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Abstract

This paper is concerned with methods for analyzing social interaction effects. The

attention is focused on how to estimate endogenous effects, where an individual’s choice

may depend on those of his/her contacts about the same activity. The analysis is guided

by the data structure that is available to measure social interactions, an intuitive as-

pect that allows empirical researchers to understand whether and how they could study

social interaction effects in their own data. First, the case where the information on

social interaction patterns is limited to membership to a given group is considered,

then the discussion moves to the case where the data contain information on specific

relationships among pairs of individuals within each group, and the availability of data

on the co-evolution of social structures and outcomes. This paper also discusses some

basic methods to deal with online social network data, and the novel literature estimat-

ing social interaction effects relying only on outcome data. For each data structure,

the challenges and the main methods proposed in the literature to tackle them are

reviewed.
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1 Introduction

This paper is concerned with methods for analyzing social interaction effects. As pointed

out by Manski (1993), there could be two types of social effects: endogenous effects, where

an individual’s choice may depend on those of his/her contacts about the same activity, and

contextual effects, where an individual’s activity may depend on the exogenous character-

istics of his/her contacts. These two types of social effects are not only different in nature

but also different in the methods that are used to estimate them. The main substantial

difference between the two effects is that endogenous effects produce an externality that can

lead to the clustering of outcomes above and beyond the clustering that might be expected

based on individuals’ observables. Such an externality is known as the “social multiplier”.

It emphasizes any effect of changes in observable characteristics due, for example, to policy

interventions. For instance, if endogenous effects are present, a special tutoring program

which benefits a small group of students may affect other students who are not directly

targeted by the program. As a result, assessing the existence and magnitude of the social

multiplier is paramount for policy purposes. In practice, such a task in not easy. First, sepa-

rately identifying the two types of social effects is difficult since any exogenous peer attribute

that can instrument for endogenous behaviors might also affect outcomes directly. Second,

the interdependences between agents’ actions make the OLS estimation method inappro-

priate (Anselin, 1988; Kelejian and Prucha, 1998; Lee, 2004) and thus estimation methods

for social interaction effects of this sort need to be more sophisticated. These challenges

are probably why most of the literature on social interactions estimates and labels social

interaction effects as contextual effects.

This paper offers a first overview of the methods for the estimation of endogenous social

interactions. There exist other surveys focusing on other areas of the literature on social

interactions, see for example Advani and Malde (2018), Blume et al. (2011), Fortin and

Boucher (2016), Graham (2015), and Topa and Zenou (2015). The organization of the

paper is based on the data structure employed in the social interaction study, an intuitive

aspect that allows empirical researchers to understand whether and how they could study

social interaction effects in their own data. For each data structure, the challenges and the
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main methods proposed in the literature to tackle them are reviewed. In Section 2, the

attention is given to the case where the information on social interaction patterns is limited

to membership to a given group, under the assumption that individuals interact with each

and every other member within a group but not outside the group. In Section 3, the overview

is expanded to the case where the data contain information on specific relationships among

pairs of individuals within each group. Section 4 turns the attention to longitudinal data and

Section 5 discusses some basic methods to deal with online social networks. Section 6 reviews

the novel literature estimating social interaction effects without information on patterns of

interactions at all, that is only relying on outcome data. Finally, Section 7 summarizes with

some remarks on questions that are open for future research.

2 Group Data

Group interactions refer to the case where individuals interact with each and every other

member within a group but not outside the group. Depending on the research framework and

the data availability, group may be defined as region, district, county, village, school, census

tract, birth cohort, etc. In general, there is no further information about the interaction

patterns within groups.

Two main identification challenges faced by empirical researchers in using group struc-

tured data are the “reflection problem” (Manski, 1993) and the endogeneity issue due to

self-selection into groups or unobserved group factors.

2.1 Reflection Problem

Without any further information about the interaction structure, the most conventional

model employed to study social interaction effect is the linear-in-means model (Manski,

1993), where group mean outcome, E(Yr|r) and group mean characteristics, E(Xr|r) are

included to capture the endogenous and contextual effects, respectively:

yir = λ0E (Yr|r) + β10xir + β20E (Xr|r) + εir. (1)
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It can be shown that the two regressors E (Yr|r) and E (Xr|r) are linearly dependent:

E (Yr|r) =
β10 + β20

1− λ0

E (Xr|r) . (2)

And the reduced form of the model is

yir = β10xir +

(
λ0β10 + β20

1− λ0

)
E (Xr|r) + εir. (3)

This is a representation of the “reflection problem”: only β10 and λ0β10+β20
1−λ0 can be iden-

tified, one cannot separate the endogenous effects coefficient λ0 from the contextual effects

coefficient β20.

To circumvent the “reflection problem”, studies that employ the linear-in-means type of

model usually focus on either endogenous effects or contextual effects, assuming the other

type of social effects are not present. However, some recent papers, including Lee (2007) and

Davezies et al. (2009), re-examine group interaction data and provide constructive insights

on addressing the “reflection problem”. As demonstrated in these studies, the key for solving

the “reflection problem” is the exclusion of individual’s own outcome/characteristics from the

group mean as well as the variation of group size, which breaks down the linear relationship

between the endogenous and contextual effects as shown in Equation (2).

Specifically, the model which consists of both endogenous and contextual effects is given

as:

yir = λ0Y −ir + β10xir + β20X−ir + εir, r = 1, · · · , R, (4)

where Y −ir =

(
1

mr−1

∑mr
j=1
j 6=i

yjr

)
and X−ir =

(
1

mr−1

∑mr
j=1
j 6=i

xjr

)
and mr is the size of group

r.

Solving for Y −ir one can get a different version of Equation (2) as follows:

Y −ir =
λ0

(mr − 1)− λ0 (mr − 2)
yir +

β10 (mr − 1) + β20 (mr − 2)

(mr − 1)− λ0 (mr − 2)
X−ir

+
β20

(mr − 1)− λ0 (mr − 2)
xir +

(mr − 1) ε−ir
(mr − 1)− λ0 (mr − 2)

, (5)

which is certainly not linear in X−ir. The reduced form of the model becomes:

yir =
λ0β20 + [(mr − 1)− λ0 (mr − 2)] β10

(1− λ0) (mr − 1 + λ0)
xir +

(mr − 1) (λ0β10 + β20)

(1− λ0) (mr − 1 + λ0)
X−ir

+
λ0 (mr − 1)

(1− λ0) (mr − 1 + λ0)
ε−ir +

(mr − 1)− λ0 (mr − 2)

(1− λ0) (mr − 1 + λ0)
εir. (6)
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Therefore, as long as the group size, mr, is different across groups in Equation (6), the

magnitudes of the social interactions generated in each group will be different. Valuable

information about the social interaction coefficients can be obtained from the differences in

the social interaction patterns among the groups, which resolves the “reflection problem”.

2.2 Correlated Effects

Turning to the second identification challenge, i.e., the endogeneity issue due to self-selection (sort-

ing) into groups and the unobserved environmental factors (correlated effects) that confound

with the endogenous and contextual peer effects, a strand of the literature adopts the strategy

of including group fixed effects .

Consider a model with both endogenous and contextual effects as well as group fixed

effects as follows:

yir = λ0Y −ir + β10xir + β20X−ir + αr + εir, r = 1, · · · , R, (7)

where αr denotes the fixed effect for group r. For Equation (7), Lee (2007) derives the

between equation

Y r =
(β10 + β20)

(1− λ0)
Xr +

1

(1− λ0)
αr +

1

(1− λ0)
εr, r = 1, · · · , R, (8)

and the within equation

yir − Y r =
(mr − 1)

(
β10 − β20

mr−1

)
(mr − 1 + λ0)

(xir −Xr) +
(mr − 1)

(mr − 1 + λ0)
(εir − εr), (9)

where Y r, Xr, and εr are computed from means of all mr individuals for the rth group.

