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Abstract

We develop a simple Bayesian network game in which players, embedded in a network of social
interactions, bear a cost from deviating from the social norm of their peers. All agents face
uncertainty about the private benefits and the private and social costs of their actions. We prove
the existence and uniqueness of a Bayesian Nash equilibrium and characterize players’ optimal
actions. We then show that denser networks do not necessary increase agents’ actions and
welfare. We also find that, in some cases, it is optimal for the planner to affect the payoffs of
selected individuals rather than all agents in the network. We finally show that having more
information is not always beneficial to agents and can, in fact, reduce their welfare. We illustrate all
our results in the context of criminal networks in which offenders do not know with certitude the
probability of being caught and do not want to be different from their peers in terms of criminal
activities.
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1 Introduction

Social andprofessional networks are pervasive in people’s everyday lives anddirectly or indirectly
influence their choices and their behavior. For example, the decision of an individual to pursue
college education, consume a product, work hard or shirk, and engage in criminal activities, has
been shown to be affected by their social environment. An important aspect of these decisions is
that agents do not have a perfect knowledge of their environment. For example, when someone
decides to commit a crime, she does know with certainty the probability of being caught and, if
caught, the severity of the punishment. Students studying at universities do not exactly know
the returns from education, etc. Therefore, they need to form expectations about these aspects
and, in a social network context where agents are affected by their peers, they also need to form
expectations about their peers’ actions, their peers’ peers’ actions, and so forth (i.e., higher order
beliefs).

In this paper, we develop a simple Bayesian network game in which players, embedded in a
network of social interactions, bear a cost from deviating from the social norm of their peers.
They face uncertainty about the private benefits and the private and social costs of their actions.
These parameters are potentially heterogeneous across players and consist of two components:
a global one that is common to all players, which represents the universal or invariant payoff
or cost resulting from an action, and an idiosyncratic one, which captures the part of benefit of
cost of the action that depends on the individual characteristics of each individual. To model
uncertainty, each player is assumed to observe some (potentially noisy) signal about the value
of her payoff parameters, based on which she optimally chooses an action. Even though agents
are only directed affected by the choices of their immediate neighbors in the network, they also
need to infer the actions of players located more than one link away, since these “higher-order
neighbors” may affect their immediate neighbors, who in turn affect them. Because of linear
best responses, Nash equilibrium outcomes will depend on higher-order average expectations.

We first establish the existence and uniqueness of a Bayesian Nash equilibrium and character-
ize players’ optimal actions. We show, in particular, that what determines the equilibrium action
of each player depends on the accuracy of the signal she receives (which impacts the way she
forms expectations), her position in the network (which affects her beliefs about her neighbors’
actions and thus her social norm, which is the average of the actions of her neighbors) and, of
course, the states of the world (i.e., the values of the different parameters of her utility function).

Second, we perform some comparative statics analyses to examine how the social environ-
ment, and the idiosyncratic characteristics of the players, affect their equilibrium actions and
welfare. One interesting result is to show that an upward shift in the idiosyncratic component of
a given player’s social cost (taste for conformity) parameter leads to an increase in this player’s
action if her action is greater than that of her social norm. If we now consider an upward shift in
the global component of the social cost parameter, which affects all players in the same way, then
the marginal social costs increase for players whose actions are greater than that of their social
norms, which leads to a reduction in equilibrium action. A similar result has been obtained in
the perfect information case (Ushchev and Zenou (2019)). However, if we assume that signals
and states are stochastically independent, then we can show that the impact of a First-Order
Stochastic Dominance (FOSD) upward shift in the idiosyncratic component of the social cost
parameter on the ex ante expected equilibrium actions may vary among affected players in the
case of incomplete information, which is never true in the complete information case.

We next consider the effect of a denser network on equilibrium outcomes. We show that a
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denser network does not necessarily lead to an increase in aggregate activity, nor does it have a
monotonic effect on players’ equilibrium payoffs. In particular, if we add a link between players i
and j, then we show that this strictly decreases (increases) player i’s ex ante expected equilibrium
action if player j’s action is less (higher) than that of player i’s social norm. More importantly,
it also affects negatively (positively) a player k’s action who is path-connected to i if player j’s
action is less (higher) than that of player i’s social norm.

Third, we study under which conditions policy interventions can be welfare-improving.
Our analysis focuses on two main types of such interventions: those that affect players’ payoffs
directly, by altering the expected returns or costs associated with the activity in question, and
those that affect payoffs indirectly, by changing the quality of information that is available to
them or the structure of the network. Interventions of both types can be either targeted at specific
players (by altering the idiosyncratic components of their payoff parameters, or by sending
them a private signal) or at the general public (by altering the global components of the payoff
parameters, or by sending a publicly observable signal).

Let us first focus on policies that affect players’ payoffs directly. Our main question is: In
order to decrease or increase to a degree ex ante expected aggregate action, should a central
planner target a single player or all players in the network? In the context of crime, in attempting
to maximally prevent or reduce crime, should a central planner increase the private cost to
commit criminal activities for a single criminal or for all criminal in the network by, for example,
increasing the probability or severity of punishment. In the context of education, should a central
planner allocate scholarship funds to all students in a network or award a scholarship to a single
student in order to maximally increase educational effort?

We find that, under some conditions, it may be optimal for a policy maker to concentrate
their efforts in changing the payoffs of selected individuals. In the context of crime, this means
that law enforcement agencies investing more resources into apprehending a key individual
(key player)1 may be a more efficient policy than spreading the available resources across the
entire network. We also argue that unless the social planner has a good knowledge of the players’
characteristics and the structure of the network, social costs are not an efficient policy instrument
because of the absence of a monotonic relationship between the social cost parameters and the
ex ante expected aggregate action. Such intervention may, in fact, lead to the opposite result
than policy makers would like to achieve.

Fourth, we study also how the informativeness of the players’ signals affects their actions
and their welfare. In terms of policy, we determine to which player in the network the planner
should give better information about the state of the world in order for total welfare gains from
the intervention to be maximized. We show that a mean-preserving decrease (increase) in
the informativeness of a player’s signal about her private benefit parameter strictly decreases
(increases) her ex ante expected equilibrium payoff and strictly increases (decreases) the ex ante
expected equilibrium payoff of her direct neighbor.

We then consider a policy that gives more private information to a single player or a policy that
provides more information to all players in the form of a public signal (more public information).
We show that more private information to a single player may increase, decrease, or leave
unaffected her ex ante expected equilibrium payoff and those of other offenders. A similar result
may even hold true for a player whose payoff does not depend on other players’ efforts. In

1. This is a different concept from the key player developed by Ballester, Calvó-Armengol, and Zenou (2006) (see
Zenou (2016) for an overview) since the latter is defined as the player, who once removed, reduces aggregate activity
the most.
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fact, there exist values of the private benefit and social cost parameters such that more private
information causes positive, negative, or no externalities on other players. The provision of a
public signal may decrease ex ante expected equilibrium payoff. Therefore, more information is
not always beneficial to agents.

This paper adds to the growing literature on network games,2 which mostly assumes per-
fect information.3 There is, however, a younger literature on network games with incomplete
information. Galeotti et al. (2010) develop a general network game where agents have imperfect
information about the network. Calvó-Armengol and Martí (2007, 2009), Bergemann, Heumann,
and Morris (2015), Martí and Zenou (2015) and Blume et al. (2015) study the linear-quadratic
setting under the enrichment of a Bayesian game. Calvó-Armengol, Martí, and Prat (2015), Leis-
ter (2017) and Myatt and Wallace (2019) incorporate endogenous investment in signal precision
in these settings. And in a different vein, Hagenbach and Koessler (2010) and Galeotti, Ghiglino,
and Squintani (2013) study cheap-talk in networks. Finally, Golub andMorris (2017, 2018) study
consistency and convergence in higher order expectations in Bayesian network games under
linear best replies while Leister, Zenou, and Zhou (2019) focus on binary rather than continuous
choices in a Bayesian network game.

Our paper also studies a Bayesian network game with linear best replies. Our contributions
to this literature are as follows. First, in our model, the incomplete information includes all
components of the players’ payoff functions, in particular, private benefits and private and social
costs. Second, we perform different comparative statics exercises to examine how the different
parameters of the model (such as private and social costs) affects the ex ante equilibrium actions
and welfare. Third, we provide different policy exercises aiming at decreasing ex ante expected
aggregate action that either target a single player or all players in the network. Fourth, we study
the value of information in our Bayesian network game and examine whether more information
is welfare-improving and to which agent the planner should give more information. Finally, we
provide an application of our model to crime under imperfect information and show how we
contribute to the literature on criminal networks.

The rest of the paper is structured as follows. Section 2 illustrates all our results for criminal
networks in the case of four offenders, specific network and signals. Section 3 lays out the
Bayesian network game and studies its existence and uniqueness. Section 4 carries out our
comparative statics analysis while the policy implications of our model are discussed in Section 5.
Section 6 studies the value of information to individual players. Finally, Section 7 concludes.

The Online Appendix of this paper consists of seven parts. Section A contains the analytical
derivations of the results of the criminal-network example presented in Section 2. The existence
and uniqueness of the Bayesian Nash equilibrium is analyzed in Section B. Section C discusses
some other numerical examples. Section D provides an alternative representation of the basic
information matrix used in our analysis. A brief review of basic concepts of graph theory is
provided in Section E. Some basic results of matrix analysis used in this paper have been collected
in Section F. Finally, all the proofs of the statements in this paper (both in the main text and in
the Online Appendix) can be found in Section G.

2. See Jackson (2008) chapter 9, Jackson and Zenou (2015) and Bramoullé and Kranton (2016) for surveys.
3. Two prominent papers in this literature are Ballester, Calvó-Armengol, and Zenou (2006) and Bramoullé,

Kranton, and D’Amours (2014).
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2 Criminal networks

To motivate our analysis, which is quite formal, in this section, we provide an application of
our model to criminal networks for a small set of agents, for specific networks and information
structure. We will illustrate not only the mechanics of our model but also all our comparative-
statics and policy results. All the mathematical details of this section can be found in Section A
of the Appendix.

2.1 The Bayesian network game

Following Becker (1968)’s utilitarian approach, individuals’ decisions to engage in delinquent or
criminal activities can be studied as an economic decision problem using a cost–benefit analysis.
The decision of a potential offender depends thereby on the (expected) net payoff that she derives
from an illegal activity, which is quantified as the difference between the benefits (proceeds)
from the illegal activity and the costs due to the pecuniary and non-pecuniary punishment (for
example, fines and incarceration) prescribed by law, weighted by the perceived probability of
being apprehended.4 The present section revisits this topic in the context of a Bayesian network
game where the potential offenders know their social or professional environment but have
incomplete information about the cost of committing an illegal activity.

There is a finite number I of offenders. The payoff to offender i ∈ {1, . . . , I} depends on
the profile of nonnegative amounts of effort devoted to criminal activities, (y1, . . . , yI), and an
unobservable state of nature ω. It is given by:

ui
(
ω, (y1, . . . , yI)

)
= ᾱiyi −

βi(ω)

2
y2

i −
γ̄i

2

(
yi − ȳN+

D (i)

)2
. (1)

The term ᾱiyi represents offender i’s private benefit from effort yi devoted to criminal activity.
The private benefit parameter, ᾱi, is positive, constant, and known by all offenders. It captures
offender i’s productivity or efficiency of effort in committing crime.5 Note that the marginal
private benefit is equal to ᾱi and does, therefore, not vary with yi.

The term (1/2)βi(ω)y2
i represents the private cost inflicted on offender i. The private cost

parameter, βi, is a positive function of the state of nature. Its value at the state of nature ω, βi(ω),
is unknown to all offenders because ω is unobservable; for example, an offender may not observe
the exact number of police officers on patrol in her geographical area of criminal activity, which
influences the probability of apprehension. Apart from the state of nature, βi may depend on
offender i’s personal cost of engaging into criminal activity (such as time, resources, and feeling
of guilt), her probability of apprehension and conviction, the severity of the statutory (pecuniary
and non-pecuniary) penalties associated with the chosen effort, and the severity of the non-
statutory penalties (such as shame, deterioration of future employment opportunities) resulting
from a conviction. Note that the marginal private cost is equal to βi(ω)yi and is, therefore, strictly
increasing in yi.

4. In the context of network games with complete information, this has been studied by Glaeser, Sacerdote,
and Scheinkman (1996), Calvó-Armengol and Zenou (2004), Ballester, Calvó-Armengol, and Zenou (2010), Liu
et al. (2012), Patacchini and Zenou (2012) and Lindquist and Zenou (2014).

