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elasticity between 2 and 4. An increase in high-skill wages tends to reduce automation innovation.
Placebo regressions show that the effect is specific to automation innovations. Finally, we use the
Hartz labor market reforms in Germany for an event study and find that they are associated with a
relative reduction in automation innovations.
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Abstract

Do higher wages lead to more automation innovation? To answer this question,

we first introduce a new measure of automation by using the frequency of certain

keywords in patent text to identify automation innovations in machinery. We

validate our measure by showing that it is correlated with a reduction in routine

tasks in a cross-sectoral analysis in the US. Then we build a firm-level panel dataset

on automation patents. We combine macroeconomic data from 41 countries and

information on geographical patent history to build firm-specific measures of low-

skill and high-skill wages. We find that an increase in low-skill wages leads to more

automation innovation with an elasticity between 2 and 4. An increase in high-

skill wages tends to reduce automation innovation. Placebo regressions show that

the effect is specific to automation innovations. Finally, we use the Hartz labor

market reforms in Germany for an event study and find that they are associated

with a relative reduction in automation innovations.
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1 Introduction

Do higher wages lead to more labor-saving innovations? And if so, by how much? At a

time of fast technological progress in automation technologies and of political campaigns

pushing for higher minimum wages, answering these questions is of central importance.

Even more so because the endogeneity of automation innovations matters for the long-

term effects of policy interventions (Hémous and Olsen, 2018). Yet, the literature on

the effect of wages on labor-saving technological change remains limited. In fact, the

few existing papers focus on the effect of labor costs on the adoption of automation

technologies (e.g. Lewis, 2011, Hornbeck and Naidu, 2014, or Acemoglu and Restrepo,

2018a). Our paper is the first to establish a causal effect of an increase in labor costs on

automation innovations.

Answering this question requires overcoming two challenges: identifying automation

innovations and finding a source of exogenous variation in labor costs from the perspec-

tive of innovating firms.1 To overcome the first challenge, we develop a new classification

of automation patents using the existing assignment of patents to technological categories

(IPC and CPC codes). We use the text of patents from the European Patent Office

(EPO) and compute the frequency of certain keywords (such as “robot”, “automation”

or “computer numerical control”) for each technological category. We restrict attention

to innovations in equipment for which our identification strategy is ideally suited. We

define “automation technological categories” as technological categories where the fre-

quency of the keywords is above a certain threshold. Finally, we identify as automation

patents all those which belong to automation technological categories (including non-

EPO patents). Our method presents at least two advantages: it is transparent and

covers a wide range of innovations across several sectors compared with more narrow

measures such as the use of industrial robots. According to our stricter measure, the

share of automation innovations among innovations in machinery has increased from

7.5% in 1994 to 18.9% in 2015. We conduct a validation exercise based on Autor, Levy

and Murnane (2003). We find that in the United States, sectors where the share of

automation patents filed in machinery was high, saw a decrease in routine tasks and an

increase in the skill ratio.

At the country level, technology and wages are co-determined. Automation innova-

1From a theoretical standpoint we think of automation innovations as innovations which allow for
the replacement of workers with machines in certain tasks. With a Cobb-Douglas aggregate production
function, this corresponds to an increase in the factor share of capital (see Section 3 below).

1



tors are often equipment manufacturers which sell their machines to downstream firms in

various countries. Therefore, to isolate exogenous variation in wages, we use innovating

firms’ exposure to international markets combined with the wages faced by their po-

tential customers. We expand on the methodology of Aghion, Dechezleprêtre, Hémous,

Martin and Van Reenen (2016, henceforth ADHMV) and use the PATSTAT database,

which contains close to the universe of patents. We compute how much each firm has

patented pre-sample in machinery in each country. We take this information as a proxy

for the distribution of the firm’s international exposure and build firm-specific weighted

averages of low- and high-skill wages using country-level data. These firm-specific labor

costs, which we refer to as wages for simplicity, proxy for the average labor cost paid by

the downstream firms of the innovating firms. As a result, for, say, two German firms, we

identify the effect of an increase in wages on automation innovations, by comparing how

much more automation innovations increase for the firm which has the higher market

exposure to the US when US low-skill wages increase.

We conduct our main analysis over the sample period 1997-2011 and use wage data

for 41 countries with automation patents for 3,341 firms. We find a substantial effect of

wages on automation innovations: higher low-skill wages lead to more automation inno-

vations with an elasticity between 2 and 4 depending on specification. Higher high-skill

wages tend to reduce automation, a finding in line with the capital-skill complementarity

hypothesis (Krusell, Ohanian, Rios-Rull and Violante, 2000). Our results are robust to

the inclusion of country-year fixed effects for the innovator home country and continue

to hold when we focus on foreign wages. Moreover, we use the geographical localization

of firms’ inventors to compute the local knowledge stocks which firms are exposed to.

We find strong evidence of local knowledge spillovers so that the long-term effects of an

increase in wages on automation innovations are larger than the short-term effects. We

run placebo regressions with low-automation patents in machinery for which we find no

effect of low-skill wages.

Finally, we consider the Hartz reforms in Germany in 2002-2004, which aimed at

increasing labor market flexibility. We conjecture that they lowered the effective cost of

labor and therefore automation innovation. Indeed, while foreign firms most exposed to

Germany were increasingly doing automation innovations relative to other innovations

in machinery until the Hartz reforms, the trend sharply reversed thereafter.

The theoretical argument that higher wages should lead to more labor-saving tech-

nology adoption or innovation dates back to Habakkuk (1962) and is at the core of
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several theoretical papers (e.g. Zeira, 1998, Acemoglu, 2010). More recently, a small

growth literature has emerged where endogenous innovation can take the form of either

automation or the creation of new tasks, in which case wages affect the direction of

innovation (Hémous and Olsen, 2018, Acemoglu and Restrepo, 2018b).

There is an extensive empirical literature on the effects of technological change on

wages and employment,2 yet the literature on the reverse question is much more limited.

A few papers show that labor market conditions affect labor-saving technology adoption

in health care (Acemoglu and Finkelstein, 2008), agriculture (Manuelli and Seshardi,

2014, Hornbeck and Naidu, 2014, and Clemens, Lewis and Postel, 2018), and manu-

facturing (Lewis, 2011). Lordan and Neumark (2018) find that minimum wage hikes

displace workers in automatable jobs. Unlike these papers our focus is on innovation

instead of adoption. This matters because the economic drivers of innovation may differ

from those of adoption: it may be less responsive to macroeconomic variables such as

wages; and knowledge spillovers are likely to play a greater role.

Acemoglu and Restrepo (2018a) focus on the effect of demographic trends on robot

and automation technology adoption but also find a positive correlation in cross-country

regressions between aging and patenting in robotics. Our paper differs in three ways:

first, we focus on innovation; second, we are interested in the effect of all wage variations

not just those arising from demographic trends; and third and most importantly, we

conduct our analysis at the firm level instead of the country-industry. Further, Alesina,

Battisti and Zeira (2018) find in cross-country regressions that labor market regulations

are positively correlated with innovation in low-skill intensive sectors, which is consistent

with our results on the Hartz reforms. Finally, a recent paper by Bena and Simintzi

(2019) shows that firms with a better access to the Chinese labor market decrease their

share of process innovations after the 1999 U.S.-China trade agreement.3

A large literature shows that the direction of innovation is endogenous in other con-

texts: Acemoglu and Linn (2004) in the pharmaceutical industry; Hanlon (2015) in the

2See Autor, Katz and Krueger (1998), Autor et. al. (2003), Bartel, Ichniowski and Shaw (2007),
Autor and Dorn (2013) or Gaggl and Wright (2017) for IT, Doms, Dunne and Totske (1997) for factory
automation, Graetz and Michaels (2017) or Acemoglu and Restrepo (2017) for robots, Blanas, Gancia
and Lee (2018) for different forms of capital, Mann and Püttmann (2018) or Bessen, Goos, Salomons and
van den Berge (2019) for broader measures of automation and Aghion, Jones and Jones (2017), Martinez
(2018) or Gaggl and Eden (2018) for the effect on factor shares (see Aghion, Bergeaud, Boppart, Klenow
and Li, 2019, and Akcigit and Ates, 2019, for other factors behind the drop of the labor share).

3Process innovations and automation innovations are not the same: some process innovations reduce
other costs than labor (say, materials costs) and many automation innovations are product innovations
(a new industrial robot is a product innovation for its maker).
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19th century cotton industry and several papers in the context of energy-saving or green

innovations (Newell, Jaffe and Stavins, 1999, Popp, 2002 and Calel and Dechezleprêtre,

2016). Here, we build more specifically on the methodology of ADHMV, who use firm-

level variations in gas prices to show that higher gas prices lead firms in the auto industry

to engage more in clean and less in dirty innovations.4

The use of text analysis using keywords has developed rapidly in economics since

Gentzkow and Shapiro (2010). Mann and Püttman (2018) use machine-learning tech-

niques to classify automation patents. We compare our approaches below.

Section 2 contains our first contribution: a classification of automation technologies,

which we compare to existing measures. Section 3 introduces a simple model to motivate

the analysis. Section 4 describes our empirical strategy and the data we use. Section 5

contains the results of the main analysis on the effect of wages on automation innovations.

Section 6 discusses the event study of the Hartz reforms. Section 7 concludes. Appendix

A and B provide additional robustness checks and details on our methodology.

2 Classifying automation patents

In the following we describe the patent data and our method for classifying automation

patents. We then show how our measure of automation compares to previous measures of

automation, notably the use of computers in the framework of Autor et. al. (2003). Our

approach proceeds in three steps: i) We use the existing literature to identify keywords

related to automation. ii) We use those keywords and the text of EPO patents to

classify technological categories (based on the existing IPC and CPC codes) in machinery

as automation or not. iii) We then classify worldwide patents as automation or not

depending on whether they belong to an automation technology category.

2.1 Patent data

We use two patent databases maintained by the European Patent Office (EPO). For most

of our empirical analysis, we use the World Patent Statistical Database (PATSTAT) from

4Three other papers have used ADHMV’s methodology: Noailly and Smeets (2015) on innovation
in electricity generation, Coelli, Moxnes and Ulltveit-Moe (2018) on the effect of trade policy on inno-
vation and Aghion, Bénabou, Martin and Roulet (2019) on the role of environmental preferences and
competition in innovation in the auto industry. As explained later in the text, we methodologically
extend this work by separating the foreign variables.
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Autumn 2018 which contains the bibliographical information of patents from 90 patent-

issuing authorities (covering nearly all patents in the world) but not the text of individual

patents. Since text analysis is essential to our approach, we supplement with the EP

full-text database from 2018, which contains the full text of EPO patent applications (a

subset of the patents from PATSTAT).

PATSTAT allows us to identify “patent families”, a set of patent applications across

different patent offices which represent the same innovation. For each patent family, we

know the date of first application (which we use as the year of an innovation), the patent

offices where the patent is applied for (which indicates its geographical breadth), the

identity of the applicants and the inventors and the number of citations received by the

patent family. In addition, to identify the technological characteristics of patents we use

their IPC and their CPC codes (henceforth C/IPC codes).5 Importantly each patent

usually has several C/IPC codes. The C/IPC codes form a hierarchical classification

systems. Certain types of technologies (for instance fossil fuel engines) can readily be

identified to existing groupings of C/IPC codes. Such a grouping does not exist for

automation and it is our goal in the following to create it.

Our strategy to identify automation innovations relies on first identifying automation

C/IPC codes (and combinations thereof) by computing the frequency of certain keywords

in the text of patents belonging to those C/IPC codes. We then use this information

to identify automation patents as those with automation C/IPC codes. This strategy

has two advantages over classifying patents directly. First, it allows us to include non-

EPO patents in our analysis, for which PATSTAT does not contain the text.6 Second,

technological codes by themselves are informative and one should think of the particular

wording of a patent as a signal of its underlying characteristics. Patents are written in

different styles, and often do not expand on the purpose of the invention, so that the same

innovation can often be described with or without using our keywords. In other words,

if a patent does not contain one of our keywords but belongs to a C/IPC code where

patents most of the time do, there is a high likelihood that it is actually an automation

patent (see examples in Figures 2a and 2b below). Conversely, if a patent uses one of our

keywords but does not belong to any C/IPC codes where this is common, the inclusion

5The IPC is the International Patent Classification and the CPC the Cooperative Patent Classifi-
cation used by the USPTO and the EPO. The CPC is an extension of the IPC and contains around
250,000 codes in its most disaggregated form.

6To give an idea of the increase in sample, over the period 1997-2011 there are 3.19 million patent
families with patent applications in at least two offices (a condition we will impose in our main analysis).
Among those only around 740, 000 have an EPO patent with a description in English.
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of this keyword is frequently uninformative about the nature of the innovation.7

Patents have been extensively used as a measure of innovative activity. They are

a measure of the output of the innovation process, in contrast to indicators such as

R&D expenditure. They are available for all firms and, as mentioned above, patent

data provide detailed information including on the technology itself. Not all innovations

are patented and inventors have alternative ways such as industrial secrecy or lead time

to protect their intellectual assets. Yet, most economically significant inventions have

been patented (Dernis and Guellec, 2001). Furthermore, Cohen, Nelson and Walsh et

al. (2000) administered a survey to 1,478 R&D labs in the U.S. manufacturing sector,

and found that the “Special Machinery Sector” (where many automation innovations

originate) ranked third in terms of how effective patents are considered as a means of

protection against imitation (after medical equipment and drugs).

2.2 Choosing automation keywords

In the following we explain how we choose our automation keywords. Most of them

come from the automation technologies identified in Doms, Dunne and Troske (DDT,

1997) and Acemoglu and Restrepo (AR, 2018).8 We complement this list as described

below. Naturally, we seek to capture as many patents truly associated with automation

as possible without too many false positives. Table 1 describes the list of keywords

together with their origin (Appendix B.1 provides additional details).

We have eight categories of keywords. Five of these, Robot*, numerical control,

computer-aided design and manufacturing, flexible manufacturing and programmable

logic control are automation technologies in DDT or AR. Simply applying these keywords

may result in false positives. For instance “NC” can refer to either “numeric control” or

“North Carolina”. To address this issue, we require that those keywords are either in the

same patent or the same sentence as a list of secondary words which indicate that the

text describes a machine. We add 3D printing, which was in its infancy when DDT was

written. We also add “labor” which indicates that an innovation reduces labor costs.

We similarly add “automation” and “automatization”. The stem “automat*” gather

7As a matter of fact, the World Intellectual Property Organization (WIPO) offers on its website a
simple tool based on a similar principle. A search engine allows one to identify up to 5 IPC codes most
likely to correspond to a set of keywords using the text of the patents in its database.

8Doms, Dunne and Troske (1997) measure automation using the Survey of Manufacturing Technology
(SMT) from 1988 and 1993 conducted by the US Census. The survey asked firms about their use of
certain automation and information technologies. Acemoglu and Restrepo (2018) include imports of
automation technology and associate specific HS-categories from Comtrade with automation technology.
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Table 1: Choice of automation keywords

Key words Comments Source
Automat* Automation, automatization Own / 

or automat* at least 5 times

Robot* Not surgical or medical DDT and AR

Numerical Control CNC or numeric* control* or DDT and AR
(NC in the same sentence as secondary words)

Computer-aided design DDT
and manufacturing In the same patent as secondary words

CAD or CAM in same sentence as secondary words
Flexible manufacturing DDT

Programmable logic Programmable logic control or DDT
 control PLC and not (powerline or "power line")
3D printer Including additive layer manufacturing Own

Labor Including laborious Own

Secondary words Machine or manufacturing or equipment or apparatus or machining

or (automat* or autonomous) with (secondary words or warehouse 
or operator  or arm or convey* or handling or inspect or knitting or 
manipulat*  or regulat* or sensor or storage or store or vehicle 
system or weaving or welding) in the same sentence at least twice

Doms, Dunne 
and Troske 
(DDT) / 
Acemoglu 
and Restrepo 
(AR)

Notes: "In the same sentence as control words" refers to at least one control word. Keywords include i) 
natural adjacent words (i.e. numerical control includes NC, numerically controlled and numeric control), ii) 
British/American spelling (i.e. labour/labor) and iii) hyphenated adjectives (i.e. computer aided  / computer-
aided design). We added words in italics, the others come from AR or DDT. See Appendix for details.

Computer-aided/-assisted/-supported

too many false positives such as “automatic transmission”. We resolve this in two ways:

either by restricting attention to patents where the frequency is 5 or more or by com-

bining automat* with other words which largely come from technologies described in

DDT or AR (we count patents where automat* and one of these words appear in the

same sentence at least twice). The most important keywords are those associated with

“automat*” and “robot” followed by CNC, see Appendix B.1 for details.

An alternative procedure would have been to read and classify a subset of patents

and use machine-learning techniques to classify patents (or technological categories) as

automation or not. This is the procedure in Mann and Püttmann (2018). We believe our

approach has several advantages. First, we find that classifying patents as automation is

a difficult task: often looking at a single patent in isolation is not enough, and one needs

to look at several patents within the same technological group to find patterns suggesting

that a patent is likely an automation patent. Therefore, the task of manually classifying

patents cannot be easily systematized and outsourced. Second, patents are written in a

technical language and do not primarily discuss the goal of an innovation, so that only a
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few words within the text are informative. Consequently, a machine-learning algorithm

would require a large set of classified data to classify patents correctly. Third, once the

classification is done it can easily be applied to patents without text and future patents.

Fourth, our method is more transparent and can easily be replicated or modified.

2.3 Automation technological categories and patents

We use the keywords to associate technological categories, and not patents directly, to

automation. These technological categories are defined as: 6-digit C/IPC codes, all pairs

of 4-digit C/IPC codes and pairs combining the union of the 3 digit codes G05 and G06

with any 4-digit C/IPC codes (outside codes in G05, G06).9 The code G05 corresponds

to “controlling; regulating” and G06 to “computing; calculating; counting”. Using com-

binations of G05 and G06 code with 4-digit C/IPC codes is inspired by Aschhoff et al.

(2010) who use these codes to identify advanced manufacturing technologies. We restrict

attention to categories which contain at least 100 patents.10

We then measure the prevalence of our keywords within technological categories for

those patent applications from 1978 onward which contain a description in English (a

total of 1,538,370 patent applications). In Appendix B.1.4, we verify that the choice

of the starting year does not much affect our classification. Our classification scheme

captures a broader set of automation technologies than what is relevant for our empirical

analysis including Roombas and military drones. Therefore, we restrict attention to

C/IPC codes which belong to technological fields associated with equipment. There

are 34 technological fields (see Figure A.1) and we focus on “machine tools”, “handling”,

“textile and paper machines”and“other special machines”with some adjustments, which

we refer to as “machinery” patents (we use machinery and equipment interchangeably).11

9Technically, the structure of the C/IPC classification is as follows: C/IPC “classes” have 3 digit
codes (for instance B25: “hand tools; portable power-driven tools; handles for hand implements; work-
shop equipment and manipulators”), “subclasses” have 4 digit codes (for instance B25J: “manipulators;
chambers provided with manipulation devices”) and main groups have 5 to 7 digit codes (for instance
B25J 9: “programme-controlled manipulators”). In the following, we slightly abuse language and refer
to classes, subclasses and main groups as 3 digit, 4 digit and 6 digit codes respectively.

10We group 6-digit codes with less than 100 patents into codes at the 4-digit level.
11We exclude F41 and F42 which correspond to weapons and ammunition and are in “other special

machines”. In addition, we include B42C which corresponds to machines for book production and B07C
which corresponds to machines for postal sorting as both correspond to equipment technologies and
contain 6-digit codes with a high prevalence of automation keywords; the 6-digit code G05B19 which
corresponds to “programme-control systems” and contains a large number of NC and CNC (computer
numerically controlled) machine tools which are not attributed IPC codes in the machine tools techno-
logical field; and the 6-digit code B62D65 which concerns engine manufacturing even though the rest
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This leaves us with 1009 6-digit C/IPC codes. For pairs of 4 digit IPC codes, we classify

them as belonging to the machinery technological field when at least one of the 4 digit

codes belongs to machinery. Similarly, the combinations of 4 digit IPC code and G05 or

G06 belong to machinery if the 4 digit code belongs to that field.

We extensively checked the C/IPC codes and sampled patents from each category to

ensure that the procedure delivered reasonable results. However, the validation exercises

and the main empirical exercise where carried out after the classification was set.

Table 2 gives some examples of 6-digit C/IPC codes in machinery with the prevalence

of automation keywords including their rank within machinery 6 digit codes with at least

100 patents. It also shows the prevalence of the most important subcategories (automat*,

robots and CNC) in the patents linked to each C/IPC code. C/IPC codes associated

with robotics (B25J) have the highest prevalence numbers with up to 91% patents in

B25J5 which contain at least one of the keywords. Yet, there are also codes associated

with machine tools other than robots at the top of the distribution such as B23Q15 and

codes associated with devices used in the agricultural sector such as A01J7. B24B49 is a

code close to the threshold we use to delimit automation patents. The last four C/IPC

codes are examples with a low prevalence of automation keywords. The table also shows

that the different sub-measures do not capture the same technologies: the robotic codes

are ranked highly thanks to their share of patents with the word “robot”, B23Q15 is

high because a lot of patents contain words related to CNC, and B65G1, because a lot

of patents contain words associated with automation directly.

Figure 1 gives the histograms of the prevalence of automation keywords for all C/IPC

6 digit codes (panel a) and C/IPC 6 digit codes in machinery (panel b). The histograms

show that most C/IPC codes have a low prevalence of automation keywords and that the

distribution is shifted to the right for machinery. Yet, a few codes have a high prevalence

measure. Appendix B.1 gives additional statistics on the prevalence measures.

We define automation technological categories as those with a prevalence measure

above some threshold. As our baseline, we choose thresholds at the 90th and 95th per-

centiles of the 6 digit code distribution within the machinery technological field, which

are given by 0.386 and 0.477 respectively.12 We then define a patent as an automation

patent if it belongs to at least one automation technological group (that is a 6 digit code,

a pair of 4 digit codes, or a combination of 4 digit code and G05/G06). Most automa-

of the B62D code is about the vehicle parts themselves.
12These thresholds are to some extent arbitrary but we do investigate how robust our results are and

choosing different thresholds is easy.
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Table 2: Examples of 6-digit C/IPC codes in machinery

Code Description Number of All share Rank Robot Automat* CNC

patents (over 1009) share share share

– High prevalence –

B25J5 Manipulators mounted on wheels or on car-

riages.

504 0.91 1 0.87 0.27 0.01

B25J19 Accessories fitted to manipulators, e.g. for

monitoring or for viewing; safety devices

combined with or specially adapted for use

in connection with manipulators.

1001 0.89 2 0.85 0.22 0.04

B25J13 Controls for manipulators. 857 0.88 3 0.81 0.27 0.03

B25J9 Programme-controlled manipulators. 2809 0.86 4 0.79 0.29 0.07

B23Q15 Automatic control or regulation of feed

movement, cutting velocity or position of

tool or work.

591 0.79 7 0.09 0.36 0.65

A01J7 Accessories for milking machines or devices. 395 0.77 9 0.62 0.52 0

G05B19 Programme-control systems. 7133 0.70 16 0.22 0.39 0.25

B65G1 Storing articles, individually or in orderly ar-

rangement, in warehouses or magazines.

1064 0.58 29 0.18 0.46 0.01

B24B49 Measuring or gauging equipment for control-

ling the feed movement of the grinding tool

or work; Arrangements of indicating or mea-

suring equipment, e.g. for indicating the

start of the grinding operation.

608 0.42 75 0.12 0.18 0.19

– Low prevalence –

B65H7 Controlling article feeding, separating, pile-

advancing, or associated apparatus, to take

account of incorrect feeding, absence of arti-

cles, or presence of faulty articles.

736 0.28 228 0.01 0.25 0.00

B23P6 Restoring or reconditioning objects. 613 0.26 266 0.07 0.06 0.05

A01B63 Lifting or adjusting devices or arrangements

for agricultural machines or implements.

264 0.24 306 0.01 0.20 0

B66D3 Portable or mobile lifting or hauling appli-

ances.

215 0.13 677 0.02 0.07 0.00

10



(a) For all C/IPC 6 digit codes (b) For C/IPC 6 digit codes in machinery
with at least 100 patents

Figure 1: Histogram of the prevalence of automation keywords for C/IPC 6 digit codes

tion patents in our dataset are automation patents because they belong to at least one 6

digit automation code (see Appendix B.1). We refer to the two classifications as auto90

and auto95 depending on the threshold used. We can analogously define subcategories

of automation patents such as robot90 using the single keyword robot and the same

threshold as for auto90. By definition all robot90 patents are also auto90 patents.

Figure 2 shows two automation patents. Both are automated storage cabinets and

are counted as automation patents because they contain the 6 digit code B65G 1. As

described in Table 2, B65G 1 corresponds to devices for storing articles and has a high

prevalence of automation keywords (0.58, which is above the 95th percentile threshold).

The patent of Figure 2a contains our keywords: a sentence with the words “automatic”

and “storing,” and another sentence with the word “robot.” The description strongly

suggests that this is indeed an automation patent. The patent of Figure 2b does not

contain any of the keywords, but the description of the text still describes a labor-saving

innovation. Appendix B.1.5 provides additional examples of patents.

2.4 Trends in automation innovations

To ensure that we only capture innovations of a sufficiently high quality, we restrict

attention to patent families with patent applications in at least two countries in our

main empirical analysis and for the trends depicted here. We refer to these as biadic

patents. Several studies have documented that biadic patents are of higher quality

11



(a) Example with keywords

(b) Example without keywords

Figure 2: Examples of automation patents from technological code B65G1, which are both
automated storage cabinets.
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and fundamentally different from patents applied for in only one office (e.g. Harhoff,

Scherer and Vopel, 2003, van Pottelsberghe de la Potterie and van Zeebroeck, 2008,

De Rassenfosse, Dernis, Guellec, Picci and van Pottelsberghe de la Potterie, 2013, and

Dechezleprêtre, Ménière and Mohnen, 2017).13

Figure 3 below shows the evolution of automation patent families in the set of biadic

patents. Panel (a) shows that worldwide the share of automation patents in machinery

declines between the mid1980s and the mid1990s from 17.4% in 1985 to 14.8% in 1994 for

the laxer auto90 measure and from 9.5% to 7.6% for the stricter auto95 measure before

increasing quickly to reach 26.8% for auto90 and 18.9% for auto95 in 2015—Figure A.2

in the Appendix shows that automation patents in machinery represent between 2.6%

and 3.9% of all patents with the auto90 definition and it also reports the raw numbers

of auto90 and auto95 patents. Panel (b) computes the share of automation patents in

machinery for the auto95 measure for biadic patents by applicant’s nationality. The

graph shows a somewhat different trend for Japan compared to the US, the UK, France

or Germany. The share of automation patents is initially much higher in Japan but

declines in the 80s and 90s before picking up in the 2000s but slower than in the other

countries. The share of automation patents in machinery is now the highest for German

applicants. Appendix Figure A.3 reports the share of automation patents in machinery

based on where the patent is protected. The trends are roughly similar but show less

divergence between countries.

