τ=0

βτDISiy,m−τ +
t∑

τ=0

δτNDISiy,m−τ

+ γ1Battleiy,m−1 + γ2NBattleiy,m + FEiy + FEm + εiy,m

(15)

The key variable of interest is NDISiy,m, which captures the direct spatial spillover

effect of a natural disaster that occurred in a neighboring district on battle probability in

district i. Here,

NDISiy,m=1 if
∑J

j=1 ωijDISjy,m > 0
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NDISiy,m=0 if
∑J

j=1 ωijDISjy,m = 0

where, as in the theoretical model, the “neighborhood” between districts is defined by the

connectivity matrix Ω = (ωij) such that ωij ∈ [0, 1] if a link exists between districts i and

j and ωij = 0 otherwise. In the data, we use two forms of connectivity: Ω1 captures

geographic connectivity ; whereas, Ω2 captures road connectivity. NDISiy,m is therefore the

binary transformation of the spatial lag of the natural disaster variable, which identifies

whether at least one “neighboring” district experienced a natural disaster in month m of

year y (NDISiy,m = 1) or not (NDISiy,m = 0).

We introduce enough flexibility in our empirical exercise to enable us to generate these

matrices at different cutoff distances and to conduct separate estimates at these cutoffs.

Both Ω1 and Ω2 are row-normalized so that the sum of each of its rows is equal to 1, that is,∑
j ωij = 1 for all i. We also include a temporal lag of this variable NDISiy,m−1 to identify

if spatial spillovers occur with a time lag.

To account for potential spatial correlation of battles at the subnational level, we con-

trol for NBattleiy,m in our specification, where NBattleiy,m is a binary variable = 1 if∑
j ωijBattlejy,m > 0, and = 0 otherwise. Additionally, as with previous estimations, we

include Battleiy,m−1 to control for the potential correlation of district i’s battles along the

temporal dimension.

Accordingly, the coefficients of interest δτ respectively capture the spatial and spatial×temporal

spillover effects of natural disasters occurring in neighboring districts on district i’s own bat-

tle probability. Part 6 of Proposition 2 predicts that δτ should be positive, indicating that

natural disasters divert battle activities to neighboring districts.

In Table 5, we examine the magnitude of spatial spillover effects at the district and month

level, at a cutoff distance of 500km from each district.25 Column (1) considers diffusion based

25In Table C.8 in Appendix C, we consider alternative cutoff distances as robustness checks.
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purely on the altitude-adjusted inverse geodesic distance and Column (2) considers only the

inverse road distance. In Column (3) we consider both types of connectivity together. In all

three columns, the coefficients on the variables of interest, NDISiy,m and NDISiy,m−1, are

statistically insignificant.

[Table 5 about here]

Next, we look at whether the diffusion effect is present at the monthly level when using

higher order temporal lags. Figure 6 shows the estimation of battle spillovers at the district-

month level, when including up to 11 monthly lags. Panel (a) displays the coefficients on

NDISiym when the neighborhood is defined using the altitude-adjusted inverse geodesic

distance matrix; whereas, in panel (b), the neighborhood is defined using the inverse road

distance matrix.

Figure 6: Battle Diffusion at the District-Month Level

(a) Coefficient on NDIS - Inverse Geodesic Distance (b) Coefficient on NDIS - Inverse Road Distance

Notes: Dots show the estimated coefficients on NDIS using Eq. 15, when including up to 11 temporal lags of the explanatory
variables. Panel (a) displays the coefficient on NDISiym when neighborhood is defined as per the altitude-adjusted inverse
geodesic distance matrix; whereas, in Panel (b) neighborhood is defined using the inverse road distance matrix. Vertical lines
show the 90% confidence interval based on standard errors clustered at the country×year level.

Accordingly, at this district-month level of disaggregation, we do not observe any evi-
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dence of spillover effects of neighbor’s natural disasters on one’s own battle incidence. Al-

though no such effect is visible in the short run, it could be that spillover effects take longer

to materialize. Moving troops from one district to another is unlikely to occur instanta-

neously. Indeed, after a natural disaster shock, it may take time to plan and execute new

battle plans and move from one district to another.

5.2 Spatial spillover effects - district-year level analysis

To examine whether it indeed takes more time for spatial spillovers to materialize, we now

explore whether any spatial and temporal spillovers occur at the aggregate district-year level,

using the following specification.

Battleiy = β0DISiy + β1DISi,y−1 + δ0NDISiy + δ1NDISi,y−1

+ γ1Battlei,y−1 + γ2NBattleiy + FEi + FEcy + εiy

(16)

The coefficients of interest are δ0 and δ1, which capture the direct spatial battle spillover

effects attributable to the occurrence of a natural disaster in a neighboring district in a given

and the following year.

Table 6 presents the results for the specification with spatial spillover effects over the

course of a year. They confirm part 6 of Proposition 2, which predicts positive and significant

battle spillovers following a natural disaster shock.

[Table 6 about here]

In column (1), we consider spillovers between neighbors as defined by the altitude-

adjusted inverse geodesic distance matrix, truncated at a distance of 500km from the centroid
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of each district.26 We do not observe any evidence of spillovers of battles attributable to

natural disasters in the same period. However, we observe that, in the year following a

natural disaster, battles do spillover to neighboring districts, and this result is statistically

significant at the 1% level.

Next, in column (2), we consider spillovers between districts linked by the road network,

where, again, this network is truncated at 500km. Here, too, we observe that battle spillovers

do occur as a result of natural disasters, but, unlike column (1), these spillovers occur in the

year when the natural disaster takes place.

To identify whether one form of connectivity dominates the spillover effects, in column

(3) we consider “horse race” specifications using a combination of these connectivity net-

works. These results confirm those found in columns (1) and (2). Indeed, we observe that

battle spillovers occur in the current year if districts are linked by road network, and in the

following year if they are linked by geographic proximity. Intuitively, it seems reasonable

that battle spillovers are observed rapidly in districts linked by roads, as roads provide an ac-

cessible means through which the spillovers can spread. When the connection is not through

roads, it takes extra effort and planning for battles to be relocated, suggesting a longer time

lag for spillovers to materialize.27

Moreover, comparing the results in Table 6 with those in Table 5, we observe that,

although there is no evidence of battle spillovers attributable to natural disasters in the

short run, there is systematic evidence of natural disasters increasing the likelihood of a

battle in neighboring districts in the medium to long-run.

26In Table C.15 in Appendix C, we consider alternative distance cut-offs at the district-year level.
27Moreover, in Table C.14 in Appendix C, we observe that these estimates remain robust when using

spatial HAC standard errors, allowing for spatial correlation up to 500km and for infinite serial correlation.

35



5.3 Spatial spillover effects - mechanisms

Let us attempt to understand the mechanisms underlying the spatial spillover effects. As

discussed in Section 3.3, our data enables us to categorize districts based on their levels

of economic, mining, and agricultural activities. We use these time-invariant features of

districts to explore whether any of these mechanisms play a role in battle diffusion following

a natural disaster shock.

We approach this question in two ways. First, we consider the features of district i, which

is the target/recipient of the battle spillovers following its neighbors’ natural disaster shock.

Here, we investigate whether the spillover of a battle is determined by the characteristics of

the district to which the battles spill over. To capture this, we define an interaction term

NDISiy×Zi, where Zi is defined as in Section 4.3 and is a vector of time-invariant variables

that contains information about different characteristics of district i, that is, Lighti (average

nighttime light intensity), Minei (mineral mine) and Agrii (over 50% agriculturally suitable

land).

The second dimension we consider is whether the features of the neighboring district j

where the natural disaster occurs (source district) play a role in determining whether the

natural disasters lead to battle spillovers. We estimate this effect through the use of an

interaction term NDISiy × Zj in our empirical specification.

