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mation averse, investment increases but Q decreases as knowledge accumulates. The
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1 Introduction

Over the last decades, intangible resources have become paramount to firms’ growth and

success. Knowledge capital, such as employees’ expertise, proprietary technologies, internal

data, organizational design, or customer relationships now represent a central component of

firms’ assets, almost surpassing the traditional role played by physical capital (e.g., Corrado

and Hulten (2010)). Recent research indicates that accounting for such intangibles is key

to properly measure and understand firms’ investment decisions, especially the abnormally

low investment rates observed since the early 2000s (e.g., Gutierrez and Philippon (2017),

Peters and Taylor (2017), or Crouzet and Eberly (2018)). Yet, existing research has been

surprisingly silent on the economic channels through which knowledge interacts with physical

capital, and the resulting implications for firms’ investment policy.

In this paper, we study the interactions between firms’ creation of knowledge and their

investment decisions. Our starting point is to view firms as storehouses of information (e.g.,

Prescott and Visscher (1980)) and “knowledge” as the accumulated information about the

quality of their current technology.1 We argue that knowledge is a very peculiar type of pro-

duction input, as it is hard to buy externally, difficult to accumulate and retain (i.e., expert

employees), can depreciate fast, and yields highly uncertain output. Thus, unlike physi-

cal capital, firms cannot adjust their stock of knowledge directly. Instead, following Arrow

(1962), we consider that knowledge arises as a by-product of economic activity. Specifically,

we posit that the evolution of knowledge results from successive rounds of risky experiments

with the current technology that produce novel information, and the exploration of new

technologies that reset existing knowledge.

Embedding this process of knowledge creation in a neoclassical model of investment (e.g.,

Hayashi (1982)) implies that firms’ optimal investment decisions are dictated by endogenous

knowledge cycles. Linking firms’ investment and knowledge through a trade-off between ex-

perimentation and exploration offers several insights that can help interpret recent empirical

facts.2 For instance, weak investment despite high corporate valuation (i.e., high Q), as

1Our definition of “technology” is generic and could emcompass various forms, such a production process
(e.g., artificial intelligence), an organizational design (e.g., decentralized authority, see Prescott and Visscher
(1980)), or a management structure (e.g., lean management, see Bloom, Sadun, and van Reenen (2016)).

2While the exploration-experimentation trade-off has been used study the innovation process (e.g., Weitz-
man (1979), March (1991), or Moscarini and Smith (2001), its use in finance has been limited. Manso (2011),
Balsmeier, Fleming, and Manso (2011), and Bergemann and Hege (2005) are notable exceptions.
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observed in recent years (e.g., Gutierrez and Philippon (2017)), could arise if firms spend

more time at earlier stages of their knowledge cycle, a trend recently documented by Hoberg

and Maksimovic (2019).

The model focuses on a representative firm that experiments with its technology. The

firm is imperfectly informed as it does not observe the quality of this technology. Yet,

it accumulates information about it by passively observing productivity realizations. We

define “knowledge” as the firm’s confidence (in a statistical sense) about the quality of its

technology. More knowledge is valuable since it improves the firm’s decision. Besides passive

learning, the firm can obtain additional knowledge by actively experimenting with its current

technology (Thomke (1998)). Specifically, the firm goes through multiple rounds of trial and

error until the experiments become conclusive. Similar to Farboodi, Mihet, Philippon, and

Veldkamp (2019), experimentation takes the form of capital expenditures (e.g., expanding

a research center or equipment with similar technological features). Experiments are costly

and risky, as their outcome is uncertain. Thus, capital investment affects firm value by

altering output (the traditional neoclassical channel), but also by accelerating knowledge

accumulation through risky experimentation. We label this effect the “knowledge channel”.3

At any time the firm can decide to explore new technologies and abandon its current

technology. When it does, the quality of the new selected technology is unknown (e.g.,

Jovanovic and Nyarko (1996)). Switching technologies renders part of the existing stock

of physical capital obsolete (e.g., Bresnahan, Greenstein, Brownstone, and Flamm (1996)).

Furthermore, when the firm decides to abandon its current technology, it resets its knowledge

completely. The firm thus explores when it becomes sufficiently confident that the quality

of its existing technology is poor. We further assume that new firms enter the industry as

technological quality improves, which reduces profits (Jovanovic, 1982; Ericson and Pakes,

1995). Thus, the firm also explores when it becomes sufficiently confident that the quality

of its current technology is high, since future profits will likely be competed away. The

trade-off between exploration and experimentation creates endogenous knowledge cycles,

within which the firm’s stock of knowledge evolves through passive observation and active

experimentation, until the firm decides to explore and start a new cycle.

A key feature of the model is that experimentation makes the firm “information averse”,

3In the model, the economic function of the knowledge channel operates as an information acquisition
problem. See, for instance, van Nieuwerburgh and Veldkamp (2010) or Hellwig, Kohls, and Veldkamp (2012).
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although the firm is risk-neutral when it maximizes its value by choosing investment (whether

or not to experiment) and its technology (whether or not to explore). Because the outcome

of an experiment is uncertain, it affects firm value only after the firm has made its invest-

ment decision. It follows that, depending on the shape of the relation between firm value and

knowledge, experimentation is either a gamble or a risk the firm would prefer to avoid. In-

tuitively, experimentation occurs following exploration when entry by other firms is unlikely

and knowledge is scarce. At this early stage of the knowledge cycle, the marginal value of

capital and knowledge is highest, the relation between firm value and knowledge is concave,

and thus the firm is endogenously information averse (e.g., Andries and Haddad (2019)).

A consequence of information aversion, and our first main result, is that investment

is increasing in knowledge. To put this result in perspective, consider shutting down the

knowledge channel. The resulting model constitutes a “neoclassical benchmark” that delivers

the insight from modern q−theory that investment is increasing in firm value. Because q is

high when knowledge is low, the relation between investment and knowledge is decreasing in

this neoclassical benchmark. The knowledge channel, however, turns this neoclassical insight

on its head. Through the information aversion it creates, the knowledge channel induces the

firm to invest less despite high q when knowledge is limited; this generates an increasing

relation between investment and knowledge. An empiricist who ignores the presence of the

knowledge channel may conclude erroneously that the firm invests too little (compared to

what q can justify) following exploration and invests too much as knowledge accumulates.

The knowledge channel renders marginal q difficult to measure and represents a possi-

ble origin for its well-known empirical mis-measurement (e.g., Erickson and Whited, 2000).

Note first that marginal q is a poor statistic for investment in the model, since it is either

unrelated to investment (due to fixed adjustment costs) or negatively related to investment

(due to the knowledge channel). Similar to Caballero and Leahy (1996), average Q, which

empiricists typically use, does better than marginal q as an explanatory variable for invest-

ment. Computing average Q in the model involves observing all possible experimentation

outcomes. Because an empiricist does not, she cannot measure Q properly. We demonstrate,

however, that realized average Q exhibits little covariation with the knowledge channel, and

thus performs much better than marginal q as a statistic for investment.

The second key insight of the model is that the strength of the investment−Q relation

depends markedly on the stage of the knowledge cycle. This result is important because
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absent the knowledge channel (our neoclassical benchmark) the sensitivity of investment to Q

is constant throughout the knowledge cycle. In the presence of experimentation the statistical

power of Q in explaining investment varies over the cycle. For instance, when entry costs are

low the statistical power of Q is strongest at intermediate stages of the cycle, and shifts to

early stages of the cycle as entry costs rise. Intuitively, increased competitive threats cause

the firm to experiment more often, and to invest more aggressively as knowledge accumulates.

Improving the amount of information gathered from experimentation has similar effects.

We test the novel implications of the model using the text-based measures of product life

cycles recently developed by Hoberg and Maksimovic (2019), who decompose product cycles

into four distinct stages: product innovation, process innovation, maturity and decline. We

argue that these four stages are reasonable proxies for firms’ position in their knowledge

cycle, and report evidence supporting the empirical relevance of the knowledge channel. In

particular, in line with Hoberg and Maksimovic (2019), physical investment increases with

knowledge in the data. Investment is weak following exploration (in the first stage of the

cycle) and rises as knowledge accumulates (in later stages). In contrast, Q is decreasing in

knowledge, peaking following exploration and declining later in the cycle.

The measured sensitivity of investment to Q varies significantly over the knowledge cycle.

It is negative after exploration, and turns positive and strong in the second and third stage of

the knowledge cycle. These patterns are consistent with the model’s predictions, and contrast

with those of our neoclassical benchmark. Similar to Hoberg and Maksimovic (2019), we

further document an aggregate “shortening” of the knowledge cycle, with firms exploring

more intensively on average (i.e., being more frequently in the first stage). The aggregate

rise in firms’ exploration intensity could be due, for instance, to an increased difficulty to

find high quality inventions as recently noted by Bloom, Jones, van Reenen, and Webb

(2017) or to more costly and risky experimentation, both forces inducing firms to explore

more frequently. The model predicts that this shortening should result in weaker investment

despite high Q, facts recently documented and studied by Gutierrez and Philippon (2017),

Alexander and Eberly (2018), and Crouzet and Eberly (2018), and also present in our sample.

This paper adds to a growing literature studying the role of knowledge-related assets in

firms’ investment decisions. Eisfeldt and Papanikolau (2013) and Peters and Taylor (2017)

introduce intangible capital in addition to physical capital in a neoclassical investment model,

assuming that the two stocks of capital do not interact. Closer to this paper, Andrei, Mann,
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and Moyen (2018) develop an investment model in which the firm learns passively and

innovation occurs randomly. We consider active experimentation through investment as a

reinforcing learning mechanism, endogenous innovation through the possibility of exploring

new technologies, and focus on the relation between knowledge and investment.

This paper belongs to a large literature on experimentation, and is closest to Moscarini

and Smith (2001).4 Like their decision maker, our firm decides how much to experiment

and when to take a payoff-relevant action (permanent stop in their case, and exploration in

ours). Like their experimentation level, investment is increasing in knowledge and is highest

when the action is about to be taken. A first difference is in what dictates this pattern.

Because the cost of delaying action is increasing in value, in their case experimentation must

grow in value to raise the surplus from information production. However, this surplus is

uncertain in this paper and creates information aversion, which dictates higher investment

despite lower value. Another difference is in the formulation and scope. They focus on a

problem of sequential analysis (Wald, 1947), whereas we study investment in a neoclassical

context.

2 Model setup

We present a model of knowledge as a by-product of economic activity. A firm has imperfect

information about the technology it operates, and can choose between experimenting with the

technology to learn about its quality or abandoning it to explore a new, unknown technology.

The trade-off between exploration (Jovanovic and Rob, 1990; Jovanovic and Nyarko, 1996)

and experimentation (Keller and Rady, 1999; Moscarini and Smith, 2001) takes place in the

context of a neoclassical model of investment (e.g., Hayashi (1982)).

4See, for instance, Grossman, Kihlstrom, and Mirman (1977), Weitzman (1979), Jovanovic and Rob
(1990), Rob (1991), Aghion, Bolton, Harris, and Jullien (1991), Jovanovic and Nyarko (1996), Keller and
Rady (1999), Bergemann and Hege (2005), Callander (2011), Balsmeier et al. (2011), and Manso (2011).
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2.1 Knowledge, exploration and experimentation

Consider a firm that combines physical capital, Kt, with some technology to produce a

unique non-storable output, Yt, at time t according to the production function:

Yt = An,tK
α
t ,

where An,t denotes the productivity of technology indexed by n ∈ N and α ∈ (0, 1) denotes

returns to scale on physical capital. We use the concept of technology in a broad sense as a

“technology” may refer for instance to management practices (e.g., Bloom et al. (2016)) or

organization designs (e.g., Prescott and Visscher (1980)). At every date t, the firm can choose

to continue operating the current technology n about which it has accumulated knowledge,

or to abandon it and explore instead by selecting another unknown technology, say n+ 1.

Each technology n is characterized by the growth rate of its productivity, Mn, which

reflects its quality. The quality of each technology is unobservable, and the link between

qualities across technologies is informational. Following Jovanovic and Nyarko (1996), a

switch to another technology reduces knowledge temporarily. Suppose that quality follows an

AR(1) process across technologies with persistence parameter, λ ∈ [0, 1], and noise variance,

τ−1
M . Then, 1/λ represents the “technological leap”; the bigger is the leap, the bigger the

loss in knowledge from switching technologies. In the extreme, when λ ≡ 1 and τM ≡ 0,

knowledge is freely transferable across technologies; when λ ≡ 0, knowledge is technology-

specific.

In this paper, we focus on the case in which each technology is completely disruptive

(i.e., λ ≡ 0), or equivalently the firm “learns and forgets” (e.g., Benkard (2000)).5 Upon

selecting technology n+ 1, its quality is randomly drawn according to:

Mn+1 ∼ N (0, τ−1
M ), with Mn ⊥Mn+1, ∀n ∈ N.

As a result, the technology index n can be discarded. For later use, we denote by ν dates

at which the firm decides to abandon the current technology and explore an unknown tech-

nology. Furthermore, as in Jovanovic and Nyarko (1996), we assume that once a technology

5Alternatively, there is no “standing on the shoulders of giants”. This assumption along with the specifi-
cation of the signals in Eqs. (1)–(2) imply that the parameter τM , which determines prior precision regarding
the quality of the technology, will play no role in the analysis.
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has been abandoned it can never be “recalled”.

Although the firm does not observe the quality of its current technology, it observes re-

alizations of its productivity. Each incremental realization, dA/A, reveals noisy information

about M according to:

dAt/At = τ
1/2
A

M

Ω
1/2
t

dt+ dBt, (1)

where B is a Brownian noise and Ωt denotes the conditional variance of the firm’s estimate

of quality at time t (defined below). To simplify the interpretation of the model, we scale

quality, M , by the conditional variance, Ω, so that the conditional variance of productivity

realizations is normalized to one.

This normalization has two economic implications. First, uncertainty about productivity

is fixed—the parameter τA measures the informativeness of the productivity signal (about

M) in time-invariant units of uncertainty (e.g., Kyle, Obizhaeva, and Wang (2018)). Second,

and more importantly, learning affects directly the growth rate of productivity, A, through

the conditional variance, Ω. Specifically, because the growth rate in absolute value is de-

creasing in Ω and learning reduces Ω, learning increases the future absolute growth rate of

productivity. This effect is what the literature commonly refers to as “learning by doing”,

namely “the role of [learning from] experience in increasing productivity” (Arrow, 1962).