2.5 Automation patents and robots

Graetz and Michaels (2018) and Acemoglu and Restrepo (2017) use data on the stocks

of industrial robots from the International Federation of Robotics (IFR) to measure

automation. The data are available at the country and sector level.

We first compare our automation measure with robotization at the country level. To

measure robotization in a given country, we follow Acemoglu and Restrepo (2017) and

use the change in the stocks of industrial robots in between 1997 and 2011 divided by

total employment in manufacturing in 1997 (employment data come from the OECD

13In addition, patents can be more or less broad across countries: for instance the same invention
may be covered by two patents in Japan but only one in the US. By focusing on biadic patents, we only
count such a case as one innovation. We count patent applications and not granted patents because in
certain patent offices, notably in Japan, a patent is only formally granted if the rights of the applicant
are challenged. To restrict attention to patent families of even higher quality, we carry out robustness
checks where we use patent citations, or patents applied to more than two offices.
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Figure 3: Share of automation patents in machinery for biadic families.

database). We measure automation at the country level as the shares of auto95 and

auto90 patents in machinery among biadic patents applied for in each country over

the years 1997-2011. Table 3 reports the correlation across 27 countries between the

robotization measure and our measures. The correlation is quite high with a coefficient

of 0.38 for the auto95 measure. When we correlate robotization with the shares of robotic

patents in machinery we get a coefficient of 0.46 for robot80.

We then compare our two measures of automation at the sector level for the US

and Germany. The IFR data contain consistent stocks of industrial robots for 17 sectors

between 1997 and 2011 for Germany and between 2004 and 2011 for the US. We compute

robotization in each sector by taking the difference between the stocks in the two years

and dividing by employment in the first period.14 We allocate patents to these sectors

according to their (family-level) 4-digit C/IPC codes using a concordance table provided

by Lybbert and Zolas (2014), and measure the share of auto95, auto90, robot90 and

robot80 patents in machinery for each sector over the same time periods. Appendix

Table A.1 reports shares of auto95 patents in machinery for patents granted at the

USPTO, patents protected in Germany (i.e. granted German patents or granted EPO

patents protected in Germany) and for all biadic patents across sectors. The shares

of automation patents are very similar in the US, Germany and for the world. The

three sectors with the highest shares for auto95 are always the automotive, “computer,

14The IFR sectoral data are available for the ISIC Rev 4 classification and aggregate robot stocks at
the level of US, Canada and Mexico. We still use OECD data for employment.
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Table 3: Correlations between our automation measures and robot intensity

(1) (2) (3)

Share of automation

patents in machinery (auto95)

Share of automation

patents in machinery (auto90)

Share of robot patents in 

machinery (robot90)

Share of robot patents in 

machinery (robot80)

Number of observations 27 17 17

0.377

0.365 0.682 0.546

Note: This table reports correlations across countries or industries between shares of automation

patents in machinery, robots patents in machinery and robot intensity. Robot intensity is measured

as the difference between the stock of robots in 2011 and 1997 (columns 1 and 3) or 2004 (column

2) over employment in each country (column 1) or each sector (columns 2 and 3) in 1997 (columns

1 and 3) or 2004 (column 2). Shares of automation and robot patents are computed over the time

period 1997-2011 for columns (1) and (3) and over 2004-2011 for column (2).

0.4260.483

0.461 0.740 0.780

Across Countries Across US 

Industries

Across German 

Industries

0.383 0.602 0.560

electronic, optical and electrical products” and “other transport equipment” industries.

In addition, Table 3 reports correlations across sectors for these measures in the US and

in Germany. We find higher levels of correlations with coefficients of 0.60 and 0.56 for

both US and German industries with the auto95 measure. When we use our method to

focus specifically on robotic patents, we find correlation coefficients up to 0.74 and 0.78

for the robot80 measure.

2.6 Validating our automation measure

To validate our automation measure, we use it in the framework of Autor et. al. (2003)

(henceforth ALM), who show how computerization has been associated with a decrease

in routine tasks at the industry level on U.S. data from 1960 to 1998. We provide a

brief description of the exercise and refer the reader to Appendix B.2 for details. To

measure automation innovations at the sectoral level, we use USPTO granted patents

which belong to the machinery technological field. As before, we allocate patents to

sectors according to their 4-digit C/IPC codes using another concordance table provided

by Lybbert and Zolas (2014).15 For each sector j and each period τ , we compute the

share of automation patents among machinery patents applied for during this period.

15Lybbert and Zolas (2014) present several probabilistic concordance tables, which are based on
matching industry descriptions with the title and the abstract of patents within an IPC code. This
methodology cannot a priori distinguish between the sector of use of a patent and the industry of
manufacture, we verify however on a few simple examples that within machinery, the classification
seemed to assign patents to the sector of use (for instance textile machines are assigned to the textile
industry not the equipment industry).
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(a) Change in routine cognitive tasks and
automation intensity
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(b) Change in routine manual tasks and au-
tomation intensity

Figure 4: Scatter plots of routine tasks changes and automation intensity (auto 95) in 1980-
1998 in the United States. The list of sectors is given in Table B.4

Denoting this variable autjτ , we run regressions of the type:

∆Tjkτ = β0 + βC∆Cj + βautautjτ . (1)

∆Tjkτ represents the change in tasks of type k in industry j during period τ and ∆Cj is

the measure of the change of computerization in sector j (it is computed over the years

1984-1997 and used for all time periods τ). We do not first difference our measure of

automation because patenting is already a measure of the flow of knowledge. We take

our task measures directly from ALM, and therefore consider 5 types of tasks: nonrou-

tine analytic, nonroutine interactive, routine cognitive, routine manual and nonroutine

manual. ∆Tjkτ is measured as 10 times the annual within-industry change in task input

measured in percentile of the 1960 task distribution (as in ALM). We consider 3 time pe-

riods for which we can compute our automation intensity measure: 1970-1980, 1980-1990

and 1990-1998 (ALM also considers 1960-1970), and the joint time period 1980-1998.

We restrict attention to sectors with at least 50 machinery patents per decade. As a

result, we can measure automation intensity for between 67 and 69 sectors most of them

in manufacturing (see full list in Table B.4). Our automation measures, auto90 and

auto95, are strongly correlated with each other (the coefficient is 0.86) but uncorrelated

with computerization (the coefficient is 0.016 for auto95 and 0.05 for auto90).
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Figure 4 first provides simple scatter plots of the changes in routine tasks and the

share of automation patents in machinery (according to the auto95 definition) over

the years 1980-1998.16 Sectors with a high share of automation patents experience a

decline in routine cognitive and routine manual tasks. Given our focus on automation

in machinery a decline in routine cognitive tasks might seem surprising at first sight,

but several machines replace workers for tasks such as inspection and control (such an

example is given in Figure 2b).

Table 4, columns (1) to (5) report the results of regression (1) for the auto95 measure.

Columns (3) and (4) show that sectors with a high share of automation patents in

machinery experienced a large reduction in both cognitive and manual routine tasks in

each decade. The coefficients of column (3) and (4) in panel B indicate that a 10 pp

increase in the share of automation patents is associated with a 3 centiles and 2.2 centiles

decrease in labor input of routine cognitive and manual tasks in the 80s. To interpret a

10 pp increase, note that the standard deviation in the share of automation patents in

the 80s is 0.09 with a mean of 0.08. For comparison, the effect of a 1 standard deviation

increase in computerization is associated with a decrease in routine cognitive tasks of

0.8 centiles and essentially no change in routine manual tasks (the effect is larger in the

90s). We obtain similar results when we restrict attention to biadic patents (as in our

main regression exercise of section 5) or when we exclude the equipment sector, which

could be contaminated if patents are assigned to the industry of manufacture instead of

the sector of use (176 in the Census classification).

We also use the ratio of high-skill to low-skill workers (defined as college graduates

over high-school dropouts and graduates) as our dependent variable in cross-section

regressions similar to equation 1.17 Column (6) of Table 4 shows that sectors with a

higher automation share also experience a large increase in the ratio of high-skill to low-

skill workers. Panel B suggests that a 10 pp increase in the share of automation patents

is associated with an increase of 1.33 in that ratio in the 1980s.

In the Appendix, Table B.5 reproduces the same exercise for our laxer measure

(auto90) and obtains similar results. Finally, Table B.6 reproduces the same analysis

16At this level of disaggregation, the five sectors with the highest share of automation patents are:
scientific and controlling instruments, optical and health services (246), dairy products (101), elec-
tronic computing equipment, office and accounting machines (186), household appliances, radio, TV
& communications equipment, electric machinery, equipment & supplies, n.e.c., not specified electrical
machinery, equipment & supplies (206) and transport equipment (351).

17The results are similar for the ratio of college graduates over high-school dropouts or college grad-
uates and some college over high school graduates and dropouts.
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Table 4: Correlation between changes in task intensity or skill ratio across sectors and au-
tomation (auto95)

(1) (2) (3) (4) (5) (6)

Panel A: 1970 - 80, n=67

Share of automation -1.29 5.42 ***-17.27*** **-11.43** -1.15 ***0.27***

patents in machinery (5.10) (6.27) (6.59) (5.59) (7.46) (0.07)

D Computer use -6.86 -3.13 ***-19.51*** -3.46 *14.87* 0.07

1984 - 1997 (5.72) (7.04) (7.41) (6.28) (8.38) (0.08)

Intercept 1.06 **2.31** **3.07** ***2.69*** -1.75 ***0.05***

(0.95) (1.17) (1.23) (1.04) (1.39) (0.01)

R
2 0.02 0.01 0.20 0.07 0.05 0.21

Weighted mean D -0.05 2.17 -0.90 1.49 0.42 0.07

Panel B: 1980 - 90, n=67

Share of automation 10.09 **19.05** ***-30.00*** ***-21.61*** ***16.78*** ***1.33***

patents in machinery (7.14) (8.12) (6.76) (5.42) (6.04) (0.23)

D Computer use **24.80** *22.21* -13.24 -0.42 -6.49 0.29

1984 - 1997 (10.43) (11.85) (9.87) (7.91) (8.82) (0.33)

Intercept -2.62 -0.65 2.15 1.20 -2.13 -0.04

(1.70) (1.93) (1.61) (1.29) (1.44) (0.05)

R
2 0.12 0.14 0.27 0.20 0.11 0.37

Weighted mean D 1.86 4.17 -2.22 -0.59 -1.74 0.11

Panel C: 1990 - 98, n=67

Share of automation *11.06* *16.02* ***-22.81*** **-12.53** 6.66 ***0.77***

patents in machinery (6.08) (8.18) (6.54) (5.42) (6.28) (0.15)

D Computer use ***26.77*** **27.00** **-23.15** ***-24.87*** 7.48 ***0.66***

1984 - 1997 (8.35) (11.23) (8.98) (7.44) (8.62) (0.20)

Intercept *-2.36* -1.43 1.72 *2.27* *-2.40* *-0.06*

(1.37) (1.84) (1.47) (1.22) (1.41) (0.03)

R
2 0.19 0.15 0.25 0.23 0.03 0.41

Weighted mean D 2.45 3.79 -3.44 -2.36 -0.79 0.09

D H/L

Standard errors are in parentheses. Colums (1) to (5) of Panels A to C each presents a separate OLS regression of ten times the

annual change in industry-level task input between the endpoints of the indicated time interval (measured in centiles of the 1960 task

distribution) on the share of automation patents in machinery (defined with the 95th percentile threshold) and the annual percentage

point change in industry computer use during 1984 - 1997 as well as a constant. In Column (6), the dependent variable is the ratio of

high-skill (college graduates) to low-skill (high-school graduates and dropouts) workers. Estimates are weighted by mean industry share

of total employment in FTEs over the endpoints of the years used to form the dependent variable. * p<0.1; ** p<0.05; *** p<0.01

D Nonroutine

analytic

D Nonroutine

interactive

D Routine

cognitive

D Routine

manual

D Nonroutine

manual
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separately for each education category (as ALM) and shows that automation leads to a

reduction of routine tasks and an increase in non-routine manual tasks for high-school

graduates (but in line with column (6) of Table 4, a large share of the task changes at

the industry level are explained by changes in educational composition - see Panel F).

Sectors of use versus manufacturing. As already mentioned, the concordance

table from Lybbert and Zolas (2014) does not distinguish between sector of use (our focus

here) and of manufacturing. We now present alternative ways to assign patents to sec-

tors. First, we use a concordance table from Eurostat (van Looy, Vereyen and Schmoch,

2014) which maps IPC codes to 2 or 3 digit NACE rev 2 sectors according to the sector

of the firm filing the patent, i.e. the sector of manufacturing. With this method, we

can compute the share of automation patents for 58 sectors. Table 5 reports the results

of regressions of the change in routine tasks on the share of automation patents for the

consolidated period 1980-1998. Column (1) and (2) both use the Lybbert and Zolas

(2014) concordance but column (2) restricts attention to the 58 sectors where we can

compute the share of automation patents according to the industry of manufacturing.

Column (3) uses the share of automation patents according to the manufacturing indus-

try. The coefficient drops for routine cognitive tasks relative to column (2) and standard

errors increase. We then combine the Eurostat concordance table with the industry of

manufacturing with an input-output table to allocate patents according to their sector

of use and compute the share of automation patents in that sector (see Appendix B.2).

We can compute this statistic for 125 sectors and column (4) reports the results. Rela-

tive to our default measure we obtain larger coefficients. Finally in column (5) we carry

out a horse-race regression between the sectors of use and of manufacturing measures.

The results strongly support that it is the share of automation patents according to the

sector of use which is associated with a decline in routine tasks.18

Overall, these results suggest that our automation measure captures a form of skill-

biased technical change, distinct from computerization and associated with a decrease

in routine tasks by low-skill workers. We can therefore use it to analyze the effect of

wages on automation innovation incentives.

18The disadvantage of this method is that the Eurostat concordance table is more aggregated than
the Lybbert and Zolas (2014) one and the mapping to the ALM sectors is less direct.
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Table 5: Changes in routine task intensity and different measures of sectoral automation
(1) (2) (3) (4) (5)

Panel A: D Routine cognitive

Automation share    -26.66***    -22.93***

(Lybbert and Zolas) (4.83) (4.22)

Automation share  -14.79*  17.06*

(manufacturing industry) (8.44) (10.12)

Automation share    -48.40***    -50.72***

(using industry) (9.03) (11.24)

D Computer use   -17.74**   -12.71**   -15.33**   -12.06** -7.75

1984 - 1997 (6.79) (6.17) (7.42) (4.71) (6.60)

R
2 0.39 0.39 0.12 0.23 0.36

Observations 69 58 58 125 58

Panel B: D Routine manual

Automation share -17.09***    -15.47***

(Lybbert and Zolas) (3.90) (3.53)

Automation share   -15.33** 6.97

(manufacturing industry) (6.48) (8.02)

Automation share  -18.04*    -35.51***

(using industry) (10.08) (8.90)

D Computer use -11.53**   -13.47**    -15.22***    -15.08***  -9.91*

1984 - 1997 (5.48) (5.17) (5.70) (5.26) (5.23)

R
2 0.29 0.34 0.19 0.09 0.37

Observations 69 58 58 125 58

Standard errors are in parentheses. Each column of Panels A and B presents a separate OLS regression of ten times

the annual change in industry-level task input between 1980 and 1998 (measured in centiles of the 1960 task

distribution) on the share of automation patents in machinery and the annual percentage point change in industry

computer use during 1984 - 1997 as well as a constant. The automation share measures correspond to the share of

automation patents in machinery (defined with the 95th percentile threshold) using different concordance tables. "Lybbert

and Zolas'' uses the same concordance table as in the body of the paper. "Manufacturing industry'' uses a EUROSTAT

concordance table between IPC codes and industry codes of innovating firms. "Using industry'' uses the same

concordance table combined with an input output table to get the industry of use. Columns (2), (3) and (5) restrict

attention to sectors for which there are enough patents to compute the "Automation share (manufacturing industry)''

measure. Estimates are weighted by mean industry share of total employment in FTEs in 1980 and 1998. * p<0.1;

** p<0.05; *** p<0.01
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3 A simple model

Before carrying out our empirical analysis, we present a simple model to clarify our

argument. The model is motivated by the business structure of the largest automa-

tion innovators. In 2018, Siemens, the biggest innovator in our sample, had 31% of its

workforce in but only 14% of its revenues from Germany. During this year its strongest

growing division was the Digital Factory Division which provides a broad range of au-

tomation technology to manufacturers across the globe. The annual report describes

how “The Digital Factory Division offers a comprehensive product portfolio and sys-

tem solutions for automation technologies used in manufacturing industries, such as

automation systems and software for factory automation, industrial controls and numer-

ical control systems, motors, drives and inverters and integrated automation systems

for machine tools and production machines...”. The report is centrally interested in

how “Changes in customer demand [for automation technology by downstream manu-

facturers] are strongly driven by macroeconomic cycles” and discusses a number of such

drivers including changes in cost of capital and political development towards trade pro-

tectionism.19 Siemens further discusses how such macroeconomic trends affect its R&D

decisions.

We incorporate these business features into a model built on the task framework of

Acemoglu and Autor (2011) and more precisely on the growth model of Hémous and

Olsen (2018). A manufacturing good is produced with a continuum of intermediate

inputs according to the Cobb-Douglas production function:

Y = exp

(∫ 1

0

ln y (i) di

)
, (2)

where y(i) denotes the quantity of intermediate input i. The manufacturing good is the

numeraire. Each intermediate input is produced competitively with high-skill labor (h1,i

and potentially h2,i), low-skill labor, li, and potentially machines, xi, according to:

yi = h1−β
1,i

(
γ (i) li + α (i) νν(1− ν)1−νxνi h

1−ν
2,i

)β
.

γ(i) is the productivity of low-skill workers and α(i) is an index which takes the value

0 for non-automated intermediates and 1 for automated intermediates. ν and β are

19Interestingly, the report never mentions “cost of labor” as a reason for automation, but instead
used a number of euphemisms such as “increase competitiveness”, “enhance efficiency”, “improve cost
position” and “stream line production”.
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fixed share parameters in (0, 1). Machines are specific to the intermediate input i. If a

machine is invented, it is produced monopolistically, 1 for 1 with the final good so that

the monopolist charges a price px(i) ≥ 1.

At the beginning of the period, for each non-automated intermediate i, there is an

innovator. The innovator creates a machine specific to intermediate i with probability

λ if it spends θλ2Y/2 units of manufacturing good.

We solve the model in two steps, first we derive the profits realized by machine

producers, second we solve for the innovation decision. For an automated intermediate

input (α(i) = 1), the downstream producer is indifferent between using low-skill workers

or machines together with high-skill workers in production whenever:

wνHp
1−ν
x = wL/γ(i).

As a result, the machine producer is in “Bertrand competition” with low-skill work-

ers. Given that a machine costs 1, the machine producer charges a price px(i) =

max
(

(w/γ(i))
1

1−ν w
− ν

1−ν
H , 1

)
, and the intermediate input producer uses low-skill work-

ers whenever wL/γ(i) < wνH and machines otherwise. Therefore, the machine producer

charges a higher price when low-skill wages are higher and high-skill wages are lower since

high-skill workers and machines are complement. Using that the manufacturing good is

produced according to a Cobb-Douglas production function, we have that p(i)y(i) = Y

for all intermediates. Therefore, we can derive the profits of the machine producer as:

πAi = max

(
1−

(
γ(i)

wL

) 1
1−ν

w
ν

1−ν
H , 0

)
νβY.

In turn, at the beginning of the period, the potential innovator solves maxλπAi −
θλ2Y/2, giving the equilibrium innovation rate:

λ =
νβ

θ
max

(
1−

(
γ(i)

wL

) 1
1−ν

w
ν

1−ν
H , 0

)
.

As a result, the number of automation innovations is equal to:

Aut =
νβ

θ

∫ 1

0

(1− α (i)) max

((
1−

(
γ(i)

wL

) 1
1−ν

w
ν

1−ν
H

)
, 0

)
di.

This expression is increasing in the low-skill wage wL and decreasing in the high-skill
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wage wH . Intuitively, the incentive to replace low-skill workers with machines (and high-

skill workers) increases with low-skill wages, leading to a higher demand for machines.

The reverse holds for high-skill wages. An upward shift in low-skill worker productivity,

γ(i), also reduces the number of automation innovations.

More generally, the defining characteristic of automation is that it allows for the

replacement of workers by machines in certain tasks. When intermediates have a unit-

elasticity of substitution as in (2), the aggregate production function is Cobb-Douglas

and automation corresponds to a change in factor shares. When intermediates have an

elasticity of substitution lower than 1, the aggregate production function is CES and

automation corresponds to a combination of labor-augmenting and capital-depleting

technical changes (see Aghion et al., 2017).

4 Empirical Strategy and Data

4.1 Empirical strategy

We now take the predictions of our model to the data. As mentioned above, innovators

in automation technologies are often large companies (e.g. Siemens) which sell their

automation equipment internationally. Following the logic of our model, the incentives

of the downstream producers to adopt automation technology is determined by wages in

their local market. As a result, the decision of innovators such as Siemens to pursue au-

tomation research in the first place depends on the wages that their potential customers

face in different countries.20

In our baseline regression, we assume that a firm’s innovation in automation is given

by the following Poisson specification:

PATAut,i,t (3)

= exp

(
βwL lnwL,i,t−2 + βwH lnwH,i,t−2 + βXXi,t−2 + βKa lnKAut,i,t−2

+βKo lnKother,i,t−2 + βSa lnSPILLAut,i,t−2 + βSo lnSPILLother,i,t−2 + δi + δt

)
+ εi,t.

PATAut,i,t denotes the number of automation patents applied for by firm i in year t.

wL,i,t−2 and wH,i,t−2 denote the average low-skill and high-skill wages (more generally

20If the automation innovation is internal to the firm, then the argument follows if one interprets the
innovator’s customers as the different downstream production sites of the same firm.
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labor costs) faced by the customers of firm i at time t − 2 (we explain below how we

proxy for them). Section 3 predicts that βwL > 0: an increase in the average low-

skill wage faced by the customers of firm i leads firm i to undertake more automation

innovations. It also predicts that βwH < 0 since high-skill workers are complements

to machines. Xi,t represents a vector of additional controls (average GDP per capita,

GDP gap and labor productivity). Controlling for GDP per capita or labor productivity

allows us to control for changes in productivity in the country where machines may be

sold21 and controlling for the GDP gap allows us to capture business cycle fluctuations

and changes in demand.

KAut,i,t−2 and Kother,i,t−2 denote the stocks of knowledge in automation and in other

technologies of firm i at time t − 2. These knowledge stocks are computed using the

perpetual inventory method.22 SPILLAut,i,t−2 and SPILLother,i,t−2 similarly denote the

stocks of external knowledge (spillovers) in automation and in other technologies which

firm i has access to at time t−2 (we explain below how these are constructed). δi and δt

are firm and time fixed effects. Finally, εi,t is an error term assumed to be uncorrelated

with the other right-hand side variables. The right-hand side variables are lagged by 2

years in the baseline regressions to reflect the delay between changes in R&D investments

and patent applications—Section 5.4 considers alternative timing assumptions.23

4.2 Macroeconomic data

Our macroeconomic variables come primarily from the 2013 release of the World Input

Output Tables, henceforth, WIOD (Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer,

R. and de Vries, G. J., 2015). The database contains information on hourly labor costs

across groups of educational attainment – low-skill, middle-skill and high-skill workers

– for the manufacturing sector from 1995 to 2009 as well as value added and producer

price indices. The dataset contains information on 40 countries, including all 27 EU

21GDP per capita could also capture non-homotheticity in preferences, for instance if higher quality
goods or services are less automated.

22We use ln(1 + K), a depreciation rate of 15% and add a dummy indicating whether the knowledge
stock equals zero.

23To control for firm-level fixed effects, our baseline specification uses the Hausman, Hall and Griliches
(1984, HHG) method which is the count data equivalent to the within-group estimator. Technically,
this method is inconsistent with equation (3) as it requires strict exogeneity and hence prevents the
lagged dependent variable from appearing on the right-hand side (which it does through the knowledge
stock KAut,i,t−2). Yet, the bias is small with large T , which is the case in our baseline regression (15
years). To address this issue we implement the Blundell, Griffith and Van Reenen (1999) method in
Section 5.6, which uses the pre-sample average of the dependent variable to proxy for the fixed effect.
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countries of 2009. We obtain similar data from the Swiss Federal Statistical Office to

add Switzerland, a large source of patents, to our analysis. For our baseline regressions,

we focus on labor costs in manufacturing since our analysis in Section 2 showed that

most of our patents (89% of biadic auto95 patents in 1997-2011) are associated with

manufacturing, but we check that our results are robust to using labor costs in the entire

economy. Although our measures cover all labor costs, we refer to those as wages from

here on for simplicity. From the same dataset, we obtain measures of labor productivity

(as value added divided by hours) and producer price indices (for the whole economy and

manufacturing). We obtain exchange rate and GDP data from UNSTAT and compute

the GDP gap to control for business cycles.24 Appendix B.3 provides additional details.

All macroeconomic variables are deflated in the same way. In the baseline regression, we

first deflate nominal values by the local producer price index for manufacturing (indexed

to 1995), and then we convert everything into dollars using the average exchange rate

for 1995 the starting year of our regressions.

In the data, low-skill workers are defined as those without a high-school diploma or

equivalent and high-skill workers as those with at least a college degree. Middle-skill

wages and low-skill wages are very highly correlated so in practice one should interpret

our low-skill wage variable as reflecting both low-skill and middle-skill.25

The countries with the highest low-skill wages in 2009 are Belgium, Sweden and

Finland with $41.9, $42.2 and $43.6 respectively (in 1995 dollars) and those with the

lowest are India, Mexico and Bulgaria with $0.28, $0.61 and $0.71, respectively. The

corresponding number for the US is $13.7. Table 6 summarizes these values for these

seven countries. It further shows that the ratio of high-skill to low-skill wages varies

considerably across countries, even among those that have relatively similar low-skill

wages. The skill-premium in the United States rose from 2.46 to 3.02 during this period

while it slightly declined in Belgium from 1.56 to 1.46.