These two ways of testing spillover effects follow from the results of Proposition 2 in

the theoretical model of Section 2, which predicts that, after a negative shock, the spillover

effects depend on whether the new opponents of the new battles are “weak” or “strong”.

Here we capture the “weakness” or “strength” of a district by its characteristics such as light

or mining, as described above.

Accordingly, we use the following specification to explore the mechanisms underlying

the spatial spillovers of battles.
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Battleiy = β0DISiy + β1DISi,y−1 + δ0NDISiy + δ1NDISi,y−1

+ λ0(NDISiy × Zi) + λ1(NDISi,y−1 × Zi)

+ µ0(NDISiy × Zj) + µ1(NDISi,y−1 × Zj)

+ γ1Battlei,y−1 + γ2NBattleiy + FEi + FEcy + εiy

(17)

As before, the “neighborhood” is defined in terms of the inverse geographic distance

and/or the inverse road distance.

Table 7 displays the results while Figure 7 plots them. Let us focus on Figure 7. In

panel (a), neighbors are defined by the altitude-adjusted inverse distance matrix; whereas,

in panel (b), they are defined by the inverse road distance matrix. We do not observe any

evidence that the characteristics of district i affect the battle spillovers to itself, when natural

disasters occur in districts within 500km of its centroid (panel (a)). However, in panel (b),

we see that, if district i is a mining district, it will experience positive battle spillovers from

its neighboring districts linked by roads up to 500km.

[Table 7 about here]
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Figure 7: Mechanisms of Battle Diffusion - Local Features

(a) Battle Diffusion in the Inverse geodesic Distance Network (b) Battle Diffusion in the Inverse Road Distance Network

Notes: Dots show the estimated coefficients on NeighbDisasteriy × Zi and NeighbDisasteriy−1 × Zi using Eq. (17), where
Zi refers to the time-invariant features of district i, as classified by the variables Lighti, Minei and Agrii. See Section 3.3 for
more details on these variables. In Panel (a), neighborhood is defined as per the altitude-adjusted inverse geodesic distance
matrix; whereas, in Panel (b) neighborhood is defined using the inverse road distance matrix. Horizontal lines show the 90%
confidence interval based on standard errors clustered at the country×year level.

Next, in Figure 8, we look at whether the battle diffusion depends on the characteristics

of the neighboring districts (Zj). Again, in panel (a), we do not observe evidence of Zj

affecting battle spillovers when neighborhood is defined by the altitude adjusted inverse

distance matrix. In panel (b), however, we observe a negative spillover effect in the road

connectivity matrix, when district j is a mining district.
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Figure 8: Mechanisms of Battle Diffusion - Neighbors’ Features

(a) Battle Diffusion in the Inverse geodesic Distance Network (b) Battle Diffusion in the Inverse Road Distance Network

Notes: Dots show the estimated coefficients on NeighbDisasteriy × Zj and NeighbDisasteriy−1 × Zj using Eq. 17, where Zj

refers to the time-invariant features of district j (i.e. neighboring district), as classified by the variables Lighti, Minei and Agrii.
See Section 3.3 for more details on these variables. In Panel (a), neighborhood is defined as per the altitude-adjusted inverse
geodesic distance matrix; whereas, in Panel (b) neighborhood is defined using the inverse road distance matrix. Horizontal lines
show the 90% confidence interval based on standard errors clustered at the country×year level.

Overall, these results can be summarized as follows: In general, differences in local

characteristics such as the level of development or the fraction of agricultural land do not

systematically affect the magnitude of spatial conflict spillovers as a result of negative eco-

nomic shocks. The only exception is mining. On average, a disaster affecting a mining

locality is less likely to lead to an outward shift of combat activity to other connected local-

ities. By contrast, if belligerents are forced to shift combat activity to connected localities,

they are more likely to shift activity to mining localities. Our results, once again, support

the idea that mining activity is a key determinant of local violent conflict in Africa. Mines do

not only increase the conflict prevalence in the mining locality (e.g. Berman et al. 2017) but

they also systematically affect the likelihood and target location of spatial shifts in combat

activity following negative economic shocks.
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6 Conclusion

We develop a network model in which players are involved in multiple battles. We show that,

when a negative shock hits a district, the total battle in this district goes down while the total

battle in neighboring districts goes up. We test this model empirically by analyzing the effect

of natural disasters on battles in Africa. We construct a novel panel-dataset that combines

geo-referenced information about battle events and natural disasters at the monthly level

for 5,944 districts in all 53 African countries over the period from 1989 to 2015. Our results

reveal that natural disasters do indeed decrease battle incidence in the affected district and

that they divert fighting activity to surrounding districts, particularly those that are better

connected via the geographic and road networks. This shift in combat activity occurs with

some significant time lag. In addition, our results highlight that mining activity also plays

a crucial role in determining the spatial dynamics of conflict in Africa. Outward shifts in

conflict, caused by negative economic shocks, are less likely to occur in mining localities.

If a shift occurs, however, mining localities are more likely to be the target of new combat

activity.
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Tables

Table 1: Descriptive Statistics for Key Variables

Variable Observations Mean Std. Dev. Min. Max.

District Characteristics

Light 5,944 0.0792 0.2701 0 1
Mine 5,944 0.0436 0.2042 0 1
Agri 5,944 0.2917 0.4546 0 1

District-Year Aggregation

Pr(Battle > 0)
All Districts 160,488 0.0344 0.1821 0 1
if DIS >0 10,748 0.0296 0.1695 0 1
if DIS=0 149,740 0.0347 0.1830 0 1

Pr(DIS > 0)
All Disasters 160,488 0.0670 0.2500 0 1

District-Month Aggregation

Pr(Battle > 0)
All Districts 1,925,856 0.0056 0.0746 0 1
if DIS>0 11,400 0.0044 0.0661 0 1
if DIS =0 1,914,456 0.0056 0.0746 0 1

Pr(DIS> 0)
All Disasters 1,925,856 0.0059 0.0767 0 1

Battle and DIS are binary variables indicating the presence (=1) or absence
(=0) of a battle resulting in at least one death, and a natural disaster event,
respectively, in district i in in the given time unit. Disasters exclude droughts.
Light = 1 if Initial Light in district i > 10 (on a scale of 0-63) and = 0
otherwise. Mine = 1 if at least one active mine was present in district i over
the sample period, and = 0 otherwise. Agri = 1 if more than 50% of the land
area of district i was agriculturally suitable, and = 0 otherwise.
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Table 2: Natural Disasters and Battles at the District-Year Level

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Battleiy Battleiy Battleiy Battleiy Battleiy Battleiy Battleiy Battleiy
DISiy -0.0101** -0.0099* -0.0080* -0.0079* -0.0024 -0.0028 -0.0021 -0.0021

(0.0050) (0.0051) (0.0042) (0.0042) (0.0033) (0.0033) (0.0030) (0.0030)
DISiy−1 -0.0086* -0.0065* -0.0050 -0.0045

(0.0046) (0.0038) (0.0032) (0.0028)
Observations 160,488 154,544 154,544 154,544 160,488 154,544 154,544 154,544
Number of Districts 5,944 5,944 5,944 5,944 5,944 5,944 5,944 5,944
District FE YES YES YES YES YES YES YES YES
Year FE YES YES YES YES NO NO NO NO
Country × Year NO NO NO NO YES YES YES YES
Other Controls NO NO YES YES NO NO YES YES
Battle and DIS are binary variables indicating the presence (=1) or absence (=0) of a battle resulting in at least
one death, and a natural disaster event, respectively, in district i in year y. Disasters exclude droughts. Other
controls include Battleiy−1. Standard errors, clustered at the country × year level, in parentheses.*** p<0.01,
** p<0.05, * p<0.1