Because Equation (8) contains the unknown group fixed effect αr, there is no way to identify

λ0, β10, and β20 separately from αr. The possible identification only relies on Equation (9).

If all group sizes are the same, i.e., mr = m for all r, identification fails because there are

three structural form parameters but there is only one reduced-form equation. Thus, group

size variation – at least three different group sizes – is a necessary condition for identification.

This identification idea runs similarly to a fixed effects panel data analysis. In order to apply

a within group transformation, variations over time are required, which are the variations

5



between one’s own outcomes and the average of the one’s own outcomes over time. Here

variations between average group outcomes without one’s own outcome and average group

outcomes with all individuals included (i.e., the fixed effect) are needed for identification.

Following this identification strategy, one can estimate Equation (9) by the conditional

maximum likelihood approach or instrument variable approach which are proposed in Lee

(2007) and demonstrated in Boucher et al. (2014). Nonetheless, it is important to note

that the group size variation may only provide a tenuous source of identification. When the

group size is large, the ratio mr−1
mr−1+λ0

is close to one and λ0 cannot be easily estimated from

Equation (9). The intuition is that when the group is large the individual contribution to

the mean is negligible, hence the variations in the leave-one-out group means will be small.

In addition, when the group size variations are small or there are separate impacts of group

size mr on the outcome, the identification strategy based on group size variation will not

work well.

Another standard strategy to deal with the endogeneity issue is the instrumental vari-

able (IV) method. For instance, Evans et al. (1992) use metropolitan aggregate data as

instruments to control for the endogeneity of neighborhood selection problem. The biggest

concern about the IV strategy is the validity of the IVs because it is hard to guarantee

that they are uncorrelated with the structural errors. Of course, data from experiment,

quasi-experiment, and random assignment are effective in dealing with the endogeneity issue

due to self-selection into groups and confounding correlated effects. For example, Sacer-

dote (2001), Zimmerman (2003), and Stinebrickner and Stinebrickner (2006) estimate peer

effects on college students’ academic outcome using random assignment of roommates at

Dartmouth College, Williams College, and Berea college, respectively.

3 Network Data

Network data contain information of specific relationship among pairs of individuals within

each group, and such relationship could be formed endogenously. The information on the

social network of each individual in a group may be captured by a spatial weights matrix

in a spatial autoregressive (SAR) model (Anselin, 1988; Kelejian and Prucha, 1998; Lee,
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2004). The individual specific social network structure introduces additional non-linearity

for identification of various social interaction effects beyond the variation of group sizes.

Examples of using the SAR model with network data to study social interactions include

Bandiera and Rasul (2006), Calvó-Armengol et al. (2009), Patacchini and Zenou (2009), Lin

(2010), Banerjee et al. (2013), Cohen-Cole et al. (2014), Liu et al. (2014), Fortin and Yazbeck

(2015), Hsieh and Lee (2016), Hsieh and Lin (2017) and Hsieh and Van Kippersluis (2018).

3.1 Identification Sources

Denote the element of the mr × mr network weights matrix Wr, wij,r = 1 if individuals j

is one of i′s k friends; otherwise, wij,r = 0. Note that wii,r = 0 by default. The network

interaction model with the endogenous and contextual peer effects, and the group fixed

effects is specified as:

yir = λ0

mr∑
j=1

wij,ryjr + β10xir + β20

mr∑
j=1

wij,rxjr + αr + εir, r = 1, · · · , R, (10)

where wij,r =
wij,r∑
j wij,r

. To see where the identification comes from, consider the model in the

matrix form but without group fixed effects:

Yr = λ0W rYr +Xrβ10 +W rXrβ20 + εr, r = 1, . . . , R. (11)

This model is identified if and only if E
(
W rYr|Xr

)
is not perfectly collinear with the

other regressors
(
Xr,W rXr

)
so that some instruments can be found for the endogenous

vector W rYr. Bramoullé et al. (2009) and Calvó-Armengol et al. (2009) show this condition

is equivalent to the condition that the matrices, Imr ,W r,W
2

r are linearly independent, where

Imr denotes the identity matrix of dimension mr. This will be true as long as the network

links are intransitive, i.e., some individuals are not friends with her friends’ friends. Then

the characteristics of peers of peers, W
2

rXr, may serve as instruments for peers’ outcomes,

W rYr. For instance, consider three individuals i, j, and k, where i and j are friends, and j

and k are friends, whereas i and k are not. Then k’s characteristics do not appear in person

i’s equation as i and k are not friends, and therefore can serve as a valid instrument for

j’s outcome, which appears in i’s equation as the endogenous effect. Most networks have
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intransitive triads, which generates this type of natural exclusion restrictions induced by the

network structure for identifying various social interaction effects in the model.

From Equation (11), the reduced form is

Yr =
(
Imr − λ0W r

)−1
(β10Xr + β20W rXr + εr)

=
(
Imr − λ0W r

)−1
(Hrδ0 + εr), (12)

where Hr = (Xr,W rXr) and δ0 = (β10, β20)′.

E(W rYr|W r, Xr) = W r

(
Imr − λ0W r

)−1
(Hrδ0). (13)

If |λ0| < 1, the matrix
(
Imr − λ0W r

)
is nonsingular and one can write

(
Imr − λ0W r

)−1
= Imr + λ0W r + λ2

0W
2

r + · · · (14)

Therefore,

E(W rYr) = W rHrδ0 + λ0W
2

rHrδ0 + λ2
0W

3

rHrδ0 + · · ·

= (W rHr,W
2

rHr,W
3

rHr, · · · )(δ′0, λ0δ
′
0, λ

2
0δ
′
0, · · · )′ (15)

and thus (W rHr,W
2

rHr,W
3

rHr, · · · ) can be used as IVs for W rYr.

Define Ur = (Hr,W rHr,W
2

rHr, · · · ,W
p

rHr) as the IV matrix, then

E(U ′rεr) = 0. (16)

Let εr(λ0, δ0) = Yr − λ0W rYr −Hrδ0, the empirical counterpart of Equation (16) is

U ′rεr(λ0, δ0) = 0. (17)

One can further incorporate quadratic moment conditions in the form, εr(λ0, δ0)′Aεr(λ0, δ0)

with A denotes a constant square matrix in GMM to improve estimation efficiency (Liu and

Lee, 2010) so that GMM can be asymptotically as efficient as MLE.

Now consider the matrix form of the model with group fixed effect as in Equation (10):

Yr = λ0W rYr +Xrβ10 +W rXrβ20 + lmrαr + εr, r = 1, . . . , R, (18)

where lmr is the mr-dimensional vector of ones.
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As shown in Lee et al. (2010) and Lin (2010), the group fixed effect can be eliminated by

the de-group-mean transformation, i.e., by multiplying Equation (18) with the matrix

Jmr = Imr −
1

mr

lmr l
′
mr . (19)

Then, the model becomes

Ŷr = λ0JmrW rŶr + X̂rβ10 + JmrW rX̂rβ20 + ε̂r (20)

where Ŷr = JmrYr, X̂r = JmrXr, and ε̂r = Jmrεr.

