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1 Introduction

For decades, monetary policy was analyzed within the representative-agent new Keynesian (RANK) frame-
work. However, many questions policymakers face today concern the distributional effects of policy. There-
fore, economists are increasingly incorporating heterogeneity in asset holdings and incomes into new Key-
nesian models, leading to the current era of heterogeneous-agent new Keynesian (HANK) models. Key
questions that HANK models address include: (i) How are the properties of solutions and equilibrium
uniqueness affected by heterogeneity? (ii) How does heterogeneity affect aggregate and individual re-
sponses to monetary policy? (iii) How do monetary-policy shocks transmit through the economy when
agents are heterogeneous? (iv) How does redistribution across agents affect the economy and interact with
monetary policy? (v) How do different types of shocks affect inequality?

Quantitative HANK models address these questions using numerical solutions; see, e.g., Gornemann
et al. (2016), Guerrieri and Lorenzoni (2017), Kaplan et al. (2018), Debortoli and Gali (2018), Auclert
(2019), Auclert et al. (2020).1 However, numerical solutions are not always conclusive. In this paper, we
construct novel closed-form solutions for TANK models to derive sharp answers to the above five questions.

Specifically, the present paper takes an under-the-hatch look at two-agent new Keynesian (TANK)
models and provides precise characterizations of the mechanisms at work in TANK. We build on TANK
models of Bilbiie (2008) and Debortoli and Gaĺı (2018). The model features households who differ in their
ability to access asset markets. Namely, one part of population cannot save and just earns labor income,
while the other part has the ability to save through bonds and shares of production firms. As a result,
agents are heterogenous in their marginal propensities to consume. The government redistributes profits,
and labor tax revenues between the two types of agents, which allows the study of the interaction between
monetary and fiscal redistribution policies.

(i) There are few results in the literature regarding equilibrium uniqueness for HANK models. Acharya
and Dogra (2018) analyze how cyclical properties of idiosyncratic shocks affect equilibrium determinacy.
Auclert et al. (2019) provide a criterion for uniqueness in HANK models based on winding numbers;
however, this approach does not guide on how the underlying parameters, such as those relating to fiscal
redistribution, affect indeterminacy regions. The analysis in the present paper helps us inform the quan-
titative HANK literature on how the model’s parameters, related to fiscal redistribution and the share of
non-asset market participants, affect equilibrium uniqueness, as well as the properties of unique solutions.

(ii) We analyze how heterogeneity affects aggregate and individual responses to forward guidance mod-
eled as a shock in the central bank’s policy rule. Werning (2015) shows that heterogeneity, on its own, is
not enough to reduce the power of a future real interest rate change; see Debortoli and Gali (2018), and
Bilbiie (2019a) for examples. Bilbiie (2019a), Kaplan et al. (2016) and McKay et al. (2016) introduce addi-
tional features which diminish the power of a future real interest rate change. We consider two experiment:
forward guidance as in McKay et al. (2016) and that used in conjunction with active monetary policy, as
in Maliar and Taylor (2018). In the former, the sequence of real interest rates is fixed exogenously, while
in the latter it is endogenous. With fixed real interest rates, we demonstrate that heterogeneity amplifies
today’s response of economic aggregates to forward-guidance policy. When the central bank uses forward
guidance along with active policy, we find that future monetary policy shocks have small effects on today’s
economy. As the share of non-asset market participants increases, monetary policy shocks become even
less powerful. Therefore, introducing non-asset market participants reduces the power of forward guidance
in normal times.

(iii) Monetary policy can transmit through the economy much differently in HANK than it does in
RANK. Auclert (2019) shows that heterogeneity in earnings, nominal rate exposure and real rate exposure
affect the transmission of monetary policy when agents have different marginal propensities to consume.
Kekre and Lenel (2020) emphasize the role of the marginal propensity to bear risk in monetary policy
transmission and show that monetary policy shocks redistribute towards agents with a high marginal

1Other HANK models include Broer et al. (2020), Farhi and Werning (2016), Hagedorn et al. (2019), Melcangi and Sterk
(2019), and Ravn and Sterk (2018).
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propensity to bear risk. Kaplan et al. (2018) decompose the response of the economy to a contemporaneous
monetary policy shock into a component that captures the direct response to changes in the interest rate
and a component that captures the indirect response due to changes in income. They find that the share
of indirect effects in their TANK model roughly corresponds to the share of non-asset market participants.
We use closed-form solutions to characterize analytically the direct and indirect effects under a general
Taylor rule. Similarly to the previous literature, when considering contemporaneous shocks, we find that
the share of direct effects decreases with the share of non-asset market participants. When there are future
monetary policy shocks, we find that indirect effects work to increase consumption, while direct effects work
to reduce consumption when the share of non-asset market participants is high; the reverse is true when
the share of non-asset market participants is low. Therefore, when asset market participation is abundant
enough, the transmission of future monetary shocks in TANK works much like it does in a RANK economy,
even if the transmission of contemporaneous shocks does not. In other words, the transmission of future
shocks is more RANK-like than TANK-like.

(iv) Importantly, models with heterogeneous agents allow for analysis of fiscal redistribution policies;
see, e.g., Oh and Reis (2012), McKay and Reis (2016). In this paper, we consider redistribution funded
by either both agents (labor income taxes) or only unconstrained agents (illiquid profits). We show that
the monetary authority must take into account the actions of the fiscal authority to ensure equilibrium
determinacy. Moreover, we show that whether or not increases in net transfers to constrained agents
allow for stronger responses by the central bank depends on how those transfers are funded. We also
consider how transfers affect consumption volatility of the two agents. First, when constrained agents are
provided a positive net transfer of labor-tax revenues, constrained agent consumption volatility increases.
However, transfers of illiquid profits to constrained agents can significantly reduce consumption volatility
for the constrained agents and may or may not increase consumption volatility of unconstrained agents.
When asset-market participation is limited enough, the reduction in income volatility for the unconstrained
agents more than compensates for the reduced ability to directly smooth consumption due to lower non-
labor income, resulting in lower consumption volatility. Our results on indeterminacy and consumption
volatility show that one cannot draw conclusions about the effects of transfers without consideration of
how the transfers are funded.

(v) HANK models are used to characterize inequality over economic cycles; see, e.g., Auclert et al.
(2020). Our solutions enable us to assess the cyclicality of income and consumption inequality not only
for deterministic demand shocks, as is usually done in the new Keynesian literature, but also over cy-
cles driven by either demand or supply shocks. In TANK, both income and consumption inequality are
fully determined by the markup. Therefore, supply-shock-driven cycles result in procyclical inequality
and procyclical markups, while demand-shock-driven cycles result in countercyclical inequality and coun-
tercyclical markups. Neither prediction is consistent with the empirical evidence that consumption and
income inequality are countercyclical, while markups are procyclical. To address this, we introduce capital
and adjustment costs to the model. In work occurring simultaneously, Bilbiie et al. (2019c) use a TANK
model with capital to study how inequality responds to monetary-policy shocks. In their model, comple-
mentarity between capital and income inequality amplifies the aggregate response to a monetary-policy
shock and results in countercyclical consumption and income inequality. Unlike their paper, we consider
supply shocks in addition to monetary-policy shocks. We show that the consumption inequality depends
on markups, as well as on the value of installed capital and return on capital. However, income inequal-
ity is still fully determined by the markup. We find that consumption inequality is more countercyclical
than income inequality in response to demand shock cycles. Additionally, the model is able to generate
countercyclical consumption inequality and procyclical markups over supply -shock-driven business cycles.

Our analysis of the mechanisms at work in TANK would not be feasible without the closed-form
solutions. Such solutions allow us to analyze analytically the individual responses of constrained and
unconstrained agents and decompose total effects of contemporaneous and future, one-time and persistent
monetary-policy shocks into direct and indirect effects. Furthermore, the closed-form solutions allow
us to understand detailed mechanisms behind the effects of fiscal redistribution policy and asset-market
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participation on the indeterminacy regions. The solutions we construct are applicable not only to the
deterministic setting with exogenous disturbances in the natural rate of interest, desired interest rate,
preferences, productivity, nominal interest rate but also to the stochastic setting.

There are few other papers in the HANK literature that derive closed-form solutions. First, a ”pseudo”
RANK model, PRANK, of Acharya and Dogra (2018) introduces uninsurable idiosyncratic uncertainty but
allows for full asset-market participation; the assumption of exponential utility allows for analytic solutions
(as there is no need to keep track of wealth distribution). While their model helps them to study the roles
of precautionary savings and cyclical income risk, it is not designed to assess the impact of redistribution
across agents with heterogeneous marginal propensities to consume (MPC) as all agents have the same
MPC. Second, a ”tractable” HANK model, THANK, of Bilbiie (2019b), which nests TANK, allows for
uninsurable idiosyncratic uncertainty but obtains analytical tractability by assuming full insurance within
types, steady-state equality, limited insurance across types and exogenous switches between types. Our
paper abstracts from idiosyncratic uncertainty; however, it allows for steady-state inequality and more
general Taylor rules with output, inflation and expected inflation targeting.

The rest of the paper is as follows: Section 2 describes both non-linear and log-linerized versions of the
basic TANK model, presents the closed-form solutions and discusses when the model produces the same
results as RANK. Section 3 discusses how heterogeneity affects the properties of solutions and uniqueness of
equilibrium. Section 4 analyzes aggregate and individual responses to future anticipated shocks (forward-
guidance, monetary-policy shocks). Section 5 decomposes the response into direct and indirect effects.
Section 6 presents the solutions for the stochastic case and discusses the effects of redistribution on economic
volatility. Section 7 discusses the model’s predictions about consumption and income inequality. Section 8
considers the robustness of these predictions by extending the model to include capital, and finally, Section
9 concludes.

2 Closed-form solution to the TANK model

The two main features of TANK are limited asset market participation and redistribution of profits. The
former assumption was first used in the context of new Keynesian models in Gali et al. (2007) and Bilbiie
(2008) and the latter assumption was emphasized in Bilbiie (2008). We construct a closed-form solution
to the version of the TANK model studied in Bilbiie (2008) and Debortoli and Gaĺı (2018).2

2.1 TANK model

There is a continuum of agents on the unit interval. The agents are classified based on their ability to
access asset markets. There is a λ share of constrained agents and a 1−λ share of unconstrained agents; the
variables of such agents are denoted by superscripts K (”Keynesian”) and U , respectively. The constrained
agents receive their income from supplying labor in the market and transfers from the government, and
they do not trade any assets. In addition, the economy includes a continuum of production firms, indexed
by i ∈ [0, 1], producing differentiated goods, a central bank and a government.

Unconstrained agents. An unconstraint agent solves a dynamic problem by trading one-period riskless
bonds and mutual-fund shares:

max
{CUt ,NU

t ,B
U
t ,F

U
t }
E0

∞∑
t=0

βtZt

[
(CUt )1−σ − 1

1− σ
− (NU

t )1+ϕ + 1

1 + ϕ

]
(1)

2There are several important differences between the assumptions in Bilbiie (2008) and Debortoli and Gaĺı’s (2018),
including complete versus incomplete markets, the logarithmic versus more general CRRA utility functions, zero versus non-
zero steady state profits, the presence of preference shock and the way of modeling the redistributive policy.
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subject to

s.t. CUt +
BU
t

Pt
+QtF

U
t =

BU
t−1Rt−1

Pt
+
(
1− δW

)Wt

Pt
NU
t + [Qt + (1− δ)Dt]F

U
t−1 + TUD,t + TUW,t, (2)

where initial condition (BU
−1, F

U
−1) is given. Here, E0 is the conditional expectation operator; β ∈ (0, 1);

σ > 0 and ϕ > 0; CUt , NU
t , BU

t , FUt , TUD,t and TUW,tare the unconstrained agent’s consumption, labor,
nominal bond holdings, intermediate-good producers’ shares, real government transfers of illiquid profits,
and real government transfers of labor tax revenue, respectively; Dt is the dividend from ownership of firms;
Pt, Qt, Wt and Rt−1 are consumption-good price index, share price, nominal wage and (gross) nominal
interest rate, respectively; Zt is a preference shock, following an AR(1) process, Zt+1 = Zρzt exp (εz,t+1)
with εz,t+1 ∼ N

(
0, σ2

z

)
; δ ∈ [0, 1] is a fraction of illiquid profits allocated across agents by government

and δW ∈ [0, 1] is the labor-income tax rate.3 The consumption choice CUt arises from the standard
cost minimization over the continuum of goods produced by the firms; for the first-order conditions, see
Appendix A.1, where we collected all the derivations of Section 2.

Constrained agents. A constrained agent solves a static problem

max
CKt ,N

K
t

Zt

[
(CKt )1−σ − 1

1− σ
− (NK

t )1+ϕ + 1

1 + ϕ

]
(3)

subject to

CKt = (1− δW )
Wt

Pt
NK
t + TKD,t + TKW,t, (4)

where CKt , NK
t , TKD,t and TKW,t are the constrained agent’s consumption, labor, government transfers of

illiquid profits and government transfers of labor-tax revenues.

Government. Government makes transfers of illiquid profits and labor-tax revenues to the unconstrained
and constrained agents, TUD,t, T

U
W,t , TKD,t and TKW,t, by re-distributing the illiquid profits of the firms δDt

and labor-tax revenues δW Wt
Pt
Nt, so that (1− λ)TUD,t + λTKD,t = δDt and (1− λ)TUW,t + λTKW,t = δW Wt

Pt
Nt.

It does so according to the following rules:

TUD,t =

(
1 +

τλ

1− λ

)
δDt, TKD,t = (1− τ) δDt, (5)

TUW,t =

(
1 +

τWλ

1− λ

)
δW

Wt

Pt
Nt, TKW,t =

(
1− τW

)
δW

Wt

Pt
Nt, (6)

where 1 − τ and 1 − τW are shares of profits and labor-tax revenues, respectively, distributed to the
constrained agents. The redistribution of illiquid profits only directly affects unconstrained agents, and
that of labor income taxes directly affects both agents. In the previous TANK models, only profits are
redistributed; see Debortoli and Gali (2018) and Bilbiie (2008).

Supply side. Following Debortoli and Gaĺı (2018), we assume that wage is a constant share of the ratio
of the marginal utility of (average) consumption to the marginal utility of (average) leisure,

Wt

Pt
=MwCt

σNϕ
t , (7)

3Our definition of illiquid profits differs from that in Kaplan et al. (2018): our illiquid profits are untraded, and, therefore,
not held in an account of the unconstrained agent, while their illiquid profits are distributed to an account which is subject
to transaction costs.
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where Ct and Nt are average consumption and labor, respectively, Ct ≡
∫ 1

0 Ct (s) and Nt ≡
∫ 1

0 Nt (s);
Mw > 1 is the average wage markup. Each agent s ∈ [0, 1] has incentives to supply labor at a market wage
Wt
Pt

, i.e., Wt
Pt
≥ Mw

(
CUt
)σ (

NU
t

)ϕ
and Wt

Pt
≥ Mw

(
CKt
)σ (

NK
t

)ϕ
. As a consequence, both types of agents

will supply the same labor.4

Each producer i owns a linear technology described by Yt (i) = AtNt (i), where At is the productivity
level following an AR(1) process At+1 = Aρat exp (εa,t+1) with εa,t+1 ∼ N

(
0, σ2

a

)
, and Nt (i) is labor

input. The firm’s price is rigid a la Rotemberg (1982), i.e., it sets prices optimally in every period of time

subject to adjustment costs, given by ξ
2PtYt

(
Pt(i)
Pt−1(i) − 1

)2
, where Yt is aggregate output, and ξ > 0. The

demand for its differentiated good is Yt (i) = Yt

(
Pt(i)
Pt

)−ε
, which comes from the Dixit-Stiglitz aggregator

Yt =
(∫ 1

0 Yt (i)
ε−1
ε di

) ε
ε−1

, ε ≥ 1.

Consumption gap. Due to different incomes, the two types of agents will differ with respect to con-

sumption. We define a consumption gap as Γt ≡ 1− CKt
CUt

, which is given by

Γt =
[4tMt − 1] [1− δ (1− τ)] + τW δW

1 + (τW δW − 1)λ+ [4tMt − 1] [1− δ (1− τ)λ]
. (8)

Note that Γt is increasing in the price markup Mt under our assumption δ (1− τ) < 1. That is, there
must be some fraction of profits that are liquid, δ < 1, (so that shares are valued) or there must be less
than full redistribution ( i.e., unconstrained agents receive a proportionally larger share of illiquid profits
than their share in the population, (1− λ)TUD,t > δDt (1− λ)).

Monetary policy. To close the model, we assume that the central bank follows a Taylor rule which
includes current inflation πt, forward-looking inflation πt+1, as well as a deviation of output from the
steady state yt,

it = i∗t + φππt + φEπEt {πt+1}+ φyyt + vt, (9)

where φπ ≥ 0, φEπ ≥ 0 and φy ≥ 0; i∗t is an exogenously given desired long-run interest rate (either
deterministic or stochastic), and vt is a (log-deviation of) monetary-policy shock that can include both
anticipated and unanticipated shocks. In the latter case, we assume that vt follows an AR(1) process
vt+1 = ρvvt + εv,t+1 with εv,t+1 ∼ N

(
0, σ2

v

)
.5 We assume the net inflation rate target is zero.

2.2 When does TANK become RANK?

There are two possible cases when the TANK model reduces to a RANK model. The first, obvious case
is when the share of constrained agents is zero, λ = 0. The second case is when all profits are illiquid
(δ = 1) and illiquid profits and labor tax revenues are distributed uniformly across households (τ = 0 and
τW = 0). While the unconstrained agents would like to save via bonds, this is not possible as there is no
one to trade with. Therefore, the only way for unconstrained agents to save is through holding shares in
the firms. However, because the firm will never pay out any dividends as there are no liquid profits to
distribute, the share price will be zero. Therefore, the budget constraint of the unconstrained agent will
reduce to that of the constrained agent. Since the unconstrained agents have no way to save for the next
period, they consume their entire labor income and transfer. Because all agents have the same level of
productivity and because profits are uniformly distributed, all agents consume the same amount, which
produces the RANK result.

