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Inferring Complementarity from Correlations
rather than Structural Estimation

Alessandro Iaria and Ao Wang∗

December 28, 2019

Abstract

According to the Hicksian criterion, two products are complements if their (compensated)
cross-price elasticity is negative. While attractive in theory, the implementation of the
Hicksian criterion can be hard: computing elasticities requires the estimation of struc-
tural models allowing for both complementarity and substitutability. Here, we instead
investigate the correlation criterion, whose implementation only requires the comparison
of observed market shares. We show that, in a large class of non-parametric models, the
correlation criterion satisfies all the axioms by Manzini et al. (2018) and how, in mixed
logit models, it can be used to learn about the Hicksian criterion.

1 Introduction

Understanding whether products, services, or more abstract options are either substitutes or
complements has important economic repercussions. For example, mergers between firms sell-
ing complementary products can be welfare enhancing (Cournot (1838) and Song et al. (2017)),
organizational change can be extremely difficult when there are complementarities among exist-
ing practices (Milgrom et al. (1990) and Brynjolfsson and Milgrom (2013)), the adoption of one
technology may boost the adoption of others if they are complementary (Augereau et al. (2006)
and Kretschmer et al. (2012)), and the optimal pricing of multi-product firms may drastically
change with complementarities (Armstrong (2016) and Thomassen et al. (2017)).

Since the Hicks-Allen revolution in demand theory, the Hicksian criterion of negative (com-
pensated) cross-price elasticity has represented the standard notion of complementarity among
products (Samuelson (1974) and Chambers et al. (2010)). While this definition has theoretical

∗University of Bristol and CEPR IO (alessandro.iaria@bristol.ac.uk) and CREST (ao.wang@ensae.fr). Iaria
gratefully acknowledges funding from the British Academy/Leverhulme SRG no. 170142. We thank Paola
Manzini and Marco Mariotti for their helpful insights.
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advantages (e.g., symmetry), its practical implementation as a test for complementarity is not
always straightforward (Gentzkow (2007) and Dubé (2019)): demand elasticities are not di-
rectly observed and need to be inferred from structural models whose estimation is notoriously
challenging (Berry et al. (2014), Fox and Lazzati (2017), and Iaria and Wang (2019)).

As a practical alternative to the Hicksian criterion, we investigate the correlation criterion,
according to which two products are complements whenever their purchases are positively
correlated (Brynjolfsson and Milgrom (2013) and Manzini et al. (2018)). Conveniently, the
implementation of the correlation criterion only requires comparisons of observed market shares
(rather than the estimation of structural models). However, little is known about its micro-
foundations and its relationship to the Hicksian criterion. As a notable exception, Manzini
et al. (2018) show that—without restrictions to the data generating process—the correlation
criterion violates the axiom of monotonicity or revealed preferences: complements can turn into
substitutes following an increase in their joint purchases.1

In this paper, we present two novel results about the correlation criterion. First, we demon-
strate that, given plausible restrictions to the data generating process, the correlation criterion
satisfies all the axioms suggested by Manzini et al. (2018)—including monotonicity. The re-
strictions we require are satisfied by a large class of non-parametric models along the lines of
Gentzkow (2007)’s, where the average utility of a bundle equals the sum of the average util-
ities of the single products plus a term capturing the extra utility associated with their joint
purchase. We refer to these extra utility terms simply as demand synergies. In this context,
violations of the monotonicity axiom by the correlation criterion boil down to the assumptions
one is willing to make about unobserved heterogeneity in the demand synergies.

Second, even if little can be learned about the Hicksian criterion only by comparing observed
market shares, we show that the correlation criterion can still be informative about Hicksian
complementarity and substitutability when individual-level purchase data are available. This
result relies on three ingredients: the availability of individual-level purchase data, the data
to be generated by a mixed logit version of Gentzkow (2007)’s model of demand for bundles,
and a simple non-parametric estimator of the sign of the covariance between the individual-
level purchases of different products. The proposed estimator is simple to implement and only
requires the computation of frequency counters, while its sign consistency hinges on some of
the properties of mixed logit models of demand for bundles from Iaria and Wang (2019).

This paper relates to a small but growing literature that investigates how to test for com-
plementarity given standard consumer purchase data (for a recent review, see Dubé (2019)).
Gentzkow (2007) proposes a way of empirically implementing the Hicksian criterion by extend-
ing standard discrete choice models to allow for both complementarity and substitutability.
Chambers et al. (2010) characterize the testable implications of “gross” complementarity, i.e.,

1Even though the correlation criterion in general violates monotonicity, it satisfies the other two desirable
axioms proposed by Manzini et al. (2018): duality and responsiveness. See Manzini et al. (2018) for details.
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a negative uncompensated cross-price elasticitity. Fox and Lazzati (2017), Allen and Rehbeck
(2018), and Iaria and Wang (2019) build on Gentzkow (2007) to study the identification and
estimation of demand models useful to empirically implement the Hicksian criterion.