Table 3: Natural Disasters and Battles at the District-Month Level

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Battleiym Battleiym Battleiym Battleiym Battleiym Battleiym Battleiym Battleiym
DISiym -0.0025*** -0.0025*** -0.0026*** -0.0026*** -0.0015** -0.0015** -0.0014** -0.0015**

(0.0008) (0.0008) (0.0007) (0.0007) (0.0006) (0.0007) (0.0006) (0.0007)
DISiy,m−1 -0.0027*** -0.0021*** -0.0017** -0.0018**

(0.0008) (0.0007) (0.0007) (0.0007)
Observations 1,925,856 1,919,912 1,919,912 1,919,912 1,925,856 1,919,912 1,919,912 1,919,912
Number of Districts 5,944 5,944 5,944 5,944 5,944 5,944 5,944 5,944
District-FE YES YES YES YES NO NO NO NO
Month FE YES YES YES YES YES YES YES YES
Year FE YES YES YES YES NO NO NO NO
District × Year FE NO NO NO NO YES YES YES YES
Other Controls NO NO YES YES NO NO YES YES
Battle and DIS are binary variables indicating the presence (=1) or absence (=0) of a battle resulting in at least one death,
and a natural disaster event, respectively, in district i in month m of year y. Disasters exclude droughts. Other controls
include Battleiy,m−1. Standard errors, clustered at the country × year level in parenthesis.*** p<0.01, ** p<0.05, * p<0.1
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Table 4: Natural Disasters and Battles at the District-Month Level: Channels

(1) (2) (3) (4)
VARIABLES Battleiym Battleiym Battleiym Battleiym
DISiym -0.0015** -0.0013* -0.0015** -0.0010

(0.0006) (0.0008) (0.0007) (0.0008)
DISiy,m−1 -0.0013* -0.0013 -0.0018** -0.0006

(0.0007) (0.0009) (0.0007) (0.0008)
DISiy,m−2 -0.0005 -0.0010 -0.0006 -0.0007

(0.0007) (0.0008) (0.0007) (0.0009)
DISiym × Lighti -0.0011 -0.0014

(0.0026) (0.0025)
DISiy,m−1 × Lighti -0.0065** -0.0071***

(0.0025) (0.0019)
DISiy,m−2 × Lighti -0.0034 -0.0031

(0.0029) (0.0027)
DISiym ×Agrii -0.0011 -0.0012

(0.0011) (0.0010)
DISiy,m−1 ×Agrii -0.0018 -0.0024**

(0.0012) (0.0011)
DISiy,m−2 ×Agrii 0.0013 0.0010

(0.0012) (0.0013)
DISiym ×Minei -0.0013 -0.0013

(0.0021) (0.0024)
DISiy,m−1 ×Minei 0.0003 0.0004

(0.0016) (0.0016)
DISiy,m−2 ×Minei -0.0014 -0.0012

(0.0017) (0.0018)
Observations 1,913,968 1,913,968 1,913,968 1,913,968
Number of Districts 5,944 5,944 5,944 5,944
Month FE YES YES YES YES
District × Year FE YES YES YES YES
Other Controls YES YES YES YES
Battle and DIS are binary variables indicating the presence (=1) or absence
(=0) of a battle resulting in at least one death, and natural disaster event,
respectively, in district i in month m of year y. Disasters exclude droughts.
Light=1 if average nighttime light in 1992 (i.e. initial light) >10 (on a
scale of 0-63), and 0 otherwise. Agri=1 if the fraction of land suitable
for agriculture in district i is above 50%, and 0 otherwise. Mine = 1 if the
district hosted at least one active mining project over the sample period, and
0 otherwise. Other controls include Battleiy,m−1. Standard errors, clustered
at the country×year level, in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 5: Natural Disasters and Battle Diffusion at the District-Month Level

(1) (2) (3)
VARIABLES Battleiym Battleiym Battleiym

Inverse Geodesic Distance

NDISiym -0.0002 -0.0005
(0.0003) (0.0004)

NDISiy,m−1 -0.0003 -0.0006
(0.0003) (0.0004)

NBattleiym 0.0031*** 0.0015***
(0.0004) (0.0003)

NBattleiy,m−1 0.0006 -0.0001
(0.0005) (0.0005)

Inverse Road Distance

NDISiym 0.0003 0.0007
(0.0005) (0.0005)

NDISiy,m−1 0.0003 0.0008
(0.0005) (0.0006)

NBattleiym 0.0064*** 0.0058***
(0.0009) (0.0008)

NBattleiy,m−1 0.0022*** 0.0022***
(0.0006) (0.0005)

DISiym -0.0012 -0.0017** -0.0016*
(0.0008) (0.0008) (0.0008)

DISiy,m−1 -0.0014* -0.0018** -0.0017**
(0.0008) (0.0009) (0.0009)

Observations 1,919,912 1,919,912 1,919,912
Number of Districts 5,944 5,944 5,944
Distance Cut-off 500km 500km 500km
Month FE YES YES YES
District × Year FE YES YES YES
Other Controls YES YES YES
Battle and DIS are binary variables indicating the presence (=1)
or absence (=0) of a battle resulting in at least one death, and
natural disaster event, respectively, in the given district in the
given time period. NDIS (NBattle) is a binary variable indicat-
ing the presence (=1) or absence (=0) of a natural disaster event
(battle), in any one of the district’s neighbours, within the given
time period. Neighbourhood is based on the altitude-adjusted
inverse distance matrix and the inverse road distance matrix,
truncated at the indicated distance cut-off. Disasters exclude
droughts. Other controls include Battleiy,m−1. Standard errors,
clustered at the country×year level, in parentheses. *** p<0.01,
** p<0.05, * p<0.1 49



Table 6: Natural Disasters and Battle Diffusion at the District-Year Level

(1) (2) (3)
VARIABLES Battleiy Battleiy Battleiy

Inverse Geodesic Distance

NDISiy 0.0042 0.0034
(0.0030) (0.0029)

NDISiy−1 0.0118*** 0.0108***
(0.0036) (0.0033)

NBattleiy 0.0015 -0.0023
(0.0021) (0.0020)

NBattleiy−1 0.0057*** 0.0032
(0.0021) (0.0020)

Inverse Road Distance

NDISiy 0.0048** 0.0042*
(0.0023) (0.0023)

NDISiy−1 0.0037 0.0016
(0.0023) (0.0022)

NBattleiy 0.0204*** 0.0205***
(0.0035) (0.0034)

NBattleiy−1 0.0106*** 0.0102***
(0.0027) (0.0027)

DISiy -0.0022 -0.0027 -0.0028
(0.0030) (0.0029) (0.0029)

DISiy−1 -0.0048* -0.0055** -0.0053*
(0.0028) (0.0028) (0.0028)

Observations 154,544 154,544 154,544
Number of Districts 5,944 5,944 5,944
Distance Cut-off 500km 500km 500km
District FE YES YES YES
Country× Year FE YES YES YES
Other Controls YES YES YES
Battle and DIS are binary variables indicating the presence (=1) or
absence (=0) of a battle resulting in at least one death, and natural
disaster event, respectively, in the given district in the given time pe-
riod. NDIS (NBattle) is a binary variable indicating the presence
(=1) or absence (=0) of a natural disaster event (battle), in any one
of the district’s neighbours, within the given time period. Neighbour-
hood is based on the altitude-adjusted inverse distance matrix and the
inverse road distance matrix, truncated at the indicated distance cut-
off. Disasters exclude droughts. Other controls include Battleiy−1.
Standard errors, clustered at the country× year level, in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
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Table 7: Natural Disasters and Battle Diffusion Mechanisms at the District-Year Level