4.3 Computing firm’s market-specific wages and spillovers

Ideally, we would like to measure the wages paid by the (actual and potential) customers

of automation innovators. Since we do not observe these, we build a proxy which is a

24We use a HP filter with a smoothing parameter of 6.25 on ln(GDP ) to get the trend, and the GDP
gap is measured as the difference between ln(GDP ) and its trend.

25For our baseline sample of firms, included in Table 8 below, the correlation between low-skill and
middle-skill wages is 0.94 controlling for firm and year fixed effects. It is only 0.6 for low-skill and
high-skill wages. See Appendix Table A.2.
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Table 6: Low-skill wages and the skill-premium in manufacturing sector for selected countries

Country Low-skill wages Skill-premium
(1995$) (HS wages/LS wages)

1995 2009 1995 2009

India 0.19 0.28 4.79 4.98
Mexico 0.89 0.61 3.90 4.21
Bulgaria 1.29 0.71 3.32 2.25
USA 11.57 13.67 2.46 3.02
Belgium 29.50 41.89 1.56 1.46
Sweden 19.92 42.16 1.73 1.33
Finland 23.41 43.63 1.20 1.46

Note: Wages data, taken from the World Input Output
Database. The table shows manufacturing low-skill wages
(technically labor costs) deflated by (manufacturing) pro-
ducer price index and converted to US dollars using average
1995 exchange rates. Skill-premium is the ratio of high-skill
to low-skill wages (labor costs). The table shows the three
countries with the lowest low-skill wages in 2009, the three
with the highest and the United States.

1

weighted average of country-level wages where the weights reflect the market exposure

of innovators. We define the average low-skill wage faced by a firm’s customers wL,i,t as

wL,i,t ≡
∑
c

ωi,cwL,c,t, (4)

where wL,c,t is the low-skill wage in country c at time t and ωi,c is the fixed weight of

country c for firm i. We use the same approach to compute firm customers’ average high-

skill wage, productivity or GDP per capita. Firms have different exposure to different

markets because of trade barriers, heterogeneous tastes of customers, or various historical

accidents if exporting involves sunk costs. This measure is a shift-share instrument

(Bartik, 1991). The weights are computed pre-sample to ensure that they are weakly

exogenous as patent location could be influenced by innovation shocks. Since the weights

are fixed, our identification relies on how country-level shocks affect firms differently.

In fact, had we observed the wages of the customers of automation innovators, those

would have suffered from reverse causality, and we would have used our measure as

an instrument. Our regression should therefore be viewed as the reduced form of this

instrumental approach. We discuss the recent literature on shift-share regressions in

detail in Section 5.5.26

26As we keep the weights fixed we look at how wage changes in the countries where a firm already
sells affect the firm’s automation innovation. A different question would have been to analyze how wage
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To measure the weights in the absence of sales data, we follow and expand on the

methodology of Aghion et al. (2016, ADHMV). We use the firm’s pre-sample history of

patent filing as a proxy for its market exposure. A patent grants its holder the exclusive

right to commercially exploit a technology in a specific country for a limited period of

time and inventors must file a patent in each country where they wish to protect their

technology. Patenting is costly: a firm needs to hire lawyers and possibly translators as

well as pay the filing costs. Further, the publication of a patent can increase vulnerability

to imitation and inventors are therefore unlikely to apply for patent protection in a

country unless they are relatively certain of the potential market value for the technology

(Eaton and Kortum, 1996). Indeed, empirical evidence suggests that inventors do not

patent widely and indiscriminately, with the average invention only patented in two

countries (see Dechezleprêtre, Glachant, Hascic, Johnstone and Ménière, 2011).

We compute for each firm the fraction of its patents in machinery (not only au-

tomation) protected in each country c for which we have wage data, ω̃i,c, during the

pre-sample period 1970-1994.27 We only count patents in machinery because some of

the biggest innovators in automation technologies are large firms (Sony, Siemens, etc.)

which produce a wide array of products with different specialization patterns across in-

dustries. We restrict attention to patent families with at least one citation (not counting

self-citations) to exclude the lowest quality patents. See Appendix B.4.1 for details.

Patenting indicates whether the firm intends to sell in that market. However, a

patent in Belgium and one in the U.S. are unlikely to reflect the same market size. At

the same time, a larger market attracts more firms so that the market size per firm will

generally not grow 1 for 1 with country size. To account for this we weigh each market

c by GDP 0.35
0,c , where GDP0,c is the 5 year average GDP of country c at the end of the

pre-sample period.28 As a result, the weight of country c for firm i is given by:

ωi,c =
ω̃i,cGDP

0.35
0,c∑

c′
ω̃i,c′GDP 0.35

0,c′
.

changes affect a firm’s decision to enter a new market, this is beyond the scope of this paper.
27In Europe, firms can apply both at national patent offices and at the European Patent Office (EPO).

In the latter case, firms still need to pay a fee for each country in which they want their patent to be
protected. We count a patent as being protected in a given European country if it is applied for either
directly in the national office or through the EPO.

28Eaton, Kortum and Kramarz (2011) estimate the elasticity of French exports to GDP of the desti-
nation country to be 1 and the elasticity of the number of French exporters to be 0.65. This gives an
elasticity of the average export by firm of 0.35. ADHMV use a power of 1 on GDP instead of 0.35.
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We use alternative weighting schemes in Section 5.6.

ADHMV verify that a similar method accounts well for the sales distribution of

major auto manufacturers. Coelli, Moxnes and Ulltveit-Moe (2016) carry out a more

systematic exercise and verify that a similar method accounts well for aggregate bilateral

trade flows and firm exports across 8 country groups in a representative panel of 15,000

firms from 7 European countries (regressing patent weights on sales weights gives a

coefficient of 0.89 with a s.e. of 0.008). In Appendix B.4.2, we similarly show that our

patent weights correlate well with trade flows.29

Given that knowledge spillovers have a geographical component (Hall, Jaffe and Tra-

jtenberg, 1993), we use the location of firm’s innovators to build a measure of the stock

of knowledge to which a firm is exposed. More specifically and similarly to ADHMV, we

compute the stocks of automation patents and of other patents in each country. Then,

for each firm, we build a weighted average of country-level knowledge stocks, where the

weights correspond to the location of their innovators pre-sample in 1970-1994.30

To link patents with their owners, we use Orbis Intellectual Property which links 40

million patents to companies available in the Orbis financial database. For companies

in the same business group, R&D decisions could happen at the group level, though

treating a group as one agent is often too aggressive (for instance because subsidiaries

may be in different sectors). Therefore, for firms within the same business group, we

normalize company names by removing non-firm specific words such as country names

or legal entity types from the name and then merge firms with the same normalized

name. All other firms are treated as separate entities.31

4.4 Descriptive statistics

Our basic dataset consists of applicants who have applied to at least one biadic automa-

tion patent between 1997 and 2011 (included), who have at least one patent prior to

1995 which can be used to compute weights, and who are not fully domestic (i.e. we ex-

clude firms which have only patented in one country pre-sample). For the auto95 (resp.

auto90) measure this corresponds to 3, 341 (resp. 4, 905) firms, which are responsible for

29There are three differences between our weights and those of these previous papers: we use the
empirically founded exponent of 0.35 on GDP, we restrict attention to cited patent families and to
patents in certain technological fields.

30The country stocks are built using the perpetual inventory method with a depreciation rate of 15%.
We add dummy variables indicating when the spillover stocks are zero.

31For instance, Siemens S.A., Siemens Ltd. or Belgian Siemens S.A. are merged, but Primetals Tech-
nologies Germany Gmbh which belongs to the same group remains a separate entity in our regressions.
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Table 7: Descriptive statistics for firms in our baseline regression

Variable Auto95 Auto90 Auto95 Auto90

Automation patents per year 1997-2011 per year 1997-2011 weights

Mean 0.7 11.22 0.84 13.24 Largest country 0.47 0.46
Standard deviation 3.46 48.71 4.04 56.76 Second largest 0.17 0.18
p50 0 2 0 3 US 0.21 0.21
p75 0.27 6 0.33 7 Japan 0.17 0.15
p90 1.4 19 1.6 22 Germany 0.2 0.21
p95 3 41 3.27 50 France 0.09 0.09
p99 12 173 13.73 194 UK 0.09 0.09

Number of firms 3341 4903

Note: Summary statistics for the firms used in our baseline regression.

1

35, 803 (resp. 61, 931), or 58% (resp. 58%) of the total number of biadic auto95 innova-

tions. Table 7 gives some descriptive statistics on the number of automation patents per

year and the country weights for the firms in our sample. Over the period 1997-2011,

the median firm in the sample has filed 2 auto95 and 3 auto90 patent applications. The

distribution is very skewed and the 99th percentile firm in the sample has filed 194 au-

tomation patents for auto90 and 173 for auto95. The largest country for a given firm

has on average a weight of 0.47 (for auto95). To ensure that our results are not driven

solely by the largest country, which we refer to as the “domestic country” of a firm, we

will include in some regressions domestic country-year fixed effects. The second largest

country has on average a weight of 0.17. The three countries with the largest weights

on average are the United States, Germany and Japan. Appendix Table A.3 gives the

list of the ten biggest automation patenters in our sample.32

5 Main Empirical Results

We present our main results in three steps: First, our baseline regressions use the full

variation of firm low-skill wages to estimate the effect of an increase in low-skill wages

on automation innovations. Second, we use country-year fixed effects to isolate the

contribution of foreign wages. Third, we contrast the results on automation innovations

with those on other types of machinery innovations. The rest of the section contains

additional results and robustness checks.

32For instance, for Siemens the countries with the largest weights are Germany (0.37), the USA (0.12),
France (0.10), Japan (0.09) and the UK (0.07).
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5.1 Baseline results

Our baseline results are contained in Table 8. The dependent variable is the number

of biadic patents that qualify as automation when we use our stricter definition auto95.

The regression uses the years 1997-2011 for the dependent variable and 1995-2009 for

the independent variables. Skill-dependent wages are measured in the manufacturing

sector and we deflate by the producer price index in the same sector.

Table 8: Baseline regressions: effect of wage on automation innovations (auto95)

Dependent variable Auto95

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.2000*** 2.8254*** 1.8160** 1.9058** 1.9992** 2.2954*** 2.4627*** 2.4266*** 3.7365***
(0.5123) (0.7332) (0.7421) (0.7729) (0.8223) (0.8198) (0.8351) (0.8658) (0.9116)

High-skill wage -0.9210 -0.9009 -0.9695 -0.8698 -0.2971 -1.6180** -1.6700* -0.4838
(0.7082) (0.6715) (0.6913) (0.7511) (0.6802) (0.8033) (0.8634) (0.7650)

Stock automation -0.1275*** -0.1269** -0.1270** -0.1239** -0.1441*** -0.1443*** -0.1504***
(0.0495) (0.0496) (0.0495) (0.0495) (0.0509) (0.0510) (0.0510)

Stock other 0.6311*** 0.6296*** 0.6309*** 0.6260*** 0.6408*** 0.6407*** 0.6489***
(0.0579) (0.0581) (0.0581) (0.0574) (0.0600) (0.0600) (0.0595)

GDP gap 0.0210 0.0214 0.0179 0.0279* 0.0278* 0.0265*
(0.0159) (0.0157) (0.0157) (0.0158) (0.0157) (0.0156)

Labor productivity -0.2551 0.1285
(0.8644) (0.9199)

GDP per capita -1.5635* -3.3618***
(0.8765) (0.8917)

Spillovers automation 0.5442* 0.5478* 0.8587***
(0.3135) (0.3151) (0.3213)

Spillovers other -0.3014 -0.3089 -0.5853**
(0.2248) (0.2315) (0.2303)

Fixed effects F + Y F + Y F + Y F + Y F + Y F + Y F + Y F + Y F + Y

Observations 50115 50115 50115 50115 50115 50115 50115 50115 50115
Firms 3341 3341 3341 3341 3341 3341 3341 3341 3341

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional
Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects and year dummies. All regressions with stock variables (resp.
spillover variables) include a dummy for no stock (resp. no spillover). Standard errors are clustered at the firm-level. * p < 0.1; ** p < 0.05;
*** p < 0.01

1

Column (1) shows that without any controls except fixed effects, a higher low-skill

manufacturing wage for the customers of an innovating firm predicts more automation

innovation. The estimated coefficient is an elasticity so that an increase of 10% in the

low-skill wage is associated with 22% more automation patents. Column (2) introduces

high-skill wages as a control, which have a negative coefficients (though not always

statistically significant). Column (3) adds control for the firm’s stock of knowledge: a

higher stock of automation knowledge reduces the amount of automation innovation,

suggesting that firms do not become more specialized in automation technologies over

time. Column (4) controls for the GDP gap, automation innovations appear to be mildly

pro-cyclical with a small elasticity which is only significant at the 10% level in some

specifications. Columns (5) and (6) add controls for labor productivity in manufacturing

and GDP per capita. Labor productivity does not have a significant effect and GDP per
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capita has a negative effect, though its significance is not robust to the specifications to

follow. Columns (7) to (9) repeat columns (4) to (6) but include knowledge spillovers

and find that firms which are exposed to more knowledge in automation technologies

innovate more in automation. In all specifications, the coefficient on low-skill wages is

highly significant with elasticities between 1.8 and 2.8 for columns (1) to (8) and a larger

elasticity of 3.7 in column (9).

Firms in the same country could be affected by common shocks. We therefore cluster

standard errors at the domestic country (i.e. the country of largest weight) level in

Appendix Table A.4. If anything clustering at the country level tends to reduce the

standard error on low-skill wages.33

Appendix Table A.5 repeats Table 8 for the auto90 measure of automation. The

results are very similar but the coefficients on low-skill wages tend to be of a smaller

magnitude, in line with auto95 being a stricter measure of automation. This also helps

explain the magnitude of our elasticities in Table 8: our analysis focuses on innovations

with a high automation content (and therefore most likely to respond to an increase in

wages) for firms which introduce at least one of those innovations.

5.2 Identification and foreign wages

Other country-level shocks which we have not controlled for may affect both innovation

and wages. Insofar as firms are mainly affected by shocks in their domestic country,

we can capture those through domestic country-year fixed effects. Country-year fixed

effects would for instance control for a tax reform in Germany that would affect both

the innovation incentives of Siemens and low-skill wages. They would also control for

a technology shock that leads German firms to introduce more automation innovations

and affect wages. Our identification assumption then becomes that foreign wages are

exogenous to the automation innovation of the firm given our set of controls. One re-

maining concern would arise from shocks to the cost of innovation if firms innovate

outside of their domestic country. We address this issue directly in section 5.6 by includ-

ing wages weighted by the location of the firm’s inventors.34 Furthermore, in section 5.3

33A potential explanation for the negatively correlated error terms, is that a successful innovation by
one firm reduces the innovation of its competitors as the market is already captured.

34A related concern arises if a market is served through offshoring instead of exporting: the cost of
machine production would then be correlated with foreign wages. Note, however, that higher foreign
low-skill wages in production would increase the price of machines and therefore bias our coefficient on
low-skill wages toward 0.
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Table 9: Country-year fixed effects

Dependent variable Auto95

Domestic + Foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 1.8852* 2.1429* 3.0411** 3.4891*** 4.3023*** 3.7989** 3.6420*** 4.3362*** 3.8663**
(1.0367) (1.1505) (1.2232) (1.2958) (1.4482) (1.6370) (1.3146) (1.4473) (1.6288)

High-skill wage -2.4820** -1.9117* -1.7526 -3.5161*** -2.4740* -3.3526** -3.7549*** -2.8325** -3.6398***
(1.0115) (1.0157) (1.1046) (1.2515) (1.4209) (1.3633) (1.2805) (1.4364) (1.3692)

GDP gap 0.0623* 0.0620* 0.0646* 0.0044 0.0016 0.0044 0.0031 0.0001 0.0031
(0.0343) (0.0342) (0.0343) (0.0492) (0.0492) (0.0492) (0.0494) (0.0494) (0.0494)

Labor productivity -1.2851 -1.7494 -1.5475
(1.6381) (1.4131) (1.3896)

GDP per capita -2.8260 -0.5289 -0.3829
(2.0242) (1.9347) (1.8713)

Stock automation -0.1511*** -0.1506*** -0.1541*** -0.1522*** -0.1523*** -0.1526*** -0.1530*** -0.1532*** -0.1533***
(0.0528) (0.0527) (0.0523) (0.0525) (0.0523) (0.0525) (0.0524) (0.0521) (0.0524)

Stock other 0.6549*** 0.6556*** 0.6555*** 0.6494*** 0.6471*** 0.6490*** 0.6496*** 0.6475*** 0.6493***
(0.0602) (0.0602) (0.0598) (0.0602) (0.0601) (0.0600) (0.0601) (0.0601) (0.0599)

Spillovers automation 1.4782*** 1.4762*** 1.4715*** 1.4396*** 1.4128*** 1.4355*** 1.4380*** 1.4161*** 1.4357***
(0.4992) (0.5000) (0.4998) (0.4872) (0.4895) (0.4899) (0.4866) (0.4896) (0.4887)

Spillovers other -1.2259*** -1.2020*** -1.2436*** -1.2377*** -1.2268*** -1.2436*** -1.2252*** -1.2141*** -1.2300***
(0.3805) (0.3820) (0.3789) (0.3748) (0.3730) (0.3716) (0.3731) (0.3725) (0.3697)

Fixed effects F + CY F + CY F + CY F + CY F + CY F + CY F + CY F + CY F + CY

Observations 50070 50070 50070 50070 50070 50070 50070 50070 50070
Firms 3338 3338 3338 3338 3338 3338 3338 3338 3338

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson
regressions fixed-effects (HHG). All regressions include firm and country-year fixed effects. All regressions include dummies for no stock and no
spillover. In columns (4)-(6) foreign low-skill wages are interacted with the share of foreign low-skill wages in total low-skill wages computed at the
beginning of the sample, and similarly for high-skill wages, GDP per capita and VA per employee. In columns (7)-(9), they are interacted with
the average shares over the sample period instead. In columns (4)-(9), foreign GDP gap is interacted with the foreign weight. Standard errors are
clustered at the firm-level. * p < 0.1; ** p < 0.05; *** p < 0.01

1

we look at the effect of wages on low-automation machinery innovations and therefore

any remaining bias would have to affect both types of machinery innovations differently.

Columns (1), (2) and (3) of Table 9 reproduce the columns (7), (8) and (9) of Table

8 but adding country-year fixed effects, where the country of a firm is still defined as

the country with the largest weight. We still obtain a positive effect of low-skill wages

on automation innovations with similar elasticities (between 1.8 and 3.0). Columns (4)

to (9) go further and only consider the foreign component of wages (and of the other

macroeconomic variables). In columns (4) to (9), the foreign low-skill wage variable is

defined as the log of the weighted average of country-level wages excluding the domestic

country multiplied by the share of foreign low-skill wages in total wages. This share is

computed at the beginning of the sample for columns (4) to (6) and as the average value

over the whole sample for columns (7) to (9). We pre-multiply the (log) foreign wage

by this share to allow more internationally exposed firms to be more affected by foreign

wages. This also ensures that the reported coefficient corresponds to an elasticity on total

low-skill wages.35 The foreign macroeconomic control variables are defined similarly.

35Denote ωi,D the domestic weight and ωi,F = 1−ωi,D the total foreign weight with wL,D,t the wage
in the domestic country and wL,F,t the average wage in the foreign country. Then we can decompose a
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Once again we find a positive effect of low-skill wages on automation innovation, with

slightly larger elasticities. Relative to Table 8, the main difference is that high-skill wages

are now the macroeconomic control variable with the most explanatory power (neither

labor productivity nor GDP per capita have a significant effect once high-skill wages

are introduced). Clustering at the country-level (to account for correlation of errors

across firms within a country over time) tends to reduce standard errors (Appendix

Table A.6). For the auto90 measure, we obtain similar results with slightly smaller

coefficients (Appendix Table A.7). Finally, we replace the country-year fixed effects

with the interaction of country-year dummies with the domestic weight of each firm

to allow for varying exposure to the domestic country across firms. Here as well, we

obtain similar results although the magnitude of the coefficient on low-skill wages is a

bit smaller (Appendix Table A.8).

Therefore, Table 9 establishes the effect of foreign downstream low-skill wages on

automation innovations given a set of controls. Yet, low-skill wages are an equilibrium

outcome and will move following demand shocks, labor supply shocks or labor produc-

tivity shocks. Demand shocks in manufacturing will affect low-skill wages but also other

variables such as GDP per capita or high-skill wages which we control for.36 General

labor productivity shocks are controlled for by the labor productivity variable but we

cannot directly control for low-skill specific labor productivity shocks. Note however

that an increase in low-skill wages caused by a low-skill specific labor productivity shock

(similar to γ(i) in section 3) would be associated with less automation innovations. La-

bor market supply shocks for the downstream firms may originate from changes in labor

market regulations, demographics or changes in low-skill labor demand from other sec-

tors. Overall, our coefficient captures the average effect of an increase in foreign low-skill

wages given our controls whatever the shock behind it and this effect should be com-

pared to that on low-automation innovations below. Section 6 will focus on a specific

small change in logwL,i,t as:

d logwL,i,t = d log (ωi,DwL,D,t + ωi,FwL,F,t) =
ωi,DwL,D,0

wL,i,0
d logwL,D,t +

ωi,FwL,F,0

wL,i,0
d logwL,F,t

where ωi,DwL,D,0/wL,i,0 denotes the values around which the change is computed—which we take as
the the value at the beginning of the period or the average value over the sample period. This shows
that if

ωi,FwL,F,0

wL,i,0
d logwL,F,t increases by 0.01 then wL,i,t increases by 1%. The same reasoning applies

to high-skill wages or GDP per capita. In equation (3), GDP gap enters directly in levels as an average
of logs so we directly interact the domestic and foreign variables with ωi,D and ωi,F .

36In unreported regressions, we also controlled for the share of manufacturing in GDP which is
insignificant and does not change the results.
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Table 10: Non-automation innovations

Dependent Variable Placebo Machinery

Domestic + Foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 0.2962 0.5837 1.6587** -0.0486 0.0964 0.6381 -0.7470 -1.0568 -0.9430
(0.6209) (0.7013) (0.6573) (0.8089) (0.9245) (0.9903) (1.2590) (1.4477) (1.3045)

High-skill wage -0.1907 0.3251 0.8911 -0.3499 -0.0648 0.0238 0.4969 0.1238 0.4016
(0.6953) (0.6428) (0.7506) (0.9539) (0.9122) (1.0053) (1.3193) (1.3073) (1.4470)

GDP gap -0.0307*** -0.0292*** -0.0292*** -0.0072 -0.0071 -0.0062 0.0117 0.0120 0.0114
(0.0105) (0.0103) (0.0104) (0.0188) (0.0187) (0.0188) (0.0319) (0.0319) (0.0319)

Labor productivity -1.1140 -0.6087 0.6174
(0.7467) (1.1021) (1.1452)

GDP per capita -3.4367*** -1.5038 0.3079
(0.8242) (1.3776) (1.3051)

Stock own 0.0866** 0.0879** 0.0892** 0.0952** 0.0956** 0.0957** 0.0958** 0.0954** 0.0956**
(0.0408) (0.0411) (0.0405) (0.0405) (0.0406) (0.0404) (0.0405) (0.0406) (0.0406)

Stock other 0.4797*** 0.4811*** 0.4758*** 0.4854*** 0.4861*** 0.4847*** 0.4862*** 0.4871*** 0.4866***
(0.0464) (0.0464) (0.0463) (0.0460) (0.0459) (0.0459) (0.0448) (0.0449) (0.0449)

Spillovers own 2.6849*** 2.7419*** 1.9983*** 1.1394*** 1.1505*** 1.0777** 1.1398*** 1.1215** 1.1469***
(0.4153) (0.4163) (0.4423) (0.4410) (0.4435) (0.4411) (0.4393) (0.4428) (0.4418)

Spillovers other -2.4198*** -2.4342*** -1.8132*** -1.2443** -1.2469** -1.1918** -1.2694** -1.2450** -1.2706**
(0.5298) (0.5348) (0.5386) (0.5052) (0.5056) (0.5047) (0.4965) (0.5008) (0.4965)

Fixed effects F + Y F + Y F + Y F + CY F + CY F + CY F + CY F + CY F + CY

Observations 115575 115575 115575 115515 115515 115515 115515 115515 115515
Firms 7705 7705 7705 7701 7701 7701 7701 7701 7701

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional
Poisson regressions fixed-effects (HHG). Columns (1)-(3) include firm and year fixed effects, while (4)-(9) include firm and country-year fixed
effects. Stock variables are calculated with respect to the dependent variable. In columns (7)-(9) foreign low-skill wages are interacted with
the share of foreign low-skill wages in total low-skill wages computed at the beginning of the sample, and similarly for high-skill wages, GDP
per capita and VA per employee. Foreign GDP gap is interacted with the foreign weight. Standard errors are clustered at the firm-level *
p < 0.1; ** p < 0.05; *** p < 0.01

1

labor-market shock namely the Hartz reforms in Germany.

5.3 Non-automation innovations

Is the effect of wages on automation innovations specific to automation or does it af-

fect machinery patents in general? To answer this question, we now look at “placebo

regressions” of the effect of wages on innovations with a low score on our automation

metric. Specifically, we consider the set of machinery patents and exclude any patent

which has a technological category with an automation score above a certain thresh-

old. We fix that threshold at the 60th percentile of the distribution of C/IPC 6 digit

codes in the machinery technological fields (0.2091). We refer to these innovations as

“placebo machinery” innovations and we recompute knowledge stocks and spillover vari-

ables for those innovations (“own”) and for all innovations except those (“other”). Table

10 reports the results. Columns (1) to (3) correspond to the baseline regressions with

firm and year fixed effects. Low-skill wages only have a positive and significant effect
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in column (3) when GDP per capita is included as a control variable, but even in that

case the coefficient is statistically significantly smaller than with automation (1.66 versus

3.74 in column 9 of Table 8).37 Columns (4) to (6) repeat the same regressions but add

country-year fixed effects and columns (7) to (9) focus on foreign wages (here defined as

in columns (4) to (6) of Table 9). Neither low-skill wages nor any other macroeconomic

control variable has an effect on placebo machinery innovations. The sign of low-skill

wages even flip in columns (7) to (9).38 We view this exercise as validating both our

empirical approach and our measure of automation. In particular, if our result on the

effect of low-skill wages on automation innovations came from a bias, than that bias

would have to be absent for other types of machinery innovations.

