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Abstract 

Using unique data on preference rankings for all high school students who apply for college in 

Ireland, we investigate whether, conditional on absolute achievement at the end of high school, 

within school-cohort rank in English and math affects choice of college major. We find that 

higher rank in math increases the likelihood of choosing STEM and decreases the likelihood 

of choosing Arts and Social Sciences. Similarly, a higher rank in English leads to an increase 

in the probability of choosing Arts and Social Sciences and decreases the probability of 

choosing STEM. The effects of subject ranks on STEM are larger for boys than girls while 

there is no evidence of a gender difference in the effect of subject ranks on Arts and Social 

Sciences. We also find that English and math rank can explain about 4% of the gender gap in 

the choice of STEM as a college major and 9% of the gender gap that is not explained by 

absolute achievement. Overall, the tendency for girls to be higher ranked in English and lower 

ranked in math within school-cohorts can explain about 10% of the difference in the STEM 

gender gap between mixed-sex schools and same-sex schools and about 25% of the difference 

that is unexplained by absolute achievement. Notably, these effects occur even though within-

school rank plays no role whatsoever in college admissions decisions. Overall, the findings 

imply behavioral effects of subject rank on college major choices that go beyond their effects 

on human capital accumulation in school. 
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participants at NUI Galway, NUI Maynooth, UCD Dublin, European University Institute, University of Bath, Lancaster 
University, and University of Manchester. This is a heavily revised version of a paper previously circulated as “The Effect of 
High School Rank in English and Math on College Major Choice”. This work was partially supported by the Research Council 
of Norway through its Centres of Excellence Scheme, FAIR project No 262675. 
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1. Introduction 

The choice of college major is one of the most important decisions made by young 

people and can have a great impact on later earnings in the labor market (Altonji et al., 2016). 

It is well established that academic preparation and student interests are predominant 

determinants of college major choice – students tend to enter fields that they enjoy and in which 

they are likely to do well. However, recent research has found that, in addition to absolute skills 

and achievement, relative class rank in school matters for human capital accumulation and for 

educational behavior. In this paper, we use Irish data to investigate whether, conditional on 

achievement at the end of high school, rank in English and math affects choice of college major. 

Given its importance to the economy and its large gender gap, we place particular emphasis on 

whether higher rank in math and lower rank in English causes high school students to be more 

likely to choose Science, Technology, Engineering, and Math (STEM) fields in college.  

There are two major motivations for our study. First, many papers have studied the role 

of comparative advantage (in particular, in math and English) in determining college major.1 

However, little work has considered whether students additionally consider their within-school 

rankings in math and English when making choices. Students may lack information about their 

academic ability (Zafar, 2011; Stinebrickner and Stinebrickner, 2012, 2014; Bobba and 

Frisancho, 2014) and this uncertainty may lead students to infer their comparative advantage 

across subjects from their rank across subjects in school.2 While relative achievement is 

informative, it can also lead students astray if the distribution of achievement in their class is 

not typical. If ordinal rank is important, it could motivate policy interventions to provide 

 
1 Studies include Speer (2017), Card and Payne (2017), Delaney and Devereux (2019), Breda and Napp (2019), 
and Aucejo and James (2019). Delaney and Devereux (2020a) have shown that relative achievement in math and 

English is also important for performance at university. 
2 Tincani (2015) and Bursztyn and Jensen (2015) argue that students care about rank and status and are more 

willing to invest effort to improve if it will increase their rank within their school. Azmat and Iriberri (2010) and 

Azmat et al. (2019) find that providing feedback on relative performance in school affects subsequent student 

performance. 
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information to school students about their absolute achievement level. Second, women are still 

greatly underrepresented in STEM college programs with serious implications for gender 

earnings gaps (Card and Payne, 2017).3 Previous research has found that this is partly due to 

female comparative advantage in English compared to math (Speer, 2017; Card and Payne, 

2017; Delaney and Devereux, 2019; Breda and Napp, 2019; Aucejo and James, 2019). 

However, relatively little is known about whether the STEM gender gap can be further 

explained by the tendency for women to be higher ranked within-school in English and lower 

ranked within-school in math than men. 

In this paper, we study whether rank in math and English affects college major 

decisions, after controlling for multiple measures of achievement and academic interests at the 

end of high school. There are several reasons why math and English ranks may affect college 

major choices. Students may develop confidence in a particular area of study from a higher 

class rank or despondence from a lower one.4 The advice students obtain from peers, teachers, 

or family members about college major choice may depend on school-cohort rank in math and 

English.5 Also, students may be uncertain about their ability and so may rely on rank to infer 

ability and comparative advantage across subjects. 

While the recent rank literature has found strong impacts of class rank on many 

outcomes including earnings, high school graduation, college enrollment, and risky behavior 

(Murphy and Weinhardt, 2020; Denning et al., 2018; Elsner and Isphording, 2017, 2018), there 

 
3 There is a large literature studying the gender gap in STEM. Recent papers include Nollenberger et al. (2016), 

Mouganie and Wang (2020), McDool and Morris (2020), Shi (2018), Astorne-Figari and Speer (2018), and 

Friedman-Sokuler and Justman. (2016).  
4 Using survey data, Elsner and Isphording (2017) find that higher ranked students believe themselves to be more 

intelligent and have better mental health than other equally able students. Murphy and Weinhardt (2020) find that 
subject rank has positive effects on student self-confidence in that subject. 
5 Pop-Eleches and Urquiola (2013) show that behavior of teachers and parents is affected by the student’s rank 

within the school (parents provide less help if the child is in a better school; teachers are found to pay more 

attention to higher ranked students). However, Elsner and Isphording (2017) find no evidence for this mechanism 

in their study of US high school students. Kinsler and Pavan (2020) show that parental beliefs and investments in 

kindergarten in the US are influenced by the child’s skill relative to that of other children in the same class. 

However, Murphy and Weinhardt (2020) find no effect of primary school rank on parental investment. 
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has been little focus on the relationship between rank in English and math in high school and 

choice of college major. Using UK data, Murphy and Weinhardt (2020) find that students who 

are ranked higher in a subject in primary school are more likely to complete that subject at A-

Level. However, they do not examine rank at the end of high school or the choice of college 

major. Denning et al. (2018), using data from Texas, find that math rank in 3rd grade has a 

positive effect on doing a STEM major in college; however, they don’t consider the effects of 

rank at the end of high school.6 Elsner et al. (2019) find that rank within teaching sections in a 

Dutch university affects subsequent choice of courses. However, their focus is on different 

choices within the field of business rather than across very distinct fields. 

We add to the literature in several ways. First, our focus differs from these papers in 

that, rather than studying the effect of rank at early ages on much later choices, we abstract 

from human capital effects of rank and examine the purely behavioral effects of rank at the end 

of high school on college choices, conditional on absolute performance at the end of high 

school. We have grades for each of the 7 or 8 subjects taken in the Leaving Certificate 

examinations. These high-stakes exams are centrally set and graded and so are comparable 

across all students. They provide a detailed description of academic readiness at the end of high 

school and allow us to control for absolute achievement in a variety of subjects as well as for 

academic interests as revealed by high school subject choices. Thus, we can isolate the effect 

of math and English ranks on student choices, conditional on their academic interests and 

achievements.  

Second, our data include preference rankings over college majors for all high school 

students who apply for college and, if relevant, the program accepted. Thus, we can study 

desired college program of study for all persons who consider college, not just for the sample 

 
6 Also, because they give a 0 for STEM to all people who do not go to college, it is hard to disentangle the effect 

of math rank on college major choice from that of math rank on college enrollment. In Texas, the top 10% of 

students in each high school are guaranteed college admission and this may influence their estimates to the extent 

that overall rank at the end of high school correlates with math rank in 3rd grade. 
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who actually attend. As such, we can see how math and English ranks affect desired college 

major for all applicants. Third, compared to the U.S., there are several features of the Irish 

system that make it conceptually easier to study the effects of high school rank on college 

choices. Unlike in the US, college admission decisions are never influenced by class rank but 

are predominantly determined by Leaving Certificate points that are solely based on scores in 

the student’s best 6 subjects. Also, both English and math are compulsory subjects throughout 

high school so we can calculate within-school ranks in these for all students who apply to 

college. Finally, we add to the literature on the gender gap in STEM. In mixed-sex schools girls 

tend to be lower ranked in math and higher ranked in English than boys. We examine whether 

these differential ranks in English and math by gender have explanatory power for the gender 

gap in the choice of STEM as a college major and for the larger gender gap in STEM in mixed-

sex schools compared to same-sex schools. 

We find that, conditional on achievement at the end of high school, within school-

cohort percentile rank in English and math is predictive for field choice, particularly for STEM 

and Arts and Social Sciences -- higher English rank is positively associated with choosing Arts 

and Social Sciences and negatively with STEM; higher math rank is positively associated with 

STEM and negatively with Arts and Social Sciences. This finding implies behavioral effects 

of subject rank that go beyond their effects on human capital accumulation in school. Subject 

ranks have some explanatory power for the gender gap in the choice of STEM as a college 

major in mixed-sex schools – the tendency for girls to be higher ranked in English and lower 

ranked in math within school-cohorts can explain about 4% of the STEM gender gap in mixed-

sex schools and about 10% of the difference in the STEM gender gap between mixed-sex 

schools and same-sex schools. 

The structure of the paper is as follows: In the next section, we describe the institutional 

background and data, and, in Section 3, we describe the empirical methodology. In Section 4, 
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we present our main results. Section 5 outlines a set of robustness checks. Section 6 shows that 

our estimates can help explain the gender gap in STEM. Finally, Section 7 concludes. 

 

2. Institutional Background and Data 

We use data from the Central Admissions Office (CAO) that include all individuals 

who did their Leaving Certificate (the terminal high school exam in Ireland) and applied to an 

Irish college in the years 2015 to 2017.7 The CAO is an independent company that processes 

applications for undergraduate courses in Irish colleges, issues offers to applicants, and records 

all acceptances. The CAO centralized system means that applicants do not have to apply 

separately to different colleges and that data are processed and collected in one place. When 

applying for a college course, applicants can list up to 10 level 8 courses (honors bachelor’s 

degrees) and 10 level 6/7 courses (ordinary bachelor’s degrees and higher certificates). For the 

majority of courses, whether or not an applicant is accepted depends solely on their 

performance in the Leaving Certificate.8 At the end of the last year of high school, students sit 

the Leaving Certificate, typically in 7 or 8 subjects, and grades in the student’s 6 best subjects 

are combined to form their total Leaving Certificate points.9 Each college program has a 

minimum points level that is required to enter. The required points vary from year to year 

depending on the preferences of students and the number of available places in the program. If 

the student has points equal to or above the minimum for their first-ranked program, they are 

offered that program. If not, they are offered the highest ranked program for which they have 

enough points. 

 
7 This section draws heavily from Delaney and Devereux (2019). 
8 There are a small number of college programs that do admissions based on information other than Leaving 

Certificate points. For example, music programs typically require an audition, and arts/architecture programs may 

require a portfolio. 
9 The Leaving Certificate examinations are written exams that are centrally set and are anonymously graded by 

external examiners. 
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English, Irish and math are compulsory high school subjects and the student chooses 

another 4 or 5 subjects to study based on their interests, aptitudes, and future college and career 

plans.10 Some college programs have subject requirements, for example, pharmacy and 

veterinary medicine require Leaving Certificate chemistry, and most engineering and science 

programs require at least one Leaving Certificate science subject. 