(1) (2) (3)
VARIABLES Battleiy Battleiy Battleiy

Inverse Geodesic Distance

NDISiy 0.0015 0.0018
(0.0034) (0.0034)

NDISiy × Lighti 0.0081 0.0049
(0.0110) (0.0098)

NDISiy × Minei 0.0074 0.0010
(0.0051) (0.0055)

NDISiy × Agrii -0.0044 -0.0049
(0.0044) (0.0049)

NDISiy × Lightj -0.0007 -0.0001
(0.0043) (0.0041)

NDISiy × Minej -0.0018 -0.0008
(0.0037) (0.0037)

NDISiy × Agrij 0.0077 0.0062
(0.0048) (0.0045)

NBattleiy 0.0017 -0.0022
(0.0021) (0.0020)

NDISiy−1 0.0136*** 0.0119***
(0.0037) (0.0034)

NDISiy−1 × Lighti -0.0093 -0.0030
(0.0136) (0.0127)

NDISiy−1 × Minei -0.0000 -0.0016
(0.0054) (0.0060)

NDISiy−1 × Agrii 0.0031 0.0016
(0.0038) (0.0042)

NDISiy−1 × Lightj -0.0036 -0.0025
(0.0037) (0.0035)

NDISiy−1 × Minej -0.0050 -0.0033
(0.0043) (0.0043)

NDISiy−1 × Agrij 0.0011 0.0008
(0.0050) (0.0050)

NBattleiy−1 0.0055*** 0.0030
(0.0021) (0.0020)

Inverse Road Distance

NDISiy 0.0044 0.0033
(0.0029) (0.0029)

NDISiy × Lighti 0.0093 0.0066
(0.0115) (0.0109)

NDISiy × Minei 0.0115** 0.0108**
(0.0050) (0.0053)

NDISiy × Agrii -0.0006 0.0018
(0.0038) (0.0042)

NDISiy × Lightj -0.0023 -0.0019
(0.0034) (0.0033)

NDISiy × Minej -0.0049 -0.0049
(0.0036) (0.0035)

NDISiy × Agrij 0.0025 0.0016
(0.0031) (0.0031)

NBattleiy 0.0203*** 0.0203***
(0.0035) (0.0034)

NDISiy−1 0.0067** 0.0046
(0.0030) (0.0029)

NDISiy−1 × Lighti -0.0117 -0.0103
(0.0117) (0.0102)

NDISiy−1 × Minei 0.0045 0.0047
(0.0048) (0.0052)

NDISiy−1 × Agrii 0.0028 0.0028
(0.0036) (0.0041)

NDISiy−1 × Lightj -0.0045 -0.0038
(0.0037) (0.0037)

NDISiy−1 × Minej -0.0091** -0.0086**
(0.0037) (0.0035)

NDISiy−1 × Agrij -0.0007 -0.0002
(0.0034) (0.0034)

NBattleiy−1 0.0105*** 0.0100***
(0.0027) (0.0026)

DISiy -0.0022 -0.0029 -0.0028
(0.0030) (0.0029) (0.0029)

DISiy−1 -0.0044 -0.0047* -0.0044*
(0.0028) (0.0026) (0.0026)

Observations 154,544 154,544 154,544
Number of Districts 5,944 5,944 5,944
Distance Cut-off 500km 500km 500km
District FE YES YES YES
Country× Year FE YES YES YES
Other Controls YES YES YES
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Online Appendix

Conflicts in Spatial Networks

By Ashani Amarasinghe1, Paul A. Raschky2, Yves Zenou3 and Junjie Zhou4

A Proofs of the Theoretical Model

Proof of Proposition 1: The existence and uniqueness result of the Nash equilibrium

result of this proposition follows directly from Theorems 1 and 3 in Xu et al. (2019).

Indeed, the cost function is quadratic, and therefore convex and strongly monotone, and

the Tullock contest success function (CSF), given by (2), satisfies the assumption on the

CSF assumption in Xu et al. (2019). This shows the existence and uniqueness of the Nash

equilibrium. Moreover, Xu et al. (2019) also show the unique equilibirum satisfies the

property that every battle contains at least two contestants with positive efforts. Since, in

the star depicted in Figure 1, each battle only has two contestants, this unique equilibrium

is interior. 2

Proof of Lemma 1: It is easily verified that ∂2z(x,y)
∂x2

< 0 so that z is strictly concave in x.

Moreover,

∂z

∂x
(0, y) = v/y > 0,

and

lim
x→∞

∂z

∂x
(0, y) = −∞,

1Department of Econhomics, Monash University. Email: ashani.amarasinghe@monash.edu.
2Department of Econhomics, Monash University. Email: paul.raschky@monash.edu.
3Department of Econhomics, Monash University. Email: yves.zenou@monash.edu.
4Department of Econhomics, National University of Singapore. Email: ecszjj@nus.edu.sg.
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so there exists a unique x∗(y) such that ∂z
∂x

(x∗(y), y) = 0. Clearly such x∗ is the maximizer

by the concavity of z.

Moreover, by the implicit function theorem,

∂x∗

∂y
= −

(
∂2z

∂x2

)−1
∂2z

∂x∂y
|x=x∗ .

Since

∂2z

∂x2
< 0,

∂2z

∂x∂y
=
v(x− y)

(x+ y)3
,

so

sign
∂x∗

∂y
= sign(x∗ − y).

This completes the proof of the lemma. 2

Proof of Proposition 2: By applying the implicit function theorem to system (9) for the

parameter va, we obtain: 

∂xa1
∂va

∂xb1
∂va

∂xa2
∂va

∂xb3
∂va


= −M−1



∂f1
∂va

∂f2
∂va

∂f3
∂va

∂f4
∂va


(A.1)
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where

M :=



∂f1
∂xa1

∂f1
∂xb1

∂f1
∂xa2

∂f1
∂xb3

∂f2
∂xa1

∂f2
∂xb1

∂f2
∂xa2

∂f2
∂xb3

∂f3
∂xa1

∂f3
∂xb1

∂f3
∂xa2

∂f3
∂xb3

∂f4
∂xa1

∂f4
∂xb1

∂f4
∂xa2

∂f4
∂xb3


and



∂f1
∂va

∂f2
∂va

∂f3
∂va

∂f4
∂va


=



xa2
(xa1+xa2)2

0

xa1
(xa1+xa2)2

0


(A.2)

with

∂f1

∂xb3
=
∂f2

∂xa2
=
∂f3

∂xb1
=
∂f3

∂xb3
=
∂f4

∂xa1
=
∂f4

∂xa2
= 0 (A.3)

∂f1

∂xa1
= −s1 −

2vaxa2
(xa1 + xa2)3

,
∂f1

∂xb1
= −s1,

∂f1

∂xa2
=

va

(xa1 + xa2)2
− 2vaxa2

(xa1 + xa2)3
,

∂f2

∂xa1
= −s1,

∂f2

∂xb1
= −s1 −

2vbxb3
(xb1 + xb3)3

,
∂f2

∂xb3
=

vb

(xb1 + xb3)2
− 2vbxb3

(xb1 + xb3)3
,

∂f3

∂xa1
=

va

(xa1 + xa2)2
− 2vaxa1

(xa1 + xa2)3
,
∂f3

∂xa2
= −s2 −

2vaxa1
(xa1 + xa2)3

,

∂f4

∂xb1
=

vb

(xb1 + xb3)2
− 2vbxb1

(xb1 + xb3)3
,
∂f4

∂xb3
= −s3 −

2vbxb1
(xb1 + xb3)3

.

(A.4)

Note that M is just the Jacobian matrix of system (9) with respect to (xa1, x
b
1, x

a
2, x

b
3).