5.4 Additional results

Skill premium. In some regressions, the coefficients on low-skill and high-skill wages

in Table 9 are of a similar magnitude but opposite signs suggesting that a driver of

automation innovations is the skill premium. Table 11 directly regresses automation

innovation on the log of the ratio of low-skill to high-skill wages (the inverse of the

skill premium) for firm fixed effects, country-year fixed effects and foreign wages with

country-year fixed effects. The coefficient on the inverse skill premium is always of the

same magnitude as that on low-skill wages and highly significant. On the other hand,

replacing low-skill and high-skill wages with their ratio in the regressions with placebo

machinery innovations of Table 10 gives insignificant coefficients.

Innovation types. Building on the previous results contrasting automation inno-

vations and low-automation machinery innovations, we now look at subcategories of

automation innovations and a laxer measure in Table 12, which reproduces column (8)

of Table 8 for various types of innovations. Column (1) is essentially a robustness check

which removes the codes that we added to the definition of the machinery technological

field listed in footnote 11 (though, we continue to exclude the weapons categories). The

results are similar to the baseline. Column (2) presents a laxer definition of automa-

tion using the 80th percentile of the distribution of the C/IPC 6 digit codes. We still

get a positive effect of low-skill wages though with a coefficient smaller than for either

auto90 or auto95. Columns (3) to (8) look at subcategories of automation innovations.

37Further, this positive coefficient in the placebo regression is sensitive to specifications, and unlike
for the regressions with automation, it loses significance with different deflators for wages (not shown).

38Conditioning on the 60th percentile is not important and we obtain similar results with machinery
innovations excluding auto95 or auto90.

35



Table 11: Skill premium

Dependent Variable Auto95

Domestic + Foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill/ High-skill wages 1.9423** 2.0420*** 1.9008** 2.1995** 2.0520** 2.2870** 3.5089*** 3.4205*** 3.5012***
(0.7552) (0.7607) (0.7478) (0.9170) (0.9049) (0.9166) (1.2083) (1.1960) (1.2021)

GDP gap 0.0263* 0.0268* 0.0251 0.0627* 0.0620* 0.0632* 0.0049 -0.0017 0.0030
(0.0157) (0.0157) (0.0156) (0.0343) (0.0343) (0.0344) (0.0526) (0.0496) (0.0502)

Labor productivity 0.7026 -1.0613 -0.2814
(0.7035) (1.1591) (0.7369)

GDP per capita -0.6817 -1.5302 -0.1073
(0.6943) (1.2805) (0.9038)

Stock own -0.1448*** -0.1456*** -0.1466*** -0.1505*** -0.1507*** -0.1531*** -0.1522*** -0.1524*** -0.1523***
(0.0509) (0.0510) (0.0511) (0.0530) (0.0528) (0.0524) (0.0526) (0.0525) (0.0525)

Stock other 0.6407*** 0.6402*** 0.6424*** 0.6546*** 0.6556*** 0.6555*** 0.6495*** 0.6480*** 0.6491***
(0.0599) (0.0601) (0.0597) (0.0603) (0.0602) (0.0600) (0.0602) (0.0602) (0.0600)

Spillovers own 0.5783* 0.5783* 0.6625** 1.4755*** 1.4769*** 1.4766*** 1.4397*** 1.4346*** 1.4386***
(0.3153) (0.3114) (0.3340) (0.4968) (0.5004) (0.5013) (0.4868) (0.4892) (0.4888)

Spillovers other -0.2349 -0.3132 -0.2543 -1.2535*** -1.2021*** -1.2160*** -1.2387*** -1.2253*** -1.2362***
(0.2129) (0.2328) (0.2112) (0.3717) (0.3824) (0.3807) (0.3669) (0.3755) (0.3720)

Fixed effects F + Y F + Y F + Y F + CY F + CY F + CY F + CY F + CY F + CY

Observations 50115 50115 50115 50070 50070 50070 50070 50070 50070
Firms 3341 3341 3341 3338 3338 3338 3338 3338 3338

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson re-
gressions fixed-effects (HHG). Columns (1)-(3) include firm fixed effects and year dummies. Columns (4)-(9) include firm and country-year fixed effects.
All regressions with stock variables (resp. spillover variables) include a dummy for no stock (resp. no spillover). Columns (7)-(9) use the log difference
between foreign low-skill wages interacted with the share of foreign low-skill wages in total low-skill wages at the beginning of the sample and foreign
high-skill wages similarly interacted; GDP gap, GDP per capita and VA per employee are also their interacted foreign components. Standard errors are
clustered at the firm-level. * p < 0.1; ** p < 0.05; *** p < 0.01

1

Robot90 and Robot80 were defined in Section 2.5. The other types of innovations are

similarly defined: for instance, automat*90 covers patents which belong to technolog-

ical categories with a frequency of the “automat*” keywords above the threshold used

to define auto90. Columns (3) and (4) show that the results are similar for automat*

patents (by definition automat*80 patents are all auto80 but 91.5% of them are also

auto90). Column (6) shows that our results extend to robot80 patents (which are also

all auto95) but not to robot90 maybe because the sample size is reduced. The sample

size drops even more substantially for the CNC categories in columns (7) and (8), and

consequently the coefficient on low-skill wages is very imprecisely estimated.

Timing. We look at alternative lags for the dependent variables in Table 13, though

we keep a lag of 2 between patent applications and the patent stocks because otherwise

the dependent variable would be included in the stock of automation when we consider

contemporaneous regressions or leads. Column (4) reproduces our baseline results with

a 2 year lag. Panel A shows that the largest coefficient on low-skill wages is obtained for

a 2 year lag, but remains relatively stable between a 4 year lag and a 1 year lead. Both

panels find an effect of low-skill wages more clearly centered around lag 2 (ADHMV also

36



Table 12: Innovation categories

Dependent Variable AutoX95 Auto80 Automat*90 Automat*80 Robot90 Robot80 CNC90 CNC80

(1) (2) (3) (4) (5) (6) (7) (8)

Low-skill wage 1.9759** 1.3013** 2.6151** 1.7535* 0.4046 2.3998* -2.6476 -1.5273
(0.9046) (0.6373) (1.1768) (0.9657) (1.6931) (1.2440) (2.0151) (1.5877)

High-skill wage -1.2113 -1.2776** -0.9885 -0.9874 -0.8384 -2.0705* 2.0374 0.8833
(0.9265) (0.5754) (1.0579) (0.8395) (1.6053) (1.2334) (1.8923) (1.5580)

GDP gap 0.0370** 0.0047 0.0078 -0.0052 0.0345 0.0409 0.0317 0.0214
(0.0186) (0.0121) (0.0214) (0.0173) (0.0365) (0.0264) (0.0411) (0.0305)

Labor productivity 0.2216 0.8058 -0.9351 -0.2196 0.8059 0.7937 2.7221 1.9101
(0.9431) (0.6648) (1.1098) (0.9161) (1.9404) (1.3971) (2.3494) (2.1381)

Stock own -0.1400** 0.0263 -0.1149* -0.0861 -0.3029*** -0.1319* -0.3043** -0.2888***
(0.0567) (0.0374) (0.0601) (0.0525) (0.0993) (0.0790) (0.1511) (0.0999)

Stock other 0.6443*** 0.5225*** 0.6684*** 0.6312*** 0.8200*** 0.6329*** 0.5642*** 0.6140***
(0.0645) (0.0460) (0.0872) (0.0737) (0.1334) (0.0994) (0.1303) (0.0961)

Spillovers own 0.7068* 0.9236* 0.3869 0.4415 0.2346 0.1891 0.7408** 0.4634*
(0.4072) (0.5235) (0.4365) (0.4719) (0.5380) (0.3489) (0.3657) (0.2727)

Spillovers other -0.5863* -0.6139 -0.3800 -0.3305 -0.0665 -0.2028 -1.5340*** -0.7109
(0.3036) (0.4435) (0.2736) (0.3469) (0.3529) (0.2887) (0.5522) (0.4478)

Fixed effects F + Y F + Y F + Y F + Y F + Y F + Y F + Y F + Y

Observations 48600 97635 34170 50220 17670 24645 8970 15000
Firms 3240 6509 2278 3348 1178 1643 598 1000

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson
regressions fixed-effects (HHG). Stocks and spillovers are calculated with respect to the dependent variable. All regressions include firm fixed effects
and year dummies. All regressions include a dummy for no stock and no spillover. AutoX95 excludes the C/IPC codes which we added when defining
the machinery technological field. Auto80 lowers the threshold to define automation innovation to the 80th percentile of the C/IPC 6 digit distri-
bution. Automat*90 and Automat*80 only count words associated with “automat*”. Robot90 and Robot80 only count words associated with robot.
CNC90 and CNC80 words associated with CNC. 90 and 80 refer to the threshold used to delimit patents which is the 90th or the 80th percentile of
the distribution of automation keywords for 6 digit C/IPC codes. Standard errors are clustered at the firm-level. * p < 0.1; ** p < 0.05; *** p < 0.01

1

found that the largest coefficient for the effect of gas prices on innovations in the car

industry was at a 2 year lag).39

Of course, innovators would not be interested in wages 2 years in the past per se,

but only inasmuch as they are indicative of future wages. This is our interpretation

throughout of our regressions, with the 2 year lag corresponding roughly to the time

spent between an effect on R&D and the first results materialized by a patent application.

In Appendix Table A.10, we compute predicted future wages at time t− 2 based on an

AR(1) process with country-specific trends and find similar results.

Minimum wage. Given its policy relevance, we also look at the effect of minimum

wages using data on 22 countries.40 Importantly, we cannot use the minimum wage as

an instrument for low-skill wages. Since high-skill wages have a significant effect, they

should be included in regressions, and if low-skill wages should be instrumented so should

39Appendix Table A.9 carries out placebo regressions where we regress automation innovation on 10
or 15 year leads of wages. We do not find a significant effect of leading low-skill wages. As expected
given the large number of coefficients a few of the other coefficients are significant.

40We use data from the OECD. Importantly, not all countries have government-mandated minimum
wages, most notably Italy and, until 2015, Germany. For Germany, however, we follow Dolado, Kramarz,
Machin, Manning, Margolis, Teulings, Saint-Paul and Keen (1996) and use the the collectively bargained
minimum wages which in effect constitute law.
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Table 13: Lags and leads

Dependent variable Auto95

(1) (2) (3) (4) (5) (6) (7) (8)
Lags (Leads) -5 -4 -3 -2 -1 0 1 2

Panel A: baseline
Low-skill wage 1.4268* 2.0578** 1.9681** 2.4266*** 2.0882** 2.0767** 2.2411*** 1.4514*

(0.8599) (0.8328) (0.8229) (0.8658) (0.8417) (0.8331) (0.8518) (0.8251)
High-skill wage -0.0640 -0.9379 -1.6808* -1.6700* -2.0273** -2.5752*** -2.5365*** -2.7223***

(0.9033) (0.8937) (0.9223) (0.8634) (0.7977) (0.8281) (0.7687) (0.7828)
Labor productivity 0.1931 0.4055 1.1283 0.1285 0.0857 -0.0118 -0.2255 0.4201

(1.1023) (1.0789) (1.0884) (0.9199) (0.7871) (0.8022) (0.8265) (0.8912)

Fixed effects F + Y F + Y F + Y F + Y F + Y F + Y F + Y F + Y

Observations 47565 48240 49395 50115 50670 51315 52470 53940
Firms 3171 3216 3293 3341 3378 3421 3498 3596

Panel B: country-year fixed effects
Low-skill wage 0.9671 1.3572 1.5405 2.1429* 1.6930 1.2360 1.2538 0.1282

(1.1012) (1.1353) (1.1175) (1.1505) (1.1222) (1.1088) (1.1409) (1.0962)
High-skill wage 0.4539 -0.9749 -1.7245 -1.9117* -2.0866** -2.7165** -2.1045** -1.6862

(1.3522) (1.1490) (1.0931) (1.0157) (1.0346) (1.0935) (1.0333) (1.0682)
Labor productivity -1.5193 -0.8311 -0.2556 -1.2851 -0.5775 0.3167 -0.1957 0.0676

(1.8190) (1.6338) (1.5444) (1.6381) (1.6431) (1.5761) (1.6158) (1.5974)

Panel C: country-year fixed effects and foreign variables
Low-skill wage 1.5679 2.5117* 3.1804** 4.3023*** 3.0459** 1.6943 1.6996 0.4034

(1.6579) (1.4908) (1.4684) (1.4482) (1.4516) (1.5642) (1.7055) (1.7377)
High-skill wage 2.1192 -1.0194 -2.5135 -2.4740* -3.2862** -3.8818*** -3.3215** -2.5666*

(1.8327) (1.6302) (1.6445) (1.4209) (1.4238) (1.4272) (1.3771) (1.4844)
Labor productivity -2.3858 -0.9029 -0.7200 -1.7494 0.4010 1.8684 1.6417 1.6644

(1.5235) (1.5420) (1.5937) (1.4131) (1.3247) (1.4493) (1.5255) (1.6175)

Fixed effects F + CY F + CY F + CY F + CY F + CY F + CY F + CY F + CY

Observations 47565 48240 49365 50070 50595 51255 52410 53895
Firms 3171 3216 3291 3338 3373 3417 3494 3593

Note: Marginal effects; Standard errors in parentheses. Each panel represents a different regression. All regressions con-
tain controls for GDP gap, stocks and spillovers, for which we do not report the coefficient. The independent variables
(wages, VAemp and GDP gap) are lagged by the number of periods indicated in lag, except for the stock variables which
are always lagged by 2 periods. Estimation is by conditional Poisson regressions fixed-effects (HHG). Panel A regressions
contain firm and year fixed effects. Panel B and C regressions contain firm and country-year fixed effects. In Panel C
regressions, wages are replaced with foreign wages interacted with the share of foreign wages in total wages at the begin-
ning of the sample, and similarly for the other macro variables. Standard errors are clustered at the firm-level * p < 0.1;
** p < 0.05; *** p < 0.01
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high-skill wages. Therefore we would need a second instrument. We report the results

of reduced form regressions where we replace low-skill wages with the minimum wage

in Appendix Table A.11. We find a positive effect of the minimum wage on automation

innovations though not significant in our regressions with country-year fixed effects.

Clustering standard-errors at the country-level gives more significant coefficients (see

Appendix Table A.12). The minimum wage is unlikely to be a strong predictor of

automation in our analysis: first because it only captures part of the labor costs (contrary

to our baseline measure), second because we focus on automation innovations that largely

happen in manufacturing where wages for low-skill workers are often substantially higher,

third we lose nearly half of our countries. An analysis on automation in service industries

might show a stronger relationship.

5.5 Shift-share set-up

A recent literature addresses the identifying assumptions behind the shift-share set-up

in linear regressions. In the language of our setting, Goldsmith-Pinkham, Sorkin and

Swift (2019) show that the shift-share instrument is equivalent to a combination of

weights time country-year dummies. Our coefficient would then capture the effect of

low-skill wages on automation innovations if weights time country-year dummies only

affect automation through the controls that we have included. In this interpretation, the

exogeneity of the weights is important and we show below that our results are robust to

using weights from an earlier period.

Borusyak, Hull and Jaravel (2018) show that country-time shocks can also be a

source of identification in the shift-share setting. The inference is valid if either there

is a large number of countries (such that the Herfindahl index tends toward 0) affected

by independent shocks (controlling for year and firm fixed effects); or the correlation

of shocks within a country decays sufficiently rapidly that a large number of country-

year is sufficient (see Appendix A2 in their paper).41 They advise practitioners to use

appropriate controls to capture omitted variables. We follow this approach by including

a large set of controls and country-year fixed effects in our regressions. They further

recommend applying the standard error correction of Adão, Kolesár and Morales (2019).

Adão et. al. (2019) show theoretically and through Monte Carlo simulations that

standard applications with the shift-share design often lead to an over-rejection of the

41The Herfindahl index is 0.13 and 0.09 when only foreign weights are included. At the country-year
level, the corresponding values are 0.009 and 0.006.
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null of no effect. In the language of our application, the problem arises when the standard

errors of firms with similar country-distributions have correlated residual errors. Though

this problem is related to the correlation of standard errors in clustered designs it is not

solved by standard clustering. They derive a formula for correcting standard errors in

an OLS, which we cannot use directly since we employ a Poisson estimator. Deriving

the corresponding correction for the Poisson estimator is beyond the scope of this paper.

Instead we implement a similar Monte Carlo simulation and show that we do not have

the same problem of over-rejection.

Specifically, we replicate the regressions of Columns (7) to (9) in Table 8, (1) to (6)

in Table 9 and Table 11. For each firm we keep the automation activity, the stocks of

innovations, the spillover variables, as well as the distribution of country-weights based

on actual patents. For each country we sample with replacement the entire path of

macroeconomics variables (wages, labor productivity, GDP per capita and GDP gap)

from the existing set with 1000 draws. Table 11 reports the p-values of the coefficients on

low-skill wages, high-skill wages or the inverse skill-premium based on the simulated dis-

tribution of coefficients. The p-values are not markedly different than the ones obtained

assuming the standard normal distribution. In particular, the coefficients of interest on

low-skill wages and the inverse skill premium are always significant at least at the 10%

level (except in column 4 with a p-value of 0.11) and at the 1% level when we focus on

foreign wages. In the language of Adão et al. (2019) the set of controls soaks up most

country-specific shocks affecting the outcome variable and, consequently, no shift-share

structure is left in the regression residuals.

5.6 Robustness checks

This section presents several robustness checks.

Controlling for the cost of innovation. Our measure of wages could still reflect

the cost of innovation if innovation does not solely take place in the domestic coun-

try. To address this issue we re-build our firm-specific macroeconomic variable using

the inventor weights of the firm instead of the patent weights. Table 15 reports the

result. The baseline coefficient on low-skill wages remains positive and significant but

the coefficient on low-skill wages weighted by inventor weights is small and insignificant.

These regressions constitute a placebo test since they are treating firms with the same

macroeconomic shocks but weighted differently.

Wages and deflators. Appendix Table A.13 shows that our results are robust to
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Table 14: Monte-Carlo simulations

Dependent variable Auto95

Domestic + Foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: wages

Low-skill wage 2.4627** 2.4266** 3.7365*** 1.8852 2.1429* 3.0411** 3.4891*** 4.3023*** 3.7989***
[0.025] [0.029] [0.001] [0.111] [0.097] [0.019] [0.005] [0.005] [0.0014]

High-skill wage -1.6180 -1.6700 -0.4828 -2.4820*** -1.9117 -1.7526 -3.5161*** -2.4740* -3.3526***
[0.134] [0.126] [0.666] [0.009] [0.111] [0.125] [0.008] [0.063] [0.002]

GDP gap Y Y Y Y Y Y Y Y Y
Labor productivity N Y N N Y N N Y N
GDP per capita N N Y N N Y N N Y

Control variables stocks stocks stocks stocks stocks stocks stocks stocks stocks
+ spill. + spill. + spill. + spill. + spill. + spill. + spill. + spill. + spill.

Fixed effects F + Y F + Y F + Y F + CY F + CY F + CY F + CY F + CY F + CY

Panel B: skill premium

Low-skill/ High-skill wages 1.9423* 2.0420* 1.9000* 2.1995* 2.0520* 2.2870** 3.5089*** 3.4205*** 3.5000***
[0.074] [0.059] [0.06] [0.055] [0.063] [0.048] [0.004] [0.005] [0.004]

GDP gap Y Y Y Y Y Y Y Y Y
Labor productivity N Y N N Y N N Y N
GDP per capita N N Y N N Y N N Y

Control variables stocks stocks stocks stocks stocks stocks stocks stocks stocks
+ spill. + spill. + spill. + spill. + spill. + spill. + spill. + spill. + spill.

Fixed effects F + Y F + Y F + Y F + CY F + CY F + CY F + CY F + CY F + CY

Note:Marginal effects; P-values in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson re-
gressions fixed-effects (HHG). Columns (1)-(3) include firm fixed effects and year dummies. Columns (4)-(9) include firm and country-year fixed
effects. Columns (7)-(9) use the log foreign components of the macro variables interacted with the share of the foreign macro variable in the to-
tal macro variable at the beginning of the sample. All regressions include controls for stocks and spillovers. P-values are computed by sampling
with replacement the entire path of macroeconomic variables for each firm with 1000 draws.* p < 0.1; ** p < 0.05; *** p < 0.01
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Table 15: Wages weighted by inventor weights

Dependent Variable Auto95

Domestic + Foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.6194*** 2.4897*** 3.7088*** 1.9136* 2.0761* 2.9547** 4.7342*** 5.6526*** 5.0494**
(0.9119) (0.9549) (1.0503) (1.0705) (1.1954) (1.3173) (1.5977) (1.7376) (1.9638)

Low-skill wage (iw) -0.2924 -0.1985 -0.0762 -0.1439 0.0552 0.0944 -0.1005 0.6363 0.4886
(0.4461) (0.4668) (0.4805) (0.4747) (0.4794) (0.4754) (0.5772) (0.6011) (0.5562)

High-skill wage -1.9307** -2.1087** -0.8557 -2.5728** -2.2029** -1.9204* -4.0721*** -3.4857** -4.2454**
(0.9171) (1.0032) (0.8490) (1.0770) (1.0546) (1.1427) (1.5497) (1.6359) (1.6521)

High-skill wage (iw) 0.3960 0.5295 0.4991 0.1804 0.4874 0.2735 -0.2895 0.7720* 0.0817
(0.3397) (0.3869) (0.3370) (0.3249) (0.3727) (0.3451) (0.4384) (0.4655) (0.4573)

GDP gap 0.0364 0.0366 0.0314 0.0616* 0.0616* 0.0630* -0.0077 -0.0166 -0.0080
(0.0229) (0.0227) (0.0231) (0.0362) (0.0362) (0.0361) (0.0567) (0.0565) (0.0565)

GDP gap (iw) -0.0076 -0.0083 -0.0050 0.0003 -0.0017 0.0022 0.0186 0.0126 0.0208
(0.0123) (0.0121) (0.0124) (0.0122) (0.0120) (0.0125) (0.0152) (0.0153) (0.0153)

Labor productivity 0.4313 -0.8383 -1.5747
(1.1116) (1.6547) (1.5093)

Labor productivity (iw) -0.3065 -0.7076 -1.8365***
(0.5374) (0.5066) (0.6146)

GDP per capita -3.0004*** -2.4889 -0.1854
(0.9236) (1.9888) (2.1553)

GDP per capita (iw) -0.4388 -0.4514 -1.1406**
(0.5746) (0.6508) (0.5649)

Control variables stock + spill stock + spill stock + spill stock + spill stock + spill stock + spill stock + spill stock + spill stock + spill

Fixed Effects F + Y F + Y F + Y F + CY F + CY F + CY F + CY F + CY F + CY

Observations 49305 49305 49305 49245 49245 49245 37395 37395 37395
Firms 3287 3287 3287 3283 3283 3283 2493 2493 2493

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-effects
(HHG). Columns (1)-(3) include firm and year fixed effects, while (4)-(9) include firm and country-year fixed effects. Stock variables are calculated with respect to the de-
pendent variable. In columns (7)-(9) foreign low-skill wages are interacted with the share of foreign low-skill wages in total low-skill wages computed at the beginning of the
sample, and similarly for high-skill wages, GDP per capita and labor productivity. Foreign GDP gap is interacted with the foreign weight. In columns (1)-(6), there is no such
interactions. All regressions with patent-weighted low-skill wage variable include a corresponding inventor-weighted low-skill wage variable, similarly for high-skill wage, GDP
gap, GDP per capita and labor productivity. All inventor-weighted variables are denoted by (iw) after their names. Standard errors are clustered at the firm-level * p < 0.1;
** p < 0.05; *** p < 0.01
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deflating our macroeconomic variables differently: by converting to USD in a different

year (columns 1 and 2), every year (columns 3 and 4) or using the local GDP deflator

instead of the local PPI in manufacturing (columns 5 and 6). Further, we look at total

wages instead of manufacturing wages either with our baseline deflator (columns 7 and 8)

or converting every year (columns 9 and 10). Our results remain largely robust but with

smaller coefficients when converting to USD every year (which increases the correlation

of our macroeconomic variables).

Weights. We investigate alternative weights in Appendix Table A.14. Columns (1)

and (2) drop the 5 most recent years in computing the weights. Despite a substantially

lower number of firms, the effect of low-skill wages on automation innovation is still

positive. This regression addresses the potential concern that our weights could be

endogenous because firms which already intend to do automation innovations may decide

to locate in places where they forecast an increase in low-skill wages: it is hard to see

how firms’ location decisions before 1989 could reflect increases in wages from 1995

onward.42 In columns (3) and (4), we compute the patent weights over a more recent

period (1985-1994) and obtain the same results. Columns (5) to (10) keep the patent

weights as in our baseline analysis but instead of multiplying them by GDP 0.35
c , they

do not multiply them (columns 5 and 6), multiply them by GDP (7 and 8) or by the

total value of low-skill employment to the power 0.35 ((wLL)0.35: this may be a better

measure of the potential market for technology designed to automate low-skill work).

We obtain similar results.

Quality. Appendix Table A.15 investigates whether our results are robust when

focusing on patents of higher quality. We look at patents which have been applied for at

2 of the 3 main patent offices (EU, Japan and US), or at these 3 offices (triadic patents).

These give similar results. We also restrict attention to biadic patents with at least

one citation within 5 years and weigh patents by citations.43 This weakens the results

somewhat perhaps because whereas the decision to innovate is a choice variable of the

firm the eventual quality of the innovation is largely random.

Nickell’s bias. Our regressions include the stock of automation innovations and

42The same concern can be addressed by keeping our baseline weights but dropping the first few
years. See Appendix Table A.15 which reproduces Table 8 but only from 2000. Though the standard
errors are bigger, the results are essentially the same.