Similarly, this model is identified if and only if E
(
JmrW rŶr|Xr

)
is not perfectly collinear

with the regressors
(
X̂r, JmrW rX̂r

)
which is equivalent to the matrices, Imr ,W r,W

2

r,W
3

r are

linearly independent. The condition is more demanding because some information has been

used to get rid of the fixed effects. Bramoullé et al. (2009) show that if there are two agents

i and j in the group separated by a link of distance 3, then Imr ,W r,W
2

r,W
3

r are linearly

independent and the model is identified. This condition fails only for a few networks that

have very restrictive structures, such as complete bipartite networks, where the population

is divided into two groups such that all individuals in one group are friends with all people

in the other group, while no friendship links exist within groups. To estimate the model,

one can employ the eigendecomposition technique to eliminate the linear dependency among

observations to obtain an effectively independent sample, and then perform the maximum

likelihood estimation, as illustrated in Lee et al. (2010) and Lin (2010).

3.2 Endogenous Network Formation

3.2.1 Heckman-type Correction

Although using detailed relationship (link) information solves the “reflection problem”, it

inevitably introduces another identification problem, which is endogeneity of network matrix

Wr. Considering the model in Equation (18), if there were unobserved factors (heterogeneity)

affecting both formation of Wr and Yr, which makes Wr endogenous, then the identification

strategy discussed in Section 3.1 will fail. Endogenous linking decisions create selectivity bias

in social effect estimates. Context specific features may suggest a way to control for it. For
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example, Horrace et al. (2016) study peer effects in productivity in the unique situation where

a manager selects workers into teams (networks) to produce output. Team membership is

perfectly observable, and the manager’s selection decisions depend on the combination of

individual characteristics at the team level, rather than individual-level characteristics. In

team projects, the probability of selecting a worker for the project is not independent across

workers. They exploit this interdependency for the identification and estimation of peer

effects in network production by implementing a polychotomous Heckman-type correction

where the network formation process at the first stage can simply be modeled as the choice

of selecting a fixed number of players from a longer list. More recent studies adopt control

function methods with more complex first stage network formation models.

Identification in Heckman selection models is notoriously difficult, since the factors driv-

ing friendship formation usually also drive behavioral choices. Battaglini et al. (2019c)

implement an Heckman correction to study the importance of social networks in explaining

U.S. Congress members’ productivity using an original instrument: alumni connections. In

this network, two politicians are connected if they attended the same educational institution

in overlapping periods of time. These connections offer an instrument which rests on plau-

sible assumptions: the network is exogenous to the political process, but still relevant even

many years after the Congress members attend school (see Battaglini and Patacchini, 2018).

Goldsmith-Pinkham and Imbens (2013), Hsieh and Lee (2016), Auerbach (2019), and

Moon and Johnsson (2019) include unobserved factors in the first stage network formation

model. The main idea is to explicitly account for a possible correlation between unobserved

factors driving network formation and outcomes, and to exploit the fact that individuals

with similar characteristics are more likely to become friends (“homophily” Lazarsfeld et al.

(1954)) in modeling network formation. Dyad-specific characteristics are included to reflect

the homophily in the model, which are captured by either dummy variables or continuous

variables that represent the similarity (or difference) between two individuals with respect

to specific characteristics. For example, if two individuals are of the same gender, then the

dyad gender dummy will be one, and zero if they are the opposite gender (see Fafchamps and

Gubert, 2007b). Hsieh and Lee (2016) model homophily using both observed dyad-specific

characteristics and the distance of latent variables between individuals. The distance of
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the latent variables captures the homophily of unobserved characteristics. The smaller the

difference between individuals’ unobserved characteristics, the more likely they will become

friends. This extension complicates the estimation procedure. Specifically, they propose a

network (link) formation model for Wr as follows:

P (wij,r|ci,r, cj,r, cij,r, zi,r, zj,r, γ, η) =
exp(wij,rψij,r)

1 + exp(ψij,r)
,

ψij,r = γ0 + ci,rγ1 + cj,rγ2 + cij,rγ3 + η1|zi1,r − zj1,r|+ · · ·+ ηd̄|zid̄,r − zjd̄,r|. (21)

In Equation (21), cir (cjr) denotes an s̄-dimensional vector of observed individual-specific

variables; cij,r is a q̄-dimensional vector of observed dyad-specific variables, which can be

dummy or continuous variables representing the similarity (difference) between two individ-

uals. The idea of using exogenous variables Cr = {cir, cjr, cij,r} in explaining link decisions

can be found in various empirical studies such as Fafchamps and Gubert (2007a,b). Notice

that the individual-specific variables cir may overlap with xir used in Equation (18), as x′irs

also capture individual specific variables. However, dyad-specific variables cij,r are naturally

excluded from the set of individual variable xir, as these dyad-specific variables cij,r measure

the differences between individuals i and j, and none of these differences measures appears

in Equation (18). The individual unobserved heterogeneity in Equation (21) is captured

by a d̄-dimensional vector of latent variables zir = (zi1,r, · · · , zid̄,r). The distance measures

|zid,r−zjd,r|, d = 1, · · · , d̄, are used in Equation (21) to capture how differences between indi-

viduals (i, j) in these latent variables affect their friendship decisions. Zr = (z′1,r, · · · , z′mr,r)
′

denotes the collection of unobserved latent variables in group r, which is assumed to be in-

dependent of Cr. Conditioning on observed variables Cr and unobserved variables Zr, each

network link decision is assumed to be independent and thus for the whole network,

P (Wr|Cr, Zr, γ, η) =
mr∏
i

mr∏
j 6=i

P (wij,r|Cr, Zr, γ, η). (22)

Assuming εr = Zrκ0 +ur, where κ0 is the coefficient reflecting the effect of latent variable Zr

on the outcome equation, and ur ∼ i.i.d. Nmr(0, σ2
uImr), where Nmr represents a multivariate

normal distribution of dimension mr, the SAR model in Equation (18) can be rewritten as

Yr = λ0W rYr +Xrβ10 +W rXrβ20 + Zrκ0 + lmrαr + ur, r = 1, . . . , R. (23)
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Together with the network model in Equation (21), they form a two-equation system, which

captures the network formation process and changes in outcomes due to unobservables (i.e.,

Zr). The joint probability of Yr and Wr is:

P (Yr,Wr|Xr, Cr, θ, αr) =

∫
Zr

P (Yr|Wr, Xr, Zr, θ, αr) · P (Wr|Cr, Zr, θ) · f(Zr)dZr, (24)

where θ = (γ′, η′, λ0, β
′
10, β

′
20, κ

′
0, σ

2
u).

The SAR model and the network formation model can be jointly estimated by Bayesian

methods. First, the prior distributions of the unknown parameters and the unobservables

in the models, such as unobserved characteristics {Zr} and groups fixed effects {αr}, need

to be specified. Then, one can derive the posterior distributions of the parameters based

on the specified prior distributions and the likelihood function of the model and simulate

random draws by the Markov Chain Monte Carlo (MCMC) sampling to obtain the parameter

estimates.

As the dimension of unobserved characteristics in the model is unknown, one can estimate

the models with unobservables of different dimensions and choose the one by the model

selection criterion, AICM (Akaike’s information criterion - Monte Carlo) proposed by Raftery

et al. (2007). AICM is the posterior simulation-based analogue of the conventional AIC.