We can easily verify that the sign of the determinant of M is given by:

det(M) := J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f1
∂xa1

∂f1
∂xb1

∂f1
∂xa2

∂f1
∂xb3

∂f2
∂xa1

∂f2
∂xb1

∂f2
∂xa2

∂f2
∂xb3

∂f3
∂xa1

∂f3
∂xb1

∂f3
∂xa2

∂f3
∂xb3

∂f4
∂xa1

∂f4
∂xb1

∂f4
∂xa2

∂f4
∂xb3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0. (A.5)

We apply the Cramer’s rule to compute each component of the left-hand side (LHS) of
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(A.1). After some simplifications, we obtain:

∂xa1
∂va

=
(vaxa1 + s2x

a
2(xa1 + xa2)2)((vb)2 + s1s3(xb3 + xb1)4 + 2vb(xb3 + xb1)(s3x

b
3 + s1x

b
1))

J(xa1 + xa2)4(xb3 + xb1)4
> 0

(A.6)

∂xb1
∂va

= −s1(vaxa1 + s2x
a
2(xa1 + xa2)2)(2vbxb1 + s3(xb3 + xb1)3)

J(xa1 + xa2)4(xb3 + xb1)3
< 0 (A.7)

∂xa1
∂va

+
∂xb1
∂va

=
vb(vaxa1 + s2x

a
2(xa1 + xa2)2)(vb + 2s3x

b
3(xb3 + xb1))

J(xa1 + xa2)4(xb3 + xb1)4
> 0 (A.8)

∂xa2
∂va

=

s1

[
(vb)2xa1(xa1 + xa2)2 + s3v

axa2(xb3 + xb1)4 + 2vb(xb3 + xb1)(s3x
a
1x

b
3(xa1 + xa2)2 + vaxa2x

b
1)

]
J(xa1 + xa2)4(xb3 + xb1)4

+
vavbxa2(vb + 2s3x

b
3(xb3 + xb1))

J(xa1 + xa2)4(xb3 + xb1)4
> 0

(A.9)

∂xb3
∂va

=
s1v

b(xb1 − xb3)(vaxa1 + s2x
a
2(xa1 + xa2)2)

J(xa1 + xa2)4(xb3 + xb1)3
(A.10)

∂xb1
∂va

+
∂xb3
∂va

= −s1(vaxa1 + s2x
a
2(xa1 + xa2)2)(vb + s3(xb3 + xb1)2)

J(xa1 + xa2)4(xb3 + xb1)2
< 0 (A.11)

This completes the proof of the proposition. 2
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B Additional figures

Figure B.1: Distribution of battles in Africa
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Figure B.2: Distribution of natural disasters in Africa
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Figure B.3: Road connectivity in Africa
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C Robustness checks

Appendix C presents the results from a number of robustness checks.

First, in Section C.1, we estimate the local effect of natural disasters on battles when

aggregated at the country level (Table C.1). We observe that there is no statistically signif-

icant relationship at this coarse level of aggregation, and this, in turn, highlights the need

for a more disaggregated analysis.

Second, in Section C.2, we perform some robustness checks at the district-month level.

In Table C.2, we replicate Table , but allow for spatial clustering of standard errors instead of

clustering at the country×year level. Accordingly, here we present spatial heteroscedasticity

and autocorrelation consistent (HAC) standard errors, allowing for spatial correlation up to

100km and for infinite serial correlation5. As these results indicate, our baseline estimates

are quite robust to this alternative clustering approach.

In Table C.3, we replicate the specification in Eq (13), but additionally includes higher

order autoregressive terms. We show that the magnitude and statistical significance of the

variable of interest does not change drastically once these controls are included. In Table

C.4, we use the count of battles at the district-month level instead of a binary indicator.

We observe that the negative effect of disasters is still there under this definition of battles

as well. In Table C.5, we use alternative definitions of the dependent variable. We identify

that the negative effect of natural disasters on battles stems mostly from battles involving

state and non-state actors and not from one-sided battles.

In Table C.6, we use alternative definitions of the independent variable. Large disasters

show a negative effect on battles in the period of occurrence, while the negative effect of small

disasters occurs with a time lag. Climatic disasters lead to a reduction of battle incidence

at the 1% level of statistical significance, while the effect of geologic disasters is statistically

5This procedure was implemented in Stata 14 using the “acreg” command by Colella et al. (2019).
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insignificant.

We distinguish between battle onset and termination in Table C.7. IN order to do

this, we first generate binary indicators to identify the first period of battle in a district

(onset) and the last period of battle in a district (termination). Results indicate that natural

disasters have a statistically significant effect on increasing the termination of battles, and

no statistically significant effect on battle onset. This result further proves that natural

disasters lead to a permanent appeasing effect in the context of Africa.

Next we look at the diffusion of battles along the geographic network at different distance

cutoffs (Table C.8). As discussed before, in the short run, we do not see an effect of battle

diffusion along the geographic network, even when truncated at shorter distances.

In Section C.3 we conduct the same robustness checks as in Section C.2, but at the

district-year level of aggregation. We observe that the local effect (Tables C.9 to Table

C.13) are less precisely defined at the district-year level than at the district-month level. By

contrast, the diffusion effects (Table C.15) are more prominent in the medium to long run

i.e. at the year level.

Finally, in Table C.16 we address concerns on the potential occurrence of the well-known

Nickell bias when including a lagged dependent variable in a fixed effects specification. Panel

A in Table C.16 presents results of specifications without the lagged dependent variable as

well as results of a LDV model. The results show that the coefficients of our key explanatory

variables remain very similar.
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C.1 Robustness Checks at the Country-Year Level

Table C.1: Natural Disasters and Battles at Country Level

(1) (2)
Country-Year Country-Month

Level Level
VARIABLES Battlecy Battlecy,m
DIScy -0.0043

(0.0277)
DIScy−1 -0.0347

(0.0224)
DIScy,m 0.1060

(0.0117)
DIScy,m−1 0.0033

(0.0128)

Observations 1,378 17,119
Number of Geographic Units 53 53
Month FE NO YES
Year FE YES YES
Country FE YES YES
Country × Year FE NO NO
Other Controls YES YES

Battle and DIS are binary variables indicating the presence
(=1) or absence (=0) of a battle resulting in at least one death,
and natural disaster event, respectively, in the given geographic
unit in the given time period. Disasters exclude droughts. Ad-
ditional controls include Battleit−1. Robust standard errors in
parentheses.*** p<0.01, ** p<0.05, * p<0.1
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C.2 Robustness Checks at the District-Month Level

Table C.2: Natural Disasters and Battles at the District-Month Level - Spatial Clustering
of Standard Errors

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Battleiy,m Battleiy,m Battleiy,m Battleiy,m Battleiy,m Battleiy,m Battleiy,m Battleiy,m
DISiy,m -0.0025*** -0.0025*** -0.0026*** -0.0026*** -0.0015** -0.0015*** -0.0014** -0.0015***

(0.0007) (0.0007) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006)
DISiy,m−1 -0.0027*** -0.0021*** -0.0017*** -0.0018***

(0.0007) (0.0006) (0.0005) (0.0005)
Observations 1,925,856 1,919,912 1,919,912 1,919,912 1,925,856 1,919,912 1,919,912 1,919,912
Number of Districts 5,944 5,944 5,944 5,944 5,944 5,944 5,944 5,944
Month FE YES YES YES YES YES YES YES YES
District-FE YES YES YES YES NO NO NO NO
Year FE YES YES YES YES NO NO NO NO
District × Year FE NO NO NO NO YES YES YES YES
Other Controls NO NO YES YES NO NO YES YES
Battle and DIS are binary variables indicating the presence (=1) or absence (=0) of a battle resulting in at least one death,
and a natural disaster event, respectively, in district i in month m of year y. Disasters exclude droughts. Other controls include
Battleiy,m−1. Spatial HAC standard errors, allowing for spatial correlation up to 100km and for infinite serial correlation, are in
parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table C.3: Natural Disasters and Battles at the District-Month Level - With Higher Order
Autoregressive Terms