43We add to each patent the number of citations received within 5 years normalized by technological
field and year of application, similarly to Kogan, Papanikolaou, Seru and Stoffman (2017), who find a
positive correlation between patent value and citations. Abrams, Akcigit and Grennan (2018) find an
inverted U relationship between patent value and citations.
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therefore may suffer from Nickell’s bias. Appendix Table A.16 removes the stock of

automation innovations or uses Blundell, Griffith and van Rennen (1999)’s method,

which proxies for the fixed effect with the firm’s pre-sample average of the dependent

variable. We obtain very similar results.

Industry-year fixed effects. Appendix Table A.18 introduces industry-year fixed

effects where the industry of a firm corresponds to its 2 digit industry in Orbis. The

results are very similar.

5.7 Macroeconomic interpretation of the regression coefficients

To better understand the magnitude of our coefficients and the effect of spillovers and

stock variables, we run a simulation where we uniformly and permanently decrease the

skill-premium by 10% between 1995 and 2009 in all countries and use our regression

results to re-compute the share of automation innovations in machinery. Importantly,

we stress that one must not interpret the result of this simulation as predictive in part

because a change in innovation should in turn affect the skill premium. Nevertheless,

our analysis could be used to calibrate any model which predicts that the direction of

innovation reacts to changes in the skill premium. We focus on changes in the skill-

premium (instead of low-skill wages) because a change in the skill premium is easier to

interpret than a change in low-skill wages keeping high-skill wages constant.

Specifically, we simulate the regression results of Appendix Table A.19. There, we

regress both auto95 innovations and all machinery innovations except auto95 on the

inverse of the skill premium, the GDP gap, stock and spillover variables and firm and

country-year fixed effects. We consider separately the stocks and spillovers of auto95

innovations, machinery except auto95 innovations and all other innovations.44

Figure 5 reports the results averaged over 500 simulations (using the median gives

similar results).45 We first compute the direct effect of a decrease in the skill premium

(keeping stocks and spillover variables constant) on the share of automation innovations

in machinery. This is captured by the gap between the data curve and the counterfactual

(direct effect) curve. This gap reflects the elasticity of 2.39 of auto95 innovations with

respect to the inverse skill premium (with an elasticity of −0.09 for other machinery

44The regression further includes the squares of the spillover variables. The linear setting of the
baseline regressions features coefficients greater than 1 which leads to explosive behavior. This does not
materially affect the coefficients on the inverse skill premium.

45The figure reports the share of automation patents for the firms in our regression sample. This
differs from Figure 3 since the latter reports the share of automation patents for all firms.
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Figure 5: Simulating the impact of a permanent and global 10% decrease in the skill premium
on the share of automation innovations in machinery.

innovations). Taking into account the response of firms’ own innovation stocks slightly

decreases the effect of low-skill wages reflecting the negative effect of the automation

stock on auto95 innovations and its positive effect on other machinery innovations. The

overall effect of an increase in low-skill wages involves the impact of knowledge spillovers.

This is captured by the gap between the baseline curve and the counterfactual one.46

Knowledge spillovers increase the overall elasticity of the share of automation patents

with respect to low-skill wages. The average share of automation innovations in machin-

ery between 1997 and 2011 increases by 4.6 p.p. from 11% to 15.6%. This is 2 p.p. more

than the direct effect. This 4.6 p.p. increase can be compared to the 4.4 p.p. increase

in the data over the same time period.

To further interpret the 4.6 p.p increase, we use the results of Section 2.6. Using

the coefficients from Column (1) in Table 5 (which gives the correlation between tasks

changes and the share of automation innovation in 1980-1998), we see that, over a

decade, such an increase would be associated with a decline in routine cognitive tasks of

46We recompute the spillover variables for the auto95 innovations and other machinery innovations
but keep non-machinery innovations constant here. Further, when we recompute spillovers we need to
allocate innovations to specific countries. Since the data series is only one possible realization, it differs
slightly from the average baseline, which is why the two curves are not identical. Appendix B.5 explains
in details how we update the spillover variables.
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1.2 centiles and a decline in routine manual tasks of 0.8 centiles. Over this time period,

routine cognitive tasks decline at 4.8 centiles per decade and routine manual tasks at 2.4

centiles per decade. Although one should not interpret these numbers as causal, they

indicate that the effect of the skill premium on automation innovations that we have

found is economically significant.

6 Event study: the Hartz reforms in Germany

We now use the Hartz reform as an event study to complement our main analysis. The

Hartz reforms were a series of labor-market reforms in Germany designed from 2002

onward and implemented between January 1st 2003 and January 1st 2005. The reforms

aimed at reducing unemployment and increasing labor-market flexibility by reforming

employment agencies to provide better job-search assistance, deregulating temporary

work, offering wage subsidies for hard-to-place workers, reducing or removing social con-

tributions on low-paid jobs and reducing long-term unemployment benefits (see Jacobi

and Kluve, 2007). The reforms have been widely credited with playing a major role in

the remarkable performance of the German labor market since, in particular, for increas-

ing labor supply and improving matching efficiency (see Krause and Uhlig, 2012, Krebs

and Scheffel, 2013 and 2017, or Burda and Seele, 2016). Such reforms should reduce

the incentive to automate low-skill labor by reducing labor costs (directly through social

contribution and indirectly through an increase in labor supply) but also by allowing for

more flexible contracts and reducing the expected cost of vacancies.

We start from the same database linking firms and patents as in our main empirical

analysis of Section 5, using the same weights to measure firms’ exposure to different

countries and focusing on biadic patent applications as a measure of innovation. We still

define the country of a firm as the country of largest weight, and restrict attention to

firms from the countries with the highest average exposure to Germany (Austria, France,

Italy, Japan, the Netherlands, Spain, Switzerland, the UK and the US).

We run the following regression, over the years 1995-2012, maintaining a 2-year lag:

PATAut,i,t+2 = exp (βDE · δtωi,DE + βKa lnKAut,i,t + βKo lnKother,i,t + δi + δc,t) + εi,t.

As before PATAut,i,t+2 is a count of automation patents, KAut,i,t and Kother,i,t represent

firm knowledge stocks, δi a firm fixed effect and δc,t a country-year fixed effect. ωi,DE is
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Figure 6: Effect of German exposure on automation innovations. Panel (a) reports coefficients on

the interaction between the German weight and a set of year fixed effects in a Poisson regression

of auto95 innovations controlling for a full set of fixed effects and firm innovation stocks with

2153 firms. Panel (b) reports coefficients on the triple interaction between the German weight,

a dummy for auto95 innovations and a set of year fixed effects in a Poisson regression of auto95

and other machinery innovations controlling for a full set of fixed effects, firm innovation stocks

and the interaction between the German weight and a set of year fixed effects with 6452 firms.

the fixed firm weight on Germany, δt is a set of year dummies (with 2003 as the excluded

year) and βDE is the full vector of coefficients of interest. βDE determines by how much

more a firm exposed to Germany tends to do more automation patents in a given year

relative to 2005 (with the 2 year lag). Figure 6.a reports the results. The value of

−2 in 2008 indicates that on average a firm with a German weight of 0.1 (the mean

value is 0.106) did 20% less automation innovations in 2010 than in 2005 (recall the 2

year lag) compared to a firm with no German exposure. The figure suggests that from

2000 until 2004 firms highly exposed to Germany increased their propensity to introduce

automation innovations. This trend reversed between 2006 and 2009 and resumed from

2010. This is consistent with the Hartz reform increasing labor supply from 2002-2004,

and therefore decreasing the incentive to introduce automation innovations 2 years later.

2008 marks the beginning of the Great Recession which had a lower impact on German

labor markets than in other countries, so that German labor markets remained relatively

tight, potentially increasing the incentive to undertake automation innovations.

The previous figure clearly shows that the behavior of firms highly exposed to Ger-

many differs over time from that of other firms. To show that the trends above are
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specific to automation innovations, we run the following regression:

PATk,i,t+2 = exp

(
βDE · δtωi,DE + βautDE · δtωi,DE1k=aut

+βKa · δk lnKAut,i,t + βKo · δk lnKother,i,t + δk,i + δk,c,t

)
+εk,i,t. (5)

k denotes the type of an innovation which is either auto95 or another machinery innova-

tion, δk,i represents a full set of innovation type firm fixed effects, δk,c,t innovation type

country year fixed effects and 1k=aut is a dummy for an auto95 innovation. Standard er-

rors are clustered at the firm level. βautDE is the vector of coefficients of interests. For each

year, they measure how much exposure to Germany increases the relative propensity to

introduce automation innovations instead of other forms of machinery innovations com-

pared to 2005 (given the 2 year lag with the excluded year, 2003). Figure 6.b reports

the results: the pattern is even more pronounced than in Figure 6.a.

To formally test that the Hartz reform created a trend break in the relative propensity

of firms highly exposed to Germany to introduce automation innovation relative to other

machinery innovation, we replace the full set of year fixed-effects δt in βautDE ·δtωi,DE1k=aut

in equation (5) with a time trend t− 2003 and a time trend interacted with a post 2003

dummy (t− 2003)1t>2003. We focus on the years 1998-2008 to have a panel centered on

2003 and avoid the Great Recession. Table 16 reports the result. Column (2) corresponds

exactly to the specification we discussed: it shows a significant time trend in the effect

of German exposure on the relative propensity to carry automation innovation two years

later between 1998 and 2003, but this trend sharply reverses in the following 5 years.

Column (1) runs the same regression but omits the controls for the stock variables. To

test whether the break in time trends is associated with a shift in levels, Column (3)

adds a control for the triple interaction of the German weight, a dummy for automation

innovations and a dummy for post-2003. The coefficient is insignificant. Column (4)

replaces the German weight by a dummy indicating that the firm is in the top quartile

of exposure to Germany among innovating firms: the results are of similar magnitude

as the 75th percentile of German weight is 0.16. Column (5) uses the low-automation

innovations of section 5.3 instead of all other machinery innovations. The results are sim-

ilar. Finally, column (6) considers three types of innovations by separating non-auto95

machinery innovations into the low-automation innovations of the previous columns and

the rest. Overall, this exercise suggests that the Hartz reforms reduced the propensity

of foreign firms highly exposed to Germany to introduce automation innovations.
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Table 16: Innovation and exposure to Germany

Dependent variables Auto95 and low auto + other mach. Auto95 and Auto95, low auto
low auto and other mach.

(1) (2) (3) (4) (5) (6)

time trend*dummy auto95*German exposure 0.6309** 0.6245*** 0.7726* 0.0929** 0.6486*** 0.6523***
(0.2502) (0.2296) (0.3957) (0.0366) (0.2464) (0.2322)

time trend*dummy auto95*post_2003*German exposure -1.2330*** -1.2322*** -1.3229** -0.1810** -1.2500*** -1.2826***
(0.4473) (0.4291) (0.5273) (0.0766) (0.4605) (0.4300)

dummy auto95*post_2003*German exposure -0.7289
(1.0856)

time trend*dummy low auto*German exposure 0.0081
(0.1278)

time trend*dummy low auto*post_2003*German exposure -0.0386
(0.1835)

year dummy* German exposure Y Y Y Y Y Y
firm innovation stocks* innovation types N Y Y Y Y Y
firm* innovation types fixed effects Y Y Y Y Y Y
country* year* innovation types fixed effects Y Y Y Y Y Y

Observations 75116 75116 75116 75116 60365 104002
Firms 5245 5245 5245 5245 4209 5245

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regres-
sions fixed-effects (HHG). All regressions control for year dummies times the measure of German exposure, innovation stocks (and dummies for no stocks)
times the innovation types, firm innovation types fixed effects and country year innovation types fixed effects. Innovation types are auto95 and all other
machinery innovations (low auto and other machinery together) in columns (1) to (4), auto95 and low auto in column (5), and auto95, low auto and other
machinery in column (6). German exposure is measured by the German weights in all regressions except for column (4) where it is replaced by a dummy
signaling that the firm is in the top quartile of Germany exposed firms. Standard errors are clustered at the firm-level.* p < 0.1; ** p < 0.05; *** p < 0.01

1

7 Conclusion

In this paper, we have used patent text data to identify patents which correspond to

automation innovations and provide a new measure of automation. Across sectors, our

measure is uncorrelated with computerization but positively correlated with robotiza-

tion. We also find that our measure is associated with a decline in routine tasks across

US sectors. We then use our classification to analyze for the first time the effect of

wages on automation innovations in machinery. We find that automation innovations

are very responsive to changes in low-skill wages with elasticities estimated between 2

and 4. This result does not extend to other innovations in machinery. Furthermore,

we show that the Hartz reforms in Germany were associated with a relative increase in

automation innovations by foreign firms with a high exposure to Germany.

These results suggest that policies which increase labor costs for low-skill workers will

lead to an increase in innovations which aim at saving on low-skill workers. Therefore,

with endogenous technological change, such policies are likely to be less costly for the

economy in terms of overall welfare, but they introduce additional negative effects for

low-skill workers. By how much then would an exogenous increase in low-skill wages

be undone in a couple of years through innovation? Answering this question requires

finding the effect of an increase in automation patents on low-skill wages.
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Future research could also adapt our classification method to automation patents

beyond machinery. This would allow for an analysis of automation in the service industry

or automation of high-skill tasks through Artificial Intelligence.
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Table A.1: Share of automation patents in machinery across sectors

ISIC Rev. 4 Title

auto95 auto90 auto95 auto90 auto95 auto90

A Agriculture, forestry and fishing 5.7 12.4 6.4 14.8 6.8 13.8

B Mining and quarrying 10.0 17.6 9.9 18.2 9.8 17.2

10-12 Food, beverages and tobacco products 4.6 12.9 5.6 15.2 5.0 12.6

13-15 Textiles, wearing apparel, leather and 3.9 9.0 4.7 11.4 4.2 10.3

related products

16 Wood and products of wood and cork 4.3 9.3 4.7 11.9 4.9 10.9

17-18 Paper, paper products and printing 2.6 6.8 2.8 7.5 2.8 7.6

19-22 Coke, chemicals, pharmaceuticals, 2.9 6.9 3.8 8.2 3.0 7.0

rubber and plastic products

23 Other non-metallic mineral products 6.1 11.7 6.7 13.9 5.9 12.0

24 Basic metals 10.8 26.0 12.4 29.4 11.1 27.0

25 Fabricated metal products 7.7 22.3 8.8 24.3 8.4 23.7

26-27 Computer, electronic, optical and 30.7 39.4 30.1 40.1 29.4 39.1

electrical products

28 Machinery and equipment n.e.c. 17.4 30.5 18.1 30.7 18.8 31.5

29 Motor vehicles, trailers and semi-trailers 32.6 36.8 30.0 35.7 31.9 36.8

30 Other transport equipment 24.5 29.3 22.8 29.1 26.1 31.9

91 All other manufacturing 15.7 23.2 18.7 27.9 18.9 27.7

branches

D-E Electricity, gas and water supply 6.6 13.2 8.2 16.5 7.9 14.7

F Construction 7.7 11.7 9.4 15.5 8.4 13.3

Germany United States

Share of automation patents in machinery 1997 - 2011 (in %)

All Countries

Table A.2: Correlation matrix

Low-skill wage Middle-skill wage High-skill wage GDP gap GDP per capita Labor productivity

Low-skill wage 1 . . . . .
Middle-skill wage 0.9401 1 . . . .
High-skill wage 0.6009 0.7469 1 . .
GDP gap -0.0660 -0.0239 0.0482 1 .
GDP per capita 0.6972 0.7974 0.7277 -0.0117 1 .
Labor productivity 0.6678 0.7340 0.7724 0.1980 0.6519 1

Note: Correlation of residuals for the auto95 sample controlling for year and firm fixed effects.

1

Table A.3: Top 10 auto95 innovators in our sample

Company
Number of biadic auto95

patents in 1997-2011

Siemens Aktiengesellschaft 1738
Honda Motor Co., Ltd. 810
Fanuc Co. 777
Samsung Electronics Co., Ltd. 706
Robert Bosch GmbH 655
Mitsubishi Electric Co. 652
Tokyo Electron, Ltd. 578
Murata Machinery, Ltd. 501
Kabushiki Kaisha Toshiba 473
General Electric Company 464

1
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Table A.4: Baseline regressions for auto95 with country-level clustering

Dependent variable Auto95

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.2000*** 2.8254*** 1.8160*** 1.9058*** 1.9992** 2.2954*** 2.4627*** 2.4266*** 3.7365***
(0.5464) (0.7421) (0.6310) (0.6863) (0.9001) (0.5383) (0.7170) (0.8727) (0.6582)

High-skill wage -0.9210 -0.9009** -0.9695*** -0.8698 -0.2971 -1.6180*** -1.6700** -0.4838*
(0.6234) (0.3519) (0.3701) (0.7025) (0.2972) (0.4701) (0.7968) (0.2831)

Stock automation -0.1275*** -0.1269*** -0.1270*** -0.1239*** -0.1441*** -0.1443*** -0.1504***
(0.0336) (0.0339) (0.0335) (0.0355) (0.0358) (0.0365) (0.0389)

Stock other 0.6311*** 0.6296*** 0.6309*** 0.6260*** 0.6408*** 0.6407*** 0.6489***
(0.0495) (0.0506) (0.0483) (0.0518) (0.0493) (0.0492) (0.0501)

GDP gap 0.0210*** 0.0214** 0.0179** 0.0279*** 0.0278*** 0.0265***
(0.0081) (0.0088) (0.0074) (0.0091) (0.0096) (0.0076)

Labor productivity -0.2551 0.1285
(1.0309) (0.9693)

GDP per capita -1.5635* -3.3618***
(0.8207) (0.8952)

Spillovers automation 0.5442*** 0.5478*** 0.8587***
(0.1831) (0.1931) (0.1270)

Spillovers other -0.3014 -0.3089 -0.5853***
(0.2573) (0.2395) (0.1790)

Fixed effects F + Y F + Y F + Y F + Y F + Y F + Y F + Y F + Y F + Y

Observations 50115 50115 50115 50115 50115 50115 50115 50115 50115
Firms 3341 3341 3341 3341 3341 3341 3341 3341 3341

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional
Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects and year dummies. All regressions with stock variables (resp.
spillover variables) include a dummy for no stock (resp. no spillover). Standard errors are clustered at the country-level. * p < 0.1; ** p < 0.05;
*** p < 0.01

1
Table A.5: Baseline regressions: effect of wages on automation innovations (auto90)

Dependent variable Auto90

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 1.7307*** 2.4414*** 1.3357** 1.3715** 1.4738** 1.8797*** 1.9059*** 1.8309*** 3.1623***
(0.4953) (0.6610) (0.6363) (0.6610) (0.6778) (0.7051) (0.6883) (0.7008) (0.7486)

High-skill wage -1.0613* -0.7746 -0.8019 -0.6844 0.0911 -1.4074** -1.5340** -0.0865
(0.5844) (0.5311) (0.5480) (0.6068) (0.5491) (0.6296) (0.6850) (0.6114)

Stock automation -0.0347 -0.0345 -0.0348 -0.0328 -0.0475 -0.0479 -0.0538
(0.0405) (0.0405) (0.0404) (0.0406) (0.0403) (0.0403) (0.0403)

Stock other 0.5682*** 0.5676*** 0.5690*** 0.5611*** 0.5773*** 0.5770*** 0.5814***
(0.0496) (0.0497) (0.0495) (0.0495) (0.0508) (0.0508) (0.0504)

GDP gap 0.0081 0.0085 0.0038 0.0152 0.0151 0.0127
(0.0137) (0.0134) (0.0135) (0.0133) (0.0133) (0.0132)

Labor productivity -0.2904 0.2911
(0.7011) (0.7224)

GDP per capita -2.0568*** -3.5341***
(0.7380) (0.7721)

Spillovers automation 0.8903** 0.9102** 1.2870***
(0.4162) (0.4190) (0.4170)

Spillovers other -0.6079** -0.6342** -1.0159***
(0.3050) (0.3140) (0.3174)

Fixed Effects F + Y F + Y F + Y F + Y F + Y F + Y F + Y F + Y F + Y

Observations 73545 73545 73545 73545 73545 73545 73545 73545 73545
Firms 4903 4903 4903 4903 4903 4903 4903 4903 4903

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional
Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects and year dummies. All regressions with stock variables
(resp. spillover variables) include a dummy for no stock (resp. no spillover). Standard errors are clustered at the firm-level. * p < 0.1; **
p < 0.05; *** p < 0.01
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Table A.6: Country-year fixed effects and country-level clustering

Dependent variable Auto95

Domestic + Foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 1.8852** 2.1429*** 3.0411*** 3.4891*** 4.3023** 3.7989** 3.6420*** 4.3362** 3.8663**
(0.8028) (0.7524) (1.1398) (1.2222) (1.9288) (1.6359) (1.3319) (2.0053) (1.5920)

High-skill wage -2.4820*** -1.9117 -1.7526*** -3.5161** -2.4740** -3.3526*** -3.7549** -2.8325*** -3.6398***
(0.7416) (1.3292) (0.3511) (1.5767) (1.0274) (1.2889) (1.5240) (0.9297) (1.2942)

GDP gap 0.0623*** 0.0620** 0.0646*** 0.0044 0.0016 0.0044 0.0031 0.0001 0.0031
(0.0239) (0.0242) (0.0216) (0.0445) (0.0397) (0.0439) (0.0456) (0.0407) (0.0452)

Labor productivity -1.2851 -1.7494 -1.5475
(1.2933) (1.6920) (1.6342)

GDP per capita -2.8260 -0.5289 -0.3829
(1.7682) (1.3544) (1.2045)

Stock automation -0.1511*** -0.1506*** -0.1541*** -0.1522*** -0.1523*** -0.1526*** -0.1530*** -0.1532*** -0.1533***
(0.0383) (0.0382) (0.0401) (0.0371) (0.0370) (0.0373) (0.0370) (0.0370) (0.0371)

Stock other 0.6549*** 0.6556*** 0.6555*** 0.6494*** 0.6471*** 0.6490*** 0.6496*** 0.6475*** 0.6493***
(0.0532) (0.0530) (0.0543) (0.0559) (0.0570) (0.0563) (0.0555) (0.0567) (0.0559)

Spillovers automation 1.4782*** 1.4762*** 1.4715*** 1.4396*** 1.4128*** 1.4355*** 1.4380*** 1.4161*** 1.4357***
(0.1276) (0.1317) (0.1188) (0.1230) (0.1585) (0.1243) (0.1243) (0.1574) (0.1254)

Spillovers other -1.2259*** -1.2020*** -1.2436*** -1.2377*** -1.2268*** -1.2436*** -1.2252*** -1.2141*** -1.2300***
(0.1690) (0.1690) (0.1633) (0.1997) (0.2111) (0.1934) (0.2002) (0.2126) (0.1941)

Fixed effects F + CY F + CY F + CY F + CY F + CY F + CY F + CY F + CY F + CY

Observations 50070 50070 50070 50070 50070 50070 50070 50070 50070
Firms 3338 3338 3338 3338 3338 3338 3338 3338 3338

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson
regressions fixed-effects (HHG). All regressions include firm and country-year fixed effects. All regressions with stock variables include a dummy
for no stock and no spillover. In columns (4)-(6) foreign low-skill wages are interacted with the share of foreign low-skill wages in total low-skill
wages computed at the beginning of the sample, and similarly for high-skill wages, GDP per capita and VA per employee. In columns (7)-(9), they
are interacted with the average shares over the sample period instead. In columns (4)-(9), foreign GDP gap is interacted with the foreign weight.
Standard errors are clustered at the country-level * p < 0.1; ** p < 0.05; *** p < 0.01

1

Table A.7: Country-year fixed effects and auto90

Dependent variable Auto90

Domestic + Foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 1.3896* 1.4107 2.2798** 2.6344** 3.1221** 3.2536** 2.7215** 3.1094** 3.2428**
(0.8386) (0.8937) (1.0390) (1.1574) (1.3170) (1.3955) (1.1927) (1.3384) (1.4122)

High-skill wage -1.5576* -1.5109 -1.0014 -3.0164** -2.3531* -2.6864** -3.1666** -2.6147* -2.8915**
(0.8304) (0.9212) (0.8793) (1.2101) (1.3149) (1.2787) (1.2485) (1.3342) (1.2984)

GDP gap 0.0387 0.0387 0.0405 -0.0044 -0.0060 -0.0042 -0.0053 -0.0070 -0.0053
(0.0270) (0.0270) (0.0269) (0.0361) (0.0361) (0.0360) (0.0361) (0.0362) (0.0361)

Labor productivity -0.1045 -1.0847 -0.8988
(1.1919) (1.2059) (1.1768)

GDP per capita -2.1599 -1.0595 -0.8978
(1.4800) (1.4139) (1.3541)

Stock automation -0.0537 -0.0536 -0.0556 -0.0572 -0.0576 -0.0577 -0.0577 -0.0580 -0.0581
(0.0405) (0.0406) (0.0404) (0.0405) (0.0405) (0.0405) (0.0405) (0.0404) (0.0405)

Stock other 0.5846*** 0.5847*** 0.5845*** 0.5802*** 0.5794*** 0.5792*** 0.5802*** 0.5796*** 0.5795***
(0.0510) (0.0509) (0.0508) (0.0508) (0.0507) (0.0506) (0.0508) (0.0507) (0.0506)

Spillovers automation 1.7794*** 1.7789*** 1.7682*** 1.7676*** 1.7438*** 1.7562*** 1.7652*** 1.7459*** 1.7563***
(0.5417) (0.5421) (0.5434) (0.5367) (0.5388) (0.5381) (0.5357) (0.5388) (0.5370)

Spillovers other -1.5492*** -1.5469*** -1.5563*** -1.5439*** -1.5316*** -1.5527*** -1.5350*** -1.5238*** -1.5431***
(0.4359) (0.4375) (0.4366) (0.4321) (0.4320) (0.4315) (0.4305) (0.4314) (0.4298)

Fixed effects F + CY F + CY F + CY F + CY F + CY F + CY F + CY F + CY F + CY

Observations 73485 73485 73485 73485 73485 73485 73485 73485 73485
Firms 4899 4899 4899 4899 4899 4899 4899 4899 4899

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson
regressions fixed-effects (HHG). All regressions include firm and country-year fixed effects. All regressions with stock variables include a dummy
for no stock and no spillover. In columns (4)-(6) foreign low-skill wages are interacted with the share of foreign low-skill wages in total low-skill
wages computed at the beginning of the sample, and similarly for high-skill wages, GDP per capita and VA per employee. In columns (7)-(9), they
are interacted with the average shares over the sample period instead. In columns (4)-(9), foreign GDP gap is interacted with the foreign weight.
Standard errors are clustered at the firm-level * p < 0.1; ** p < 0.05; *** p < 0.01
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Table A.8: Country-year dummies interacted with the domestic weight