All subjects are offered at a higher or lower level.11 The grades awarded and mapping 

from grades to points changed in 2017. Appendix Table A1 shows how points/grades are 

awarded during our three-year period. Since 2012, to induce more students to study higher 

level math, an additional 25 points bonus is given in math to those who pass the subject at 

higher level.12 Better students do subjects at higher level and it is unlikely that good students 

would choose to study math or English at lower level for strategic reasons. For math, unless a 

student fails the exam (scores less than 40%), then the points awarded at higher level strictly 

dominate the points awarded at lower level so it would make no sense to choose to study lower 

level math unless the student expected to fail higher level math. For English and all other 

subjects, the points awarded at higher level are greater than the highest possible points at lower 

level provided the student gets more than 50% at higher level (55% in 2017). Just 2.7% of those 

taking lower level English achieve the highest grade. In contrast, of those taking higher level, 

82% score a grade that gives higher points than the maximum points from lower level. Overall, 

 
10 While Irish is compulsory, there are exemptions available for children who have lived for a sufficient time 

outside of Ireland or who have a learning disability (https://www.education.ie/en/Circulars-and-Forms/Active-

Circulars/ppc10_94.pdf). Therefore, in practice, many students do not study Irish for Leaving Certificate. 
11 A student who takes math at higher level and English at lower level will be in the same math class as others 

who also take math at higher level and the same English class as those who take English at lower level. Therefore, 
a student can have different peers in their math and English classes. However, students will also interact with 

other students as they take classes in other subjects. 
12 Other than the bonus points for mathematics, grades in all Leaving Certificate subjects count equally for points, 

irrespective of the college programs to which the student applies. For example, an H1 grade in history provides 

the same points as an H1 grade in physics whether the student applies to a humanities program or a science 

program. Note, also, that students are not required to use their grades in English and mathematics for their points, 

although in practice most do. 
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it is reasonable to assume that, in any subject, the stronger students take higher level and the 

weaker students choose lower level. 

It is also unlikely that students strategically choose to make low effort in English or 

math. While students need not include English and math amongst the best 6 subjects used to 

calculate points, over 99% of students have either math or English included in their best 6 

subjects. Overall, 8% of students do not use English when calculating their final Leaving 

Certificate points while 37% do not include math. Of the 37% who do not include math scores, 

almost all of them took lower level math for Leaving Certificate.13 The most likely explanation 

for the relatively poor performance of many people in math is that they are just not very good 

at it and tend to do better in other, less quantitative, subjects. Overall, while we cannot rule it 

out, it is unlikely that many applicants made little effort to do well in English or math. 

The CAO data include information on the applicant’s age, gender, high school, Leaving 

Certificate subjects and grades, county of origin, year they sat the Leaving Certificate, and 

whether they have a foreign qualification. Our baseline sample includes 137,708 individuals 

who apply to the CAO in the same year as they sit the Leaving Certificate. We restrict the 

sample to applicants between the ages of 16 and 20 which reduces the sample size by 1,542 

observations. We also drop those who took the Leaving Certificate exams more than once, 

reducing the sample by a further 3,372 observations. In addition, we drop 518 applicants who 

took fewer than six subjects in their Leaving Certificate.14 We omit a few schools that are 

“grinds” schools – private schools that are aimed at students who wish to do just the last year 

(or two years) of high school at an exam-oriented school – as we do not have the requisite 

information to calculate ranks in these schools. This reduces the sample by a further 3,273 

 
13 While it is possible that some of these students put in little effort, it should be noted that all colleges require 

students to pass math so it would be risky for students to put little effort into studying math in case they do not 

pass. 
14 We also delete cases with missing information on high school attended (161 observations) or where the number 

of students taking the Leaving Certificate exams is not available for the school (117 observations), and a further 

76 cases where the grade in English or math is missing. 
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observations. Finally, we drop 1,723 observations that are missing information on preferences 

over college programs. This results in a sample with 126,962 observations. 

We allocate all programs to one of four fields (STEM; Arts and Social Sciences; 

Business, Administration and Law; and other) using the International Standard Classification 

of Education (ISCED).15 While applicants can list up to 10 level 6/7 and 10 level 8 programs, 

in practice, the most important decisions are what programs to place at or near the top of the 

lists. In our main analysis, we focus on the college program listed as first choice by the student. 

If the student listed both level 6/7 and level 8 programs (and so had a preference ordering for 

two distinct lists), we use the first-choice level 8 program, otherwise we use the first-choice 

program on the list used by the student (97% of students list at least one level 8 program).16 

We rank students in math and English based on their Leaving Certificate grades in these 

subjects. They sit the Leaving Certificate exams in June and final college application choices 

must be made by July. Thus, choices are made after sitting the exams but before receiving the 

results. While students do not know their results, we assume that students have an estimate of 

where they rank in the Leaving Certificate achievement distribution for the school-cohort. 

Exams are given throughout the year in each year of high school and “mock Leaving Certificate 

exams” are provided to the student.17 Thus, students have regular feedback on their 

performance in English and math and tend to be aware also about how their classmates are 

 
15 In general, we denote a program as STEM if it is in Natural Sciences, Math, and Statistics (ISCED-05), 

Information and Communication Technologies (ISCED-06), or Engineering, Manufacturing, and Construction 

(ISCED-07); however, following Delaney and Devereux (2019), we adjust the categories slightly as we think 

some programs are more likely to fall under STEM than others. Therefore, we include Dentistry (0911), Medicine 

(0912), Pharmacy (0916), and Veterinary (0841) as STEM and remove Wildlife (0522), Food Processing (0721), 

and Materials (0722). 
16 Typically students list level 6/7 programs as their safe or back up options as these programs generally have 
much lower points requirements. Given that level 8 programs are honours-degree programs and are much more 

selective than level 6/7 non-honours-degree programs, using the highest-ranked level 8 program best captures the 

student’s “dream” program abstracting from the probability of admission. 
17 The “mock” exams are taken about 4 months prior to the Leaving Certificate and are a complete rehearsal for 

the Leaving Certificate. Students sit the full set of exams under the same conditions that they later face in the 

Leaving Certificate. These exams are strongly predictive of actual Leaving Certificate performance and there is 

usually much discussion among class peers about performance in the “mock” exams. 
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performing. They also have feedback from sitting the Leaving Certificate exams. Note that it 

is standard in the literature to assume that students have some perception of their rank even 

though it is not formally reported to them.18  

Consistent with the literature, we use a percentile measure of rank that is calculated as 

follows: 

𝑅𝑎𝑛𝑘 =   
(𝑛𝑖 − 1)

(𝑁𝑖 − 1)
 

where 𝑛𝑖 is the student’s ordinal rank in the subject in the school-cohort and 𝑁𝑖 is the number 

of students in the school-cohort.19 We percentilize the ordinal rank with the above 

transformation because a simple ordinal rank measure would not be comparable across schools 

of different sizes. Our percentile rank measures are approximately uniformly distributed, and 

are bounded between 0 and 1, where 0 denotes the lowest ranked student in a subject in a 

school-cohort and 1 denotes the highest ranked student in a subject in a school-cohort. We do 

separate rankings for math and for English based on grades achieved in these subjects.  

While, as mentioned above, we exclude some observations from our estimating sample, 

such as omitting students aged over 20, we include all students (except repeat students) when 

calculating ranks.20 This is important as otherwise we could erroneously assign a student as top 

ranked if the actual highest ranked student was dropped from the sample due to, for example, 

an age restriction. We know the total number of students who sit the Leaving Certificate exams 

 
18 Given that individuals do not know their exact rank in Leaving Certificate achievement, in practice we will be 

estimating the reduced form effects of perceived rank using actual rank. There is mixed evidence on how perceived 

rank relates to actual rank. Azmat et al. (2019) find that the majority of college students underestimate their rank 

in the grade distribution while Tincani et al. (2020) find that high school students tend to overestimate their school 

rank. To the extent that the actual rank in achievement differs from perceived rank, and that it is perceived rank 
that matters, this would lead our estimates to be attenuated. 
19 In the event of ties, we follow Denning et al. (2018) and assign individuals the average rank. For example, if 

three people are joint top in a school-cohort, we give each of them an ordinal rank of 2 and the next in line then 

has an ordinal rank of 4. Later, we show that our results are robust to instead giving all students who tie, the 

highest ranking or the lowest ranking, amongst the group who are tied. 
20 We drop Leaving Certificate repeaters from the calculation of rank as these students often go to a different 

school to repeat and it is unlikely that non-repeating students compare themselves to repeaters. However, we find 

that the estimates are very similar if we include repeat students.  
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in each school in each year (and the number of these who are repeat students) from data 

provided by the State Examinations Commission (SEC). Thus, we know the number of non-

repeat students in each school in each year. 

The major issue we face in calculating ranks is that we do not know Leaving Certificate 

grades for students who do not apply to college – 83% of Leaving Certificate students apply to 

the CAO. In our main analysis, we assume that those who have not applied to the CAO and, 

so, are not in our sample, come from the bottom of the distribution and would have ranked 

lower in English and math than those who apply. This is not as strong an assumption as it 

appears as even persons who plan to go to college abroad generally also apply to the CAO.21 

So, non-applicants are generally the least academically inclined students.22 To reduce the 

measurement error problem, we remove observations in which less than 75% of the school-

cohort applied to the CAO; this reduces our sample by 18% and reduces the number of school-

cohorts from 2,029 to 1,409. In the remaining schools, over 88% of students apply to the CAO. 

Later in the paper, we provide evidence that remaining measurement error in rank due to non-

applicants is not likely to be large.23 The reduction in measurement error in rank means that 

our results are more likely to be internally valid. We also verify that leaving out schools with 

a low percentage of applicants is unlikely to affect the external validity of our estimates. 

As seen in Appendix Table A1, the grading scheme changed somewhat in 2017. To use 

all available information, we form the ranks in each year using the grades in that year. Both 

math and English are compulsory subjects for Leaving Certificate so there is no selection 

problem due to different students taking different subjects. However, a complication is that 

 
21 In addition, students who plan to defer college (take a gap year) are encouraged to apply anyhow in case they 
change their mind. 
22 We have compared the distribution of grades in math and English in the CAO data with information on the 

distribution of grades for all Leaving Certificate students that is publicly available on the SEC website. Consistent 

with our assumption, we find that students from the top end of the grade distribution are relatively more likely to 

apply to college. 
23 Note that, because we are using administrative data, our grade measures are very accurate and unlikely to 

contain error, so we believe any measurement error in rank will arise because of non-applicants. 
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students can take these subjects at either a higher or lower level, each level has a different exam 

paper and a different mapping from grades to points. As discussed earlier, we believe that it is 

appropriate to rank students who study at higher level above those who study at lower level. 

Within schools, students who do higher level math will likely be perceived as being better at 

math than students in lower level, and so we rank even those who did badly in higher level 

math higher than those who did well in lower level math. Generally, there are separate classes 

for higher and lower level students and, so, it is reasonable that students who do lower level 

assume that they are worse than those who do higher level.24 At each level, we rank those who 

obtain an A1 higher than those who obtained an A2, and rank those who obtain an A2 higher 

than those who obtained a B1, etc. In the robustness checks, we show estimates using 

alternative methods of dealing with the higher and lower level grades. 