5. In the general Bayesian network game (see Section 3), the private benefit parameter is denoted by αi and is
unknown to all offenders. Thus, it is a function of the state of nature ω. Here, for the sake of the presentation, only the
cost of illegal activity is unknown to all offenders. All variables with a bar refer to known and deterministic variables.
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The term (γ̄i/2)(yi − ȳN+
D (i))

2 represents offender i’s social cost from deviating from the
social norm of her reference group, defined as the average effort ȳN+

D (i) of all offenders in
her reference group N+

D (i) in the social or professional network D. Although engaging into
criminal or delinquent activities is as a rule socially condemnable, this is not true in certain
social environments, such as neighborhoods with high prevalence of crime (see e.g. Kling,
Ludwig, and Katz (2005) and Damm and Dustmann (2014)). As Schrag and Scotchmer (1997)
put it: “ gang member may quite rationally fear that his gang will punish him if he chooses
not to commit a particular crime, whereas a person who is not part of a gang does not usually
anticipate that his friends will penalize him if he obeys the law.” Following Akerlof (1997), the
Euclidian distance between offender i’s effort and her social norm is referred to as the social
distance between offender i and her reference group.6 The social cost parameter, γ̄i, is nonnegative,
constant, and known by all offenders; it captures offender i’s taste for conformity, that is, the
importance she attaches to complying with her social norm, as well as the strength of that norm
in her social environment.7 Compared to offenders with lower social cost parameters, offenders
with larger social cost parameters incur higher social costs from deviating from their social
norms because they are stronger in their neighbourhood or society or because adhering to the
social norm of their reference group is intrinsically more important to these offenders. Note that
the marginal social cost is equal to γ̄i(yi − ȳN+

D (i)) and is, therefore, strictly increasing in yi and
strictly decreasing in ȳN+

D (i) if γ̄i > 0.
In order to keep the exposition simple, we consider four offenders (I = 4) whose social or

professional network is represented by the digraph D (directed network) depicted in Figure 2.1;
therein offenders are represented by vertices and social or professional ties by arrows, called arcs
or directed links. An directed link from offender i to offender j is denoted by (i, j) and signifies
that offender j belongs to the reference groupN+

D (i) of offender i, in which case offender j’s effort
enters offender i’s social norm ȳN+

D (i) and in turn affects her payoff, which in turn determines her
own effort. A directed link (i, j) (outdegree) can be interpreted as offender i paying attention to
the behavior of offender j or, alternatively, offender j being a role model to offender i. It follows
from Figure 2.1 that offender 1’s reference group consists of offender 2, offender 2’s reference
group of offender 3, offender 3’s reference group of offender 2, and offender 4’s reference group
of offenders 1 and 3, that is

N+
D (1) = {2}, N+

D (2) = {3}, N+
D (3) = {2}, N+

D (4) = {1, 3}.

The social norms are therefore given by

ȳN+
D (1) = y2, ȳN+

D (2) = y3, , ȳN+
D (3) = y2, ȳN+

D (4) =
y1 + y3

2
.

The four potential offenders reside in one of two precincts of a city: precinct East and precinct
West; specifically, offenders 1 and 2 reside in precinct East and offenders 3 and 4 in precinct
West. All offenders are criminally active only in their precinct of residence. A city authority is

6. This is the standard way economists have modeled conformism in networks. See, in particular, Patacchini and
Zenou (2012), Boucher (2016), Sommer (2017) and Ushchev and Zenou (2019), for the case of perfect information
and Calvó-Armengol and Martí (2009), Calvó-Armengol, Martí, and Prat (2015) and Golub and Morris (2018) for
the case of imperfect information.

7. In the general Bayesian network game (see Section 3), the social cost parameter is denoted by γi and is a function
of the state of nature ω.
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responsible for the allocation of financial and human resources to policing functions, including
the geographical allocation of police forces between precincts East and West.

1

23

4

Figure 2.1 Network D of offenders

Akey element affecting an individual’s decision about whether, and towhat extent, to commit
a crime is her perception of the probability of being apprehended and convicted. There exists a rich liter-
ature on how these perceptions are formed and on how accurate they are. A multitude of factors
may affect these perceptions, among others, own age (Gardner and Steinberg 2005; Hjalmarsson
2008), own experience (Lochner 2007), experience of peers (Parker and Grasmick 1979), and the
prevalence of similar crimes in the area or jurisdiction (Schrag and Scotchmer 1997).8 In our
model, an offender’s private cost is strictly increasing in the probability of apprehension and
conviction. For a particular offender, this probability depends on the fraction of police officers
on duty in her precinct of residence (at the time a crime is committed) and the strictness of the
judge or jury deciding her case if she is apprehended and prosecuted. Thus, the probability of
apprehension and conviction is increasing in these two factors. Indeed, the more policemen are
patrolling the streets or working on solving criminal cases in her precinct of residence, the more
likely an offender is to be brought to justice and convicted. Also, the stricter is the judge or the
jury hearing her case, the more likely is a conviction and the harsher is the expected punishment.

The fraction of police officers on duty in precinct East, denoted by ω1 ∈ [0, 1], and a measure
of the strictness of the judge or jury, denoted by ω2 ∈ [0, 1], constitute the state of nature ω, that
is, ω = (ω1, ω2) ∈ [0, 1]2. The relation between these two dimensions of the state of nature and
offender i’s private cost parameter depends on her precinct of residence. Two possible cases
are depicted in Figure 2.2 and based on the following assumption: an offender’s private cost
parameter is either low (θβ,low) or high (θβ,high); it is high if and only if both the fraction of police
officers on duty in her precinct of residence and the measure of the strictness of the judge or jury
are not less than one half.

If she resides in precinct East, then βi((ω1, ω2)) = θβ,high if and only if ω1 ≥ 1/2 and
ω2 ≥ 1/2 (see the right panel of Figure 2.2; therein, the area shaded in dark gray is the set of
states of nature on which the private cost parameter assumes the high value). If the offender
resides in precinct West, βi((ω1, ω2)) = θβ,high if and only if ω1 ≤ 1/2 and ω2 ≥ 1/2 (see the
left panel of Figure 2.2).

Prospective offenders cannot observe the state of nature, which determines the values of their
private cost parameters. Indeed, they don’t know the exact fraction of police officers on duty in
the precinct where they live and they don’t know in advance which judge will hear their case or
the composition of the jury if they are apprehended and prosecuted. They have only incomplete
information about these two dimensions of the state of nature, based on their observations, their
experience, and the experiences of others. The incomplete information of offender i about the
state of nature is formally represented by a function sβ,i, called signal (component), whose value
only depends on the state of nature ω.9 There are only two possible values that the signal sβ,i can

8. For literature reviews, see Apel (2013) and Chalfin and McCrary (2017).
9. In the general Bayesian network game (see Section 3), where the private benefit, the private cost, and the social
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0 1
0

1

ω1

ω
2

0 1
0

1

ω1

ω
2

Figure 2.2 Private cost parameters of offenders residing in precinct West (left panel) and precinct East
(right panel). Areas shaded in dark gray represent states of nature that give rise to a high value of the
private cost parameter (θβ,high).

take, low or high, which represent private information, that is, they are not observable by other
offenders. An example is depicted in Figure 2.3; therein, the area shaded in dark gray is the set
of states of nature on which the signal assumes the high value. By observing a high signal value,
the offender learns that the state of nature lies in the dark shaded area, and by observing a low
signal value, she learns that it lies in the white area. Although the signal value does not reveal
the state of nature, it conveys information about the value of the private cost parameter at the
state of nature.

Let us consider two cases. First, suppose offender i resides in precinct East. Her signal sβ,i
(given in Figure 2.3) is completely informative about βi because it reveals the value of βi (see
the right panel of Figure 2.2). Loosely speaking, the signal is correct about the two dimensions
of the state of nature. Second, suppose offender i resides in precinct West. Her signal sβ,i is only
partially informative about βi (see the left panel of Figure 2.2). Indeed, if the value of sβ,i is
high, she learns that the value of βi is in fact θβ,low. If the value of sβ,i is low, she learns that the
value of βi is either θβ,low or θβ,high. Loosely speaking, the signal is misleading about the first
dimension (police) and correct about the second dimension (judge or jury) of the state of nature.

The preceding example provides an important insight: the informational content of a signal
is embodied in the partition it induces on the set of all possible states of nature (which is the unit
square [0, 1]2). The actual values a signal can take, referred to as low and high, are immaterial,
provided that they are different. It is therefore natural to identify the low value with θβ,low and
the high value with θβ,high.

0 1
0

1

ω1

ω
2

Figure 2.3 Example of private signal. Area shaded in dark gray represents states of nature that give rise
to a high value of the signal (θβ,high).

cost parameters are all functions of the state of nature, a player’s signal consists of three components; more specifically,
player i’ signal is denoted by si and consists of the components sα,i, sβ,i, sγ,i, that is, si := (si,α, si,β, si,γ).
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Let us go back to our initial example with four offenders connected by the network given
in Figure 2.1. The private cost parameters and the signals of the four offenders are depicted at
the top and bottom panels of Figure 2.4. The first column corresponds to offender 1, the second
column to offender 2, etc. Recall that offenders 1 and 2 reside in precinct East and offenders 3
and 4 in precinct West. The values of their private cost parameters depend on their precinct
of residence as described in Figure 2.2.10 Assuming that the state of nature follows a uniform
distribution, then, their prior beliefs are such that the probability of having a high-cost parameter
is 1/4, i.e., P(θβ,high) = 1/4 while that of having a low-cost parameter parameter is 3/4, i.e.,
P(θβ,low) = 3/4. Let us now calculate their posterior beliefs after receiving their signals.

β1 β2 β3 β4

s1,β s2,β s3,β s4,β

Figure 2.4 Offenders’ private cost parameters (top panels) and private signals (bottom panels)

Contrasting offender 1’s signal s1,β with her private cost parameter β1 shows that s1,β is
completely informative about β1. There is no uncertainty about the value of β1 because s1,β

reveals its value for all possible states of nature.11 Loosely speaking, the signal is correct about
the two dimensions of the state of nature. Contrasting offender 2’s signal s2,β with her private
cost parameter β2 shows that s2,β is partially informative about β2. There is no uncertainty about
the value of β2 at states of nature that give rise to a high signal value (the area shaded in dark
gray) since offender 2 knows with certainty that the state is low,12 and there is uncertainty about
the value of β2 at states of nature that give rise to a low signal value (the white area). Using
Bayes’ law and assuming that the state of nature follows a uniform distribution, by observing
the value θβ,low for s2,β offender 2 learns that β2 is low (θβ,low) with probability 2/3 and high

10. In Appendix A.1, we formally derive the private cost parameters and the signals depicted in Figure 2.4.
11. Indeed, by using Bayes’ law and assuming that the state of nature follows a uniform distribution, it is easily

verified that: P(θβ,low|sβ,low) = P(θβ,high|sβ,high) = 1 and P(θβ,high|sβ,low) = P(θβ,low|sβ,high) = 0.
12. Indeed, by using Bayes’ law and assuming that the state of nature follows a uniform distribution, we have:

P(θβ,low|sβ,high) =
P(sβ,high|θβ,low)P(θβ,low)

P(sβ,high|θβ,low)P(θβ,low) + P(sβ,high|θβ,high)P(θβ,high)

=
1/3× 3/4

1/3× 3/4 + 0× 1/4
= 1

And, P(θβ,high|sβ,high) = 1−P(θβ,low|sβ,high) = 0.
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(θβ,high) with probability 1/3.13 As a result, starting with the prior that the probability of having
a low cost (high cost) of committing crime, i.e., θβ,low (θβ,high) is 3/4 (1/4), offender 2 updates
her beliefs as follows: if she receives a low signal, the probability of θβ,low is 2/3 and that of
θβ,high is 1/3. If she receives a high signal, then she knows with certainty that the state is low.

Contrasting offender 3’s signal s3,β with her private cost parameter β3 shows that s3,β is
completely informative about β3. Finally, contrasting offender 4’s signal s4,β with her private cost
parameter β4 shows that s4,β is partially informative about β4. Loosely speaking, the signal is
misleading about both dimensions of the state of nature. There is, however, no uncertainty about
the value of β4 at states of nature that give rise to a high signal value, and there is uncertainty
about the value of β2 at states of nature that give rise to a low signal value. By observing the
value θβ,low for s4,β offender 4 learns that β4 is low (θβ,low) with probability 2/3 and high (θβ,low)
with probability 1/3. In summary, the four pairs of private cost parameters and signals differ in
some respects; they have in common that a high signal value reveals the value of the private cost
parameter, that is, an offender learns the value of her private cost parameter by observing a high
signal value.

2.2 The Bayesian Nash equilibrium

Let us now determine the Bayesian Nash equilibrium of this game. Each offender draws up a rule,
called strategy, specifying the amount of effort to devote to criminal activity depending on the
value of her signal. In our game of crime, where the network connecting offenders is D (Figure
2.1), offender i’s strategy is denoted by xi(D) : {θβ,low, θβ,high} → R+. A profile of strategies
(x?1(D), . . . , x?4(D)) is a Bayesian Nash equilibrium in the game of crime if each of its strategies
benefits each agent themost (in terms of ex ante expected payoff) and no offender has an incentive
to unilaterally deviate form her strategy, in which case the strategies in the aforementioned
profile are called equilibrium strategies. Offender i’s equilibrium strategy x?i (D) at the value ϑi ∈
{θβ,low, θβ,high} of her signal si,β, x?i (D)(ϑi), is characterized by the equality of hermarginal private
benefit, ᾱi, and her predictedmarginal cost, defined as the sum of predicted private marginal cost,
x?i (D)(ϑi)E(βi | si,β = ϑi), and predicted social cost, γ̄i(x?i (D)(ϑi)−E(x̄?N+

D (i)(D) | si,β = ϑi)),
where x̄?N+

D (i)(D) denotes her social norm at the equilibrium. So, clearly, in equilibrium, each
offender i has to form expectations on her marginal cost of committing crime, i.e., E(βi | si,β = ϑi)

and on the cost of committing crime of her direct links because it affects her social norm, i.e.,
E(x̄?N+

D (i)(D) | si,β = ϑi).14

Although a formal presentation of this game is deferred to Section 3, we can see how offenders
interact and affect each other within the context of our example.15 Suppose that the state of

13. Indeed,

P(θβ,low|sβ,low) =
P(sβ,low|θβ,low)P(θβ,low)

P(sβ,low|θβ,low)P(θβ,low) + P(sβ,low|θβ,high)P(θβ,high)

=
2/3× 3/4

2/3× 3/4 + 1× 1/4
=

2
3

And, P(θβ,high|sβ,low) = 1−P(θβ,low|sβ,low) =
1
3 .