In addition to observing realizations of productivity, the firm can also learn actively about

M through experimentation (Grossman et al., 1977), or “learning by investing”. The firm

experiments by investing additional capital in the current technology. Formally, let It ≥ 0

represent investment in physical capital at time t and it = It/Kt− be the corresponding

investment rate. By investing (i.e., it > 0) the firm receives an informative signal flow about

the quality of the current technology:

dSt = 1it>0

(
τ

1/2
S i

1/2
t

Ω
1/2
t−

M + εt

)
, εt ∼ N (0, 1) and i.i.d. (2)

Investment improves the precision of this signal, so that the more the firm invests relative to

its current stock of capital, the more it learns about M . However, when the firm experiments

by investing, the outcome is uncertain, an aspect we model using experimentation noise, ε.

Similar to the passive productivity signal, informativeness of dS is measured in time-invariant
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units of uncertainty. To simplify intuition, we rule out learning through capital liquidation

by making investment strictly irreversible.

The firm’s information about the quality of the technology it operates entirely results

from observing the passive and active signals:

Ft = σ ((As, Ss) : s ≤ t) .

Based on this information, the firm computes an estimate, M̂t = E[M |Ft], of its quality. The

conditional error variance of this estimate is Ωt = V[M |Ft] (introduced above). Standard

arguments imply that the firm gradually updates these statistics according to:

dM̂t = Ω
1/2
t τ

1/2
A dB̂t + Ω

1/2
t−

(
τSit

1 + τSit

)1/2

ε̂t1it>0 − M̂t−1t=ν

dΩt = −ΩtτAdt− Ωt−
τSit

1 + τSit
1it>0 + (τ−1

M − Ωt−)1t=ν ,

where B̂ is a Brownian motion and ε̂ is Gaussian with mean zero and unit variance under

the firm’s probability measure.6 In short, the firm updates its estimates about the quality

of its current technology continuously by observing realized productivity, punctually by

experimenting with it, and resets its estimate to 0 and its prior precision to τM (i.e., its prior

beliefs) whenever it decides to explore another technology.

Let the firm’s stock of knowledge (i.e., intangible capital), Zt, represent the information

it has at date t about the technology it operates. In the context of the model, the firm’s

estimate, M̂ , and its standard error, Ω1/2, do not matter separately; they only matter as a

t−statistic ratio, Z ≡ M̂/Ω1/2, which summarizes the firm’s stock of knowledge:

dZt = τA/2Ztdt+ τ
1/2
A dB̂t︸ ︷︷ ︸

passive learning

+Zt−

(
(1 + τSit)

1/2 − 1
)

+ (τSit)
1/2 ε̂t︸ ︷︷ ︸

learning by experimenting

−Zt−1t=ν︸ ︷︷ ︸
knowledge reset

. (3)

Positive (negative) values of Z indicate that the firm is confident in a statistical sense that

the quality of its current technology is high (low). On average knowledge moves away from

prior beliefs (i.e., Z0 = 0), accumulating in continuation of the current estimate, Zt, at the

6See Theorem 12.7 in Lipster and Shiryaev (2001) for the continuous part, and Theorem 7.1 Jazwinski
(1970) for the discontinuous part.

8



speed with which the passive and active signals reveal information (i.e., τA/2 and ≈ τSit/2,

respectively). Exploring a new technology resets the firm’s knowledge to prior beliefs (i.e.,

Zν = 0). The stock of knowledge is the key variable based on which the firm decides to

experiment or explore.

2.2 The decision of the firm

We now turn to the firm’s value function and its decision problem. Suppose the firm faces

an isoelastic demand curve for the good it produces:

Pt = (YtNt)
−η,

where η ∈ (0, 1) is interpreted as the price elasticity of demand, and (Nt)t≥0 is an exogenous

process. It follows that the firm’s revenues satisfy:

Π (At, Kt, Nt) ≡ PtYt = A1−η
t K

α(1−η)
t N−ηt .

Revenues are increasing in the productivity of the current technology, A, and are decreasing

in N . We now elaborate on the role of the variable N .

The firm only has incentives to explore new technologies when the dollar benefits of

knowledge are bounded. Since (the logarithm of) revenues is increasing linearly in knowledge,

Z, but decreasing linearly in N , we let this variable evolve according to:

dNt/Nt = φZ2
t dt, (4)

with φ > 0.7 This assumption implies that it cannot be optimal for the firm to let knowledge

grow unboundedly by sticking to the same technology forever, as the variable N would

eventually erode its operating revenues away to zero. For instance, think of N as entry

threats—as technological efficiency improves, a mass N of new firms enter the industry

at rate φ (Jovanovic, 1982; Ericson and Pakes, 1995). Alternatively, N acts as anti-trust

7We assume that the growth rate of N is quadratic in Z, because the resulting affine-quadratic frame-
work remains tractable (see Proposition 1). However, any strictly convex increase in N (even less convex
than quadratic), will keep profits bounded and produce qualitatively similar results, except in terms of the
asymmetry in the firm’s choice between good and bad technologies.
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regulatory pressures, or as environmental actions from the government, which strenghten

with technological knowledge.8 As a convention, we interpret N as competitive pressures

that keep knowledge stationary in the model.

The firm maximizes profits (revenues net of costs) by optimally choosing investment and

its technology. Every time the firm decides to invest—times we denote by θ—it increases

its stock of physical capital and knowledge. However, it also incurs adjustment costs, γt(i),

for purchasing and installing new capital, which we assume proportional to revenues (e.g.,

Cooper (2006); Hackbarth and Johnson (2015)):

γt ≡
(
κ+ γ/2i2

)
· Π (At, Kt, Nt) ,

where κ represents a fixed cost and the variable cost is convex (e.g., Abel and Eberly (1994)).9

Similarly, abandoning current technology to explore is costly. At the time the firm explores,

we assume that a fraction ω of the firm’s physical capital K becomes obsolete, i.e, exploration

involves a lump-sum cost of obsolescence, ωK. We further assume that physical capital

depreciates at fixed proportional rate, δ. It follows that the net change in the firm’s stock

of physical capital is:

dKt/Kt = it1t=θ − δdt− ω1t=ν .

The stock of knowledge, Z, thus determines the evolution of physical capital, K.

Given the costs and benefits associated with exploration and experimentation, and as-

suming that the firm is risk neutral and discounts its profits at constant rate, r, its value,

V (·), is:

max
{νn},it+s

E

[∫ ∞
0

e−rsΠ (At+s, Kt+s, Nt+s) ds−
∑
n≥0

γt+θne
−rθn

∣∣∣∣∣Ft

]
︸ ︷︷ ︸

≡V (Nt,At,Kt,M̂t,Ωt)

. (5)

8The variable N could also be modeled as a growing cost of production, or as a pricing factor (e.g., the
marginal utility of a representative consumer) that the firm uses to discount its profits.

9Because the firm value (defined later) exhibits concave and convex regions, variable costs are needed to
keep the investment rate finite in the convex regions.
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Our assumptions further imply that the firm value has the convenient representation:

V
(
Nt, At, Kt, M̂t,Ωt

)
≡ Π (At, Kt, Nt) · v

(
M̂t/Ω

1/2
t

)
≡ Π (At, Kt, Nt) · v (Zt) , (6)

where v (·) denotes the intensive value of the firm. This representation confirms that the

firm’s knowledge, Z, is the only variable that determines its choice between exploration and

experimentation.

3 Trading off exploration against experimentation

The main feature of the model is that knowledge arises as a by-product of economic activity.

Throughout the analysis we define this “knowledge channel” as follows.

Definition 1. (Knowledge channel) By “knowledge channel” we refer to the channel

through which investment affects firm value (on average) by marginally improving knowledge,

ignoring the marginal contribution of physical capital. Formally, the knowledge channel

satisfies:

c(Z) ≡
∫

R

V (·, K + I, x)

Π(·)
d

di
ϕ(x; i(Z), Z)dx, (7)

where ϕ(·; i(Z), Z) denotes the normal density with mean
√

1 + τSi(Z)Z and variance τSi(Z)

(i.e., the distribution of incremental knowledge gathered from investing, as per Eq. (3)).

This definition can be equivalently expressed in terms of intensive firm value as:

c(Z) = (1 + i(Z))α(1−η)

∫
R
v(x)

d

di
ϕ(x; i(Z), Z)dx.

It represents the sensitivity to investment of what the firm expects to be worth upon in-

vesting, keeping the marginal effect of physical capital fixed. To study how the knowledge

channel affects neoclassical predictions, it is convenient to first present a benchmark model

in which it is absent. We then solve the full model.
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3.1 A benchmark model of exploration without experimentation

We start by shutting down the knowledge channel through which the firm “learns by invest-

ing”. This is achieved by assuming that experiments through physical capital expansion are

uninformative, τS ≡ 0. Because investment does not affect knowledge in this case, knowledge

becomes irrelevant in the timing of the investment decision. We thus assume that investment

occurs continuously, κ ≡ 0. The problem of the firm simplifies to:

max
{νn},it+s

E

[∫ ∞
0

e−rs
(
1− γ/2i2t+s

)
Π (At+s, Kt+s, Nt+s) ds

]
,

s.t. dKt = Kt((it − δ)dt− ω1t=ν),

dZt = τA/2Ztdt+ τ
1/2
A dB̂t − Zt−1t=ν ,

with A and N satisfying the dynamics in Eqs. (1) and (4).

The firm’s decision to explore is a standard optimal stopping problem: times, {νk}∞k=0 ,

at which the firm explores correspond to hitting times of knowledge at fixed trigger levels.

Given the structure of the model, there exist two exploration triggers, say a < a. Intuitively,

the firm has incentives to explore when it is confident that the quality of the technology is

poor, Z ≥ a, or when it is likely high thus attracting new entrants, Z ≥ a. Denoting by

A = (a, a) the region in which the firm does not explore, it follows that:

νn = inf{t ≥ νn−1 : Zt /∈ A }, ∀n ∈ N. (8)

When the firm does not explore, Z /∈ A , its intensive value, v, satisfies the HJB equation:

v(Z)
(
(1− η) (αδ + η/2)− (1− η)

√
τAZ + r + ηφZ2

)
(9)

= 1 + ((1− η)
√
τA + τA/2Z) v′(Z) + τA/2v

′′(Z) + max
i≥0

{
α(1− η)v(Z)i− γ/2i2

}
.

Eq. (9) resembles its neoclassical counterpart to the extent that it delivers the insight from

modern q−theory, namely that investment is an increasing function of firm value:

it ≡ i(Z) =
α(1− η)

γ
v(Z). (10)
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However, a meaningful way in which Eq. (9) differs from the neoclassical equation is that

the force driving firm value and thus investment is knowledge, as opposed to physical cap-

ital. The point is that shutting down the knowledge channel reproduces the neoclassical

relation between firm value and investment; yet it does not bring us back to a neoclassical

framework since investment depends on knowledge, which is usually abstracted away from

in a neoclassical framework.

In this model, the evolution of knowledge is distinct from the way physical capital ac-

cumulates and depreciates in most neoclassical models. Knowledge accumulates in cycles

(defined below) and depreciates at once when the firm explores. In the absence of experimen-

tation through investment (the benchmark model of this section), knowledge accumulation

within cycles is not materially different from physical capital accumulation in traditional

models; what makes its dynamics distinct is the necessity for the firm to explore. When a

new technology is adopted, the firm learns passively about its productive potential. After

some time, however, the learning potential on this technology will decline, and so will the

firm’s profits. Exploration is necessary for the firm to regenerate future profits.

Formally, exploration acts as a centripetal force on knowledge—it resets knowledge to

priors. Upon exiting the region A it is optimal for the firm to explore. As a result of

exploration, the firm resets its knowledge to priors and incurs a lump-sum cost of obsolescence

on its existing capital stock, ωK. Hence, the intensive firm value upon exploration is:

v (Z) = (1− ω)α(1−η)v (0) , Z /∈ A . (11)

The firm goes through multiple rounds of exploration, which we refer to as “knowledge cycle”

in a way that we define below.

Definition 2. (Knowledge Cycle) A knowledge cycle starts when the firm resets its stock

of knowledge to 0 by exploring a new technology (i.e., Z0 = 0), and ends after a period of

(random) length ν (as defined in Eq. (8)) when the firm abandons the technology to explore

yet another new technology (i.e., Z /∈ A ).

We conclude that the intensive value of the firm, v, satisfies Eq. (9) when the firm chooses

not to explore and Eq. (11) otherwise. We finally determine the optimal exploration thresh-

olds through “smooth pasting”. Specifically, the firm chooses optimally when to explore

13



(i.e., the two optimal exploration triggers, a and a) according to:

lim
Z↘a

v′(Z) = lim
Z↗a

v′(Z) = 0. (12)

We then solve for the firm value numerically, using the baseline parameter values summarized

in Table 1 (on which we elaborate in the next subsection).10 In Figure 1 we plot the firm’s

value as a function of the firm’s stock of knowledge. Since investment is proportional to firm

value in the benchmark model, we may talk indifferently of firm value and investment when

describing Figure 1.
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Figure 1: Firm value as a function of knowledge in the benchmark model. The figure plots
intensive firm value as a function of knowledge, Z. Smooth-pasting for exploration requires
that firm value lands flat at the edges of the domain defined by the exploration thresholds
a and a. Baseline parameter values are defined in Table 1.

The main takeaway from inspecting Figure 1 is that firm value and thus investment are

hump-shaped in knowledge. They are highest following recent exploration (i.e., Z ≈ 0),

and weakest when exploration is imminent (i.e., Z ≈ a or Z ≈ a). Intuitively, periods

immediately following exploration are associated with high marginal product of capital due

10The only difference relative to Table 1 (besides τS ≡ κ ≡ 0) is that we increase the value of γ to 0.3 to
make up for the absence of fixed costs.
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to lower competitive pressures, and with high marginal product of knowledge due to the high

learning potential on the new technology.11 We now build on these insights to incorporate

experimentation in the model.

3.2 Model solution in the presence of the knowledge channel

In this model, experimentation works as follows. Experimentation is optimal within an inter-

mediate range, B = [b, b], of knowledge. Whenever the firm’s knowledge enters this range,

the firm starts experimenting. Since the outcome of the experiment is uncertain, the firm

may end up re-entering the experimentation range after the first trial. The firm will typi-

cally go through multiple rounds of trial and error until the experiment eventually becomes

conclusive (in the sense that Z /∈ B). Furthermore, because the firm does not know ex-

ante the experiment outcome, it must decide on a “knowledge-contingent investment plan”,

i(Z), for every possible outcome that falls within the experimentation range. Finally, in this

model, experimentation and exploration alternate endogenously, as opposed to following a

pre-determined schedule (e.g., Berk, Green, and Naik (2004); Pastor and Veronesi (2009)).