Since the maximum loglikelihood value may not be achievable during the Bayesian MCMC

procedure so one cannot calculate AIC directly. AICM is derived based on the fact that the

posterior distribution of the log-likelihood is approximately a gamma distribution:

`max − `t ∼ Gamma(d/2, 1),

where {`t : t = 1, · · · , T} is a sequence of loglikelihoods from MCMC posterior draws with

a proper thinning such that they are approximately independent. Based on the Gamma

distribution, we know E(`max − `t) = d/2 and Var(`t) = d/2. Therefore, we can obtain the

moment estimators d̂ = 2s2
` and ˆ̀

max = ¯̀+ s2
` , where ¯̀ and s2

` are the sample mean and

variance of the `t’s, respectively. The AICM is then given as

AICM = 2d̂− 2ˆ̀
max = 2(s2

` − ¯̀).
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3.2.2 Exponential Random Graph Model

Although the link formation model of Hsieh and Lee (2016) explains the unobserved individ-

ual heterogeneity during the network formation process, it does not consider the dependence

among links. An obvious example of link dependence is the transitivity of friendships: when

individuals i and j are both friends of individual k, i and j are likely to be friends too. Allow-

ing link dependence abruptly complicates the link formation process because the conditional

probability in Equation (21) would be changed to P (wij,r|ci,r, cj,r, cij,r, zi,r, zj,r,W−ij,r), with

W−ij,r denoting all links in Wr except wij,r. However, due to the dependence of links, one can-

not compute the joint probability of Wr directly from the product of conditional likelihoods,

i.e.,
∏

i,j P (wij,r|ci,r, cj,r, cij,r, zi,r, zj,r,W−ij,r) and thus the estimation becomes difficult. In

the literature, the standard approach for modeling link dependence is the exponential ran-

dom graph model (ERGM) which characterizes the probability of network realization by the

Gibbs measure (i.e., an exponential family distribution that depends on the function of the

configuration of network) (Frank and Strauss, 1986; Wasserman and Pattison, 1996; Robins

et al., 2007). However, except two early works (Snijders, 2001; Butts, 2009), ERGMs typi-

cally explain link dependence in an atheoretical way without considering strategic individual

decisions.

More recently, Mele (2017) applies the myopic best responses dynamics (Blume, 1993)

to model link formation in which the unique stationary distribution can be characterized by

the Gibbs measure and thus provides the microfoundations for the ERGM. Specifically, Mele

(2017) considers that the utility of network Wr for player i is specified as

Uir(Wr, Cr) =
mr∑
j=1

wij,ru
φu
ij,r︸ ︷︷ ︸

direct links

+
mr∑
j=1

wij,rwji,rν
φν
ij,r︸ ︷︷ ︸

mutual links

+
mr∑
j=1

wij,r

mr∑
k 6=i,j

wjk,rh
φh
ik,r︸ ︷︷ ︸

indirect links

+
mr∑
j=1

mr∑
k 6=i,j

wki,rs
φs
kj,r︸ ︷︷ ︸

popularity

,

(25)

where uφuij,r ≡ u(cir, cjr, cij,r;φu); ν
φν
ij,r ≡ ν(cir, cjr, cij,r;φν); h

φh
ij,r ≡ h(cir, cjr, cij,r;φh); and

sφsij,r ≡ s(cir, cjr, cij,r;φs) are functions of individual attributes and unknown parameters

φ = (φu, φν , φh, φs). Based on the utility function of Equation (25), when individual i cre-

ates a link to individual j, he receives a direct benefit measured by u(cir, cjr, cij,r;φu); an

additional benefit ν(cir, cjr, cij,r;φν) if the link is mutual; and externalities h(cir, cjr, cij,r;φh)
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and s(cir, cjr, cij,r;φs) from indirect links connected to j and i. By imposing the symme-

try restrictions on the benefit of mutual links and externalities from indirect links, i.e.,

ν(cir, cjr, cij,r;φν) = ν(cjr, cir, cij,r;φν) and h(ckr, cjr, ckj,r;φh) = s(ckr, cjr, ckj,r;φs) for all i,

j, and k in group r, one can model this network formation game as a potential game (Mon-

derer and Shapley, 1996) and summarize the incentives of any individual in any state of the

network by a potential function Q(Wr, Cr, φ),

Q(Wr, Cr, φ) =
mr∑
i=1

mr∑
j=1

wij,ru
φu
ij,r +

mr∑
i=1

mr∑
j>i

wij,rwji,rν
φν
ij,r +

mr∑
i=1

mr∑
j 6=i

mr∑
k 6=i,j

wij,rwjk,rh
φh
ik,r. (26)

Mele (2017) shows that by assuming the network formation process follows a Markov chain

process, with only two individuals i and j meeting at each time t and the meeting probability

is determined by a function ρij,r(cir, cjr,W
t−1
−ij,r), which only depends on individual attributes,

previous network configuration except link wt−1
ij,r . When i and j meets at time t, individual

i chooses a best response wtij,r = 1 if and only if

Uir(w
t
ij,r = 1,W t−1

−ij,r;Cr, φ) + ε1t ≥ Uir(w
t
ij,r = 0,W t−1

−ij,r;Cr, φ) + ε0t, (27)

where ε1t and ε0t are idiosyncratic shocks received by individual i which are not observed

by an econometrican. By further assuming that the shocks are i.i.d. Type-I extreme

value distributed, the network formation game converges to a unique stationary distribu-

tion π(Wr, Cr, φ),

π(Wr, Cr, φ) =
exp(Q(Wr, Cr, φ))∑

ωr∈Ωr
exp(Q(ωr, Cr, φ))

, (28)

where Ωr denotes the set of all networks with mr individuals. Equation (28) takes the form of

ERGM, and the probability of observing the network Wr depends on the potential function

in Equation (26). To estimate unknown parameters φ in Equation (28), a major challenge is

to deal with the intractable normalizing constant in the denominator of the likelihood func-

tion. Mele (2017) provides a Bayesian MCMC sampling technique – approximate exchange

algorithm and Mele and Zhu (2017) suggest an approximate variational estimation approach

to estimate Equation (28). Other studies such as Chandrasekhar and Jackson (2014), and

Boucher and Mourifié (2017) also investigate network formation by ERGM and propose dif-

ferent estimation procedures. Badev (2013), Boucher (2016), Hsieh et al. (2019a) and Hsieh

14



et al. (2019b) further extend the approach of Mele (2017) to jointly model network formation

and discrete and continuous behavior outcomes.

3.3 Heterogeneous Social Interaction Effects

Most existing social interaction studies focus on the average magnitude of peer influences.

Some recent studies have started to explore the heterogeneity nature of peer effects, i.e., to

investigate how the influences of peers could be different for different types of peers, which

provides more informative policy implications related to issues like ability tracking, gender

difference, racial difference (Kang, 2007; Griffith and Rask, 2014; Cools et al., 2019). The

popular classification of peer types include gender, race, duration of friendships, ability,

personality, and others. For instance, Patacchini et al. (2017) study the different roles of

short-lived and long-lived network ties in education decisions. Hsieh and Lin (2017) introduce

a social interaction model for individual i’s outcome moderated by the within and cross

gender (or race) peer effects. Given p̄ subgroups in group r, the spatial weighting matrix Wr

can be divided into p̄×p̄ blocks, {W pq
r }

p̄
p,q=1 = (W 11

r ,W
12
r , · · · ,W p̄p̄

r ), where W pq
r is the matrix

of links between subgroups p and q in group r. The SAR model with different coefficients

representing heterogeneous peer influences within and across blocks can be specified as:

Yr = W r(λ)Yr +Xrβ10 +W rXrβ20 + lmrαr + εr, εr ∼ i.i.d. Nmr(0, σ
2
ε Imr), r = 1, · · · , R,

(29)

where

W r(λ) =


λ11W

11

r · · · λ1p̄W
1p̄

r

...
. . .

...

λp̄1W
p̄1

r · · · λp̄p̄W
p̄p̄

r


with W

pq

r represents the normalized W pq
r by the row-sum.

In Equation (29), λpp, p = 1, · · · , p̄, on the diagonal of W r(λ) represent peer effects

within the same subgroups, whereas λpq, p 6= q represent peer effects across subgroups.