14. Observe that the signals of the different players are correlated through the state variable. For example, assuming
that the state of nature follows a uniform distribution, it is easily verified that: P(s4,β = θβ,low|s3,β = θβ,low) = 2/3,
P(s4,β = θβ,high|s3,β = θβ,low) = 1/3, P(s4,β = θβ,low|s3,β = θβ,high) = 1 and P(s4,β = θβ,high|s3,β = θβ,high) = 0.
15. Proposition B.1 establishes existence and uniqueness of a Bayesian Nash equilibrium for the general case, and

provides its functional form. For a more detailed derivation of the numerical values of the present example, see
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nature follows a uniform distribution, ᾱ1 = ᾱ2 = ᾱ3 = ᾱ4 = 1, θβ,low = 1/2 and θβ,high = 3/2,
and γ̄1 = γ̄2 = 1/2 and γ̄3 = γ̄4 = 1/3. Then, at the Bayesian-Nash equilibrium, the offenders’
ex ante expected efforts and payoffs in equilibrium, as well as the social norms each one expects
to face, are presented in Table 2.1.16

Table 2.1 Ex ante expected equilibrium efforts, payoffs, and social norms

offender effort payoff social norm

1 1.49 0.77 1.40
2 1.40 0.62 1.52
3 1.52 0.79 1.40
4 1.42 0.76 1.51

Notes: Real numbers in decimal notation are
rounded to two decimal places.

We can see that, in equilibrium, offender 3 exerts the highest effort, has the highest payoff but
faces the lowest social norm so that her effort is above her social norm. On the contrary, offender
2 makes the lowest effort, obtains the lowest payoff and faces the highest social norm so that her
effort is below her social norm. This is interesting because both offenders 2 and 3 are ex ante
identical and have exactly the same position in the network and their social norm only consists
of each other. The only differences between the two of them are their location (offender 2 resides
in precinct East while offender 3 lives in precinct West) and the signals they receive. As stated
above, offender 2 receives a noisy signal. In particular, when she receives a high signal she knows
with certainty that the state of the world is low, i.e., E(β2 | s2,β = θβ,high) = θβ,low, while, when
she receives a low signal, she knows with probability 2/3 that the cost of committing crime is
low (i.e. less police and less severe judges) and with probability 1/3 that the cost of committing
crime is high, i.e., E(β2 | s2,β = θβ,low) =

2
3 θβ,low + 1

3 θβ,high. On the contrary, offender 3 receives a
perfect informative signal so that a low signal indicates with probability 1 that the state is low
and the same for a high signal. This is the expectation each offender has on herself. However,
they also need to form expectations on the criminal effort of the other offenders because it affects
their social norm. We can understand why offender 2 (but also offender 4) exerts a low effort. It
is because she receives a noisy signal; with probability 1/3 she wrongly believes that the cost
of committing crime is high when she receives a low signal. Since offender 3 knows this, she
expects a low social norm. The reverse is true for offender 2.

This model just shows that imperfect information about the presence of police in one’s
neighborhood and the severity of the judge if someone is arrested strongly affect offenders’
behavior and should be taken into account if one wants to address policies aiming at reducing
crime. We will now consider three types of policy interventions: policies aiming at changing the
payoff parameters, policies aiming at changing the network structure, and policies aiming at
changing the availability or quality of information.

2.3 Changing payoff parameters

Perhaps the most intuitive policy aimed towards reducing overall criminal activity is through
interventions that increase offenders’ cost of engaging into crime (parameter β). In the context

Section A in the Appendix.
16. For a formal derivation, see Section A.1 of the Appendix.

11



of our model, examples of such policies are an increase in the size of the police force and/or
the introduction of more severe statutory penalties for offenders. The effect of changes in the
offenders’ payoffs parameters in the general case is discussed in Section 4.1, and the relevant
policy implications in Section 5.2.

To discuss the effects of changes in the private cost parameters, consider a city authority that
decides to increase their budget for law enforcement, with the objective of reducing criminal
activity at the city level by increasing the likelihoods of arresting perpetrators. This raises the
question about which allocation of the additional resources is most effective in reducing criminal
activity. Two policy alternatives are considered: targeting a single offender, in which case all
additional resources are devoted to her apprehension, or targeting all offenders, in which case
the resources are spread across the entire network in order to, for example, increase uniformly
the probability of apprehension. As our discussion of optimal targeting (see Section 5.2) shows,
neither alternative is superior to the other. We now analyze these two policies in the context of
our specific example.

Suppose the additional resources suffice either to increase the private cost parameter of a
single offender by some positive amount ∆β̄ (first policy) or to increase uniformly the private cost
parameters of all four offenders by (1/4)∆β̄ (second policy). Table 2.2 reports changes in ex ante
expected aggregate equilibrium effort (criminal activity) for the aforementioned two policies
for two different networks, D1 and D4 (network D4 is clearly denser and more connected than
D1)17 and two different values of ∆β̄, 2/3 = 0.666 and 5/6 = 0.833. In the game of crime with
network D4, targeting all offenders is superior to targeting a single offender because it reduces
ex ante expected aggregate criminal activity most, irrespective of the value of ∆β̄. By contrast, in
the game of crime with network D1, which of the two policies is more effective depends on the
value of ∆β̄: in case ∆β̄ = 2/3, targeting a single player is superior to targeting all players; in
case ∆β̄ = 5/6, targeting all offenders is superior to targeting a single offender. This shows that
the effectiveness of each policy alternative depends on the network structure as well as the size
of the available resources.

Table 2.2 Changes in ex ante expected aggregate effort

Targeted offender(s) ∆β̄ = 2/3 ∆β̄ = 5/6

D1 D4 D1 D4

1 −0.655 −0.855 −0.747 −0.969
2 −1.029 −0.988 −1.173 −1.126
3 −1.213? −0.958 −1.358 −1.078
4 −0.556 −0.694 −0.632 −0.788
{1, 2, 3, 4} −1.182 −1.185? −1.406? −1.409?

Notes: Real numbers in decimal notation are rounded to three decimal
places. Numbers with a star indicate a column minimum.

Given the above finding, an alternative policy aimed at changing the payoff parameters could
focus on changing the value of γ̄i, the taste for conformity, capturing the offender’s social cost
from deviating from the norm of her reference group (see (1)). In particular, in crime-ridden
communities, reducing the social norm of crime could be effective in reducing total crime.

17. See Figure 2.5 for a graphical representation where network D1 corresponds to the network described in Figure
2.1.
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Figure 2.5 Evolution of offenders’ network over time

Our general analysis (see Result 6 of Proposition 4.6) shows that a uniform decrease in the
offenders’ strengths of their social norms, as represented by their social cost parameters, has, in
general, an ambiguous effect on reducing crime (see also Tables A.1 and A.2). An alternative to
the above policy measure consists in targeting only a single offender or a group of offenders,
for whom conforming to a social norm is intrinsically important. Our analysis (see Result 5
of Proposition 4.6 and the example in Section A.2 in the Appendix) shows that lowering the
strength of the social norm of a single offender may decrease, increase, or leave unchanged her ex
ante expected equilibrium effort. The sign of the effect depends on the structure of the network
and the offenders’ signals and payoff parameters. A policy intervention aimed at changing the
social norms of a group of offenders must, therefore, be tailored to the network and the offenders’
personal characteristics. An individual-tailored policy could, for example, target younger gang
members who—in spite of having shown high ability in areas such as education, sports, or
arts—are dragged into criminal activities in order to avoid social exclusion, ostracization, or
even violence. Offering college scholarships to such individuals could provide them with better
future prospects, reduce their benefits from conforming to the norm of their reference group,
and make their costs from engaging into delinquent behavior more salient to them. A notable
example is the case of the Comer school, mentioned by Akerlof (1997).18

2.4 Changing the network

A set of policies that can be used to combat crime are those that focus on disrupting the network
of offenders by cutting their communication and their influence channels. Such interventions are
formally studied in Sections 4.2 and 5.1. A rather interesting andperhaps counter-intuitive finding
is that severing directed links, even between relatively active offenders, does not necessarily
lead to a decrease in the aggregate level of crime. This implies that, under relatively weak
assumptions, a dense criminal network may be associated with a lower overall crime rate than a
sparser network (see Proposition 4.8).

To discuss the effects of changes in the topology of the network connecting offenders, we
consider a network formation game over four periods of time. In the first period, the network
is D1. In every period τ ∈ {2, . . . , 4}, offender τ expands her reference group by forming a single
directed link to another offender such that the new directed link benefits her most (in terms
of ex ante expected equilibrium payoff). The resulting sequence of networks D1, D2, D3, D4 is
displayed in Figure 2.5. In network D4, each offender’s payoff is affected by the choices of efforts
of other offenders and each offender’s choice of effort affects other offenders’ payoffs, either
directly or indirectly. By contrast, in network network D1, offender 4’s choice of effort does not

18. The effects of changes in one of the three kinds of payoff parameters (the private benefit parameters, the private
cost parameters, or the social cost parameters) in the general case are discussed in Section 4.1 and the relevant policy
implications in Section 5.2.
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affect any of the other offenders’ payoffs.
Figure 2.6 displays ex ante expected equilibrium efforts (left panels), social distances (middle

panels), and payoffs (right panels) of offenders 2 (top panels) and 3 (bottom panels) in period τ

where the network connecting offenders is Dτ. The comparison of values for two consecutive
periods shows the effects of a new directed link on the above three quantities.19 The following
discussion focuses on periods 1 and 2 and offenders 2 and 3 (remember that offender 3 receives
signals that are perfectly informative while offender 2 receives noisy signals).
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τ
1 2 3 4
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τ

Figure 2.6 Ex ante expected equilibrium efforts (left panels), social distances (middle panels), and
payoffs (right panels) of offenders 2 ( , upper panel) and 3 ( , lower panel) in the game of crime in
period τ

1 2 3 4
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5.87
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1 2 3 4

2.87

2.91

τ

Figure 2.7 Ex ante expected aggregate equilibrium effort (left panel) and welfare (right panel) in the
game of crime in period τ

In period 2, offender 2 forms a new directed link to offender 1. As will be explained below,
this increases her ex ante expected equilibrium effort and decreases that of her role model,
offender 3.20 The signs of the effects vary, therefore, among the two offenders. We show (see
Proposition 4.9) that a variation in the signs of such effects is not possible in the case of complete
information, where there is no uncertainty about payoffs. This result suggests that an increase in
uncertainty dampens the impact of exogenous shocks to the topology of the network at the macro
level in terms of a smaller variation in aggregate (criminal) activity. Note that the magnitude of
the effect is larger for offender 3 than offender 2.21

This shows that there is in general no effect attenuation within the network; specifically,
the magnitude of the change in ex ante expected equilibrium effort does not decrease with the
distance to the offender who is the source of the change (offender 2).

19. See Section A.3 in the Appendix for results on offenders 1 and 4.
20. All numerical values relevant to the present discussion can be found in Section A.3 in the Appendix.
21. Offender 2’s ex ante expected equilibrium effort increases by 0.0089 and that of offender 3 decreases by 0.0096

(numbers rounded to four decimal places).
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By design of the network formation game, offender 2 chooses her new role model among all
offenders in order to maximally increase her ex ante expected equilibrium effort. This explains
the increase in offender 2’s ex ante expected equilibrium payoff between periods 1 and 2 (see the
top right panel in Figure 2.6). She achieves this increase by reducing the ex ante expected social
distance to her reference group (see the top middle panel in Figure 2.6), defined as the Euclidian
distance between her effort and her social norm, for an offender’s payoff is strictly decreasing in
her social distance to her reference group. Offender 2 is the only role model of offender 3. The
changes in offender 2’s equilibrium behavior (that is, the changes in her equilibrium efforts at
the low and high value of her signal, which cause an increase in her ex ante expected equilibrium
effort), represent, therefore, changes in the social norm of offender 3. These changes induce
offender 3 to change her equilibrium behavior, which entail a decrease in her ex ante expected
equilibrium effort and payoff. This decrease in her ex ante expected equilibrium payoff represent
an externality of offender 2’s formation of a new directed link to offender 1. Note that such
externalities may be negative (as in the case of offender 3) or positive (as in the cases of offenders
1 and 4).22

In summary, there is no monotone relation between the density of the network connecting
offenders and ex ante expected equilibrium effort, social distance, or payoff. The left panel of
Figure 2.7 shows that ex ante expected aggregate equilibrium effort, that is, aggregate criminal
activity, is also not monotone in the network density. A policy measure to decrease network
density (for example, the isolation of a convicted offender from her reference group by enforcing
association, location, or residence restrictions) is, therefore, in general not always expedient to
reduce aggregate criminal activity. Finally, note that ex ante expected equilibrium welfare is
strictly increasing in the network density, as shown in the right panel of Figure 2.7.23

E1

E2
E3

s1,β

s2,β

s3,β

ω1ω2

Figure 2.8 Partition of set of states of nature [0, 1]2 generated by signals s1,β, s2,β, s3,β: {E1, E2, E3}

The concept of equilibrium strategy described above is the key to understanding the mecha-
nism underlying these results. For example, let us explain why offender 2’s ex ante expected
equilibrium effort increases in period 2 when she forms a new directed link to offender 1. The
reference group of offender 2 in period 1 consists of offender 3 and in period 2 of offenders
1 and 3. We need, therefore, to determine all possible combinations of values of the signals
of offenders 1, 2, and 3 that may occur together. According to the description of the game of

22. See Section A.3 in the Appendix, Figure A.5 in particular.
23. This monotonicity is rooted in the design and the structure of the network formation game. In general, this is

not true.
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crime, if s1,β = θβ,low, then either s2,β = s3,β = θβ,low or s2,β = s3,β = θβ,high, and if s1,β = θβ,high,
then s2,β = s3,β = θβ,low. These three combinations generate a partition of the set of states of
nature [0, 1]2 into three events,

E1 := {s1,β = θβ,low, s2,β = θβ,low, s3,β = θβ,low},
E2 := {s1,β = θβ,high, s2,β = θβ,low, s3,β = θβ,low},
E3 := {s1,β = θβ,low, s2,β = θβ,high, s3,β = θβ,high},

which are depicted in Figure 2.8. The values of the three offenders’ equilibrium strategies that
are relevant for the present discussion are reported in Table 2.3.24

Table 2.3 Selected values of offender 1, 2, and 3’s equilibrium strategies in the games of crime in periods
1 and 2

Value of (ϑ1, ϑ2, ϑ3)

(θβ,low, θβ,low, θβ,low) (θβ,high, θβ,low, θβ,low) (θβ,low, θβ,high, θβ,high)

x?1(D1)(ϑ1) 1.704 0.853 1.704
x?2(D1)(ϑ2) 1.412 1.412 1.4
x?3(D1)(ϑ3) 1.765 1.765 0.8
x?2(D2)(ϑ2) 1.343 1.343 1.641

Notes: Real numbers in decimal notation with more than one digit after the decimal mark are
rounded to three decimal places.