4We implement the whole analysis for the model in which both types choose labor optimally. We do not report the results
for this case as they are close to those of the model with identical labor but the formulae become cumbersome. We comment
on the differences between the two models when relevant.

5This Taylor rule is in the spirit of Taylor (1993); see, e.g., Gali (2008, p. 82), and Debortoli et al. (2019).
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2.3 Log-linearized model

We log-linearize the model around a zero-inflation steady state following Debortoli and Gali (2018); see Ap-
pendix A.1. The resulting aggregate Euler equation (IS curve), Phillips curve and Taylor rule, respectively,
are

xt = Et {xt+1} −
1

σ(1− Φ)
[it − Et {πt+1} − rnt ] , (10)

πt = βEt {πt+1}+ κxt, (11)

it = i∗t + φππt + φEπEt {πt+1}+ φyxt + ut, (12)

where xt is the output gap (in log-deviations from the natural level of output); πt is (net) inflation; and it
is the (net) nominal interest rate. The natural rate of interest rnt and the shock ut in (12) are related to
the shocks in nonlinear model; see the appendix. The composite parameter Φ is defined later in (15).

The only difference between log-linearized TANK and RANK lies in the aggregate Euler equation (10)
and comes from the heterogeneity parameter Φ. If Φ = 0, then TANK becomes RANK (either when
λ = 0 or when δ = 1, τ = 0 and τW = 0). Because the effect of heterogeneity is compressed in a
single parameter Φ, the TANK model provides a very tractable way to assess the role of heterogeneity on
aggregate dynamics.6

2.4 Closed-form solutions

Our next step it to construct a closed-from solution to the model. We rewrite equations (10)–(12) as a
second-order difference equation in πt. For this purpose, we substitute it from the Taylor rule (9) into the
Euler equation (10), use the Phillips curve (11) to get xt and xt+1 and substitute them into (10) to obtain

Et {πt+2}+ bEt {πt+1}+ cπt = −Xt, (13)

Xt ≡ −
κ

βσ(1− Φ)
(rnt − ut), (14)

where Xt summarizes all exogenous disturbances {rnt , at, vt, i∗t }, and constants b and c are b ≡ −1 − 1
β +

1
βσ(1−Φ) (φEπκ− βφy − κ) and c ≡ 1

β +
κφπ+φy
βσ(1−Φ) .

Equation (13) is the same as in Maliar and Taylor (2018) who derived a closed-form solution to RANK
(except that the parameter Φ is absent in their model). There is a remarkably simple way to extend their
RANK solutions to our TANK model. Namely, we only need to replace σ in their analysis with σ(1− Φ)
and all their theorems holds. In Table 1, we show the resulting characteristic roots m1 and m2 of (13),
closed-form solutions, as well as boundaries on different types of solutions for the TANK model.7

The table contains the solutions for the case when shocks {vt, zt, at} are deterministic and anticipated;
the case of stochastic shocks is studied in Section 6. There are four possible types of solutions: i) an
indeterminate solution characterized by an arbitrary integration constant C; ii) a unique solution with 2
distinct real roots; iii) a unique solution with 1 repeated real root; iv) a unique solution with complex roots.
The formulas for the bounds on different types of solutions φ1

Eπ − φ4
Eπ are provided later in (21)–(23).

All the constructed solutions are forward stable, i.e., they satisfy the transversality condition. Finally,
using the aggregate Euler equation (10), one can write a solution for xt that is solely a function of parameters
and exogenous shocks; see formula (A12) in the appendix.

6 If we allow for heterogeneous labor across types, the slope of the Phillips curve κ will also depend on the heterogeneity
and redistribution parameters

{
λ, δ, τ, δW , τW

}
. Therefore, TANK will differ from RANK not only in Φ but also in κ.

7Cochrane (2017) derives closed-form solutions in the continuous-time model for case i) under an assumption that all
coefficients in the Taylor rule are set to zero.



Table 1: Closed-form solutions.

Case i): indeterminate solution Case ii): unique solution, 2 real roots
Roots values |m1| ≥ 1, |m2| ≤ 1 |m1| > 1, |m2| > 1

Bounds φEπ < φ1
Eπ & φEπ > φ4

Eπ φ1
Eπ ≤ φEπ < φ2

Eπ & φ3
Eπ ≤ φEπ < φ4

Eπ

Solution Cmt
2 + 1

m1−m2
Et
[∑∞

s=tm
t−1−s
1 Xs +

∑t−1
s=−∞m

t−1−s
2 Xs

]
1

m1−m2
Et
[∑∞

s=tm
t−1−s
1 Xs −

∑∞
s=tm

t−1−s
2 Xs

]

Case iii): unique solution, 1 repeated root Case iv); unique solution, complex roots

Roots values m1 = m2 = m, |m1| > 1 m1,2 = µ± ηi, r ≡
√
µ2 + η2 > 1

Bounds φEπ = φ2
Eπ & φEπ = φ3

Eπ φ2
Eπ < φEπ < φ3

Eπ

Solution 1
m
Et
[
(t− 1)

∑∞
s=tm

t−1−sXs −
∑∞
s=t sm

t−1−sXs
]

1
η
Et
[∑∞

s=t r
t−1−s sin (θ (t− 1− s))Xs

]

Notes: C is an arbitrary constant of integration; for case iv), η = Im[m1], r ≡
√
µ2 + η2 ≥ 1 and

θ ≡ arctan
(
η
µ

)
.

3 How heterogeneity affects the properties of solutions and equilibrium
uniqueness

In this section, we study how heterogeneity affects the solutions via the composite parameter Φ. From the
aggregate Euler equation (10), we see that the aggregate predictions of the model are the same as those of
a representative agent model with an inverse elasticity of intertemporal substitution coefficient σ(1 − Φ).
Therefore, we only need to understand how Φ depends on heterogeneity.

3.1 Effects of heterogeneity on the composite parameter Φ

The composite parameter Φ appearing in the aggregate Euler equation is defined as

Φ =
λ (σ + ϕ) Ψ

1− λΓ
, (15)

where constants Ψ and Γ are given by

Γ =
(M− 1)(1− δ(1− τ)) + τW δW

1 + (τW δW − 1)λ+ (M− 1)(1− δ(1− τ)λ)
, (16)

Ψ =
(1− λ)(1− δ(1− τ)− δW τW )

[1 + (δW τW − 1)λ+ (M− 1)(1− δ(1− τ)λ)]2
, (17)

whereM≡ ε
ε−1 is the steady-state price markup; Γ is the steady-state consumption gap. We first analyze

how Φ depends on each of its arguments
(
λ, τ, δ, τW , δW

)
. We focus on the more empirically relevant case

of Φ < 1 in which the aggregate Euler equation is downward sloping although the case Φ > 1 was also
documented in history; see Bilbiie (2008) for a discussion.8

Proposition 1. Assume λ < 1
2 and Φ < 1. Then,

8Bilbiie (2008) argues that during the pre-Volker period, the Federal Reserve followed an inverted Taylor principle (i.e.
responded less than one-to-one to inflation). This policy led to determinacy because the economy was characterized by an
upward sloping aggregate Euler equation due to very limited asset-market participation (i.e., high λ). He argues that in the
1980’s, the United States expanded asset market participation, returning the economy to standard downward demand and
requiring active monetary policy to insure determinacy.
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(i) If M < 1 + 1
δ(1−τ) , we have ∂Φ

∂λ > 0.

(ii) If τ < 1, we have ∂Φ
∂τ > 0 and ∂Φ

∂δ < 0.

(iii) ∂Φ
∂τW

< 0 and ∂Φ
∂δW

< 0.

Proof. See Appendix A.2. �

3.2 Relation between individual and aggregate variables

We now discuss why changes in
{
λ, τ, δ, τW , δW

}
affect Φ in the ways described in Proposition 1. To do

so, as an example, we show what happens at the individual level when there is a cut in the real interest
rate.

The following relations between individual and aggregate variables hold in the model:

nt =
1

ϕ
wt −

1

1− Φ

(
σ

ϕ

)
cUt −

Φ

1− Φ

(
σ

ϕ

)(
1 + ϕ

σ + ϕ

)
at, (18)

cUt = (1− Φ) ct + Φ

(
1 + ϕ

σ + ϕ

)
at, (19)

cKt = χ · ct + (1− χ)

(
1 + ϕ

σ + ϕ

)
at, (20)

where a constant χ is

χ ≡ 1 +
(1− λ)Φ

λ(1− Γ)
≥ 1,

and nt is labor of both constrained and unconstrained agents; see Appendix A.2 for derivations. In the
following discussion, we assume at = 0.

Effects of an interest rate cut. Consider a 1% one-time, contemporaneous real interest-rate cut, with
the real interest rate unaffected in all other periods – this result will resurface several times in future
paragraphs. From the next period on, the economy returns to the steady state, so that all the variables
will be equal to zero (here, all changes in variables are relative to the steady state).

The aggregate Euler equation (10) implies that, in response to a decline in the real interest rate,
it − Et {πt+1}, aggregate consumption increases more in TANK than in RANK. According to (19) and
(20), consumption of unconstrained agents increases by less (1 − Φ < 1) and that of constrained agents
increases by more (χ > 1) than aggregate consumption.

To understand the individual responses, note the following: first, only unconstrained agents are forward
looking, so any changes in the economy are driven by their response to changes in the real interest rate,
and second, absent transfers, constrained income depends only on labor income. A real interest rate cut
reduces the price of consuming today, which, in turn, generates an increase in unconstrained demand (as
seen form their Euler equation (A7)). To meet demand, firms hire more labor. Also, wages go up (as
wt = (σ + ϕ) ct). Since prices are sticky, dividend income falls. As labor income increases, constrained
agents’ demand shifts outward, and the resulting increase in their consumption is equal to the change in
labor income. For unconstrained agents, higher labor income shifts their demand out, while lower dividend
income shifts their demand back in.9 Since unconstrained agents are always on their Euler equation, in
equilibrium, their consumption increases. In sum, since the constrained agent does not experience the
decrease in dividend income, a real interest rate cut generates a larger increase in constrained consumption
than unconstrained consumption. This explains why aggregate demand is higher in TANK than in RANK.

9As discussed in Bilbiie (2008), with a larger share of constrained agents, the effect of constrained agents on dividend
income and, in turn, on a shift of unconstrained demand, is larger.
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Sensitivity of aggregate consumption to individual consumption. In the case of no productivity
shocks, equation (19) implies ct = 1

1−Φc
U
t , where 1

1−Φ is the elasticity of aggregate consumption with
respect to unconstrained consumption.

According to part (i) of Proposition 1, an increase in λ raises the elasticity 1
1−Φ . What is the mechanism

behind this outcome? Increasing the share of constrained agents in the population amplifies the aggregate
consumption response to an interest rate cut because constrained agents consume their entire labor income
each period. As a result, aggregate consumption becomes more sensitive to unconstrained consumption.

For part (ii), reducing τ decreases the elasticity 1
1−Φ . To see why, compare two cases: τ = 1 (no

redistribution) and τ < 1. In the latter case, when dividends fall in response to the real interest rate cut,
constrained agents experience the fall in transfer income. Therefore, part of their increase in demand,
due to higher labor income, is offset by lower transfer income. Hence, compared to the case of τ = 1,
constrained consumption increases by less with τ < 1, while the response of the unconstrained agent is the
same in both cases. Therefore, aggregate consumption is less sensitive to a unit change in unconstrained
consumption with τ < 1 than τ = 1. In other words, the elasticity 1

1−Φ increases with τ . For part (ii)
about δ, an increase in δ is equivalent to a reduction in τ in terms of the amount of dividend income
available to constrained agents, which is why the elasticity decreases with δ.

From part (iii), decreasing τW increases the elasticity 1
1−Φ . Compare two cases: τW = 0 (no redistribu-

tion) and τW < 0. Decreasing τW below zero results in a positive net transfer of labor taxes to constrained
agents and a negative net transfer to unconstrained agents. Unlike the case of profit transfers, labor-tax
transfers work in the same direction as the earned income of constrained agents, reinforcing the increase in
their demand due to the interest rate cut. Consequently, constrained income increases relative to the case
of τW = 0. Aggregate consumption becomes more sensitive to increases in unconstrained consumption.

3.3 Real- and complex-root solutions and indeterminacy: TANK versus RANK

Bounds on four types of solutions. Above, we characterize the effect of Φ on the slope of the
aggregate demand curve (10). Additionally, Φ affects the bounds on φEπ leading to different types of
solutions presented in Table 1,

φ1
Eπ ≡

φy
κ

(β − 1) + 1− φπ, (21)

φ2,3
Eπ = σ (1− Φ)

[
β + 1

κ
± 2

β

κ

√
1

β
+
κ

β

1

σ (1− Φ)

(
φπ +

φy
κ

)]
+
β

κ
φy + 1, (22)

φ4
Eπ ≡ 2

β

κ
σ (1− Φ) [β + 1] + φπ +

(
1 + β

κ

)
φy + 1. (23)

The solution is indeterminate when either the central bank is ”too hawkish” in targeting expected
inflation, φEπ > φ4

Eπ, or when it is ”too dovish” in doing so, φEπ < φ1
Eπ. Determinate complex roots arise

when the central bank responds moderately to expected inflation, φ2
Eπ < φEπ < φ3

Eπ, with φ2
Eπ > φ1

Eπ and
φ3
Eπ < φ4

Eπ. Note that the lower indeterminacy bound φ1
Eπ does not depend on Φ and hence, is the same

in RANK and TANK. The other three bounds, however, do include the term 1−Φ and thus, are affected
by the presence of heterogeneity.10

Calibrated example. We further investigate how the degree of asset market participation, λ, impacts
the regions of different types of solutions in a calibrated example. Figure 1 considers three parameterizations
of asset market participation: RANK (λ = 0), TANK with λ = 0.21, and TANK with λ = 0.38. The value

10When the central bank does not target expected inflation (φEπ = 0) but does target current inflation, the bounds for
determinacy can be found by setting φ1

Eπ = 0 and φ4
Eπ = 0 and by solving for φπ. In this case, the solution is unique whenever

φπ >
φy

κ
(β− 1) + 1 and φπ > −2β

κ
σ (1− Φ) [β + 1]−

(
1+β
κ

)
φy − 1. Since we focus on the case of Φ < 1, the second restriction

is satisfied for all combinations of heterogeneity parameters we consider. In this case, the determinacy regions do not depend
on heterogeneity, so we omit this case from further discussion in the following section.
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λ = 0.21 is assumed in Debortoli and Gali (2018), while the value λ = 0.38 is close to the empirical estimate
in Campbell and Mankiw (1989) and to the one used in Kaplan et al. (2018).
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Figure 1: Types of solutions.

We distinguish three areas: a unique solution with real roots (in gray), a unique solution with complex
roots (in white), and indeterminacy (in black). The figure presents comparisons in (φy, φEπ) space, and
we set φπ = 0. The tendencies are as follows: First, TANK is characterized by substantially larger areas of
indeterminacy than RANK due to a negative relation between Φ and φ4

Eπ; see (23). For example, φEπ = 3
leads to indeterminacy if φy = 0, φπ = 0 and 38% of agents are excluded from asset markets. Second,
a larger λ leads to more extensive unique-solution areas with real roots. Third, the complex-root region
is smaller in TANK than in RANK, but the complex root region is still relevant as it corresponds to the
most empirically relevant values of φEπ and φy; e.g., under λ = 0.21, values of φEπ above unity imply
complex roots.11 However, the aggregate predictions of the model are similar when we consider φEπ near
the boundary that distinguishes between real and complex roots.

Next, we consider how transfers affect the upper bound on φEπ that leads to determinacy. Figure 2
shows how φ4

Eπ, on the left axis, and 1 − Φ, on the right axis, change as the transfer parameters τ (first
panel) and τW (second panel) are varied. In each panel, we consider the cases of λ = 0.21 (orange line)
and λ = 0.38 (blue line); regions of the parameter space where Φ > 1 (i.e., where the aggregate Euler
equation slopes upward) are in gray.

11Complex-root solutions can generate large oscillations which should not necessarily be ignored. Beaudry et al. (2019)
argue that a new Keynesian model, augmented to include complementarities through financial frictions, is capable of generating
low-frequency business cycles consistent with the data where models with real roots do not. In their model, complex-root
solutions can generate stronger internal propagation of exogenous shocks, while not leading to explosive oscillations. Therefore,
whether complex roots solutions are relevant depends on what features of the economy one hopes to explain.
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Figure 2: The effect of transfers on φ4
Eπ and 1− Φ.

From the first panel we see that, with λ = 0.38, φ4
Eπ is above 10 so long as τ < 0.6. Therefore, even

with low levels of asset market participation, the upper bound is empirically irrelevant so long as there is
enough redistribution of illiquid profits to constrained agents. Additionally, the slopes of the lines differ
for different levels of asset market participation. Therefore, the effect of a marginal increase τ on the
elasticity of aggregate consumption to unconstrained consumption depends on the share of asset market
participation. Specifically, the effect is larger when λ is larger.

In the second panel, we see that the blue line crosses the boundary of the gray region when τW ≈ −0.5.
In other words, when λ is large and there is a high degree of redistribution of labor tax revenues towards
constrained agents, the aggregate Euler equation will be upward sloping. Moreover, there is much less of a
difference in the slopes of two lines in the case of labor tax revenue transfers than illiquid profit transfers.
This is due to the fact that labor tax revenue transfers work in the same direction of earned income of
constrained agents, while illiquid profit transfers work in the opposite direction.

According to Figures 1 and 2, the solution is indeterminate in TANK with λ = 0.38 for any φEπ > 2.
Such a low upper bound is problematic for the model, implying tight restrictions on the central bank’s
response to expected inflation. The value of φ4

Eπ = 2 corresponds to 1 − Φ = 0.14. That is, the indeter-
minacy regions in TANK where agents have logarithmic utility over consumption and where heterogeneity
parameters result in 1 − Φ = 0.14 are the same as the regions in RANK where the agent has an inverse
elasticity of intertemporal substitution coefficient of 0.14.