All of these focus on variants of the Hicksian criterion which require the estimation of
structural models sometimes difficult to implement in practice.2 For those cases in which the
Hicksian criterion is impractical, Manzini et al. (2018) propose the use of convenient criteria
for complementarity that only require the comparison of observed market shares. They then
demonstrate a striking fact: none of the proposed criteria can—in general—satisfy all of their
desirable axioms. In particular, the correlation criterion will in general violate the axiom of
monotonicity or revealed preferences. We add to Manzini et al. (2018) by proposing two positive
results about the correlation criterion. First, mild restrictions to the data generating process
are sufficient for the correlation criterion to satisfy also monotonicity. Second, when individual-
level purchase data are available, the correlation criterion can be used to learn about Hicksian
complementarity and substitutability in mixed logit versions of Gentzkow (2007)’s model.

The rest of the paper is organized as follows. Section 2 introduces relevant notation and
definitions. Section 3 presents sufficient restrictions on the data generating process to prevent
violations of the monotonicity axiom. Section 4 proposes a simple method to learn about the
Hicksian criterion on the basis of the correlation criterion with individual-level purchase data.
Section 5 concludes with some final remarks and Appendix section 6 contains all the proofs.

2 Notation and Definitions

Suppose the econometrician observes data on the bundle-level purchase probabilities of two
products, x and y. Each unit of observation can be thought of as a market and the purchase
probabilities as bundle-level market shares. Markets can be interpreted in a broad sense as, for
example: different time periods for the same geographical area, different geographical areas at
a certain point in time, or a combination of both. We define the sampling space of bundle-
level market shares for any given market as T ≡

{
(P(x,y), Px, Py, P0)

∣∣Pk ∈ (0, 1),∀k;
∑
Pk = 1

}
,

where P(x,y) is the market share of the joint purchase of products x and y, Px (respectively Py)
is the market share of purchase of x but not y (respectively y but not x), and P0 is the market
share of the outside option—the choice of not purchasing any of the two products. T is the
space of possible values (P(x,y), Px, Py, P0) can take in any given market. For simplicity, we rule
out the “zero market share” problem (Gandhi et al. (2019)) and assume that Pk ∈ (0, 1) for

2In the model-free environment of Chambers et al. (2010), the proposed revealed-preference procedure does
not require structural estimation, but it does hinge on the availability of price variation, which in some cases
is not available—as in Gentzkow (2007). Differently, structural models along the lines of Gentzkow (2007)’s
can be used to implement variants of the Hicksian criterion in the absence of price or income changes. In these
variants, the demand elasticities are computed with respect to changes in non-price product-specific attributes
(Allen and Rehbeck (2018)).
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k ∈ {(x, y), x, y, 0} and that P(x,y) + Px + Py + P0 = 1.
We now define the correlation criterion and the monotonicity axiom, and briefly illustrate

why—without further restrictions on the data generating process—the correlation criterion will
violate monotonicity.

Correlation Criterion. The correlation criterion partitions the sampling space T into the
three subsets C, I, and S: the collections of possible values of (P(x,y), Px, Py, P0) that exhibit
complementarity, independence, and substitutability. (P(x,y), Px, Py, P0) ∈ C if and only if
P(x,y)

P(x,y)+Py
> P(x,y) + Px. Note that this condition is equivalent to P(x,y)P0 > PxPy. Similarly,

(P(x,y), Px, Py, P0) ∈ I if and only if P(x,y)P0 = PxPy and (P(x,y), Px, Py, P0) ∈ S if and only if
P(x,y)P0 < PxPy. According to the correlation criterion, (P(x,y), Px, Py, P0) ∈ C (respectively S)
if and only if knowledge that one product is purchased increases (respectively decreases) the
probability that the other product is purchased as well.

Monotonicity Axiom. This axiom embodies the coherence of the principle of revealed pref-
erences. Monotonicity requires that if (P(x,y), Px, Py, P0) ∈ C, (P ′(x,y), P

′
x, P

′
y, P

′
0) ∈ T with

P ′(x,y) ≥ P(x,y), P ′x ≤ Px, and P ′y ≤ Py, then (P ′(x,y), P
′
x, P

′
y, P

′
0) ∈ C. Symmetrically, if

(P(x,y), Px, Py, P0) ∈ S, (P ′(x,y), P
′
x, P

′
y, P

′
0) ∈ T with P ′(x,y) ≤ P(x,y), P ′x ≥ Px, and P ′y ≥ Py,

then (P ′(x,y), P
′
x, P

′
y, P

′
0) ∈ S. The monotonicity axiom states that, if two products are com-

plements for some (P(x,y), Px, Py, P0), then they cannot be substitutes or independent for any
(P ′(x,y), P

′
x, P

′
y, P

′
0) with larger joint purchases and smaller or equal individual purchases of each

product, and vice versa (i.e., substitutes cannot turn into complements following a decrease in
their joint purchases).

Correlation Criterion and Failure of Monotonicity. In general, the correlation criterion
does not satisfy the monotonicity axiom. To see this, we report a counter-example due to
Manzini et al. (2018). Suppose that (P(x,y), Px, Py, P0) ∈ C and consider another possible value
from T such that P ′(x,y) = P(x,y) + ε, P ′x = Px, P ′y = Py, P ′0 = P0 − ε for a small enough ε. It
then follows that P ′(x,y)P

′
0 = (P(x,y)m + ε)(P0 − ε) and for ε → P0, P ′(x,y)P

′
0 → 0. This implies

that, for ε→ P0, P ′(x,y)P
′
0 < P ′xP

′
y and (P ′(x,y), P

′
x, P

′
y, P

′
0) ∈ S, violating monotonicity.