First, we discuss changes of quantities taking place on the event for which offender 2’s signal
assumes a lowvalue, that is, the event {s2,β = θβ,low} = E1∪E2 (see the second and third columns
of Table 2.3). In period 1, offender 2’s effort (1.412) is less than her social norm, offender 3’s
effort (1.765), so that her marginal social cost is negative (−0.176 = (1/2)(1.412 − 1.765)).
Evidently, her marginal private benefit (1) is equal to the sum of her predicted marginal private
cost (1.176 = 1.412((1/2)(2/3) + (3/2)(1/3) = 1.412 E(β2 | s2,β = θβ,low)) and her marginal
social cost (−0.176). By forming a directed link to offender 1 in period 2, offender 2’s predicted
social norm decreases (from 1.765 to 1.593 = (1.765 + 1.420)/2) because her prediction of
offender 1’s effort (1.420 = 1.704(2/3)+ 0.853(1/3)) is less than that of offender 3’s effort (1.765).
As a result, offender 2’s predicted marginal social cost increases (from −0.176 to −0.090 =

(1/2)(1.412− 1.593)), so that hermarginal private benefit (1) is less than the sumof her predicted
marginal private cost (1.176) and her predicted marginal social cost (−0.090). In order to correct
this imbalance, offender 2 must decrease her effort on the event {s2,β = θβ,low} (because predicted
marginal private cost is strictly increasing in effort); in fact, her effort at the low signal value
decreases from 1.412 to 1.343.

Second, we discuss changes of quantities taking place on the event {s2,β = θβ,high} = E3 (see
the last column of Table 2.3). In period 1, offender 2’s effort (1.4) is larger than her social norm,
offender 3’s effort (0.8), so that her marginal social cost is positive (0.3 = (1/2)(1.4− 0.8)).
Evidently, her marginal private benefit (1) is equal to the sum of her predicted marginal private
cost (0.7 = 1.4(1/2) = 1.4 E(β2 | s2,β = θβ,high)) and her marginal social cost (0.3). The new
directed link to offender 1 increases her social norm (from 0.8 to 1.252 = (1.704 + 0.8)/2). As a
result, offender 2’s marginal social cost decreases (from 0.3 to 0.074 = (1/2)(1.4− 1.252)), so

24. The values are taken from Section A.3 in the Appendix.
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that her marginal private benefit (1) is larger than the sum of her predicted marginal private
cost (0.7) and marginal social cost (0.074). In order to correct this imbalance, offender 2 must
increase her effort on the event {s2,β = θβ,high}; in fact, her effort at the high signal value increases
from 1.4 to 1.641.

It follows from the above that offender 2’s ex ante expected equilibrium effort increases
from 1.409 = 1.412(3/4) + 1.4(1/4) to 1.418 = 1.343(3/4) + 1.641(1/4).

2.5 Changing the informativeness of signals

An alternative approach would be to promote policies aimed at changing the perceptions that
prospective offenders have about their cost from engaging into criminal activity. As discussed in
Section 2.1, offenders are not fully cognizant of their probability of apprehension and conviction,
and can only make inferences based on the signal values they observe. A question that naturally
arises in that case is how a ceteris paribusmore informative signal would affect aggregate criminal
activity, and whether criminals would be better or worse off with more information. This is
discussed in detail for the general model in Section 6.

Baumann and Friehe (2013) develop a model in which the policy maker may choose to
costlessly communicate information about the probability of conviction to the potential offenders.
They find that better information is in general beneficial for offenders, even though it may also
lead to lower the crime rates for certain parameter values. In the present model, however, in the
presence of peer effects and positive social costs, this is not as clear. A more informative signal
can push aggregate criminal activity in either direction and the same holds true for the welfare
of the offenders. The question we ask here is whether better information about the state of the
world may be welfare-improving in network models where social norms matter.

Let us now study this policy in a simple example. For the purposes of obtaining nontrivial
results, its structure will be slightly modified.25 Specifically, an offender’s private cost parameter
can now have three different values: θβ,low, θβ,mid := (1/2)(θβ,low + θβ,high), and θβ,high. It is equal
to θβ,high if and only if both the fraction of police officers on duty in her precinct of residence and
the measure of the strictness of the judge or jury are not less than one half, it is equal to θβ,low
if and only if both of these values are less than one half, otherwise it is equal to θβ,mid. The
modified private cost parameters are depicted in the top panels of Figure 2.9; therein, the white
area is the set of states of nature on which a private cost parameter is equal to θβ,low, the area
shaded in light gray is the set on which it is equal to θβ,mid, and the area shaded in dark gray is
the set on which it is equal to θβ,high.

To study the effects of information on equilibrium outcomes, we consider two alternative
policy interventions: more private information to a single offender or more public information
to all offenders.

First, we consider the case where a single offender has access to more information in the
form of an alternative private signal that is more informative than her original private signal.
Analogous to the modified private cost parameters, an alternative signal can assume three
different values. The four offenders’ alternative signals are denoted by s̃1,β, s̃2,β, s̃3,β, s̃4,β and are
depicted in the bottom panels of Figure 2.9. Some comments are in order. First, every alternative
signal s̃i,β is more informative (about the state of nature) than the original signal si,β because the
former induces a finer partition of the set of states nature (the unit square [0, 1]2) than the latter.
Second, the alternative signals provide offenders 1, 3, and 4 with complete information about

25. See Section A.5 in the Appendix for a formal discussion.
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Figure 2.9 Offenders’ modified private cost parameters (top panels), original private signals (middle
panels) and alternative private signals (bottom panels)

the value of their modified private cost parameters. Third, although the alternative signal s̃2,β

induces a finer partition of the set of states of nature than the original signal s2,β, it does not
convey more information to offender 2 about the value of β2.26

Second, we consider the case of public information in the form of a public signal all offenders
observe in addition to their original private signals. A central planner may, for example, send
a public signal in the form of a public announcement regarding the prevention of crime. The
public signal can also assume three different values. It is depicted in Figure 2.10. By observing
the values of both their original private signals and the public signal, offenders 1, 3, and 4 learn
the value of their private cost parameters; in other words, there is no uncertainty about the
values of their private cost parameters. The public signal provides, however, no information to
offender 2 about the value of her private cost parameter beyond that embodied in her original
signal.

Figure 2.10 Public signal

Table 2.4 reports relative changes in ex ante expected equilibrium efforts and payoffs due
to more private information to a single offenders (see columns 2 to 5) or public information

26. Indeed, E(β2 | s2,β) = E(β2 | s̃2,β) = θβ,mid.
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(see the last column), that is, more information to all offenders in the form of a public signal.
As can be seen, more private information to a single offender may increase, decrease, or leave
unaffected her ex ante expected equilibrium payoff and those of other offenders. A similar result
may even hold true for an offender whose payoff does not depend on other offenders’ efforts
(see Example 6.7). As discussed in Section A.5 in the Appendix, there exist values of the private
benefit and social cost parameters such that more private information causes positive, negative,
or no externalities on other offenders. The provision of a public signal may decrease ex ante
expected equilibrium payoff, as exhibited in the case of offender 2. Therefore, more information
is not always beneficial to agents, here offenders.

2.6 Contribution to the crime literature

We believe that our model provides an important contribution to the crime literature.
In the standard model of crime, the probability of apprehension and conviction for a given

level of criminal activity is known and common knowledge and, moreover, identical for all indi-
viduals. In practice, however, these assumptions may not always be plausible. First, individuals
may have imperfect knowledge of the probability of getting apprehended and convicted when
deciding whether to commit a crime. Even in the case of a potential conviction, the sanctions
may not be certain a priori because they depend on factors such as the exact charges that will
be pressed, the leniency of the judge or the jury, and the fact that the penalty for a crime may
vary.27 Second, the perception of the probability of apprehension and conviction is not uniform
but may vary across individuals or groups of individuals.28

Ultimately, one of the most important questions for perceptual-deterrence research is the
degree of correspondence between actual and perceived risks. In our model, the actual risk (of
being caught) of offender i is embodied in βi while the perceived risk is a predictor of βi that is
based on the information the offender receives from a private signal si, more specifically, the
conditional expectation of βi given the signal si, (denoted by E(βi | si). Therefore, perceptions
will closely mirror reality when the signal is informative about the risk of committing crime and
thus the predictor is close to βi, which means that the variance of the conditional expectation,
var(E(βi | si)), is high and close to its maximum value, which is the variance of βi, var(βi). In
that case, using policy shocks to learn about the magnitude of deterrence is straightforward.

However, if perceptions will not closely mirror reality, which means that the signal is uninfor-
mative about βi) so that var(E(βi | si))) is close to zero, then changes in policy will go unnoticed
by potential offenders. In that case, the outcomes of policy research will tend to be of limited
value in studying deterrence.

In this paper, we have three main contributions to the crime literature. First, we explicitly
model the gap between the actual and perceived risks of committing crime for each offender.
For example, Blanes i Vidal and Mastrobuoni (2018) show that, if offenders do not know the
presence of police in their area, so that there is a large gap between the actual and perceived risks
of being caught, then increasing police forces in an area has no effect on crime deterrence.29

27. See Bebchuk and Kaplow (1992) on how the introduction of uncertainty affects Becker’s conclusions and
Polinsky and Shavell (2000) and Lindquist and Zenou (2019) for a survey of various approaches to modelling crime.
28. See Sah (1991) and the references therein.
29. More precisely, Blanes i Vidal andMastrobuoni (2018) exploit a natural experiment that aimed to increase police

presence in more than 6, 000 well-defined areas, in Essex, England. Using data transmitted by GPS devices worn by
police officers, they do not find that these increases in patrolling were accompanied by corresponding decreases in
crime.
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Second, we also model the influence of direct friends or co-offenders on own crime activity and,
therefore, how the gap between the actual and perceived risks of committing crime of one’s friends
affects own criminal activities.30 Our third contribution is to study policies aiming at reducing
crime and to show how the quality of information on the presence of the police and the severity
of the judge in case of arrest crucially affects the effectiveness of these policies.31

We believe that these are important issues because, in order to address adequate policies
aiming at reducing crime, we need to understand how offenders react and change their beliefs
to an increase in police and/or an increase in punishment. For example, using Norwegian data,
Bhuller et al. (2018) estimate the effect of the punishment of criminals on their co-offenders
and their brothers. In fact, using the quasi-random assignment of criminal cases to judges, they
show that, when a defendant is sent to prison, there are 51 and 32 percentage point reductions
in the probability his criminal network members and younger brothers will be charged with a
crime, respectively, over the ensuing four years. Our model can provide an explanation of these
empirical results. When a criminal is facing a “tough” judge, she updates her beliefs about the
severity of crime punishment and transmit this information to her co-offenders and younger
brothers, who, in turn, update their own beliefs, and, as a result, reduce their criminal activities.

3 The Bayesian network game

Let us now derive general results for any number of agents, any information structure and any
network. This section specifies the Bayesian network game (Section 3.1) and studies the existence
and uniqueness of a Bayesian Nash equilibrium in pure strategies (Section 3.2).

3.1 Specification

The constituent parts of the Bayesian network game are a finite set of players, a common action
space, a state space with a common prior, a network connecting the players, the players’ payoff
functions, and the players’ signals and type spaces.

Set of players The number of players is finite, at least two, and denoted by I. The set of all
players is identified with the set [I] = {1, . . . , I}.32 All mathematical objects associated with a
particular player are indexed by an element of [I], typically by i.

Common action space The players have a common action space, which is equal to R+, the
set of nonnegative real numbers. An action of player i is denoted by yi. The set of all action
profiles (y1, . . . , yI) is equal to RI

+.

30. Indeed, an offender’s equilibrium strategy depends not only on his own predictor but also on the predictors of
the offenders in her reference group and higher order reference groups. It can be shown that an offender’s ex ante
expected equilibrium effort E(x?i ◦ si) is a function of var(E(βi | si)). See Example E.5, the expression for E(x?2 ◦ s2)
and Lemma E.1 in particular.
31. See also Cortés, Friebel, and Maldonado (2019) who develop a model in which the information needed to

engage in crime activities arrives in the form of a rumour and show that policies that decrease the cost of education
for talented students may increase crime participation from less talented students.
32. For any positive integer z, the symbol [z] denotes the set of integers {1, . . . , z}.
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State space and common prior The state space is a measurable space (Ω,S), where the non-
empty set Ω represents all possible states of nature that are relevant to the game. With a slight
abuse of terminology, the set Ω is also referred to as the state space. The players have a common
prior, that is, probability measure, P on (Ω,S). The probability space (Ω,S, P) constitutes the
probabilistic framework of the game.