Formally, we conjecture that experimentation is optimal at early to intermediate stages

of the cycle, B ⊂ A . Using this notation, under fixed adjustment costs investment will

occur in lumps, I, at times:

θn = inf{t ≥ θn−1 : Zt ∈ B}, ∀n ∈ N.

Building on the intuition gathered from the benchmark model, we further conjecture that

experimentation will take place in a neighborhood of the knowledge reset, {0} ∈ B, where

the marginal product revenue on capital and knowledge is highest.

We start by solving for the value of the firm when it neither explores nor experiments.

We denote by I an arbitrary inaction region and by g(·) the intensive value of the firm

when inactive; we highlight its general solution in the proposition below (see Appendix A).

11The symmetry between good and bad technological outcomes is an artifact of the calibration that assumes
high competitive pressures. Reducing competitive pressures makes the exploration cycle longer, increases
investment throughout the cycle, and creates an asymmetry whereby likely poor technologies have a shorter
cycle and likely high-quality technologies have a longer cycle.
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Proposition 1. The solution to the intensive firm value in an inaction region, Z ∈ I , is:

g (Z;C1, C2) := vP (Z) + eg1Z+g2Z2

(
C1Hn (h0 + h1Z) + C2M

(
−1

2
n,

1

2
,m0 +m1Z +m2Z

2

))
,

(13)

where C1 and C2 are two integration constants, vP (·), is a particular solution:

vP (Z) =

∫ ∞
0

exp
(
a0(s) + a1(s)Z + a2(s)Z2

)
ds, (14)

the function, Hn(·), represents the Hermite polynomial of order:

n =
1

2

(
2(η − 1)2τA − ξ2(−2(η − 1)(2αδ + 1) + 4r + τA)

ξ3
√
τA

− 1

)
, (15)

and M(·) denotes the the Kummer confluent hyper-geometric function. The definitions of

the functions a0(·), a1(·) and a2(·), and of other parameters are presented in the appendix.

There are two inaction regions in the model, (a, b) and (b, a). The general solution of Propo-

sition 1 only differs across the two regions by integration constants. We use the notation C1

and C2 for the two constants over the lower region, and C1 and C2 over the upper region.

We now turn to the solution of the intensive firm value over the regions in which the firm

either explores or experiments.

In this model, experimentation acts as a centrifugal force on knowledge—it drives knowl-

edge away from priors. Upon entering the experimentation region, B, the firm will keep

experimenting until it becomes sufficiently confident (in the sense that Z /∈ B) that the

current technology is either good or bad. That is, as the firm starts experimenting, it needs

to anticipate that each experiment may bring knowledge back in the experimentation region,

thus leading to another round of experimentation. Importantly, for each realization of knowl-

edge, Z ∈ B, that falls within the experimentation region, the firm will optimally choose a

different investment policy. In other words, the firm will re-adjust its investment rate depend-

ing on the outcome of the experiment. Thus not only does the firm need to anticipate future

rounds of experimentation, it also needs to determine an optimal knowledge-contingent plan,

i(Z), for investment at each experimentation round.

Formally, let Z(0) be the stock of knowledge upon first entry in the experimentation
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region, and i(Z(0)) be the associated investment choice. Based on the knowledge dynamics

in Eq. (3), this first experiment will update knowledge to a new (random) level:

Z(1) ≡ Z(0)(1 + τSi(Z
(0)))1/2 +

√
τSi(Z(0))ε̂(1). (16)

Suppose further that the firm goes through n such experimentation rounds. Since each

round of experimentation takes place instantaneously (each round has Lebesgue measure

zero), knowledge, Z(n), after the n−th round of experimentation satisfies:

Z(n) = Z(0)

n−1∏
m=0

(1 + τSi(Z
m))1/2 +

n−1∑
k=1

√
τSi(Z(k−1))ε̂(k)

n−1∏
m=k

(1 + τSi(Z
(m)))1/2 +

√
τSi(Z(n−1))ε̂(n).

(17)

Eq. (17) shows that, across rounds of experimentation, knowledge evolves as an AR(1)

process, the persistence and volatility of which are endogenously determined by investment.

Based on this law of motion, we define an “experimentation round” as the number of trials

it takes until experimentation becomes conclusive in a statistical sense.

Definition 3. (Experimentation Round) A round of experimentation starts upon first

entry in the experimentation region, Z(0) ∈ B, and ends after n−th trial:

n = inf{k ∈ N : Z(k) /∈ B}

upon first exit of the experimentation region, where Z(k) is defined in Eq. (8).

The firm must determine a knowledge-contingent policy for investment when experimen-

tation active. In particular, letting D denote the feasible investment set (to be defined

below), the firm solves:

V (Z) = supi∈D (1 + i)α(1−η)︸ ︷︷ ︸
returns on physical capital

∫
R
v(x)ϕ(x; i(Z), Z)dx︸ ︷︷ ︸

expected returns on knowledge

−κ− γ/2i2, Z ∈ B,
(18)

where ϕ(·; i(Z), Z) is the distribution of incremental knowledge built from experimentation

(as defined in Definition 1). The expectation term represents the knowledge channel that
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is specific to this model and results from experimentation. Because the outcome of experi-

mentation is uncertain (it involves noise), the firm does not know ex-ante what information

it will get as a result of experimentation. What the firm knows is that experimentation

through active investment improves knowledge on average. Furthermore, the possibility of

successive rounds of experimentation makes the investment problem in Eq. (18) a dynamic

one; it will be reformulated in the form of a Bellman equation shortly.

As in the benchmark model, and in contrast to experimentation, exploration resets knowl-

edge to priors. In this case, the intensive firm value in the exploration region is:

v (Z) = (1− ω)α(1−η)V (0) , Z /∈ A . (19)

The difference relative to exploration in the benchmark model (i.e., Eq. (11)) is that ex-

ploration leads to immediate experimentation, and is thus associated with firm value, V (0),

when experimenting. We conclude that the intensive firm value can be written piecewise as:

v(Z) =


g(Z;C1, C2), Z ∈ (a, b)

V (Z), Z ∈ B

g(Z;C1, C2), Z ∈ (b, a)

(1− ω)α(1−η)V (0), Z /∈ A

. (20)

Based on this piecewise representation we reformulate the investment problem in Eq. (18)

recursively. It is convenient to denote by h(Z) firm value outside the experimentation region

B:

h(Z) ≡ g(Z;C1, C2)1Z∈(a,b) + (1− ω)α(1−η)V (0)1Z /∈A + g(Z;C1, C2)1Z∈(b,a).

We highlight the recursive formulation of Eq. (18) in the proposition below.

Proposition 2. The value function, V (Z), defined in Eq. (18), associated with optimal

experimentation satisfies the Bellman equation:

V (Z) = sup
i∈D

(1 + i)α(1−η)

∫
R
h(y)ϕ(y; i(Z), Z)dy − κ− γ/2i2 (21)

+ (1 + i)α(1−η)

∫
B

V (y)ϕ(y; i(Z), Z)dy,
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where the admissible investment set is given by:

D =

[
0,

2

τS(
√
τA + 8ηφ/

√
τA − 1)

)
.

The Bellman equation (21) formalizes the firm’s dynamic investment problem across ex-

perimentation rounds. At every experimentation round, the firm trades off adjustment costs

against the marginal revenue product of knowledge and capital, which the firm re-evaluates

depending on the updated likelihood of each experimentation outcome. Through the first

integral the firm anticipates that experimentation may lead to future inaction or immediate

exploration; through the second integral the firm anticipates that experimentation may lead

to yet another round of experimentation, which precisely makes the problem recursive across

successive rounds of experimentation.

The rest of the solution method is standard. We must first impose continuity across the

five smoothness regions, which gives us four “value-matching conditions” to determine the

four constant of integration, C1, C2, C1, and C2. A technical difficulty at this stage is that

the Bellman equation (21) does not have an explicit solution. In Appendix C, we explain

how to proceed numerically. We then choose each threshold optimally by imposing that the

firm value be continuously differentiable across regions. As in the benchmark model, the

firm chooses optimally when to explore according to Eq. (12). Similarly, the firm chooses

optimally when to experiment (i.e., the two experimentation triggers, b and b) according to:

lim
Z↗b

g′(Z;C1, C2) = lim
Z↘b

V ′(Z), (22)

lim
Z↗b

V ′(Z) = lim
Z↘b

g′(Z;C1, C2),

Eq. (22) implies that the firm experiments until the marginal benefit of one additional unit

of knowledge on firm value when inactive and on its expected value when experimenting are

equalized.

From now onwards, we proceed numerically. It is convenient to define baseline parameter

values, which we gather in Table 1. We start with the parameters that do not influence our

main results: we normalize the informativeness of the productivity signal to τA ≡ 1, and

set the discount rate to r ≡ 0 (the rate of entry parameter, φ, already acts as a discount

rate). We further set variable adjustment costs to γ = 5% (the concavity of firm value
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in the experimentation region is the main force keeping investment bounded), and assume

that capital only depreciates through obsolescence (i.e., δ ≡ 0; given the homogeneity of the

problem, continuous depreciation merely acts as another discount rate).

Importantly, conjecturing that firm value is concave when experimentation is optimal,

“expected returns on knowledge” will be endogenously lower than 1/2 (by Jensen’s inequality

and Bayes’ rule); accordingly, we choose returns on physical capital, α(1−η) = 0.3 < 1/2, so

that they are of comparable magnitude. This aspect will play a role in the relation between

knowledge and investment. Another key parameter in determining the behavior of optimal

investment is how informative experiments are. Specifically, to ensure that investment is

interior to D , experiments need to be sufficiently noisy (when variable adjustment costs are

low); intutively, the firm could otherwise resolve uncertainty at once, causing experimenta-

tion and exploration to alternate simultaneously. But the presence of fixed adjustment costs,

which we set to represent κ = 50% of profits, would imply instant ruin. We thus assume

that τS = 1/5 so that experiments are “noisy” relative to aggregate productivity shocks.

Similarly, it is important to ensure that exploration is sufficiently infrequent and thus

that the fixed experimentation cost is not paid “too often” by setting obsolescence costs

sufficiently high. We assume that ω = 99% of the stock of capital becomes obsolete upon

exploration. This means that firm value decreases by 1 − (1 − ω)α(1−η) ≈ 75% upon ex-

ploring. Finally, the entry rate into the industry captures competitive pressures and thus

how desirable exploration is; it also acts as a discount rate, and determines the asymmetry

between good and poor technologies. We set it equal to φ = 2, a high value that triggers

approximate symmetry across technologies.

In Figure 2 we illustrate the firm value as a function of knowledge under baseline parame-

ter values. As in the benchmark model, the firm value is highest following recent exploration,

thus confirming that the benefits of investing at early stages are highest. In particular, early

investment is associated with high marginal revenue of knowledge—the firm has little knowl-

edge about the new technology—and of physical capital—there are fewer firms to compete

profits with. The smooth-pasting condition for experimentation requires that the expected

firm value upon experimentation and the firm value in the inaction regions meet tangentially

at the investment thresholds b and b, which define the experimentation region (the hashed

blue area). The smooth-pasting condition for exploration further requires that the firm value

lands flat at the edges of the domain defined by the exploration thresholds a and a.

20



Table 1: Baseline parameter values. This table summarizes parameters that are standard
in neoclassical models (part 1), and parameters that are key to the main results (part 2).

Symbol Definition Value

1. standard parameters

τA informativeness of aggregate productivity 1

r risk-free rate 0

γ variable adjustment costs 5%

δ depreciation rate 0%

η price elasticity of demand 0.5

2. key parameters

α returns to scale on capital 0.6

ω obsolescence costs 99%

κ fixed adjustment costs 50%

φ entry rate/competitive pressures 2

τS informativeness of experiments 1/5

Figure 3 summarizes the exploration and experimentation strategy based on a sample

path of the stock of knowledge, Z. As knowledge accumulates away from its reset point,

it becomes optimal to explore a new technology (red arrows), either because the current

technology is likely poor, or because new entrants erode profits away. The left-hand panel

in Figure 4 shows the distribution of the length of a typical exploration cycle (i.e., the

time spent by the firm operating a given technology; see Appendix E for derivations of this

distribution) in the benchmark model (dashed line) and with experimentation (solid line).

Clearly, experimentation shortens the expected length of the exploration cycle by allowing

the firm to learn faster about the quality of its technology.

Upon entering the experimentation zone (the shaded blue area in Figure 3), the firm

goes through possibly multiple rounds of experimentation, investing in lumps and thereby

reaping the high revenue product on capital and knowledge. Because experimentation out-

comes are uncertain, each round of experiment affects knowledge differently, although on

average in the same direction. Experimentation eventually causes knowledge to accumulate

away from the experimentation zone (the red dots), either leading to immediate experimen-

tation, or to inaction. The right-hand panel in Figure 4 shows the distribution of a typical
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Figure 2: Firm value as a function of knowledge. The figure plots the firm value (solid
black line) as a function of knowledge, Z, about the technology it operates. The blue hased
area represents the experimentation regions, defined by the two thresholds, b and b. The
red shaded areas corresponds to the two exploration regions, each defined by the thresholds
a and a, respectively. The piecewise representation of the firm value in Eq. (20) is reported
below the curve within each region.

experimentation round (i.e., the number of successive trials until first exit of B). Under the

baseline calibration, after exploring a new technology it most frequently takes 3 rounds of

experimentation until the firm becomes either inactive or explores again.

4 Investment, Tobin’s q, and knowledge cycles

This section presents the testable predictions of the model. In particular, we want to un-

derstand how knowledge creation (the knowledge channel of Definition 1) affects investment

and its relation with Tobin’s q. The three main findings are that a firm invests in ways op-
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Figure 3: Sample path of Knowledge. The figure plots a sample path of the firm stock
of knowledge (solid black line) over time. Blue dots correspond to times at which the firm
chooses to experiment; red arrows correspond to times when the firm chooses to explore.

posite to neoclassical predictions in the presence of the knowledge channel; experimentation

risk arises as an origin of q mismeasurement (e.g., Erickson and Whited, 2000); the strength

of the investment−q relation concentrates at early to intermediate stages of the knowledge

cycle depending on competitive pressures and experimentation risk. Throughout the section

we refer to “experimentation risk” as the noise, ε, in the experimentation signal in Eq. (2).