Why do RANK and TANK differ in values of φEπ leading to indeterminacy? Smaller values
of φEπ lead to indeterminacy in TANK relative to RANK. The key feature of TANK that explains this
result is that, whenever dividends fall relative to steady state, their fall has an amplified effect on labor
supply in TANK relative to RANK. In RANK, we have Φ = 0, so the income effect on labor supply – the
second term in (18) – is determined by σ. In TANK, however, there are two additional channels. First,
when Φ > 0, the income effect is multiplied by an additional term 1

1−Φ , which appears due to the fact
that dividends are distributed unequally and asset market participation is limited in TANK. The second
channel works through cUt . In equilibrium, one unconstrained agent holds 1

1−λ shares. If dividends change

by 4dt, each unconstrained agent experiences a change of 4dt1−λ in non-labor income. Therefore, holding
wages fixed, the shift in labor supply from a change in dividend income is greater under TANK. Moreover,
the size of the shift increases with Φ.

Formula (18) implies that labor supply shifts outward when dividends fall. If the shift in labor supply is
large enough, equilibrium wages will fall. Since wages are equal to marginal costs, and firms reduce prices
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when marginal costs fall, profits must be procyclical when falling dividends generate large shifts in labor
supply. Note, as well, that φEπ determines the equilibrium relationship between inflation and dividends.12

Also, with larger values of φEπ, greater changes in dividends are needed for the returns on bonds and shares
to be equal. Since dividends have an amplified effect on labor supply in TANK, a smaller φEπ is needed in
TANK than in RANK for falling dividends to generate a shift in labor supply such that wages would fall
in equilibrium. In other words, a smaller φEπ leads to procyclical profits in TANK than in RANK.

In response to a real rate cut, unconstrained agents increase demand. Moreover, with procyclical profits,
the increase in dividend income generates additional rounds of consumption. In other words, unconstrained
agents face increasing returns in dividend income. The increasing returns on unconstrained consumption
results in an indeterminate solution as the process of increasing demand and dividends continues to infini-
tum.

4 Forward guidance

In this section, we study the effects of heterogeneity on aggregate and individual responses to forward
guidance. We model forward guidance as a one-time shock in the central bank’s policy rule, and we allow
for active policy. With active policy, the equilibrium sequence of real interest rates, {(it − Et {πt+1})}∞t=0,
is determined endogenously, and the real rate changes in every period leading up to the shock.

4.1 Aggregate responses to future shocks

Forward guidance regarding real rates. To illustrate why forward guidance is powerful at the lower
bound in the baseline new Keynesian model, McKay et al. (2016) consider an experiment where the central
bank directly sets the real interest rate. The real rate is set to zero in all periods except period T , when the
rate is cut by 1%. McKay et al. (2016) use the experiment to show why RANK suffers from the forward
guidance puzzle predicting that output growth and inflation respond excessively to future real rate cuts
and that cumulative responses of macroeconomic variables increase with how far in the future rate cuts
take place; see also Del Negro et al. (2015), Carlstrom (2015), Maliar and Taylor (2018), Campbell et al.
(2019).13
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Figure 3: Aggregate impulse response for the Taylor rule with φEπ ↘ 1, φy = 0 and φπ = 0.

12To see it, assume, for simplicity, that the central bank only targets expected inflation with φEπ > 1, which implies that
the real return on bonds is (φEπ − 1)Et {πt+1}. The return on bonds and shares must be equal, and hence, the value of φEπ
determines the relationship between inflation and dividends.

13Gabaix (2019) and Husted et al. (2017) consider this experiement as well and show that bounded rationallity and monetary
policy uncertainty can resolve the forward guidance puzzle.
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We consider McKay’s et al. (2016) experiment in the context of TANK; see Figure 3. We do so by
using the Taylor rule it = i∗t + Et {πt+1} + vt. The figure displays the response of aggregate variables for
T = 30 and for different values of the share of constrained agents, λ ∈ {0, 0.21, 0.38}. Our results show
that heterogeneity substantially amplifies the effect of the future monetary-policy shock and worsens the
puzzle even further; see the case of λ = 0.38. The response of consumption at t < T is the same as the
response to a contemporaneous real interest rate cut, which occurs in period T . From the discussion of
Proposition 1, increasing λ raises the elasticity of aggregate consumption to unconstrained consumption
and results in a larger aggregate response to a contemporaneous real interest rate cut. Therefore, the
responses of economic aggregates increase with λ. An increase in τ or a decrease in

{
δ, δW , τW

}
raises the

elasticity and has the same directional effect as an increase in λ.

Forward guidance with active policy. In normal times, monetary policy is active, and forward guid-
ance policy does not result in the central bank directly setting the path for the real interest rate. Instead
the central bank affects the real interest rate in all periods leading up to period T . Using forward guid-
ance in normal times has increased since the Financial Crisis of 2007–2009. Inevitably, using forward
guidance in formal policy statements while the economy is at the effective lower bound requires forward
guidance away from the effective lower bound.14 Statements about how monetary policy ”plans to remain
accommodative”, which were put in place at the lower bound, will no longer be applicable as the economy
recovers and require removal from formal policy statements. Removing statements provides guidance on
how the central bank plans to conduct future policy while current policy is conducted in a conventional
manner. Empirical studies of forward guidance in normal times, e.g., include, Gürkaynak et al. (2005)
and Campbell et al. (2012). Maliar and Taylor (2018) study forward guidance along with active monetary
policy rules in normal times in the context of RANK.

In Figure 5, we consider the Taylor rule parameterized by φEπ = 0, φy = .25
4 and φπ = 1.5. As discussed

in Maliar and Taylor (2018), when forward guidance is used along with active policy, RANK’s dynamics
have common-sense properties: the future shock does not have immediate effects, and the effects only
become strong when approaching to the date of the shock. As is seen from Figure 5, the implications in
TANK are similar. Additionally, heterogeneity increases the peaks of positive and negative output gaps
and delays the period at which the first noticeable responses of output and inflation occur.
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Figure 4: Aggregate impulse response for the Taylor rule with φEπ = 0, φy = .25
4 and φπ = 1.5

What is the intuition for the results in Figure 4? If unconstrained agents were to increase consumption
by a large amount in period zero in response to a shock in period T > 0, there would be a large increase
in the real interest rate due to the fact that monetary policy is active. The rise in the real interest rate
would induce unconstrained agents to reduce consumption, pushing back against the initial increase in
unconstrained demand. Therefore, unconstrained agents increase consumption by a small amount which

14The Federal Reserve used forward guidance four times between 2018 and early 2020; see
https://www.federalreserve.gov/monetarypolicy/timeline-forward-guidance-about-the-federal-funds-rate.htm.
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results in a small increase in output today. When λ is large, there is an ample response in period T because
it is a response to contemporaneous shock, and limiting asset market participation amplifies the response
of the economy to a contemporaneous shock. Therefore, there is only a small increase in output in period
zero but a large increase in period T .

Interaction between heterogeneity and active policy. To better illustrate the role of heterogeneity,
we consider a Taylor rule that differs from the one in Figure 3 in the value of φy. Specifically, Figure 5
considers the rule with φEπ ↘ 1 and φy = 0.01 and φπ = 0.
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Figure 5: Aggregate impulse response for the Taylor rule with φEπ ↘ 1, φy = 0.01 and φπ = 0.

As is seen, even a small value of φy helps get rid of constant jump in output. Heterogeneity brings
two effects here: first, it reduces the effect of the future shock on today’s output, and second, it increases
its effect at the peak. When 38% of agents are excluded from asset markets, the response of consumption
today to a shock in period 30 is only 1.5% of the peak response. In RANK, the response today is 75% of
the peak. Therefore, future nominal interest rate shocks have a discounted impact on today’s economy.
The response of output differs from the case with φy = 0 because the real interest rate is not constant
prior to the shock. The fact that the central bank actively responds to changes in the economy through
the policy rule leads to small today’s responses to future policy shocks.

The reason future monetary policy shocks have a discounted impact on today’s economy when monetary
policy is active is easily seen by considering the formula for the consumption response displayed in panel
1 of Figure 6. After substituting in the Taylor rule and solving the aggregate Euler equation forward, we
obtain

ct = −
∞∑
k=0

β̃k
1

σ (1− Φ)

[
i∗t+k + vt+k

]
− σ (1− Φ)

φy + σ (1− Φ)
Et {zt} , (24)

where

β̃ =
σ (1− Φ)

φy + σ (1− Φ)
.

In equation (24), ct is written as a function of only exogenous shocks. The term β̃ is an effective discount
factor applied to the future monetary policy shock.15 If φy 6= 0, then β̃ is less than unity so long as Φ < 1
(downward sloping demand). In this case, any amount of output-gap targeting generates discounting of

15This differs from the case of Euler equation discounting where the discount factor is applied to the real interest rate; see,
e.g., McKay et al. (2017).
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future monetary-policy shocks.16 The term β̃ captures the fact that the central bank’s policy affects the
real interest rate in every period when the bank targets the output gap.

The composed parameter Φ influences the effect of the monetary-policy shock in (24) through β̃ and
1

σ(1−Φ) . Note that β̃ decreases in Φ and 1
σ(1−Φ) increases with Φ. First, when k > 0, an increase in Φ

results in smaller effects of future monetary-policy shocks on today’s economy as the β̃k term dominates the
1

σ(1−Φ) term. Second, when k = 0, we are left with 1
σ(1−Φ) , so that the peak effect increases in Φ. Therefore,

reducing asset market participation or reducing transfers of illiquid profits to constrained agents results in
a smaller initial response and larger peak response to a future monetary policy shock.

In sum, we show that the TANK model amplifies the aggregate economy’s response in the period of the
monetary policy shock as the share of constrained agents increases. This finding is similar to that of Auclert
et al. (2018), Debortoli and Gali (2018), and Bilbiie (2019a). Our novel finding is that heterogeneity, in
conjunction with an active Taylor rule, helps generate sensible time-zero output responses to forward
guidance.

4.2 Individual responses to future shocks

In this section, we explore individual responses to forward guidance policy.
First, assume the general case of the Taylor rule (9). As before, consider a forward guidance shock

announced at t = 0 and realized at t = T . For t > T , consumption of both types of agents is zero, cUt = 0
and cKt = 0. For t ≤ T , the impulse response functions of unconstrained and constrained consumption for
the case of two distinct real roots are

cUt = − 1

σ
[Ht,T + vT ] , (25)

cKt = χ

{
− 1

σ(1− Φ)
[Ht,T + vT ]

}
, (26)

where Ht,T is defined as

Ht,T≡
XT

m1−m2

T−t

k=0

[(
φy
κ

+φπ

)(
mt+k−1−T

1 −mt+k−1−T
2

)
+

(
φEπ−1−

βφy
κ

)(
mt+k−T

1 −mt+k−T
2

)]
,

and it captures the endogenous feedback between the central bank’s policy rule and the economy. The
term Ht,T makes the consumption responses of the two agents dependent on the period T when the future
shock occurs. Furthermore, Ht,T makes the unconstrained agent’s response dependent on the heterogeneity
parameters through m1, m2 and Φ. Finally, Ht,T makes the response of both agents explicitly depend on
the parameterization of the monetary policy rule.

Second, consider a central bank that uses the Taylor rule with φEπ ↘ 1, φy = 0 and φπ = 0. As
previously noted, this specification results in the real interest rate changing in only a single period. Sub-
stituting φEπ, φy, and φπ into the above general formulas for cUt and cKt , the term Ht,T reduces to zero so
the responses of unconstrained and constrained consumption, respectively, become

cUt = − 1

σ
vT , (27)

cKt = −χ · 1

σ(1− Φ)
vT . (28)

The above equations imply that t-period consumption of both constrained and unconstrained agents are
proportional to the future shock and independent of the period of the future shock T . Therefore, a mon-
etary policy shock 30 periods in the future produces the same response as a shock that were to occur

16When β̃ > 1, there is compounding – the opposite of discounting. Note that positively sloped aggregate demand, Φ > 1,
is not a sufficient condition for compounding.
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tomorrow. In this case, the real interest rate follows an exogenously set path. As a result, there is no
feedback between the real interest rate and economic activity, which is why Ht,T reduces to zero. Hence,
consumption of unconstrained agents does not depend on heterogeneity as heterogeneity does not affect the
real interest rate. When there is an expansionary monetary-policy shock, values of heterogeneity parame-
ters

{
λ, τ, δ, δW , τW

}
that lead to a larger Φ lead to a greater response by the constrained agent. Therefore,

changes in the underlying structure of the heterogeneity can either amplify or dampen the initial response
depending on whether the changes increase or decrease Φ.
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Figure 6: Time-zero consumption responses to the future 1% monetary policy shock for different horizons
of the future shocks.

Figure 6 plots time-zero individual and aggregate consumption responses to a -1% monetary policy
shock in period T for T ∈ {0, ..., 50}. The figure considers two parameterizations of the Taylor rule:
φEπ ↘ 1, φy = 0 and φπ = 0 in the first panel and φEπ = 0, φy = .25

4 and φπ = 1.5, in the second panel.
In the first panel, the response of consumption is the same regardless of the period of the shock. This is
due to the fact that the response in any period prior to the shock is the response to a contemporaneous
shock as discussed in the previous section. Additionally, the response of the constrained agent exceeds
that of the unconstrained agent as the constrained agent does not experience the decline in dividend
income. In the second panel, the same idea holds in that the constrained agent reacts more to the shock
than the unconstrained agent. Moreover, a future nominal interest rate shock can lead to an economic
contraction today. Therefore, if the shock has a contractionary effect on today’s economy, consumption of
the constrained agent decreases by more than that of the unconstrained agent. To check the robustness
of our results, we perform the same experiments for the case of differentiated labor and obtain similar
patterns of time-zero responses. Overall, the results suggest that policymakers should consider multiple
horizons when using models to evaluate the potential effects of forward guidance in normal times.

5 Transmission of monetary policy

In this section, we study how monetary policy transmits through the economy by decomposing the total
effects of monetary-policy shocks into direct and indirect effects. Direct effects capture the response of
consumption when the real interest rate changes, keeping income fixed, while indirect responses reflect the
change in consumption due to a change in income keeping the interest rate fixed.

The decomposition has received much attention in the HANK literature. First, Kaplan et al. (2018)
demonstrate that RANK is characterized by large direct effects, which suggests a lack of general equilibrium
feedback in response to monetary-policy shocks. In contrast, in a two-asset quantitative HANK model,
indirect effects make up the majority of the response, which returns the general equilibrium feedback
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mechanisms to new Keynesian models. Second, Bilbiie (2019a) studies the decomposition of responses
to persistent contemporaneous shocks in TANK for the case of the Taylor rule it = Et {πt+1} + vt. The
previous literature focuses only on contemporaneous monetary-policy shocks. We extend the previous
results by considering both contemporaneous and future shocks for a more general family of Taylor rules.

5.1 Closed-form solutions for direct and indirect effects

Using our closed-form solutions, we derive analytical formulas for the direct and indirect effects under
Taylor rule (9); see Appendix A.4 for details. The effects can be computed from the planned expenditure
curve, given by

ct = ϑ1
jxt︸︷︷︸+

Indirect

ϑ2
j [it − Et {πt+1}]︸ ︷︷ ︸

Direct

, (29)

ϑ1
j ≡

[1− (1− Φ) (1− ς)β]

1− (1− Φ) (1− ς)β%j
, ϑ2

j ≡ −
1

σ

(
β (1− ς)

1− (1− Φ) (1− ς)β%j

)
, (30)

where ϑ1
j and ϑ2

j are, respectively, multipliers of the indirect and direct effects of a shock occurring j periods

from now; ς ≡ λ(1−Γ)
(1−λ)+λ(1−Γ) is a constant weight of constrained consumption in aggregate consumption, ct =

(1− ς) cUt + ςcKt ; %j is a scalar governing the relationship between consumption tomorrow and consumption
today, ct+1 = %jct, and it is a non-linear function of how far in the future the shock occurs; see Table 5 in
the appendix for %j in the considered cases.

Using the Taylor rule (9) to substitute out it and the Phillips curve (11) to substitute out xt, the
indirect and direct effects become

Indirect: ϑ1
j ·

1

κ
[πt − βEt {πt+1}] , (31)

Direct: ϑ2
j ·
[
i∗t +

(
φy
κ

+ φπ

)
πt +

(
φEπ − 1− βφy

κ

)
Et {πt+1}+ vt

]
, (32)

where πt and πt+1 are given by our closed-form solutions in Table 1. Therefore, we have indirect and direct
effects written in terms of exogenous shocks and parameters only.

5.2 Quantifying direct and indirect effects

In Tables 2 and 3, we quantify direct and indirect effects in a calibrated example. We consider three cases:
(1) a one-time transitory monetary-policy shock for a unique solution with two real roots; (2) a one-time
transitory shock for an indeterminate solution; (3) a one-time persistent shock that reverts back to zero
with persistence ρv for a unique solution. For all three cases, we consider both contemporaneous shocks
(j = 0) and future shocks (j ≥ 1). We focus on a 1% expansionary monetary-policy shock occurring in
period t+ j. The results are computed under the assumptions of φEπ = 0, φy = .25

4 and φπ = 1.05 for the
unique solutions (cases (1) and (3) in the table), and φEπ = φy = φπ = 0 for the indeterminate solution
(case (2) in the table).

General tendencies: TANK versus RANK. Table 2 reports the shares of the direct and indirect
effects in total, as well as total response, for λ ∈ {0.21, 0.08, 0}.

The general tendencies are as follows: First, in response to a contemporaneous monetary-policy shock
(j = 0), direct and indirect effects both work to increase current consumption. Second, in response to a
future monetary policy shock (j = 1, 5), direct and indirect effects work in opposite directions in both
RANK and TANK.17 Finally, for a future shock, indirect effects work to decrease consumption when the

17At some horizons not reported in the table, direct and indirect effects might work in the same direction.