Dependent variable Auto95

Domestic + Foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 1.8108 2.3860* 2.2889* 2.0881* 2.6237** 2.9819** 2.1664* 2.6391** 2.9695**
(1.1242) (1.2486) (1.3755) (1.1178) (1.2557) (1.3805) (1.1418) (1.2624) (1.3847)

High-skill wage -2.7802** -2.0793* -2.5647** -2.7271** -2.1941* -2.3615** -2.9054** -2.4236* -2.5943**
(1.1391) (1.2117) (1.1867) (1.1229) (1.2359) (1.1984) (1.1471) (1.2481) (1.2101)

GDP gap 0.0053 -0.0020 0.0021 0.0086 0.0037 0.0046 0.0075 0.0028 0.0039
(0.0436) (0.0444) (0.0445) (0.0440) (0.0448) (0.0445) (0.0441) (0.0449) (0.0447)

Labor productivity -1.2255 -0.9968 -0.9151
(0.9351) (0.9758) (0.9585)

GDP per capita -0.7515 -1.3618 -1.2168
(1.2918) (1.3924) (1.3560)

Stock automation -0.1531*** -0.1525*** -0.1531*** -0.1518*** -0.1514*** -0.1523*** -0.1519*** -0.1515*** -0.1525***
(0.0523) (0.0521) (0.0522) (0.0522) (0.0520) (0.0521) (0.0522) (0.0520) (0.0520)

Stock other 0.6433*** 0.6417*** 0.6429*** 0.6420*** 0.6407*** 0.6412*** 0.6422*** 0.6409*** 0.6415***
(0.0605) (0.0603) (0.0603) (0.0607) (0.0606) (0.0603) (0.0607) (0.0606) (0.0603)

Spillovers automation 1.1705*** 1.2209*** 1.2079*** 1.0883** 1.1219*** 1.1442*** 1.1121*** 1.1484*** 1.1663***
(0.4154) (0.4139) (0.4199) (0.4241) (0.4227) (0.4283) (0.4191) (0.4183) (0.4241)

Spillovers other -0.9536*** -0.9457*** -0.9736*** -0.9431*** -0.9441*** -0.9801*** -0.9379*** -0.9386*** -0.9719***
(0.3302) (0.3305) (0.3319) (0.3315) (0.3310) (0.3333) (0.3315) (0.3315) (0.3335)

Fixed effects F + CY F + CY F + CY F + CY F + CY F + CY F + CY F + CY F + CY

Observations 50085 50085 50085 50085 50085 50085 50085 50085 50085
Firms 3339 3339 3339 3339 3339 3339 3339 3339 3339

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson
regressions fixed-effects (HHG). All regressions include firm and country-year fixed effects. Country-year fixed effects are interacting with the coun-
tries’ weights. All regressions with stock variables include a dummy for no stock and no spillover. In columns (4)-(6) foreign low-skill wages are in-
teracted with the share of foreign low-skill wages in total low-skill wages computed at the beginning of the sample, and similarly for high-skill wages,
GDP per capita and VA per employee. In columns (7)-(9), they are interacted with the average shares over the sample period instead. In columns
(4)-(9), foreign GDP gap is interacted with the foreign weight. Standard errors are clustered at the firm-level * p < 0.1; ** p < 0.05; *** p < 0.01

1

61



Table A.9: Placebo regressions: long leads

Panel A: Independent variables are lagged by 10 years.
Dependent Variable Auto95

Domestic + Foreign Foreign

(1) (2) (3) (4) (5) (6)

Low-skill wage -0.6971 -1.3102 -2.2759 1.4820 2.4995 0.9875
(1.3783) (1.2749) (1.6483) (2.0809) (2.2640) (2.2871)

High-skill wage 0.7190 -0.5961 -0.3672 -4.0906 -2.3516 -4.4106*
(1.3025) (1.7655) (1.3453) (2.5322) (2.5102) (2.6414)

GDP gap 0.0407 0.0427 0.0385 0.0529 0.0481 0.0532
(0.0374) (0.0376) (0.0377) (0.0559) (0.0555) (0.0559)

Labor productivity 3.0468 -2.6255
(1.9773) (1.6419)

GDP per capita 3.9620** 0.9242
(1.9791) (1.9811)

Control variables stock + spill stock + spill stock + spill stock + spill stock + spill stock + spill
Fixed effects F + CY F + CY F + CY F + CY F + CY F + CY

Observations 61170 61170 61170 61170 61170 61170
Firms 4187 4187 4187 4187 4187 4187

Panel B: Independent variables are lagged by 15 years.
Dependent Variable Auto95

Domestic + Foreign Foreign

(1) (2) (3) (4) (5) (6)

Low-skill wage -0.6407 -0.7833 -1.1595 0.4649 1.2613 0.5584
(1.0666) (1.1196) (1.5609) (1.7477) (1.9794) (2.3955)

High-skill wage -1.0255 -1.3071 -1.4130 -3.1632 -1.8177 -3.1003*
(1.2360) (1.3377) (1.1015) (1.9781) (1.9220) (1.7537)

GDP gap 0.0003 0.0006 -0.0006 0.0167 0.0121 0.0165
(0.0320) (0.0320) (0.0320) (0.0551) (0.0547) (0.0546)

Labor productivity 0.6899 -2.0360
(1.8157) (1.4866)

GDP per capita 1.3848 -0.1780
(2.4752) (2.0382)

Control variables stock + spill stock + spill stock + spill stock + spill stock + spill stock + spill
Fixed effects F + CY F + CY F + CY F + CY F + CY F + CY

Observations 63903 63903 63903 63903 63903 63903
Firms 4298 4298 4298 4298 4298 4298

Note: Marginal effects; Standard errors in parentheses.Estimation is by conditional Poisson regressions fixed-effects (HHG).
All columns include firm and country-year fixed effects. All regressions include stock and spillover variables as controls.
Stock variables are calculated with respect to the dependent variable. In columns (4)-(6) foreign low-skill wages are in-
teracted with the share of foreign low-skill wages in total low-skill wages computed at the beginning of the sample, and
similarly for high-skill wages, GDP per capita and VA per employee. Foreign GDP gap is interacted with the foreign
weight. Standard errors are clustered at the firm-level * p < 0.1; ** p < 0.05; *** p < 0.01
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Table A.10: Predicted wages

Dependent Variable Auto95

joint ρ, average joint ρ, t+4 separate ρ, average separate ρ, t+4

(1) (2) (3) (4) (5) (6) (7) (8)

Low-skill wage 1.6899** 1.4813* 1.7039** 1.4899* 1.7557** 1.4318* 1.7803** 1.4313*
(0.8152) (0.8080) (0.8167) (0.8107) (0.8286) (0.8087) (0.8314) (0.8137)

High-skill wage -1.7960** -2.9855** -1.7638** -2.8597* -1.7838** -2.7068** -1.7874** -2.7378**
(0.8440) (1.5046) (0.8440) (1.4860) (0.8196) (1.2652) (0.8283) (1.2776)

GDP gap 0.0162 0.0161 0.0164 0.0163 0.0144 0.0119 0.0144 0.0117
(0.0143) (0.0143) (0.0143) (0.0143) (0.0142) (0.0139) (0.0142) (0.0139)

Labor productivity 1.7353 1.6234 1.4848 1.5467
(1.7310) (1.7208) (1.1824) (1.2247)

Stock automation -0.1433*** -0.1451*** -0.1430*** -0.1446*** -0.1433*** -0.1451*** -0.1431*** -0.1450***
(0.0509) (0.0514) (0.0509) (0.0514) (0.0509) (0.0517) (0.0510) (0.0517)

Stock other 0.6408*** 0.6380*** 0.6407*** 0.6379*** 0.6405*** 0.6371*** 0.6405*** 0.6371***
(0.0601) (0.0603) (0.0601) (0.0603) (0.0602) (0.0604) (0.0601) (0.0604)

Spillovers automation 0.4847 0.6321* 0.4848 0.6209* 0.5049* 0.7348** 0.5097* 0.7364**
(0.3045) (0.3449) (0.3049) (0.3445) (0.3036) (0.3702) (0.3044) (0.3679)

Spillovers other -0.1628 -0.3290 -0.1674 -0.3214 -0.1842 -0.4488 -0.1899 -0.4498
(0.2276) (0.2877) (0.2278) (0.2866) (0.2281) (0.3182) (0.2282) (0.3152)

Fixed effects F + Y F + Y F + Y F + Y F + Y F + Y F + Y F + Y

Observations 50115 50115 50115 50115 50115 50115 50115 50115
Firms 3341 3341 3341 3341 3341 3341 3341 3341

Note: Marginal effects; Standard errors in parentheses. Estimation is by conditional Poisson regressions fixed-effects (HHG). The wage
variables and labor productivity are predicted at time t-2. Columns (1) to (4) predict wages and labor productivity with an AR(1) process
with country-specific trends and with the same auto-regression coefficient across countries. Columns (5) to (8) use different auto-regression
coefficients across countries. In columns (1), (2), (5) and (6) the wages and labor productivity are the average of the predicted values be-
tween years t+2 and t+7. In columns (3), (4), (7) and (8), they are the predicted values for year t+4. All regressions with stock variables
(resp. spillover variables) include a dummy for no stock (resp. no spillover). Standard errors are clustered at the firm-level. * p < 0.1; **
p < 0.05; *** p < 0.01
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Table A.11: Minimum wage

Dependent Variable Auto95

Domestic + Foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Minimum wage 1.5230** 1.5171** 2.2977*** 1.4636 1.5601 1.3912 1.8773 1.8401 0.9621
(0.6865) (0.6628) (0.7425) (0.9127) (0.9566) (1.0076) (1.2125) (1.2411) (1.3409)

High-skill wage -1.2239* -1.2358 -0.0468 -3.0712*** -2.6564** -3.2042** -2.8017** -2.9368 -4.2497**
(0.7166) (0.8701) (0.7673) (1.0907) (1.1667) (1.4214) (1.4072) (1.8000) (1.7559)

GDP gap 0.0235 0.0235 0.0226 0.0562 0.0563 0.0560 -0.0232 -0.0232 -0.0184
(0.0151) (0.0150) (0.0150) (0.0347) (0.0347) (0.0347) (0.0513) (0.0514) (0.0517)

Labor productivity 0.0246 -0.7554 0.1730
(0.9249) (1.4016) (1.4426)

GDP per capita -2.2653** 0.2730 2.9814
(0.9798) (1.9656) (2.1494)

Stock own -0.1445*** -0.1446*** -0.1472*** -0.1548*** -0.1544*** -0.1546*** -0.1563*** -0.1564*** -0.1568***
(0.0513) (0.0513) (0.0517) (0.0522) (0.0523) (0.0522) (0.0530) (0.0531) (0.0527)

Stock other 0.6374*** 0.6374*** 0.6407*** 0.6569*** 0.6572*** 0.6571*** 0.6549*** 0.6552*** 0.6594***
(0.0596) (0.0596) (0.0593) (0.0597) (0.0597) (0.0595) (0.0607) (0.0607) (0.0605)

Spillovers own 0.6456* 0.6462* 0.8154** 1.4309*** 1.4270*** 1.4308*** 1.4198*** 1.4215*** 1.4172***
(0.3363) (0.3397) (0.3367) (0.4958) (0.4967) (0.4953) (0.4939) (0.4966) (0.4893)

Spillovers other -0.3546 -0.3559 -0.5197** -1.1991*** -1.1837*** -1.1971*** -1.2744*** -1.2764*** -1.2597***
(0.2408) (0.2535) (0.2430) (0.3854) (0.3864) (0.3836) (0.3795) (0.3821) (0.3745)

Fixed effects F + Y F + Y F + Y F + CY F + CY F + CY F + CY F + CY F + CY

Observations 50070 50070 50070 50040 50040 50040 48765 48765 48765
Firms 3338 3338 3338 3336 3336 3336 3251 3251 3251

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Pois-
son regressions fixed-effects (HHG). Columns (1)-(3) include firm and year fixed effects, while (4)-(9) include firm and country-year fixed effects.
Stock variables are calculated with respect to the dependent variable. In columns (7)-(9) foreign minimum wages are interacted with the share of
foreign minimum wages in total minimum wages computed at the beginning of the sample, and similarly for high-skill wages, GDP per capita and
VA per employee. Foreign GDP gap is interacted with the foreign weight. Standard errors are clustered at the firm-level * p < 0.1; ** p < 0.05;
*** p < 0.01

1

64



Table A.12: Minimum wage with country level clustering

Dependent Variable Auto95

Domestic + Foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Minimum wage 1.5230** 1.5171*** 2.2977** 1.4636** 1.5601*** 1.3912 1.8773*** 1.8401*** 0.9621
(0.5926) (0.4580) (0.9024) (0.6148) (0.4905) (1.1772) (0.4685) (0.6459) (0.9948)

High-skill wage -1.2239** -1.2358 -0.0468 -3.0712*** -2.6564** -3.2042*** -2.8017*** -2.9368*** -4.2497***
(0.5538) (1.0144) (0.6842) (0.5048) (1.2687) (0.9645) (1.0073) (0.8003) (1.4124)

GDP gap 0.0235*** 0.0235*** 0.0226*** 0.0562*** 0.0563*** 0.0560*** -0.0232 -0.0232 -0.0184
(0.0046) (0.0047) (0.0046) (0.0209) (0.0210) (0.0214) (0.0246) (0.0245) (0.0237)

Labor productivity 0.0246 -0.7554 0.1730
(0.9997) (1.4283) (1.3091)

GDP per capita -2.2653 0.2730 2.9814
(1.4038) (2.5259) (2.5884)

Stock own -0.1445*** -0.1446*** -0.1472*** -0.1548*** -0.1544*** -0.1546*** -0.1563*** -0.1564*** -0.1568***
(0.0385) (0.0390) (0.0397) (0.0403) (0.0400) (0.0404) (0.0392) (0.0402) (0.0375)

Stock other 0.6374*** 0.6374*** 0.6407*** 0.6569*** 0.6572*** 0.6571*** 0.6549*** 0.6552*** 0.6594***
(0.0514) (0.0513) (0.0503) (0.0563) (0.0561) (0.0566) (0.0572) (0.0595) (0.0591)

Spillovers own 0.6456*** 0.6462*** 0.8154*** 1.4309*** 1.4270*** 1.4308*** 1.4198*** 1.4215*** 1.4172***
(0.2076) (0.2225) (0.1787) (0.1139) (0.1151) (0.1160) (0.1192) (0.1309) (0.1322)

Spillovers other -0.3546 -0.3559 -0.5197*** -1.1991*** -1.1837*** -1.1971*** -1.2744*** -1.2764*** -1.2597***
(0.2214) (0.2362) (0.1192) (0.1684) (0.1736) (0.1735) (0.1956) (0.2102) (0.2067)

Fixed effects F + Y F + Y F + Y F + CY F + CY F + CY F + CY F + CY F + CY

Observations 50070 50070 50070 50040 50040 50040 48765 48765 48765
Firms 3338 3338 3338 3336 3336 3336 3251 3251 3251

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Pois-
son regressions fixed-effects (HHG). Columns (1)-(3) include firm and year fixed effects, while (4)-(9) include firm and country-year fixed effects.
Stock variables are calculated with respect to the dependent variable. In columns (7)-(9) foreign minimum wages are interacted with the share
of foreign minimum wages in total minimum wages computed at the beginning of the sample, and similarly for high-skill wages, GDP per capita
and VA per employee. Foreign GDP gap is interacted with the foreign weight. Standard errors are clustered at the country-level * p < 0.1; **
p < 0.05; *** p < 0.01
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Table A.13: Wages and deflators

Dependent variable Auto95

Sector Manufacturing Total

Manufacturing PPI, US manufacturing PPI GDP deflator Manufacturing PPI US Manufacturing PPI
Deflator conversion in 2005 conversion every year conversion in 1995 conversion in 1995 conversion every year

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Low-skill wage 2.7140*** 2.6338*** 1.9084*** 2.1264** 2.5733*** 2.7044*** 4.1859*** 3.9769*** 1.4172** 1.1137
(0.8686) (0.8933) (0.6949) (0.8261) (0.9691) (1.0238) (1.3286) (1.2666) (0.7192) (0.8024)

High-skill wage -1.7475** -1.8694** -2.4692*** -2.2154*** -2.1163** -1.9409** -1.3163 -2.3907** -2.0329*** -2.3743**
(0.7943) (0.8603) (0.7517) (0.7790) (0.9229) (0.9578) (0.8454) (0.9545) (0.7025) (0.9521)

GDP gap 0.0285* 0.0283* 0.0153 0.0149 0.0254 0.0262 0.0431** 0.0440** 0.0158 0.0148
(0.0158) (0.0158) (0.0146) (0.0146) (0.0161) (0.0161) (0.0171) (0.0172) (0.0152) (0.0153)

Labor productivity 0.3056 -0.5012 -0.4125 2.6369** 0.6389
(0.9422) (0.7122) (0.7779) (1.2281) (0.9348)

Stock own -0.1439*** -0.1444*** -0.1501*** -0.1493*** -0.1454*** -0.1446*** -0.1446*** -0.1474*** -0.1457*** -0.1462***
(0.0510) (0.0511) (0.0510) (0.0510) (0.0510) (0.0511) (0.0506) (0.0509) (0.0506) (0.0508)

Stock other 0.6392*** 0.6390*** 0.6391*** 0.6396*** 0.6403*** 0.6405*** 0.6485*** 0.6455*** 0.6434*** 0.6424***
(0.0600) (0.0601) (0.0598) (0.0597) (0.0600) (0.0599) (0.0596) (0.0596) (0.0592) (0.0592)

Spillover own 0.5795* 0.5887* 0.8540** 0.8568** 0.6503* 0.6444* 0.4874* 0.5675** 0.6379** 0.6536**
(0.3073) (0.3093) (0.3471) (0.3459) (0.3451) (0.3456) (0.2862) (0.2879) (0.3217) (0.3275)

Spillover other -0.3314 -0.3499 -0.4295* -0.4312* -0.3447 -0.3310 -0.2943 -0.4228* -0.2826 -0.2962
(0.2259) (0.2344) (0.2332) (0.2332) (0.2220) (0.2219) (0.2399) (0.2510) (0.2403) (0.2414)

Fixed Effect F + Y F + Y F + Y F + Y F + Y F + Y F + Y F + Y F + Y F + Y

Observations 50115 50115 50115 50115 50115 50115 50115 50115 50115 50115
Firms 3341 3341 3341 3341 3341 3341 3341 3341 3341 3341
Clustering Firm Firm Firm Firm Firm Firm Firm Firm Firm Firm

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-
effects (HHG). All regressions include firm fixed effects and year dummies. All regressions include a dummy for no stock and no spillover. Columns (1) to (6) are on
manufacturing wages and columns (7) to (10) on total wages. In columns (1) and (2), macroeconomic variables are deflated with the local manufacturing PPI and
converted in USD in 2005. In columns (3), (4), (9) and (10) they are converted in USD every year and deflated with the US manufacturing PPI. In columns (5) and
(6), macroeconomic variables are deflated with the local GDP deflator and converted in USD in 1995. In columns (7) and (8), macroeconomic variables are deflated
with the local manufacturing PPI and converted in USD in 1995. Standard errors are clustered at the firm-level * p < 0.1; ** p < 0.05; *** p < 0.01
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Table A.14: Alternative weights

Dependent Variable Auto95

1970-1989 1985-1994 GDP 0 GDP 1 (wL ∗ L)0.35

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Low-skill wage 1.8155* 1.7192* 2.4739*** 2.3626*** 1.8685** 1.7962** 2.8690*** 2.8825*** 2.2007*** 2.1429**
(0.9480) (0.9544) (0.8691) (0.8876) (0.7776) (0.8176) (0.8855) (0.8953) (0.8125) (0.8516)

High-skill wage -0.8990 -1.0259 -1.7055** -1.9002** -1.3791* -1.4820* -1.6609** -1.6405** -1.4445* -1.5237*
(0.8354) (0.9524) (0.8288) (0.8899) (0.8226) (0.8851) (0.7114) (0.7547) (0.7847) (0.8444)

GDP gap 0.0140 0.0138 0.0226 0.0224 0.0276* 0.0273* 0.0265* 0.0264* 0.0283* 0.0280*
(0.0164) (0.0164) (0.0163) (0.0162) (0.0154) (0.0153) (0.0158) (0.0159) (0.0156) (0.0154)

Labor productivity 0.3240 0.4484 0.2559 -0.0482 0.1983
(1.0211) (0.9649) (0.8994) (0.8293) (0.9221)

Stock automation -0.1194** -0.1201** -0.1337** -0.1343** -0.1436*** -0.1441*** -0.1429*** -0.1429*** -0.1428*** -0.1432***
(0.0602) (0.0603) (0.0524) (0.0524) (0.0509) (0.0511) (0.0511) (0.0511) (0.0509) (0.0509)

Stock other 0.6900*** 0.6895*** 0.6539*** 0.6540*** 0.6414*** 0.6410*** 0.6385*** 0.6384*** 0.6404*** 0.6403***
(0.0769) (0.0769) (0.0639) (0.0639) (0.0600) (0.0600) (0.0598) (0.0598) (0.0600) (0.0600)

Spillovers automation 0.2618 0.2719 0.5655* 0.5815* 0.4091 0.4178 0.8056** 0.8051** 0.4679 0.4744
(0.3206) (0.3229) (0.3154) (0.3182) (0.3093) (0.3106) (0.3340) (0.3354) (0.3103) (0.3114)

Spillovers other -0.3772 -0.3951 -0.3401 -0.3693 -0.1913 -0.2090 -0.4680** -0.4664** -0.2577 -0.2702
(0.2435) (0.2518) (0.2303) (0.2401) (0.2311) (0.2366) (0.2265) (0.2305) (0.2284) (0.2353)

Fixed effects F + Y F + Y F + Y F + Y F + Y F + Y F + Y F + Y F + Y F + Y

Observations 35955 35955 45735 45735 50115 50115 50115 50115 50115 50115
Firms 2397 2397 3049 3049 3341 3341 3341 3341 3341 3341

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Poisson regressions fixed-
effects (HHG). All regressions include firm fixed effects and year dummies. All regressions with stock variables (resp. spillover variables) include a dummy for no stock
(resp. no spillover). In columns (1) and (2) firms’ country weights for the macroeconomic variables are computed over the period 1970-1989; and over the period 1985-
1994 for columns (3) and (4). Columns (5) to (10) use the baseline pre-sample period of 1970-1994. Columns (5) and (6) do not adjust for GDP in the computation
of the weights and columns (7) and (8) use GDP instead of GDP 0.35 to adjust for countries’ size in the computation of the weights. Columns (9) and (10) adjust for
total low-skilled payment instead of using GDP. Standard errors are clustered at the firm-level. * p < 0.1; ** p < 0.05; *** p < 0.01

1

Table A.15: Baseline regressions in 2000-2009 only

Dependent variable Auto95

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 2.6434*** 2.4828** 1.8409* 1.9912* 2.0772* 2.4664** 2.9215** 2.6339** 4.4721***
(0.7284) (0.9935) (1.0261) (1.0700) (1.0718) (1.2056) (1.1447) (1.1285) (1.4064)

High-skill wage 0.2690 -0.3563 -0.5113 -0.4602 -0.2960 -1.1540 -1.4516 -0.7074
(0.8835) (0.8904) (0.9219) (0.9557) (0.8762) (0.9894) (1.0716) (0.9416)

Stock automation -0.4117*** -0.4100*** -0.4105*** -0.4050*** -0.4375*** -0.4398*** -0.4335***
(0.0630) (0.0631) (0.0628) (0.0635) (0.0636) (0.0639) (0.0639)

Stock other 0.6746*** 0.6708*** 0.6725*** 0.6687*** 0.6881*** 0.6864*** 0.6937***
(0.0709) (0.0711) (0.0714) (0.0708) (0.0744) (0.0743) (0.0735)

GDP gap 0.0243 0.0246 0.0196 0.0419** 0.0437** 0.0360**
(0.0164) (0.0162) (0.0157) (0.0171) (0.0174) (0.0169)

Labor productivity -0.1968 1.1082
(0.9325) (0.9940)

GDP per capita -1.5031 -3.7815**
(1.1155) (1.4968)

Spillovers automation 0.9119** 1.0198** 1.1483***
(0.4167) (0.4249) (0.4267)

Spillovers other -0.5948* -0.7380* -0.8383**
(0.3577) (0.3820) (0.3731)

Fixed effects F + Y F + Y F + Y F + Y F + Y F + Y F + Y F + Y F + Y

Observations 27110 27110 27110 27110 27110 27110 27110 27110 27110
Firms 2711 2711 2711 2711 2711 2711 2711 2711 2711

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional
Poisson regressions fixed-effects (HHG) from 2000 to 2009. All regressions include firm fixed effects and year dummies. All regressions with
stock variables (resp. spillover variables) include a dummy for no stock (resp. no spillover). Standard errors are clustered at the firm-level. *
p < 0.1; ** p < 0.05; *** p < 0.01
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Table A.16: Nickell’s bias

Dependent Variable Auto95

(1) (2) (3) (4) (5) (6) (7) (8)

Low-skill wage 2.3903*** 2.3926*** 2.1515*** 2.2066*** 2.0925** 2.2884** 2.3955** 2.9126***
(0.8004) (0.8227) (0.7991) (0.8150) (0.9778) (1.0886) (0.9713) (1.0899)

High-skill wage -1.5544** -1.5510* -0.9069 -0.5857 -2.4648** -2.0312** -2.5627*** -1.2324
(0.7840) (0.8704) (0.6129) (0.7453) (0.9779) (0.9708) (0.9338) (1.0583)

GDP gap 0.0276* 0.0276* 0.0266 0.0278 0.0653* 0.0651* 0.0752** 0.0761**
(0.0159) (0.0158) (0.0191) (0.0187) (0.0343) (0.0342) (0.0353) (0.0353)

Labor productivity -0.0084 -0.7779 -0.9781 -2.6421
(0.9696) (1.0755) (1.5602) (1.6507)

Stock automation 1.1938*** 1.1818*** 1.1912*** 1.1870***
(0.0244) (0.0238) (0.0243) (0.0235)