We first introduce the appropriate definition of marginal q in this model, which is based

on Abel and Blanchard (1986).

Definition 4. (Marginal Product of Capital) Marginal q is the expected present value

of a marginal unit of investment (Abel and Blanchard, 1986) scaled by relative profits, Π/K:

q(Z) ≡
∫

R

VK(·, K + I, x)

Π(·)/K
ϕ(x; i(Z), Z)dx.

This definition can be equivalently expressed in terms of intensive firm value as:

q(Z) = α(1− η)(1 + i(Z))α(1−η)−1

∫
R
v(x)ϕ(x; i(Z), Z)dx.

Note first that a (cosmetic) difference relative to Abel and Blanchard (1986) is on the

relation between intensive firm value and the marginal product of capital. In their model

and, more broadly, in the neoclassical investment framework (e.g., Hayashi, 1982), firm value

23



0 2 4 6 8 10

0

0.2

0.4

0.6

Length τ of an exploration cycle

p
ro

b
ab

il
it

y

w/ experiment.
w/o experiment.

1 2 3 4 5 6

0

0.2

0.4

0.6

Length n of experimentation cycle
(number of trials)

p
ro

b
ab

il
it

y
Figure 4: Distribution of the length of exploration and experimentation cycles. The left-
hand panel plots the distribution of the length of an exploration cycle with (solid line)
and without (dashed line) experimentation; derivations are reported in Appendix E. The
right-hand panel shows the distribution of the length of an experimentation cycle.

is often assumed to be homogeneous in K so that the intensive firm value represents marginal

q. Our specification of adjustment costs, however, implies that firm value is homogoneous in

profits, Π, as opposed to K. It is thus natural to scale firm value by relative profits, Π/K,

so that q remains a sufficient statistic for investment in the benchmark model, consistent

with the neoclassical insight. We then study how the knowledge channel affects this insight

(Section 4.1).

Second, and more importantly, since the effect of investment on knowledge is uncertain,

marginal q is the value of an additional unit of capital averaged over all possible experi-

mentation outcomes.12 An important consequence of taking this average is that the econo-

metrician cannot compute q so defined, because she cannot control for all experimentation

outcomes that are possible ex-ante. Rather, she can control for experimentation outcomes

ex-post, which leads to q mismeasurement. In this context, it is important to understand

how measured q relates to actual q (Definition 4), how they covary with the knowledge

channel (Section 4.2), and how the relation between measured q and investment varies over

the knowledge cycle (Section 4.3), making the knowledge cycle a possible instrument for

12A similar definition prevails when investment becomes productive with a one-period delay (e.g., Caballero
and Leahy, 1996).
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mismeasurement.

4.1 Knowledge and corporate Investment

We start from the observation that, absent the knowledge channel (the benchmark model

of Section 3.1), investment is determined through the traditional neoclassical trade-off. In

the absence of experimentation, the effect of investment on knowledge is known, so that q

in Definition 4 is known ex-ante (i.e., it does not involve taking an expectation):

q(Z) ≡ α(1− η)v(Z).

Substituting this definition in the first-order condition for optimal investment in Eq. (10)

thus delivers the traditional investment−q relation:

i(Z) =
1

γ
q(Z), (23)

which states that (a) marginal q is a sufficient statistic for investment and that (b) the

sensitivity of investment to q is constant (≡ 1/γ) throughout the knowledge cycle.

To determine how the knowledge channel affects the neoclassical relation, we use the

first-order condition for optimal investment, i, from the Bellman Eq. (21). Substituting the

definition of the knowledge channel (Definition 1) and of marginal q (Definition 4) yields:

0 = q(Z)− γi(Z)︸ ︷︷ ︸
neoclassical trade-off

+ c(Z)︸︷︷︸
knowledge

channel

. (24)

This equation determines a knowledge-contingent investment plan, i(Z), for all values of

knowledge within the experimentation band, Z ∈ B. The first channel driving investment

in Eq. (24) is the neoclassical channel, as present in the benchmark model (see Eq. (23)).

Absent experimentation benefits (i.e., τS ≡ 0), marginal revenue product of capital equals

marginal adjustment costs (Hayashi, 1982). The second channel driving investment is the

knowledge channel, which captures how investment affects firm value by improving knowl-

edge. In Figure 5 we compare the relation between investment and knowledge as determined

from Eq. (24) (right panel) to its counterpart in the benchmark model (left panel).
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Figure 5: Knowledge-contingent investment plan. This figure plots investment as a func-
tion of knowledge, Z, in the benchmark model of Section 3.1 (left panel) and in the full
model of Section 3.2 (right panel). In the right-hand panel, the black curve represents in-
vestment under baseline parameter values; the red curve represents investment under high
competitive pressures (φ = 3 > 2). Baseline parameter values are defined in Table 1.

The knowledge channel turns the neoclassical relation between investment and knowledge

on its head. Because the neoclassical relation holds in the benchmark model, investment is

proportional to q: the left panel is a scaled version of Figure 1. Consistent with the neoclas-

sical insight, investment is highest when marginal q is highest following recent exploration,

and weakest when marginal q is weakest as exploration becomes imminent. Thus, in the

benchmark model, the neoclassical insight predicts a decreasing relation between investment

and knowledge, |Z|. In the presence of the knowledge channel (the right panel), as in the

benchmark case, investment occurs following recent exploration when investment benefits

are high. In other words, marginal q determines the location of the experimentation band.

Within the experimentation band, however, investment is weakest following exploration, and

strengthens as knowledge accumulates. The knowledge channel thus implies an increasing

relation between investment and knowledge, in contrast to the neoclassical insight.

An alternative interpretation of Figure 5 is that an outside observer who reads the right-
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hand panel based on neoclassical insights (that is, omitting the knowledge channel) concludes

that the firm under-invests following exploration and over-invests as knowledge accumulates.

Interestingly, increased competitive threats (the red line) stimulates this effect, rather than

mitigating it.13 A common view (e.g., Gutierrez and Philippon (2017)) is that increased

competition should reduce under-investment when valuation ratios are high. In this model,

entry threats may or may not be consistent with this view depending on the stage of the

knowledge cycle.

To understand how the knowledge channel overturns neoclassical insights and how in-

creased entry threats may lead to (perceived) under-investment, we use Stein’s lemma to

decompose the knowledge channel in Eq. (7) as:14

c(Z) = (1 + i)α(1−η) τS
2

( Z√
1 + τSi

∫
R
v′(x)ϕ(x; i(Z), Z)dx︸ ︷︷ ︸

marginal product of knowledge

+

∫
R
v′′(x)ϕ(x; i(Z), Z)dx︸ ︷︷ ︸

attitude towards experimentation risk

)
.(25)

The first term represents the marginal revenue product of knowledge, which captures the

expected value of a marginal unit of knowledge. If firm value were linear in knowledge, Bayes’

rule (see Eq. (16)) would imply that investing 1% of capital in knowledge increases the firm

value with expected returns-to-scale, ≈ τS/2. However, because firm value is nonlinear, the

firm’s attitude towards experimentation risk affects returns-to-scale on knowledge; this effect

is measured by the second term in Eq. (25).

That the firm’s attitude towards experimentation risk matters for its investment decision

is perhaps surprising if one considers that the firm is assumed to be risk-neutral. In partic-

ular, the firm is risk-neutral towards profit risk, an assumption that underlies the ex-ante

representation of firm value in Eq. (5). However, experimentation risk affects firm value

ex-post. As a result, depending on the curvature of firm value (as measured by v′′ in Eq.

(25)), experimentation is either a gamble or a risk towards which the firm is averse. Since

experimentation occurs over a region of knowledge where firm value is concave, the firm is

endogenously “information averse” (Andries and Haddad, 2019).

In light of the decomposition in Eq. (25), what Figure 5 actually shows is that the firm’s

attitude towards experimentation risk dictates its investment decision, as opposed to q or

13Reducing experimentation noise has a similar effect.
14The resulting relation only makes sense if one ignores the points at which the firm value is not twice

continuously differentiable.
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marginal product of knowledge. Note first that marginal product of knowledge in Eq. (25)

works hand in hand with marginal q, thus reinforcing the neoclassical channel. Following

recent exploration (when the firm has little knowledge about the new technology it has se-

lected), the marginal product of knowledge is high; conversely, when the technology is likely

of high (or low) quality, and new entrants make exploration imminent, the marginal prod-

uct of knowledge is low. However, following exploration the firm value is concave, the firm

thus dislikes experimentation risk, and invests by “tatonnement” despite high benefits to

investment. As competitive pressures rise (exploration is imminent), the firm value becomes

convex, and the firm is increasingly willing to take bets—experimentation becomes a “gam-

ble” on future exploration. The main conclusion is that the firm’s attitude towards risk acts

as a dominating force that overturns the neoclassical channel.

The next question we ask is, how does an empiricist perceive the relation between invest-

ment and knowledge through the lens of q theory. To answer this question, we must first

determine how an empiricist measures q, a matter we now turn to.

4.2 Experimentation risk as an origin of q mismeasurement

The knowledge channel creates a gap (see Eq. (24)) between marginal q and investment—

modern q theory fails in this model. Actually, investment and q are either unrelated (out-

side the experimentation region) or negatively related (within the experimentation region).

Specifically, suppose the econometrician could run the regression:

i(Zt) = a+ bq(Zt) + ε(Zt). (26)

She would then obtain the following estimate for the investment−q sensitivity:

b = 1/γ︸︷︷︸
neoclassical
sensitivity

( cov (q(Z)1Z∈B, q(Z))

V(q(Z))︸ ︷︷ ︸
≡βq

+
cov (c(Z)1Z∈B, q(Z))

V(q(Z))︸ ︷︷ ︸
knowledge-channel gap, βc

)
. (27)

As we demonstrate numerically below, the sign of each of these covariances is ambiguous, and

depends on the extent of entry threats. However, since we have shown that the firm’s risk

attitude creates a negative relation between investment and q, we know that the sign of these

covariances is always such that b is negative. As a result, the econometrician consistently
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(and correctly) rejects q as a sufficient statistic for investment.

A complication, however, is that experimentation risk makes both the knowledge channel

and marginal q unobservable to the econometrician. The econometrician’s conclusions are

thus affected by the extent to which she mismeasures q (e.g., Erickson and Whited, 2000),

and by how measured q covaries with the knowledge channel. In particular, we make the

following assumption as to what the econometrician observes.

Assumption 1. The econometrician can instrument for the firm’s stock of knowledge, but

cannot control for experimentation risk.

The first part of the assumption allows us to subsequently study how investment−q sen-

sitivity varies over the knowledge cycle; the second part means that the empiricist cannot

compute the expectation involved in the definition of q (and in the knowledge channel).

Another, long-standing complication is that marginal q (even ex-post) is difficult to mea-

sure empirically. Empiricists instead use average Q, which also proves to do better than

marginal q as a right-hand side variable in an investment regression in the presence of fixed

adjustment costs (e.g., Caballero and Leahy (1996)). Given our assumption that adjustment

costs are proportional to revenue, average Q in this model is defined as a price-revenue ratio:

Q(Z) ≡ V (·, K + I, Z)

Π(·, K)
= (1 + i(Z))α(1−η)v(Z). (28)

Furthermore, because the empiricist cannot control for all experimentation outcomes that

are possible ex-ante (Assumption 1), this definition of average Q is measured ex-post.

Suppose now that the empiricist runs the regression in Eq. (26), but using average Q as

a right-hand side variable. Her estimate then depends on how (observed) average Q covaries

with the (unobserved) marginal q and with the (unobserved) knowledge channel:

b̂ =
1

γ

cov (q(Z)1Z∈B, Q(Z))

V(Q(Z))︸ ︷︷ ︸
≡β̂q

+
1

γ

cov (c(Z)1Z∈B, Q(Z))

V(Q(Z))︸ ︷︷ ︸
≡β̂c

. (29)

Whether average Q is a good statistic for investment in this model depends on its relation to

marginal q and the knowledge channel. Because marginal q is a poor statistic for investment

in the model, we expect β̂q to be weak, and β̂c to be substantially weaker than βc. In Figure
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6 we proceed numerically and plot these coefficients along with the sensitivity estimate b̂

against their values βq, βc and b had we used marginal q as a right-hand side variable; we

do so for different values of competitive pressure, φ.
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Figure 6: Investment−q sensitivity as a function of competitive pressures. The figure plots
the coefficients βq and β̂q (left panel), βc and β̂c (middle panel), and b and b̂ (right panel)
as a function of competitive pressure, φ; these coefficients are defined in Eqs. (27)–(29).

We start by describing the coefficients βq (left panel) and βc (middle panel), and the

resulting sensitivity estimate b (right panel) using marginal q as a right-hand variable. On

the one hand, we expect the knowledge channel to covary negatively with marginal q within

the experimentation band. On the other hand, the experimentation band coincides with

high values of q on average, which should lead the knowledge channel to covary positively

with marginal q unconditionally. The middle panel shows that the latter effect dominates

for the lower range of competitive pressure, whereas the former effect dominates as compe-

tition intensifies. Furthermore, absent the knowledge channel, under pure fixed costs and

irreversibility, investment and marginal q are negatively related (e.g., Caballero and Leahy

(1996)). Intuitively, when investment occurs q = 0, and q > 0 when it does not. It follows

that E[qI] = 0, and thus cov(q, I) = −E[q]E[I], which is negative under irreversibility, I ≥ 0.

Adding a convex cost can make this covariance positive. The left panel shows that for low

entry threats the former effect dominates, whereas for high threats the latter effect domi-

nates. On balance the net effect is that investment and marginal q are negatively related

(the right panel), the more so the higher competitive threat is.
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Using ex-post average Q as a right-hand variable produces a strong attenuation bias

(dashed lines are of smaller magnitude relative to solid lines). Unlike covariances involving

marginal q, the sign of covariances involving average Q is unambiguous. Average Q always

covaries positively with marginal q, and negatively with the knowledge channel. On net

the former covariance dominates leading to a positive measured sensitivity of investment to

average Q, which strengthens as competitive pressures rise. The point is that ex-post average

Q performs much better than marginal q as a statistic for investment.

We have established that ex-post average Q is a reasonable measure of investment in this

model; we now wish to identify at which stages of the knowledge cycle its statistical power

concentrates.