(1) (2)
VARIABLES Battleiym Battleiym
DISiym -0.0014** -0.0015**

(0.0006) (0.0007)
DISiy,m−1 -0.0016**

(0.0007)
Battleiy,m−1 -0.0118** -0.0121**

(0.0055) (0.0057)
Battleiy,m−2 -0.0427***

(0.0042)

Observations 1,919,912 1,913,968
Number of districts 5,944 5,944
Month FE YES YES
District × Year FE YES YES
Other Controls YES YES

This Table includes higher order autoregres-
sive terms i.e. Battleiy,m−1 Battleiy,m−2 and
Battleiy,m−3 as additional controls. Battle
and DIS are binary variables indicating the
presence (=1) or absence (=0) of a battle
resulting in at least one death, and a natu-
ral disaster event, respectively, in the given
district in the given time period. Disasters
exclude droughts. Other controls include
Battleiy,m−1. Standard errors, clustered at
the country × year level in parenthesis.***
p<0.01, ** p<0.05, * p<0.1
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Table C.4: Natural Disasters and Battles at the District-Month Level - Battle Intensity

(1) (2)
VARIABLES Battleiym Battleiym
DISiym -0.0023* -0.0024*

(0.0014) (0.0007)
DISiy,m−1 -0.0024**

(0.0011)
Observations 1,919,912 1,919,912
Number of districts 5,944 5,944
Month FE YES YES
District × Year FE YES YES
Other Controls YES YES
Battle is a count variable indicating the sum of
all battle events resulting in at least one death in
the given district in the given time period. DIS
is a binary variable indicating the presence (=1)
or absence (=0) of a natural disaster event in
the given district in the given time period. Dis-
asters exclude droughts. Other controls include
Battleiy,m−1. Standard errors, clustered at the
country × year level in parenthesis.*** p<0.01,
** p<0.05, * p<0.1
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Table C.5: Alternative Definition of the Dependent Variable

(1) (2) (3) (4)
VARIABLES State Non− State Onesided State/Non− State

Battleiym Battleiym Battleiym Battleiym
DISiym -0.0009** -0.0004 0.0003 -0.0015**

(0.0004) (0.0005) (0.0004) (0.0006)
DISiy,m−1 -0.0010** -0.0004 -0.0004 -0.0015**

(0.0005) (0.0005) (0.0004) (0.0006)
Observations 1,919,912 1,919,912 1,919,912 1,919,912
Number of Districts 5,944 5,944 5,944 5,944
District FE YES YES YES YES
Month FE YES YES YES YES
District × Year FE YES YES YES YES
Other Controls YES YES YES YES
Battle and DIS are binary variables indicating the presence (=1) or absence (=0) of a battle
resulting in at least one death and a natural disaster event, respectively, in the given district in the
given time period. State (NonState) Battle is a binary variable indicating the presence (=1) or
absence (=0) of a battle leading to at least one death, where at least one party was the state (both
parties were nonstate), and both parties used force. Onesided Battle is a binary variable indicating
the presence (=1) or absence (=0) of a battle resulting in at least one death, where only one party
used force and the other party did not retaliate. State/Non − State Battle is a binary variable
indicating the presence (=1) or absence (=0) of a State or Non-State battle resulting in at least one
death, and does not include Onesided battles. Disasters exclude droughts. Other controls include
Battleiy,m−1. Standard errors, clustered at the country× year level, in parentheses.*** p<0.01, **
p<0.05, * p<0.1
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Table C.6: Alternative Definition of the Independent Variable - District-Month Level

(1) (2) (3) (4)
VARIABLES Battleiym Battleiym Battleiym Battleiym
Large DISiym -0.0015**

(0.0008)
Large DISiy,m−1 -0.0014

(0.0009)
Small DISiym -0.0015

(0.0013)
Small DISiy,m−1 -0.0023*

(0.0012)
Climatic DISiym -0.0008

(0.0006)
Climatic DISiy,m−1 -0.0018***

(0.0006)
Geologic DISiym -0.0175

(0.0116)
Geologic DISiy,m−1 -0.0128

(0.0106)
Observations 1,919,912 1,919,912 1,919,912 1,919,912
Number of Districts 5,944 5,944 5,944 5,944
District FE YES YES YES YES
Month FE YES YES YES YES
District × Year FE YES YES YES YES
Other Controls YES YES YES YES
Battle and DIS are binary variables indicating the presence (=1) or
absence (=0) of a battle resulting in at least one death and a natural
disaster event, respectively, in the given district in the given time period.
Large DIS is a binary variable indicating the presence (=1) or absence
(=0) of a disasters that either (i) kills at least 1000 people, or (ii) affects
at least 100,000 people in total, or (iii) causes damages of at least one
billion (real) dollars. Climatic (Geologic) DIS is a binary variables indi-
cating the presence (=1) or absence (=0) of a climatic (geologic) natural
disaster event in the given district in the given time period. Disasters
exclude droughts. Geologic disasters include volcanic eruptions, natural
explosions, avalanches, landslides, and earthquakes. Climatic disasters
include floods, cyclones, hurricanes, ice storms, snowstorms, tornadoes,
typhoons, and storms. Other controls include Battleiy,m−1. Standard
errors, clustered at the country × year level, in parentheses.*** p<0.01,
** p<0.05, * p<0.1
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Table C.7: Natural Disasters, Battle Onset and Termination - District-Month level

(1) (2)
VARIABLES Onsetiy,m Terminationiy,m

DISiy,m 0.0003 0.0009**
(0.0002) (0.0004)

DISiy,m−1 0.0000 0.0002
(0.0002) (0.0003)

Observations 1,563,293 1,675,017
Number of Districts 5,919 5,944
Month FE YES YES
District × Year FE YES YES
Other Controls YES YES
Onset is a binary indicator = 0 in periods with no
battle events; = 1 in the first time period a district
experiences a battle; and missing in subsequent time
periods. Termination is a binary indicator = 0 in peri-
ods of battle; = 1 in the first period with no battle; and
missing in subsequent time periods. DIS is a binary
variable indicating the presence (=1) or absence (=0)
of a natural disaster event in the given district in the
given time period. Disasters exclude droughts. Other
controls include Battleiy,m−1. Standard errors, clus-
tered at the country × year level, in parentheses.***
p<0.01, ** p<0.05, * p<0.1
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Table C.8: Natural Disasters and Battle Diffusion at the District-Month Level - Robustness
to Alternative Distance Cut-offs

(1) (2) (3) (4) (5)
VARIABLES Battleiym Battleiym Battleiym Battleiym Battleiym

Inverse Geodesic Distance

NDISiym 0.0002 -0.0004 -0.0006 -0.0004 -0.0005
(0.0006) (0.0005) (0.0006) (0.0004) (0.0004)

NDISiy,m−1 -0.0006 -0.0006 -0.0007 -0.0005 -0.0006
(0.0006) (0.0005) (0.0005) (0.0004) (0.0004)

NBattleiym 0.0051*** 0.0031*** 0.0026*** 0.0020*** 0.0015***
(0.0008) (0.0005) (0.0004) (0.0003) (0.0003)

NBattleiy,m−1 0.0015** 0.0004 0.0005 0.0003 -0.0001
(0.0007) (0.0007) (0.0005) (0.0005) (0.0005)