Stock other 0.5101*** 0.5101*** 0.0895*** 0.0897*** 0.5230*** 0.5237*** 0.0869*** 0.0879***
(0.0454) (0.0453) (0.0120) (0.0118) (0.0439) (0.0440) (0.0120) (0.0118)

Spillovers automation 0.3519 0.3517 0.0098 -0.0315 1.3383*** 1.3373*** -0.0667 -0.0518
(0.2949) (0.2977) (0.0746) (0.0689) (0.4669) (0.4676) (0.0784) (0.0767)

Spillovers other -0.0735 -0.0730 0.0219 0.0781 -1.0318*** -1.0139*** 0.1163 0.1013
(0.2127) (0.2227) (0.0782) (0.0748) (0.3544) (0.3558) (0.0827) (0.0815)

Fixed effects F + Y F + Y BGVR + Y BGVR + Y F + CY F + CY BGVR + CY BGVR + CY

Observations 50115 50115 50115 50115 50070 50070 50070 50070
Firms 3341 3341 3341 3341 3338 3338 3338 3338

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional
Poisson regressions fixed-effects (HHG) in columns (1), (2), (5) and (6). In columns (3), (4), (7) and (8), estimation is done by Poisson
regressions where the firm fixed effects are replaced by the pre-sample mean, following Blundell, Griffith and Van Reenen (1999, BGVR).
Columns (1) to (4) include year fixed effects and columns (5) to (8) country-year fixed effects. All regressions with stock variables (resp.
spillover variables) include a dummy for no stock (resp. no spillover). Standard errors are clustered at the firm-level. * p < 0.1; ** p <
0.05; *** p < 0.01
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Table A.17: Other innovation indicators

Auto95

Dependent Variable Biadic (US, JP, EU) Triadic At least one citation Citations weighted

(1) (2) (3) (4) (5) (6) (7) (8)

Low-skill wage 2.2776** 2.0079* 3.1886** 2.9795* 2.2198*** 2.1241** 1.7405* 1.6520
(1.0383) (1.0785) (1.4150) (1.5827) (0.8341) (0.8720) (1.0257) (1.1403)

High-skill wage -1.3409 -1.7718* -2.3417* -2.6759* -1.6034** -1.7443** -1.8007* -1.9515**
(0.9663) (1.0724) (1.3640) (1.3768) (0.8099) (0.8577) (0.9814) (0.9717)

GDP gap 0.0397** 0.0390** 0.0178 0.0172 0.0269* 0.0267* 0.0368* 0.0366*
(0.0191) (0.0191) (0.0289) (0.0288) (0.0158) (0.0157) (0.0190) (0.0190)

Labor productivity 0.9807 0.7272 0.3450 0.3518
(1.1988) (1.6987) (0.9171) (1.1755)

Stock automation -0.1683*** -0.1699*** -0.3665*** -0.3677*** -0.1468*** -0.1474*** -0.2220*** -0.2223***
(0.0597) (0.0598) (0.0772) (0.0766) (0.0557) (0.0559) (0.0438) (0.0438)

Stock other 0.6342*** 0.6333*** 0.6500*** 0.6494*** 0.6457*** 0.6456*** 0.6805*** 0.6802***
(0.0662) (0.0663) (0.0875) (0.0875) (0.0635) (0.0635) (0.0688) (0.0687)

Spillovers automation 0.3839 0.4064 0.7925 0.7981 0.5736* 0.5845* 0.1427 0.1499
(0.4014) (0.4028) (0.5469) (0.5451) (0.3140) (0.3151) (0.2878) (0.2858)

Spillovers other -0.5402** -0.5915** -0.3499 -0.3742 -0.2978 -0.3187 0.1625 0.1429
(0.2587) (0.2715) (0.4685) (0.4599) (0.2404) (0.2468) (0.2595) (0.2600)

Observations 40410 40410 26310 26310 47115 47115 50115 50115
Firms 2694 2694 1754 1754 3141 3141 3341 3341

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional
Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects and year dummies. All regressions include a dummy for no
stock and no spillover. Columns (1)-(2) consider biadic patents applied for in at least two countries among US, JP, EU. Columns (3)-(4)
consider triadic patents (applied for in US, JP and EU). Column (5)-(6) consider biadic patents with at least one citation within 5 years
after publication. Column (7)-(8) consider biadic patents and add to each patent the number of citations within 5 years after publication
normalized by year and technological field. Standard errors are clustered at the firm-level. * p < 0.1; ** p < 0.05; *** p < 0.01
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Table A.18: Industry-year fixed effects

Dependent Variable Auto95

Domestic + Foreign Foreign

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 3.1486*** 2.9157*** 3.8864*** 2.3157** 2.5169** 3.5773*** 4.1573*** 5.0264*** 4.2013**
(0.8208) (0.8631) (0.9521) (0.9890) (1.1159) (1.2188) (1.3041) (1.5426) (1.7227)

High-skill wage -2.3594*** -2.7484*** -1.5763* -2.9978*** -2.5654** -2.1617** -4.3227*** -3.1470** -4.2974***
(0.7465) (0.8095) (0.8099) (0.9457) (1.0210) (1.0263) (1.2915) (1.3761) (1.3321)

GDP gap 0.0329** 0.0324** 0.0311** 0.0709** 0.0707** 0.0731** -0.0059 -0.0083 -0.0059
(0.0154) (0.0154) (0.0153) (0.0323) (0.0323) (0.0322) (0.0470) (0.0469) (0.0470)

Labor productivity 0.9135 -0.9736 -1.9354
(0.8810) (1.7031) (1.4734)

GDP per capita -2.1529* -3.1161* -0.0777
(1.2204) (1.7989) (1.8617)

Stock own -0.1495*** -0.1511*** -0.1522*** -0.1586*** -0.1582*** -0.1601*** -0.1607*** -0.1603*** -0.1607***
(0.0462) (0.0462) (0.0465) (0.0466) (0.0466) (0.0468) (0.0463) (0.0461) (0.0464)

Stock other 0.6477*** 0.6479*** 0.6498*** 0.6549*** 0.6555*** 0.6548*** 0.6492*** 0.6470*** 0.6491***
(0.0548) (0.0548) (0.0546) (0.0552) (0.0552) (0.0549) (0.0550) (0.0549) (0.0549)

Spillovers own 0.6016** 0.6324** 0.7887** 1.3924*** 1.3897*** 1.3786*** 1.3568*** 1.3324*** 1.3562***
(0.3060) (0.3067) (0.3188) (0.4759) (0.4766) (0.4761) (0.4658) (0.4651) (0.4675)

Spillovers other -0.2770 -0.3310 -0.4380* -1.0750*** -1.0587*** -1.0900*** -1.0864*** -1.0802*** -1.0873***
(0.2226) (0.2237) (0.2392) (0.3623) (0.3642) (0.3618) (0.3553) (0.3527) (0.3540)

Fixed effects F + IY F + IY F + IY F + IY F + IY F + IY F + IY F + IY F + IY
+ CY + CY + CY + CY + CY + CY

Observations 49174 49174 49174 49890 49890 49890 49890 49890 49890
Firms 3329 3329 3329 3326 3326 3326 3326 3326 3326

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Pois-
son regressions fixed-effects (HHG). Columns (1)-(3) include firm and industry-year fixed effects, while (4)-(9) include firm, industry-year and
country-year fixed effects. Stock variables are calculated with respect to the dependent variable. In columns (7)-(9) foreign low-skill wages are
interacted with the share of foreign low-skill wages in total low-skill wages computed at the beginning of the sample, and similarly for high-skill
wages, GDP per capita and VA per employee. Foreign GDP gap is interacted with the foreign weight. Standard errors are clustered at the firm-
level * p < 0.1; ** p < 0.05; *** p < 0.01
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Table A.19: Simulated regression

Dependent variable Auto95 Mach.\auto95

Low-skill wage/ High-skill wage 2.3915*** -0.0918
(0.9266) (0.7354)

GDP gap 0.0690** 0.0007
(0.0342) (0.0161)

Stock auto95 -0.1615*** 0.1248***
(0.0531) (0.0364)

Stock mach.\auto95 0.3777*** 0.3025***
(0.0538) (0.0344)

Stock other 0.3316*** 0.2181***
(0.0666) (0.0433)

Spillovers auto95 1.7759* -1.3730**
(1.0740) (0.6558)

Spillovers auto952 -0.0399 0.0975**
(0.0695) (0.0480)

Spillovers mach.\auto95 4.3430 3.9003**
(3.4179) (1.6194)

Spillovers mach.\auto952 -0.2198 -0.1563*
(0.1865) (0.0898)

Spillovers other -7.2627** -0.6615
(3.2406) (2.0660)

Spillovers other2 0.2543* -0.0318
(0.1392) (0.0980)

Fixed effects F + CY F + CY

Observations 49714 155325

Note: Marginal effects; Standard errors in parentheses. The inde-
pendent variables are lagged by two periods. Estimation is by con-
ditional Poisson regressions fixed-effects (HHG). Mach.\auto95 refers
to all machinery innovations except auto95 and “other” to all non-
machinery innovations. All columns include firm and country-year
fixed effects. All columns include three dummies for no auto95 knowl-
edge, no mach.\auto95 knowledge and no other knowledge. Standard
errors are clustered at the firm-level. * p < 0.1; ** p < 0.05; ***
p < 0.01
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B Appendix

B.1 Details on the classification of automation patents

B.1.1 List of keywords

For each technological category, we compute the following shares of patents:47

1. Automat* patents. Share of patents which contain the words:

(a) Automation or automatization;

(b) or automat* at least 5 times;

(c) or (automat* or autonomous) in the same sentence as (machine or manufac-

turing or machining or equipment or apparatus or operator or handling or

“vehicle system” or welding or knitting or weaving or convey* or storage or

store or regulat* or manipulat* or arm or sensor or inspect* or warehouse)

at least twice.

2. Labor patents. Share of patents which contain the words: laborious, labourious,

labor or labour.

3. Robot patents. Share of patents which contain the word robot* but not (surgical

or medical).

4. Numerical control patents. Share of patents which contain the words:

(a) CNC or “numerically controlled” or “numeric control” or “numerical control”

or the same terms but with hyphens;

(b) or NC in the same sentence with (machine or manufacturing or machining

or equipment or apparatus).

5. Computer aided design and manufacturing patents. Share of patents which contain

the words:

(a) “computer aided”, “computer assisted” or “computer supported” or the same

terms with hyphens) in the same patent with (machine or manufacturing or

machining or equipment or apparatus);

47x* indicates any word which starts with x, for instance automat* corresponds to the words auto-
matic, automatically, automate, automates, etc...
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(b) or (CAD or (CAM and not “content addressable memory”)) in the same

sentence with (machine or manufacturing or machining or equipment or ap-

paratus).

6. Flexible manufacturing. Share of patents which contain the words: “flexible man-

ufacturing”.

7. PLC patents. Share of patents which contain the words: “programmable logic

controller” or (PLC and not (powerline or “power line”)).

8. 3D printing patents. Share of patents which contain the words: “3D print* ” or

“additive manufacturing” or “additive layer manufacturing”.

9. Automation patents. Share of patents which satisfy any of the previous criteria.

We derived this exact list after experimenting extensively with variations around those

words and looking at the resulting classification of technological codes and the associated

patents. For instance, the thresholds (5 and 2) used in the definition of the share

of automat* patents where chosen so that the distribution of the share of automat*

patents is comparable to the distribution of the share of numerical control patents across

technological codes. Similarly, requiring that NC be in the same sentence as words such

as machine, ensures that NC is short for numerical control instead of North Carolina.

Relative to the original list of technologies given in the SMT, we did not include

keywords related to information network, as these seem less related to the automation

of the production process and the patents containing words such as “local area network”

do not appear related to automation. We also did not directly count all laser related

technologies as not all of these are related to automation—but we obtain patents related

to automation using laser technologies thanks to our other keywords.

B.1.2 Statistics on the classification

Table B.1 gives summary statistics on the shares of patents containing certain keywords

across technological codes in machinery. We look at the share of automation keywords

(“all” in the table) and then focus on the three main subcategories, namely automat*

patents, robot patents and numerical control (CNC) patents (defined above). The 95th

and 90th percentile for the share of automation patents in the distribution of 6 digit

codes in machinery define the threshold used to categorize auto95 and auto90 patents.

The distributions are quite similar for the C/IPC 6 digit codes and for pairs of IPC
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Table B.1: Summary statistics on the prevalence of keywords across technological codes in
machinery

IPC/CPC 6 digit IPC4 + (G05 or G06) IPC 4 pairs

Share all robot automat* CNC all robot automat* CNC all robot automat* CNC

Mean 20.9 4.3 11.2 2.4 53.2 15.4 32.4 11.2 18.5 4.5 8.8 1.8
S. d. 14.4 8.4 9.5 5.8 19.3 17.7 11 16.5 16.3 10 9.9 4.7
p25 10.5 0.8 4.2 0 40 6.7 26.6 0.8 7.7 0.6 2.5 0
p50 18 2 8.7 0.4 54.3 10 31.9 3 13.6 1.8 5.2 0.4
p75 26.6 4.5 15.3 1.8 63.8 16 40.3 15.5 23 4.2 10.7 1.4
p90 38.7 9.1 24.3 6.1 77.9 36.4 43.3 38.2 36.8 8.9 21.7 4.4
p95 47.7 13.7 29.4 12.7 85.6 44.3 45.2 55.3 51.8 14.5 31 7.7
p99 75 35.8 43.8 33.1 90.1 82.9 59.9 56.6 84.5 60 45.3 23.1

Note: This table computes summary statistics on the share of patents with any automation keywords, robot keywords,
automat* keywords or CNC keywords for each type of technological categories (6 digit codes, pairs of 4 digit codes and
combinations of ipc4 codes with G05 or G06) within machinery with at least 100 patents.

1

4 digit codes (see also the histograms below).48 As expected, the distributions are

significantly shifted to the right for combinations of IPC 4 digit codes with G05 or G06.

The distributions of each subcategory are right-skewed particularly for 6 digit codes and

4 digit pairs, and even more for the robot and CNC patents. The automat* keywords

are also more common as the mean share for automat* is significantly higher than for

the other keywords. Yet, the difference narrows somewhat in the right tail: the 95th

percentile for 6 digit codes is 29.4% for the share of automat* patents and 13.7% and

12.7% for the share of robot and CNC patents. In the right tail, the distribution of robot

patents and CNC patents are quite similar.

Figure B.1 gives the histograms of the prevalence of automation keywords for all

pairs of C/IPC 4 digit codes (panel a) and all pairs with at least one member in the

machinery technological field (panel b). The histograms are very similar to those of

C/IPC 6 digit codes in Figure 1. Figure B.2 shows the histograms for all combinations

of IPC 4 digit codes with G05 or G06 (panel a), or when the IPC 4 code is in the relevant

technological field (panel b). Both distributions are considerably shifted to the right,

in line with expectations since G05 proxies for control and G06 for algorithmic, two

set of technologies which have been used heavily in automation. There are, however,

much fewer combination of these types (in part because all histograms only consider

groups with at least 100 patents), and accordingly few patents can be characterized as

automation innovations this way.

48The Y section of the CPC classification is organized differently from the rest of the CPC classification
and is only designed to provide additional information. As a result, we ignore Y codes in our exercise.
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(a) For all pairs of C/IPC 4 digit codes (b) For all pairs of C/IPC 4 digit
codes
within machinery with 100
patents

Figure B.1: Histogram of the prevalence of automation keywords for C/IPC pairs of 4 digit
codes

(a) For all combinations of IPC4 with
G05 G06

(b) For combinations of IPC4 in ma-
chinery
with G05 G06 and at least 100
patents

Figure B.2: Histogram of the prevalence of automation keywords for combinations of IPC 4
digit codes with G05 G06
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Table B.2: Identification of automation technological categories

(a) Type of C/IPC codes identifying
auto90 and auto95 patents

Ipc codes / Patents Auto90 Auto95

Matches ipc6 78.2% 78.7%
Matches ipc4 pair 17.3% 24.3%
Matches ipc4 - G05/G06 combination 47.7% 47.8%

Note: Share of innovations classified as automation innova-
tion through ipc6 codes, ipc4 pairs or ipc4 - G05/G06 pairs.
Statistics computed on biadic patents from 1997-2011.

1

(b) Auto patents and subcate-
gories of automation innova-
tions

Sources / Patents Auto80 Auto90 Auto95

Auto80 100.0% 100.0% 100.0%
Automat*80 36.2% 53.1% 72.1%
CNC80 5.0% 8.0% 13.2%
Robot80 12.0% 19.2% 33.6%
Auto90 62.4% 100.0% 100.0%
Automat*90 21.6% 34.6% 56.0%
CNC90 2.2% 3.6% 6.3%
Robot90 7.8% 12.5% 21.8%
Auto95 35.8% 57.3% 100.0%
Automat*95 4.4% 7.1% 12.4%
CNC95 1.6% 2.5% 4.4%
Robot95 6.3% 10.2% 17.7%

Note: Share of auto95 (auto90 and auto80,
respectively) innovations which are also classi-
fied as automat*80/90/95, CNC80/90/95, and
robot80/90/95 innovations. Statistics computed on
biadic patents from 1997-2011.

1

B.1.3 How are auto90 and auto95 patents identified?

Given that our classification procedure is relatively complex, we assess here which fea-

tures dominate. To do so, we focus on the set of 15, 212, 134 biadic patent applications

in 1997-2011 (corresponding to the 3, 187, 536 patent families which have patent appli-

cations in at least two countries), since this corresponds to the set on which we run

our main regressions. There are 310, 458 auto95 patent applications corresponding to

61, 768 patent families (and similarly 541, 693 auto90 patent applications corresponding

to 107, 237 patent families). Table B.2.a gives the share of biadic patents which are

identified through a C/IPC 6 digit code, a pair of 4 digit codes or a combination of 4

digit code with G05/G06 (the shares sum up to more than 100% since patents may be

identified as automation innovations in several ways). 6 digit codes are the most relevant

since they identify close to 80% of auto90 or auto95 patents alone.

Similarly, one may wonder which keywords are the most important in identifying

automation patents. To do that, we define robot95 (respectively CNC95 or autm95)

patents as patents which contain a technological group with a share of “robot” (respec-

tively CNC or automat*) keywords above the threshold used to define auto95 (namely

0.4766), therefore those patents are a subset of the auto95 patents. We define robot90,

CNC90, autm90, robot80, CNC80 and autm80 similarly. The other keywords are much

less common. Table B.2.b reports the share of auto95, auto90 and auto80 patents which
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Table B.3: Confusion table for different classification periods

Confusion Matrix

Auto95 based on the Auto95 based on the Auto95 based on the

Total1998-1997 classification 1998-2017 classification 1997-2011 classification

Yes No Yes No Yes No

Auto95 based on Yes 240,194 70,264 280,047 30,411 262,972 47,486 310,458
the 1978-2017 No 53,137 14,848,539 25,186 14,876,490 26,368 14,875,308 14,901,676
classification Total 293,331 14,918,803 305,233 14,906,901 289,340 14,922,794 15,212,134

Notes: The statistics are always computed on patents from 1997-2011.

1

belong to each subcategory. “Automat*” appears to be the most important keywords

since 72% of auto95 patents are also automat*80 patents. “Robot” matters as well with

33.6% of auto95 patents which are robot80. This is true particularly at the top of the

distribution: 17.7% of auto95 patents are also robot95 (more than autm95). CNC does

not matter too much: only 13% of auto95 patents are CNC80.

B.1.4 Stability of the classification

To assess the stability of our classification, we redo exactly the same exercise but instead

of using EPO patents from 1978 to 2017, we restrict attention to EPO patents from the

first half of the sample (1978-1997), the second half of the sample (1998-2017) and the

period of our main regression analysis (1997-2011). We focus on the same set of biadic

patent applications in 1997-2011. Table B.3 shows confusion tables on the classification

of patents as auto95 according to each of the classification period. Regardless of the time

period used the number of automation patents stays roughly constant. In particular,

85% of the baseline auto95 patents are still auto95 if we run the classification over the

years 1997-2011. This common set of patents then represent 91% of all biadic patents

classified as auto95 patents when using the period 1997-2011 instead of the full sample.

B.1.5 Additional examples

We provide a few additional examples of automation and non-automation patents. Fig-

ure B.3 shows the example of a robot with a patent containing the IPC code B25J9.

The patent describes a multi-axis robot with a plurality of tools which can change the

working range of each arm. This essentially increases the flexibility of the robot.

Figure B.4 shows an automation innovation used in the dairy industry. The patent

contains the code A01J7 which is a high automation code (see Table 2). It describes a

system involving a robotic arm to disinfect the teats of cows after milking. The patent

argues that this reduces the need for human labor and therefore saves costs.
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Figure B.3: Example of a high automation patent: an industrial robot
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Figure B.4: Example of a high automation patent: a milking robot

Figure B.5 describes an automated machining device, yet another example of a high

automation innovation, which contains the code B23Q15 (a high automation code de-

scribed in Table 2). The devices features a built-in compensation system to correct for

errors thereby reducing the need for a “labor-intensive adjustment process”.

Figure B.6 describes another high automation patent belonging to the same IPC

code as well as to G05B19. This is also a machining device. The patent explains that

innovations in machining have aimed at making the process as automated as possible

by involving some feedback mechanism (as in the previous older patent). This invention

aims at better predicting the machining requirements in the first place.

In contrast Figure B.7 describes a low automation innovation in machinery (none

of the codes are above the 90th percentile in the 6 digit C/IPC distribution). The

innovation relates to a “conveying belt assembly for a printing device”’, which is about

the circulation of paper in the printing machine. This innovation does not directly

involve automation.

Similarly Figure B.8 describes a winch to raise and lower people, another low-

automation innovation in machinery. This innovation seems rather low-skill labor com-
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Figure B.5: Example of a high automation patent: an automated machining device
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Figure B.6: Example of a high automation patent: another automated machining device

plementary as its goal is to enable workers to move in a plurality of directions. Finally

Figure B.9 describes a harvester (which also counts as a machinery innovation since the

code A01B63 belongs to other special machinery). This is also a low-automation inno-

vation as its goal is to ensure that the harvester can both operate in the field and travel

on roads.

B.2 Redoing ALM

In this Appendix, we provide details on the analysis conducted in section 2.6. We

use granted patents at the USPTO between 1970 and 1998. To assign patents to

sectors, we first use Lybbert and Zolas (2014) who provide a concordance table be-

tween IPC codes at the 4 digit level and NAICS 1997 6 digits industry codes (mostly

in manufacturing). The concordance table is probabilistic (so that each code is asso-

ciated with a sector with a certain probability). The Lybbert and Zolas concordance

tables are derived by matching patents texts with industry descriptions, and as such

they cannot a priori distinguish between sector of use and industry of manufactur-

ing. We checked, however, that patents associated with “textile and paper machines”
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Figure B.7: Example of a low automation patent: a printer

Figure B.8: Example of a low automation patent: a winch
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Figure B.9: Example of a low automation patent: a harvester

for instance are associated with the textile and paper sectors and not with the equip-

ment sector (as is the case with the Eurostat concordance table on the industry of

manufacturing). We attribute patents to sectors fractionally in function of their IPC

codes. To assign patents to the consistent Census industry codes used by ALM, we first

use a Census concordance table (https://www.census.gov/topics/employment/industry-

occupation/guidance/code-lists.html) to go from NAICS 1997 to Census industry codes

1990, then we use the concordance table of ALM to get to the consistent Census indus-

try codes of ALM. Finally, for each sector and each time period, we compute the sums

of automation patents and machinery patents and take the ratio to be our measure of

automation intensity. We exclude sectors with less than 50 machinery patents (which is

why the number of sectors varies across time periods). We are left with 66 to 68 sectors,

with only 7 of them not in manufacturing.

The other variables are directly taken from ALM. We refer the reader to that paper

for a detailed explanation. The task measures are computed using the 1977 Dictionary

of Occupational Titles (DOT) which measure the tasks content of occupations. Occupa-

tions are then matched to industries using the Census Integrated Public Micro Samples

one percent extracts for 1960, 1970 and 1980 (IPUMS) and the CPS Merged Outgoing

Rotation Group files for 1980, 1990 and 1998 (MORG). The task change measure at the

industry level reflects changes in occupations holding the task content of each occupa-
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tion constant, which ALM refer to as the extensive margin. Since tasks measures do not

have a natural scale, ALM converted them into percentile values corresponding to their

rank in the 1960 distribution of tasks across sectors, so that the employment-weighted

means of all tasks measure across sectors in 1960 is 50. Our analysis only uses manu-

facturing sectors and starts in 1970 but we kept the original ALM measure to facilitate

comparison. As in ALM, the dependent variable in Table 4 corresponds to 10 times the

annualized change in industry’s tasks inputs to favor comparison across periods of differ-

ent lengths. Computerization ∆Cj is measured as the annual change in the percentage

of industry workers using a computer at their jobs between 1984 and 1997 (estimated

from the October Current Population Survey supplements), multiplied by 10 to ensure

that all variables are over the same time length. For all regressions, observations are

weighted by the employment share in each sector. In Table 4, the ratio of high-skill to

low-skill workers are measured as the ratio of college graduates (and more than college)

to high-school dropouts and graduates, taken from ALM—knowing that their data in

turn come from IPUMS and MORG.

Table B.5 reproduces Table 4 but with the laxer auto90 measure. The results are

very similar—the only difference is that the coefficient on routine manual tasks is not

significant at the usual levels in the 90s.49

Table B.6 reproduces the Table 5 of ALM by carrying the analysis of Table 4 for each

education groups over the time period 1980-1998 with the auto95 measure (the results

are very similar with auto90). The table shows that automation reduces the amount of

routine tasks undertaken by high-school dropouts and high-school graduates. Following

ALM, Panel F computes the average effect of automation in tasks changes (from Panel

A) and how much of this average effect can be explained by changes within educational

groups (from Panels B to E). We find that changes within educational categories explain

a significant share of the overall reduction in routine tasks but changes in educational

composition also play a role, in line with Column 6 of Table 4. In contrast, ALM found

that nearly all of the decline in routine tasks due to computerization came from within

educational group changes.