Descriptive statistics for our sample are in Table 1. Because we assume that non-

applicants have lower rank than applicants, the average percentile rank in our sample is 0.56 

for both English and math. Two-thirds of applicants list a university program as top choice but 

only 42% end up enrolling in a university.25 Points range from zero to 625 but only 5 students 

(.005% of the sample) score zero points in their Leaving Certificate.  

 

 

 

 

 

 
24 Under the assumption that all higher level students rank above lower level students, it is easier for students to 

know their rank as they only need to know their rank amongst other students at the same level. So, misperception 

of rank is less likely to be a problem if this assumption is reasonable. 
25 During this period, there were seven universities: University College Dublin (UCD), Trinity College Dublin 

(TCD), Dublin City University (DCU), Maynooth University (MU), National University of Ireland, Galway 

(NUIG), University College Cork (UCC), and University of Limerick (UL). The remaining colleges are mostly 

institutes of technology and teacher training colleges. 
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Table 1: Descriptive Statistics 

      

 Mean  SD Min  Max  Observations 

Age  17.40 0.63 16 20 104116 

Year  2015.99 0.81 2015 2017 104116 

Female 0.51 0.50 0 1 104116 

Leaving Certificate Points 385.69 115.76 0 625 104116 

Math Points 49.52 35.02 0 125 104116 

English Points 61.20 20.14 0 100 104116 

Math Rank 0.56 0.26 0 1 104116 

English Rank 0.56 0.26 0 1 104116 

Overall Rank based on Total Points 0.56 0.26 0 1 104116 

List Both Level 7 and 8 Programs 0.66 0.47 0 1 104116 

List Level 7 Programs Only 0.03 0.18 0 1 104116 

List Level 8 Programs Only 0.31 0.46 0 1 104116 

First Choice is a University 0.65 0.48 0 1 104116 

First Choice is STEM  0.30 0.46 0 1 104116 

First Choice is Business and Law 0.21 0.41 0 1 104116 

First Choice is Arts and Social Sciences 0.20 0.40 0 1 104116 

First Choice is Other Field  0.30 0.46 0 1 104116 

Enroll in Top Choice 0.33 0.47 0 1 104116 

Enroll in Any Program 0.73 0.44 0 1 104116 

Enroll in University Program 0.42 0.49 0 1 104116 

Enroll in Top Choice (given enroll) 0.45 0.50 0 1 75939 

Enroll in STEM (given enroll) 0.31 0.46 0 1 75939 

Enroll in Business and Law (given enroll) 0.23 0.42 0 1 75939 

Enroll in Arts and Social Sciences (given 

enroll) 

0.23 0.42 0 1 75939 

Enroll in Other Field (given enroll) 0.22 0.42 0 1 75939 
Sample: Central Admissions Office (CAO) 2015 – 2017 

 

3. Methodology 

Given absolute achievement is highly correlated with school-cohort rank, the key to 

isolating the effect of rank is to control for the absolute level of achievement. We do this 

flexibly by controlling for indicator variables for obtaining each possible grade in English and 

math, both of which are compulsory subjects for Leaving Certificate. We further control for 

academic interests and subject-specific abilities by adding indicator variables for whether the 

student took each of the 25 most popular subjects for Leaving Certificate and further indicators 

for grades achieved in each of the 25 subjects (interacted with indicators for taking the 
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subjects).26 Also, because entry to most college programs is determined by points achieved in 

the Leaving Certificate, we include a quartic function of points. Taken together, these variables 

account for the absolute factors that should influence choice of college major. 

We also include a full set of school-cohort indicators. The inclusion of the school-

cohort indicators is important as, otherwise, our rank estimates could be biased by correlations 

with school-specific factors such as the quality of teachers, facilities, and peers. Conditional on 

grades, students who are highly ranked will tend to be in low-achieving schools, and school 

quality is an omitted variable that could cause bias. Therefore, it is important to include school-

cohort fixed effects as these eliminate all the potential confounders mentioned above by 

absorbing all mean differences between school-cohorts (see Murphy and Weinhardt (2020) for 

further discussion on this point). 

 

Identification of rank effects when including school-cohort indicators  

Given we include grade indicators and school-cohort indicators, rank effects are 

identified due to the exclusion of interactions between grade indicators and school-cohort 

indicators. For simplicity, consider identifying the effect of a single subject rank (the effect of 

rank in math). We abstract from individual-level variation and consider variation by school-

cohort (c) and by math grade (g) as math rank for any individual depends only on their school-

cohort and their math grade. Denoting the percentile rank in math as 𝑅𝑀, we write the 

relationship between the outcome and math rank as 

𝑌𝑐𝑔 = 𝛼 + 𝛽𝑅𝑀𝑐𝑔 + 𝑣𝑐𝑔 .    (1) 

Then, the critical identifying assumption is that 

 
26 While English, mathematics, and Irish are compulsory subjects for Leaving Certificate, students choose an 

additional 4 or 5 subjects. These choices (for example, choosing physics rather than history) provide a lot of 

information about academic interests. Additionally, grades in these subjects (in addition to grades in English and 

mathematics) provide much information about student ability across a range of subjects. Taken together, we 

believe that the subject choices and grades provide a rich set of controls for achievement and academic interests. 
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𝐸(𝑣𝑐𝑔|𝑐, 𝑔) = 𝛾𝑔 + 𝜃𝑐.     (2) 

This assumption states that differences in the outcome variable across combinations of math 

grades and school-cohorts can be summarized by an additive school-cohort effect and an 

additive grade effect. If the outcome is choosing STEM, it allows STEM probabilities to differ 

systematically across school-cohorts and to differ systematically by math grades. However, it 

posits that, other than math rank, functions of interactions between school-cohorts and math 

grades do not belong in the model. This allows the identification of math rank from cases where 

differences in math rank across grades are not homogenous across schools. Given the 

assumption in (2), the presence of indicators for subject grades and indicators for school-cohort 

provide consistent estimation of subject rank effects. 

For example, consider two schools that have the same distribution of English grades. 

Given that the distribution of English grades is the same in both schools, there is no variation 

in English rank conditional on grade indicators and so we cannot identify the effect of English 

rank. Suppose, however, that the math grade distribution differs between the two schools and 

that going from an A grade to a C grade in math in one school leads to math rank falling by 

0.5; while going from an A to a C in math in the other school leads to math rank falling by 

0.25. We have identifying variation in math rank as the differences in math rank between the 

two schools is not the same for each math grade. That is, so long as math rank cannot be written 

as the sum of a school-cohort effect and a math grade effect, the effect of math rank is 

identified.  

 

Estimating Equation 

We use the following linear specification (later, we also show estimates for a non-linear 

specification): 

𝑌𝑖𝑐 = 𝛼 + 
1

𝑅𝑀𝑖𝑐 + 
2

𝑅𝐸𝑖𝑐 + 𝑋 +  𝑐 + 𝑖𝑐 ,   (3) 
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where 𝑌𝑖𝑐 represents the college field choice of individual 𝑖 in school-cohort 𝑐, 𝑅𝑀 is the 

percentile rank in math, 𝑅𝐸 is the percentile rank in English,  𝑋 includes a vector of controls 

including age and gender and the controls for grades in math and English, Leaving Certificate 

subject choices and subject-specific grades, and Leaving Certificate points described above, 

and 𝑐 represents school-cohort fixed effects. We also include a control for overall rank as 

measured by the within school-cohort percentile rank based on total Leaving Certificate points. 

This allows us to isolate the effect of math and English rank abstracting from any effect of 

overall rank. Omitting the control for overall rank might lead us to ascribe the effects of overall 

rank to math rank or English rank.27 As we show later, whether or not we include this variable 

has very little effect on our estimates. We cluster the standard errors at the school level and, 

so, allow for both serial and school level correlation in the errors. 

 Appendix Figure A1 shows that there is a distribution of ranks at each grade level for 

English and math. Each box plot displays the distribution of the subject rank for a particular 

subject grade. The variation in subject rank is strongest in the middle of the grade distribution 

as students with mediocre grades are widely dispersed in terms of rank due to variation in the 

grades of their peers. There is less variation in rank at the highest level of achievement. 

Appendix Table A2 shows the variation in the residual after regressing rank on school-cohort 

indicators, gender, age indicators, and our achievement controls. We find that the standard 

deviation in rank is approximately 0.05 for each of our rank measures, which is non-trivial 

given that rank is bounded between 0 and 1. Math rank and English rank are positively 

correlated, the correlation coefficient is 0.55. 

We consider subject ranks to be predetermined at the point that students make final 

decisions about college major in July. At that point, while students have not received their 

 
27 The correlation between math rank and overall rank is 0.82 and that between English rank and overall rank is 

0.75. 
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Leaving Certificate results, they have completed the exams and have also received a lot of 

feedback about their likely performance from in-school tests and, as described earlier, from the 

“mock Leaving Certificate examinations” done earlier in the year. While students are not made 

explicitly aware of their class rank, we assume, in common with the literature, that they are 

aware of their rank from repeated interactions with other students. Indeed, we believe that 

achievement rank will generally be more salient than ability rank as it is repeatedly revealed 

through test performance. 

 Grades may be a function of many factors including ability at the start of high school, 

quality of teaching, study habits of the student, effects of peers on human capital accumulation, 

and effects of desired field of study on effort in math and English. Therefore, by controlling 

for grades, our rank estimates measure the effect of rank conditional on achievement at the end 

of high school. 

A potential problem is that students who desire to do STEM may work harder at math 

and students who desire to do ASSc may work harder at English. This type of motivation would 

constitute a potential omitted variable bias as desire for STEM is correlated with the outcome 

variable (choosing STEM) and is also correlated with grades in math and English and, hence, 

with rank in these subjects. This will not lead to bias so long as these unobserved preferences 

are captured by our controls for achievement so that there is no correlation between desire for 

STEM and rank in math, conditional on achievement controls. Note that we also control for 

Leaving Certificate subject choices and subject grades. These should absorb much of the effect 

of desired field of study as those who are motivated to do STEM may be likely to choose 

STEM-friendly subjects in high school such as physics or chemistry and, conditional on subject 

choices, may get better grades in these subjects. 
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A second potential issue is that of peer effects. Subject rank is a type of peer effect, but 

peers may also influence choice of college major in other ways. We approach this potential 

issue in several ways: firstly, we control for school-cohort fixed effects which account for any 

peer effects that have the same effect on all students; secondly, in our robustness checks, we 

capture potential non-linear peer effects by controlling for interactions of math and English 

grades with the mean and standard deviation of subject achievement in the school-cohort.28 

The results are robust to accounting for these non-linear peer effects. 