As discussed by Manzini et al. (2018), the correlation criterion will in general satisfy the other
two desirable axioms of duality and responsiveness. The restrictions we propose to the data
generating process will not affect this: when we claim that monotonicity holds, it is implied
that also duality and responsiveness hold.
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3 Gentzkow (2007)’s Model and Monotonicity

Manzini et al. (2018) resolve the inconsistency between the correlation criterion and the mono-
tonicity axiom by proposing a weaker version of the axiom while maintaining an unrestricted
data generating process. Differently, we add structure to the data generating process and re-
solve the inconsistency within the more specific context of Gentzkow (2007)’s model. To provide
some intuition, we first illustrate in a simple model how violations of the monotonicity axiom
boil down to the assumptions one is willing to make about unobserved heterogeneity in demand
synergies. We then generalize these insights by characterizing violations of the monotonicity
axiom in the context of a non-parametric class of models that includes the mixed logit and the
probit as special cases.

3.1 Some Intuition: The Multinomial Logit Model

Assume that the indirect utilities of individual i in any given market are:

Uix = δx + εix

Uiy = δy + εiy

Ui(x,y) = δ(x,y) + εi(x,y)

= δx + δy + Γ + εi(x,y)

Ui0 = εi0,

(1)

where δx, δy, and δ(x,y) are the market-level average utilities associated respectively to pur-
chasing only product x, only product y, and the bundle (x, y). Following Gentzkow (2007),
we specify δ(x,y) = δx + δy + Γ, where Γ is the market-level extra portion of average utility
associated to the joint purchase of x and y. For example, if Γ > 0, individuals in this market
obtain a higher average utility from the joint rather than the separate purchase of x and y. We
refer to Γ simply as demand synergy parameter. (εi(x,y), εix, εiy, εi0) are unobserved and assumed
to be i.i.d. Gumbel, giving rise to a multinomial logit (MNL) model.

According to the correlation criterion, (P(x,y), Px, Py, P0) belongs to the set of values ex-
hibiting complementarity, C, if and only if P(x,y)P0 > PxPy. In the context of MNL model
(1), this happens if and only if exp(δx + δy + Γ) > exp(δx + δy), or equivalently if and
only if Γ > 0. Clearly, when the demand synergy parameter can take different values for
any (P(x,y), Px, Py, P0) 6= (P ′(x,y), P

′
x, P

′
y, P

′
0), i.e. Γ 6= Γ′, knowing that Γ > 0—and so that

(P(x,y), Px, Py, P0) ∈ C—carries no information about the membership of (P ′(x,y), P
′
x, P

′
y, P

′
0) to

C, I, or S. This leads violations of the monotonicity axiom.
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A way to prevent violations of the monotonicity axiom in MNL models is to restrict the
variation of the demand synergy parameter in T: Γ′ = Γ for any (P ′(x,y), P

′
x, P

′
y, P

′
0) ∈ T. Note

that this is the original assumption made by Gentzkow (2007). In this case, if there exists a
(P(x,y), Px, Py, P0) ∈ T that belongs to C, implying that Γ > 0, then T = C. Similarly, if
Γ = 0, then T = I and if Γ < 0, then T = S. As a consequence, the correlation criterion does
not violate the monotonicity axiom when the data generating process is MNL model (1) with
Γ′ = Γ for any (P ′(x,y), P

′
x, P

′
y, P

′
0) ∈ T.

3.2 More in General

By building on the insights from MNL model (1), we propose sufficient restrictions to the
data generating process that prevent violations of the monotonicity axiom in a large class of
non-parametric models of demand for bundles.

Assumption 1: Data Generating Process.

(i) (P(x,y)(δ), Px(δ), Py(δ), P0(δ)) is a function of the product-specific average utilities δ =

(δx, δy) ∈ R2, with Pk(δ) ∈ (0, 1), k ∈ {(x, y), x, y, 0}, and
∑

k Pk(δ) = 1. Accordingly,
the sampling space is T ≡

{
(P(x,y), Px, Py, P0)

∣∣Pk = Pk(δ),∀k; δ = (δx, δy) ∈ R2
}
.

(ii) Pz(δx, δy) is strictly increasing in δz and strictly decreasing in δz′ with z, z′ ∈ {x, y} and
z 6= z′.

(iii) P(x,y)(δx, δy) is strictly increasing in both δx and in δy.

(iv) (P(x,y)(δ), Px(δ), Py(δ), P0(δ)) is C1 with respect to δ = (δx, δy).

Intuitively, condition (i) requires that the only source of variation among different values of
(P(x,y), Px, Py, P0) in T is the vector of product-specific average utilities δ = (δx, δy). This
encapsulates the requirement of a constant demand synergy parameter Γ in MNL model (1).
Condition (ii) requires the market share function of each product to be increasing in its own
average utility and decreasing in that of the other product, while condition (iii) requires the
market share function of the joint purchase to be instead increasing in the average utility
of each of the products. Finally, condition (iv) requires that the market share functions are
continuously differentiable in δ = (δx, δy).