Network The players are connected by an exogenous network that is constant across the states of
nature and common knowledge among the players. The network is represented by a digraph D
on [I].33,34 The term network is used as a synonym for digraph hereinafter. The network D
encodes information about the identities of the players who directly affect a player’s payoff
through their actions. For a particular player, the set of players who directly affect her payoff
corresponds to her out-neighborhood in D. Player i’s out-neighborhood in D is denoted by N+

D (i)
and its cardinality, the so-called out-degree of i in D, by deg+

D(i). By the definition of a digraph,
i /∈ N+

D (i). All players have at least one out-neighbor in D, that is, for all i ∈ [I], N+
D (i) 6= ∅

or, equivalently, deg+
D(i) ≥ 1. Note that a player is not necessarily an out-neighbor of her out-

neighbors, that is, n ∈ N+
D (i) does not necessarily imply that i ∈ N+

D (n). The dependence of a
player’s payoff on the actions of her out-neighbors is, therefore, potentially unidirectional.

Payoff functions Player i’s payoff function ui : Ω×RI
+ → R is defined by:

ui
(
ω, (y1, . . . , yI)

)
:= αi(ω)yi −

βi(ω)

2
y2

i −
γi(ω)

2

(
yi −

∑n∈N+
D (i) yn

deg+
D(i)

)2

, (2)

where αi(ω) > 0, βi(ω) > 0, γi(ω) ≥ 0 are the values that the square-integrable random
variables αi : Ω → R++, βi : Ω → R++, γi : Ω → R+ on (Ω,S, P) assume at the state of
nature ω. Note that αi, βi, γi are functions, which may in principle depend on some network
property, for example, out-degree. The triple (αi, βi, γi) is referred to as player i’s payoff parameters.
The players’ payoff parameters (α1, β1, γ1), . . . , (αI , β I , γI) may be functionally or stochastically
dependent, and for all i ∈ [I], αi, βi, γi may be functionally or stochastically dependent.35 The
common functional form of the payoff functions is common knowledge among the players.
Incomplete information may arise by the players’ ignorance about the values of some of the
payoff parameters. A payoff parameter can give rise to incomplete information only if it is not
constant.

The following definition is useful for a compact representation of the payoff functions and
the statement of results.

Definition 3.1 The row-normalized adjacency matrix of D (with respect to the identity mapping
on [I]) is the square matrix Ā(D) of order I whose component in row i and column n is defined
as 1N+

D (i)(n)/deg+
D(i) and denoted by āi,n(D).36

For all (i, n) ∈ [I]2, āi,n(D) = 1/deg+
D(i) if player n is an out-neighbor of player i in D, and

āi,n(D) = 0 otherwise, and āi,i(D) = 0.

33. See Appendix E for basic concepts in graph theory.
34. Note that an undirected graph can be represented by a symmetric digraph.
35. For example, the functions f1 : Ω→ R, f2 : Ω→ R, f3 : Ω→ R are called functionally dependent if there exists a

nonzero function g : R3 → R such that ω 7→ g( f1(ω), f2(ω), f3(ω)) is identically zero on Ω; if no such g exists, then
f1, f2, f3 are called functionally independent.
36. The symbol 1S denotes the indicator function of the set S .
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Using Definition 3.1, player i’s payoff (2) can be written as

ui
(
ω, (y1, . . . , yI)

)
= αi(ω)yi −

βi(ω)

2
y2

i −
γi(ω)

2

(
yi − ∑

n∈[I]
āi,n(D)yn

)2

.

Some comments on the payoff functions are in order. First, player i’s payoff function is
symmetric in her out-neighbors’ actions. It exhibits local strategic complements if γi > 0 because
for all n ∈ [I],

∂2ui
(
ω, (y1, . . . , yI)

)
∂yi∂yn

=


0 if n /∈ N+

D (i),
γi(ω)

deg+
D(i)

if n ∈ N+
D (i).

It does, however, not exhibit positive or negative local externalities.37
Second, the payoff that player i ascribes to the action profile (y1, . . . , yI) consists of two

components: a private component and a social component. The private component is defined as
αi(ω)yi − (βi(ω)/2)y2

i , which in turn can be decomposed into two parts: a private benefit and a
private cost. The private benefit is defined as αi(ω)yi and the private cost as (βi(ω)/2)y2

i . The payoff
parameters αi and βi are referred to as player i’s private benefit parameter and private cost parameter,
respectively. Note that themarginal private benefit does not varywith yi and themarginal private
cost is strictly increasing in yi. The social component is defined as (γi(ω)/2)(yi−∑n∈[I] āi,n(D)yn)2;
it represents player i’s social cost, if any (γi = 0 is possible), from deviating from a social norm
that is given by the arithmetic mean of her out-neighbors’ actions, ∑n∈[I] āi,n(D)yn. The payoff
parameter γi is referred to as player i’s social cost parameter. Note that γi is nonnegative, that is,
it may be positive for all states of nature, it may be zero for some states of nature, or it may be
zero for all states of nature. Also note that the marginal social cost is strictly increasing in yi and
strictly decreasing in ∑n∈[I] āi,n(D)yn if γi(ω) > 0. The distance between player i’s action and her
social norm is referred to as the social distance (see also Akerlof 1997) between player i and her out-
neighbors. It is important to note that the players’ social norms are endogenous and potentially
heterogeneous (in equilibrium) because the players may vary in their out-neighborhoods and
may choose different actions (in equilibrium).

Third, the payoff functions can be extended to cover the case of players without out-neighbors
in D; specifically, player i’s extended payoff function ûi : Ω×RI

+ → R is defined by

ûi
(
ω, (y1, . . . , yI)

)
:=

αi(ω)yi −
βi(ω)

2
y2

i if N+
D (i) = ∅,

ui
(
ω, (y1, . . . , yI)

)
if N+

D (i) 6= ∅.

The assumption that all players have at least one out-neighbor in D is, in light of this extension,
without loss of generality because the extended payoff function of a player without out-neighbors
in D corresponds to the original payoff function with a zero social cost parameter.

Signals and type spaces Each player receives information about the unobservable state of
nature via a signal whose values are private, that is, not observable by other players. Player i’s

37. In accordance with the terminology introduced by Galeotti et al. (2010, pp. 226–27), player i’s payoff function
is said to exhibit negative (respectively, positive) local externalities if for all ω ∈ Ω, for all (y1, . . . , yI) ∈ RI

+, and
for all (ỹ1, . . . , ỹI) ∈ RI

+ with ỹi = yi and {ỹn − yn | n ∈ N+
D (i)} ⊂ R+, ui(ω, (ỹ1, . . . , ỹI)) ≤ ui(ω, (y1, . . . , yI))

(respectively, ui(ω, (ỹ1, . . . , ỹI)) ≥ ui(ω, (y1, . . . , yI))).
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signal is a random 3-vector si := (si,α, si,β, si,γ) on the probability space (Ω,S, P) that has a finite
support Θi ⊂ R3; more precisely, si is a S-B(R3)-measurable function from Ω to R3, where
B(R3) denotes the σ-field generated by the Euclidean topology on R3. The signal si and its
components si,α, si,β, si,γ can, therefore, be regarded as simple random elements on (Ω,S, P).38,39
The set Θi corresponds to player i’s type space and is written as {θi,t | t ∈ [|Θi|]}. Note that, by
the definition of a support, for all i ∈ [I] and for all ϑi ∈ Θi, P(si = ϑi) > 0. Also note that no
assumptions are made about the joint distribution of the signals s1, . . . , sI ; more specifically, they
may be identically or not identically distributed, and they may be stochastically dependent or
independent.

A signal (respectively, signal component) is called completely informative about a payoff
parameter if the payoff parameter is measurable with respect to the σ-field generated by the
signal (respectively, signal component), that is, the payoff parameter is equal to some Borel-
measurable function of the signal (respectively, signal component). A signal (respectively, signal
component) is called completely uninformative about a payoff parameter if the payoff parameter
and the signal (respectively, signal component) are stochastically independent.

Timing The timing of the game is as follows:

1. Nature moves. Nature determines a state ω ∈ Ω, referred to as the true state of nature, which is
not observed by the players.

2. Players receive information. Each player i observes the value of her signal si at the state ω, which
determines her type ϑi ∈ Θi, where ϑi = si(ω).

3. Players move. Each player i chooses an action yi ∈ R+ conditional on her type ϑi, that is, yi is
player i’s action on the event {si = ϑi} ⊂ Ω.

4. Players receive payoffs. Each player i receives the payoff that corresponds to the state ω and the
profile (y1, . . . , yI) of actions chosen by all players, ui(ω, (y1, . . . , yI)).

The Bayesian network game specified above is denoted by B. The constituent parts of B,
which include, inter alia, the prior P, the signals (si)i∈[I], the network D, and the payoff parame-
ters ((αi, βi, γi))i∈[I], are collectively referred to as the structure of B. Note that B is a game with
complete information if there is only one state of nature, that is, |Ω| = 1, in which case all signals
and all preference parameters are constant.

3.2 Existence and uniqueness of Bayesian Nash equilibrium

A pure strategy of player i is a function xi : Θi → R+, that is, a rule that assigns a unique action to
each type. The composition of a pure strategy xi with si, xi ◦ si : Ω→ R+, is a random variable
on (Ω,S, P). The set of all pure strategies of player i is denoted by R+

Θi . The set of all pure
strategy profiles is equal to ×i∈[I]R+

Θi .
The analysis of existence and uniqueness of equilibrium is relegated to Appendix B. First, we

show that there exists a unique interior Bayesian-Nash equilibrium (BNE) in Proposition B.1
and characterize the equilibrium strategies. Then, Proposition B.2 gives sufficient conditions for

38. A random element is called simple if it assumes a finite number of values.
39. We do not distinguish between random elements that are equal almost surely.
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a symmetric BNE that is constant across the states of nature and Corollary B.2 determines the
equilibrium strategies when all signals are constant.40

4 Comparative statics analysis

This section studies how equilibrium behavior, ex ante expected equilibrium strategies in par-
ticular, hereinafter referred to as ex ante expected equilibrium actions, responds to changes in
payoff parameters (Section 4.1) and changes in the network (Section 4.2).

A change in a player’s payoff parameter or out-neighborhood may affect not only her ex ante
expected equilibrium action but also those of her in-neighbors and higher-order in-neighbors.
The effect of such a change propagates within the network along the inverses of walks from the
player’s in-neighbors or higher-order in-neighbors to the player only if the walks have certain
properties pertaining to the structure of the Bayesian network game and the nature of the change.
Definitions 4.1, 4.2, and 4.3 introduce the relevant terminology. Example C.1 in Appendix C
illustrates Definitions 4.2 and 4.3.

Definition 4.1 A player is called quasi-isolated if her social cost parameter is zero a.s.

A quasi-isolated player is not affected by the behavior of her out-neighbors but may affect the
behavior of existing in-neighbors; specifically, if player i is quasi-isolated, then her equilibrium
strategy and ex post expected equilibrium payoff u?

i := ui(idΩ, (x?1 ◦ s1, . . . , x?I ◦ sI)) are given by

x?i ◦ si =
E(αi | si)

E(βi | si)
and E(u?

i | si) =
1
2

E(αi | si)
2

E(βi | si)
. (3)

Definition 4.2 A walk (i0, . . . , ip) in D of length p from player i0 to player ip is called conductive
(in the Bayesian network game B) if there exists a (p + 1)-tuple (ϑi0 , . . . , ϑip) in ×

p
z=0Θiz such

that for all z ∈ [p], P(γiz−1 > 0, siz−1 = ϑiz−1 , siz = ϑiz) > 0, in which case {sip = ϑip} is called a
head event of the walk (i0, . . . , ip).

Provided that all signals are constant, awalk (i0, . . . , ip) in D is conductive if and only if players
i0, . . . , ip−1 are not quasi-isolated. Provided that not all signals are constant, a walk (i0, . . . , ip)

in D is conductive if there exists a (p + 1)-tuple (ϑi0 , . . . , ϑip) in ×
p
z=0Θiz such that for all z ∈ [p],

P(γiz−1 > 0) = 1 and P(siz−1 = ϑiz−1 , siz = ϑiz) > 0.41

Definition 4.3 A conductive walk in D is said to have a positive (respectively, negative) intersection
with a random variable π on (Ω,S, P) if the walk has a head event for which the intersection
with the event {π > 0} (respectively, {π < 0}) has positive probability.

Provided that all signals are constant, a conductive walk in D has a positive (respectively, neg-
ative) intersection with a random variable π on (Ω,S, P) if and only if π is positive (respectively,
negative) with positive probability.

For future reference, we introduce two independence conditions involving the private or
social cost parameters and the signals (Conditions 4.4 (1) and 4.4 (2)) and a condition stating
that changes in the topology of the network do not affect the payoff parameters (Condition 4.5).

40. Table 2.1 in Section 2 provides the ex ante equilibrium efforts, payoffs and social norms for our criminal network
example with 4 players.
41. For all z ∈ [p], P(siz−1 = ϑiz−1 , siz = ϑiz ) = P(γiz−1 > 0, siz−1 = ϑiz−1 , siz = ϑiz ) if P(γiz−1 > 0) = 1.
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Condition 4.4 (1) For all i ∈ [I], βi and si are stochastically independent.

(2) For all i ∈ [I] and for all n ∈ {i} ∪N+
D (i), γi and sn are stochastically independent.