 

Choice of Dependent Variables 

 Our main specifications focus on the field of the top ranked level 8 program listed (or 

level 6/7 program if the student lists no level 8s) because that is likely to reflect the program 

that is most preferred by the student. The college admissions allocation mechanism used in 

Ireland is a “serial dictatorship” allocation mechanism – the algorithm allocates the applicant 

with the highest points his/her first preference, then the second-ranked applicant gets an offer 

for his/her top ranked program amongst those still available, and so on. Candidates are accepted 

to the highest ranked program for which they have sufficient points for admission. If the student 

has points equal to or above the minimum for their first-ranked program, they are offered that 

program. If not, they are offered the highest ranked program for which they have enough 

points.29 As shown by Svensson (1999), this type of allocation mechanism is strategy-proof 

and induces applicants to provide a ranking that reflects their preferences if additional choices 

are costless and there are no limits on how many programs students can rank. The logic is that 

there is no cost to listing the most preferred program first as, if the applicant does not receive 

 
28 These controls allow for peer effects to be heterogeneous by individual achievement. See Booij et al. (2017) 

and Bertoni and Nistico (2019). 
29 A student can be offered both a level 6/7 and a level 8 program if they list programs on both lists. 
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enough points to be admitted to that program, they are then considered for their second-choice 

program, and so on. 

In our setting, students can list 20 choices on the CAO form (10 choices for each of 

level 6/7 and 8 programs) and empirically we find students do not exhaust this full list of 

choices – just 26% list all 20 choices. In addition, marginal applications are costless – it costs 

the same to list 20 programs as it does to list a single program. Because students can only rank 

a finite number of programs, it may be optimal for them to include programs towards the end 

of the preference list that are less preferred than some omitted programs but for which there is 

a very high probability of admittance for the student. However, there is no reason not to list 

their most-preferred program as first choice unless they believe that they have zero probability 

of obtaining this program.30 Therefore, by focusing on the top ranked choice, we are most likely 

studying the program that is most preferred by the student. However, we also show robustness 

checks where we study second and third choices as well as the proportion of all program 

choices that are in a particular field. 

 

4. Results 

It is well established that English and math grades are predictive of choice of college 

field with an emphasis in the literature on how they affect whether students choose to do STEM 

(Speer, 2017; Card and Payne, 2017; Delaney and Devereux, 2019; Aucejo and James, 2019). 

In this section, we advance this literature by studying whether, conditional on a broad array of 

student achievement measures, within school-cohort ranks in English and math are associated 

 
30 Also, the CAO illustrate on their website that, when filling out the forms, students should list their “dream” 

programs in their top choices, “more realistic” programs as their middle choices, and “banker” programs for which 

they are more certain of acceptance further down the list. 
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with field choice. Our expectation is that persons with a higher rank in math and/or a lower 

rank in English may be more likely to choose a STEM program. Likewise, a higher rank in 

math and/or a lower rank in English may be associated with a lower likelihood of choosing 

Arts and Social Sciences (ASSc). 

Table 2 reports our estimates for the effect of rank in these subjects on field choice. A 

one decile increase in math rank leads to a 1 percentage point increase in the probability of 

listing STEM as first preference and a 0.7 percentage point decline in the probability of listing 

ASSc. These compare to baseline first preference probabilities of 0.30 and 0.20, respectively. 

On the other hand, a one decile increase in English rank decreases the probability of listing 

STEM by 0.4 percentage points and increases the probability of listing ASSc by 0.7 percentage 

points. We find small effects of math and English ranks on listing a Business Administration 

and Law (BAL) major and on listing a major from some other field, and none of the rank 

coefficients for these fields are statistically significant at the 5% level. We conclude that math 

and English ranks affect college major choice mainly through their effects on choosing STEM 

and Arts and Social Sciences. Given that we are controlling for absolute achievement at the 

end of high school, we consider the magnitudes of the school-cohort rank effects to be 

important and they suggest meaningful behavioral responses to within school subject rank.31 

 

 

 

 

 

 

 

 
31 Elsner et al. (2019) find that, in a Dutch business school, a one decile increase in rank in a teaching section in a 

compulsory subject increases the probability of subsequently choosing to major in that subject by 1 percentage 

point. Our estimates are similar in magnitude to theirs. 
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Table 2: Effect of Rank in Math and English on First Preference Field of Study 

 (1) (2) (3) (4) 

VARIABLES STEM BAL Arts & Social Other  

     

Math Rank 0.103*** 0.025 -0.066** -0.062* 

 (0.029) (0.027) (0.029) (0.034) 

English Rank -0.044* 0.006 0.069*** -0.031 

 (0.025) (0.022) (0.026) (0.028) 

     

Observations 104,116 104,116 104,116 104,116 

R-squared 0.312 0.197 0.170 0.178 

Mean Outcome 0.299 0.208 0.197 0.296 
Robust standard errors clustered by school are in parentheses. *** p<0.01; ** p<0.05; * p<0.10. Age, gender, indicator 
variables for grades in math and English (interacted with 2017), subject indicators, grades in all subjects, overall rank and a 
quartic in points (interacted with 2017) and school-cohort fixed effects included in all regressions. Subject fixed effects are 

indicators for doing each of the 25 most popular subjects for Leaving Certificate. Grade fixed effects are grades in these 25 
subjects (interacted with an indicator for doing the subject). The dependent variable equals 1 if the first-choice college program 
is in the field and equals 0 otherwise. 

 

4.1 Heterogeneous Effects 

Given our estimates in Table 2 show that math rank and English rank are particularly 

significant for STEM and Arts and Social Sciences (ASSc), in the rest of the paper, for 

parsimony, we focus our analysis on these two fields. We examine heterogeneous effects across 

the subject rank distribution, by gender, and by size of school. 

 

Non-linearities 

We replace the linear subject rank variables with indicator variables for being in each 

ventile of the rank distributions plus indicators for being the top person(s) in the subject in the 

school-cohort, with the 10th ventile being the omitted category. We plot the estimates and 95% 

confidence intervals in Figure 1. The effect of subject rank is approximately linear for Arts and 

Social Sciences and is also close to linear for the effect of math rank on STEM. In contrast, we 

only see a negative effect of English rank on STEM in the top half of the English rank 

distribution; the relationship is quite flat in the bottom half of the distribution. 
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Figure 1: Effect of Rank Ventiles and Top Ranked Person in Math and English on First 

Preference Field of Study 
 

 

 

Estimates from regressions where subject rank is entered in ventiles, with an additional category for the top 

ranked person(s). The omitted category is the 10th ventile. Point estimates and 95% confidence intervals are 

shown. 
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Effects by Gender 

 There are several reasons why the effects of rank may differ by gender.32 To estimate 

differential effects by gender, we interact English and math rank with indicators for male. We 

also include interactions of gender with grade indicators for English and math to take account 

of correlations between subject rank and absolute achievement in the subject. We plot the 

estimates and 95% confidence intervals in Figure 2. We find that the effect of math rank on 

STEM is larger for boys than for girls (0.11 versus 0.06) but this difference is not statistically 

significant. Likewise, there is a negative effect of English rank on STEM of -0.08 for boys 

while the effect is effectively zero for girls (the gender difference is significant at the 5% level). 

This is consistent with previous literature that found larger effects of rank for males than 

females (Murphy and Weinhardt, 2020).33 Interestingly, this effect only appears for the effect 

of subject rank on choosing STEM. There do not appear to be any large gender differences in 

the effect of math or English rank on choosing Arts and Social Sciences.  

These findings may relate to differential gender norms in which females are less 

expected to choose STEM and are less confident about their ability to succeed in STEM at 

college. Another possible explanation is that girls are more mature and pay less attention to 

relative rank in school (as they should) when making choices.34 The gender differences for rank 

relate somewhat to previous findings about the responsiveness of STEM choice to absolute 

performance in English and math. Delaney and Devereux (2019) find that boys are more likely 

to make decisions on STEM based on their comparative advantage in English and math 

 
32 A large literature has found that behavior of boys and girls differs along many dimensions with several papers 

finding that girls are less competitive than boys (Buser et al. 2017), are more risk averse (Reuben et al. 2015), are 

more sensitive to grades (Rask and Tiefenthaler, 2017), and are less confident in math (Bordalo et al. 2019). 
33 Elsner et al. (2019) find that the effect of rank on study effort is larger for males in a college tutorial setting. 

However, Denning et al. (2018) find no evidence of gender heterogeneity in their study of Texas schools. 
34 Delaney and Devereux (2020b) find that girls appear to make more sensible decisions than boys when applying 

to college in Ireland. 
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whereas girls are more likely to focus purely on their absolute advantage in math and do not 

respond much to their English grades. 

Figure 2: Effect of Rank in Math and English on First Preference Field of Study by 

Gender  

 

 

 

Estimates from regressions where subject rank is interacted with gender. Point estimates and 95% confidence 
intervals are shown. 

 
 
 

Heterogeneity by Size of Schools 

 Subject rank may be more salient in smaller schools. We restrict the sample to school-

cohorts with at most 60 students to examine this as these school-cohorts typically have at most 
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two classes.35 Consistent with our prior, Table 3 shows that the subject rank estimates for 

STEM are much larger in absolute value for the small schools while there is little difference in 

the effect of subject ranks on ASSc by school size; however, while some of the differences are 

substantial, none of them are statistically significant.36 Our finding of larger coefficient sizes 

in small schools is consistent with rank being more observable in these schools and suggests 

that our estimates may be attenuated in the full sample due to misperceptions of rank by 

students. 

Table 3: Effect of Rank in Math and English on First Preference Field of Study by School 

Size  

 Size<=60 Size>60 

 (1) (2) (3) (4) 

VARIABLES STEM Arts & Soc STEM Arts & Soc 

     

Math Rank 0.184*** -0.098 0.083** -0.057* 

 (0.063) (0.064) (0.034) (0.033) 

English Rank -0.097* 0.045 -0.026 0.066** 

 (0.053) (0.050) (0.028) (0.030) 

     

Observations 14,739 14,739 89,377 89,377 

R-squared 0.330 0.217 0.314 0.167 
Robust standard errors clustered by school are in parentheses. *** p<0.01; ** p<0.05; * p<0.10. Age, gender, indicator 
variables for grades in math and English (interacted with 2017), subject indicators, grades in all subjects, overall rank and a 
quartic in points (interacted with 2017) and school-cohort fixed effects included in all regressions. Subject fixed effects are 
indicators for doing each of the 25 most popular subjects for Leaving Certificate. Grade fixed effects are grades in these 25 

subjects (interacted with an indicator for doing the subject). The dependent variable equals 1 if the first-choice college program 
is in the field and equals 0 otherwise. 

 

 

Interaction of Subject Ranks 

 It may be the case that choice of college major depends on the interaction between math 

rank and English rank. We test for this by interacting math and English rank in the regression 

(and also controlling for interactions between math and English grades). The results displayed 

 
35 Students in small schools may still have different classmates for math and English depending on whether they 

study higher or lower level. 
36 We find a similar pattern if we look at school cohorts with at most 50 students or 70 students. One might expect 

rank effects to be particularly salient in school-cohorts with fewer than 30 students, so only one class. There are 

too few of these schools in our sample to test this possibility. 
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in Table A3 in the appendix show that the interaction term is small and insignificant for STEM 

but there is a positive and statistically significant interaction effect for Arts and Social Sciences. 

Therefore, there exist important cross subject rank effects for Arts and Social Sciences – the 

effect of English rank on choosing ASSc is greater for people with higher math rank, and the 

effect of math rank on ASSc is less negative for students with higher English rank. 

 

5. Robustness checks 

We do a series of robustness checks. For brevity, we focus on our main outcomes of 

interest – whether the student lists STEM or Arts and Social Sciences as their first preference. 