Example: Mixed Logit Model. A more general example than MNL model (1) which is
compatible with Assumption 1 is a mixed logit model with unobserved heterogeneity both in
the alternative-specific constants δi = (δxi, δyi) and in the demand synergy parameter Γi. This
is an extension of Gentzkow (2007)’s original model, which assumes Γ to be constant across

6



individuals. Note that heterogeneity in Γi means that some individuals can perceive products
x and y as complements (with Γi > 0), while others can see them as substitutes (with Γi < 0).
Importantly, Assumption 1 does not require any restriction on the joint distribution F of (δi,Γi),
so that:

den(δ, δi,Γi) = 1 + exp(δx + δxi) + exp(δy + δyi)

+ exp(δx + δxi + δy + δyi + Γi)

P0 = P0(δ) =

∫
1

den(δ, δi,Γi)
dF (δi,Γi)

Pz = Pz(δ) =

∫
exp(δz + δzi)

den(δ, δi,Γi)
dF (δi,Γi); for z = x, y

P(x,y) = P(x,y)(δ) =

∫
exp(δx + δy + δxi + δyi + Γi)

den(δ, δi,Γi)
dF (δi,Γi),

(2)

where δ = (δx, δy), δ(x,y)i = δx+δy+δxi+δyi+Γi, and the distribution of (δi,Γi) is the same across
different values in T: F ′ = F for any (P ′(x,y), P

′
x, P

′
y, P

′
0) ∈ T. This last requirement essentially

implies condition (i) from Assumption 1 and is the mixed logit analogue to a constant demand
synergy Γ in MNL model (1).

Given any reference point δ = (δx, δy) whose corresponding (P(x,y), Px, Py, P0) belong to C,
applicability of the monotonicity axiom requires the existence of at least another δ′ = (δ′x, δ

′
y) 6=

δ such that P ′(x,y) ≥ P(x,y) and P ′z ≤ Pz, for z = x, y. In what follows, we refer to any such point
as a feasible point for δ. Note that feasibility is a pre-requisite for the monotonicity axiom to
be violated: only among the feasible points for δ one can challenge the monotonicity axiom.

In the next Theorem, we show that there exist feasible points in a neighborhood of δ =

(δx, δy)—so that the monotonicity axiom applies—if and only if the Jacobian matrix of the
mapping (Px(·), Py(·)) evaluated at δ = (δx, δy) has a negative determinant.3

Theorem 1. Suppose Assumption 1 holds, (P(x,y), Px, Py, P0) ∈ C, and Det
(
∂(Px,Py)

∂(δx,δy)

)
6= 0.

Then, the following two statements are equivalent:

1. Det
(
∂(Px,Py)

∂(δx,δy)

)
< 0.

2. For any neighborhood N of δ = (δx, δy), there exists a feasible point δ′ = (δ′x, δ
′
y) ∈ N for

δ such that δ′ 6= δ.

Proof. See Appendix 6.2.
3For given matrix A, we denote its transpose by AT and its determinant by Det(A).
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Symmetric arguments lead to the result that for any (P(x,y), Px, Py, P0) ∈ S, there exists a
feasible point in any neighborhood of δ if and only if Det

(
∂(Px,Py)

∂(δx,δy)

)
> 0. The next Corollary

summarizes our main conclusion about the monotonicity axiom.

Corollary 1. Suppose Assumption 1 holds. Then, the correlation criterion does not locally
violate the monotonicity axiom.

Proof. Denote the set of δ’s corresponding to the collection of possible values of (P(x,y), Px, Py, P0) ∈
T that exhibit complementarity as Cδ ≡

{
(δx, δy)

∣∣P(x,y)(δ)P0(δ) > Px(δ)Py(δ)
}
, and similarly

the sets Sδ and Iδ. We first prove that the correlation criterion doest not locally violate the
monotonicity axiom in the space of δ = (δx, δy), and then show that this is enough for the ar-
gument to hold locally also in the space of (Px(δ), Py(δ), P(x,y)(δ), P0(δ)). Because of continuity
of the market share function, Iδ is a one-dimensional curve that defines the boundary between
Cδ and Sδ. In other words, Iδ divides R2 = {(δx, δy)

∣∣(δx, δy) ∈ R×R} into Cδ and Sδ. Because
both C and S are open and the market share function is continuous, then both Cδ and Sδ are
also open.4 Similarly, Det

(
∂(Px,Py)

∂(δx,δy)