4.3 The investment−q relation over the knowledge cycle

To evaluate the q−investment relation at different stages of the knowledge cycle, we proceed

as in empirical studies and use the model as a laboratory. We simulate time series of ex-post

average Q (as defined in Eq. (28)) and investment, which we illustrate in Figure 7. Due

to fixed adjustment costs, investment occurs infrequently and in lumps, the size of which

varies with the firm’s stock of knowledge. Furthermore, because investment occurs within

the experimentation range, it also clusters in time. Investment clustering is a feature that is

specific to our premise that knowledge is a by-product of economic activity. Because average

Q measures firm value even when the firm does not invest, it moves all the time.

We then perform the regression in Eq. (26) based on average Q within each quintile k of

knowledge |Z| according to:

i(Zt) = ak + bkQ(Zt) + εt, |Zt| ∈ quintilek, k = 1, ..., 10. (30)

In Figure 8 we plot the resulting investment−q sensitivity bk for each quintile k under baseline

parameter values (middle panel), low experimentation noise (left panel), and high compet-

itive pressures (right panel). As a benchmark against which to evaluate this figure, recall

that in the benchmark model investment−q sensitivity, bk ≡ 1/γ > 0, is fixed throughout

the knowledge cycle and thus does not vary across quintiles.

The presence of fixed adjustment costs in the model creates inaction regions over which

investment is mechanically unrelated to Q. In each panel of Figure 8, this outcome is as-
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Figure 7: Sample path of investment and average Q. The upper and lower panel plot a
sample path of the investment rate and the associated average Q, respectively, over time.
The upper panel shows that investment occurs in lumps and clusters.

sociated with the higher quintiles of knowledge within which investing is suboptimal (i.e.,

whenever Z /∈ B). In contrast, over lower quintiles a positive relation between invest-

ment and average Q arises. The mechanism of the previous section dictates the sign of

this relation—average Q covaries weakly with both marginal q, which is a poor proxy for

investment, and the knowledge channel, which interacts negatively with investment. Hence,

unlike in the benchmark model, the relation between average Q and investment varies over

the knowledge cycle and its statistical power concentrates in lower quintiles of knowledge.

Interestingly, the statistical power of average Q concentrates in lower to intermediate

quintiles depending on competitive pressures or the extent of experimentation noise. Raising

competitive pressures or reducing experimentation noise (the left and right panels) affects

investment−Q sensitivity in similar ways. Because investment becomes more aggressive in

both cases, the experimentation band widens and the sensitivity of investment to Q now

concentrates in intermediates quintiles of knowledge. Raising competitive pressures and

reducing experimentation noise further increases the magnitude of the sensitivity.
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Figure 8: Investment−q sensitivity as a function of knowledge quintiles. Each panel plots
the sensitivity of investment to Tobin’s q (the estimated slope coefficient in Eq. (30)) within
quintiles of the (absolute value of the) stock of knowledge, |Z|. The middle panel presents
this relation under baseline parameter values (Table 1), the left panel under low experi-
mentation noise (τS = 0.15), and the right-hand panel under high competitive pressures
(φ = 3).

5 Illustrative empirical evidence

Testing the implications of the model is challenging as it requires the ability to measure

firms’ position on their knowledge cycle (i.e., Z). To assess the qualitative relevance of the

knowledge channel in the data, we propose to use the new text-based measure of product life

cycles recently developed by Hoberg and Maksimovic (2019) as an empirical proxy for Z, and

examine how Z interacts with physical investment and Q in a large sample of publicly-listed

firms.

5.1 Data and measurement

Following the characterization of the life cycle of firms’ products introduced by Abernathy

and Utterback (1978), Hoberg and Maksimovic (2019) use a textual analysis of firms’ 10-

K reports to identify the relative position of each firm (and year) in this cycle. We strictly
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follow the methodology of Hoberg and Maksimovic (2019) and consider that product life cycle

follows four distinct stages: (1) product innovation, (2) process innovation, (3) maturity, and

(4) decline. We recognize that product and knowledge cycles may not perfectly overlap in

reality. Thus our proxy is arguably imperfect. Yet, we posit that both cycles are likely to

be positively correlated for most firms. On that ground, we conjecture that firms’ stock of

knowledge is low (i.e., Z is close to zero) at the beginning of the product cycle (i.e., in the

product innovation stage), and increases (i.e., Z moves away from zero) in later stages (i.e.,

in process innovation).

We consider all firm-years present in the universe of Compustat between 1996 and 2016

with adequate 10-K data using the WRDS SEC Analytics package. We determine the in-

tensity with which a given firm is in each stage in a given year using an “anchor-phrase”

method to determine the number of paragraphs in its 10-K with words contained in four dis-

tinct (pre-determined) lists associated with each stages. We then define the four life cycles

variables by dividing each of the four individual paragraph counts by the total paragraphs

counts for the four. We refer to these four variables as Life1, Life2, Life3, and Life4, respec-

tively.15 For example, a firm scores highly on Life1 if it intensively discusses issues related

to product or service innovation or development in its 10-K. We exclude observations with

missing data on capital expenditures, sales and assets below $1 million. Our sample includes

63,199 firm-year observations.

5.2 Investment and Q over the knowledge cycle

First, to examine the links between physical investment, Q, and the stages of firms’ product

life cycle, we replicate the empirical analysis of Hoberg and Maksimovic (2019). As discussed

above (Section 4.1), absent the knowledge channel, the model predicts that both investment

and Q (i.e, average Q) are decreasing in knowledge (Z). Indeed, in the (neoclassical) bench-

mark, investment is the highest when Q is the highest following recent exploration (when

knowledge is reset to zero). In contrast, in the presence of the knowledge channel, investment

is increasing in knowledge (due to endogenous information aversion), but Q continues to be

decreasing in knowledge (see Figure 5).

To assess which pattern holds in the data, we follow existing research and define invest-

15By constructoin, Life1+Life2+Life3+Life4=1 for each firm-year.
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ment as capital expenditures scaled by beginning of the period assets, and Q as market

value of assets divided by their book value (e.g., Gutierrez and Philippon (2017)). We then

regress investment and Q on the four product life cycle variables (with and without year

fixed effects).16 Figure 9 displays the estimated coefficients (together with their 95% confi-

dence bounds). In the left panel, we observe that firms’ physical investment is about two

times lower at the beginning of the cycle (i.e., when knowledge is low) than in the second

stage, when more knowledge has accumulated. However, the right panel indicates that Q is

more than three times larger in the first stage of the cycle than in the second stage.17 This

opposite patterns between investment and Q over the initial stages of the knowledge cycle

is consistent with the predicted role of knowledge in the model.
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Figure 9: Investment and Q over the product life cycle. The left panel plots investment
and the right panel plots average Q, both as a function of the four stages of the product
cycle defined in Hoberg and Maksimovic (2019), the empirical procedure of whom we follow.

Next, we explore how investment correlates with Q along the knowledge cycle. A key

insight from our analysis is that, in the benchmark model, the investment-Q relation remains

16We standardize the four life cycles variables by their sample standard deviation to facilitate the economic
interpretation of the estimated coefficients, and we cluster standard errors at the firm level.

17Note that these results are consistent with the overall findings reported in Hoberg and Maksimovic
(2019)
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fixed over the knowledge cycle, but in the presence of the knowledge channel it does not,

as illustrated in Figure 8. To assess whether and how the correlation between investment

and Q changes over the knowledge cycle, we simply regress investment on the four life

cycles stages variables and their interaction with Q (again with and without year fixed

effects).18 This approach closely resembles that used on the simulated data in Eq. (30), as

the estimated coefficients on the four interaction variables tracks the empirical correlation

between investment and Q across the four cycle stages.
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Figure 10: Investment−Q sensitivity over the product life cycle. This figure plots the
sensitivity of investment to Q as a function of four stages of the product cycle, as defined
in Hoberg and Maksimovic (2019), and the empirical procedure of whom we follow.

In line with Hoberg and Maksimovic (2019) and in sharp contrast with the prediction

of the benchmark model, Figure 10 indicates that the sensitivity of investment to Q varies

considerably over the knowledge cycle. Consistent with the knowledge channel, investment

appears to be negatively related to Q in the first stage of the knowledge cycle. In the

model, when firms’ explore new technologies and possess little knowledge about them, Q

is high but investment is low since firms do not experiment yet. In later stages, however,

the accumulated knowledge pushes firms to experiment by investing, generating stronger

18We again standardize the interacted variables by their sample standard deviation to facilitate the eco-
nomic interpretation of the estimated coefficients, and we cluster standard errors at the firm level.
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investment-Q sensitivity. This prediction is supported by Figure 10, which reveals a positive

and strong correlation between investment and Q in the second and third stage. Taken at

face value, and compared to the simulated results displayed in Figure 8, the patterns of

Figure 10 suggest that the data appear consistent with calibrations of the model in which

the noise associated with experimentation (τS) is low or competitive threats (φ) are high.

5.3 Aggregate trends

Finally, we study whether the recent aggregate trends in firms’ investment and Q could

be in line with the model’s qualitative insights. In particular, (Gutierrez and Philippon,

2017) and (Alexander and Eberly, 2018) document an aggregate decline in investment in

the last twenty years, despite no noticeable decline in Q (and other fundamentals). Crouzet

and Eberly (2018) further report that the decline in physical investment is related to the

increasing relevance of intangibles. Unsurprisingly (but reassuringly), these trends are also

present in our sample. Figure 11 plots the average evolution of investment and Q (the left

panel), and displays the evolution of the sensitivity of investment to Q (the right panel).19

Interpreted in light of the model, the aggregate shifts in investment and Q could stem

from an aggregate shortening of the average knowledge cycle. Specifically, weaker physical

investment despite high Q could be obtained if firms are exploring new technologies more

frequently, thereby staying longer in the low knowledge region (i.e., Z close to zero). Such a

rise in exploration intensity could happen for instance if high quality technologies (i.e., large

values of M in the model) are getting harder to find as suggested by Bloom et al. (2017),

pushing firms to explore more intensively. Alternatively, an increase in the cost and/or

risk associated with experimentation (i.e., higher noise τS) due to increased technological

complexity could also induce a shortening of the knowledge cycle.20

To assess whether weaker investment despite high Q in the recent period may be due

to a shortening of the knowledge cycle inducing more exploration, we plot in Figure 12 the

evolution of the four life-cycle stages over our sample period. The left panel displays the

evolution of the first two stages, and the right panel focuses in the last two stages. Consistent

19We obtain it by estimating annual investment regressions, and plotting the estimated coefficients.
20In the model, other possibilities include heightened competitive threats or lower return to scale of the

production technologies. Yet, they seem implausible given recent evidence documenting increases in market
concentration, and the fact that the increasing digitization of the economy should augment returns to scale).
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Figure 11: Q, investment, and its sensitivity to Q over time. The left panel plots the
average evolution of investment and average Q over the sample period. The right panel
plots the evolution of sensitivity of investment to Q over the sample period.

with the rise in “business dynamism” noticed by Hoberg and Maksimovic (2019), the left

panel unambiguously indicates a shortening of firms’ knowledge cycles. The average value

of Life1 is trending upwards, increasing from 27% in 1996 to 33% in 2016. In contrast, the

average value of Life2 is decreasing from 43% to 36% over the last twenty years. The right

panel suggests no significant change in the average value of Life3, and a marginal increase in

Life4. Overall, the trends displayed in Figure 12 suggest that on average firms are spending

relatively more time in the exploration stage, where physical investment is predicted to

be weak, and Q to be high. While we acknowledge that our empirical analysis remains

qualitative and cursory, it broadly supports the predictions of the model and the important

role of the knowledge channel in explaining corporate investment.

6 Conclusion

This paper presents a model of how knowledge is created within firms, and how this process

of knowledge creation affects firms’ investment decisions. A key assumption is to view firms
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Figure 12: Evolution of the four life-cycle stages over time. The left panel plots the
evolution of the first two stages over the sample period. The right panel plots the evolution
of sensitivity of the last two stages stages over the sample period.

as storehouses of information, and knowledge as a by-product of risky experimentation. The

trade-off between exploration of new technologies and experimentation witht the current

technology creates endogenous knowledge cycles. Experimentation, which acts as a “knowl-

edge channel” and as an origin of Q mismeasurement, makes firm endogenously risk averse.

This knowledge channel causes investment to be increasing in knowledge, its relation to Q

to vary over the knowledge cycle, and to concentrate at early stages of the cycle. These pat-

terns, which competition exacerbates, are in sharp contrast to neoclassical predictions that

abstract away from the knowledge channel. We use a new text-based measure of product

life cycle to proxy for the knowledge cycle and report evidence of the empirical relevance of

the knowledge channel. We argue that the knowledge channel could explain abnormally low

investment since the early 2000’s, as a result firms spending more time in earlier stages of

their knowledge cycle during this period.

This paper suggests that competition may have ambiguous effects on investment de-

pending on the stage of the knowledge cycle—firms may appear to under-invest at earlier

stages and to over-invest at later stages. In future research we wish to examine how these
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competitive forces play out in the context of an industry equilibrium.
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A General solution in the inaction region

In the inaction region, the processes for knowledge and physical capital move of their own accord.
As a result, the firm value in Eq. (5) satisfies the standard HJB equation, which we omit for the
sake of brevity. Substituting the functional form in Eq. (6) into this equation, we obtain an ODE
for the intensive value, v(·), that it must satisfy within the inaction region:(

r + ηZ2φ− (η − 1)
(
αδ +

η

2
−
√
τAZ

))
v = 1 +

√
τAv

′
(√

τA
2

Z + 1− η
)

+
τA
2
v′′, Z ∈ I (31)

which is a second-order inhomogeneous linear equation.
Clearly, the firm could always choose never to invest nor to innovate, and this outcome must

thus be a particular solution, which we denote vP , of this ODE. In particular, the value of the firm
when it remains inactive forever is

V (Nt, At,Kt, M̂t,Ωt) ≡ E

[∫ ∞
0

e−rsΠ(At+s,Kt+s, Nt+s)ds

∣∣∣∣Ft

]
=Π(At,Kt, Nt)E

[∫ ∞
0

e
∫ t+s
t

(
(1−η)

(
τ
1/2
A Zu−αδ−1/2

)
−ηφZ2

u−r
)

du+(1−η)(B̂t+s−B̂t)ds

∣∣∣∣Ft

]
.