Alternatively, Equation (29) can be rewritten as:

Yr = λ11W 11,rYr + · · ·+ λp̄p̄W p̄p̄,rYr +Xrβ1 +W rXrβ2 + lmrαr + εr, r = 1, · · · , R, (30)
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where W pq,r is a mr ×mr matrix with the corresponding (p, q)th block equal to W
pq

r and 0

elsewhere. The terms {W pq,rYr}p̄p,q=1 capture the contemporaneous outcomes of peers and

the coefficients {λpq}p̄p,q=1 represent the heterogeneous peer effects. The model in Equation

(30) can be easily extended to incorporate heterogeneous contextual effects. However, the

computation would be much more demanding given the large number of coefficients to be

estimated.

To address the endogenous network formation, one can jointly estimate Equation (30)

and the network model in Equations (21) and (22) as a system by Bayesian methods.

An alternative IV approach for estimating heterogeneous endogenous social interaction

effects when social interactions take the linear-in-means form has been proposed by Arduini

et al. (2019). They consider data from two stage randomization protocols, that is experimen-

tal designs where groups are assigned to treatment or control, and a subset of individuals

are offered treatment within clusters assigned to treatment according to certain rules. The

randomization procedure avoids dealing with endogenous network formation since it guaran-

tees that the share of treated peers is random. In their context social interaction effects are

different within treated and untreated individuals and also across groups. They show that

heterogeneous externalities can be instrumented using non-linear functions of the shares of

treated individuals across groups in a 2SLS estimation framework.

4 Longitudinal Data

4.1 Spatial Dynamic Panel Data Model

With longitudinal data on network and individual outcome, one can further capture the

dynamic feature of social interactions through the spatial dynamic panel data (SDPD) model.

Let Yrt = (y1rt, y2rt, · · · , ymrrt)′ be the mr × 1 outcome vector of mr individuals in group

r at time t. Xrt = (x1rt, x2rt, · · · , xmrrt)′ denotes the mr × k matrix of the exogenous

characteristics. wijrt represents the network link from individual i to individual j, which

equals 1 if i connects to j and 0 otherwise. Network links evolve and change over time. Wrt

is the mr×mr network matrix which summarizes the connections between all mr individuals
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in group r at time t. Assume network links are directed and thus, Wrt is not symmetric.

The SDPD model is specified as follows:

Yrt = λ0W rtYrt + ρ0Yr,t−1 + µ0W r,t−1Yr,t−1 +Xrtβ10 +W rtXrtβ20 + τr + lmrαrt + εrt, (31)

where W rt denotes the row-normalized Wrt for r = 1, 2, · · · , R, t = 1, 2, · · · , T . In Equa-

tion (31), λ0, ρ0, and µ0 represent the contemporary peer (spillover) effect, persistency of

activity outcomes, and temporal spillover or diffusion, respectively; β10 and β20 are the own

and contextual effects of exogenous characteristics, respectively; τr = (τ1r, τ2r, · · · , τmr,r)′ is

the mr×1 vector of time-invariant individual effects; lmrαrt captures the scalar time-varying

group effect and εrt = (ε1t, ε2t, · · · , εmrt)′ denotes the mr× 1 vector of stochastic error terms.

Specification and estimation of fixed and random effect specification on τr can be found in

Lee and Yu (2010), Lee and Yu (2012b) and Lee and Yu (2015).

Let Srt(λ0) = Imr −λ0W rt and Art(λ0, ρ0, µ0) = S−1
rt (λ0)(ρ0Imr +µ0W r,t−1). The reduced

form of Equation (31) is:

Yrt = Art(λ0, ρ0, µ0)Yr,t−1 + S−1
rt (λ0)(Xrtβ10 +W rtXrtβ20 + τr + lmrαrt + εrt). (32)

Following Lee and Yu (2012a), the existence of Equation (32) requires two sets of stability

conditions: Srt(λ0) is invertible and ||Art(λ0, ρ0, µ0)||∞ < 1.

If the formation process of the time-varying spatial weights (network) matrix Wrt involves

unobserved individual variables that correlate with εrt, then W rt is potentially endogenous

in Equation (31). The subsequent sections study the dynamic network formation model of

Wrt, and the SDPD model which takes into account the endogeneity of W rt.

4.1.1 General Dynamic Network Formation Model

To model dynamic networks, Han et al. (2019) propose a dynamic network formation using

latent variables to capture unobserved individual characteristics (Hoff et al., 2002; Hoff,

2005; Sarkar and Moore, 2005; Sewell and Chen, 2015). Let zirt = (zi1rt, zi2rt, · · · , zip̄1rt)′ and

virt = (vi1rt, vi2rt, · · · , vip̄2rt)′ denote two different vectors of latent variables with dimensions

p̄1 and p̄2, respectively, which capture an individual i’s position (unobserved characteristics)

in group r at time t. zirt and virt are assumed to be independent. Zrt = (z1rt, z2rt, · · · , zmrrt)′

17



denotes the mr × p̄1 matrix of zirt’s and Vrt = (v1rt, v2rt, · · · , vmrrt)′ denotes the mr × p̄2

matrix of virt’s. Given the binary network links wijrt’s, the probability of observing Wrt can

be parameterized in a logit form as follows:

P (Wrt|Zrt, Virt,Wr,t−1, Yr,t−1,Γ) =
mr∏
i=1

mr∏
j=1
j 6=i

(
exp(wijrtψijrt)

1 + exp(ψijrt)

)
, (33)

where Γ denotes the set of parameters in the score function ψijrt, which is specified as follows,

ψijrt =γ0 + c′irtγ1 + c′jrtγ2 + c′ijrtγ3︸ ︷︷ ︸
direct and homophily effects on obs. chara.

+ γ4wijr,t−1 + γ5$ijr,t−1︸ ︷︷ ︸
persistency and transitivity

+ γ6yir,t−1 + γ7yjr,t−1 + γ8|yir,t−1 − yjr,t−1|︸ ︷︷ ︸
direct and homophily effects from activity outcomes

+

p̄1∑
p1=1

δp1|zip1r,t − zjp1r,t|︸ ︷︷ ︸
unobserved homophily

+

p̄2∑
p2=1

ξp2vip2rt +

p̄2∑
p2=1

ζp2vjp2rt︸ ︷︷ ︸
unobserved degree heterogeneity

. (34)

The specification of ψijrt in Equation (34) includes several important network features.

First, the direct and homophily effects on the observed characteristics are captured by two

l̄1 × 1 vectors of exogenous individual-specific regressors, cirt and cjrt. The l̄2-dimensional

vector of the dyad-specific regressors cijrt between individuals i and j describes the simi-

larity (or difference) on their characteristics. Note that cirt (cjrt) can be overlapped with

xirt (xjrt) as both capture individual level characteristics, but dyad-specific variables cijrt

are naturally excluded from the set of individual level regressors used in the SDPD model

of Equation (31), since dyad-specific variables cijrt capture the distances between individual

pairs.

Second, the persistency of the network links and transitivity are captured by wijr,t−1

and the number of common friends shared by i and j, $ijrt =
∑mr

l=1wilrt × wjlrt (Krivitsky

et al., 2009), respectively. Graham (2016) and Patacchini et al. (2017) use wijr,t−1 to capture

the effect of the “state-dependence” in link formation (i.e., the effect of past links on the

present link formation). And for undirected links, Graham (2016) use $ijr,t−1 to reflect

an individual’s taste for transitive links. Both wijr,t−1 and $ijr,t−1 are realizations from

previous networks so there is no statistical coherence problem on the probability function of

Equation (33).
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Third, it incorporates the direct and homophily effects with respect to activity outcomes

as well as unobserved latent variable zip1rt. The lagged dependent variables yir,t−1 and

yjr,t−1 separately capture the effects of past activity outcomes on sending and receiving

network links. The difference between the lagged outcomes (i.e, |yir,t−1 − yjr,t−1|) captures

the homophily with respect to activity outcomes. And |zip1rt− zjp1rt| captures the difference

in the unobservables and the coefficients δp1 ’s are expected to be negative.