)
= 0 divides R2 into O+, the set of points associated to a

positive determinant, and O−, the set of points associated to a negative determinant. Then,
for any reference point δ ∈ Cδ ∩ O− or δ ∈ Sδ ∩ O+, according to Theorem 1, we can always
find (infinitely many) feasible points in any neighbourhood of δ = (δx, δy). In addition, given
that both Cδ and O− (respectively Sδ and O+) are open, Cδ ∩O− (respectively Sδ ∩O+) is also
open and all such feasible points still belong to Cδ ∩ O− (respectively Sδ ∩ O+) and hence to
Cδ (respectively Sδ). Hence, the correlation criterion does not locally violate the monotonicity
axiom for all the reference points in Cδ ∩ O− and in Sδ ∩ O+. Moreover, for any δ ∈ Cδ ∩ O+

or δ ∈ Sδ ∩ O−, as shown by Theorem 1, there exists a neighborhood of δ such that there are
no feasible points. Consequently, both in Cδ ∩ O+ and in Sδ ∩ O−, the monotonicity axiom is
not locally applicable and, therefore, cannot be locally violated. Finally, note that in any of
the four cases (δ ∈ Cδ ∩ O−, δ ∈ Sδ ∩ O+, δ ∈ Cδ ∩ O+, or δ ∈ Sδ ∩ O−), Det

(
∂(Px,Py)

∂(δx,δy)

)
6= 0.

Then, according to the inverse function theorem, (Px, Py) is locally invertible. Therefore, all
arguments that hold locally for δ = (δx, δy) also hold locally for (Px(δ), Py(δ)) and consequently
for (Px(δ), Py(δ), P(x,y)(δ), P0(δ)).5

To get some intuition about Corollary 1, in Figure 1 we illustrate the main forces at play. The
sampling space T is partitioned into three subsets C, S, and I by the correlation criterion.
Then, relying on the market share function from Assumption 1, we can map the collections of
market shares C, S, and I onto the corresponding collections of δ’s Cδ, Sδ, and Iδ. Figure 1
depicts a possible partition of R2 = {(δx, δy)

∣∣(δx, δy) ∈ R × R}. These sets are such that Iδ

always separates Cδ from Sδ. Similarly, R2 can be partitioned into three subsets on the basis
4The inverse of an open set under a continuous mapping is still open.
5Note that for (Px(δ), Py(δ), P(x,y)(δ), P0(δ)), the meaning of “locally” is with respect to the relative topology

defined at (Px(δ), Py(δ), P(x,y)(δ), P0(δ)).
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Det
(
∂(Px,Py)

∂(δx,δy)

)
= 0

Iδ

Cδ ∩O+

Sδ ∩O−

Cδ ∩O−Sδ ∩O+

Figure 1: Illustration of Corollary 1

of Det
(
∂(Px,Py)

∂(δx,δy)

)
: the set of δ’s corresponding to a zero determinant will separate the set for

which the determinant is positive, O+, from the one for which it is negative, O−. As in Figure
1, by intersecting these partitions we end up dividing R2 into four mutually exclusive regions.
Because of Theorem 1, we know that in Cδ ∩O+ and Sδ ∩O− (the white areas in Figure 1), the
monotonicity axiom is not locally applicable—and therefore cannot be locally violated. In the
remaining Cδ ∩O− and Sδ ∩O+ (the grey areas in Figure 1), as shown in the proof of Corollary
1, the monotonicity axiom instead holds locally—again preventing any local violation.

4 Relationship to Hicksian Complementarity

In this section, we describe the relationship between correlation and Hicksian criteria in the
context of two models discussed above: MNL model (1) and mixed logit model (2).

MNL model (1). As shown by Manzini et al. (2018), in the MNL model the two criteria
coincide. As we saw above, the correlation criterion classifies x and y as complements if and
only if Γ > 0. Symmetrically, as shown by Gentzkow (2007), the demand elasticity of x with
respect to an increase in δy is positive (i.e., Hicksian complementarity) if and only if Γ > 0.
This equivalence is however specific to the MNL, a model that rules out any correlation in the
unobserved preferences of x and y beyond Γ.

Mixed Logit Model (2). Given the greater flexibility of this model, the relationship between
correlation and Hicksian criteria is remarkably more complex than in the case of the MNLmodel.
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In particular, the practical usefulness of this more complex relationship depends on the quality
of the available data. Even though little can be learned about the Hicksian criterion uniquely
from observed market shares, we show that the correlation criterion can be used to infer either
Hicksian complementarity or substitutability when individual-level purchase data are available.

Define the individual-level marginal purchase probability of product z ∈ {x, y} as:

Pz.(δ, δi,Γi) =
exp(δz + δzi) + exp(δx + δy + δxi + δyi + Γi)

den(δ, δi,Γi)
(3)

and its market-level counterpart, the marginal market share of z ∈ {x, y}, as:

Pz. =

∫
Pz.(δ, δi,Γi)dF (δi,Γi). (4)

In mixed logit model (2), x and y are Hicksian substitutes if and only if ∂Px./∂δy < 0, or
equivalently:

P(x,y) <

∫
Px.(δ, δi,Γi)Py.(δ, δi,Γi)dF (δi,Γi)

= E[Px.(δ, δi,Γi)Py.(δ, δi,Γi)].

(5)

They are instead substitutes according to the correlation criterion if and only if

P(x,y) < (P(x,y) + Px)(P(x,y) + Py)

= Px.Py.

= E[Px.(δ, δi,Γi)]E[Py.(δ, δi,Γi)].