Introducing the change of probability measure,

P̃

P̂

∣∣∣∣∣
Ft

= e−1/2(1−η)2t+(1−η)Bt ,

and applying Fubini’s theorem, we write this value as:

V (Nt, At,Kt, M̂t,Ωt) = Π(At,Kt, Nt)

∫ ∞
0

Ẽ

[
e
∫ t+s
t

(
(1−η)

(
τ
1/2
A Zu−αδ−η/2

)
−ηφZ2

u−r
)

du
∣∣∣∣Ft

]
ds

≡ Π(At,Kt, Nt)vP (Zt);

accordingly, we define the function

f(s, Z) = Ẽ

[
e
∫ t+s
t

(
(1−η)

(
τ
1/2
A Zu−αδ−η/2

)
−ηφZ2

u−r
)

du
∣∣∣∣Ft

]
,
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which, expressing the dynamics of Z under P̃, satisfies the following PDE:

fs =
(

(1− η)
(
τ

1/2
A Zu − αδ − η/2

)
− ηφZ2

u − r
)
f + (τ

1/2
A (1− η) + τA/2Z)fZ + τA/2fZZ ,

with boundary condition, f(0, Z) ≡ 1. Since Z is a Gaussian process, the solution takes the usual
exponential affine quadratic form:

f(s, Z) = exp
(
a0(s) + a1(s)Z + a2(s)Z2

)
,

with coefficients satisfying the system of Riccati equations:

a′0 = (η − 1)
(
αδ +

η

2

)
+
a2

1τA
2

+ a1(1− η)
√
τA + a2τA − r,

a′1 = a1(4a2τA + τA) + (2a2 + 1)(1− η)
√
τA

a′2 = −ηφ+ a2(2a2 + 1)τA,

with boundary conditions, a0(0) = a1(0) = a2(0) = 0. These equations have closed-form solutions
of the form:

a2(s) =
1

4

−ξ tanh
(

1
2ξs
√
τA − coth−1

(
ξ√
τA

))
√
τA

− 1

 , (32)

a1(s) =
(η − 1)

((
ξ +
√
τA
)2 − 2

(
ξ2 + τA

)
e

1
2
ξs
√
τA +

(
ξ −√τA

)2
eξs
√
τA
)

ξ
√
τA
(
ξ +

(
ξ −√τA

)
eξs
√
τA +

√
τA
) ,

a0(s) = −4η2 + sτA(4αδ + 4r + τA + 2)− 2η(s(2αδτA + τA) + 4)− τA log(4) + 4

4τA

+
(η − 1)2(sτA + 2)

2ξ2τA
+

1

4
ξs
√
τA +

1

2

(
log(ξ)− log

(
ξ + (ξ −

√
τA) eξs

√
τA +

√
τA

))
(η − 1)2

((
ξ4 + ξ2τA + 2τ2

A

)
cosh

(
1
2ξs
√
τA
)
− 2τA

(
ξ2 + τA

))
ξ3τA

(
ξ cosh

(
1
2ξs
√
τA
)
−√τA sinh

(
1
2ξs
√
τA
)) ,

where ξ ≡
√
τA + 8ηφ. We conclude that a particular solution to Eq. (31) is as in Eq. (14).

Furthermore, the two solutions associated with the homogeneous version of Eq. (31) are:

G1(Z) = eg1Z+g2Z2
Hn (h0 + h1Z) ,

with g1 = (η − 1)
(

1√
τA
− 1

ξ

)
, g2 = −

√
τA+ξ

4
√
τA

, h0 =
√

2(η−1) 4
√
τA

ξ3/2
, h1 =

√
ξ

2
√
τA

, and Hn denotes the

Hermite polynomial of order n (as defined in Eq. (15)) and

G2(Z) = eg1Z+g2Z2
M

(
−1

2
n,

1

2
,m0 +m1Z +m2Z

2

)
,
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with m0 =
2(η−1)2

√
τA

ξ3
, m1 = 2(η−1)

ξ and m2 = ξ
2
√
τA

, where M denotes the Kummer confluent

hypergeometric function. We conclude that, in the inaction region, the general solution to Eq. (31)
takes the form in Eq. (13) Note that the existence of this solution depends on several conditions.

B Expected firm value upon experimentation

It is convenient to first define the firm value outside B as:

h(Z) ≡ g(Z;C1, C2)1Z∈(a,b) + (1− ω)α(1−η)V (0)1Z /∈A + g(Z;C1, C2)1Z∈(b,a).

Letting the (yet unknown) optimal investment policy i(Z) be a function of the current state Z, we
can rewrite the firm value as:

v(Z) ≡ h(Z) + 1Z∈B

(
(1 + i(Z))α(1−η)

∫
R
v(y)φ(y;Z, i(Z))dy − (κ+ γ/2i(Z)2)

)
,

To alleviate notation, we further let for each experimentation round k:

ik ≡ i(y(k)), k ∈ N,

and define:

φ(n)(y;Z, {ik}nk=0) :=

∫
Bn

n∏
k=1

(1 + ik)
α(1−η)φ(y; y(n), in)dΦ(y(n); y(n−1), in−1) · · · dΦ(y(1); y(0) = Z, i0),

(33)

with φ(0)(y;Z) ≡ φ(y;Z). With this notation at hand and assuming for the moment that there is
a contraction in the sense that

lim
n→∞

φ(n)(y;Z, {ik}nk=0) = 0, ∀y, Z,

we can then express the expected firm value as∫
R
v(y)φ(y;Z, i(Z))dy =

∞∑
n=0

∫
R

(
h(y)− (κ+ γ/2i(y)2)1y∈B

)
φ(n)(y;Z, {ik}nk=0)dy.

It follows that for Z ∈ B the firm faces the following dynamic programming problem:

V (Z) := max
{ik}∞k=0

(1 + i0)α(1−η)
∞∑
n=0

∫
R

(
h(y)− (κ+ γ/2i(y)2)1y∈B

)
φ(n)(y;Z, {ik}nk=0)dy − (κ+ γ/2i20).

(34)
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As is customary we wish to formulate this program recursively in the form of a Bellman equation:

V (Z) ≡ max
i0

(1 + i0)α(1−η)

∫
R
h(y)φ(y;Z, i0)dy − (κ+ γ/2i20)

+ max
{ik}∞k=0

(1 + i0)α(1−η)

( ∞∑
n=1

∫
R
h(y)φ(n)(y;Z, {ik}nk=0)dy −

∞∑
n=0

∫
B

(κ+ γ/2i(y)2)φ(n)(y;Z, {ik}nk=0)dy

)
.

Rewriting Eq. (33) recursively as:

φ(n+1)(y;Z, {ik}n+1
k=0) =

∫
B

(1 + i(x))α(1−η)φ(n)(y;Z, {ik}nk=1)φ(x;Z, i0)dx,

we can rewrite the first term in brackets as:

∞∑
n=1

∫
R
h(y)φ(n)(y;Z, {ik}nk=0)dy =

∞∑
n=0

∫
R
h(y)φ(n+1)(y;Z, {ik}n+1

k=0)dy

=

∫
B

(1 + i(x))α(1−η)
∞∑
n=0

∫
R
h(y)φ(n)(y;Z, {ik}nk=0)dyφ(x;Z, i0)dx.

and the second term in brackets as:

∞∑
n=0

∫
B

(κ+ γ/2i(y)2)φ(n)(y;Z, {ik}nk=0)dy

=

∫
B

(
κ+ γ/2i(x)2 + (1 + i(x))α(1−η)

∞∑
n=0

∫
B

(κ+ γ/2i(y)2)φ(n)(y;x, {ik}nk=0)dy

)
φ(x;Z, i0)dx.

We then substitute this expression in the value function to obtain:

V (Z) ≡ max
i0

(1 + i0)α(1−η)

∫
R
h(y)φ(y;Z, i0)dy − κ− γ/2i20 + max

{ik}∞k=0

(1 + i0)α(1−η)× (35)∫
B

(
(1 + i(x))α(1−η)

∑∞
n=0

∫
R

(
h(y)− (κ+ γ/2i(y)2)1y∈B

)
φ(n)(y;x, {ik}nk=0)dy

−κ− γ/2i(x)2

)
φ(x;Z, i0)dx

= max
i

(1 + i)α(1−η)

∫
R
h(y)φ(y;Z, i)dy − κ− γ/2i2 + (1 + i)α(1−η)

∫
B
φ(x;Z, i)V (x)dx,
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where the last equation yields the Bellman equation we are looking for. We are further looking for
an optimal policy function i(·) such that

V (z) = (1 + i(Z))α(1−η)

∫
R
h(y)φ(y;Z, i)dy − κ− γ/2i(Z)2 + (1 + i(Z))α(1−η)

∫
B
φ(x;Z, i)V (x)dx.

Differentiating Eq. (35), the optimal policy function must satisfy the first-order condition:

0 =
α(1− η)

1 + i(Z)
V (Z) +

α(1− η)(κ+ γ/2i(Z)2)− γ(1 + i(Z))i(Z)

1 + i(Z)
(36)

+ (1 + i(Z))α(1−η)

(∫
R
h(y)

∂

∂i
φ(x; i, Z)dy +

∫
B
V (y)

∂

∂i
φ(x; i, Z)dy

)
.

We start by computing the first expectation in Eq. (35). It is convenient to define

ψ(Z; i, c0, c1, c2, x, x) :=

∫ x

x
exp

(
c0 + c1y + c2y

2
)
φ(y; i(Z), Z)dy

=
e
c0+

c21i(Z)τS+2Z(c1
√

1+τSi+c2Z(1+τSi(Z)))

2iτS(1−2c2τSi(Z))√
2(1− 2c2τSi(Z))

 erf

(
c1τSi(Z)+Z

√
1+τSi(Z)−x(1−2c2τsi(Z))√

2τSi(Z)(1−2c2τSi(Z))

)
−erf

(
c1τSi(Z)+Z

√
1+τSi(Z)−x(1−2c2τsi(Z))√

2τSi(Z)(1−2c2τSi(Z))

)
 ,

where c0, c1, c2, and x ≥ x are constant coefficients. We note that this function exists provided
that

c2 <
1

2τSi(Z)
, (37)

which imposea an upper bound on the investment policy function i(Z) when c2 > 0. Using this
function and applying Fubini’s theorem it follows that∫ x

x
vP (y)φ(y; i(Z), Z)dy =

∫ ∞
0

ψ(Z; i(Z), a0(s), a1(s), a2(s), x, x)ds =: vP (Z, x, x).

To compute the expectation of the second term involved in Eq. (13), we use the integral repre-
sentation of the Hermite polynomial. Note that the order of the polynomial in Eq. (15) may be
negative, in which case the following representation is appropriate:

Hn(x) ≡ (−2i)−n√
π

∫
R
t−n exp(−(t− ix)2)dt.
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We then obtain:∫ x

x
G1 (y)φ(y; i(Z), Z)dy =

∫ x

x
eg1y+g2y2Hn (h0 + h1y)φ(y; i(Z), Z)dy

=

∫ x

x
eg1y+g2y2 (−2i)−n√

π

∫
R
t−n exp

(
− (t− i(h0 + h1y))2

)
dtφ(y; i(Z), Z)dy

=
(−2i)−n√

π

∫
R
t−nψ(Z; i(Z), (h0 + it)2, g1 + 2h1(h0 + it), g2 + h2

1, x, x)dt

=: G1(Z, x, x),

where the last equality uses Fubini’s theorem to slide the expectation inside the integral. Similarly,
using the integral representation of the confluent hypergeometric function we further obtain:∫ x

x
G2 (y)φ(y; i(Z), Z)dy =

∫ x

x
eg1y+g2y2M

(
1

2
n,

1

2
,m0 +m1y +m2y

2

)
dy

=

∫ x

x
eg1y+g2y2

∫ 1

0

tn/2−1(1− t)−
n+1
2

Γ(n/2)Γ((1− n)/2)
e(m0+m1y+m2y2)tdtdy

=

∫ 1

0

tn/2−1(1− t)−
n+1
2

Γ(n/2)Γ((1− n)/2)
ψ(Z; i(Z),m0t, g1 +m1t, g2 +m2t, x, x)dt

=: G2(Z, x, x),

where the last equality uses Fubini’s theorem. Using these expressions we can write the expectation
in Eq. (35) as:∫

R
h(y)φ(y;Z, i)dy = vP (Z, a, b) + C1G1(Z, a, b) + C2G2(Z, a, b) + vP (Z, b, a) + C1G1(Z, b, a)

+ C2G2(Z, b, a) + (1− δ)α(1−η)V (0)

∫
y/∈A

φ(y; i(Z), Z)dy.

Using the existence condition in Eq. (37), the existence of this expectation depends on the following
conditions being satisfied:

a2(s)τSi(Z) < 1/2, ∀s > 0

τSi(Z)

(
−1

2
+

(
y − 1

2

)
ξ
√
τA

)
< 1, ∀y ∈ (0, 1)

These conditions place an upper bound on the investment rate. In particular, the last condition is
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always satisfied provided that the investment rate satisfies:

i <
2

τS(ξ/
√
τA − 1)

=: i. (38)

Furthermore, using Eq. (32) for a2, since tanh : R → [−1, 1] it follows that the first equation is
always satisfied if the condition in Eq. (38) is satisfied; thus it is a sufficient condition for the
expectations above to be well-defined. We will thus take the admissible investment set to be

D := [0, i).

C Solution method

We start by imposing that the firm value be continuous over each region involved in its piecewise
representation in Eq. (20). In particular, when the firm invests there can no jump in its value on
average;

g(b;C1, C2) = V (b), (39)

g(b;C1, C2) = V (b).

Similarly, there can be no jump in the firm value when it decides to explore:

g(a;C1, C2) = V (0)(1− δ)α(1−η), (40)

g(a;C1, C2) = V (0)(1− δ)α(1−η).

Eqs. (39)–(40) constitute a system of four equations that determines the four unknown constant
of integration, C1, C2, C1, and C2.