Lastly, the degree heterogeneity is captured by time-varying individual latent variable

vip2rt. Graham (2017) and Dzemski (2019) argue that in many social networks, few indi-

viduals are well-known “hubs” with many links, whereas others only own a few links. This

individual heterogeneity is captured by vip2rt in the score function. Moreover, ξp2 and ζp2 rep-

resent the asymmetric effects for senders and receivers, respectively (Krivitsky et al., 2009).

Equation (34) indicates that the set of parameters in ψijrt is Γ = (γ′, δ′, ξ′, ζ ′)′ with γ =

(γ0, γ
′
1, γ
′
2, γ
′
3, γ4, γ5, γ6, γ7, γ8)′, δ = (δ1, · · · , δp̄1)′, ξ = (ξ1, · · · , ξp̄2)′ and ζ = (ζ1, · · · , ζp̄2)′.

Following Sewell and Chen (2015), one can consider a Markov process for zirt and virt to

capture the dependency over time, with initial distributions as follows:

P (Zr1|σ2
z0

) =
mr∏
i=1

φ(zir1|0, σ2
z0
Ip̄1), P (Vr1|σ2

v0
) =

mr∏
i=1

φ(vir1|0, σ2
v0
Ip̄2), (35)

with φ denotes the normal density and the transition equations as follows:

P (Zrt|Zr,t−1, σ
2
z) =

mr∏
i=1

φ(zirt|zir,t−1, σ
2
zIp̄1), P (Vrt|Vr,t−1, σ

2
v) =

mr∏
i=1

φ(virt|vir,t−1, σ
2
vIp̄2), (36)

where t = 2, 3, · · · , T . Also note that zirt and virt are independent across individuals and

dimensions. Let p̄ = p̄1 + p̄2, hirt = (z′irt, v
′
irt)
′ and Hrt = (h1rt, h2rt, · · · , hmrrt)′ = (Zrt, Vrt).

Given Equations (35) and (36), the initial distribution and transition equation of Hrt are as

follows:

P (Hr1|Σh0) =
mr∏
i=1

φ (hir1|0,Σh0) =
mr∏
i=1

φ (zir1|0, σz0Ip̄1)×
mr∏
i=1

φ
(
vir1|0, σ2

v0
Ip̄2
)
, (37)

and

p(Hrt|Hr,t−1,Σh) =
mr∏
i=1

φ (hirt|hir,t−1,Σh) =
mr∏
i=1

φ
(
zirt|zir,t−1, σ

2
zIp̄1

)
×

mr∏
i=1

φ
(
virt|vir,t−1, σ

2
vIp̄2

)
,

(38)
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for t = 2, 3, · · · , T , where Σh0 =

 σ2
z0
Ip̄1 O

O σ2
v0
Ip̄2

 is the corresponding variance-covariance

matrix for the initial period and Σh =

 σ2
zIp̄1 O

O σ2
vIp̄2

 is the variance-covariance matrix

of hirt’s.

4.1.2 Correct Network Endogeneity in SDPD Model

Denote κ0 = (κ′10, κ
′
20)′. Let εrt = Zrtκ10 + Vrtκ20 + urt = Hrtκ0 + urt, where urt =

(u1t, u2t, · · · , umrt)′ with uit ∼ i.i.d. Nmr(0, σ2
uImr). Then, the SDPD model of Equation (31)

can be rewritten as:

Yrt = λ0W rtYrt + ρ0Yr,t−1 + µ0W r,t−1Yr,t−1 +Xrtβ10 +W rtXrtβ20 +Hrtκ0 + τr + lmrαrt + urt,

(39)

where r = 1, 2, · · · , R and t = 1, 2, · · · , T . The termHrtκ0 acts as a control function (Navarro,

2008; Wooldridge, 2015) to deal with the endogeneity issue of W rt. Compared to the static

model of Equation (23) in Section 3.2 where time-invariant individual unobserved hetero-

geneity is captured by Zr, Equation (39) employs τr and Hrt to capture time-invariant and

time-varying unobserved individual heterogeneity, respectively. Equation (39) and general

network formation model of Equations (33) and (34) can be jointly estimated by the Bayesian

MCMC approach similar to the procedure discussed in Section 3.2.1, the details of which

can be found in Han et al. (2019).

4.2 Stochastic Actor-based Model

Another well-known model for network dynamics is the stochastic actor-based model pro-

posed by Snijders (1996), Snijders (2001) and Snijders et al. (2010a) in the statistical network

literature, which explores the longitudinal data to differentiate social influence effect from

homophily effect. From cross-sectional data, separately identifying social influence and ho-

mophily effects is difficult because the two effects exist simultaneously and complement each

other. In the stochastic actor-based model, the simultaneity issue is resolved by utilizing the

time lagged observations of network or outcomes.
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4.2.1 Continuous-Time Markov Process Assumption

Assuming that researchers observe network, Wt, and H-dimensional behavioral outcomes,

yt = (y1t, · · · , yHt), ofm individuals at two or more discrete points in time t ∈ (t1, t2, · · · , tL|t1 <

t2 < · · · < tL). The group subscripts are suppressed here for ease of presentation. Network

Wt is represented by a m×m adjacency matrix, with each entry wij,t equal to one if actor i

connects to actor j; otherwise, it is equal to zero. Network links in Wt are assumed directed;

thus, Wt is asymmetric. The discussion for undirected network links can be found in Snijders

and Pickup (2017). Each yht is a m× 1 vector, and element yi,ht is a binary variable that is

equal to one if actor i performs behavior h, such as smoking, drinking, or using drugs; zero,

otherwise. While only binary behavioral variables are discussed in this subsection, polychoto-

mous behavioral variables are considered in Snijders et al. (2007). The stochastic actor-based

model assumes that there are “micro” steps taking place at stochastically-determined mo-

ments between any two discrete time points t` and t`+1, at which individuals can alter their

network ties or behaviors. Denote the state variable St = (Wt, yt). Note that changes in

the future state St+r, r > 0, depend only on the current St because of the Markov chain

property.

In order to provide causal interpretations of the homophily effect and social influence,

the model assumes that individual changes in network ties and behaviors are conditionally

independent of each other at the given state of the process, and separates the co-evolutions

of network ties and behaviors into network formation and social influence processes, respec-

tively. Furthermore, to form a parsimonious and relatively simple Markov process, the model

assumes that only one network tie or behavioral variable can be changed, and only by one

unit, at a time.

The core of the model is a micro-mechanism where actors execute myopic changes on

network ties or behaviors to optimize his/her utility function, which consists of an evaluation

function fi(β, St), which depends on the current state configuration and the parameter vector

β, and a stochastic error from the extreme type-I distribution. A Poisson process with

the rate function ρi,` determines when actor i should execute changes in the time period

t` ≤ t ≤ t`+1. For simplicity, it is assumed that the rate functions of changing either network
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ties or behaviors are homogeneous for all m members in the same time period (i.e., ρ
[w]
i,t`

= ρ
[w]
t`

and ρ
[yh]
i,t`

= ρ
[yh]
t`

for all i’s). For the network tie, the probability of actor i choosing to change

the network tie with actor j, which is from wij,t to 1− wij,t, takes the binary logit form,

Pr(1− wij,t,W−ij,t|St) =
exp(f

[w]
i (β[w], 1− wij,t,W−ij,t, yt))

exp(f
[w]
i (β[w], wij,t = 1,W−ij,t, yt)) + exp(f

[w]
i (β[w], wij,t = 0,W−ij,t, yt))

,

(40)

where W−ij,t stands for Wt which excludes wij,t. And the probability of changing the behav-

ioral variable yi,ht, which is from yi,ht to 1− yi,ht, is given by

Pr(1− yi,ht, y−i,ht|St)

=
exp(f

[yh]
i (β[yh], 1− yi,ht, y−i,ht,Wt))

exp(f
[yh]
i (β[yh], yi,ht = 0, y−i,ht,Wt)) + exp(f

[yh]
i (β[yh], yi,ht = 1, y−i,ht,Wt))

, (41)

where y−i,ht stands for yht which excludes yi,ht.