(6)

We refer to the difference between the right-hand sides of (5) and of (6) as Rxy(δ, F ), and note
that Rxy(δ, F ) is the covariance between Px.(δ, δi,Γi) and Py.(δ, δi,Γi). Denote by SHδ and by
Sδ the collections of δ’s satisfying, respectively, (5) and (6) (and similarly CH

δ and Cδ). It then
follows that:

(a) If Rxy(δ, F ) > 0, then δ ∈ Sδ implies δ ∈ SHδ .

(b) If Rxy(δ, F ) < 0, then δ ∈ Cδ implies δ ∈ CH
δ .

Learning that δ ∈ Sδ (respectively δ ∈ Cδ) from (Px, Py, P(x,y)) is sufficient to conclude that δ ∈
SHδ (respectively δ ∈ CH

δ ) as long as Rxy(δ, F ) > 0 (respectively Rxy(δ, F ) < 0). Unfortunately,
without strong restrictions on F , the sign of the covariance Rxy(δ, F ) is not identified given only
market share data (Px, Py, P(x,y)). In turn, without knowing the sign of Rxy(δ, F ), it cannot
be determined whether case (a) or case (b) applies, and consequently whether Sδ ⊂ SHδ or
Cδ ⊂ CH

δ . Despite this complication, we now show that given some standard individual-level
purchase data, it is possible to infer both the sign of Rxy(δ, F ) and whether δ ∈ Sδ or δ ∈ Cδ

without requiring any restriction on F or expensive structural estimation.
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Suppose that there are i = 1, ..., I individuals, each making a purchase from {(x, y), x, y, 0}
in each market t = 1, ..., T and that the econometrician can observe these individual-level
purchases over the T markets. Consistent with mixed logit model (2), suppose that the data
generating process of individual i’s purchase in market t, wit, is a MNL model:

Pr(wit = z) =
exp(δz + δzi)

den(δ, δi,Γi)
, z = x, y

Pr(wit = (x, y)) =
exp(δx + δy + δxi + δyi + Γi)

den(δ, δi,Γi)
.

(7)

The random coefficients (δi,Γi) are assumed to be i.i.d. according to F within each market,
and F to be the same across markets. Define Pt = P (δt) = (Px.(δt), Py.(δt)) for t = 1, ..., T .
We then propose to infer the sign of Rtxy = Rxy(δt, F ) on the basis of the sign of the following
statistic:

R̂txy(ε) =
1

I

I∑
i=1

P̂itx.(ε)P̂ity.(ε)−
1

I

I∑
i=1

P̂itx.(ε)
1

I

I∑
i=1

P̂ity.(ε) (8)

with

P̂itz.(ε) =
1∑T

t′=1 1|Pt′−Pt|<ε

T∑
t′=1

1|Pt′−Pt|<ε[1wit′=z
+ 1wit′=(x,y)], z = x, y

where | · | denotes the Euclidean distance, 1C the indicator function for condition C, and ε

the radius of a neighborhood of marginal market shares around Pt. Note that, for any given
radius ε, R̂txy(ε) is a finite-sample approximation of the covariance Rtxy that only requires the
computation of frequency counters. Intuitively, the size of the radius ε determines the “quality”
of the approximation (with smaller being better). However, given our interest only in the sign
of Rtxy, we will not need ε to shrink asymptotically for the sign consistency of the estimator.

In spite of R̂txy(ε)’s practical simplicity, its sign consistency presents a technical difficulty:
Pitz.(ε) ≡ limT→∞ P̂itz.(ε) is not guaranteed to approximate Pitz. “well enough.” More specifi-
cally, one faces two challenges. First, for given i, one needs to quantify the unobserved distance
between δt′ and δt on the basis of the observed distance between Pt′ and Pt. Second, one needs
to control uniformly the approximation of Pitz.(ε) to Pitz. for all i = 1, ..., I as I increases. In the
next Theorem, we address these complications and show R̂txy(ε)’s sign consistency by relying
on properties of the mixed logit model of demand for bundles from Iaria and Wang (2019).

Theorem 2. Suppose that Rtxy 6= 0 and that δt′ is i.i.d. across markets according to some
unknown distribution function in R2. Then, there exists ε0 > 0 such that, for any ε < ε0,

lim
I→∞

lim
T→∞

Pr[sign(R̂txy(ε)) = sign(Rtxy)] = 1.

Proof. See Appendix 6.3.
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5 Discussion

We investigate some features of the correlation criterion, an intuitively and practically appealing
way of determining complementarity between products uniquely on the basis of their observed
market shares. In those cases in which one can afford the estimation of a structural model
of demand, the Hicksian criterion is clearly to be preferred. Among the main advantages, a
structural model allows to measure the “intensity” of the complementarity or the substitutability
(i.e., the magnitude of the estimated cross-price elasticities) and to simulate counterfactuals.
However, when the estimation of appropriate structural models is hard, simpler options such as
the correlation criterion may be necessary. In addition, even when the estimation of complex
structural models is possible, tests based on the comparison of observed market shares can
be helpful at the model selection stage. For example, ruling out complementarity can help
motivate the estimation of simpler demand models: models allowing also for complementarity
are remarkably more complex than models allowing only for substitutability (Berry et al. (2014),
Dubé (2019), and Iaria and Wang (2019)).