Table 2: Direct and indirect effects in the baseline model

Types of solutions and shock
Unique solution, Indeterminacy, Unique solution,
transitory shock transitory shock persistent shock

(1) (2) (3)
j = 0 j = 1 j = 5 j = 0 j = 1 j = 5 j = 0 j = 1 j = 5

λ = 0.21

Share in total, in%

Direct 45.9 -64.9 -1100.95 63.64 -167.89 -167.89 29.79 -39.07 251.02

Indirect 54.1 164.9 1200.95 36.36 267.89 267.89 70.21 139.07 -151.02

Aggregate response, in %

Total 1.2 0.82 0.09 0.61 0.35 0.04 1.81 2.24 0.08

λ = 0.08

Share in total, in%

Direct 77.84 8626.07 652.26 87.93 195.88 195.88 63.73 -394.72 509.01

Indirect 22.16 -8526.07 -552.26 12.07 -95.88 -95.88 36.27 494.72 -409.01

Aggregate response, in %

Total 0.91 0.70 0.24 0.44 0.28 0.04 1.48 -0.925 0.37

λ = 0

Share in total, in%

Direct 97.50 111.55 109.93 98.78 105.06 105.06 95.12 114.58 109.47

Indirect 2.50 -11.55 -9.93 1.22 -5.06 -5.06 4.88 -14.58 -9.47

Aggregate response, in %

Total 0.8 0.65 0.05 0.38 0.25 0.05 1.34 1.04 0.04

Notes: Direct and indirect effects sum up to 100%. Total effect represents a percentage change in today’s consumption due to

a decrease in the interest rate at t+ j.

share of constrained agents is low (λ = 0 or λ = 0.08) and to increase consumption when the share is high
(λ = 0.21).

Let us explain the last result for j = 1. In response to a one-period ahead expansionary monetary-policy
shock, expected period-1 consumption rises. First consider RANK. Since income rises in period 1 and the
current real interest rate is fixed, the present value of period-1 income increases. With higher consumption
in period 1 and higher present value of period-1 income, the unconstrained agent would like to borrow.
However, with bonds in zero net supply, the agent is unable to. Therefore, current income must change
for the agent to choose to hold zero bonds. This requires a decrease in current income, to compensate for
the increase in the present value of future income. The decline in their current income comes about due
to a reduction in demand. In this case, labor income falls and dividend income rises, with the net effect
being a decline in income. Therefore, the indirect effect is negative.

Now consider TANK. The key feature in TANK is that consumption of constrained agents impacts
income of unconstrained agents. Since constrained agents do not experience a fall in dividend income,
there is a smaller increase in the present value of period-1 unconstrained income in TANK. To generate
the necessary change in current income for the unconstrained agent to choose zero bonds, unconstrained
agents must increase demand. The reason unconstrained agents increase demand is that decreasing demand
would generate too large of a fall in unconstrained period-0 income to be consistent with unconstrained
agents choosing zero bonds. When unconstrained agents reduce demand, labor income falls for both
unconstrained and constrained agents. The reduction in constrained demand reinforces the initial decline
in labor income. Therefore, due to the spillovers from constrained demand to unconstrained income, a
reduction in unconstrained demand would not be consistent with the agent choosing zero bonds as the fall
in current income would be too large. Therefore, unconstrained demand, and, in turn, consumption, rises,
which is why the indirect effect is positive.

When there are not enough constrained agents, the spillover from the constrained agents to uncon-
strained income is not sufficient for the unconstrained agent to choose to increase consumption. There is
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a threshold level of constrained agents such that the indirect effect is negative for all levels of constrained
agents below that threshold. When all other parameters are kept at their baseline levels, the threshold
is around λ = 0.08. Above the threshold, the effect constrained agents have on aggregate demand is
large enough to generate a positive indirect effect. Below the threshold, future monetary-policy shocks
work much like they do in RANK, even though contemporaneous shocks do not. Therefore, only con-
sidering how contemporaneous monetary policy shocks transmit through the economy is not sufficient for
understanding how future shocks transmit.

Aggregate MPC. Table 3 contains the multiplier ϑ1
j of the indirect effect under the baseline calibration

of λ = 0.21.

Table 3: Aggregate MPC

Shock horizon Types of solutions and shocks

Unique solution, Indeterminacy, Unique solution,
transitory shock transitory shock persistent shock

(1) (2) (3)

j = 0 0.5410 0.3636 0.7021
j = 1 1.6490 2.6789 1.7241
j = 5 12.9546 2.6789 -1.5102

Notes: ϑ1
j is the multiplier of the indirect effect.

Note that ϑ1
j can be interpreted as the aggregate marginal propensity to consume (MPC) out of a

change in current income induced by the monetary-policy shock. Therefore, the multiplier cannot be
considered as an aggregate MPC out of a general change in income. Rather, it is specific to the timing
and type of the shock generating the change in income.

In all cases, we find that the aggregate MPC’s are non-monotonic in t and can be greater than unity.
The latter occurs when %j is also greater than unity; see (30). Thus, future consumption, ct+1, is expected to
be greater than current consumption, ct. When unconstrained agents expect future consumption to exceed
current consumption, they will try to bring some of that consumption to the present. As unconstrained
consumption rises, constrained income and therefore, constrained consumption also rises. Therefore, absent
any adjustments in the real interest rate, current consumption rises by more than current income. This
leads to a multiplier greater than unity.

We now consider the three cases (1)–(3) appearing in Tables 2 and 3 in detail.

A transitory shock in case of a unique solution. We first consider the case of a unique solution. For
a contemporaneous monetary-policy shock (j = 0), the output-gap persistence %j is zero since variables are
only functions of current and future shocks; see equations (A12), (A13); hence, ct+1 = 0. Consequently, in
the case of future shocks (j ≥ 1), %j does depend on the horizon of the shock.

Consider TANK with λ = 0.21 in Table 2. First, at nearly all horizons, the indirect effects in TANK
exceed the direct effects and are much larger than those in RANK. Second, while the relative sizes of the
direct and indirect effects deviate from each other over time, the total effect decreases with the horizon of
the shock; very large positive and very large negative effects generate relatively small total effects. Finally,
the increase in consumption in response to future shocks in TANK is due to large indirect effects, while the
increase in RANK is due to large direct effects. Therefore, just as in the case of contemporaneous shocks,
future shocks can transmit through the economy differently in TANK than in RANK.

We analyze now the special case of the Taylor rule with φEπ ↘ 1, φy = 0 and φπ = 0 (this case does
not appear in Table 2) which leads to the central bank directly setting the real interest rate. Because
vt = 0 and i∗t = 0, the direct effects of future shocks are absent. Therefore, the share of direct effects
in the total response jumps discretely from some positive value for j = 0 to 0% of the total effect for
j > 0. Since the aggregate MPC is constant (one will get %j = 1 after substituting in for m1 = 1
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m2 = 1), the change in income is the same regardless of the period of the shock, and the current-period
consumption response is the same for all horizons. The result suggests that the resolutions to the forward
guidance puzzle (proposed by other papers) must generate indirect effects that decrease with the horizon
of the shock.

A transitory shock in case of an indeterminate solution. To fix one equilibrium, we set the
constant in the inflation equation in Table 1 to zero (C = 0). With an indeterminate solution, inflation is
a function of all past and future shocks. As a result, both xt+1 and %0 will also be non-zero. Additionally,
for all j ≥ 1, the output-gap persistence %j ’s (and hence, ϑ1

j ’s) does not depend on how far in the future
the shock occurs: %j is equal to m1 – the larger eigenvalue from the difference equation for inflation (13).

As is seen in Table 2, direct effects make up the majority of the response to a contemporaneous
monetary-policy shock (j = 0). However, the sizes of the direct and indirect effects are the same across
different j for j ≥ 1 due to %j being the same and πt+1 = m1πt. However, the sizes of the direct and
indirect effects are the same for all j ≥ 1. The sizes are the same as %j is the same for all j ≥ 1, and
πt+1 = m1πt, which follows from case i) of Table 1. Additionally, the indirect effect dominates the direct
effect of a future monetary-policy shock. Moreover, similar to Kaplan et al. (2018), we find that the share
of direct effects decreases with λ, and in the limit, as λ → 1, direct effects disappear: when no one is
forward looking, consumption does not respond to interest rates.

A persistent shock in case of a unique solution. Finally, we assume that a deterministic monetary-
policy shock occurs at time t + j and reverts back to zero with persistence ρv. Kaplan et al. (2018) and
Bilbiie (2019a) consider this case under the Taylor rule with φEπ ↘ 1, φy = 0 and φπ = 0 . In contrast to
the indeterminacy case, %j´s and ϑ1

j ’s do depend on the horizon of the future shock.
The tendencies regarding direct and indirect effects are similar to those for a shock without persistence.

One key difference though is that the aggregate MPC ϑ1
j is negative for j = 5. Formula (30) implies that ϑ1

j

is negative when %j is sufficiently large. Also, a larger %j is needed in TANK than in RANK for a negative
aggregate MPC. Note that ϑ1

j < 0 means that an increase in income today would generate a decrease in
consumption when interest rates are held fixed. Therefore, aggregate consumption behaves as if it were an
inferior good.

Recall that negative aggregate MPCs arise when consumption tomorrow is expected to be much higher
than consumption today. If the aggregate MPC is negative, an increase in aggregate income results in
a decrease in aggregate consumption. How can this be? With a negative aggregate MPC, the change in
income of the unconstrained agents needed for them to choose zero bonds comes about due to a rise in
dividend income and fall in labor income, with the net effect being an increase in unconstrained income. In
contrast, if the change in income was due to rising labor income and falling dividend income, constrained
consumption would also increase. Therefore, the aggregate MPC would be positive. For the MPC to
be negative and for both agents to increase consumption when income rises, it must be that the change
in income for unconstrained agents works through rising dividends and falling labor income. The fall in
constrained consumption due to lower labor income exceeds the increase in unconstrained consumption
because of the unitary MPC of constrained agents (even though constrained agents constitute a smaller
share of the population) so that aggregate consumption falls. Therefore, the aggregate MPC is negative.

6 Redistribution and economic volatility

In this section, we study the effects of heterogeneity on a stochastic version of the economy.

Closed-form solutions. We begin by constructing closed-form solutions for the stochastic version of the
economy using the same strategy as in Maliar and Taylor (2018). The solutions for the case of productivity
shocks under the assumption that the productivity level, at, follows an AR(1) processes with persistence
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ρa and variance σ2
a are

distinct real roots: πt =
Υa

m1 −m2

(
at
ρa

)[ ∞∑
s=t

(
m1

ρa

)t−1−s
−
∞∑
s=t

(
m2

ρa

)t−1−s
]
,

complex roots: πt = Υa

(
at
ηρa

)[ ∞∑
s=t

(
r

ρa

)t−1−s
sin (θ (t− 1− s))

]
,

where Υa = κ
βσ(1−Φ)

1+ϕ
σ+ϕ [σ(1− ρa) + φy]; see Appendix A.5 for the corresponding solutions for the other

shocks, as well as for the solutions for the output gap, consumption of constrained agents and unconstrained
agents.

Effect of Φ on aggregate economic volatility. Using our closed-form solutions, we can investigate
how the composite parameter affects the fluctuations of economic aggregates. It turns out that output
and inflation are more volatile in the economy with a larger value of the composite parameter Φ. The
proposition below formalizes the claim.

Proposition 2. Assume m1, m2 ∈ R, |m1| , |m2| > 1 and φEπ = 0.18 Let σx (Φi) denote the standard
deviation of the output gap in an economy i with composite heterogeneity parameter Φi. Suppose Φ1 >
Φ2 due to differences in one of the heterogeneity parameters,

{
λ, τ, δ, τW , δW

}
. If φπ > ρa, then σx (Φ1) >

σx (Φ2).

Proof. See Appendix A.5. �

From Proposition 2, we see that changes in the heterogeneity parameters that increase Φ result in
greater output-gap volatility. Note that 1 − Φ provides us the value for the coefficient of relative risk
aversion needed in RANK to generate the same outcome as in TANK when both agents have logarithmic
utility over consumption. Therefore, changes in the heterogeneity parameters that increase Φ require a
reduction in the relative risk aversion coefficient in a RANK model for TANK and RANK to generate the
same results. Since a less risk averse agent will accept higher volatility, we see that volatility increases as
1−Φ decreases. Since ∂Φ

∂τ > 0 and ∂Φ
∂τW

< 0 , Proposition 2 implies that economies with less redistribution

of illiquid profits (larger τ) or more redistribution of labor-income taxes (smaller τW ) are more volatile.
We now provide a quantitative assessment of these implications.

Redistribution and heterogeneous consumption volatility. We now address how fiscal redistribu-
tion affects cyclical behavior of the economy. Transfers of either illiquid profits or labor tax revenues have
little effect on the cyclicality of consumption inequality. However, transfers do affect economic volatility
at the individual and aggregate levels.

In Table 4, we compare the ratios of standard deviations of individual and aggregate consumption
under alternative transfer schemes to the benchmark case of no redistribution (τ = 1 and τW = 0). In
particular, our alternative transfer schemes vary either τ to τ = 0.9 or τW to τW = −0.1

(
1−λ
λ

)
– both

cases represent a 10% deviation from no redistribution towards full redistribution to constrained agents.
We compare the ratios under two values of the share of constrained agents, λ ∈ {0.21, 0.38}.

We find that transferring a larger share of illiquid profits to constrained agents decreases the volatility
of constrained consumption. When illiquid profits are transferred, the income of the constrained agent is
diversified, depending on both wages and profits, and thus, consumption volatility for the constrained agent
decreases. Transferring a larger share of labor-tax revenues to the constrained agent has the opposite effect.
Unlike illiquid-profit transfers, labor-tax revenue transfers provide no diversification benefit. When more

18The assumption about m1, m2 corresponds to case ii) in Table 1.



Table 4: Volatility of constrained and unconstrained consumption relative to benchmark

Relative standard deviation of consumption

Unconstrained Constrained Aggregate

λ = .21, τ = .9 & τW = 0 1.004 0.9380 0.9987
λ = .38, τ = .9 & τW = 0 0.9811 0.9316 0.9965

λ = .21, τ = 1 & τW = −.1
(
1−λ
λ

)
0.9987 1.0182 1.0004

λ = .38, τ = 1 & τW = −.1
(
1−λ
λ

)
1.0133 1.0342 1.0020

Notes: The results are averages over 100 simlations, each of which has 50 periods.

income is transferred to constrained agents, demand is more volatile, which results in more volatile labor
income. Hence, constrained consumption is more volatile with both small and large shares of constrained
agents.

Consumption volatility of unconstrained agents increases as more illiquid profits are transferred to
constrained agents when the share of constrained agents is low (λ = 0.21) and decreases when the share
of constrained agents is high (λ = 0.38). While the resources that the unconstrained agent has available
for smoothing consumption decrease, smoother consumption for the constrained agent, and hence, more
steady profits, can result in smoother consumption for the unconstrained agent. This is because when
only a small share of the population does not have access to assets, the ability for unconstrained agents
to smooth consumption is only slightly affected by the constrained agent’s decisions. As the share of
constrained agents increases, and aggregate demand becomes more volatile, the consumption decisions
of constrained agents have a greater impact on the unconstrained agent. Consequently, when the share
of constrained agents is high, the indirect benefit of smoother income outweighs the direct decrease in
ability to smooth consumption for unconstrained agents and results in a decrease in consumption volatility.
Moreover, increasing transfers of labor-tax revenues decreases consumption volatility of the unconstrained
agent. For the unconstrained agent, the decrease in income, which is tied to wages, reduces the relatively
more volatile income source. Therefore, while the unconstrained agent has fewer resources available to
smooth consumption, the reduction in income volatility results in their lower consumption volatility.

As is seen from the table, volatility of aggregate consumption increases in τ and decreases in τW , in line
with Proposition 2. However, quantitative changes in volatility at the aggregate level are relatively small
under all transfer schemes. The small effect at the aggregate level is due to the fact that the majority of
agents in the economy are unconstrained and actively try to smooth consumption. Therefore, while their
ability to smooth consumption is reduced by transferring illiquid profits, the relative change in volatility
at the aggregate level is small.

7 Consumption and income inequality

In this section, we discuss the predictions about consumption and income inequality. In the model, con-
sumption is equal to income, ct = yt, and hence, we can talk about consumption and income inequality
interchangeably. Coibion et al. (2017) study how inequality responds to monetary policy shocks and find
that both consumption and income inequality decline in response to expansionary monetary policy shocks.
Krueger et al. (2010) find that consumption and income inequality are countercyclical, with income in-
equality being more countercyclical. While the current model can not reconcile both facts, we can assess
whether the current model can predict the countercyclical nature of consumption and income inequality.

Consumption gap. The consumption gap is given by

γt = −(σ + ϕ)Ψxt (33)

= Ψµt, (34)
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where Ψ > 0 is defined in (17); µt ≡ ln Mt
M is the markup. According to (33) and (34), when the output

gap is above steady state or markups below steady state, the consumption gap is below steady state.

Inequality responses to demand shocks. To investigate how demand shocks affect inequality, we
follow the HANK literature by considering a one-time contemporaneous real interest rate cut. From the
aggregate Euler equation (10), the interest rate cut increases the output gap xt, which reduces consumption
inequality, as is seen from (33). This result is known in the literature as countercyclical consumption
inequality ; see Bilbiie (2008, 2019a). Note, however, that this name is not related to the economy’s
business cycle fluctuations (supply shock driven fluctuations).

What drives countercyclical consumption inequality in the model? As was argued in Section 3.2, in the
absence of redistribution, constrained consumption depends solely on labor income, while unconstrained
consumption depends both on labor income and profits. When there is a real interest rate cut, demand
increases, which drives labor income above steady state and profits below steady state. Therefore, while
the incomes of both agents increase, constrained income increases by more since it is unaffected by the
fall in profits. The greater increase in income for constrained agents results in a greater increase in their
consumption, producing countercyclical consumption inequality.