To allocate patents according to their industry of manufacturing (which we use for

Table 5), we proceed as follows. First, we use the Eurostat concordance table (van Looy,

Vereyen and Schmoch, 2014) which maps 4-digit IPC codes to 2 or 3 digit NACE rev 2

sectors to allocate all US machinery patents to sectors fractionally according their C/IPC

49To interpret the effect of the automation variable, note that the means are 0.13, 0.15 and 0.14 in
the 70s, 80s and 90s, and the standard deviations are 0.10, 0.12 and 0.11 with the auto90 definition.
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Table B.4: List of sectors in the ALM regressions

ind6090 Title Auto95 ind6090 Title Auto95

0.026 211 0.010

30 Forestry 0.035 212 Misc. plastic products 0.019

31 Fishing, hunting and trapping 0.013 220 Leather tanning and finishing 0.014

40 Metal mining 0.023 221 Footwear, except rubber and plastic 0.086

41 Coal mining 0.037 222 Leather products, except footwear 0.014

42 Crude petroleum and natural gas extraction 0.021 230 Logging 0.030

50 Nonmetallic mining and quarrying, except fuel 0.048 231 Sawmills, planning mills, and millwork 0.038

66 Construction 0.036 236 0.109

100 Meat products 0.107

101 Dairy products 0.402

102 Canned and preserved fuits and vegetables 0.007 241 Misc. wood products 0.075

110 Gain mill products 0.030 242 Furniture and fixtures 0.043

111 Bakery products 0.005 246 0.410

112 Sugar and confectionary products 0.022

120 Beverage industries 0.017 250 Glass products 0.017

121 Misc. food preparations, kindred products 0.019 251 Cement, concrete, gypsum and plaster products 0.074

130 Tobacco manufactures 0.033 252 Structural clay products 0.033

132 Knitting mills 0.007 261 Pottery and related products 0.027

140 0.004 262 Misc. nonmetallic mineral and stone products 0.038

270 0.039

141 Floor coverings, except hard surfaces 0.009

142 Yarn, thread, and fabric mills 0.071 271 Iron and stell foundaries 0.178

146 0.083 281 Cutlery, handtools, and other hardware 0.023

282 Fabricated structural metal products 0.034

150 Misc. textile mill products 0.079 346 0.028

151 Apparel and accessories, except knit 0.060

152 Misc. fabricated textile products 0.172

160 Pulp, paper, and paperboard mills 0.020 351 Transportation equipment 0.207

161 Misc. paper and pulp products 0.015 360 Ship and boat building and repairing 0.058

162 Paperboard containers and boxes 0.003 362 0.166

166 0.086

380 Photographic equipment and supplies 0.043

172 0.017 381 0.174

176 0.125 391 0.032

460 Electric light and power 0.161

181 Drugs 0.040 462 Eletric and gas, and other combinations 0.153

186 0.320 470 Water supply and irrigation 0.126

471 Sanitary services 0.018

190 Paints, varnishes, and related products 0.015 636 0.004

200 Petroleum refining 0.031

201 Misc. petroleum and coal products 0.010

206 0.221

Printing, publishing, and allied industries 

except newspapers

Engine and turbines; Construction and material 

handling machines; Metalworking machinery; 

Machinery, except electrical, n.e.c.; Not specified 

machinery

Electronic computing equipment; Office and 

accounting machines

Household appliances; Radio, TV & 

communications equipment; Electric machinery, 

equipment & supplies, n.e.c., not specified 

electrical machinery, equipment & supplies

Auto95 is the share of automation patents in machinery (95th threshold) in 1980-1998.

Dyeing and finishing textiles, except wool and knit 

goods

Ag production crops and livestock; Ag services; 

Horticultural services

16 Other rubber products and plastics 

footwear and belting + tires and inner tubes

Railroad locomotives and equipment; Cycles and 

misc transporation equipment; Wood buildings 

and mobile homes

Scientific and controlling instruments; 

Optical and health service supplies

Blast furnaces, steelworks, rolling and 

finishing mills

Grocery stores; Retail bakeries; Food 

stores, n.e.c.

Primary aluminum & other primary metal 

industries

Plastics, synthetics and resins; Soaps and 

cosmetics; Agricultural chemicals; Industrial and 

miscellaneous chemicals

Guided missiles, space vehicles, ordnance, 

aircraft and parts

Watches, clocks and clockwork operated 

devices

Misc. manufacturing industries and toys, 

amusement and sporting goods

Screw machine products; Metal forgings & 

stampings; Misc. fabricated metal products
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Table B.5: Changes in task intensity and skill ratio across sectors and automation (auto90)

(1) (2) (3) (4) (5) (6)

Panel A: 1970 - 80, n=67

Share of automation 0.82 3.57 ***-17.95*** ***-10.60*** -0.89 **0.11**

patents in machinery (3.51) (4.32) (4.22) (3.74) (5.13) (0.05)

D Computer use -7.16 -2.99 ***-18.91*** -3.26 *14.86* 0.08

1984 - 1997 (5.71) (7.03) (6.86) (6.09) (8.36) (0.09)

Intercept 0.92 *2.14* ***4.34*** ***3.39*** -1.70 ***0.04***

(1.00) (1.23) (1.20) (1.07) (1.47) (0.02)

R
2 0.02 0.01 0.31 0.12 0.05 0.08

Weighted mean D -0.05 2.17 -0.90 1.49 0.42 0.07

Panel B: 1980 - 90, n=67

Share of automation *9.01* **13.29** ***-25.37*** ***-13.79*** **9.70** ***0.73***

patents in machinery (5.41) (6.23) (4.96) (4.28) (4.72) (0.19)

D Computer use **24.75** *22.95* -13.41 -1.55 -5.37 0.39

1984 - 1997 (10.34) (11.90) (9.49) (8.18) (9.02) (0.37)

Intercept *-3.15* -1.21 **3.55** 1.69 -2.39 -0.06

(1.77) (2.03) (1.62) (1.40) (1.54) (0.06)

R
2 0.13 0.13 0.32 0.14 0.06 0.21

Weighted mean D 1.86 4.17 -2.22 -0.59 -1.74 0.11

Panel C: 1990 - 98, n=67

Share of automation **9.23** *10.63* ***-13.47*** -6.24 3.95 ***0.42***

patents in machinery (4.57) (6.22) (5.12) (4.19) (4.76) (0.12)

D Computer use ***27.31*** **28.19** ***-25.09*** ***-26.11*** 8.05 ***0.73***

1984 - 1997 (8.27) (11.25) (9.26) (7.58) (8.61) (0.22)

Intercept **-2.93** -1.93 2.23 *2.41* *-2.55* **-0.08**

(1.44) (1.96) (1.61) (1.32) (1.50) (0.04)

R
2 0.20 0.14 0.20 0.19 0.03 0.29

Weighted mean D 2.45 3.79 -3.44 -2.36 -0.79 0.09

D H/L

Standard errors are in parentheses. Colums (1) to (5) of Panels A to C each presents a separate OLS regression of ten times the

annual change in industry-level task input between the endpoints of the indicated time interval (measured in centiles of the 1960 task

distribution) on the share of automation patents in machinery (defined with the 90th percentile threshold) and the annual percentage

point change in industry computer use during 1984 - 1997 as well as a constant. In Column (6), the dependent variable is the ratio of

high-skill (college graduates) to low-skill (high-school graduates and dropouts) workers. Estimates are weighted by mean industry share

of total employment in FTEs over the endpoints of the years used to form the dependent variable. * p<0.1; ** p<0.05; *** p<0.01

D Nonroutine

analytic

D Nonroutine

interactive

D Routine

cognitive

D Routine

manual

D Nonroutine

manual
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Table B.6: Changes in task intensity and skill ratio across sectors and automation (auto95)
by skill groups

(1) (2) (3) (4) (5)

Panel A: Aggregated within-industry change

Share of automation **9.53** ***17.97*** ***-26.66*** ***-17.09*** ***12.57***

patents in machinery (4.53) (5.39) (4.83) (3.90) (4.30)

D Computer use ***24.91*** ***23.81*** ***-17.75*** **-11.53** 0.47

1984 - 1997 (6.36) (7.56) (6.79) (5.48) (6.03)

Intercept **-2.36** -1.01 *2.05* *1.73* **-2.37**

(1.03) (1.22) (1.10) (0.89) (0.98)

R
2 0.26 0.27 0.39 0.29 0.12

Weighted mean D 2.05 3.88 -2.62 -1.29 -1.34

Panel B: Within industry: High school dropouts

Share of automation 2.41 13.61 ***-26.19*** -5.80 4.56

patents in machinery (7.89) (10.85) (6.94) (6.22) (6.35)

D Computer use 11.70 18.08 15.84 8.68 -9.95

1984 - 1997 (11.08) (15.24) (9.74) (8.73) (8.91)

Intercept **-4.47** ***-8.45*** 0.87 0.55 1.16

(1.79) (2.47) (1.58) (1.41) (1.44)

R
2 0.02 0.05 0.19 0.02 0.02

Weighted mean D -2.56 -4.73 1.20 1.39 0.04

Panel C: Within industry: High school graduates

Share of automation -7.08 6.50 ***-26.09*** ***-13.43*** *9.62*

patents in machinery (5.47) (7.05) (5.64) (4.25) (5.37)

D Computer use 9.30 -0.76 *-14.39* -2.86 6.71

1984 - 1997 (7.69) (9.90) (7.92) (5.96) (7.54)

Intercept **-2.86** 2.19 *2.25* 0.00 -1.43

(1.24) (1.60) (1.28) (0.97) (1.22)

R
2 0.04 0.01 0.30 0.14 0.06

Weighted mean D -2.03 2.57 -1.88 -1.45 0.30

Panel D: Within industry: Some College

Share of automation -11.94 -7.49 -4.92 -5.92 *12.48*

patents in machinery (8.04) (7.31) (6.01) (5.72) (6.56)

D Computer use 7.05 13.85 *-14.68* *-14.11* 9.14

1984 - 1997 (11.29) (10.26) (8.44) (8.03) (9.20)

Intercept -1.10 0.31 0.38 *2.21* *-2.74*

(1.83) (1.66) (1.37) (1.30) (1.49)

R
2 0.04 0.04 0.06 0.07 0.07

Weighted mean D -0.97 1.78 -2.17 -0.33 -0.43

Panel E: Within industry: College graduates

Share of automation -6.54 **-7.28** *-11.58* -7.70 ***17.00***

patents in machinery (4.25) (3.59) (6.48) (7.74) (6.03)

D Computer use **14.44** *9.29* -5.55 -7.69 11.14

1984 - 1997 (6.00) (5.06) (9.14) (10.91) (8.50)

Intercept -0.94 0.17 -1.22 -0.14 ***-5.35***

(0.97) (0.82) (1.48) (1.77) (1.38)

R
2 0.01 0.09 0.06 0.03 0.14

Weighted mean D 0.69 0.99 -2.93 -1.86 -2.40

Panel F: Decomposition of automation effects into within and between education group

Explained task D 0.73 1.38 -2.04 -1.31 0.96

Within educ groups (%) -63.96 15.80 72.32 54.61 81.96

Between educ groups (%) 163.96 84.20 27.68 45.39 18.04

D Routine

manual

D Nonroutine

manual

n in Panels A-D is 69 and in Panel E it is 68 consitent CIC industries. Standard errors are in parentheses. Each column of

panels A - E presents a separate OLS regression of ten times the annual change in industry-level task input for the

relevant education group (measured in centiles of the 1960 task distribution) during 1980 - 1998 on the the share of

automation patents in machinery (defined with the 95th percentile threshold) and the annual percentage point change in

industry computer use during 1984 - 1997 as well as a constant. Estimates are weighted by mean industry share of total

employment (in FTEs) in 1980 and 1998. The 'explained' component in Panel F is the within-industry change in the task

measure predicted by the share of automation patents in regression models in Panel A.   * p<0.1; ** p<0.05; *** p<0.01

D Nonroutine

analytic

D Nonroutine

interactive

D Routine

cognitive
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codes (we allocate to 3 digit sectors whenever the decomposition within 2 digit industries

is complete). We then allocate patents to NAICS 2007 sectors (at the 3 to 6 digits

level) using a weighted concordance table that we created by combining an unweighted

concordance table (available on Eurostat’s website) and US employment data from the

County Business Patterns for 2008. Next, we allocate patents to NACIS 1997 using

concordance tables from the US Census Bureau website. From NAICS 1997, we follow

the same steps as before to allocate patents to the consistent Census industries used by

ALM. Once we restrict attention to industries with at least 50 machinery patents in per

decade, we can compute the share of automation patents in machinery for 58 sectors.

To allocate patents according their sector of use (also used in Table 5), we first build

an input-output table as follows. We take the input-output table from 2007 from the

Bureau of Economic Analysis (we choose the “Use Table, Before Redefinitions, Producer

Value, 405 Industries”). We use concordance tables between NACE Rev 2 and NAICS

2012 from Eurostat and the BEA concordance table between NAICS 2012 and the input-

output table industries to generate for each 2-3 digit NACE Rev 2 industry the using

frequency in NAICS 2012 (at the 3 to 6 digits level). Using the previous concordance

table between 4 digit IPC codes and 2-3 digit NACE Rev 2 industries of manufacturing,

we can then compute for each 4 digit IPC code the probability that it is used in each

NAICS 2012 industry and allocate patents fractionally accordingly. We then follows

similar steps as above to allocate them to the ALM consistent Census industries. We

can compute the share of automation patents in machinery for 125 sectors.

B.3 Macroeconomic variables

Our main source of macroeconomic variables is the World Input Output Database (WIOD)

from Timmer, Dietzenbacher, Los, Stehrer and de Cries (2015) which contains informa-

tion on hourly wages (low-skill, middle-skill and high-skill) for the manufacturing sector

and the total economy from 1995 to 2009 for 40 countries. It further contains infor-

mation on GDP deflators and producer price indices both for manufacturing and for

the whole economy. Their data on skill is based on the 1997 International Standard

Classification of Education (ISCED) system, where category 1+2 denote low-skill (no

high-school diploma in the US) 3+4 denote middle-skill (high-school but not completed

college) and 5+6 denotes high-skill (college and above). Switzerland is not included in

the WIOD database and we add data on skill-dependent wages, productivity growth and

price deflators manually using data obtained directly from Federal Statistical Office of
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Switzerland.

We supplement this data with data from UNSTAT on exchange rates and GDP (and

add Taiwan separately from the Taiwanese Statistical office). We calculate the GDP gap

as the deviations of log GDP from HP-filtered log GDP using a smoothing parameter

of 6.25. Table B.7 provides summary statistics for low-skill and high-skill wages for all

our countries for our baseline measure (i.e. manufacturing labor costs deflated by the

manufacturing PPI and converted in USD in 1995).

The primary data source for the hourly minimum wage data is OECD Statistics. Not

all countries have government-imposed hourly minimum wages. Spain, for instance, had

a monthly minimum wage of 728 euros in 2009. To convert this into hourly wage we

note that Spain has 14 monthly payments a year (+1 payments in December and July).

Further, workers have 6 weeks off and the standard work week is 38 hours. Consequently

we calculate the hourly minimum wages as monthly minimum wage×14/ [(52− 6)× 38],

which in the case of 2009 is 5.83 euros per hour. We perform similar calculations, de-

pending on individual work conditions, for other countries with minimum wages that are

not stated per hour: Belgium, Brazil, Israel, Mexico, Netherlands, Poland and Portugal.

For the US, we use data from FRED for state minimum wages and calculate the

nation-level minimum wage as the weighted average of the state-by-state maximum of

state minimum and federal minimum wages, where the weight is the manufacturing

employment in a given state.

Further, the UK did not have an official minimum wage until 1999. Correspondingly,

we follow Dickens, Machin and Manning (1999) and use the wage levels agreed upon by

local wage councils. These were in effect from 1909 until 1993. For, 1995-1998, the four

years in our sample where no official minimum wage existed, we use the nominal level

from 1993. We use the employment-weighted industry average across manufacturing

industries. Finally, Germany did not have a minimum wage during the time period we

study. Instead, we follow Dolado, Kramarz, Machin, Manning, Margolis and Teulings

(1996) and use the collectively bargained minimum wages in manufacturing which effec-

tively constitute law once they have been implemented. These data come from personal

correspondence with Sabine Lenz at the Statistical Agency of Germany.
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Table B.7: Country-level summary statistics on low-skill and high-skill labor costs

Country

Mean Min Max Std.Dev. Mean Min Max Std.Dev.

Australia 14.0 12.9 15.3 0.71 24.0 20.7 28.8 2.94

Austria 19.6 17.5 23.1 1.81 42.5 39.4 46.5 2.26

Belgium 34.7 29.5 41.9 3.27 53.0 46.0 61.2 4.15

Bulgaria 0.9 0.7 1.3 0.13 2.5 1.6 4.3 0.57

Brasil 2.1 1.8 2.5 0.22 11.8 9.3 13.7 1.22

Canada 13.5 11.7 16.5 1.56 23.9 18.0 32.5 3.94

Switzerland 27.6 24.5 29.2 1.50 57.7 51.3 61.6 3.27

China 0.7 0.4 0.8 0.11 1.2 0.7 1.6 0.32

Cyprus 8.0 7.1 9.8 0.92 12.1 11.2 13.0 0.56

Czech Republic 2.4 1.4 3.6 0.64 6.2 3.9 8.7 1.33

Germany 20.8 19.2 22.0 0.76 50.5 42.4 59.2 4.58

Denmark 25.3 22.1 30.0 2.81 36.2 32.0 43.3 3.67

Spain 14.4 13.9 15.7 0.55 22.5 21.4 23.9 0.71

Estonia 2.5 1.1 4.7 1.22 3.9 2.2 5.4 1.11

Finland 31.4 23.4 43.6 6.70 43.0 28.1 63.7 11.79

France 27.7 19.1 34.7 5.59 50.4 37.2 60.2 7.56

United Kingdom 22.2 16.3 29.6 4.92 44.5 32.6 60.5 9.95

Greece 6.9 6.3 7.7 0.43 10.6 8.2 11.8 1.12

Hungary 2.5 2.2 3.1 0.27 8.2 7.4 9.7 0.66

Indonesia 1.1 0.8 1.7 0.30 4.5 2.3 6.6 1.63

India 0.2 0.2 0.3 0.03 0.9 0.8 1.4 0.19

Ireland 16.3 12.4 24.6 4.24 23.3 17.4 35.5 6.67

Italy 17.8 16.9 18.6 0.53 36.6 30.8 44.1 4.99

Japan 26.2 22.3 31.1 2.82 40.8 36.2 48.0 4.02

Korea 9.5 5.5 14.6 3.17 16.1 9.3 24.3 5.33

Lithuania 2.8 1.5 6.0 1.32 4.2 2.9 5.4 0.87

Luxembourg 26.2 23.2 28.8 1.57 46.4 32.9 55.3 8.19

Latvia 2.4 1.3 3.3 0.59 4.6 2.5 6.4 1.10

Mexico 0.9 0.6 1.0 0.13 3.4 2.6 4.0 0.42

Malta 9.7 7.7 18.9 3.24 27.7 22.6 47.6 6.29

Netherlands 23.9 21.5 28.0 1.88 42.3 36.1 46.8 3.66

Poland 3.6 2.2 4.8 0.66 9.2 5.9 10.9 1.32

Portugal 6.6 5.4 7.3 0.50 19.2 15.9 20.6 1.37

Romania 1.3 0.9 1.8 0.24 3.6 2.9 4.6 0.41

Russian Federation 1.0 0.7 1.2 0.17 3.2 2.4 3.8 0.50

Slovakia 2.9 1.8 4.8 0.98 7.1 4.0 11.6 2.60

Slovenia 4.8 3.7 6.4 1.03 13.0 10.5 15.6 1.88

Sweden 31.1 19.9 42.4 7.50 48.1 34.4 56.6 7.37

Turkey 3.5 1.7 5.0 1.08 10.0 5.0 13.8 2.91

Taiwan 6.8 6.2 7.5 0.41 10.4 9.0 11.5 0.78

United States 13.3 11.6 15.0 1.17 36.6 27.6 46.4 6.75

Low Skill Wages High Skill Wages

Notes: Summary statistics for low-skill and high-skill labor costs in manufacturing per hour for each country. 

Wages are deflated across years using the local PPI in manufacturing and converted in USD in 1995.
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B.4 Firm-level patent weights

B.4.1 Additional information on the construction of the patent weights

We give additional details on how we compute firm level patent weights. First, note that

we exclude firms which have more than half of their patents in countries for which we

do not have wage information.

Second, we take the following steps in order to deal with EP patents. We assign EP

patents to countries when they enter into the national phase. A firm’s untransferred

EP patents are assigned using information on where that firm previously transferred its

EP patents. If a firm does not have any already transferred EP patents, we assign the

patent based on a firm’s direct patenting history in EPO countries. Untransferred EP

patents that are still left are assigned to countries based on the EPO-wide distribution

of transfers. We also drop a firm if more than half of its patents are EP patents assigned

using the EPO-wide distribution.

Finally, as mentioned in the text we only count patents in families with at least one

(non self-) citation. Including all patents generally increases the weight of the country

with the most patents, in line with the finding that poor quality patents tend to be

protected in fewer countries. However, further increasing the threshold from 1 to more

citations does not significantly change the distribution of weights.

B.4.2 Validating our weights approach

We compare our firm-level weights to bilateral trade flows and show that they are

strongly correlated. The first step is to compute patent-based weights at the coun-

try level. For this exercise (and this exercise only), we define the domestic country d

of a firm based on the location of its headquarters (according to the country code of

its identifier in the Orbis database—for firms which we merged, we keep the country

code of the largest entity by biadic machinery patents in 1997-2011). We compute the

foreign weights for each firm i by excluding the domestic country. Therefore the foreign

weight for country c 6= d for firm i is given by ωi,c/(1 − ωi,d) (recall that these weights

are computed based on patenting from 1970 to 1994). We then build the foreign patent-

based weight in country c for country d as a weighted average of the foreign weights in

country c of the firms from country d (each firm is weighted according to the number of

machinery biadic patents in 1997-2011).

The second step is to build similar weights based on exports. To do that, we collect
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(b) Trade from the 6 largest countries

Figure B.10: Bilateral patent flows and trade flows in machinery. Panel (a) plots log patent based

weights, which are a weighted average of the destination country’s weights in the (foreign)

patent portfolio of firms from the origin country, against export shares in machinery over the

years 1995-2009. The size of each circle represents the product of the GDP of both countries,

which is used as a weight in the regression. Panel (b) focuses on the weights from the listed

countries and observations are weighted by the GDP of the partner country.

sectoral bilateral trade flow from UN Comtrade data between between 1995 and 2009 for

40 countries (Taiwan is not included in the data). To obtain trade flows in machinery,

we use the Eurostat concordance table between 4 digit IPC codes and 2 or 3 digits

NACE Rev 2 codes (van Looy, Vereyen, and Schmoch, 2014), this concordance table

matches IPC codes to the industry of manufacturing. The concordance table assigns

a unique industry to each IPC code. Then, for each industry, we compute the share

of biadic patents over the period 1995-2009 which are in machinery according to our

definition.50 This gives us a machinery weight for each industry code and each country.

We then multiply sectoral trade flows (after having aggregated the original data to the

NACE Rev 2 codes used in the concordance table) by this weight to get bilateral trade

in machinery. We then compute the export share in machinery across destinations. We

compute trade based weights for each year in 1995-2009 and take the average (there are

a few missing observations for 1995).

Figure B.10 plots the patent-based weights against the trade-based weights. Panel

(b) focuses on a few origin countries while Panel (a) plots all countries together. We

find a strong correlation between the two measures with a regression coefficient of 0.94

(when observations are weighted by the trade flow in 1996).

50To do that we use a fractional approach: each patent is allocated NACE sectoral weights (and
machinery weights) depending on the share of IPC codes associated with a NACE sector or machinery.
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(a) Low-skill wages.
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(b) Residualized low-skill wages

Figure B.11: Foreign low-skill wages for each country computed either with patent-based
weights or with trade-based weights. Wages are computed for the years 1995-2009.

Panel (a) plots log foreign low-skill wages using either patent-based weights or trade-based

weights. Panel (b) plots the residuals of foreign wages according to both methods control-

ling for country and year fixed effects. Observations are weighted by the number of biadic

machinery patents by firms from the the country over the years 1997-2011.

Another way to summarize how close the two distributions are is to compute what

low-skill wages would be according to either sets of weights. We do this in Figure B.11.

There for each country, we compute “foreign low-skill wages” as a weighted average of

foreign wages where the weights are either the patent-based weights or the trade-based

weights derived above. Foreign wages are deflated with the local PPI and converted in

USD in 1995 as in our main analysis. Panel (a) then reports foreign log low-skill wages

according to both types of weights in 1995-2009, we find that they are strongly correlated.

Panel (b) reports the same foreign log low-skill wages but taking away country and year

fixed effects. We find a regression coefficient of 0.56, when observations are weighted by

the number of machinery patent in the country over the 1997-2011 time period.

Overall, this exercise shows that there is tight relationship between our patent-based

weights and (future) trade flows, suggesting that we can use these patent-based weights

as proxies for firms’ markets exposure.

B.5 Details on the simulations

Simulation of the direct effect and the direct effect plus the stock effect are straightfor-

ward for the fixed-effects Poisson model. However, recomputing the spillovers involves

two issues.
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First, our model only applies to the number of innovations; we do not know where

these firms innovate. Therefore, in order to recompute the spillovers, we need to make

an assumption on the location of the simulated innovations. Our assumption is natural

in the context of our regressions: We assume that a simulated innovation of a firm is

located according to the firm’s inventor weights, which are the weights that are used to

construct the spillover variables. We assign the simulated innovations proportionally to

the firm’s inventor weights. One could alternatively assume that innovations are invented

at only one of the countries and draw that country according to the weight distribution.

However, this would only further increase the noise in our simulations, and it is not

necessarily better since many innovations are indeed invented in multiple countries.

A second complication when doing the overall simulation is related to the fact that the

biadic innovations of the firms in our sample are only 58% of the total biadic innovations

in 1997--2011. This is because we do not have weights for all the firms that do relevant

automation or machinery innovation in our sample period. Therefore, the number of

inventions in a country in a given year consists of an in-sample count plus an out-

of-sample count. We make the assumption that the firms not in our sample respond

in the same way as the firms in our sample. Hence, when computing the country-

level innovation counts by assigning simulated innovations to countries using the firms’

inventor weights, we assume that the ratio of the in-sample count to the out-of-sample

count stays constant. That way if the in-sample simulated count increases by, say, 5%

the entire count would increase by the same amount.
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