Inverse Road Distance

NDISiym -0.0000 0.0003 0.0005 0.0006 0.0007
(0.0009) (0.0007) (0.0007) (0.0005) (0.0005)

NDISiy,m−1 0.0003 0.0006 0.0007 0.0002 0.0008
(0.0010) (0.0008) (0.0007) (0.0006) (0.0006)

NBattleiym 0.0092*** 0.0074*** 0.0064*** 0.0061*** 0.0058***
(0.0016) (0.0012) (0.0009) (0.0009) (0.0008)

NBattleiy,m−1 0.0038*** 0.0028*** 0.0023*** 0.0022*** 0.0022***
(0.0007) (0.0005) (0.0004) (0.0004) (0.0005)

DISiym -0.0016* -0.0013 -0.0013 -0.0015* -0.0016*
(0.0009) (0.0008) (0.0008) (0.0008) (0.0008)

DISiy,m−1 -0.0014 -0.0014 -0.0015* -0.0013 -0.0017**
(0.0011) (0.0009) (0.0009) (0.0009) (0.0009)

Observations 1,919,912 1,919,912 1,919,912 1,919,912 1,919,912
Number of Districts 5,944 5,944 5,944 5,944 5,944
Distance Cutoff 100km 200km 300km 400km 500km
Month FE YES YES YES YES YES
District × Year FE YES YES YES YES YES
Other Controls YES YES YES YES YES
Battle and DIS are binary variables indicating the presence (=1) or absence (=0) of a battle
resulting in at least one death and natural disaster event, respectively, in the given district in the
given time period. NDIS (NBattle) is a binary variable indicating the presence (=1) or absence
(=0) of a natural disaster event (battle), in any one of the district’s neighbours, within the given
time period. Neighbourhood is based on the altitude-adjusted inverse distance matrix and the
inverse road distance matrix, truncated at the indicated distance cut-off. Disasters exclude
droughts. Other controls include Battleiy,m−1. Standard errors, clustered at the country×year
level, in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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C.3 Robustness Checks at the District-Year Level

Table C.9: Alternative Definitions of the Dependent Variable - District-Year Level

(1) (2) (3) (4)
VARIABLES State Non− State Onesided State/Non− State

Battleiy Battleiy Battleiy Battleiy
DISiy -0.0002 -0.0010 -0.0009 -0.0015

(0.0021) (0.0022) (0.0018) (0.0023)
DISiy−1 -0.0034* -0.0003 -0.0036** -0.0011

(0.0019) (0.0022) (0.0017) (0.0025)
Observations 154,544 154,544 154,544 154,544
Number of Districts 5,944 5,944 5,944 5,944
District FE YES YES YES YES
Country × Year YES YES YES YES
Other Controls YES YES YES YES
Battle and DIS are binary variables indicating the presence (=1) or absence (=0) of a
battle resulting in at least one death and a natural disaster event, respectively, in the given
district in the given time period. State (NonState) Battle is a binary variable indicating
the presence (=1) or absence (=0) of a battle leading to at least one death, where at least
one party was the state (both parties were nonstate), and both parties used force. Onesided
Battle is a binary variable indicating the presence (=1) or absence (=0) of a battle resulting
in at least one death, where only one party used force and the other party did not retaliate.
State/Non−State Battle is a binary variable indicating the presence (=1) or absence (=0)
of a State or Non-State battle resulting in at least one death, and does not include Onesided
battles. Disasters exclude droughts. Other controls include Battleiy−1. Standard errors,
clustered at the country × year level, in parentheses.*** p<0.01, ** p<0.05, * p<0.1
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Table C.10: Natural Disasters and Battles at the District-Year Level - Battle Intensity

(1) (2)
VARIABLES Battleiy Battleiy
DISiy 0.0134 0.0134

(0.0139) (0.0139)
DISiy−1 -0.0064

(0.0196)
Observations 154,544 154,544
Number of Districts 5,944 5,944
District FE YES YES
Country × Year YES YES
Other Controls YES YES
Battle is a count variable indicating the sum of
battles that occurred in the given district in the
given year. DIS is a binary variable indicating the
presence (=1) or absence (=0) of a natural disaster
event in the given district in the given time pe-
riod. Disasters exclude droughts. Other controls
include Battleiy−1. Standard errors, clustered at
the country×year level, in parentheses.*** p<0.01,
** p<0.05, * p<0.1
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Table C.11: Alternative Definitions of the Independent Variable - District-Year Level

(1) (2) (3) (4)
VARIABLES Battleiy Battleiy Battleiy Battleiy
Large DISiy -0.0042

(0.0033)
Large DISiy−1 -0.0051*

(0.0029)
Small DISiy -0.0010

(0.0051)
Small DISiy -0.0042

(0.0047)
Climatic DISiy -0.0011

(0.0030)
Climatic DISiy -0.0019

(0.0029)
Geologic DISiy -0.0310*

(0.0181)
Geologic DISiy 0.0210

(0.0309)
Observations 154,544 154,544 154,544 154,544
Number of Districts 5,944 5,944 5,944 5,944
District FE YES YES YES YES
Country × Year YES YES YES YES
Other Controls YES YES YES YES
Battle and DIS are binary variables indicating the presence (=1) or absence
(=0) of a battle resulting in at least one death and a natural disaster event,
respectively, in the given district in the given time period. Large DIS is
a binary variable indicating the presence (=1) or absence (=0) of a disas-
ters that either (i) kills at least 1000 people, or (ii) affects at least 100,000
people in total, or (iii) causes damages of at least one billion (real) dollars.
Climatic (Geologic) DIS is a binary variables indicating the presence (=1)
or absence (=0) of a climatic (geologic) natural disaster event in the given
district in the given time period. Disasters exclude droughts. Geologic dis-
asters include volcanic eruptions, natural explosions, avalanches, landslides,
and earthquakes. Climatic disasters include floods, cyclones, hurricanes, ice
storms, snowstorms, tornadoes, typhoons, and storms. Other controls in-
clude Battleiy−1. Standard errors, clustered at the country × year level, in
parentheses.*** p<0.01, ** p<0.05, * p<0.1
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Table C.12: Natural Disasters and Battles at the District-Year Level: Channels

(1) (2) (3) (4)
VARIABLES Battleiy Battleiy Battleiy Battleiy
DISiy -0.0014 -0.0012 -0.0023 -0.0003

(0.0030) (0.0030) (0.0031) (0.0031)
DISiy−1 -0.0039 -0.0032 -0.0046 -0.0023

(0.0028) (0.0031) (0.0029) (0.0030)
DISiy × Lighti -0.0103 -0.0115

(0.0102) (0.0105)
DISiy−1 × Lighti -0.0089 -0.0105

(0.0111) (0.0114)
DISiy ×Agrii -0.0032 -0.0042

(0.0036) (0.0038)
DISiy−1 ×Agrii -0.0051 -0.0060

(0.0040) (0.0042)
DISiy ×Minei 0.0035 0.0036

(0.0059) (0.0059)
DISiy−1 ×Minei 0.0022 0.0021

(0.0052) (0.0052)
Observations 154,544 154,544 154,544 154,544
Number of Districts 5,944 5,944 5,944 5,944
District FE YES YES YES YES
Country × Year FE YES YES YES YES
Other Controls YES YES YES YES
Battle and DIS are binary variables indicating the presence (=1) or absence
(=0) of a battle resulting in at least one death and natural disaster event,
respectively, in the given district in the given time period. Disasters exclude
droughts. Lighti=1 if average nighttime light in 1992 (i.e. initial light) >10
(on a scale of 0-63), and 0 otherwise. Agrii=1 if the fraction of land suitable
for agriculture in district i is above 50%, and 0 otherwise. Mine = 1 if the
district hosted at least one active mining project over the sample period, and
0 otherwise. Other controls include Battleiy−1. Standard errors, clustered
at the country× year level, in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table C.13: Natural Disasters, Battle Onset and Termination - District-Year level