Equation (34) provides another way to see why consumption inequality is countercyclical; namely,
the model generates countercyclical markups µt in response to demand shocks. Indeed, in this model
wt = σct + ϕnt and yt = at + nt (see the formulas in Appendix A.1), which imply that markups are

µt = at − wt = (1 + ϕ) at − (σ + ϕ) yt,

so that µt falls whenever yt goes up (holding at constant). Countercyclicality of markups does not depend
on the deterministic nature of shocks, and markups µt are countercyclical when demand shocks follow
the stochastic processes described in Section 2. However, empirically, markups do not appear to be
countercyclical; see Ramey and Nekarda (2013). Therefore, one limitation of the current model is the
inability to jointly match the empirical evidence on the cyclicality of income inequality and markups.

Inequality responses to productivity shocks. We now extend our analysis to include aggregate pro-
ductivity shocks. To the best of our knowledge, the existing literature has not studied whether TANK
models generate increases or decreases in income and consumption inequality in response to productivity
improvements (supply shocks). As mentioned above, empirical evidence suggests that consumption and
income inequality are countercyclical over the business cycle. It is easy to see that the model predicts the
opposite, predicting procyclical inequality. Indeed, according to (34), the consumption gap is a constant
positive share of the markup. Since markups are increasing in the level of productivity, a positive produc-
tivity shock increases consumption inequality. This counterfactual implication remains true in a version of
the model with differentiated labor supply across types, which also predicts that the consumption gap is a
constant share of the markup. In Section 8, we show that this model’s drawback is overcome by modifying
asset-market structure.

To better understand why consumption inequality is procyclical in the model, we investigate how pro-
ductivity shocks affect individual consumption. Without productivity shocks, an increase in aggregate
income yt (equivalently, ct) raises consumption of constrained agents by more than one-to-one as χ > 1,
while with productivity shocks, the consumption response of constrained agents is smaller. The smaller
response implies that the increase in productivity has a partial negative affect on consumption of con-
strained agents captured by the second term in (20) (although an increase in productivity raises aggregate
income yt). The negative effect is due to the fact that the benefits of higher productivity are distributed
unequally between the two agents. Constrained agents do not benefit from the positive effect productivity
has on dividend income. When all profits are illiquid and distributed equally between the two agents,
Φ → 0 and χ → 1. With χ = 1 the second term in (20) drops out. With less than equal distribution,
constrained agents experience a negative partial effect from productivity increases, while unconstrained
agents experience a positive effect; see (19).
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Note that, in response to a one-time productivity shock with zero persistence, we have

dcUt
dat
− dcKt
dat

= [χ− (1− Φ)]︸ ︷︷ ︸
>0

[
1 + ϕ

σ + ϕ
− ∂yt
∂at

]
︸ ︷︷ ︸

>0

> 0,

since χ ≥ 1, Φ < 1, and ∂yt
∂at

< 1+ϕ
σ+ϕ ; see the appendix for a verification.

The term in the first set of brackets is the difference between the elasticities of unconstrained and
constrained consumption to aggregate income in the case of no productivity shocks; see (19) and (20).
It is positive because constrained consumption is more sensitive to aggregate income than unconstrained
consumption when there are no productivity shocks. The second term is the negative of the rate at which
the markup changes as productivity changes, normalized by the rate at which the markup changes as

output increases (i.e.,−
[
dµt
dat

] [
dµt
dyt

]−1
). In the absence of productivity changes, markups are countercyclical,

dµt
dyt

< 0, and they increase with productivity, dµt
dat

> 0, so that the second term in brackets is positive.
Therefore, while higher productivity raises output, the consumption gap also increases.

We use our numerical solutions to verify that consumption inequality is procyclical when productivity
is stochastic. We consider an economy subject to exogenous productivity shocks with persistence ρa = .9
and variance σ2

a = .016. We conduct 1, 000 simulations of 10, 000 periods and find an average correlation
between the consumption gap and productivity of 0.33. Therefore, the above results from the one time
transitory shock carry over to the case where productivity is stochastic. In contrast to the empirical
evidence, the model implies that consumption inequality is procyclical over the business cycle.

Summary. First, the consumption gap coincides with the income gap. Second, the behavior of inequality
in the baseline model is entirely determined by markups. Finally, consumption inequality is procyclical
when there are productivity shocks, and it is countercyclical when there are demand shocks.

inequality consumption T income

determinants markups µ markups µ

demand shock countercyclical = countercyclical

supply shock procyclical = procyclical

8 Sensitivity results: TANK with capital

We now address whether capital and adjustment costs can reverse the counterfactual predictions about
inequality generated by the model without capital. We do not focus on the effects of forward guidance
policy here because we find that the model with investment adjustment costs has similar predictions to
the model with no capital; we present these results in Appendix B.4. Gaĺı et al. (2004) consider a version
of TANK with capital but without redistribution among agents of different types.

8.1 The model

The economy consists of a continuum of agents of two types, intermediate-good producers, final-good
producers, a central bank and a government. A fraction λ of agents are constrained and cannot hold
shares in the firms, bonds or capital, while the remaining agents are unconstrained, and they have full
access to all three asset markets.

Consumer side. The problem of the constrained agent remains the same as in the baseline TANK model
and is given by (3), (4). Unconstrained agents can save via a mutual fund which holds the intermediate-
good firms’ dividends, bonds and physical capital. Physical capital is subject to investment adjustment
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costs. The unconstrained agents rent capital and receive a rental rate Rkt . The tax revenue from cap-
ital is distributed in the same fashion as illiquid profits. Specifically, an unconstrained agent chooses{
CUt , N

U
t , B

U
t , F

U
t ,K

U
t , I

U
t

}
to maximize (1) subject to the following constraints:

CUt +
BU
t

Pt
+QtF

U
t + IUt

=
BU
t−1Rt−1

Pt
+
(
1− δW

)Wt

Pt
NU
t + (1− τk)RktKU

t−1 + (Qt + (1− δ)Dt)F
U
t−1 + TUD,t + TUW,t, (35a)

KU
t = (1− δk)KU

t−1 −
ζ

2

(
IUt
KU
t−1

− δk
)2

KU
t−1 + IUt , (36)

where initial condition (BU
−1, F

U
−1,K

U
−1) is given. Here, CUt , NU

t , BU
t , FUt , KU

t , IUt , TUD,t, T
U
W,t are the un-

constrained agent’s consumption, labor, nominal bond holdings, shares of intermediate-good firms, capital
stock, investment, transfers of illiquid profits and capital tax revenues, and transfers of labor tax rev-
enues, respectively; Dt is the dividend from ownership of intermediate-good firms; Pt, Qt, Wt, R

k
t and

Rt−1 are the final-good price, share price, nominal wage, rate of return on physical capital and (gross)
nominal interest rate, respectively; Zt is a preference shock, following the standard AR(1) process in logs,
Zt+1 = ZρZt exp (εZ,t+1) with εZ,t+1 ∼ N

(
0, σ2

Z

)
; τk is a tax on returns from capital; a parameter ζ ≥ 0

captures the cost of adjusting investment; β ∈ (0, 1) is the subjective discount factor; δk ∈ [0, 1] is the
depreciation rate of capital; δ ∈ [0, 1] is the share of illiquid profits allocated across agents by government;
δW ∈ [0, 1] is the labor-income tax rate; σ > 0 and ϕ > 0. The FOCs of the unconstrained agent’s problem
(1), (35a), (36) are derived in Appendix B.1.

Supply side. The supply side in this TANK economy is similar to the one in TANK without capital.
The only difference now is that a firm i produces an intermediate good Yt(i) using two inputs, capital Kt(i)
and labor Nt(i), according to

Yt(i) = AtKt(i)
αNt(i)

1−α,

where α ∈ (0, 1); At is a productivity level following the standard AR(1) process in logs, At+1 =
AρAt exp (εA,t+1) with εA,t+1 ∼ N

(
0, σ2

A

)
. As before, a firm’s price is rigid a la Rotemberg (1982) by

setting prices optimally in every period of time subject to the same adjustment-cost function.

Redistribution. Government makes transfers
{
TUD,t, T

U
W,t, T

K
D,t, T

K
W,t

}
by re-distributing the illiquid prof-

its of the intermediate-good producers δDt, capital-tax revenues τkR
k
tKt and labor-tax revenues δW Wt

Pt
Nt,

so that (1− λ)TUD,t + λTKD,t = δDt + τkR
k
tKt and (1− λ)TUW,t + λTKW,t = δW Wt

Pt
Nt, respectively. It does so

according to the following rules:

TUD,t =

(
1 +

τλ

1− λ

)(
δDt + τkR

k
tKt

)
, TKD,t = (1− τ)

(
δDt + τkR

k
tKt

)
, (37)

TUW,t =

(
1 +

τWλ

1− λ

)
δW

Wt

Pt
Nt, TKW,t =

(
1− τW

)
δW

Wt

Pt
Nt, (38)

where 1 − τ and 1 − τW are, respectively, the share of profits plus capital-tax revenues and the share of
labor-tax revenues, distributed to the constrained agents, with τ ∈ [0, 1] and τW ∈

[
−1−λ

λ , 1
]
. All the

log-linearized equations of the model are summarized in the appendix.

8.2 Consumption and income inequality

To the best of our knowledge, the new Keynesian model with capital does not allow for closed-form
solutions. To solve the model numerically, we use Fair and Taylor’s (1983) extended path method. The
log-linearized equations are presented at the end of Appendix B.3.
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Consumption gap. As before, we define Γt as a consumption gap, Γt = 1 − CKt
CUt

. Since consumption

and income no longer coincide, we also define the income gap as, ΓYt = 1 − Y Kt
Y Ut

, where Y K
t and Y U

t are

income of constrained and unconstrained agents, respectively. In Appendix B.2, we derive the nonlinear
formulas for the consumption and income gaps.

By log-linearizing the gaps around a zero inflation steady state, we obtain

γt = θ1µt + θ2ı̂t + θ3r
k
t + θ4kt, (39)

γYt = θY µt, (40)

where ı̂t is the deviation of investment from steady state, γYt is the (log-linear) income gap, and the
θ’s are constants, defined in Appendix B.3. These income and consumption gaps apply to any standard
adjustment cost function which results in a steady state investment to capital ratio of δ.19

The cyclicality of income inequality is fully determined by the cyclicality of the markup; see (40). With
countercyclical markups, the income gap will decrease in expansions. Therefore, if the model generates
countercyclical income inequality, it also has the undesirable feature of countercyclical profits just as in
the case of the model without capital. This should be kept in mind when analyzing richer HANK models.
It may be that the reason some HANK models can match the countercyclicality of income inequality,
consistent with the empirical evidence, is that the model produces countercyclical markups in response to
demand shocks, inconsistent with the empirical evidence.

Unlike the model without capital, consumption inequality depends on factors other than the markup;
see (39). Specifically, investment, the rental rate of capital and the level of capital all affect consumption
inequality. Recall that the θ’s are applicable to adjustment cost functions that result in a steady state
investment to capital ratio of δ. Thus, if two adjustment costs generate different responses of consumption
inequality to shocks, the difference is due to the dynamics of markups, investment, the rental rate of capital
and the capital stock, not the steady state levels.

Under the adjustment cost function in (35a), the consumption gap can be rewritten as

γt = κ1µt + κ2q̂t + κ3r
k
t , (41)

where κ1,κ2 and κ3 are constants defined in Appendix B.3; q̂t is the value of installed capital in terms of
consumption, and rkt is the return on physical capital (both in log deviations). When q̂t is high, having an
additional unit of installed capital is more valuable in terms of consumption than purchasing an additional
unit of uninstalled capital. In this case, we would therefore expect to see consumption of the unconstrained
agent to fall and investment to increase. The deviation of the value of installed capital from the price of
the investment good is key in the cyclicality of consumption inequality in our model.

In the baseline TANK model with no capital, the consumption gap is a constant fraction of the markup.
As a result, a positive demand shock that reduces the markup decreases the consumption gap, while a
positive supply shock that raises the markup increases the consumption gap. For the TANK model with
capital, the prediction is not so clear. The sign of κ2 is opposite to those of κ1 and κ3; see Appendix
B.2. Therefore, the model with capital and adjustment costs can have either increasing or decreasing
consumption inequality. For example, a productivity shock increases markups µt, the value of an additional
unit of installed capital q̂t and the rental rate of capital rkt . Therefore, without knowing the magnitudes of
deviations, we cannot say whether the consumption gap increases or decreases. Higher returns on capital,
which only accrue to unconstrained agents increase the consumption gap, while higher values of installed
capital call for increases in investment, reducing the consumption gap.

19The derivation also requires sticky prices. In a model with wage instead of price rigidity, the consumption and income
gaps would differ from those presented here as the markup is always constant when prices are flexible and hence, would not
enter the log-linear income and consumption gaps.
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Inequality responses to demand shocks. As discussed in the model without capital, the empirical
studies find that consumption inequality is more countercyclical than income inequality. We now address
whether capital and adjustment costs allow the model to replicate this fact.

To determine the cyclicality of consumption and income inequality in response to demand shocks, we
consider a 1% one-time, contemporaneous real interest rate cut. We find that consumption inequality is
more countercyclical than income inequality. The income gap falls by almost 8%, while the consumption
gap falls by about 12%. While consumption and income inequality both decline due to the fall in markups,
consumption inequality is also affected by changes in investment and the return on capital. The net effect
of these two works to reduce consumption inequality. However, countercyclical income inequality is due to
countercyclical markups. Therefore, the present TANK model with capital and adjustment costs is unable
to reconcile the two empirical findings regarding income inequality and markups.

Inequality over the business cycle. In this section, we address consumption and income inequality
over the business cycle (i.e., when there are exogenous stochastic supply shocks). We assume that the
productivity shock is parameterized by an AR(1) process with persistence ρa = .9 and variance σ2

a = .016.
From equation (41), we see that the magnitude of the investment adjustment costs plays a key role in
whether positive productivity shocks increase or decrease the consumption gap between households with
access to savings and those without. In the simulation, we consider a tax rate of 20% on capital and a
Taylor rule with φπ = 1.5 and φy = .25

4 . We keep λ = 0.21, δ = 0.92, and δW = 0.15 as in the model

without capital. We vary
(
τ, τW

)
∈
{

(1, 0) , (.9, 0) ,
(
1,−.1

(
1−λ
λ

))}
. The steady state consumption gaps

range from 33% − 37% and the steady state income gaps range from 42% − 46%. The steady state gaps
are largest when there are no transfers and smallest when there are labor-tax revenue transfers.

We set the adjustment-cost parameter ζ = 6. It implies the ratio of standard deviations of investment
to output is 2.75, which is in line with U.S. data. Figure 8 presents the consumption gap, income gap and
productivity level for a 50 period simulation of the economy under this parameterization of the adjustment
cost for the three different transfer schemes; all variables are measured in deviations from steady state. We
find that the model can generate countercyclical consumption inequality even without engaging in direct
redistribution. The countercyclical nature of the consumption gap is driven by the savings decision of the
unconstrained household.
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Figure 7: Consumption and income inequality over the business cycle in TANK with capital.

In our sensitivity experiments, we find that larger adjustment costs result in procyclical consumption
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inequality (these experiments are not reported). Intuitively, with a larger adjustment cost parameter,
marginal costs of investment are larger, so the value of installed capital needs to greatly deviate from
steady state for investment to be optimal. If the deviation is small, the unconstrained agent will consume
instead of investing. In that case, consumption inequality would be procyclical.

While consumption inequality can be procyclical or countercyclical, we find that income inequality is
always highly procyclical. Since markups are procyclical over the business cycle in this model, income
inequality increases when the economy experiences a positive productivity innovation. Indeed, the corre-
lation of the income gap with productivity is above 0.99 in all transfer schemes (see Table 6 in Appendix
B.4).

Consumption inequality, however, is affected by the transfer schemes. Under no asset and labor-tax
revenue transfers (τ = 1 and τW = 0), the correlation between the consumption gap and productivity is
−0.3612. Therefore, the model is able to generate countercyclical consumption inequality. When we only
allow for transfers of illiquid profits and capital-tax revenues (i.e., asset transfers) to constrained agents, we
find that consumption inequality becomes even more countercyclical. Indeed, the correlation between the
consumption gap and productivity increases to −0.5940 when each constrained agent is given one-tenth of
the illiquid profits and capital tax revenues (τ = .9 and τW = 0).

As argued above, the model generates highly procyclical income inequality due to the fact that the
income gap can be written solely as a function of markups when both agents are assumed to supply the same
amount of labor. Nevertheless, if we allow for differentiated labor, income inequality will depend positively
on markups and negatively on the difference in labor supplied by the two types of agents. However, this
further increases the procyclicality of income inequality.

Summary. First, in response to demand shocks, consumption and income inequality continues to be
countercyclical, as in the baseline model with no capital. Second, in response to supply shocks, consump-
tion inequality can be either procyclical, acyclical or countercyclical, but income inequality is strongly
procyclical. Finally, the behavior of income inequality continues to be completely determined by markups,
while that of consumption inequality is governed by a joint effect of markups, value of installed capital and
interest rate. Such a joint effect depends on the adjustment cost function assumed.

inequality consumption T income

determinants µ, q̂, rk µ

demand shock countercyclical > countercyclical

supply shock pro−, a−, countercyclical procyclical

9 Conclusion

Our results provide insight into what mechanisms are at work in quantitative HANK models. First, the
effect transfers have on individual and aggregate outcomes depend crucially on the degree of asset market
participation and how transfers are funded. Transfers that diversify income of constrained agents have
effects opposite to transfers that result in greater concentration. When designing transfers, one must keep
in mind how the redistribution policy affects agents directly, through their tax paid and transfer received,
and indirectly, through changes in income due to changes in the behavior of other agents.

Second, we show forward guidance away from the lower bound becomes less effective as more agents
are excluded from asset markets. This suggests the effects of expansionary and contractionary forward
guidance may not be symmetric in HANK models since the share of constrained agents is endogenous.
Contractionary forward guidance may increase the share of constrained agents while expansionary policy
may have opposite effects.

Furthermore, our results on direct and indirect effects show that even if the transmission of current
shocks in TANK differs from that in RANK, as was shown in the previous literature, transmission of future
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shocks may be similar to RANK. Therefore, when thinking about the transmission of forward guidance in
HANK, it is not enough to just consider the transmission of contemporaneous shocks.