Moving Beyond First Preference 

 As discussed in Section 3, our main specifications focus on the field of the top ranked 

level 8 program listed (or level 6/7 program if the student lists no level 8s) because that is likely 

to reflect the program that is most preferred by the student. However, we now show additional 

specifications where the dependent variable is the field of the student’s second choice, field of 

the third choice, the proportion of the top 3 choices that are in the field, as well as the proportion 

of all choices (including both levels if both level 6/7 and level 8 programs are listed) that are 

in a specific field.37 The estimates are in Appendix Table A4. 

When we look at the field of the second and third choice programs, the magnitude of 

the coefficients tend to be smaller than for first choices, but the overall pattern remains the 

same. Looking at the proportion of the top 3 choices that are in the field or the proportion of 

all choices listed that are STEM or Arts/Social Sciences gives very similar results to those 

 
37 As before, we use the level 8 choices if the student lists both level 6/7s and level 8 programs. 45% of enrolees 

enter their top choice program, 15% enter their second choice, and 9% enter their third choice. So, in total, about 

70% of enrolees enter one of their top 3 choices. Therefore, the top 3 choices provide a good description of what 

matters. However, we also report estimates for the proportion of all choices that are in the field for completeness. 
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using the first-choice level 8 program. We conclude that our findings are not simply an artifact 

of our focus on the top ranked choice. 

Calculating Rank when there are non-applicants 

 While we restrict our sample to school-cohorts where at least 75% of students apply to 

the CAO, there remains a concern about our assumption that non-applicants are lower-ranked 

than applicants. As a test of our assumption, we have experimented by assuming that a 

proportion of non-applicants are missing at random rather than coming from the bottom of the 

distribution. We first assume that all non-applicants are missing randomly. This is an extreme 

assumption that we do not think is realistic; however, it informs about how important the 

treatment of non-applicants could be for our estimates. The estimates displayed in column (1) 

of Table 4 are very similar to those assuming that non-applicants are lower-ranked than 

applicants. In columns (2) – (4) of Table 4, we allow various combinations of the proportion 

of non-applicants assumed to come from the bottom of the grade distribution and the proportion 

assumed to be missing randomly. In each case, we find very similar estimates. We conclude 

that our assumption about the ranks of non-applicants is not crucial for our estimates.  

How we deal with ties 

In our main analysis, we assign ties the average rank so, for example, if 3 people have 

the highest score in a school-cohort, we assign an ordinal rank of 2 to each of them. In column 

(5) of Table 4, we show estimates where, instead, we assign the highest rank to ties, for 

example, if 3 people have the highest score, they would all be assigned an ordinal rank of 1 

rather than an ordinal rank of 2. Column (6), on the other hand, shows the effect of assigning 

the lowest rank to ties. In each case, we find that the estimates are quite robust to the way we 

deal with ties. 
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Using Points in English and Math to assign ranks 

 Admission to college depends on Leaving Certificate points obtained. An alternative to 

using subject grades to assign ranks in English and math would be to use the points assigned 

to each grade for that subject (see Appendix Table A1 for the mapping from subject grades to 

points). In column (7) of Table 4, we show that using points to calculate rank tends to reduce 

the estimates slightly. This is unsurprising as we believe that our original assumption that 

students consider persons who do higher level to be better than those doing lower level provides 

a better measure of subject rank.38     

 
38 We have also evaluated the extent to which our rank effects may be picking up the effect of doing the subject 

at different levels by adding rank in levels in math and English as controls to our regression. We find that the 

resulting estimates are similar to our main estimates in Table 2. 
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Table 4: Robustness Checks – Measurement of Rank  

 (1) (2) (3) (4) (5) (6) (7) 

VARIABLES Assume non-

applicants 

random 

Assume 50% of 

non-applicants 

random  

Assume 30% of 

non-applicants 

random  

Assume 70% of 

non-applicants 

random  

Ties (Highest 

Rank) 

Ties 

(Lowest 

Rank) 

Using Points 

for Rank 

 

First Preference Field of Study is STEM 
 

Math Rank 0.106*** 0.107*** 0.108*** 0.107*** 0.083*** 0.099*** 0.085*** 

 (0.027) (0.028) (0.028) (0.029) (0.028) (0.027) (0.029) 

English Rank -0.051** -0.049** -0.049** -0.047* -0.025 -0.053** -0.038 

 (0.024) (0.025) (0.024) (0.025) (0.022) (0.024) (0.026) 

        

R-squared 0.312 0.312 0.312 0.312 0.312 0.312 0.312 

Observations 104,116 104,116 104,116 104,116 104,116 104,116 104,116 

Mean Outcome 0.299 0.299 0.299 0.299 0.299 0.299 0.299 
 

First Preference Field of Study is Arts and Social Sciences 
 

Math Rank -0.034 -0.054* -0.047* -0.060** -0.066** -0.051* -0.064** 

 (0.027) (0.028) (0.027) (0.028) (0.027) (0.027) (0.029) 

English Rank 0.085*** 0.076*** 0.080*** 0.072*** 0.049** 0.071*** 0.058** 

 (0.023) (0.025) (0.024) (0.025) (0.023) (0.024) (0.026) 

        

R-squared 0.170 0.170 0.170 0.170 0.170 0.170 0.170 

Observations 104,116 104,116 104,116 104,116 104,116 104,116 104,116 

Mean Outcome 0.197 0.197 0.197 0.197 0.197 0.197 0.197 
Robust standard errors clustered by school are in parentheses. *** p<0.01; ** p<0.05; * p<0.10. Age, gender, indicator variables for grades in math and English (interacted with 2017), subject 

indicators, grades in all subjects, overall rank and a quartic in points (interacted with 2017) and school-cohort fixed effects included in all regressions. Subject fixed effects are indicators for doing 
each of the 25 most popular subjects for Leaving Certificate. Grade fixed effects are grades in these 25 subjects (interacted with an indicator for doing the subject). The dependent variable equals 
1 if the first-choice college program is in the field and equals 0 otherwise. Columns (1) – (4) vary the proportion of non-applicants assumed to be missing randomly; remaining non-applicants are 
assumed to come from the bottom of the distribution. 
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Table 5: Robustness Checks – Specification Checks  

 (1) (2) (3) (4) (5) (6) (7) 

VARIABLES Omit Overall 

Rank 

Omit English 

Rank 

Omit Math Rank Interact Grades 

with School 

Characteristics 

Interact Grades 

with Mean 

Achievement  

Interact Grades 

with SD of 

Achievement 

Triple Interact 

Grades with 

mean and SD of 

Achievement 

First Preference Field of Study is STEM 

 

Math Rank 0.087*** 0.103***  0.125*** 0.169*** 0.080** 0.134*** 

 (0.027) (0.029)  (0.031) (0.035) (0.031) (0.039) 

English Rank -0.052**  -0.044* -0.040 -0.043 -0.051* -0.055 

 (0.024)  (0.025) (0.027) (0.031) (0.028) (0.035) 

        

R-squared 0.312 0.312 0.312 0.317 0.313 0.313 0.315 

Observations 104,116 104,116 104,116 104,116 104,116 104,116 104,116 

Mean Outcome 0.299 

 

0.299 

 

0.299 

 

0.299 
 

0.299 

 

0.299 

 

0.299 

 

First Preference Field of Study is Arts and Social Sciences 

 

Math Rank -0.114*** -0.066**  -0.058* -0.070** -0.105*** -0.093** 

 (0.026) (0.029)  (0.031) (0.032) (0.030) (0.038) 

English Rank 0.045*  0.069*** 0.079*** 0.102*** 0.076** 0.069* 

 (0.025)  (0.026) (0.024) (0.031) (0.029) (0.038) 

        

R-squared 0.170 0.170 0.170 0.175 0.171 0.171 0.172 

Observations 104,116 104,116 104,116 104,116 104,116 104,116 104,116 

Mean Outcome 0.197 0.197 0.197 0.197 0.197 0.197 0.197 
Robust standard errors clustered by school are in parentheses. *** p<0.01; ** p<0.05; * p<0.10. Age, gender, indicator variables for grades in math and English (interacted with 2017), subject 
indicators, grades in all subjects, overall rank and a quartic in points (interacted with 2017) and school-cohort fixed effects included in all regressions. Subject fixed effects are indicators for doing 
each of the 25 most popular subjects for Leaving Certificate. Grade fixed effects are grades in these 25 subjects (interacted with an indicator for doing the subject). The dependent variable equals 
1 if the first-choice college program is in the field and equals 0 otherwise. 
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Omitting Overall Rank 

 In column (1) of Table 5, we omit the control for overall rank as measured by the within 

school-cohort percentile rank of total Leaving Certificate points. We included this variable 

because omitting the control for overall rank might lead us to ascribe the effects of overall rank 

to math rank or English rank. When we exclude this variable as a control, we obtain quite 

similar estimates to those in Table 2, suggesting that this is not a major concern. 

Omitting Subject Rank 

 In columns (2) and (3) of Table 5, we omit controls for rank in English and math, 

respectively. Given the correlation between these two variables is 0.55, it is interesting to see 

how this impacts their coefficients. We see that it has very little effect on the estimates.  

Interacting School Characteristics with Grades 

 We saw earlier that subject rank effects are identified in our model so long as subject 

rank cannot be written as an additive function of school-cohort indicators and subject grade 

indicators. As such, there are numerous sources of identification including differences in mean 

achievement across school-cohorts, differences in variances of achievement across school-

cohorts, and differences in higher-order moments across school-cohorts. In this set of 

robustness checks, we eliminate some of these sources of variation to see how this affects the 

estimates.  

First, we interact math and English grades with school characteristics -- school-cohort 

size terciles, whether it is a mixed-sex school, and the type of school (whether it is a fee-paying 

school, whether it is a DEIS (disadvantaged) school, and whether it is a Secondary, Vocational, 

Comprehensive, or Irish-language school).39 By interacting subject grades with these school-

 
39 There are several different types of post-primary schools in Ireland including secondary schools (both non-fee-

paying and fee-paying), vocational schools, and community or comprehensive schools. Most students attend 
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type indicators, we eliminate certain types of identifying variation such as from a particular 

math grade in a fee-paying school leading to lower rank than the same math grade in a 

disadvantaged (DEIS) school.40 In column (4) of Table 5, we see the estimates are robust to 

this change in specification.  