Condition 4.4 (1) states that a player’s signal is completely uninformative about her private
cost parameter, in which case the best (in terms of mean squared error) predictor of the private
cost parameter that is a function of the signal is its expectation. Condition 4.4 (2) states that a
player’s signal is completely uninformative about her social cost parameter, and the same applies
to the signals of the player’s out-neighbors. Condition 4.4 is satisfied if all signals are constant
across the states of nature or all private and social cost parameters are constant across the states
of nature; the condition is, therefore, satisfied, if there is only one state of nature, which covers
the case where the players have complete information.

Condition 4.5 For all i ∈ [I], αi, βi, and γi do not vary with the arc set of D.

4.1 Changes in payoff parameters

The analysis allows for two types of changes in payoff parameters: global and individual. The
payoff parameters are to this end decomposed into two summands: for all i ∈ [I],

αi = αG + αL
i , βi = βG + βL

i , γi = γG + γL
i ,

where αG is referred to as the global component of αi, which is common to all players and, for
example, defined as (1/I)∑n∈[I] αn or min{αn | n ∈ [I]}, and αL

i := αi − αG is referred to as the
idiosyncratic component of αi. The parameter components βG, βL

i , γG, γL
i are defined analogously.

The global component of a payoff parameter characterizes some attribute of the activity under
consideration that does not directly depend on an individual’s characteristics, whereas these
are represented by the idiosyncratic component. Consider, for example, optimal investment in
education. The global component αG corresponds to the average marginal increase in earnings
from an additional year of schooling, and the global component βG captures the additional
average cost (for example, tuition fees or foregone income). A student may possess skills that
enables her to benefit more than the average student from an additional year of schooling, in
which case her idiosyncratic component αL

i is positive, while the opposite may be true for a
less skilled student, in which case his αL

i is negative. Costs may vary among students as well.
A high-ability student is more likely to receive a scholarship than a low-ability student, in which
case the idiosyncratic component βL

i of the high-ability student is negative. The opportunity cost
of obtaining a postgraduate degree may be higher for an individual who is already employed
compared to an individual who is unemployed or has just graduated from college, in which
case the postgraduate student has a positive βL

i . The global component γG represents the
average strength of the prevailing social norm in society. While some individuals may feel
more compelled to adhere to the social norm, which corresponds to a positive idiosyncratic
component γL

i , others may feel less compelled to do so, in which case γL
i is negative.

The analysis is confined to a specific type of change in a parameter component, namely, a first-
order stochastic dominance (FOSD for short) upward shift. Formally, such a shift is modelled
by a nonnegative random variable on (Ω,S, P) that is positive with positive probability. For
example, a FOSD upward shift ∆αL in the idiosyncratic component of player k’s private benefit
parameter changes her private benefit parameter from αk to αk + ∆αL and leaves the private
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benefit parameters of all other players unchanged; and a FOSD upward shift ∆αG in the global
component of the private benefit parameters changes, for all i ∈ [I], player i’s private benefit
parameter from αi to αi + ∆αG.

The comparative statics results are grouped into two propositions. Results about the signs
of the effects of FOSD upward shifts in idiosyncratic and global parameter components on ex
ante expected equilibrium actions are stated in Proposition 4.6. Results about the variation of
the signs of these effects among affected players are stated in Proposition 4.7.

Proposition 4.6 Let (j, k) ∈ [I]2 with j 6= k.

(1) A FOSD upward shift ∆αL in player k’s idiosyncratic component of the private benefit parameter
strictly increases her ex ante expected equilibrium action; it strictly increases player j’s ex ante
expected equilibrium action if and only if there exists a conductive walk in D from player j to player k
that has a positive intersection with ∆αL.

(2) A FOSD upward shift in the global component of the private benefit parameters strictly increases all
ex ante expected equilibrium actions.

(3) A FOSD upward shift ∆βL in player k’s idiosyncratic component of the private cost parameter strictly
decreases her ex ante expected equilibrium action; it strictly decreases player j’s ex ante expected
equilibrium action if and only if there exists a conductive walk in D from player j to player k that has
a positive intersection with ∆βL.

(4) A FOSD upward shift in the global component of the private cost parameters strictly decreases all ex
ante expected equilibrium actions.

(5) A FOSD upward shift in a player’s idiosyncratic component of the social cost parameter may decrease,
increase, or leave unchanged her and other players’ ex ante expected equilibrium actions; specifically,
a FOSD upward shift ∆γL in player k’s idiosyncratic component of the social cost parameter

(a) strictly decreases (respectively, increases) her ex ante expected equilibrium action if her equilib-
rium strategy x?k ◦ sk is greater (respectively, less) than her social norm ∑n∈[I] āk,n(D)(x?n ◦ sn)

on at least one event on which ∆γL is positive with positive probability and greater than or equal
to (respectively, less than or equal to) her social norm on all other events on which ∆γL is positive
with positive probability;

(b) strictly decreases (respectively, increases) player j’s ex ante expected equilibrium action if
player k’s strategy is greater than or equal to (respectively, less than or equal to) her social
norm on all events on which ∆γL is positive with positive probability and there exists a conduc-
tive walk in D from player j to player k that has a positive (respectively, negative) intersection
with ∆γL(x?k ◦ sk −∑n∈[I] āk,n(D)(x?n ◦ sn));

(c) does not change player j’s ex ante expected equilibrium action if there does not exist a conductive
walk in D from player j to player k that has a positive intersection with ∆γL.

(6) A FOSD upward shift in the global component of the social cost parameters may decrease, increase,
or leave unchanged a player’s ex ante expected equilibrium action. A FOSD upward shift ∆γG in the
global component of the social cost parameters strictly decreases (respectively, increases) player i’s ex
ante expected equilibrium action if all equilibrium strategies are greater than or equal to (respectively,
less than or equal to) their social norms on all events on which∆γG is positive with positive probability
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and player i’s equilibrium strategy is greater (respectively, less) than her social norm on at least one
event on which ∆γG is positive with positive probability.

For the discussion of Proposition 4.6, suppose there is one state of nature (which corresponds
to the case of complete information, where strategies are the same as ex ante expected actions),
player k is an out-neighbor of player j, player k is quasi-isolated, and player j is not quasi-isolated.
Evidently, (j, k) is a conductive walk in D from player j to player k.

First, consider an upward shift in the idiosyncratic component of player k’s private benefit
parameter. The shift creates an imbalance between player k’s marginal private benefit, which
does not vary with action, and her marginal private cost, which increases linearly with action;
specifically, marginal private benefit exceeds marginal private cost. To correct this imbalance,
player k increases her action and therefore her marginal private cost until it equals her marginal
private benefit. The increase in player k’s action increases player j’s social norm, which creates
an imbalance between his marginal private benefit and his marginal cost, the sum of private and
social marginal cost, both of which increase linearly with action. The increase in player j’s social
norm decreases his marginal social cost, so that his marginal cost falls short of his marginal
private benefit. To correct this imbalance, he increases his action.

Second, consider an upward shift in the global component of the private benefit parameters.
As a consequence, all marginal private benefits exceed their marginal costs. To correct this
imbalance, all players increase their actions.

Third, consider an upward shift in the idiosyncratic component of player k’s private cost
parameter. As a result, player k’s marginal private cost, which increases linearly with action, falls
short of her marginal private benefit. To correct this imbalance, player k decreases her action.
The decrease in player k’s action decreases player j’s social norm, which creates an imbalance
between his marginal private benefit and marginal cost; specifically, marginal private benefit
falls short of marginal cost. To correct this imbalance, player j decreases his action.

Fourth, consider an upward shift in the global component of the private cost parameters. As
a consequence, all marginal private benefits fall short of their marginal costs. To correct this
imbalance, all players decrease their actions.

Fifth, consider an upward shift in the idiosyncratic component of player k’s social cost
parameter, so that she is no longer quasi-isolated. As a consequence, player k’s marginal social
cost increases (respectively, decreases) if her action is greater (respectively, less) than her social
norm. To correct the imbalance between her marginal private benefit and marginal cost, she
decreases (respectively, increases) her action. The decrease (respectively, increase) in player k’s
action decreases (respectively, increases) player j’s social norm. To correct the resulting imbalance
between his marginal private benefit and his marginal cost, player j decreases (respectively,
increases) his action.

Sixth, consider an upward shift in the global component of the social cost parameters. As a
consequence, the marginal social costs increase (respectively, decrease) for those players whose
actions are greater (respectively, less) than their social norms. If the signs of the changes in the
marginal social costs vary among players, then the signs of the resulting effects on their actions
may vary also.

Results 5 and 6 of Proposition 4.6 assert that the signs of the effects depend on the structure
of the Bayesian network game; Example C.1 (see Appendix C) elaborates on this dependence.
Moreover, the signs of the effectsmay vary among affected players; Example C.2 (seeAppendix C)
and the example in Section A.2 (see Appendix A) discuss two such cases. The latter example
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shows in addition that the magnitudes of the effects may not decrease with the distance to the
player whose idiosyncratic component of the social cost parameter changes, more specifically,
the magnitudes of the effects may not decrease monotonically along the inverses of walks
connecting players; in other words, there is in general no effect attenuation within the network.
Proposition 4.7 provides a sufficient condition for the signs to be the same among affected players
in case of a FOSD upward shift in a player’s idiosyncratic component of the social cost parameter.

Proposition 4.7 Let ∆γL be a FOSD upward shift in player k’s idiosyncratic component of the social
cost parameter. Suppose Condition 4.4 is satisfied in the Bayesian network games without and with the
shift ∆γL. The signs of the effects of the shift ∆γL on ex ante expected equilibrium actions are the same for
all affected players. If a player other than player k is affected by the shift, then the magnitude of the effect
on her ex ante expected equilibrium action is less than that of player k.

Proposition 4.7 highlights an important difference between the cases of complete and incom-
plete information: while the signs of the effects of a FOSD upward shift in the idiosyncratic
component of a social cost parameter on ex ante expected equilibrium actions are the same for
all affected players in case of complete information, they may vary among affected players in
case of incomplete information. Note that the signs of the effects of a FOSD upward shift in the
global component of the social cost parameters on ex ante expected equilibrium actions may
vary among affected players in case of complete information.

4.2 Changes in the network

The analysis is confined to a particular change in the network: the addition of a single arc, that
is, the addition of a new out-neighbor to a player’s out-neighborhood.

A new arc from player k to player l may decrease, increase, or leave unchanged player k’s
and other players’ ex ante expected equilibrium actions. The signs of the effects depend on the
structure of the Bayesian network game; they are the same for all players who are affected by the
new arc under complete information and may vary among affected players under incomplete
information. These results are stated in more detail in Propositions 4.8 and 4.9.

Proposition 4.8 Let (j, k, l) ∈ [I]3 with j 6= k and k 6= l. Suppose there is no arc in D from player k to
player l, player k is not quasi-isolated, and Condition 4.5 is satisfied. A new arc from player k to player l

(1) strictly decreases (respectively, increases) player k’s ex ante expected equilibrium action if player l’s
strategy x?l ◦ sl is less (respectively, greater) than player k’s social norm ∑n∈[I] āk,n(D)(x?n ◦ sn) on
at least one event on which player k’s social cost parameter γk is positive with positive probability
and less than or equal to (respectively, greater than or equal to) her social norm on all other events on
which her social cost parameter is positive with positive probability;

(2) strictly decreases (respectively, increases) player j’s ex ante expected equilibrium action if player l’s
strategy x?l ◦ sl is less than or equal to (respectively, greater than or equal to) player k’s social
norm ∑n∈[I] āk,n(D)(x?n ◦ sn) on all events on which player k’s social cost parameter γk is positive
with positive probability and there exists a conductive walk in D from player j to player k that has a
negative (respectively, positive) intersection with γk(x?l ◦ sl −∑n∈[I] āk,n(D)(x?n ◦ sn)).

For the discussion of Proposition 4.8, suppose all signals are constant and player k is not quasi-
isolated. Let D+(k, l)denote the network that results from D by adding a newarc fromplayer k to
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player l. Note that x?l ◦ sl ≷ ∑n∈[I] āk,n(D)(x?n ◦ sn) if and only if ∑n∈[I] āk,n(D + (k, l))(x?n ◦ sn) ≷
∑n∈[I] āk,n(D)(x?n ◦ sn).42 A new arc from player k to player l causes a change in player k’s equilib-
rium strategy that is of the same sign as the difference between player l’s strategy x?l ◦ sl (the min-
uend) and player k’s social norm ∑n∈[I] āk,n(D)(x?n ◦ sn) (the subtrahend). Specifically, player k’s
equilibrium strategy decreases (respectively, increases) if her new out-neighbor’s equilibrium
strategy is less (respectively, greater) than the average equilibrium strategies of her current
out-neighbors, that is, her out-neighbors in D; in other words, player k’s equilibrium strategy de-
creases (respectively, increases) if her social norm decreases (respectively, increases) with the ad-
dition of the new out-neighbor, that is, ∑n∈[I] āk,n(D + (k, l))(x?n ◦ sn) < ∑n∈[I] āk,n(D)(x?n ◦ sn).43
Apart from this direct effect, the new arcmay also have an indirect effect on player k’s in-neighbors
and higher-order in-neighbors as it may affect their social norms and in turn their equilibrium
strategies. The indirect effect on other players’ strategies propagates within the network D along
the inverses of walks connecting players if they are not quasi-isolated and player l’s strategy is
different from player k’s social norm.

In the context of criminal networks, if a criminal expands her professional network towards
criminals who are criminally more (respectively, less) active than the average criminal in her
current professional network, then her criminal activity increases (respectively, decreases).