Finally, our results on inequality over economic cycles provide insight into what drives the gaps in
consumption and income between those agents at the very top of the wealth distribution, whose borrowing
constraint never binds, and very bottom of the wealth distribution, whose borrowing constraint always
binds, in HANK models. Our results show that the income gap between these two types of agents is due
solely to the markup. Consequently, if a simulated HANK model correctly predicts that the income ratio
of top to bottom income groups is countercyclical, we should keep in mind that it may be due to the model
generating countercyclical markups, in contrast with the empirical evidence. Unlike the income gap, the
consumption gap depends on the markup, value of installed capital and return on capital. We show that
policies that allow for greater capital mobility (i.e., lower adjustment costs) reduce consumption inequality
between those at the very top and very bottom. Therefore, in HANK models, lowering adjustment costs
may have an even larger effect than the one presented here as fewer agents will fall into a zero-wealth
category as adjustment costs decline.

While the model with capital is able to generate countercyclical consumption inequality, income in-
equality remains highly procyclical in response to supply shocks, which stands at odds with the data. We
leave for future research finding specifications of TANK that would lead to countercyclical income inequal-
ity. For example, one may consider an extension where agents differ in labor productivity or face separate
labor markets. In the latter case, unemployment in each market might respond differently to business cy-
cles, which may allow the model to generate countercyclical income inequality. Adding these assumptions
in an analytically tractable way would offer better understanding of mechanisms at work under the hatch
in HANK models.
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Online appendices

Appendix A. TANK model

In this section, we provide the supplementary results of Sections 2–7.

A.1 Supplementary results of Section 2

First-order conditions (FOCs). The FOCs of the unconstrained agent’s problem (1), (2) are(
FUt
)

: Qt = Et
{

ΛUt,t+1 [Qt+1 + (1− δ)Dt+1]
}
, (A1)

(
BU
t

)
: 1 = βRtEt

{
Zt+1

Zt
·

(
CUt+1

CUt

)−σ
1

Πt

}
, (A2)

(
NU
t

)
:

(
1− δW

)Wt

Pt
= (CUt )σ(NU

t )ϕ, (A3)

where ΛUt,t+1 ≡ β
Zt+1

Zt
·
(
CUt+1

CUt

)−σ
; Πt ≡ Pt+1

Pt
is t-period gross price inflation.

Under the assumption of a symmetric equilibrium, Pt (i) = Pt, Yt (i) = Yt, the profit maximization
problem of the firm implies the following Phillips curve:

Πt (Πt − 1) = Et

{
ΛUt,t+1

(
Yt+1

Yt

)
Πt+1 (Πt+1 − 1)

}
+
ε

ξ

(
1

Mt
− 1

M

)
, (A4)

where Πt ≡ Pt
Pt−1

is gross price inflation; ΛUt,t+1 is a stochastic discount factor used by the firm (only the

unconstrained agents own shares);Mt ≡ At
Wt

is the average gross markup;M is the markup in the absence

of adjustment costs, M ≡ ε
ε−1 . Price dispersion is defined as 4t ≡ 1 − ξ

2 (Πt − 1)2. Using the fact that

aggregate profits are Dt = Yt4t − Wt
Pt
Nt, we get the formula for the consumption gap (8).

Log-linearization of the non-linear model. In the non-linear model, the resource constraint is given
by Yt −1

0 Xt(i)di = Ct, where Yt =1
0 Yt(i)di is aggregate output, and Xt(i) is the firm i’s amount needed

for price adjustment costs, defined by

Xt (i) =

(
Pt (i)

Pt

)ε ξ
2
Yt (Πt − 1)2 .

By symmetric equilibrium, Pt (i) = Pt, we have 1
0Xt(i)di = ξ

2Yt (Πt − 1)2 so that Yt

(
1− ξ

2 (Πt − 1)2
)

= Ct.

We define price dispersion 4t as 4t ≡ 1 − ξ
2 (Πt − 1)2. Hence, we obtain Yt4t = Ct. In the first-order

approximation, 4t is equal to unity, which implies yt = ct.
Log-linearization of the Phillips curve, obtained from the firm’s problem in (A4), yields

πt = βEt {πt+1} −
ε− 1

ξ
µt.

(Recall that the lower case variables represent their log-linear deviations), Thus, the slope κ of the curve
is ε−1

ξ . Log-linearizing the wage setting rule (7) yields

wt = σct + ϕnt. (A5)

Next, the production function in the log-linear form is yt = at + nt. The log-linearized markup equation,
Mt ≡ At

Wt
, is

µt = at − wt. (A6)

33



Expressing nt from the production function and substituting it into the wage equation (A5), we have

wt = σct + ϕyt − ϕat.

Using this result in the markup equation (A6), along with ct = yt, we have

µt = (1 + ϕ) at − (σ + ϕ) yt.

Setting µt = 0 gives us the natural rate of output,

ynt =
1 + ϕ

σ + ϕ
at.

Using the latter formula in the left-hand side of the markup equation (A6) gives us

µt = − (σ + ϕ)xt.

The Euler equation of the unconstrained agent is

cUt = Et{cUt+1} −
1

σ
[it − Et{πt+1}]−

1

σ
Et{∆zt+1}. (A7)

Using Ct = CUt (1− λΓt) and taking into account (33), we obtain

ct = cUt −
λ

1− λΓ
γt

= cUt + Φxt, (A8)

By substituting (A8) into (A7), we get the aggregate Euler equation,

ct = Et{ct+1} −
1

σ
[it − Et{πt+1}]−

1

σ
Et{∆zt+1} − Et{Φ∆xt+1}. (A9)

Recall that ct = yt and that yt = xt + 1+ϕ
σ+ϕat. For the RANK economy, the natural rate of interest is

rnt = −Et {4zt+1}+ σEt
{
4ynt+1

}
= (1− ρz)zt − σ(1− ρa)

1 + ϕ

σ + ϕ
at. (A10)

Substituting Et {4zt+1} from (A10) into (A9) leads to the aggregate Euler equation (IS curve) (10). Note
that the Taylor rule (9) can be rewritten as (12) because ynt = 1+ϕ

σ+ϕat with ut ≡ φy 1+ϕ
σ+ϕat + vt. In sum, our

aggregate three-equation model is given by (10), (11) and (12).

Closed-form solution for the output gap. Regarding the solution for the output gap, we proceed as
follows: We first iterate the IS curve forward to write xt as

xt = − 1

σ(1− Φ)
Et

∞∑
k=0

[
it+k − πt+1+k − rnt+k

]
. (A11)

We then substitute in for it using the Taylor rule (9), for xt+k using the Phillips curve (11) and for the
inflation terms using the above closed-form solutions. In particular, one can write xt as

xt = −Ht −
1

σ(1− Φ)

[∞
k=0vt+k −∞k=0 r

n
t+k

]
, (A12)

where Ht ≡ f
(
m1,m2, φEπ, φπ, φy, κ, β, {Xs}∞s=k+t

)
. For example, for the case of two distinct real roots

leading to a unique equilibrium, Ht is defined as

Ht≡
1

m1−m2

∞

k=0

[(
φy
κ

+φπ

) ∞∑
s=t+k

(
mt+k−1−s

1 −mt+k−1−s
2

)
Xs +

(
φEπ−1−

βφy
κ

) ∞∑
s=t+k+1

(
mt+k−s

1 −mt+k−s
2

)
Xs

]
.

(A13)
Therefore, the closed-form solution for the output gap depends solely on the exogenous variables, as well
as on the model’s parameters, among which the Taylor-rule parameters enter explicitly.

34



A.2 Supplementary results of Section 3

Proof of Proposition 1. Suppose λ < 1
2 .

(i) M < 1 + 1
δ(1−τ) . We will show that Φ is increasing in λ.

For the Taylor rule (9), the upper indeterminacy bound is defined in Theorem 1. The share of constrained
agents λ enters the formula (15) for Φ, so that we have

∂Φ

∂λ
=

(1− λγ)
(
(σ + ϕ)Ψ + λ(σ + ϕ)∂Ψ

∂λ

)
+
(
Γ + λ∂Γ

∂λ

)
(λ(σ + ϕ)Ψ)

(1− λγ)2
.

The result holds if the numerator is positive. The derivatives of Ψ and Γ with respect to λ, respectively,
are given by

∂Ψ

∂λ
=

2(1− λ)(1− δ(1− τ)− τW δW )
(
δ(1− τ)(M− 1) + 1− τW δW

)
D3

− (1− δ(1− τ)− τW δW )

D2
,

∂Γ

∂λ
=

[
(M− 1) (1− δ (1− τ)) + τW δW

] (
(M− 1)δ(1− τ)−

(
τW δW − 1

))
D2

,

where D ≡ 1+
(
δW τW − 1

)
λ+(M−1)(1−δ(1−τ)λ). Therefore, ∂Φ

∂λ > 0 if the following inequality holds:

(σ + ϕ)Ψ

+ 2(1− λγ)λ(σ + ϕ)

(
2(1− λ)(1− δ(1− τ)− τW δW )

(
δ(1− τ)(M− 1) + 1− τW δW

)
D3

)

+ λ2(σ + ϕ)Ψ

([
(M− 1) (1− δ (1− τ)) + τW δW

] (
(M− 1)δ(1− τ)−

(
τW δW − 1

))
D2

)

> (1− λγ)λ(σ + ϕ)

(
(1− δ(1− τ)− τW δW )

D2

)
. (A14)

Recall that Ψ > 0 and that M ≡ ε
ε−1 . Let us consider the third term on the left-hand side. It is greater

than zero as long as the following inequality holds:

1 > δ(1− τ)(M− 1) + τW δW .

This holds trivially for τ = 1. For τ 6= 1, the above inequality implies the following restriction on the
markup:

M < 1 +
1− τW δW

δ(1− τ)
,

and the following restriction on the parameter of the Dixit-Stiglitz aggregator: ε > 1 + δ(1−τ)
1−τW δW

. The

assumption will be satisfied under most reasonable parameterizations. Indeed, a reasonable value of τW

would most likely correspond to a value of zero or lower, implying that constrained agents receive a labor
income tax refund. Now, turning to the first, second and fourth terms of the inequality, and recalling the
definition of Ψ in (17), we have

(1− λ) ·
[
(1− δ(1− τ)− τW δW )

]
+ 2(1− λγ)λ(σ + ϕ)(1− λ)(1− δ(1− τ))δ(1− τ)(M− 1)

> (1− λγ)λ ·
[
(1− δ(1− τ)− τW δW )

]
.

The second term is positive. The first and third terms just differ in 1−λ and (1−λγ)λ. Since by assumption,
1−λγ < 1 and λ < 1

2 , the above inequality holds. Therefore, given that (1− λ+ (M− 1)(1− δ(1− τ)λ))3 >
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0 and given that the third term in (A14) is strictly positive, inequality (A14) is satisfied, and ∂Φ
∂λ > 0.

In sum, ∂Φ
∂λ > 0 so long as M < 1 + 1

δ(1−τ) for τ 6= 1. For τ = 1, we do not need the restriction on the
markup for the proof to hold.

(ii). We will show that Φ is increasing in τ and decreasing in δ. Equation (15) yields

∂Φ

∂τ
=

(1− λγ)λ(σ + ϕ)∂Ψ
∂τ + λ2(σ + ϕ)Ψ∂Γ

∂τ

(1− λγ)2
.

If the numerator is positive the result holds.
First, let us consider the partial derivatives of Ψ and Γ with respect to τ ,

∂Ψ

∂τ
=
δ(1− λ)

D2
−

2δλ(1− λ)
[
(1− λ)(1− δ(1− τ)− δW τW )

]
(M− 1)

D3
,

∂Γ

∂τ
=
δ(M− 1)

D
−

(M− 1)δλ
[
(M− 1)(1− δ(1− τ)) + τW δW

]
D2

,

where D is defined as in part (i). We will have ∂Γ
∂τ > 0 if the following inequality holds:

δ(M− 1)
[
1 +

(
τW δW − 1

)
λ+ (M− 1)(1− δ(1− τ)λ)

]
> (M− 1)δλ

[
(M− 1)(1− δ(1− τ)) + τW δW

]
.

Given that M− 1 > 0, we have

D > λ
[
(M− 1)(1− δ(1− τ)) + τW δW

]
,

1 + λτW δW − λ+ (M− 1)(1− δ(1− τ)λ) > λ(M− 1)(1− δ(1− τ)) + λτW δW ,

(1− λ) + (M− 1)(1− δ(1− τ)λ) > λ(M− 1)(1− δ(1− τ)).

Since λ ∈ [0, 1), we obtain (1− δ(1− τ)λ) > λ(1− δ(1− τ)). Therefore, since the first term in the above
inequality is always positive, and the second term is greater than the third one, the above inequality holds.
Next, let us consider ∂Ψ

∂τ . This is also greater than zero so long as the following inequality holds:

δ(1− λ)D > 2δλ(1− λ)(1− δ(1− τ)− δW τW )(M− 1),

or equivalently,
D > 2λ(M− 1)(1− δ(1− τ))− 2λ(M− 1)δW τW .

For λ < 1
2 , the second term on the left hand side is greater than the term on the right hand side. Addi-

tionally, when τW ≥ 0, the sum of the first two terms on the left hand side will also be positive. Therefore,
the above inequality holds. When τW < 0 a more stringent restriction on λ may be necessary for the proof
to hold.
Therefore, since both ∂Ψ

∂τ > 0 and ∂Γ
∂τ > 0 for λ < 1

2 , ∂Φ
∂τ > 0, leading to ∂Φ

∂τ > 0. This directly implies that

Φ decreases in δ. This is because just the parameter Φ contains τ and δ and because ∂Φ
∂τ = −∂Φ

∂δ .

(iii). We now show that Φ decreases in both τW and δW .

Suppose that λ < 1
2 . Formula (15) implies

∂Φ

∂τW
=

(1− λΓ)λ(σ + ϕ) ∂Ψ
∂τW

+ λ2(σ + ϕ)Ψ ∂Γ
∂τW

(1− λΓ)2
.
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If the numerator is negative, the result holds.
From (17) and (16), partial derivatives of Ψ and Γ with respect to τW are given by

∂Ψ

∂τW
= −δ

W (1− λ)

D2
−

2δWλ
[
(1− λ)(1− δ(1− τ)− δW τW )

]
D3

,

∂Γ

∂τW
=
δW

D
−
δWλ

[
(M− 1)(1− δ(1− τ)) + τW δW

]
D2

,

where D is defined as in part (i).
Toward contradiction, we will now assume that ∂Φ

∂τW
> 0 under the conditions of λ < 1

2 and τW > 0. For
∂Φ
∂τW

> 0, we will need

λΨ
∂Γ

∂τW
> −(1− λΓ)

∂Ψ

∂τW
,

which is equivalent to

λΨ
δW

D
> λΨ

δWλ
[
(M− 1)(1− δ(1− τ)) + τW δW

]
D2

+ (1− λΓ)
δW (1− λ)

D2

+(1− λΓ)
2δWλ

[
(1− λ)(1− δ(1− τ)− δW τW )

]
D3

.

After using equation (17) for Ψ, the above inequality simplifies to

λδWD(1− λ)
[
1− δ(1− τ)− δW τW

]
>

λ2δW
[
(M− 1)(1− δ(1− τ)) + τW δW

]
(1− λ)(1− δ(1− τ)− δW τW )

+(1− λΓ)δW (1− λ)D2

+(1− λΓ)2δWλ
[
(1− λ)(1− δ(1− τ)− δW τW )

]
D.

The second term on the right hand side of the inequality is positive. Therefore, for the above to be true, the
term on the left hand side must be greater than the first and third term on the right hand side. Dividing
these terms by λδW (1 − λ)(1 − δ(1 − τ) − δW τW ), for the left hand side to be greater than the first and
third terms on the right hand side we need

D > λ
[
(M− 1)(1− δ(1− τ)) + τW δW

]
+ (1− λΓ)2D,

0 > λ
[
(M− 1)(1− δ(1− τ)) + τW δW

]
+ (1− 2λΓ)D.

The first term on the right hand side will be positive. Additionally, if λ < 1
2 , since Γ ∈ [0, 1), the second

term on the right hand side will also be positive. Therefore, the inequality cannot hold. Therefore, for
λ < 1

2 and τW > 0, we have ∂Φ
∂τW

< 0. This directly implies that Φ decreases in δW as the two parameters
only enter jointly. �

Impulse responses. Using our closed-form solutions, we can write the responses of inflation (and hence,
the output gap) to a one-time anticipated shock. Suppose that at t = 0, the agents anticipate a future
shock XT to occur at time T (due to an anticipated change in zT , aT or vT ). For t ≤ T , the impulse-
response functions for inflation in case of two distinct real roots producing a unique solution and that of
complex roots, respectively, are

distinct real roots: πt =
mt−1−T

1 −mt−1−T
2

m1−m2
·XT , (A15)

complex roots: πt = rt−1−T

η sin [θ (t− 1− T )] ·XT . (A16)

For t > T , inflation returns immediately to steady state, πt = 0.
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When the solution is indeterminate, the impulse-response functions are

for t ≤ T : πt =
mt−1−T

1
m1−m2

·XT ,

for t > T : πt =
mt−1−T

2
m1−m2

·XT ,

As stated in the main text, the key difference between indeterminate and unique solutions is that indeter-
minate solutions are functions of all past, present and future shocks while unique solutions are functions
only of present and future shocks.

Relation between individual and aggregate variables. First, the relationship between uncon-
strained consumption and aggregate consumption is derived using equation (A8) and ct = xt + 1+ϕ

σ+ϕat;
this gives us equation (19). Second, using the log-linearized wage rule (A5) and the relationship between
ct and cUt gives us equation (18).

Finally, we derive the relationship between aggregate consumption and constrained consumption. Log-
linearizing the aggregate consumption equation, Ct = λCKt + (1− λ)CUt and re-arranging the terms yields

cUt =
C

(1− λ)CU
ct −

λ

1− λ
CK

CU
cKt ,

which in terms of Γ = 1− CK

CU
becomes

cUt =

(
C

(1− λ)CU

)
ct −

(
λ(1− Γ)

1− λ

)
cKt .