6 Appendix

6.1 Preliminary Results

Here we present a simple result useful in proving Theorem 1 and Corollary 1.6

Lemma 1. Suppose Assumption 1 holds and (P(x,y), Px, Py, P0) ∈ C. If there is (P ′(x,y), P
′
x, P

′
y, P

′
0) ∈

T, (P ′(x,y), P
′
x, P

′
y, P

′
0) 6= (P(x,y), Px, Py, P0), such that P ′(x,y) ≥ P(x,y) and P ′z ≤ Pz, for z = x, y,

then δ′z ≥ δz, for z = x, y.

Proof. We prove this by contradiction. Without loss of generality, suppose that δ′x < δx.
Because Py(δ) is a strictly decreasing function of δx, then P ′y ≤ Py requires δ′y < δy. Note that
P(x,y)(δ) is a strictly increasing function of both δx and δy. Consequently, P ′(x,y) < P(x,y), which
contradicts P ′(x,y) ≥ P(x,y).

6.2 Proof of Theorem 1

By applying a Taylor expansion to (Px(δ
′
x, δ
′
y), Py(δ

′
x, δ
′
y)) around δ, we obtain:[

Px(δ
′
x, δ
′
y)− Px(δx, δy)

Py(δ
′
x, δ
′
y)− Py(δx, δy)

]
=
∂(Px, Py)

∂(δx, δy)

[
δ′x − δx
δ′y − δy

]
+ o(|(δ′x − δx, δ′y − δy)|).

6For brevity, we limit our discussion of feasibility to the case of (P(x,y), Px, Py, P0) ∈ C, but symmetric
arguments hold also for observations in S.

12



Then, by dividing both sides by d′ = |(δxm′ − δxm, δym′ − δym)|, we obtain:[
Px(δ

′
x, δ
′
y)− Px(δx, δy)

Py(δ
′
x, δ
′
y)− Py(δx, δy)

]
1

d′
=
∂(Px, Py)

∂(δx, δy)

[
δ′x − δx
δ′y − δy

]
1

d′
+ o(1).

Note that

δ̃′ =

[
δ′x − δx
δ′y − δy

]
1

d′
(9)

is a unit vector. Consequently, for d′ small enough, the sign of[
Px(δ

′
x, δ
′
y)− Px(δx, δy)

Py(δ
′
x, δ
′
y)− Py(δx, δy)

]

is determined by ∂(Px,Py)

∂(δx,δy)
δ̃′. Note that the diagonal elements of ∂(Px,Py)

∂(δx,δy)
, ∂Px

∂δx
, ∂Py

∂δy
, are positive,

while the off-diagonal elements, ∂Px

∂δy
, ∂Py

∂δx
, are negative. Then

v(1,0) =
∂(Px, Py)

∂(δx, δy)

[
1

0

]
=

[
∂Px

∂δx
∂Px

∂δy

]

lies in the bottom-right part of the plane relative to (0, 0), and

v(0,1) =
∂(Px, Py)

∂(δx, δy)

[
0

1

]
=

[
∂Py

∂δx
∂Py

∂δy

]

lies in the top-left part of the plane relative to (0, 0).

(1) =⇒ (2). It suffices to prove the existence of a δ̃′ > 0 such that ∂(Px,Py)

∂(δx,δy)
δ̃′ < 0. Because the

determinant of ∂(Px,Py)

∂(δx,δy)
is negative, then the orientation of v(1,0) and v(0,1) is opposite to that of

(1, 0) and (0, 1). Consequently, there exist λ1 > 0 and λ2 > 0, such that λ1v(1,0) + λ2v(0,1) lies
in the bottom-left part of the plane relative to (0, 0): λ1v(1,0) + λ2v(0,1) < 0. Then, by choosing
δ̃′ = 1√

λ21+λ22
(λ1, λ2)T (or equivalently, δ′x − δx = λ1 and δ′y − δy = λ2), we obtain

∂(Px, Py)

∂(δx, δy)
δ̃′ =

λ1√
λ2

1 + λ2
2

v(1,0) +
λ2√
λ2

1 + λ2
2

λ2v(0,1) < 0.

(2) =⇒ (1). As shown in Lemma 1, any feasible point δ′ = (δ′x, δ
′
y) for δ = (δx, δy) must

satisfy δ′x ≥ δx and δ′y ≥ δy. Then, according to (2), we have a sequence of δ′ such that δ′ → δ,
δ′ ≥ δ, δ′ 6= δ, and Pz(δ′) ≤ Pz for z = x, y. As in (9), denote by δ̃′ the unit vector equal to
(δ′x − δx, δ′y − δy)T divided by d′. Note that δ̃′ ≥ 0 and δ̃′ 6= 0.
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We prove the result by contradiction. Suppose that the determinant of ∂(Px,Py)

∂(δx,δy)
is posi-

tive. Then, according to the Inverse Function Theorem, there is a local bijection between
(Px(δ