In column (5), we remove identifying variation that comes from mean differences in 

achievement in math and English across school-cohorts by interacting grades in each subject 

with mean achievement in that subject in the school-cohort.41 This leads to a slight increase in 

the positive math rank effect of STEM and a slight increase in the positive English rank effect 

for ASSc. In column (6), we similarly eliminate identification coming from differences in the 

standard deviation of achievement across school-cohorts and find that this has very little impact 

on outcomes. Finally, in column (7), we include interactions of subject grades with both the 

mean and the standard deviation of subject achievement in the school-cohort and, further, 

include triple interactions of subject grades with the mean and standard deviation of subject 

achievement in the school-cohort. Once again, we find quite similar estimates. This is 

reassuring as it suggests that our rank effects are robust to relying on identification from higher-

order and idiosyncratic variation in subject grade distributions across school-cohorts.42 

 
secondary schools. These are privately owned and managed but largely funded by the state. Most do not charge 

fees, but there is a set of secondary schools that are partially funded by student fees (typically around €6,000 per 

year) and tend to attract students from disproportionately affluent backgrounds. Vocational schools and 

community colleges are owned by the local Education and Training Board. They do not charge fees and tend to 

focus more on technical education than secondary schools. Community or comprehensive schools were often 

established through the amalgamation of secondary and vocational schools. These are all free, are fully funded by 

the state, and offer a wide range of academic and technical subjects. Many schools that attract students from 

relatively deprived backgrounds have been designated as “DEIS” schools and these receive extra supports from 

the state (somewhat lower pupil-teacher ratios and extra state funding for other purposes). Irish-medium post-

primary schools, “Gaelscoileanna”, have become more common in recent years and teach all subjects through the 

Irish language. See Doris et al. (2019) for further information about Irish post-primary schools. 
40 Delaney and Devereux (2020c) have shown that there are large differences in college application behaviour 

across these school types with students from advantaged schools displaying more ambition.  
41 We calculate mean achievement in each subject by translating grades into points (see Appendix Table A1) and 

calculating the average points in the subject in the school-cohort. 
42 Also, these additional controls capture many types of non-linear peer effects and, so, make it less likely that our 

rank estimates are confounded by some type of non-linear peer effect. See Booij et al. (2017) and Bertoni and 

Nistico (2019). 
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Balancing Tests 

Our assumption is that, conditional on the controls, subject ranks are orthogonal to other 

factors that affect college major choice. Given rank is not randomly assigned, this cannot be 

guaranteed. We have information on two predetermined student characteristics – age and 

gender – and we do balancing tests using these as dependent variables. We also use these 

variables to create variables for predicted STEM probability and predicted Arts and Social 

Science (ASSc) probability by regressing college major choices on gender, age, school-cohort 

indicators, and the controls for absolute achievement. In Appendix Table A5, we show that 

while subject ranks have no predictive power for student age, there is a negative relationship 

between math rank and female. Likewise, math rank is related to predicted STEM (but not to 

predicted ASSc). Reassuringly, the effect of math rank on predicted STEM is very small (-

0.005). This is about 20 times smaller than the effect of math rank on STEM (Table 2) and is 

also opposite in sign. In any case, we control for gender and age in all regressions.43 

Enrollment Effects 

So far, we have analyzed the college program listed as first choice by applicants. Next, 

we verify that we find similar results if we use the sample of persons who accept a program 

and enroll in college (73% of applicants). There are many reasons why applicants may not end 

up enrolling in college. They may not satisfy the program requirements and required points for 

any of their listed college programs and thus may not be offered any college program.44 

Alternatively, students may decide not to enter college despite being offered a college program. 

One reason is that the student was not offered their first choice (about 80% of non-enrolees 

 
43 We test whether gender affects our estimates by excluding controls for gender from the regression and find that 

the estimates are not sensitive to the exclusion of gender. This suggests that any correlation between gender and 

rank has minimal effect on our rank estimates.   
44 While we do not have data on what college programs were offered (with the exception of the program enrolled 

in), we can infer programs that were offered based on a combination of Leaving Certificate points and the program 

required points cut-offs. Using this information, we find that, of those who did not enrol in any college program, 

30% were not offered a program. 
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were not offered their top choice) or preferred field of study and so decided to repeat the 

Leaving Certificate exams and reapply the following year. Students may also decide to study 

abroad (as discussed earlier, students generally apply to the CAO even if they also apply and 

prefer to go abroad). In addition, there are Post Leaving Certificate (PLC) courses which cater 

to students who are less academically inclined and offer a mixture of practical work, academic 

work, and work experience. Finally, many students decide to enter the labour force without any 

further education. 

In theory, the effect of rank on the enrolled field of study may differ from that for first 

preferences as there may be selection in terms of the students that end up going to college and, 

additionally, those with different ranks may choose to list programs differently on the CAO 

form. For example, those who are higher ranked might be more ambitious and more likely to 

list programs for which they are unlikely to get sufficient points.  

Table 6 shows the regression results when restricting the sample to students who enroll 

in a program. In columns (1) and (2), the dependent variable is the type of college program 

accepted by the student. The results for math rank on STEM enrollment are similar to those for 

having STEM as first preference. However, the effect of English rank is smaller and no longer 

significant while, for ASSc enrollment, math rank has a larger negative effect. These 

differences could result from our more selected sample as we only include persons who enroll 

in a college program. We examine this in columns (3) and (4) by showing estimates for first 

preference field of study for the sample who enroll. These estimates are quite similar to those 

for the full sample, suggesting that subject rank may have slightly different effects on field of 

study enrollment than it does on first preference field of study.45 

 

 

 
45 There is no effect of English or math rank on whether a student enrolls in college. Therefore, our results are not 

due to rank affecting overall enrollment. 
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Table 6: Rank in Math and English on Field of Study Enrollment 

 Effect on Enrollment in 

Field of Study  

Effect on First Preference 

Field of Study for 

Enrollment Sample 

 (1) (2) (3) (4) 

VARIABLES STEM Arts & Soc STEM Arts & Soc 

     

Math Rank 0.089** -0.109*** 0.082** -0.074** 

 (0.034) (0.037) (0.033) (0.034) 

English Rank -0.016 0.059** -0.044 0.055* 

 (0.029) (0.028) (0.028) (0.030) 

     

Observations 75,939 75,939 75,939 75,939 

R-squared 0.338 0.206 0.343 0.181 
Robust standard errors clustered by school are in parentheses. *** p<0.01; ** p<0.05; * p<0.10. Age, gender, indicator 

variables for grades in math and English (interacted with 2017), subject indicators, grades in all subjects, overall rank and a 
quartic in points (interacted with 2017) and school-cohort fixed effects included in all regressions. Subject fixed effects are 
indicators for doing each of the 25 most popular subjects for Leaving Certificate. Grade fixed effects are grades in these 25 
subjects (interacted with an indicator for doing the subject). The dependent variable equals 1 if the first-choice college program 
is in the field and equals 0 otherwise. The sample is restricted to students who enroll in a college program. 

 

 

External Validity 

Our sample is restricted to school-cohorts in which at least 75% of students apply to 

college. While this restriction reduces measurement error in the subject ranks and maintains 

internal validity, it may imply that our estimates are not representative of Irish high school 

students in general. We address this issue using inverse-probability weighting, using 

observable characteristics of school-cohorts to generate the weights. 

We calculate weights using the following procedure: First, we carry out a school-cohort 

level logit regression in which the dependent variable is an indicator for whether the school-

cohort is included in our estimation sample. So that the estimates from the logit are 

representative of students, we weight each observation by the number of students who sit the 

Leaving Certificate in that school-cohort. The controls we include to predict sample inclusion 

are school-cohort size terciles, whether it is a mixed-sex school, and the type of school – 

whether it is a fee-paying school, whether it is a DEIS school, and whether it is a Secondary, 

Vocational, Comprehensive, or Irish-language school. Using the estimated logit coefficients, 
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we form the propensity score and use this to weight our 75%+ sample by (
1

𝑝
), where p is the 

estimated propensity score.46 This re-weighting makes the students in our sample more similar 

to students in general by putting relatively more weight on students who are in school-cohorts 

that are similar to school-cohorts that are excluded from our sample. Reassuringly, we find 

similar results (shown in Appendix Table A7) to our main estimates in Table 2. 

 

Varying the School-level Application Threshold 

We restrict the sample to schools in which at least 75% of applicants apply to college 

to reduce measurement error in the subject ranks. However, our choice of 75% is quite arbitrary 

and, therefore, we do additional robustness checks to examine the sensitivity of our estimates 

to varying the threshold. Appendix Table A8 shows the results where we limit the sample to 

schools with at least 50%, 65%, 85%, or 90% of students being college applicants. We find 

that the estimates are lower when we decrease the CAO-proportion threshold which is likely 

due to greater measurement error in subject rank when we have greater numbers of non-

applicants. On the other hand, as we increase the threshold, the sample size decreases, and we 

have larger standard errors. Overall, the difference in estimates is not very large across these 

different samples, suggesting that the choice of a 75% threshold is not important to our 

findings. 

 

 6. Math and English Rank and the Gender Gap in STEM 

In this section, we examine whether differential ranks in English and math by gender 

have significant explanatory power for the gender gap in the choice of STEM as a college 

major. There are two stylized facts that may be influenced by math and English rank (see 

 
46 The logit model has strong predictive power. The pseudo R2 is 0.29 and the predicted probability of being in 

the sample is over 0.5 for 84% of sample members. The estimates are shown in Appendix Table A6. 
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Appendix Table A9).47 First, boys are more likely than girls to list STEM as their first 

preference (the gender gap in our sample is 21 percentage points) and, second, the gender gap 

is larger in mixed-sex schools (25 percentage points) than in the sample of same-sex schools 

(16 percentage points). Conceptually, rank could explain both facts to some extent given that 

subject ranks differ between boys and girls in mixed-sex schools but not in same-sex schools -

- about 58% of our sample attend mixed-sex schools, the remainder come from schools that 

either enroll only boys or only girls. By definition, average ranks are the same for boys and 

girls in same-sex schools. 

Table 7 shows how ranks vary by sex in mixed-sex schools. As expected, females have 

higher rank in English (by 9 percentage points), but males have higher rank in math (by 3 

percentage points).48  

Table 7: Average Ranks by Gender in Mixed-sex Schools 

 Within School-Cohort Rank 

 Female Male 

Math Rank 0.558 0.584 

English Rank 0.617 0.531 

N 27,431 29,876 
Note: Average ranks are greater than 0.50 due to our assumption that missing observations come from 

the bottom of the school-cohort achievement distribution. 

 

Rank Effects in Mixed-sex Schools 

Because effects of rank may differ between same-sex and mixed-sex schools, we begin 

by estimating the main specification on a sample of mixed-sex schools. There may be 

 
47 In Appendix Table A9, we report the gender gap in STEM by school type. For each type, we first show the 
female coefficient without controls (the raw gender gap) and then the female estimate with controls for 

achievement. The gender gap in mixed-sex schools is 25.3 percentage points without controls and falls to 9.7 

percentage points with controls for absolute achievement. 
48 Indeed, female and male subject ranks depend on the proportion of males in mixed-sex schools. Appendix Table 

A10 shows that an increase in the proportion of males in a school-cohort of 0.1 decreases the average math rank 

of females and males by almost a percentile. 
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differential effects in same-sex and mixed-sex schools for a variety of reasons. One possibility 

is that girls (boys) mostly compare themselves to other girls (boys) in mixed-sex schools, 

perhaps because students have people from the same gender in their social circle and, so, 

within-gender ranks are more salient. If this is the case, we would find that, in mixed-sex 

schools, the effect of own-gender rank within a school-cohort is larger than the effect of overall 

school-cohort rank. We have tested for this (Appendix Table A11) and found that overall 

school-cohort rank is more important than own-gender rank so we do not believe that this is an 

important consideration. Another possibility is that the presence of members of the opposite 

sex affects behavior. 