Using the aggregate consumption equation C = λCK + (1 − λ)CU , as well as ct = cUt + Φxt in (A8)
and re-arranging the terms, we have

cKt = ct +
(1− λ) Φ

(1− Γ)λ
· xt. (A17)

Imposing market clearing xt = ct + 1+ϕ
σ+ϕat, we then have

cKt = χct + (1− χ)

(
1 + ϕ

σ + ϕ

)
at, (A18)

which appears in (28) of the main text with χ being defined in (20).

A.3 Supplementary results of Section 4

Closed-form solution for consumption of the unconstrained agent. Solving the unconstrained
agent’s Euler equation (A7) forward gives us

cUt = − 1

σ

∞∑
k=0

[it+k − Et{πt+1+k}] +
1

σ
zt. (A19)

We use the Taylor rule (9) to substitute in for it,

cUt = − 1

σ

∞∑
k=0

[φyEt{xt+k}+ φπEt{πt+k}+ (φEπ − 1)Et{πt+1+k}+ vt+k] +
1

σ
zt. (A20)

Substituting xt from the Phillips curve (11) into (A20) and considering the closed-form solution for inflation
(see equation (A13) for the case of two distinct real roots with a unique solution), we have

cUt = − 1

σ
[Ht +∞k=0 vt+k] +

1

σ
zt, (A21)

where Ht is defined in (A13). When there is a one-time shock in period T , the term Ht reduces to Ht,T
presented in the main text. Setting zt = 0 and vt+k = 0 ∀ t+k 6= T gives us the response of unconstrained
consumption (25) presented in the main text.
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Closed-form solution for consumption of the constrained agent. Solving the aggregate Euler
equation (A9) forward gives us

ct = − 1

σ (1− Φ)

∞∑
k=0

[it+k − Et{πt+1+k}] +
1

σ
zt +

1

(1− Φ)

1 + ϕ

σ + ϕ
at.

After substituting in for it+k from the Taylor rule (9), we get the closed -form solution for aggregate
consumption,

ct = − 1

σ(1− Φ)

{
Ht +

∞∑
k=0

vt+k

}
− 1

σ(1− Φ)

∞∑
k=0

rnt+k +
1

σ
zt.

Therefore, after substituting in for ct in (A18) with at = 0, we have

cKt = χ ·

{
−
(

1

σ(1− Φ)

)
[Ht +∞k=0 vt+k]−

1

σ(1− Φ)

∞∑
k=0

rnt+k +
1

σ
zt

}
. (A22)

Again, when there is a one-time shock in period T , Ht reduces to Ht,T . Setting zt = 0 for ∀ t and vt+k = 0
for ∀ t+ k 6= T gives us the response of constrained consumption (26).

A.4 Supplementary results for Section 5

Planned expenditure curve. First, we derive constrained and unconstrained consumption in terms of
income and the real interest rate. The lifetime budget constraint of the unconstrained agent is

Et
∞
i=0Λt,t+iY

U
t+i = Et

∞
i=0Λt,t+iC

U
t+i,

where Y U
t is the income of the unconstrained agent. Log-linerizing the budget constraint gives us

Et
∞
i=0β

i
(

Λ̂t,t+i + yUt

)
= Et

∞
i=0β

i
(

Λ̂t,t+i + cUt

)
,

where Λ̂t,t+i and yUt are the stochastic discount factor used by the firm and the income of the uncon-
strained agent, respectively (in log deviations). Using the fact that Λ̂t,t+i = −σ

(
cUt+1 − cUt

)
, after adding(

1
σ − 1

)
Et
∞
i=0β

iΛ̂t,t+i to both sides we have

Et
∞
i=0β

i

(
1

σ
Λ̂t,t+i + yUt

)
= 0 + Et

∞
i=0β

i

(
1

σ
Λ̂t,t+i + cUt

)
.

Using the Euler equation for the unconstrained agent, the right hand side becomes 1
1−β c

U
t . Given the

Λ̂t,t = 0, we can rewrite the left hand side as

Et
∞
i=0β

i
(

Λ̂t,t+i + yUt

)
= 0 + Et

∞
i=1β

i
(

Λ̂t,t+i + cUt

)
.

From the FOC for bonds (A2), it − Et {πt+1} = −Et
{

Λ̂t,t+i

}
. Therefore,

Et

{
Λ̂t,t+i

}
= Et

i−1
k=0 (it+k − πt+1+k) .

Using the latter result, we have

∞
i=0Et

{
Λ̂t,t+i

}
= −∞i=1β

iEt
i−1
k=0 (it+k − πt+1+k) = − β

1− β
Et
∞
i=0β

i [it+i − πt+1+i] .
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Combining the latter two results gives us

1

1− β
cUt = − 1

σ

β

1− β
Et
∞
i=0β

i (it+i − Et {πt+1+i}) + Et
∞
i=0β

iyUt+i.

Multiplying both sides by 1− β and removing the i = 0 variables from the summations, we have

cUt = (1− β) yUt −
1

σ
β (it+i − πt+1+i)− β

1

σ
Et
∞
i=0β

i (it+i − πt+1+i) + (1− β)Et
∞
i=0β

iyUt+i.

Finally, noting that

βcUt+1 = −β 1

σ

∞

i=0
βi (it+i − πt+1+i) + (1− β)∞i=0 β

iyUt+i,

we get unconstrained consumption depending on income and the real interest rate,

cUt = (1− β) yUt −
1

σ
β [it − Et {πt+1}] + βEt

{
cUt+1

}
.

Taking into account that the constrained agent consumes all of his or her income each period, unconstrained
consumption is

cKt = yKt ,

where yKt denotes income of the constrained agents.

Second, aggregation over consumption gives us ct = (1− ς) cUt + ςcKt , where ς ≡ λ(1−Γ)
(1−λ)+λ(1−Γ) is a

constant weight. Given that ct = yt and cKt = χct, y
K
t = χyt and yUt =

(
1−ςχ
1−ς

)
yt, we can write aggregate

consumption as

ct = [1− (1− Φ) (1− ς)β] yt −
1

σ
β (1− ς) [it − Et {πt+1}] + (1− Φ) (1− ς)βEt {ct+1} .

Third, we derive a relationship between ct and ct+1. Our closed-form solutions allow us to consider
sequences of future monetary policy shocks with the following structure: {vt} = {φtv} where φt’s are
scalars.20 We confine our attention to the case when φt = 0 for all but period t + j or when φt = ρt

(i.e., a one-time transitory or persistent future shock). We generalize the previous equation relating ct to
ct+1 (equivalently, yt to yt+1) as ct+1 = %jct, where j indicates how many periods in the future the shock
occurs.21 The value of the output-gap persistence %j depends on whether the shock has persistence or not,
as well as on the type of roots (i.e., real or complex). We report %j for different cases in Table 5.

We present the formulas for a one-time transitory shock with a unique solution, one-time transitory
shock with an indeterminate solution, and one-time persistent shock with a unique solution.

Finally, using the derived relationship ct+1 = %jct, we can write the equation for aggregate consumption
and thus, the planned expenditure curve as (29).

How the weight ς changes with λ. We prove that ∂ς
∂λ > 0 when τ = 1 and τW = 0

∂ς

∂λ
=

[(1− λ) + λ (1− Γ)]
[
(1− Γ)− λ∂Γ

∂λ

]
− λ (1− Γ)

[
−1 + (1− Γ)− λ∂Γ

∂λ

]
[(1− λ) + λ (1− Γ)]2

=
(1− Γ)− λ (1− λ) ∂Γ

∂λ

[(1− λ) + λ (1− Γ)]2
.

Given Γ = (M−1)
(1−λ)+(M−1) and ∂Γ

∂λ = (M−1)
(1−λ)+(M−1) , for the above to be positive, we need

(1− λ) + (1− λ) (M− 1) > λ (1− λ) (M− 1) .

Therefore, ∂ς
∂λ > 0.

20The φt’s do not need to be monotoniclly decreasing. The only requirement is that the infinite sums are well definied.
21Our result ct+1 = %jct generalize that in Bilbiie (2019a) who considers the case of the Taylor rule it = Et {πt+1} + vt,

when there is a contemporaneous shock that reverts to zero with persistence ρv and obtains ct+1 = ρvct, where ρv is the
persistence of the monetary policy shock. This is due to the fact that with this Taylor rule, the real interest rate is equal to
the monetary policy shock, so that the real interest rate at t+ j is rt+j = ρjvvt.



Table 5: Output-gap persistence

Determinacy, Indeterminacy, Determinacy,
transitory shock transitory shock persistent shock

j = 0 0 1−βm2

m−1
1 −β

∑∞
s=t+1[mt−s

1 −mt−s
2 ]ρs−t

v −β
∑∞

s=t+2[mt+1−s
1 −mt+1−s

2 ]ρs−t
v∑∞

s=t[m
t−s
1 −mt−s

2 ]ρs−t
v −β

∑∞
s=t+1[mt−s

1 −mt−s
2 ]ρs−t

v

j = 1
m−1

1 −m
−1
2

m−2
1 −m

−2
2 −β(m−1

1 −m
−1
2 )

m1

∑∞
s=t+1[mt−s

1 −mt−s
2 ]ρs−1−t

v −β
∑∞

s=t+2[mt+1−s
1 −mt+1−s

2 ]ρs−1−t
v∑∞

s=t+1[mt−s
1 −mt−s

2 ]ρs−1−t
v −β

∑∞
s=t+1[mt−s

1 −mt−s
2 ]ρs−1−t

v

j ≥ 2
m
−j
1 −m

−j
2 −β(m1−j

1 −m1−j
2 )

m
−1−j
1 −m−1−j

2 −β(m−j
1 −m

−j
2 )

m1

∑∞
s=t+j [m

t−s
1 −mt−s

2 ]ρs−t−j
v −β

∑∞
s=t+j [m

t+1−s
1 −mt+1−s

2 ]ρs−t−j
v∑∞

s=t+j [m
t−1−s
1 −mt−1−s

2 ]ρs−t−j
v −β

∑∞
s=t+j [m

t−s
1 −mt−s

2 ]ρs−t−j
v

Notes: Formulas in each cell correspond to the persistence in the ouput gap %j .

A.5 Supplementary results for Section 6

Closed-form solutions for inflation in the stochastic setting. The inflation solution for the case
of two distinct roots leading to a unique solution, |m1| > 1 and |m2| > 1, is given by

πt =
1

m1 −m2
Et

[ ∞∑
s=t

mt−1−s
1 Xs −

∞∑
s=t

mt−1−s
2 Xs

]
; (A23)

see Maliar and Taylor (2018) for full derivations, as well as for solutions for the other three cases.
This solution for inflation will be different depending on the type of shock assumed. (We present

solutions when either a productivity shock or preference shock happens). By definition, Xt is described by
(14). For example, if the economy is subject to productivity shocks only, we have

Xt =
κ

βσ(1− Φ)
· 1 + ϕ

σ + ϕ
[σ(1− ρa) + φy] · at.

For s ≥ t, in the case of a productivity shock, we have

Et {Xs} = Υaρ
s−t
a at, Υa ≡

κ

βσ(1− Φ)

1 + ϕ

σ + ϕ
[σ(1− ρa) + φy] ,

so that we have

πt =
Υa

m1 −m2

(
at
ρa

)[ ∞∑
s=t

(
m1

ρa

)t−1−s
−
∞∑
s=t

(
m2

ρa

)t−1−s
]
. (A24)

In the case of preference shocks only,

Et {Xs} = Υzρ
s−t
z zt, Υz ≡ −

κ

βσ(1− Φ)
(1− ρz),

so that we obtain

πt =
Υz

m1 −m2

(
zt
ρz

)[ ∞∑
s=t

(
m1

ρj

)t−1−s
−
∞∑
s=t

(
m2

ρj

)t−1−s
]
. (A25)

Equations (A24) and (A25) can be written as the closed-form solution for inflation presented in the main
text. The case of complex roots is obtained similarly.
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Closed-form solutions for the output gap in the stochastic setting. We can use equation (A24)
for inflation, along with the Taylor rule (9) and the Phillips curve (11), to construct our series for the
output gap,

xt = −Et
{
H̃t +

1

1− ρv
vt −

1

1− ρrn
rnt

}
, (A26)

with H̃t being defined by

H̃t = ∞
k=0

{(
φy
κ

+ φπ

)(
Υj

m1 −m2

)(
ht,j
ρj

)[ ∞∑
s=t+k

(
m1

ρj

)t+k−1−s
−

∞∑
s=t+k

(
m2

ρj

)t+k−1−s
]

+

(
φEπ − 1− βφy

κ

)(
Υj

m1 −m2

)(
ht,j
ρj

)[ ∞∑
s=t+k+1

(
m2

ρj

)t+k−s
−

∞∑
s=t+k+1

(
m2

ρj

)t+k−s]}
,

where j ∈ {a, z}, ht,a = at, ht,z = zt, Υj ∈ {Υa,Υz} .

Proof of Proposition 2. In the proof, we use the example of an increase in τ as ∂Φ
∂τ > 0. Replacing ∂τ

with ∂λ, ∂(−τW ), ∂(−δ) or ∂(−δW ) provides the proof for the other cases.
Consider a realization of {at}. Then the sample variance of inflation is

σ2
π =

1

N − 1

N

t=1
(πt − π̄)2 ,

where π̄ is the average of inflation under {at}. We use the closed-form solution for πi to get

πt = −at (Υa)

[
1

(m1 − ρa) (m2 − ρa)

]
,

π̄ = −ā (Υa)

[
1

(m1 − ρa) (m2 − ρa)

]
.

where π̄ is average inflation. Then, we have

σ2
π =

(
−Υa

[
1

(m1 − ρa) (m2 − ρa)

])2

σ2
a,

where σ2
a is the sample variance of a which is exogenous. If the term inside the parentheses multiplying σ2

a

is decreasing in τ (since the term is less than zero), we are done. Substituting in for Υa we obtain

−Υa

[
1

(m1 − ρa) (m2 − ρa)

]
= − κ

βσ(1− Φ)

1 + ϕ

σ + ϕ
[σ(1− ρa) + φy]

[
1

(m1 − ρa) (m2 − ρa)

]
.

Only Φ, m1 and m2 depend on τ . Therefore, we only need to know how the following changes with τ

− 1

(1− Φ)

[
1

(m1 − ρa) (m2 − ρa)

]
.

Note that
(m1 − ρa) (m2 − ρa) = c+ bρa + ρ2

a.

where b and c are the coefficients from the difference equation for inflation (13) and defined as b ≡
−1 − 1

β + 1
βσ(1−Φ) (φEπκ− βφy − κ) and c ≡ 1

β +
κφπ+φy
βσ(1−Φ) . Therefore, omitting the leading negative sign,
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we have,

∂

∂τ

{
1

(1− Φ)

[
c+ bρa + ρ2

a

]−1
}

=

− 1

(1− Φ)

[
c+ bρa + ρ2

a

]−2
[
∂c

∂τ
+
∂b

∂τ
ρa

]
−
[
c+ bρa + ρ2

a

]−1 1

(1− Φ)2

∂Φ

∂τ
.

Using the definitions of b, c, ∂c
∂τ , ∂b

∂τ , we get

∂

∂τ

{
1

(1− Φ)

[
c+ bρa + ρ2

a

]−1
}

=
1

(1− Φ)

[
c+ bρa + ρ2

a

]−2 ∂Φ

∂τ{
− 1

(1− Φ)

[
(φπκ+ φy)

βσ (1− Φ)2 +
(φEπκ− βφy − κ)

βσ (1− Φ)2 ρa

]
−
[

1

β
+

κφπ + φy
βσ(1− Φ)

+

[
−1− 1

β
+

(φEπκ− βφy − κ)

βσ(1− Φ)

]
ρa + ρ2

a

]}
.

Simplifying, we obtain

∂

∂τ

{
1

(1− Φ)

[
c+ bρa + ρ2

a

]−1
}

=
1

(1− Φ)

[
c+ bρa + ρ2

a

]−2 ∂Φ

∂τ{(
ρa −

1

β

)
(1− ρa)− 2

(φπκ+ φy)

βσ (1− Φ)
− 2

(φEπκ− βφy − κ)

βσ (1− Φ)
ρa

}
.

Since we previously ignore the negative sign, we need the term in brackets to be positive as ∂Φ
∂τ > 0. The

term is positive so long as

φπ >
1

κ

{
−
(

1

β
− ρa

)
(1− ρa)

βσ (1− Φ)

2
− (1− ρaβ)φy + ρaκ

}
.

Therefore φπ > ρa is sufficient for ∂σ2
π

∂τ > 0. Taking the square root of the variance, σ2
π, we obtain the

definition of volatility. Therefore, inflation volatility is increasing in τ .
Using the result regarding inflation volatility and the Phillips curve, we can establish that the output

gap volatility increases with τ . Note that Eπt+1 = ρaπt; see (A24). Therefore, using the Phillips curve we
have

xt =
1

κ
(1− ρaβ)πt.

The term multiplying πt does not depend on τ . Therefore, since ∂σπ
∂τ > 0, ∂σx∂τ > 0, which yields the desired

result that σx (Φ1) > σx (Φ2) whenever Φ1 > Φ1 due to differences in heterogeneity parameters.

Closed-form solutions for individual consumption in the stochastic setting. Following the same
procedure, as described in Appendix A.5 for the deterministic setting, we obtain the formulas for consump-
tion of unconstrained and constrained agents. For the unconstrained agent, we have

cUt = − 1

σ

{
H̃t +

1

1− ρv
vt

}
− 1

σ

(
1

1− ρrn

)
rnt +

1

σ
zt, (A27)

and for the constrained agent, we have

cKt = χ

[
− 1

σ(1− Φ)

{
H̃t +

1

1− ρv
vt

}
− 1

σ(1− Φ)

(
1

1− ρrn

)
rnt +

1

σ
zt,

]
(A28)
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A.6 Supplementary results for Section 7

Responses of income to contemporaneous productivity shocks. In Section 7, we claim that
consumption inequality increases in response to productivity shock so long as ∂yt

∂at
< 1+ϕ

σ+ϕ . To verify this
claim, we start from the aggregate Euler equation

∂yt
∂at

= −
(

1 +
φy

σ(1− Φ)

)−1 1

σ(1− Φ)

(
φπ
∂πt
∂at

)
−
(

1 +
φy

σ(1− Φ)

)−1 1

σ(1− Φ)

(
1 + ϕ

σ + ϕ

)
σΦ.