A difficulty in solving this system of equations is that the functional form of the value function,
V (·), is unknown. There are two alternative routes in handling this problem numerically. One
is to use the representation of the value function as infinite sum in Eq. (34). Another, more
appropriate way is to use Gauss-Legendre quadrature (see, e.g., Judd (1998)) to obtain an explicit
representation of the value function. This latter approach is the one we adopt. In particular, we
approximate the integral involved in the Bellman equation (21) as∫

B
V (y)φ(y; i(z), z)dy ≈

n∑
k=1

ωkφ(xk; i(z), z)V (xk),

where xk are the quadrature nodes and ωk are the quadrature weights over the interval B. We
then collect the value function evaluated at each quadrature node in a vector, which we denote by
V ≡ {V (xj)}nj=1. The goal is now to solve for this vector explicitly. To do so, we plug the integral
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approximation back into the Bellman equation and evaluate it at the quadrature nodes:

V (zj) = (1 + i(zj))
α(1−η)

∫
R
(h(y)− 1y∈B(κ+ γ/2i(y)2))φ(y; i(zj), zj)dy (41)

− κ− γ/2i(zj)2 + (1 + i(zj))
α(1−η)

n∑
k=1

ωkφ(xk; i(zj), zj)V (xk), j = 1, . . . , n,

which yields a system of n equations for the n unknown elements composing the vector V.
We then define the following (column) vectors:

Φ ≡
(

(1 + i(zj))
α(1−η)(vP (zj , a, b) + vP (zj , b, a))− κ− γ/2i(zj)2

)
j=1,...,n

,

Gk ≡
(

(1 + i(zj))
α(1−η)(Gk(zj , a, b)

)
j=1,...,n

, k = 1, 2,

Gk ≡
(

(1 + i(zj))
α(1−η)(Gk(zj , b, a)

)
j=1,...,n

, k = 1, 2,

A ≡

(
(1− ω)α(1−η)

∫
y/∈(a,a)

φ(y; i(zj), zj)dy

)
j=1,...,n

,

and the following n× n matrix:

Σ ≡
(

(1 + i(zj))
α(1−η)ωiφ(xi; i(zj), zj)

)
i,j=1,...,n

.

We can then rewrite the system in Eq. (41) in vector form and express the vector V as:

V = (I−Σ)−1

Φ +
∑
k=1,2

CkGk +
∑
k=1,2

CkGk + AV (0)

 .

By analogy to the vectors we defined above, we further define the following functions:

Φ(Z) ≡ (1 + i(Z))α(1−η)(vP (Z, a, b) + vP (Z, b, a))− κ− γ/2i(Z)2,

Gk(Z) ≡ (1 + i(Z))α(1−η)(Gk(Z, a, b), k = 1, 2,

Gk(Z) ≡ (1 + i(Z))α(1−η)(Gk(Z, b, a), k = 1, 2,

A(Z) ≡ (1− ω)α(1−η)

∫
y/∈(a,a)

φ(y; i(Z), Z)dy,

and the following vector:

Σ(Z) ≡
(

(1 + i(Z))α(1−η)ωiφ(xi; i(Z), Z)
)
i=1,...,n

.

We use these functions to write the Nystrom extension (see, e.g., Judd (1998)) to the value function
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as:

V (Z) ≈ Φ(Z) +
∑
k=1,2

CkGk(Z) +
∑
k=1,2

CkGk(Z) +A(Z)V (0)+

Σ(Z)′ (I−Σ)−1

Φ +
∑
k=1,2

CkGk +
∑
k=1,2

CkGk + AV (0)

 .

Evaluating the Nystrom extension at 0 yields:

V (0) =
1

1−A(0)− Σ(0)′ (I−Σ)−1 A

(
Φ(0) +

∑
k=1,2CkGk(0) +

∑
k=1,2CkGk(0)

+Σ(0)′ (I−Σ)−1
(
Φ +

∑
k=1,2CkGk +

∑
k=1,2CkGk

) ) .
Plugging back in the Nystrom extension and defining:

φ0(Z) ≡ Φ(Z) + Σ(Z)′ (I−Σ)−1 Φ +
A(Z) + Σ(Z)′ (I−Σ)−1 A

1−A(0)− Σ(0)′ (I−Σ)−1 A

(
Φ(0) + Σ(0)′ (I−Σ)−1 Φ

)
,

g
k
(Z) ≡ Gk(Z) + Σ(Z)′ (I−Σ)−1 Gk +

A(Z) + Σ(Z)′ (I−Σ)−1 A

1−A(0)− Σ(0)′ (I−Σ)−1 A

(
Gk(0) + Σ(0)′ (I−Σ)−1 Gk

)
,

gk(Z) ≡ Gk(Z) + Σ(Z)′ (I−Σ)−1 Gk +
A(Z) + Σ(Z)′ (I−Σ)−1 A

1−A(0)− Σ(0)′ (I−Σ)−1 A

(
Gk(0) + Σ(0)′ (I−Σ)−1 Gk

)
,

, provides an approximate but explicit representation of the value function in terms of the four
unknown integration constants:

V (Z) ≈ φ0(Z) +
∑
k=1,2

Ckgk(Z) +
∑
k=1,2

Ckgk(Z).

Using this representation, and letting ω̂ ≡ (1− ω)α(1−η) we define the following matrix:

B =


G1(a)− ω̂g

1
(0) G2(a)− ω̂g

2
(0) −ω̂g2(0) −ω̂g2(0)

−ω̂g
1
(0) −ω̂g

2
(0) G1(a)− ω̂g2(0) G2(a)− ω̂g2(0)

G1(b)− g
1
(b) G2(b)− g

2
(b) −g2(b) −g2(b)

−g
1
(b) −g

2
(b) G1(b)− g2(b) G2(b)− g2(b)

 .
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we can in turn write the solution of the system in Eqs. (39)–(40) explicitly as:
C1

C2

C1

C2

 = B−1


φ0(0)ω̂ − vP (a)
φ0(0)ω̂ − vP (a)
φ0(b)− vP (b)

φ0(b)− vP (b)

 .

This solution is unique if and only if the determinant of det(B) 6= 0.
The solution we have constructed holds for given thresholds a, a, b, and b, and a given

knolwedge-contingent investment policy i(Z). The last step is to pick these elements optimally.
To solve for the optimal thresholds we use the system of smooth-pasting condition in Eqs. (12)–
(22), wich provides four equations for the four unknowns, a, a, b, and b. The optimal investment
policy further solves the first-order condition in Eq. (36). To find a solution, we use a Newton al-
gorithm to solve for Eqs. (12)–(22), and at each Newton step we perform Policy Function Iteration
to obtain the optimal investment policy.

D Stationary Distribution of Knowledge

We derive the stationary distribution of knowledge based on its Kolmogorov Backward Equation
(KBE). Define the cumulative probability that ZT is below level y at time T given that it started
at level x at time t as:

φ(y, x, T − t) := E [1ZT≤y|Zt = x] .

This expression is a martingale, which implies that in the inaction regions this function satisfies
the PDE:

φt = τA
2 (φxx+ φxx), φ(y, x, 0) = 1x≤y, Z ∈ (a, b) ∪ (b, a) . (42)

Furthermore, for this expression to be a martingale at Z = a, Z ≡ a, and over the experimentation
region Z ∈ B, we must further ensure that there is no jump in the function at these points and
over the experimentation region:

φ(y, a, T − t) = φ(y, a, T − t) = φ(y, 0, T − t) (43)

and

φ(y, Z, T − t) =

∫ a

a
φ(y, x, T − t)ϕ(x, i(Z), Z)dx+ φ(y, 0, T − t)

∫
x/∈(a,a)

ϕ(x, i(Z), Z)dx, Z ∈ B,

(44)

where ϕ(·) denotes the normal density with mean
√

1 + τSi(Z)Z and variance τSi(Z).
Since we are interested in deriving the stationary distribution, we introduce the following time
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transform:

ψ(y, x;λ) ≡
∫ +∞

0
exp(−λτ)φ(y, x, τ)dτ.

The Kolmogorov Backward Equation (42) becomes an ODE:

0 = λ(1x≤y − ψ) +
τA
2

(ψxx+ ψxx), x ∈ (a, b) ∪ (b, a) (45)

and Conditions (43)–(44) become:

ψ(y, a;λ) = ψ(y, a;λ) = ψ(y, 0;λ) (46)

and

ψ(y, Z;λ) =

∫ a

a
ψ(y, x;λ)ϕ(x, i(Z), Z)dx+ ψ(y, 0;λ)

∫
x/∈(a,a)

ϕ(x, i(Z), Z)dx, Z ∈ B. (47)

We will further conjecture that:

φ ∈ C 1((a, b) ∪ (b, a)) ∩ C 0([a, a]).

This in turn provides the remaining conditions needed to solve the problem:

lim
x↗y

φ(y, y;λ) = lim
x↘y

φ(y, y;λ), ∀y ∈ [a, a] (48)

lim
x↗y

φ′(y, y;λ) = lim
x↘y

φ′(y, y;λ), ∀y ∈ (a, b) ∪ (b, a).

The idea is to solve the ODE in Eq. (45) piecewise over the relevant smoothness regions of
Z and the integral equation in Eq. (46) over B. For y < b, there are three smoothness regions:
x ∈ (a, y), x ∈ (y, b), and x ∈ (b, a); Importantly, for y ∈ B, the cdf is flat everywhere, except at 0.
At y = 0 the density exhibits an atom, which we denote by A, because every time firms experiment
there is a finite probability that they end up exploring. Otherwise, i.e., y ∈ B \ {0}, the density
is flat as experimentation makes sure mass does not accumulate there; finally, for y ∈ (b, a), the
smoothness regions are: (a, b), (b, y), and (y, a). We thus solve the cdf for the cases y < b and
y > b, and then obtain the atom, A, by requiring that the cdf reaches 1. Starting with y < b, let us
index the regions (a, y), (y, b), and (b, a) by (1), (2), and (3), respectively, and accordingly denote

54



the solution to the ODE in Eq. (45) over these three regions by:

ψ(1)(y, x;λ) = 1 + C1,l(y, λ)e−x
2/2H(−1− 2λ/τA, x/

√
2) + C2,l(y, λ)e−x

2/2M(−2λ/τA, 1/2,−x2/
√

2),

ψ(2)(y, x;λ) = C1,m(y, λ)e−x
2/2H(−1− 2λ/τA, x/

√
2) + C2,m(y, λ)e−x

2/2M(−2λ/τA, 1/2,−x2/
√

2),

ψ(3)(y, x;λ) = C1,h(y, λ)e−x
2/2H(−1− 2λ/τA, x/

√
2) + C2,h(y, λ)e−x

2/2M(−2λ/τA, 1/2,−x2/
√

2),

where C1,l, C2,l, C1,m, C2,m, C1,h, and C2,h are six unknown integration coefficients. Furthermore,
to write the solution to the integral equation in Eq. (47), we first define the density outside the
experimentation region but inside the no-exploration region, i.e., within A \B, as:

p(y, x;λ) ≡ ψ(1)(y, x;λ)1x∈(a,y] + ψ(2)(y, x;λ)1x∈(y,b) + ψ(3)(y, x;λ)1x∈[b,a).

Denoting the density over B by ψ(4) we can rewrite the integral equation in Eq. (47) as:

ψ(4)(y, x;λ) =

∫
A \B

p(y, x;λ)ϕ(x, i(Z), Z)dx+

∫
B
ψ(4)(y, x;λ)ϕ(x, i(Z), Z)dx

+ ψ(4)(y, 0;λ)

∫
x/∈A

ϕ(x, i(Z), Z)dx

Iterating over this equation, define the following Liouville-Neumann series:

θ(y, Z) ≡
∞∑
n=0

θ(n)(y, Z), (49)

where θ(n) satisfies for n ∈ N:

θ(n)(y, Z) ≡
∫

Bn

ϕ(y, i(y(n)), y(n))ϕ(y(n), i(y(n−1)), y(n−1)) · · ·ϕ(y(1), i(Z), Z)dy(n)dy(n−1) · · · dy(1).

Note that θ(y;Z) in Eq. (49) can be alternatively represented recursively as a Fredholm equation
of the second kind:

θ(y, Z) = ϕ(y, i(Z), Z) +

∫
B
θ(x, Z)ϕ(y, i(x), x)dx.

The relevance of this alternative representation is that, given that ϕ is a probability density, the
contraction mapping theorem (Theorem 3.2, Stokey and Lucas (1996)) guarantees that the rep-
resentation as an infinite sum in Eq. (49) exists. We can then write the solution to Eq. (47)
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as:

ψ(4)(y, Z;λ) =

∫
A \B

p(y, x;λ)θ(x, Z)dx+ ψ(4)(y, 0;λ)

∫
x/∈A

θ(x, Z)dx

Evaluating this expression at x ≡ 0 and solving for ψ(4)(y, 0;λ) we get an explicit solution of the
form:

ψ(4)(y, x;λ) =

∫
A \B

p(y, x;λ)θ(x, Z)dx+

∫
A \B p(y, x;λ)θ(x, 0)dx

1−
∫
x/∈A θ(x, 0)dx

∫
x/∈A

θ(x, Z)dx. (50)

It will be subsequently convenient to simplify notations:

H(x;λ) ≡ e−x2/2H(−1− 2λ/τA, x/
√

2) and M(x;λ) ≡ e−x2/2M(−2λ/τA, 1/2,−x2/
√

2),

and define accordingly the following functions:

h1(Z, x, x, λ) ≡
∫ x
x H(x;λ)θ(x, Z)dx and h2(Z, x, x, λ) ≡

∫ x
x M(x;λ)θ(x, Z)dx,

the following probabilities:

Θ(Z) ≡
∫
x/∈A θ(x, Z)dx and Φ(y, Z) ≡

∫ y
a θ(x, Z)dx.

We then use these functions to further define:

φ(y, Z) ≡ Φ(y, Z) +
Θ(Z)

1−Θ(0)
Φ(y, 0)

gk(Z, x, x, λ) ≡ hk(Z, x, x, λ) +
Θ(Z)

1−Θ(0)
hk(0, x, x, λ), k = 1, 2.

Using this simplified notation we can rewrite the solution in Eq. (50) as:

ψ(4)(y, Z;λ) = φ(y, Z) +
∑
k=1,2

Cl,k(y, λ)gk(Z, a, y, λ)

+
∑
k=1,2

Cm,k(y, λ)gk(Z, y, b, λ) +
∑
k=1,2

Ch,k(y, λ)gk(Z, b, a, λ).

We finally obtain a piecewise representation of the density for y < b:

φ(y, x;λ) =


ψ(1)(y, x;λ) x ∈ (a, y]

ψ(2)(y, x;λ) x ∈ (y, b)

ψ(4)(y, x;λ) x ∈ B
ψ(3)(y, x;λ) x ∈ (b, a)

,
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Similarly, for y > b, we can write:

φ(y, x;λ) =


ψ(1)(y, x;λ) x ∈ (a, b)

ψ(4)(y, x;λ) x ∈ B
1 + ψ(2)(y, x;λ) x ∈ (b, y]

ψ(3)(y, x;λ) x ∈ (y, a)

,

where ψ(4)(y, x;λ) for y > b satisfies:

ψ(4)(y, Z;λ) = φ(y, Z) +
∑
k=1,2

Cl,k(y, λ)gk(Z, a, b, λ)

+
∑
k=1,2

Cm,k(y, λ)gk(Z, b, y, λ) +
∑
k=1,2

Ch,k(y, λ)gk(Z, y, a, λ).