In Table 8, we show that there are no statistically significant differences in the effects 

of math or English rank on STEM between mixed-sex and same-sex schools (column (1)) 

When we split the samples by gender, we find the effect of subject ranks on STEM are larger 

for boys than girls in mixed-sex schools and also tend to be larger for girls than boys in same-

sex schools. However, the standard errors are quite high, and the only statistically significant 

gender gap is that the effect of English rank on STEM is larger for boys than for girls in mixed-

sex schools. We also find no evidence for gender differences in subject rank effects on ASSc 

in either type of school. The larger effect of subject rank for boys in mixed-sex schools may be 

due to their behavior being influenced by the presence of members of the opposite sex. For 

example, boys may be more likely to behave competitively and display more masculine 

characteristics when surrounded by girls.49 

 

 

 

 
49 Sullivan (2009) finds that boys in mixed-sex schools display a higher math self-concept and a lower English 

self-concept than boys in same-sex schools. 
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Table 8: Rank in Math and English and First Preference Field of Study by School Gender-

mix 

 STEM ASSc 

 (1) (2) (3) (4) (5) (6) 

VARIABLES All Males Females All Males Females 
 

Mixed-sex Schools  
 

Math Rank 0.128*** 0.143** 0.090* -0.065* -0.085* -0.053 

 (0.040) (0.059) (0.049) (0.039) (0.048) (0.063) 

English Rank -0.063* -0.128** 0.032 0.058* 0.098*** 0.011 

 (0.034) (0.051) (0.044) (0.031) (0.037) (0.051) 

       

Observations 57,307 29,876 27,431 57,307 29,876 27,431 

R-squared 0.315 0.281 0.296 0.183 0.206 0.195 

Mean Outcome 0.314 0.436 0.183 0.193 0.156 0.234 

       

Same-sex Schools  
 

Math Rank 0.078* -0.000 0.101* -0.087** -0.064 -0.116* 

 (0.044) (0.080) (0.051) (0.044) (0.065) (0.066) 

English Rank -0.045 -0.009 -0.028 0.101** 0.078 0.114* 

 (0.038) (0.052) (0.050) (0.042) (0.059) (0.063) 

       

Observations 46,809 20,642 26,167 46,809 20,642 26,167 

R-squared 0.315 0.293 0.318 0.164 0.170 0.169 

Mean Outcome 0.279 0.369 0.209 0.201 0.169 0.226 
Robust standard errors clustered by school are in parentheses. *** p<0.01; ** p<0.05; * p<0.10. Age, gender, indicator 
variables for grades in math and English (interacted with 2017), subject indicators, grades in all subjects, overall rank and a 

quartic in points (interacted with 2017) and school-cohort fixed effects included in all regressions. Subject fixed effects are 
indicators for doing each of the 25 most popular subjects for Leaving Certificate. Grade fixed effects are grades in these 25 
subjects (interacted with an indicator for doing the subject). The dependent variable equals 1 if the first-choice college program 
is in the field and equals 0 otherwise. 

 
 
 
 

The Gender Gap in STEM in Mixed-sex Schools 

We analyze how gender differences in STEM relate to rank differences by multiplying 

the effect of math rank on STEM by the average difference in math rank between boys and 

girls and multiplying the effect of English rank on STEM by the average difference in English 

rank between boys and girls. Adding these gives an estimate of how much the gender gap in 

preferences for STEM would be reduced in mixed-sex schools if boys and girls had the same 

ranks in both these subjects, while holding their absolute levels of academic achievement 
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constant.50 Using the coefficients for mixed-sex schools from Column (1) of Table 8, the 

amount explained by the rank variables is given by: 

 

βMathrank ∗ (MathrankMale − MathrankFemale ) +  
Englishrank

∗ (EnglishrankMale − EnglishrankFemale )   

 

Table 9 shows the differences in the gender gap in STEM explained by differential 

gender ranks is 0.9 percentage points, compared to the 25 percentage point gender gap in STEM 

in mixed-sex schools. We conclude that, in Ireland, the tendency for girls to be lower ranked 

in math and higher ranked in English can explain about 4% (0.9/25) of the gender gap in 

preferences for STEM in college.51 If we focus on the 10 percentage point unexplained gender 

gap in mixed-sex schools after controlling for absolute achievement (see Appendix Table A9), 

the rank variables can account for 9% of the unexplained gap.52 Overall, subject rank can 

account for a relatively small percentage of the gender gap in STEM in mixed-sex schools. 

 

Table 9: Proportion of the Gender Gap in STEM in Mixed-Sex Schools explained by 

English and Math Rank 

Percentage Points 

(standard error) 

Percent of Overall 

Gap 

Percent of 

Unexplained Gap 

Percent of Difference in 

Gender Gap between 

Mixed-sex and Same-sex 

Schools 

Percent of Unexplained 

Difference in Gender 

Gap between Mixed-sex 

and Same-sex Schools 

0.88 (0.3) 3.5 9.1 9.5 24 

The overall gender gap in first preference for STEM in mixed-sex schools is 25.3 pp and is 16pp in same-sex schools. Adding 
controls for subjects, grades and points reduces this gap to 9.7pp and 6pp, respectively. 

 
 
 

 

 
50 This exercise shows what happens to the predicted probabilities of STEM when we equalize the subject ranks, 

holding all other variables constant. It should not be seen as representing the effects of a particular policy 

intervention as, in practice, it is not clear how a policy maker could intervene in such a way as to change the 

subject ranks in this way while holding all else fixed. Note, however, that boys and girls can have different average 
ranks even if they have the same performance so long as average performance differs across schools and there are 

different proportions of girls and boys in different schools. 
51 Murphy and Weinhardt (2020) find that subject ranks in primary school explain about 0.66 percentage points 

(7%) of the STEM-gender gap in A-levels in the UK. However, their estimate is not directly comparable as it does 

not condition on absolute achievement levels at the point when the field choice is being made. 
52 We find very similar results if we do the calculation using the non-linear specification that includes indicator 

variables for each ventile of the subject rank distributions. 
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Difference in the Gender Gap between Mixed-sex and Same-sex Schools 

Ireland has a mix of same-sex and mixed-sex schools and there is a sizeable difference 

in the STEM gender gap between the two types of schools – 25 percentage points in mixed-sex 

schools versus 16 percentage points in same-sex schools. The rank variables can explain about 

10% (0.9/9.3) of the difference between the STEM gender gap in mixed-sex schools versus 

same-sex schools and about 24% (0.9/3.7) of the difference in the unexplained gender gap 

between these two types of schools. Thus, within school-cohort ranks in English and math can 

explain some portion of the larger gender gap in choice of STEM as a college major in mixed-

sex schools compared to same-sex schools. 

  

7. Conclusions 

We draw three main conclusions from our analysis. First, conditional on achievement 

at the end of high school, within school-cohort percentile ranks in English and math are 

predictive for college field choice, particularly for STEM and Arts and Social Sciences -- 

higher English rank is positively associated with choosing Arts and Social Sciences and 

negatively with STEM; higher math rank is positively associated with STEM and negatively 

with Arts and Social Sciences. Second, the effects of subject ranks on STEM are larger for 

boys; there is no evidence of a gender difference in the effect of subject ranks on ASSc. Third, 

the subject rank effects can explain about 4% of the gender gap in the choice of STEM as a 

college major in mixed-sex schools and 10% of the difference in the STEM gender gap between 

students from mixed-sex and same-sex schools. Notably, these effects occur even though we 

control for an extensive set of measures of absolute achievement at the end of high school, and 

the institutional setup implies that within-school rank plays no role whatsoever in college 

admissions decisions. Our findings imply behavioral effects of subject rank that go beyond 

their effects on human capital accumulation in school. 
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Our results are important as research has found long-run effects of field of study on 

earnings. Kirkeboen et al. (2016) find that choice of field of study in college is potentially as 

relevant to future earnings as the decision to enroll in college, and the payoff to a STEM degree 

is typically much larger than to an Arts or Social Science degree. So, math and English rank 

within school-cohorts may have implications for future earnings trajectories and for the gender-

earnings gap. The results suggest a role for information provision such that high school students 

are made more aware of their absolute achievement in math and English relative to that of 

others in the nation. This is important as students may be in a high school cohort that is atypical 

in terms of the math and English grade distribution and therefore may inadvertently choose 

college majors to which they are not well matched. Providing information on where students 

stand in their overall cohort may help them to make better and more informed decisions. 
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Appendix Figure A1: Box Plots of Variation in Rank 

 

 

 

 

These box plots show variation in rank for each grade. We have converted all grades to 2017 grades here. Due to 

the small number of students who fail either subject, we combine fail grades at higher level (H7 and H8) with the 

O1 grade and combine fail grades at lower level (O7 and O8) with the O6 grade. The horizontal line in the center 

of each box denotes the median rank at that grade, the lower and upper bound of the box displays the 25th and 75th 

percentile rank, and the top and bottom of each line represents the smallest and largest rank. 
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Appendix Table A1: Mapping from Grades to Leaving Certificate Points 

2015 and 2016 

 

 

 

 

 

 

Grade Marks (%) Points Points (Math) 

Higher Level    

A1 90% to 100% 100 125 

A2 85% to 89% 90 115 

B1 80% to 84% 85 110 

B2 75% to 79% 80 105 

B3 70% to 74% 75 100 

C1 65% to 69% 70 95 

C2 60% to 64% 65 90 

C3 55% to 59% 60 85 

D1 50% to 54% 55 80 

D2 45% to 49% 50 75 

D3 40% to 44% 45 70 

E 25% to 39% 0 0 

F 10% to 24% 0 0 

NG 0% to 9% 0 0 

    

Lower Level    

A1 90% to 100% 60 60 

A2 85% to 89% 50 50 

B1 80% to 84% 45 45 

B2 75% to 79% 40 40 

B3 70% to 74% 35 35 

C1 65% to 69% 30 30 

C2 60% to 64% 25 25 

C3 55% to 59% 20 20 

D1 50% to 54% 15 15 

D2 45% to 49% 10 10 

D3 40% to 44% 5 5 

E 25% to 39% 0 0 

F 10% to 24% 0 0 

NG 0% to 9% 0 0 
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2017 

 

 

Grade Marks (%) Points Points (Math) 

Higher Level    

H1 90% to 100% 100 125 

H2 80% to 89% 88 113 

H3 70% to 79% 77 102 

H4 60% to 69% 66 91 

H5 50% to 59% 56 81 

H6 40% to 49% 46 71 

H7 30% to 39% 37 37 

H8 0 to 29% 0 0 

    

Lower Level    

O1 90% to 100% 56 56 

O2 80% to 89% 46 46 

O3 70% to 79% 37 37 

O4 60% to 69% 28 28 

O5 50% to 59% 20 20 

O6 40% to 49% 12 12 

O7 30% to 39% 0 0 

O8 0 to 29% 0 0 
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Appendix Table A2: Identifying Residual Variation  

 Standard 
Deviation 

Variation in math rank no controls 0.258 

Variation in math rank controlling for age, gender, grades, points, subjects, and school-cohort fixed effects 0.047 

Variation in math rank controlling for age, gender, grades, points, subjects, and school-cohort fixed effects and overall rank and English rank 0.041 

  

Variation in English Rank no controls 0.257 

Variation in English rank controlling for age, gender, grades, points, subjects, and school-cohort fixed effects 0.054 

Variation in English rank controlling for age, gender, grades, points, subjects, and school-cohort fixed effects and overall rank and math rank 0.051 
This table shows the variation in the residual after regressing math and English rank on each set of control variables. 