Using the Phillips curve (11), we have
∂πt
∂at

= −κ∂µt
∂at

.

Combining these equations gives us

dyt
dat

=

(
1 +

φy
σ(1− Φ)

)−1 1

σ(1− Φ)

(
φπκ

dµt
dat

)
−
(

1 +
φy

σ(1− Φ)

)−1 1

σ(1− Φ)

(
1 + ϕ

σ + ϕ

)
σΦ.

Next, we need to substitute in for dµt
dat

. Totally differentiating the markup with respect to at and rearranging,
we get

dµt
dat

= (1 + ϕ)− (σ + ϕ)
∂yt
∂at

.

Substituting in for dµt
dat

, we have

∂yt
∂at

=

[
1 +

(
1 +

φy
σ(1− Φ)

)−1 φπκ (σ + ϕ)

σ(1− Φ)

]−1(
1 +

φy
σ(1− Φ)

)−1 1

σ(1− Φ)

(
φπκ (1 + ϕ)−

(
1 + ϕ

σ + ϕ

)
σΦ

)
.

Simplifying the terms, we have[
1 +

(
1 +

φy
σ(1− Φ)

)−1 φπκ (σ + ϕ)

σ(1− Φ)

]−1

=
σ(1− Φ) + φy

σ(1− Φ) + φy + φπκ (σ + ϕ)
,(

1 +
φy

σ(1− Φ)

)−1

=
σ(1− Φ)

σ(1− Φ) + φy
.

This leaves us with

∂yt
∂at

=
φπκ (1 + ϕ)−

(
1+ϕ
σ+ϕ

)
σΦ

σ(1− Φ) + φy + φπκ (σ + ϕ)
.

We need this to be less than 1+ϕ
σ+ϕ :

φπκ (1 + ϕ)−
(

1+ϕ
σ+ϕ

)
σΦ

σ(1− Φ) + φy + φπκ (σ + ϕ)
<

1 + ϕ

σ + ϕ
,

φπκ (1 + ϕ) (σ + ϕ)− (1 + ϕ)σΦ

φπκ (1 + ϕ) (σ + ϕ) + (1 + ϕ)φy + (1 + ϕ)σ(1− Φ)
< 1.

The inequality holds as 0 < Φ < 1 and φy ≥ 0. Therefore, dyt
dat

< 1+ϕ
σ+ϕ , and dyt

dat
> 0.

44



Claim about the response of markups to productivity shocks and changes in output. Differ-
entiation the markup with respect to yt yields

dµt = − (σ + ϕ) dyt.

Therefore,
[
dµt
dat

] [
dµt
dyt

]−1
is

[
dµt
dat

] [
dµt
dyt

]−1

=
(1 + ϕ)− (σ + ϕ) ∂yt∂at

− (σ + ϕ)
= −

[
1 + ϕ

σ + ϕ
− ∂yt
∂at

]
.

Multiplying both sides by (−1) provides the desired result.

Appendix B. TANK with capital

In this section, we present the derivations for the TANK model with capital.

B.1 Non-linear model

Household’s FOC’s. The FOCs of the unconstrained agent’s problem (1), (35a), (36) are given by

(
IUt
)

: qt =

(
1− ζ

(
It

KU
t−1

− δk
))−1

, (B1)

(
KU
t

)
: qt = βEt

[
Zt+1

Zt

(
CUt+1

CUt

)−σ {
(1− τk)RKt+1

+qt+1

1− δk − ζ

2

(
IUt+1

Kt
− δk

)2

+ ζ

(
IUt+1

KU
t

− δk
)
IUt+1

KU
t


 , (B2)

(
FUt
)

: Qt = βEt

{
Zt+1

Zt

(
CUt+1

CUt

)−σ
[Qt+1 + (1− δ)Dt+1]

}
, (B3)

(
BU
t

)
: 1 = βRtEt

{
Zt+1

Zt

(
CUt+1

CUt

)−σ
1

πt+1

}
, (B4)

(
NU
t

)
:

(
1− δW

)Wt

Pt
= (CUt )σ(NU

t )ϕ, (B5)

where qt ≡ ϑt
ηt

, with ϑt being the multiplier on the capital-accumulation equation (36), and ηt being the
multiplier on the budget constraint (35a).

General consumption and income gaps. We first present our derivations for the consumption gap,
which can be written as

Γt = 1−
(
1− δW

)
Wt
Pt
Nt + TKD,t + TKW,t

(1− δW ) Wt
Pt
Nt + 1−δ

1−λDt + TUD,t + TUW,t + (1− τk)RktKU
t−1 − IUt

.

It leads to

Γt =
1−δ
1−λDt + (TUD,t − TKD,t) + (TUW,t − TKW,t) + (1− τk)RktKU

t−1 − IUt
WtNt + 1−δ

1−λDt + TUD,t + TUW,t + (1− τk)RktKU
t−1 − IUt

.
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Aggregate capital follows from the market clearing condition Kd
t = (1−λ)KU

t−1 ≡ Kt; aggregate investment
is given by It = (1− λ)IUt . Equations (37) and (38) imply

TUD,t − TKD,t =

(
τλ

1− λ
+ τ

)(
δDt + τkRktKt

)
,

TUW,t − TKW,t =

(
τλ

1− λ
+ τ

)(
δW

Wt

Pt
Nt

)
,

which we substitute back into the consumption-gap formula to obtain

Γt =

1−δ
1−λDt +

(
τλ

1−λ + τ
) (
δDt + τkRktKt

)
+
(
τWλ
1−λ + τW

)
δW Wt

Pt
Nt + 1−τk

1−λ R
k
tKt − IUt

Wt
Pt
Nt + 1−δ

1−λDt +
(

1 + τλ
1−λ

) (
δDt + τkRktKt

)
+
(

1 + τWλ
1−λ

)
δW Wt

Pt
NU
t + 1−τk

1−λ R
k
tKt − IUt

.

We multiply top and bottom by 1− λ and rearrange the terms to get

Γt =
(1 + (τ − 1) δ)Dt + τW δW Wt

Pt
Nt +

(
1 +

(
τk − 1

)
τ
)
RktKt − (1− λ) IUt

(1 + (τ − 1)λδ)Dt + [(1− λ) + (1 + (τW − 1)λ) δW ] Wt
Pt
Nt + (1 + (τ − 1)λτk)RktKt − (1− λ) IUt

.

(B6)
Dividends are a difference between aggregate output and costs of inputs,

Dt = AtK
α
t N

1−α
t 4t −

Wt

Pt
Nt −RktK,

where 4t ≡ 1− ε
ζ (Πt − 1)2 is the price dispersion. Dividing the previous equation for Dt by RktKt yields

Dt

RktKt
=
AtK

α−1
t N1−α

t 4t

Rkt
−

Wt
Pt

Rkt

Nt

Kt
− 1.

From cost minimization, we have
Wt
Pt

Rkt

Nt
Kt

= 1−α
α , which implies

Dt

RktKt
=

1

α
M4t −

1− α
α
− 1.

We multiply the numerator and denominator of Γt in (B6) by 1
RktKt

to get

Γt =
(1 + (τ − 1) δ)

(
1
αM4t − 1−α

α − 1
)

+ τδW 1−α
α +

(
1 +

(
τk − 1

)
τ
)
− (1− λ)

IUt
RktKt

[(1− λ) + (1 + (τ − 1)λ) δW ] 1−α
α + (1 + (τ − 1)λδ)

(
1
αM4t − 1−α

α − 1
)

+ (1 + (τ − 1)λτk)− (1− λ)
IUt
RktKt

.

Let us denote the steady state ratio of investment to RkK as Σ ≡ I
RkK

. The steady state consumption
gap becomes

Γ =
(1 + (τ − 1) δ)

(
1
αM−

1−α
α − 1

)
+ τδW 1−α

α +
(
1 +

(
τk − 1

)
τ
)
− Σ

[(1− λ) + (1 + (τW − 1)λ) δW ] 1−α
α + (1 + (τ − 1)λδ)

(
1
αM−

1−α
α − 1

)
+ (1 + (τ − 1)λτk)− Σ

≡ N
θ
0

Dθ0
.

We proceed similarly to derive the income gap, ΓYt :

ΓYt =
(1 + (τ − 1) δ)

(
1
αMt4t − 1−α

α − 1
)

+ τδW 1−α
α +

(
1 +

(
τk − 1

)
τ
)

[(1− λ) + (1 + (τW − 1)λ) δW ] 1−α
α + (1 + (τ − 1)λδ)

(
1
αMt4t − 1−α

α − 1
)

+ (1 + (τ − 1)λτk)
.

In steady state, we have

ΓY =
(1 + (τ − 1) δ)

(
1
αM−

1−α
α − 1

)
+ τδW 1−α

α +
(
1 +

(
τk − 1

)
τ
)

[(1− λ) + (1 + (τW − 1)λ) δW ] 1−α
α + (1 + (τ − 1)λδ)

(
1
αM−

1−α
α − 1

)
+ (1 + (τ − 1)λτk)

≡ N
Y
0

DY0
.
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Specific adjustment costs. We now present an additional derivation of the consumption gap in the
case of the adjustment cost function in (36). From the FOC (B1) for qt, we obtain

IUt
Kt

=
qt − 1 + Γqtδ

k

(1− λ) Γqt
.

Therefore, the consumption gap becomes

Γt =
(1 + (τ − 1) δ)

(
1
αMt4t − 1−α

α − 1
)

+ τW δW 1−α
α +

(
1 +

(
τk − 1

)
τ
)
− qt−1+Γqtδk

ΓqtRkt

[1 + (τW δW − 1)λ] 1−α
α + (1 + (τ − 1)λδ)

(
1
αMt4t − 1−α

α − 1
)

+ (1 + (τ − 1)λτk)− qt−1+Γqtδk

ΓqtRkt

,

(B7)
where 4t is price dispersion, defined as in the model with no capital (see Appendix A.1).

In steady state, 4t = 1, qt = 1, Mt = M, and 1
Rkt

= 1−τk
1
β
−(1−δk)

. Therefore, the consumption gap in a

zero-inflation steady state is

Γ =

(1+ (τ − 1) δ)
(

1
αM−

1−α
α −1

)
+τW δW 1−α

α +
(
1+
(
τk−1

)
τ
)
− (1−τk)δk

1
β
−(1−δk)

[1− λ+ (1+ (τW−1)λ) δW ] 1−α
α + (1+ (τ − 1)λδ)

(
1
αM−

1−α
α −1

)
+
(
1+ (τ − 1)λτk

)
− (1−τk)δk

1
β
−(1−δk)

≡N0

D0
.

Supply side. Cost minimization of an individual intermediate-good producer i implies that the real
marginal costs MCt are the same for all producers,

MCt =
1

At
α−α(1− α)−(1−α)

(
Rkt

)α(Wt

Pt

)1−α
.

The Phillips curve following from the firm’s profit-maximization is the same as in the model with no capital
and is given by (A4).

Market clearing. We assume that the real wage is determined by the unconstrained agent’s FOC and
hours are identical across agents Nt = NU

t = NK
t . Since all firms set the same price, we can write the

economy’s resource constraint as
Ct + It = Yt4t.

B.2 Log-linearization of the non-linear model

First, we present the log-linearized consumption and income gaps for the general specification of the
adjustment cost function. Log-linearizing, we have

γt =

(
(1 + (τ − 1) δ)

N θ
0

− (1 + (τ − 1)λδ)

Dθ0

)(
M
α

)
µt +(

1

Dθ0
− 1

N θ
0

)
Σı̂t +(

1

N θ
0

− 1

Dθ0

)
Σr̂kt +(

1

N θ
0

− 1

Dθ0

)
Σkt.
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This gives the following expressions for the θ′is:

θ1 =

(
(1 + (τ − 1) δ)

N θ
0

− (1 + (τ − 1)λδ)

Dθ0

)
M
α
,

θ2 =

(
1

Dθ0
− 1

N θ
0

)
Σ,

θ3 =

(
1

N θ
0

− 1

Dθ0

)
Σ = −θ2,

θ4 =

(
1

N θ
0

− 1

Dθ0

)
Σ = −θ2.

Log linearizing, the income gap, we arrive at

γYt =

(
(1 + (τ − 1) δ)

N Y
0

− (1 + (τ − 1)λδ)

DY0

)(
M
α

)
µt,

θY =

(
(1 + (τ − 1) δ)

N Y
0

− (1 + (τ − 1)λδ)

DY0

)
M
α
.

Now we present the derivation for the adjustment cost function used in (36). Taking logs and linearizing
(B7) gives us the following first-order approximation:

γt =

(
(1 + (τ − 1) δ)

N0
− (1 + (τ − 1)λδ)

D0

)(
1

α
4
)

(Mt −M) +(
(1 + (τ − 1) δ)

N0
− (1 + (τ − 1)λδ)

D0

)
M (−ζ) (Π− 1) (Πt −Π) +(

1

D0
− 1

N0

)[
1

q2ζ

(
1− τk

1
β − (1− δk)

)]
(qt − q) +

(
1

N0
− 1

D0

)(
q − 1 + Γqδk

Γq

)(
1− τk

1
β − (1− δk)

)
1

Rk

(
Rkt −Rk

)
,

where Rk is the previously defined steady-state rate of return on physical capital. Since Πt = 1 in steady
state, the above reduces to (41) in the main text, where the constants are defined κ1,κ2, and κ3 by

κ1 ≡
(

(1 + (τ − 1) δ)

N0
− (1 + (τ − 1)λδ)

D0

)
· M
α
,

κ2 ≡
(

1

D0
− 1

N0

)[
1

ζ

(
1− τk

1
β − (1− δk)

)]
,

κ3 ≡
(

1

N0
− 1

D0

)( (
1− τk

)
δk

1
β − (1− δk)

)
.

Therefore, the consumption gap is affected through three channels, related to the markup, investment and
capital. Under the assumption that Γ > 0 so that consumption of unconstrained agents is greater than
that of constrained agents in steady state and Γ < 1 , we must have D0 > N0.

48



The other log-linearized equations include

(1) σct + ϕnt = wt,
(2) yt = at + αkt + (1− α)nt,
(3) kt+1 = δkιt +

(
1− δk

)
kt,

(4) q̂t = ζδk (ιt − kt) ,
(5) cUt = Et

{
cUt+1

}
− 1

σ (it − Et {πt+1})− 1
σEt {4zt+1} ,

(6) it = i∗t + φyyt + φππt + φEππt+1 + vt,
(7) µt = −rkt − kt + yt,
(8) µt = −wt − nt + yt,
(9) πt = βEt {πt+1} − µt ε−1

ζ ,

(10) q̂t =
(1−τk)

1
β
−(1−δk)

Et {q̂t+1}+ σĉUt − σEt
{
cUt+1

}
+ Et {4zt+1}+

[1−β(1−δk)]
1−τk Et

{
rkt+1

}
,

(11) ct = cUt − λ
1−λγγt,

(12) $ct + (1−$)ιt = yt,

(13) µt = −
(
α+ϕ
1−α + σ 1

$

)
xt,

where all the variables are in log deviations; wt is the real wage; rkt is the return on physical capital;
ιt is investment; q̂t is the value of installed capital in terms of consumption; µt is the markup; is the

4zt+1 ≡ lnZt+1− lnZt; $ is a steady state share of consumption in output, $ ≡ 1− αδk( ε−1
ε )

Rk
. Therefore,

the TANK model with capital can be represented as a system of 14 equations (13 above equations plus
formula (41) for γt) in 14 unknowns

{
ct, c

U
t , nt, yt, xt, kt, ιt, q̂t, µt, γt, πt, wt, it, r

k
t

}
. There are 3 shocks

{vt, at, zt}, which can be either anticipated or unanticipated; in the latter case, they are defined by AR(1)
processes given in the description of the model with no capital.

B.3 Forward guidance

We now investigate how heterogeneity impacts the effectiveness of forward guidance. We consider forward
guidance along with active policy as in the model without capital. Specifically, we consider a Taylor rule
with φEπ = 1, φy = 0.1 and φπ = 0 and three values for the share of constrained agents, {0, 0.21, 0.38}.

10 20 30 40 50

-1%

-0.5%

0%

0.5%

1%

1.5%

2%

2.5%

3%
Output Gap

=0

=0.21

=0.38

10 20 30 40 50

-1%

-0.5%

0%

0.5%

1%

1.5%
Inflation

10 20 30 40 50

-2%

-1.5%

-1%

-0.5%

0%

0.5%

1%

1.5%
Nominal Interest Rate

10 20 30 40 50

-1%

-0.8%

-0.6%

-0.4%

-0.2%

0%

0.2%

0.4%
Real Interest Rate

Figure 8: Response to the monetary-policy shock at T = 30 with φEπ = 1, φy = 0.1 and φπ = 0.

In Figure 8, we plot the impulse responses of the output gap, inflation, nominal interest rate and real
interest rate to a monetary policy shock at T = 30. From the first panel, we see that larger λ leads to
greater peak responses, just as in the case of the model without capital. Additionally, from the panel
presenting the responses for inflation, we see a larger λ leads to a smaller initial response of inflation.
Therefore, with φy = 0.1, we see that the impact output stabilization has on aggregate responses is similar
to the effect in the model without capital.



B.4 Consumption and income inequality

Table 6 presents the results about volatility of consumption and income inequality. We consider three
pairs of

(
τ, τW

)
: no transfer (τ = 1, τW = 0), asset transfer (τ = .9, τW = 0), and labor transfer (τ = 1,

τW = −.1
(

1−λ
λ

)
).

Table 6: Consumption and income inequality under different transfers

No Transfers Asset Transfers Labor Transfers

Correlation of consumption gap with technology -0.3612 -0.5940 -0.3606
Correlation of income gap with technology 0.9931 0.9931 0.9931

.
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