It is interesting to note that a player who is affected by the new arc does not necessarily
conform more to the average behavior of her out-neighbors—in the sense that the social distance
between the player and her out-neighbors decreases—than before the addition of the arc.

Proposition 4.9 Let (k, l) ∈ [I]2 with k 6= l. Suppose there is no arc in D from player k to player l and
Conditions 4.4 and 4.5 are satisfied in D + (k, l). The signs of the effects of a new arc from player k to
player l on ex ante expected equilibrium actions are the same for all players who are affected by the new
arc. If a player other than player k is affected by the new arc, then the magnitude of the effect on her ex
ante expected equilibrium action is less than that of player k.

Similar to Proposition 4.7, Proposition 4.9 highlights a difference between the cases of com-
plete and incomplete information: while the signs of the effects on ex ante expected equilibrium
actions are the same for all players who are affected by the new arc under complete information,
they may vary among affected players under incomplete information. The example in Section A.3
(see Appendix A) illustrates the case where the signs of the effects vary among affected players;
in addition, it shows that the magnitude of the effect of a new arc on ex ante expected equilibrium
actions is in general not monotonically decreasing along the inverses of walks connecting players.

Propositions 4.7 and 4.9 suggest that the variation of ex ante expected equilibrium actions
caused by exogenous shocks to social cost parameters or to the topology of the network connecting
the players is not larger under incomplete information than under complete information. Less
information may therefore dampen the impact of exogenous shocks at the macro level in terms
of a smaller variation in ex ante expected aggregate equilibrium actions.

42. This equivalence follows from the identity

∑
n∈[I]

āk,n
(

D + (k, l)
)
(x?n ◦ sn)− ∑

n∈[I]
āk,n(D)(x?n ◦ sn) =

1
deg+D(k) + 1

(
x?l ◦ sl − ∑

n∈[I]
āk,n(D)(x?n ◦ sn)

)
.

43. Note that both social norms ∑n∈[I] āk,n(D + (k, l))(x?n ◦ sn) and ∑n∈[I] āk,n(D)(x?n ◦ sn) are with respect to the
BNE (x?1 , . . . , x?I ) in the Bayesian network game B where the players are connected by the network D.
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5 Policy analysis

Consider a central planner who knows the structure of the Bayesian network game B and
whose sole objective is to decrease to a degree ex ante expected aggregate equilibrium actions
(hereinafter referred to as ex ante expected aggregate action) as, for example, in the context of
crime.

The discussion is structured as follows. Section 5.1 assess the effectiveness of policy instru-
ments to decrease ex ante expected aggregate action. Section 5.2 studies optimal targeting by
comparing two alternative policies: targeting a single player and targeting all players.

5.1 Effective policy instruments

A policy instrument is called effective if there exists a monotone relation between the instrument
and ex ante expected aggregate action regardless of the structure of B. The payoff parameters
and the size or density of the network connecting the players are potential candidates for effective
policy instruments.

Payoff parameters

Regardless of the structure of B, ex ante expected aggregate action is strictly increasing in the
idiosyncratic component of a player’s private benefit parameter and the global component of
the private benefit parameters (Results 1 and 2 of Proposition 4.6) and strictly decreasing in the
idiosyncratic component of a player’s private cost parameter and the global component of the
private cost parameters (Results 3 and 4 of Proposition 4.6). Ex ante expected aggregate action
is in general not monotone in the idiosyncratic component of a player’s social cost parameter
and the global component of the social cost parameters (Results 5 and 6 of Proposition 4.6);
Example C.1 (see Appendix C) serves as an illustration. These results show that the private
benefit parameters and the private cost parameters are effective policy instruments; the social
cost parameters are, however, not effective policy instruments.

In the context of education, where action is some measure of educational effort like hours
of study time or years of schooling, a policy measure to increase ex ante expected average
or aggregate educational effort consists of raising the private benefits or lowering the private
costs of educational effort; for example, the subsidization of higher institutions corresponds
to a downward shift in the global component of the private cost parameters, scholarships to
low-income students correspond to a downward shift in the idiosyncratic components of their
private cost parameters, and a policy measure to offsets a decline in income during an economic
recession corresponds, for example, to a downward shift in the idiosyncratic components of
the private cost parameters of low-income students, where the changes in the idiosyncratic
components are negative for all states of nature that are associated with an economic recession
and zero for those associated with economic prosperity or growth.

In the context of crime, a policy measure to decrease criminal activity consists of lowering the
private benefits or raising the private costs of criminal activity. The theory of deterrence posits
that the ex ante expected costs of criminal activity increase with the certainty of punishment
(which depends on the probabilities of detection, apprehension, and conviction) and the severity
of punishment (as measured, for example, by the level of fines or the length of prison sentences).
Consider a network of offenders that spreads across several geographical districts (for example,
police areas) of a jurisdiction. A policy measure that increases the certainty of punishment in
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all districts corresponds to an upward shift in the global component of the offenders’ private
cost parameters, and a measure that increases the certainty in a single district corresponds to an
upward shift in the idiosyncratic component of only those offenders who operate within that
district.

Size or density of network

Ex ante expected aggregate action is in general not monotone in the size or density of the
network D (Proposition 4.8); the Example in Section A.3 (see Appendix A), the graph in the
left panel of Figure A.6 in particular, demonstrates that the size of D is not an effective policy
instrument.44 A policy measure to decrease the size of D could, for example, consist of isolating
a player (or a group of players) from all other players by severing all her (or their) connections
to all other players. In the context of crime, for example, a convicted offender is isolated from
her network of criminal associates if the sentence or probation conditions involve association,
location, or residence restrictions.

5.2 Optimal targeting

We study optimal targeting by comparing two alternative policies that are defined with respect
to either of two effective policy instruments: the private benefit parameters or the private cost
parameters.

Policies with respect to private benefit parameters

The two defining elements of a policy with respect to the private benefit parameters are: a set
of players called targets and a FOSD downward shift in the private benefit parameters of the
targets. The set of targets consists either of a single player, in which case the policy is called a key
player policy, or all players, in which case the policy is called a global policy. A FOSD downward
shift is modelled by a nonpositive random variable on the probability space (Ω,S, P) that is
negative with positive probability. A FOSD downward shift ∆α is called α-admissible (in B) if for
all i ∈ [I], αi + ∆α > 0. Both elements defining a policy are publicly announced by the central
planner and, therefore, common knowledge among the players.

A key player policy (with respect to the private benefit parameters) is defined with reference
to the following key player problem (KPP for short), which is abbreviated to KPP-α.45

Definition 5.1 (KPP-α) Find the player (in B) for which a given α-admissible FOSD down-
ward shift in her private benefit parameter results in the maximal decrease of ex ante expected
aggregate action.

Let KPP-α(∆α) denote the KPP-α with α-admissible FOSD downward shift ∆α. Note that its
solution set, that is, the players who solve the KPP-α(∆α), is not empty but not necessarily a
singleton. A player in the solution set of the KPP-α(∆α) is called a key player of the KPP-α(∆α).

44. The density of a network of order I is defined as the ratio of its size, that is, the number of its arcs, to the
maximum number of its arcs, I(I − 1).
45. The selection or identification of a player (or a group of players) that minimizes or maximizes a certain objective

function is an important aspect in network analysis, which is subsumed under the term key player (or key group)
analysis. See Zenou (2016) for a comprehensive survey of the economics literature on the identification of key players
in networks.
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A key player policy (with respect to the private benefit parameters) consists of an α-ad-
missible FOSD downward shift ∆αL in the private benefit parameter of a single key player of
the KPP-α(∆αL). A global policy (with respect to the private benefit parameters) consists of
an α-admissible FOSD downward shift ∆αG in all private benefit parameters. A key player
policy with α-admissible FOSD downward shift ∆αL and a global policy with α-admissible FOSD
downward shift ∆αG are called comparable if they satisfy the equality E(∆αG) = (1/I)E(∆αL),
which can be regarded as representing the central planner’s binding budget constraint. One of
two such comparable policies is called weakly superior (respectively, strictly superior) to the other
if it decreases ex ante expected aggregate action not less (respectively, more) than the other.
Note that the shifts ∆αL and ∆αG of two comparable policies need not satisfy ∆αG = (1/I)∆αL;
for example, ∆αL may be negative at a state of nature at which ∆αG is zero.

A key player policy (with respect to the private benefit parameters) is in general neither
weakly nor strictly superior to a comparable global policy (with respect to the private benefit
parameters), and vice versa. Proposition 5.2 states sufficient conditions for a key player policy to
be weakly or strictly superior to a comparable global policy.

Proposition 5.2 Suppose ∆αG = (1/I)∆αL a.s. or all signals are completely uninformative about ∆αL

and ∆αG. A key player policy with α-admissible FOSD downward shift ∆αL is weakly superior to a
comparable global policy with α-admissible FOSD downward shift ∆αG. If the number of key players of
the KPP-α(∆αL) is less than I, then a key player policy is strictly superior to a comparable global policy.

Targeting a key player is weakly superior to targeting all players in case of complete informa-
tion (which is covered by the case of uninformative signals), irrespective of how the shifts in
the policy instruments are designed by the central planner—their magnitudes may, for example,
depend on the economic cycle in different ways.46 Targeting a key player is weakly superior to
targeting all players in case of incomplete information if the shifts are constant a.s. (which is
covered by the case where ∆αG = (1/I)∆αL a.s.).47

Policies with respect to private cost parameters

A key player policy (with respect to the private cost parameters) is defined with reference to the
following key player problem, which is abbreviated to KPP-β.

Definition 5.3 (KPP-β) Find the player (in B) for which a given FOSD upward shift in her
private cost parameter results in the maximal decrease of ex ante expected aggregate action.

A key player policy (with respect to the private cost parameters) consists of a FOSD upward
shift ∆βL in the private cost parameter of a single key player of the related KPP-β. A global policy
(with respect to the private cost parameters) consists of a FOSD upward shift ∆βG in all private
cost parameters. A key player policy with FOSD upward shift ∆βL and a global policy with FOSD
upward shift ∆βG are called comparable if they satisfy the equality E(∆βG) = (1/I)E(∆βL).

A key player policy with FOSD upward shift ∆βL is in general neither weakly nor strictly
superior to a comparable global policy with FOSD upward shift ∆βG, and vice versa, even if

46. If there is only one state of nature, then all signals are constant, in which case they are completely uninformative
about ∆αL and ∆αG.
47. If ∆αL and ∆αG are constant a.s., then E(∆αG) = (1/I)E(∆αL) (which is satisfied by comparable key player

and global policies) is equivalent to ∆αG = (1/I)∆αL a.s.
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∆βG = (1/I)∆βL a.s. or all signals are completely uninformative about ∆βL and ∆βG (cf. Propo-
sition 5.2). The superiority of one policy over the other depends on the two shifts in the policy
instrument, their magnitudes in particular, and the structure of the Bayesian network game B;
the Example in Section A.4 (see Appendix A) serves as an illustration. In the context of crime
where the policy instrument is, for example, the probability or severity of punishment, a key
player policy may be strictly superior to a comparable global policy if and only if the shifts in the
policy instrument are below certain thresholds.

6 The value of information

A discussion of the value of information must answer two questions; namely, how information
is defined and how its value is measured. Section 6.1 addresses the first question. Apart from
defining information, it also introduces a measure of information, referred to as informativeness,
which proves useful in the statement of formal results. Section 6.2 addresses the second question
and details on the relation between the measure of information and the quantity representing
the value of information. Drawing on the notation and vocabulary introduced in Section 6.1 and
the results presented in Section 6.2, Section 6.3 discusses the value of private information and
Section 6.4 the value of public information.

6.1 Informativeness of signal about payoff parameter

A player’s signal induces a partition of the state space, which represents her information about
the true state of nature (Radner 1968; Marschak and Radner 1972). The finer the partition of the
state space, the more information is carried by the signal inducing the partition. For countable
partitions, a finer partition generates a larger (in terms of set inclusion) σ-field, and a larger
σ-field comes from a finer partition (Hervés-Beloso and Klinger Monteiro 2013, Propositions
1 and 4). A player’s information can, therefore, be equivalently represented by the partition
induced by her signal or the σ-field generated by her signal.48 In the following, the informational
content of a signal is represented by the σ-field it generates. The higher the informational content
of a signal in terms of the largeness of the σ-field it generates, the greater the variability of
the conditional expectation of a payoff parameter given the signal. A natural measure for the
informational content of a signal about a payoff parameter is, therefore, the variance of the
conditional expectation of the payoff parameter given the signal, which is referred to as the
informativeness of the signal about the payoff parameter.

As an illustration, consider player i and the payoff parameter αi. Suppose the private benefit
parameter αi is not constant, for example, suppose it assumes three different values with equal
probability, θα,low, θα,high, and θα,mid := (1/2)(θα,low + θα,high), so that

E(αi) = θα,mid and var(αi) =
(θα,low − θα,mid)

2 + (θα,high − θα,mid)
2

3
> 0.