(1) (2)
VARIABLES Onsetiy Terminationiy

DISiy -0.0018 0.0009
(0.0015) (0.0018)

DISiy−1 -0.0025* 0.0004
(0.0015) (0.0020)

Observations 125,723 136,370
Number of Districts 5807 5,944
District FE YES YES
Country × Year FE YES YES
Other Controls YES YES
Onset is a binary indicator = 0 in periods with
no battle events; = 1 in the first time period a
district experiences a battle; and missing in sub-
sequent time periods. Termination is a binary
indicator = 0 in periods of battle; = 1 in the
first period with no battle; and missing in sub-
sequent time periods. DIS is a binary variable
indicating the presence (=1) or absence (=0) of a
natural disaster event in the given district in the
given time period. Disasters exclude droughts.
Other controls include Battleiy−1. Standard er-
rors, clustered at the country × year level, in
parentheses.*** p<0.01, ** p<0.05, * p<0.1
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Table C.14: Natural Disasters and Battle Diffusion at the District-Year Level - Spatial
Clustering of Standard Errors

(1) (2) (3)
VARIABLES Battleiy Battleiy Battleiy

Inverse Geodesic Distance

NDISiy 0.0042 0.0034
(0.0033) (0.0033)

NDISiy−1 0.0118*** 0.0108***
(0.0032) (0.0030)

NBattleiy 0.0015 -0.0023
(0.0021) (0.0021)

NBattleiy−1 0.0057*** 0.0032*
(0.0020) (0.0019)

Inverse Road Distance

NDISiy 0.0048** 0.0042**
(0.0021) (0.0021)

NDISiy−1 0.0037* 0.0016
(0.0021) (0.0020)

NBattleiy 0.0204*** 0.0205***
(0.0033) (0.0033)

NBattleiy−1 0.0106*** 0.0102***
(0.0026) (0.0026)

DISiy -0.0022 -0.0027 -0.0028
(0.0030) (0.0030) (0.0030)

DISiy−1 -0.0048* -0.0055* -0.0053*
(0.0028) (0.0028) (0.0028)

Observations 154,544 154,544 154,544
Number of Districts 5,944 5,944 5,944
Distance Cutoff 500km 500km 500km
District FE YES YES YES
Country× Year FE YES YES YES
Other Controls YES YES YES
Battle and Disaster are binary variables indicating the presence
(=1) or absence (=0) of a battle resulting in at least one death, and
natural disaster event, respectively, in the given district in the given
time period. NeighbDisaster (NeighbBattle) is a binary variable
indicating the presence (=1) or absence (=0) of a natural disas-
ter event (battle), in any one of the district’s neighbours, within
the given time period. Neighbourhood is based on the altitude-
adjusted inverse distance matrix and the inverse road distance ma-
trix, truncated at the indicated distance cut-off. Other controls
include Battleiy−1. Disasters exclude droughts. Spatial HAC stan-
dard errors, allowing for spatial correlation up to 100km and for in-
finite serial correlation, are in parentheses. *** p<0.01, ** p<0.05,
* p<0.1
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Table C.15: Natural Disasters and Battle Diffusion at the District-Year Level - Robustness
to Alternative Distance Cut-offs

(1) (2) (3) (4) (5)
VARIABLES Battleiy Battleiy Battleiy Battleiy Battleiy
Inverse Geodesic Distance

NDISiy -0.0027 0.0046* 0.0041 0.0040 0.0034
(0.0030) (0.0026) (0.0028) (0.0027) (0.0029)

NDISiy−1 -0.0026 0.0010 0.0052* 0.0083*** 0.0108***
(0.0024) (0.0027) (0.0031) (0.0028) (0.0033)

NBattleiy 0.0154*** 0.0036 -0.0017 -0.0019 -0.0023
(0.0032) (0.0025) (0.0021) (0.0020) (0.0020)

NBattleiy−1 0.0099*** 0.0062*** 0.0030 0.0042** 0.0032
(0.0026) (0.0023) (0.0020) (0.0020) (0.0020)

Inverse Road Distance

NDISiy 0.0047 0.0020 0.0033 0.0047** 0.0042*
(0.0034) (0.0026) (0.0025) (0.0024) (0.0023)

NDISiy−1 0.0028 0.0028 0.0008 0.0011 0.0016
(0.0030) (0.0026) (0.0024) (0.0023) (0.0022)

NBattleiy 0.0277*** 0.0265*** 0.0235*** 0.0218*** 0.0205***
(0.0037) (0.0032) (0.0032) (0.0033) (0.0034)

NBattleiy−1 0.0137*** 0.0118*** 0.0122*** (0.0023) 0.0102***
(0.0027) (0.0026) (0.0025) (0.0026) (0.0027)

DISiy -0.0032 -0.0038 -0.0032 -0.0031 -0.0028
(0.0028) (0.0028) (0.0028) (0.0029) (0.0029)

DISiy−1 -0.0046 -0.0058** -0.0052* -0.0053* -0.0053*
(0.0029) (0.0027) (0.0027) (0.0028) (0.0028)

Observations 154,544 154,544 154,544 154,544 154,544
Number of Districts 5,944 5,944 5,944 5,944 5,944
Distance Cutoff 100km 200km 300km 400km 500km
District FE YES YES YES YES YES
Country× Year FE YES YES YES YES YES
Other Controls YES YES YES YES YES
Battle and DIS are binary variables indicating the presence (=1) or absence (=0) of a battle
resulting in at least one death, and natural disaster event, respectively, in the given district in
the given time period. NDIS (NBattle) is a binary variable indicating the presence (=1) or
absence (=0) of a natural disaster event (battle), in any one of the district’s neighbours, within
the given time period. Neighbourhood is based on the altitude-adjusted inverse distance matrix
and the inverse road distance matrix, truncated at the indicated distance cut-off. Disasters exclude
droughts. Other controls include Battleiy−1. Standard errors, clustered at the country × year
level, in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table C.16: Fixed Effects and Lagged Dependent Variable Specifications

(1) (2) (3)
Baseline FE Only LDV Only

Panel A : District− Y ear Level

VARIABLES Battleiy Battleiy Battleiy

DISiy -0.0021 -0.0028 -0.0041
(0.0030) (0.0033) (0.0032)

Battleiy−1 0.1856*** 0.4015
(0.0145) (0.0161)

Observations 154,544 154,544 154,544
Number of Districts 5,944 5,944 5,944
District FE YES YES NO
Country × Year YES YES NO

Panel B : District−Month Level

VARIABLES Battleiym Battleiym Battleiym

DISiym -0.0014** -0.0015** -0.0017***
(0.0006) (0.0006) (0.0006)

Battleiy,m−1 -0.0118** 0.2770***
(0.0055) (0.0127)

Observations 1,919,912 1,919,912 1,919,912
Number of Districts 5,944 5,944 5,944
Month FE YES YES NO
District × Year YES YES NO
This Table follows the recommendation of Angrist and Pischke
(2009) on addressing Nickell bias in estimates with lagged de-
pendent variables (LDV). Columns 1 provides our baseline spec-
ification. In Column 2 we include only the fixed effects in our
estimate, and omit the LDV. In Column 3 we omit the fixed
effects but include only the LDV. Battle and DIS are binary
variables indicating the presence (=1) or the absence (=0) of a
battle resulting in at least one death and natural disaster event,
respectively, in the given time period. Disasters exclude droughts.
Standard errors, clustered at the country × year level, in paren-
theses.*** p<0.01, ** p<0.05, * p<0.1

76