If the stationary transition probability of the state variable S from this continuous-time

Markov chain exists, then it is fully described by the matrix of transition intensities:

q(s, s′) = lim
dt↓0

Pr(St+dt = s′|St = s)

dt
, (42)

where s and s′ denote the current and next state, respectively. Specifically,

q(s, s′) =



ρ[w]Pr(1− wij,t,W−ij,t|St = s) if s′ = (1− wij,t,W−ij,t, yt),

ρ[yh]Pr(1− yi,ht, y−i,ht|St = s) if s′ = (1− yi,ht, y−i,ht,Wt),

−
∑

i

{∑
j 6=i ρ

[w]Pr(1− wij,t,W−ij,t|St = s)+∑
h ρ

[yh]Pr(1− yi,ht, y−i,ht|St = s)
}

ifs′ = s,

0 otherwise.

(43)

Define the evaluation functions for network ties and behaviors in Equation (40) and Equa-

tion (41), respectively as follows

f
[w]
i (β[w], St) = β[w]g

[w]
i (St), (44)

f
[yh]
i (β[yh], St) = β[yh]g

[yh]
i (St), h = 1, · · · , H, (45)
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By properly selecting g
[w]
i (St) and g

[yh]
i (St) in the evaluation functions, the stochastic actor-

based model can capture the homophily effect, social influence, and other effects from the

network structure and exogenous variables. In particular, the social influence effect can be

captured by the “average similarity effect”, which expresses the conformity motive of an

individual in behaving as his/her peers do, particularly when enough peers behave in the

same manner (López-Pintado, 2008; Young, 2009). For actor i, the average similarity effect

on behavior yh is defined as

g
[yh]
i (St) = w−1

i+,t

∑
j 6=i

wij,t(sim
[yht]
ij − ŝim

[yht]
), (46)

where wi+,t =
∑

j 6=iwij,t, sim
[yht]
ij − ŝim

[yht]
is the centralized similarity score with sim

[yht]
ij =

1− |yi,ht − yj,ht| and ŝim
[yht]

is the mean of similarity scores across all pairs. The parameter

β
[yh]
k for the average similarity effect reflects the size of the social influence effect. The ho-

mophily effect of behavior yh on the evaluation function of network ties can also be captured

by the “similarity effect”:

g
[w]
i (St) =

∑
j 6=i

wij,t(sim
[yht]
ij − ŝim

[yht]
). (47)

4.2.2 Model Estimation and Identification

Although the likelihood function of the stochastic actor-based model with the probability

structure governed by the continuous-time Markov process can be used to estimate the

unknown parameters θ = (ρ, β) in the rate and evaluation functions, the resulting likelihood

function does not have a closed form, which renders implementing the maximum likelihood

(ML) and Bayesian methods difficult (Koskinen and Snijders, 2007; Snijders et al., 2010b).

Snijders (2001) and Snijders et al. (2007) propose to estimate the model through the

method of moments (MOM). Specifically, let µ(S) denote a vector of statistics based on

the state variable S. MOM estimators are obtained by solving the moment equations in

which the expected and observed sample statistics resemble each other (i.e., Eθ(µ(S)) =

µ(s), where µ(s) denotes the observed ones). Given that the expected sample statistics

cannot be calculated explicitly, they are replaced by the averages of the statistics based on

auxiliary samples simulated from the model. According to the micro-steps of the network
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and behavior evolution outlined in section 4.2.1, the changes in network ties and behaviors

between any two network observations can be simulated from the model conditioning on the

initial configuration of S.

The vector µ(S) has the same dimension as the parameter vector θ, which should be

chosen so that a corresponding element in µ(S) sensitively responds to changes in each

separated parameter in θ. Substantial variations in network ties and behaviors over time,

which are reflected in µ(S), are necessary for parameter identification. The rate parameters

(i.e., ρ
[w]
` and ρ

[yh]
` ) influence only the Poisson process between t` and t`+1. Thus, the moment

equation is as follows:

Eθ

{
µ`(St` , St`+1

)|St` = st`
}

= µ`(st` , st`+1
) (48)

and the choices of µ`(St` , St`+1
) in Equation (48) are

∑
ij |wij,t`+1

− wij,t` | and
∑

i |yih,t`+1
−

yih,t` | for estimating ρ
[w]
` and ρ

[yh]
` , respectively. The parameters β in the evaluation functions

are constant and appear in all of the statistics µ`(St` , St`+1
), ` = 1, · · · , L − 1. Thus, the

empirical moment equation is

L−1∑
`=1

Eθ

{
µ`(St` , St`+1

|St` = st`)
}

=
L−1∑
`=1

µ`(st` , st`+1
), (49)

and the sample statistics used to estimate β[w] and β[yh] are based on
∑m

i=1 gi(S) with gi(S)

from Equations (46) and (47). Increasing β
[w]
` (or β

[yh]
` ) gives a larger influence of similarity

effect on individual’s evaluation function, which causes a higher chance of forming a link (or

adopting a product) and leads to a higher similarity effect on all the actors in the subsequent

time moments. Although these two sample statistics respond well to the change in β[w]

and β[yh], they are perfectly multicollinear and produce two identical moment equations.

Following the concept of causality, Snijders et al. (2007) propose to exploit the time order of

variables to prevent under-identification. In particular, homophily is reflected as a “later”

change in the network tie, following the “earlier” configuration of behaviors, while social

influence is reflected as a “later” change in behaviors following the “earlier” configuration of

network ties. The homophily effect on network formation is estimated using the following

sample statistic:

µ`(St` , St`+1
) =

∑
i

g
[w]
i (wt`+1

, yt`). (50)
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The social influence effect on behavior yh is estimated using

µ`(St` , St`+1
) =

∑
i

g
[yh]
i (yh,t`+1

,Wt`). (51)

Recently, Amati et al. (2019) extend the usual cross-lagged statistics to additional contem-

poraneous statistics depending jointly on the network and the behaviour and propose the

generalized method of moments for estimation.

5 Online Social Network Data

During the past years, there has been extraordinarily rapid growth of online social networks,

such as Facebook, Twitter, Yelp, and so on. The unprecedented ongoing innovation in Social

networking technologies has made sharing daily activity through various online social medias

almost costless and instantly. With the pervasiveness of online networking, it is very natural

to ask how individuals’ behaviors and decision making are influenced by their online friends.

Understanding how online social influences work will be of great importance in improving

marketing effectiveness, promoting desirable behaviors among large population, and so on.

Given the limited availability of survey social network data, the ample availability of online

social media data opens up a promising and valuable window for analyzing social interaction

effects.

However, the estimation of online social interaction effects faces the same identification

challenges as the survey data. Furthermore, the large sample size of social media data cre-

ates formidable computational burden. To address the computational issue and to apply the

structural social interaction model which takes cares of both the reflection problem and the

endogenous network formation as discussed in the previous subsection, two approaches can

be employed. First, one can identify the clique (a clique is the maximum number of actors

who have friendship ties present among themselves) or the component structure in the net-

work. The focus will be on social influence effect within the clique or component. A potential

problem is that the clique/component may still be too large due to the “tree” structure of

the online network. The second approach is big data and machine learning related, which

employs network community detection algorithm to identify the relevant network commu-
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nity. One possible network building algorithm is the iterative edge-removal approach in

Newman and Girvan (2004). This method continuously finds and removes the edge with

the largest betweenness measure to separate a network. Because the betweenness measures

are recalculated after each removal, the computation is intense. Alternatively, Blondel et al.