 

 

Appendix Table A3: Effect on First Preference Field of Study Allowing for Interaction of Math and English Rank 

 (1) (2) 

VARIABLES STEM Arts/Soc 

   

Math Rank 0.104*** -0.102*** 

 (0.034) (0.031) 

English Rank -0.040 0.054* 

 (0.026) (0.032) 

Math Rank*English Rank -0.003 0.074** 

 (0.034) (0.033) 

   

Observations 104,116 104,116 

R-squared 0.317 0.177 

Mean Outcome 0.104*** -0.102*** 
Robust standard errors clustered by school are in parentheses. *** p<0.01; ** p<0.05; * p<0.10. Age, gender, indicator variables for grades in math and English (interacted with 2017), subject 

indicators, grades in all subjects, overall rank and a quartic in points (interacted with 2017) and school-cohort fixed effects included in all regressions. Subject fixed effects are indicators for doing 
each of the 25 most popular subjects for Leaving Certificate. Grade fixed effects are grades in these 25 subjects (interacted with an indicator for doing the subject). Regressions also include the 
interaction of grades in math with grades in English. The dependent variable equals 1 if the first-choice college program is in the field and equals 0 otherwise. 
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Appendix Table A4: Effect of Rank in Math and English on Field of Study Preferences 

 2nd Choice 3rd Choice % of Top 3 Choices  % of All Choices 

 (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES STEM Arts & Soc  STEM Arts & Soc STEM Arts & Soc STEM Arts & Soc 

         

Math Rank 0.091*** -0.072** 0.045 -0.070** 0.077*** -0.072*** 0.092*** -0.073*** 

 (0.031) (0.031) (0.032) (0.028) (0.025) (0.024) (0.021) (0.016) 

English Rank -0.013 0.048* -0.024 0.018 -0.037* 0.043** -0.012 0.041*** 

 (0.024) (0.026) (0.025) (0.025) (0.021) (0.021) (0.016) (0.014) 

         

Observations 101,108 101,108 97,434 97,434 97,434 97,434 104,116 104,116 

R-squared 0.315 0.161 0.302 0.159 0.408 0.235 0.440 0.303 

Mean Outcome 0.294 0.210 0.283 0.219 0.291 0.208 0.269 0.158 
Robust standard errors clustered by school are in parentheses. *** p<0.01; ** p<0.05; * p<0.10. Age, gender, indicator variables for grades in math and English (interacted with 2017), subject 

indicators, grades in all subjects, overall rank and a quartic in points (interacted with 2017) and school-cohort fixed effects included in all regressions. Subject fixed effects are indicators for doing 
each of the 25 most popular subjects for Leaving Certificate. Grade fixed effects are grades in these 25 subjects (interacted with an indicator for doing the subject). The dependent variable in 
columns 1 and 2 (3 and 4) equals 1 if the second-choice (third-choice) college program is in the field and equals 0 otherwise. The dependent variable in columns 5 and 6 (7 and 8) is the proportion 
of the Top 3 choices (all choices) that are in the field of study. 
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Appendix Table A5: Balancing Tests  

 (1) (2) (3) (4) 

VARIABLES Age 18  Female  STEM 

prediction 

ASSc 

prediction   

     

Math Rank -0.045 0.073*** -0.005** 0.000 

 (0.035) (0.027) (0.002) (0.000) 

English Rank -0.000 0.018 -0.002 -0.000 

 (0.027) (0.022) (0.002) (0.000) 

     

Observations 104,116 104,116 104,116 104,116 

R-squared 0.139 0.661 0.990 0.999 

Female Yes No No No 

Age Dummies No Yes No No 
Robust standard errors clustered by school are in parentheses. *** p<0.01; ** p<0.05; * p<0.10. Age, gender, indicator variables for grades in math and English (interacted with 2017), subject 
indicators, grades in all subjects, overall rank and a quartic in points (interacted with 2017) and school-cohort fixed effects included in all regressions. Subject fixed effects are indicators for doing 
each of the 25 most popular subjects for Leaving Certificate. Grade fixed effects are grades in these 25 subjects (interacted with an indicator for doing the subject). Age 18 is a dummy for the 
individual being at least 18 years old. Age dummies and female are included in the regression that calculates predicted STEM/ASSc. 
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Appendix Table A6: Logit Regression for whether at least 75% of students in the School-Cohort apply to College 

 (1) 

VARIABLES CAO Proportion at least 75% 

  

Comprehensive/Vocational School (omitted category = DEIS) 0.329*** 

 (0.043) 

Secondary School 0.472*** 

 (0.046) 

Irish-medium School 0.513*** 

 (0.100) 

Fee-Paying School 0.746*** 

 (0.132) 

School-Cohort Size Middle Tercile 0.079*** 

 (0.028) 

School-Cohort Size Top Tercile 0.101*** 

 (0.031) 

Same-Sex School -0.022 

 (0.033) 

  

Observations 2,029 
Robust standard errors clustered by school are in parentheses. *** p<0.01; ** p<0.05; *0.10. The reported estimates are marginal effects computed at the means. Each observation is a school-
cohort and observations are weighted by the number of persons in the school-cohort. School-cohort size terciles: 10-63; 64-103; 104-275 students. 
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Appendix Table A7: Effect of Rank on First Preference Field of Study (Weighting by the Inverse Probability of being in the Sample) 

 (1) (2) 

VARIABLES STEM Arts/Soc 

   

Math Rank 0.099*** -0.058* 

 (0.034) (0.032) 

English Rank -0.054* 0.085*** 

 (0.029) (0.028) 

   

Observations 104,116 104,116 

R-squared 0.310 0.172 

Mean Outcome 0.30 0.20 
Robust standard errors clustered by school are in parentheses. *** p<0.01; ** p<0.05; * p<0.10. Age, gender, indicator variables for grades in math and English (interacted with 2017), subject 
indicators, grades in all subjects, overall rank and a quartic in points (interacted with 2017) and school-cohort fixed effects included in all regressions. Subject fixed effects are indicators for doing 

each of the 25 most popular subjects for Leaving Certificate. Grade fixed effects are grades in these 25 subjects (interacted with an indicator for doing the subject). The dependent variable equals 
1 if the first-choice college program is in the field and equals 0 otherwise. Regressions are estimated using inverse probability weighting. 

 

Appendix Table A8: Omitting Schools with Varying Proportions Applying to College  

 CAO-Prop<0.50 CAO-Prop<0.65 CAO-Prop<0.85 CAO-Prop<0.90 

 (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES STEM Arts & 

Soc 

STEM Arts & 

Soc 

STEM Arts & 

Soc 

STEM Arts & 

Soc 

         

Math Rank 0.063** -0.074*** 0.088*** -0.072*** 0.132*** -0.056 0.159*** -0.058 

 (0.027) (0.025) (0.028) (0.026) (0.035) (0.035) (0.044) (0.046) 

English Rank -0.051** 0.064*** -0.037 0.065*** -0.037 0.044 -0.087** 0.097** 

 (0.022) (0.022) (0.023) (0.024) (0.032) (0.032) (0.041) (0.039) 

         

Observations 124,000 124,000 117,158 117,158 70,304 70,304 43,711 43,711 

R-squared 0.310 0.167 0.311 0.168 0.320 0.174 0.330 0.180 
Robust standard errors clustered by school are in parentheses. *** p<0.01; ** p<0.05; * p<0.10. Age, gender, indicator variables for grades in math and English (interacted with 2017), subject 
indicators, grades in all subjects, overall rank and a quartic in points (interacted with 2017) and school-cohort fixed effects included in all regressions. Subject fixed effects are indicators for doing 
each of the 25 most popular subjects for Leaving Certificate. Grade fixed effects are grades in these 25 subjects (interacted with an indicator for doing the subject). The dependent variable equals 

1 if the first-choice college program is in the field and equals 0 otherwise. 
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Appendix Table A9: Effect of Female on Choosing STEM as First Preference by School Type 

 Overall Mixed-Sex Same-Sex 

 (1) (2) (3) (4) (5) (6) 

VARIABLES STEM STEM STEM STEM STEM STEM 

       

Female  -0.213*** -0.082*** -0.253*** -0.097*** -0.160*** -0.060*** 

 (0.005) (0.005) (0.006) (0.005) (0.008) (0.008) 

       

Observations 104,116 104,116 57,307 57,307 46,809 46,809 

R-squared 0.055 0.296 0.074 0.299 0.033 0.300 

Grades, Subjects, and Points No Yes No Yes No Yes 

Mean Outcome 0.299 0.299 0.315 0.315 0.279 0.279 
Robust standard errors clustered by school are in parentheses. *** p<0.01; ** p<0.05 * p<0.10. Age and school-cohort fixed effects included in all regressions. Subject fixed effects are indicators 

for doing each of the 25 most popular subjects for Leaving Certificate. Grade fixed effects are grades in these 25 subjects (interacted with an indicator for doing the subject). Points included as a 
quartic polynomial. The dependent variable equals 1 if the first-choice college program is STEM and equals 0 otherwise. 
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Appendix Table A10: Effect of Proportion of Males in School Cohort on Math and English Rank 

 (1) (2) (3) (4) 

VARIABLES Male Math Rank Female Math Rank Male English Rank Female English Rank 

     

Proportion Males in School-

Cohort 

-0.069*** -0.094*** 0.065*** 0.042*** 

 (0.012) (0.012) (0.017) (0.016) 

     

English Rank Yes Yes              No No 

Math Rank No No Yes Yes 

School-Cohort FE No No No No 

Observations 29,876 27,431 29,876 27,431 

R-squared 0.957 0.949 0.920 0.910 
Robust standard errors clustered by school are in parentheses. *** p<0.01; ** p<0.05; * p<0.10. Age, gender, indicator variables for grades in math and English (interacted with 2017), subject 
indicators, grades in all subjects, overall rank and a quartic in points (interacted with 2017) included in all regressions. Subject fixed effects are indicators for doing each of the 25 most popular 
subjects for Leaving Certificate. Grade fixed effects are grades in these 25 subjects (interacted with an indicator for doing the subject).  
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Appendix Table A11: Effect of Same-gender Rank in Mixed-sex schools on First Preference Field of Study 

 (1) (2) 

VARIABLES STEM Arts & Social 

   

Same-gender Math Rank 0.013 0.013 

 (0.044) (0.042) 

Same-gender English Rank -0.006 -0.007 

 (0.038) (0.035) 

Math Rank 0.114* -0.079 

 (0.061) (0.062) 

English Rank -0.060 0.062 

 (0.050) (0.050) 

   

Observations 56,118 56,118 

R-squared 0.315 0.185 

Mean Outcome 0.315 0.193 
Robust standard errors clustered by school are in parentheses. *** p<0.01; ** p<0.05; * p<0.10. Age, gender, indicator variables for grades in math and English (interacted with 2017), subject 
indicators, grades in all subjects, overall rank and a quartic in points (interacted with 2017) and school-cohort fixed effects included in all regressions. Subject fixed effects are indicators for doing 

each of the 25 most popular subjects for Leaving Certificate. Grade fixed effects are grades in these 25 subjects (interacted with an indicator for doing the subject). The dependent variable equals 
1 if the first-choice college program is in the field and equals 0 otherwise. Same-gender rank is rank calculated just using persons in the school-cohort who have the same gender. Overall rank and 
same-gender overall rank also included in the regressions. The dependent variable equals 1 if the first-choice college program is in the field and equals 0 otherwise. 
 

 
 

 

 