Given this piecewise representation of the cdf, Eqs. (46) and (48) constitute a system of 6
equations that pins down the 6 coefficients of integration, C1,l, C2,l, C1,m, C2,m, C1,h, and C2,h.
The plan is to solve for these 6 coefficients and then recover the stationary CDF, π, through the
Final Value Theorem:

π(y) ≡ lim
T→∞

ψ(y, x;T − t) = lim
λ→0

λφ(y, x;λ). (51)

Imposing Eqs. (46) and (47) for y ∈ (a, b) ∪ (b, a) yields:

ψ(1)(y, a;λ) = ψ(4)(y, 0;λ), (52)

ψ(3)(y, a;λ) = ψ(4)(y, 0;λ),

ψ(4)(y, b;λ) = ψ(2)(y, b;λ)1y<b + ψ(1)(y, b;λ)1y>b,

ψ(4)(y, b;λ) = ψ(3)(y, b;λ)1y<b + (1 + ψ(2)(y, b;λ))1y>b,

ψ(2)(y, y;λ) = ψ(1)(y, y;λ)1y<b + (ψ(3)(y, y;λ)− 1)1y>b,

ψ(2)′(y, y;λ) = ψ(1)′(y, y;λ)1y<b + ψ(3)′(y, y;λ)1y>b.

It is convenient to rewrite this system in matrix form, and then solve it separately for y ∈ (a, b)
and y ∈ (b, a); we gather the 6 unknown coefficients in a vector and index them with a superscript
l for y ∈ (a, b) and h for y ∈ (b, a):

Ck(y;λ) ≡
(
Ck1l(y, λ) Ck2l(y, λ) Ck1m(y, λ) Ck2m(y, λ) Ck1h(y, λ) Ck2h(y, λ)

)′
, k = {l, h}.

Using this notation, rewrite the system in Eq. (52) over the region y ∈ (a, b) as:

Bl(y) = Al(y;λ)Cl(y;λ),
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where

Al(y;λ) =



H(a;λ)
−g1(0,a,y,λ)

M(a;λ)
−g2(0,a,y,λ) −g1(0, y, b, λ) −g2(0, y, b, λ) −g1(0, b, a, λ) −g2(0, b, a, λ)

−g1(0, a, y, λ) −g2(0, a, y, λ) −g1(0, y, b, λ) −g2(0, y, b, λ)
H(a;λ)

−g1(0,b,a,λ)

M(a;λ)

−g2(0,b,a,λ)

g1(b, a, y, λ) g2(b, a, y, λ) g1(b,y,b,λ)
−H(b;λ)

g2(b,y,b,λ)
−M(b);λ g1(b, b, a, λ) g2(b, b, a, λ)

g1(b, a, y, λ) g2(b, a, y, λ) g1(b, y, b, λ) g2(b, y, b, λ) g1(b,b,a,λ)

−H(b;λ)

g2(b,b,a,λ)

−H(b;λ)

−H(y;λ) −M(y;λ) H(y;λ) M(y;λ) 0 0
−H ′(y;λ) −M ′(y;λ) H ′(y;λ) M ′(y;λ) 0 0


,

and

Bl(y) =
(
φ(y, 0)− 1 φ(y, 0) −φ(y, b) −φ(y, b) 1 0

)′
.

Similarly, in the region y ∈ (b, a) we write:

Bh(y) = Ah(y;λ)Ch(y;λ),

where

Ah(y;λ) =



H(a;λ)
−g1(0,a,b,λ)

M(a;λ)
−g2(0,a,b,λ) −g1(0, b, y, λ) −g2(0, b, y, λ) −g1(0, y, a, λ) −g2(0, y, a, λ)

−g1(0, a, b, λ) −g2(0, a, b, λ) −g1(0, b, y, λ) −g2(0, b, y, λ) H(a;λ)
−g1(0,y,a,λ)

M(a;λ)
−g2(0,y,a,λ)

g1(b,a,b,λ)
−H(b;λ)

g2(b,a,b,λ)
−M(b;λ) g1(b, b, y, λ) g2(b, b, y, λ) g1(b, y, a, λ) g2(b, y, a, λ)

g1(b, a, b, λ) g2(b, a, b, λ) g1(b,b,y,λ)

−H(b;λ)

g2(b,b,y,λ)

−M(b;λ)
g1(b, y, a, λ) g2(b, y, a, λ)

0 0 H(y;λ) M(y;λ) −H(y;λ) −M(y;λ)
0 0 H ′(y;λ) M ′(y;λ) −H ′(y;λ) −M ′(y;λ)


,

and

Bh(y) =
(
φ(y, 0)− 1 φ(y, 0) 1− φ(y, b) 1− φ(y, b) −1 0

)′
.

We can then write the solution in the two regions as:

Ck(y, λ) = Ak(y;λ)−1Bk(y), k = {l, h}.

Since we are interested in the stationary distribution only, the last step is to apply the Final
Value Theorem. This implies taking the limit in Eq. (51). Note that

lim
λ→0

H(x;λ) =

√
π

2
(1− erf(x/

√
2)),

lim
λ→0

M(y;λ) = 1,
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and that at a stationary state we lose the dependence on the initial state, which implies that (and
which can be verified by direct computation):

lim
λ→0

C1,l(y, λ) ≡ lim
λ→0

C1,m(y, λ) ≡ lim
λ→0

C1,h(y, λ) ≡ 0,

lim
λ→0

C2,l(y, λ) ≡ lim
λ→0

C2,m(y, λ) ≡ lim
λ→0

C2,h(y, λ).

These observations, along with Eq. (51), imply that we can write the stationary cdf as:

π(y) ≡ lim
λ→0

1 + C2,l(y, λ) ≡ lim
λ→0

C2,m(y, λ) ≡ lim
λ→0

C2,h(y, λ).

To compute these limits we rewrite the solution for coefficients C as:

Ck(y, λ) = 1
det(Ak(y;λ))adj(Ak(y;λ))Bk(y), k = {l, h},

where adj(A) denotes the adjugate of A. Note that the dependence on λ is both in the denominator
through the determinant, and in the numerator through the adjugate matrix; accordingly we apply
L’Hospital Theorem to write this limit as:

limλ→0Ck(y, λ) =
limλ→0

d
dλ

adj(Ak(y;λ))Bk(y)

limλ→0
d
dλ

det(Ak(y;λ))
, k = {l, h}.

E Distribution of the Length of the Exploration Cycle

We derive the distribution of the length of the exploration cycle based on a system of coupled
Kolmogorov Backward Equations. Formally, our goal is to compute the probability that the first
exploration time θ (defined in Eq. (8)) occurs before or at time t ≥ 0 given that Z0 starts at 0 (i.e.,
immediately following an initial round of exploration):

G(t) ≡ P (θ ≤ t|Z0 = 0) .

To keep notations transparent, for this appendix only we change notations for stopping times and
define the hitting time of Z at level k as:

τk ≡ inf{t : Zt = k}.

To derive an expression for G(·), it is convenient to start by working piecewise over two regions,
(a, b) and (b, a); accordingly, define the two functions:

f1(t, Z) ≡ P
(
θ ≤ t|Z0 ∈ (b, a)

)
= E

(
1θ≤t|Z0 ∈ (b, a)

)
,

f2(t, Z) ≡ P
(
θ ≤ t|Z0 ∈ (b, a)

)
= E

(
1θ≤t|Z0 ∈ (b, a)

)
.

These two functions satisfy a system of coupled equations. Suppose first that today Z0 falls into
the first region, (a, b). In this situation, there are two ways exploration occurs. Either we hit a
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first, or we hit b first and with probability:

Θ ≡
∫
y/∈A

θ(y, b)dy,

experimentation leads us to explore. Note that Θ takes into account all possible number of suc-
cessive experimentation rounds that leads us to explore; it is thus based on the function θ defined
in Eq. (49). Furthermore, upon hitting b first, multiple successive rounds of experimentation may
either take us back to the first region (a, b) or to the second region (b, a), which precisely couples
the system of equations for f1(·) and f2(·). Similarly, when starting in the second region Z0 ∈ (b, a),
exploration may either occur as we hit a first or as we hit b first and then with probability:

Θ ≡
∫
y/∈A

θ(y, b)dy,

successive rounds of experimentation lead to exploration. Formally, they satisfy:

f1(t, Z) = E
[
1τa≤t1τa<τb |Z ∈ (a, b)

]
+ E

[
1τb<τa

(
Θ1τb≤t +

∫ b
a f1(t, x)θ(x, b)dx

+
∫ a
b
f2(t, x)θ(x, b)dx

)∣∣∣∣∣Z ∈ (a, b)

]
,(53)

f2(t, Z) = E
[
1τa≤t1τa<τb |Z ∈ (b, a)

]
+ E

[
1τb<τa

(
Θ1τb≤t +

∫ b
a f1(t, x)θ(x, b)dx

+
∫ a
b
f2(t, x)θ(x, b)dx

)∣∣∣∣∣Z ∈ (b, a)

]
.

We further define the following functions:

θ1(Z) ≡ E
[
1τb<τa

∣∣Z ∈ (a, b)
]
,

θ2(Z) ≡ E
[
1τb<τa

∣∣Z ∈ (b, a)
]
.

These expressions satisfy the following ODE over their respective range:

0 = θk,Z + θk,ZZ , k = 1, 2,

with boundary conditions θ1(b) = θ2(b) = 1 and θ1(a) = θ2(a) = 0, respectively. The solution is:

θ1(Z) =
eb(ea−Z−1)

ea−eb and θ2(Z) =
eb(ea−Z−1)

ea−eb
.

Similarly, we define the functions:

φ1(t, Z) ≡ E
[
1τa≤t1τa<τb

∣∣Z ∈ (a, b)
]
, φ2(t, Z) ≡ E

[
1τa≤t1τa<τb

∣∣Z ∈ (b, a)
]
,

ψ1(t, Z) ≡ E
[
1τb≤t1ττb<a

∣∣∣Z ∈ (a, b)
]

ψ2(t, Z) ≡ E
[
1τb≤t1ττb<a

∣∣∣Z ∈ (b, a)
]
.
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These expressions satisfy the following PDE over their respective range:

φk,t = τA/2(φk,Z + φk,ZZ) φk(0, Z) = 0, k = 1, 2,
ψk,t = τA/2(ψk,Z + φk,ZZ) ψk(0, Z) = 0, k = 1, 2,

with boundary conditions:

φ1(t, a) = 1, φ1(t, b) = 0,

φ2(t, a) = 1, φ2(t, b) = 0,
ψ1(t, b) = 1, ψ1(t, a) = 0

ψ2(t, b) = 1, ψ2(t, a) = 0.

Although these expressions do not have analytical solutions, their Laplace transforms do. Denoting
with a ĝ the Laplace transform of a function g and denoting by λ its frequency, we have:

φ̂1(λ, Z) =

(
e

(a−Z)(
√

8λ+τA+
√
τA)

2
√
τA

(
e
Z
√

8λ+τA√
τA − e

b
√

8λ+τA√
τA

))/(
e
a
√

8λ+τA√
τA − e

b
√

8λA+τ
√
τA

)
,

φ̂2(λ, Z) =

(
e

(a−Z)(
√

8λ+τA+
√
τA)

2
√
τA

(
e
Z
√

8λ+τA√
τA − e

b
√

8λ+τA√
τA

))/(
e
a
√

8λ+τA√
τA − e

b
√

8λA+τ
√
τA

)
,

ψ1(λ, Z) =

((
e
a
√

8λ+τA√
τA − e

Z
√

8λ+τA√
τA

)
e

(b−Z)(
√

8λ+τA+
√
τA)

2
√
τA

)/(
e
a
√

8λ+τA√
τA − e

b
√

8λ+τA√
τA

)
,

ψ2(λ, Z) =

((
e
a
√

8λ+τA√
τA − e

Z
√

8λ+τA√
τA

)
e

(b−Z)(
√

8λ+τA+
√
τA)

2
√
τA

)/(
e
a
√

8λ+τA√
τA − e

b
√

8λ+τA√
τA

)
.

We can then recover each function through Laplace inversion. We finally rewrite the system in Eq.
(53) as:

f1(t, Z) = φ1(t, Z) + Θψ1(t, Z) + θ1(Z)

(∫ b

a
f1(t, x)θ(x, b)dx+

∫ a

b
f2(t, x)θ(x, b)dx

)
f2(t, Z) = φ2(t, Z) + Θψ2(t, Z) + θ2(Z)

(∫ b

a
f1(t, x)θ(x, b)dx+

∫ a

b
f2(t, x)θ(x, b)dx

)
.

Multiply first both sides of each equation by θ(x, b), integrate the first one over the first region, the
second one over the second region, add these two equations together; then multiply both sides of
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each equation by θ(x, b) and repeat the same operations. The resulting system of equations yields:( ∫ b
a f1(t, x)θ(x, b)dx+

∫ a
b f2(t, x)θ(x, b)dx∫ b

a f1(t, x)θ(x, b)dx+
∫ a
b f2(t, x)θ(x, b)dx

)
= −

( ∫ b
a θ1(x)θ(x, b)dx− 1

∫ a
b θ2(x)θ(x, b)dx∫ b

a θ1(x)θ(x, b)dx
∫ a
b θ2(x)θ(x, b)dx− 1

)−1

( ∫ b
a (φ1(t, x) + Θψ1(t, x))θ(x; b)ds+

∫ a
b (φ2(t, x) + Θψ2(t, x))θ(x; b)ds∫ b

a (φ1(t, x) + Θψ1(t, x))θ(x; b)ds+
∫ a
b (φ2(t, x) + Θψ2(t, x))θ(x; b)ds

)
.

Substituting back into Eq. (53) delivers an explicit solution for the two functions f1(·) and f2(·).
Finally, using these functions we compute the cdf when starting in the experiment region, Z ∈ B:

f3(t, Z) ≡
∫ b

a
f1(t, x)ϕ(x, i(Z), Z)dx+

∫ a

b
f2(t, x)ϕ(x, i(Z), Z)dx

+

∫
B
f3(t, x)ϕ(x, i(Z), Z)dx+

∫
x/∈A

ϕ(x, i(Z), Z)dx.

Iterating over this relation and evaluating it at Z = 0 we obtain the desired cdf:

G(t) ≡ f3(t, 0) =

∫ b

a
f1(t, x)θ(x, 0)dx+

∫ a

b
f2(t, x)θ(x, 0)dx+

∫
x/∈A

θ(x, 0)dx.
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