′), Py(δ
′)) and δ′ in a neighborhood of δ. Therefore, (Px(δ

′) − Px, Py(δ′) − Py) 6= (0, 0).
Moreover, due to the positive determinant of ∂(Px,Py)

∂(δx,δy)
, the orientation of v(1,0) and v(0,1) re-

mains the same as (0, 1) and (1, 0). Consequently, for any λ1, λ2 ≥ 0 and (λ1, λ2) 6= (0, 0),
∂(Px,Py)

∂(δx,δy)
(λ1, λ2)T cannot lie in the bottom-left part of the plane relative to (0, 0). Let δ̃′ =

1√
λ21+λ22

(λ1, λ2)T (or equivalently, δ′x− δx = λ1 and δ′y − δy = λ2). Then, at least one element of
∂(Px,Py)

∂(δx,δy)
δ̃′ must be positive. In addition, we know that the sign of (Px(δ

′) − Px, Py(δ′) − Py) is

determined by ∂(Px,Py)

∂(δx,δy)
δ̃′. Consequently, at least one between Px(δ′)− Px and Py(δ′)− Py must

be positive, which contradicts δ′ being a feasible point for δ.

6.3 Proof of Theorem 2

Given ε, we first calculate Pitz.(ε) ≡ limT→∞ P̂itz.(ε). Because δt′ is i.i.d according to some
distribution function G(·), for z = x, y, (x, y), it follows that 1|Pt′−Pt|<ε1wit′=z

is i.i.d. According
to the law of large numbers, as T →∞

P̂itz.(ε) =
1∑T

t′=1 1|Pt′−Pt|<ε

T∑
t′=1

1|Pt′−Pt|<ε[1wit′=z
+ 1wit′=(x,y)]

→ Pitz.(ε)

=
E[1|P (δt′ )−Pt|<ε[1wit′=z

+ 1wit′=(x,y)]]

Pr[|P (δt′)− Pt| < ε]

=

∫
|P (δt′ )−Pt|<ε Pit′z.dG(δt′)

Pr[|P (δt′)− Pt| < ε]
.

(10)

Note that:

|Pitz.(ε)− Pitz.| ≤

∫
|P (δt′ )−Pt|<ε |Pit′z. − Pitz.|dG(δt′)

Pr[|P (δt′)− Pt| < ε]
. (11)

Moreover,

|Pit′z. − Pitz.| = |Pz.(δt′ , δzi,Γi)− Pz.(δt, δzi,Γi)| ≤ sup
δ∈R2

∣∣∣∣∂Pz.(δ, δzi,Γi)∂δ

∣∣∣∣ |δt′ − δt| .
According to Iaria and Wang (2019) (see proof of Theorem 2, the “real analytic property”),
supδ∈R2

∣∣∣∂Pz.(δ,δzi,Γi)
∂δ

∣∣∣ = A, where A is finite. Moreover, Iaria and Wang (2019) (see Theorem 5,
the “demand inverse”) show that there is a global bijection between P (δ) and δ with everywhere
positive-definite Jacobian. Consequently, |P (δt′) − Pt| < ε implies |δt′ − δt| ≤ η(ε, t), where
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ηt(ε)→ 0 as ε→ 0. Then, we obtain:

|Pit′z. − Pitz.| = |Pz.(δt′ , δzi,Γi)− Pz.(δt, δzi,Γi)| ≤ Aηt(ε).

By plugging this into the right-hand side of (11), we obtain |Pitz.(ε)− Pitz.| ≤ Aηt(ε). Define
R̂txy = 1

I

∑I
i=1 Pitx.Pity. −

1
I

∑I
i=1 Pitx.

1
I

∑I
i=1 Pity.. According to the law of large numbers, as

I →∞, R̂txy converges to Rtxy in probability. Then, for any given I:

∣∣∣ lim
T→∞

R̂txy(ε)−Rtxy

∣∣∣ =

∣∣∣∣∣1I
I∑
i=1

Pitx.(ε)Pity.(ε)−
1

I

I∑
i=1

Pitx.(ε)
1

I

I∑
i=1

Pity.(ε)−Rtxy

∣∣∣∣∣
=
∣∣∣1
I

I∑
i=1

(Pitx.(ε)− Pitx. + Pitx.)(Pity.(ε)− Pity. + Pity.)

− 1

I

I∑
i=1

(Pitx.(ε)− Pitx. + Pitx.)
1

I

I∑
i=1

(Pity.(ε)− Pity. + Pity.)−Rtxy

∣∣∣
≤ |R̂txy −Rtxy|+ 4Aηt(ε).

(12)

Note that limI→∞ |R̂txy − Rtxy| → 0 as I → ∞. Then, we can choose ε0 such that 4Aηt(ε0) =

0.5|Rtxy|. Finally, for any ε < ε0:

lim sup
I→∞

∣∣∣ lim
T→∞

R̂txy(ε)−Rtxy

∣∣∣ ≤ 0.5|Rtxy|.

In other words, the distance between limT→∞ R̂txy(ε) and Rtxy is bounded by 0.5|Rtxy| < |Rtxy|
with probability one and therefore the sign of limT→∞ R̂txy(ε) is asymptotically equal to that
of Rtxy with probability one.
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