(2008) propose the Louvain method which involves two iterative steps. In the initial step,

each node is placed in its own community. Then gains (or losses) of modularity (a scale value

between -1 and 1 that measures the density of edges inside communities to edges outside

communities) are calculated by moving each node into each of its neighbor’s community.

Associated with the largest modularity gain, the node will be merged into the nearby com-

munity. The second step regards the communities built in the previous step as new nodes

and constructs inter- and intra-node links by the weighted regular links and self-loops. The

steps are iterated until there is no modularity-increasing reassignment of communities. The

Louvain method has been applied to community detection in web networks with 118 million

nodes and 1 billion links (Blondel et al., 2008), Twitter social network with 2.4 million nodes

and 38 million links (Pujol et al., 2009) and the mobile phone network with 4 million nodes

and 100 million links (Greene et al., 2010).

After network communities are found, if certain community sizes (mr) are still too large

to directly apply the network interactions model in Equation (18) and the network forma-

tion model in Equation (21), one can further adopt the case-control approximate likelihood

approach in Raftery et al. (2012). The concept of the case-control approach is adopted

from Epidemiology where researchers intend to compare the group with the outcome of in-

terest (case) to the control group. Since the cases are usually rare so that the case-control

approach collects all available cases and samples from the corresponding control group. Even

if the pairwise independence in the conditional distribution of network links of Equation (21)

allows us to compute the joint likelihood in a convenient way, the required computation is

still heavy when the network size is large. The case-control approach proposed by Raftery

et al. (2012) could further alleviate the computational burden by reducing the computational

cost from O(m2
r) to O(mr).

Given the probability function in Equation (22), the log likelihood function can be written
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as

`(Wr|Cr, Zr, γ, η) =
mr∑
i=1

`i(wi.,r|Cr, Zr, γ, η),

where

`i(wi.,r|Cr, Zr, γ, η) =
mr∑
j=1

(wij,rψij,r − ln(1 + exp(ψij,r)))

=
mr∑

j=1,wij,r=1

(ψij,r − ln(1 + exp(ψij,r))) +
mr∑

j=1,wij,r=0

(− ln(1 + exp(ψij,r)))

= `i,1 + `i,0.

Since the network links are sparse, the quantity `i,0 can be viewed as a population total

statistics. This population total can be estimated by a random sample of the population,

˜̀
i,0 =

mi0,r

ni0,r

ni0,r∑
j=1

(− ln(1 + exp(ψij,r))),

where mi0,r is the total number of zero’s in the ith row of the upper triangle of matrix Wr,

and ni0,r is the number of samples selected from zero entries in the ith row of the upper

triangle of matrix Wr. ˜̀i,0 is an unbiased estimator of `i,0 given the random samples. When

the network size is large, one can choose a small ni0,r to compute ˜̀i,0 and reduce the amount

of computation.

An alternative approach to distinguish peer influence and homophily effects in online so-

cial networks has been proposed by Easley et al. (2019). They infer preferences using a ma-

chine learning algorithm applied to previous adoption decisions, and then match agents using

those inferred preferences. They develop a dynamic matched sample estimation algorithm

that is suitable to estimate social interaction effects in product adoption in environments

where networks are large, dynamic and there are numerous items diffusing simultaneously.

Related methodologies in the computer science literature include Aral et al. (2009) and

Sharma and Cosley (2016).

6 Estimating Social Interaction Effects Using Outcomes

In many environments social networks are not directly observed: only the activities of their

members are observable and usable for estimation. The issue of estimating an unobservable
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social network using observable economic outcomes is that the number of network connections

is much higher than the number of economic outcomes that can be used for the estimation:

with m agents observed for T sessions, the first is on the order of m2, the second just of

order m · T .

There is a small (but rapidly growing) literature looking at possible solutions. Two

approaches have been proposed so far. The first is based on high-dimensional estimation

techniques. The key assumption that leads to identification is called sparsity assumption,

which is essentially a regularity condition on the topology of the network structure. De Paula

et al. (2018) use the Adaptive Elastic Net GMM method (Caner and Zhang, 2014) which

imposes a sparsity condition such that each agent may only connect with a few other agents

on the network either directly or indirectly. Manresa (2013) focuses on the contextual effects

and impose the assumption that contextual effects are sparse among agents on the network.

Battaglini et al. (2019a) propose a Graphical LASSO estimator with normal errors that

does not request to impose restrictions on the number of directly or indirectly connected

agents. Instead, they assume the total number of links in the network is sparse. This

allows more flexible network structures to be considered such as “star” shaped network.

While identification relies on parametric assumptions, the assumption on the normality of

the errors and the relaxation of the assumption of a row-sum normalization for the adjacency

matrix provide more flexibility to incorporate correlated effects.

Importantly, these papers provide conditions for which the parameters of the social inter-

action model are consistently estimated when using the recovered network. This is a unique

feature of the proposed methodologies since even the most sophisticated models of network

formation in the existing literature (such as ERGMs) have no ability to estimate the impact

on outcomes of the interactions mediated through the networks. Breza et al. (2017) pro-

pose a different network reconstruction procedure. Instead of being based on outcomes, this

network elicitation procedure uses aggregated relational data, that is, responses to survey

questions asking agents to report, for instance, the number of their social connections.

In practice, those methods require observing outcomes for a number of time periods that

is very large (compared to the number of units, m2/T → 0). The implicit assumption is that

the latent network remains stable over many time periods. This is a strong assumption for
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applications in environments where social networks change rapidly over time.

An alternative approach has been proposed by Battaglini et al. (2019b). They rely

on the structure generated by a theoretical model of endogenous link formation to reduce

the dimensionality of the estimation; and then to use the observable outcomes at just one

or few points in time to structurally estimate the parameters of the model. And they

use the analytical characterization of the equilibrium conditions to estimate the model by

Bayesian methods. Because the analytical characterization of the equilibrium conditions

makes it impossible to state an analytic likelihood function, the model is estimated by an

Approximate Bayesian Computation method (henceforth, ABC), a computational approach

that has proven useful in population genetics and other applications that require large scale

models. Whether the characterization of the equilibrium is an acceptable compromise it is

ultimately an empirical question that has to do with the ability of the model to fit the data

better than alternative approaches.

7 Summary

Recent advances in data collection that allow researchers to better measure social connec-

tions among social actors, and advances in theoretical modeling have stimulated important

progress on empirical methods to estimate social interaction effects. Still, important method-

ological challenges, such as problems concerning the endogeneity and the observability of

social connections, have only started to be addressed.

This paper reviews recent work studying how to estimate endogenous social interaction

effects under different data structures. If there is one overarching message to emerge from

this paper, it is that the use of the existing econometric techniques cannot be mechanical.

As discussed in this paper, there are a variety of challenges and various possible solutions.

Ultimately, the choice of the most appropriate model, identification and estimation strategy

depends on the context under analysis and on the postulated mechanism underlying the

presence of social interaction effects.
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Bramoullé, Yann, Habiba Djebbari, and Bernard Fortin (2009) “Identification of peer effects

through social networks,” Journal of Econometrics, Vol. 150, pp. 41–55.

31



Breza, Emily, Arun G Chandrasekhar, Tyler H McCormick, and Mengjie Pan (2017) “Using

aggregated relational data to feasibly identify network structure without network data,”

NBER Working Paper No. 23491.

Butts, C. (2009) “Using Potential Games to Parameterize ERG Models,” Working Paper.
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