Let us consider two extreme cases. First, suppose player i’s signal si is completely uninformative
about αi, that is, αi and si are stochastically independent. The best predictor (in terms of mean
squared prediction error) of αi that is function of si is therefore its mean: E(αi | si) = E(αi); it is
constant across all states of nature because the signal conveys no information about the private

48. The σ-field generated by a signal is equal to the σ-field generated by the partition induced by the signal.
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benefit parameter—it is essentially useless in predicting the value of the private benefit parameter
at the true but unobservable state of nature. It follows that the variance of E(αi | si) is zero and,
therefore, minimal: var(E(αi | si)) = var(E(αi)) = 0. Second, suppose player i’s signal si is
completely informative about αi, that is, αi = f (si) for some nonconstant function f : R3 → R++.
The best predictor of αi is therefore αi itself: E(αi | si) = E( f (si) | si) = f (si) = αi; in other words,
the player observes the value of the private benefit parameter at the true state of nature because
she observes the value of her signal. It follows that the variance ofE(αi | si) is equal to the variance
of αi and, therefore, maximal (see Lemma 6.2 below): var(E(αi | si)) = var(αi). Between these
two extreme cases, var(E(αi | si)) lies between 0 and var(αi). The larger var(E(αi | si)), that is,
the closer var(E(αi | si)) is to var(αi), the more informative is the signal si about the private
benefit parameter αi. The quantity var(E(αi | si)) is therefore a measure of the informativeness
of si about αi. Intuition suggests that player i will favor the second extreme case over the first
when confronted with the choice between the two alternatives, that is, to be informed is better
than being uninformed about the value of the private benefit parameter at the true state of nature.
As will be shown below (see, in particular, Example 6.7 in Section 6.3), this is, however, in general
not true.

To make the preceding observations more precise and state results, we introduce some
notation and terminology. For all i ∈ [I], let s̃i := (s̃i,α, s̃i,β, s̃i,γ) : Ω→ R3 denote an alternative
to player i’s signal si, specifically, s̃i is a random 3-vector on the probability space (Ω,S, P) that
has a finite support. The signal s̃i is called more informative than the signal si if σ(si) 6= σ(s̃i)

and σ(si) ⊂ σ(s̃i). An I-tuple of finite σ-fields on Ω is called information structure. Let σ :=
(σ(s1), . . . , σ(sI)) and σ̃ := (σ(s̃1), . . . , σ(s̃I)). The information structure σ̃ is called partially more
informative for player i than the information structure σ if σ(si) 6= σ(s̃i) and σ(si) ⊂ σ(s̃i) and for
all j ∈ [I] \ {i}, σ(sj) = σ(s̃j). The information structure σ̃ is called totally more informative than
the information structure σ if for all i ∈ [I], σ(si) 6= σ(s̃i) and σ(si) ⊂ σ(s̃i).49

Definition 6.1 The informativeness of the signal si about the payoff parameter πi ∈ {αi, βi, γi} is
defined as var(E(πi | si)) and denoted by I(πi, si).

The informativeness of a player’s signal about a payoff parameter is, by definition, bounded
below by zero. It is bounded above by the variance of the payoff parameter and decreasing
in the distance (in the Hilbert space of square-integrable random variables on the probability
space (Ω,S, P)) between the payoff parameter and the conditional expectation of that parameter
given the signal (Lemma 6.2).

Lemma 6.2 For all πi ∈ {αi, βi, γi}, I(πi, si) = var(πi)− ‖πi −E(πi | si)‖2
2.50

The informativeness of a player’s signal about a payoff parameter is a function of the joint
distribution of the signal and the payoff parameter. It is zero and, therefore, minimal if the
signal is completely uninformative about the payoff parameter. It is equal to the variance of the
payoff parameter and, therefore, maximal if the signal is completely informative about the payoff
parameter. It is increasing in the σ-field generated by the signal (Lemma 6.3).

Lemma 6.3 If σ(si) 6= σ(s̃i) and σ(si) ⊂ σ(s̃i), then for all πi ∈ {αi, βi, γi}, I(πi, si) ≤ I(πi, s̃i).

49. The terminology is suggested by the notions of partial and total derivatives of a function of several variables,
where a partial derivative is defined with respect to one of the variables, with the others held constant, and the total
derivative allows all variables to vary.
50. Note that ‖πi −E(πi | si)‖2 = E((πi −E(πi | si))

2)1/2 is the distance between πi and E(πi | si).
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A change in the informativeness of a player’s signal about a payoff parameter is called
mean-preserving if it does not change the expectation of the payoff parameter. A change is mean-
preserving if it is caused by a change in the signal that induces a coarser or finer partition of the
state space.

6.2 Dependence of ex ante expected equilibrium payoffs on informativeness of signal
about payoff parameter

In the context of the Bayesian network game, ex ante expected equilibrium payoff is a natural
choice for measuring the value of information. Unlike a discussion of numerical examples, a
formal discussion of the value of information calls for analyzing the relation between information
as measured by informativeness and ex ante expected equilibrium payoff. The findings of this
analysis, paired with our understanding of the relation between information and informativeness
(Lemma 6.3), form the basis for discussing the value of information.

The starting point for the analysis is a characterization of ex ante expected equilibrium payoff
in the Bayesian network game B with information structure σ, which is denoted by B(σ). For
all i ∈ [I], player i’s ex ante expected equilibrium payoff in B(σ) is denoted by E(u?

i (σ)) and
given by

E
(
u?

i (σ)
)
=

1
2

E
(
(βi + γi)(x?i ◦ si)

2)− 1
2 ∑

m∈[I]
āi,m(D)2

E
(
γi(x?m ◦ sm)

2)
− ∑

m∈[I]
∑

n∈[m−1]
āi,m(D)āi,n(D)E

(
γi(x?m ◦ sm)(x?n ◦ sn)

)
. (4)

Equation (4) shows that a player’s ex ante expected equilibrium payoff is determined by the
variation of her equilibrium strategy across the states of nature (see the first term on the right-
hand side of equation (4)) and, provided that she is not quasi-isolated, the variations of her
out-neighbors’ equilibrium strategies across the states of nature (see the second term) and
the interdependence of her out-neighbors’ equilibrium strategies (see the third term). The
variation of a player’s equilibrium strategy across the states of nature is in part determined by the
informativenesses of her signal about her payoff parameters. To make this dependence explicit
(see Proposition 6.5 below), we introduce the following condition.

Condition 6.4 (1) For all i ∈ [I], βi and si are stochastically independent.

(2) For all i ∈ [I] and for all (m, n) ∈ ({i} ∪ N+
D (i)) × N+

D (i) with m 6= n, γi, sm, sn are
stochastically independent.

Condition 6.4 (1) is the same as Condition 4.4 (1). Condition 6.4 (2) is stronger than Condi-
tion 4.4 (2) and has two logical consequences: First, a player’s signal is completely uninformative
about her own and her in-neighbors’ social cost parameters. Second, the signals of a player and
her out-neighbors are pairwise stochastically independent, which implies that their equilibrium
strategies are uncorrelated; specifically, for all i ∈ [I] and for all (m, n) ∈ ({i} ∪N+

D (i))×N+
D (i)

with m 6= n, cov(x?m ◦ sm, x?n ◦ sn) = 0. It does, however, not imply that they are unrelated; on
the contrary, they are interdependent because of the network connecting the players; specifically,
if Condition 6.4 is satisfied, then the players’ ex ante expected equilibrium actions are related by
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the following system of equations:

E


x?1 ◦ s1

...
x?I ◦ sI


 =

(
diag

(
E(β)

)
− diag

(
E(γ)

)(
Ā(D)− EI

))−1
E(α). (5)

Proposition 6.5 If Condition 6.4 is satisfied, then for all i ∈ [I],

var(x?i ◦ si) =
I(αi, si)(

E(βi + γi)
)2 .

Proposition 6.5 shows that the variance of a player’s equilibrium strategy is strictly increasing
in the informativeness of her signal about her private benefit parameter if Condition 6.4 is
satisfied. It implies that a player’s equilibrium strategy is constant if her signal is completely
uninformative about her private benefit parameter.

A player’s ex ante expected equilibrium payoff is in general not monotone in the informative-
ness of a player’s signal about a payoff parameter (see Example C.3 in Appendix C for a case
where the dependence is not monotone). Condition 6.4 stipulates conditions that are sufficient
for such monotone dependencies to exist.

Proposition 6.6 Suppose Condition 6.4 is satisfied.

(1) For all i ∈ [I],

E
(
u?

i (σ)
)
=

I(αi, si)

2 E(βi + γi)
− E(γi)

2 ∑
n∈[I]

āi,n(D)2 I(αn, sn)(
E(βn + γn)

)2

+
E(βi + γi)

2
(
E(x?i ◦ si)

)2 − E(γi)

2

(
∑

n∈[I]
āi,n(D)E(x?n ◦ sn)

)2

. (6)

(2) A mean-preserving decrease (respectively, increase) in the informativeness of a player’s signal
about her private benefit parameter strictly decreases (respectively, increases) her ex ante expected
equilibrium payoff and strictly increases (respectively, decreases) an in-neighbor’s ex ante expected
equilibrium payoff if the in-neighbor is not quasi-isolated.

Result 1 of Proposition 6.6 provides details on the relation between a player’s ex ante expected
equilibrium payoff and the informativeness of her signal about her private benefit parameter and
those of her in-neighbors about their private benefit parameters. When interpreting this relation,
it is important to bear in mind that the informativeness of a signal about a payoff parameter
is not per se a parameter but a function of the joint distribution of the signal and the payoff
parameter, and a change in the joint distribution may affect determinants of ex ante expected
equilibrium payoff other than the informativeness, for example, ex ante expected equilibrium
action. It is, therefore, in general not always appropriate to assume a ceteris paribus change in
the informativeness of a player’s signal about a payoff parameter to study its effects on her and
other players’ ex ante expected equilibrium payoffs.

The monotonicities asserted by Result 2 of Proposition 6.6 do not necessarily hold true if the
change in the informativeness is not mean-preserving. The reason for this is that a change in
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the informativeness of a player’s signal about her private benefit parameter changes her and
possibly other players’ ex ante expected equilibrium actions if the change is not mean-preserving
(see the system of equations (5)). The changes in ex ante expected equilibrium actions may in
turn decrease or increase a player’s ex ante expected equilibrium payoff or leave it unchanged
(see the third and the forth terms on the right-hand side of equation (6)).

6.3 The value of private information

To study the value of private information, we increase—ceteris paribus—the informational
content of a player’s signal and analyze its effect on her and other players’ ex ante expected
equilibrium payoffs. More specifically, we consider two Bayesian network games B(σ) and B(σ̃)
that differ only in their information structures σ and σ̃, one of which is partially more informative
for a single player than the other.

More information is in general not beneficial for a player, that is, it may have a positive
value, no value, or a negative value in terms of ex ante expected equilibrium payoff. While the
topology of the network may account for a negative value of more information, as illustrated
by the example in Section A.5.1 (see Appendix A), it is not necessarily the sole cause. Even a
quasi-isolated player, whose equilibrium strategy and ex post expected equilibrium payoff are
given by the formulae in (3), may prefer less information to more information, as illustrated by
Example 6.7.

Example 6.7 Suppose player i is quasi-isolated, her signal in B(σ) is completely uninformative
about αi and βi, and her signal in B(σ̃) is completely informative about αi and βi. It follows that

E
(
u?

i (σ̃)
)
−E

(
u?

i (σ)
)
=

1
2

cov
(

α2
i ,

1
βi

)
, (7)

which is negative (respectively, positive) if αi and βi are positively (respectively, negatively)
correlated. �

General statements about the value of more information are, nonetheless, possible if certain
conditions are met by the structure of the Bayesian network game, including Condition 6.4. The
results are stated in Corollary 6.8.

Corollary 6.8 Suppose Condition 6.4 is satisfied in B(σ) and B(σ̃) and σ̃ is partially more informative
for player i than σ.

(1) E(u?
i (σ̃)) ≥ E(u?

i (σ)).

(2) If player n is an in-neighbor in D of player i and not quasi-isolated, then E(u?
n(σ̃)) ≤ E(u?

n(σ)).

Results 1 and 2 hold true with strict inequalities if I(αi, s̃i) > I(αi, si).

Under the conditions of Corollary 6.8, private information has a positive value to a player
and imposes a negative externality on her in-neighbors if it increases the informativeness of her
signal about her private benefit parameter.
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6.4 The value of public information

To study the value of public information, we supplement the structure of the Bayesian network
game B with a public signal. The resulting network game is called an extension of B, wherein all
players observe the values of their signals and the value of the public signal. The public signal is
a random variable sp : Ω→ R on the probability space (Ω,S, P) that has a finite support; it can
be thought of as constituting the forth component of a player’s signal, so no extra notation is
required.

Let B̄(σ) and B̄(σ̃) denote two extensions of B whose structures are the same except for
their information structures σ and σ̃. An extension of B is strategically equivalent to B if the
public signal in the extension is constant. The information structure σ̃ is totally more informative
than the information structure σ if and only if the public signal in B̄(σ̃) is more informative
than the public signal in B̄(σ). Suppose σ̃ is totally more informative than σ. The difference
between player i’s ex ante expected equilibrium payoffs in B̄(σ̃) and B̄(σ), E(u?

i (σ̃))−E(u?
i (σ)),

represents the value to player i of the informational content of the public signal in B̄(σ̃)—in
other words, the value of public information—if the public signal in B̄(σ) is constant, otherwise
it represents the value of the difference in informational contents of the public signals in B̄(σ̃)
and B̄(σ̃)—in other words, the value of more public information.

Public information or more public information is in general not beneficial for a player, that
is, depending on the structure of the Bayesian network game, it may have a positive value, no
value, or a negative value; see the example in Section A.5.2 in the Appendix for an illustration.

7 Concluding remarks

We develop a network model in which players bear a cost from deviating from the social norm
of their peers and know with uncertainty different parameters of their utility function, such as
the marginal costs and benefits of committing crime. We study how the social environment, and
the idiosyncratic characteristics of the players, affect their equilibrium actions and welfare. One
interesting result is to show that denser networks do not necessary increase agents’ actions and
welfare. We also show that an upward shift in the idiosyncratic component of a given player’s
taste for conformity leads to an increase in this player’s action if her action is greater than that of
her social norm. We also find that, under some conditions, it is optimal for the planner to affect
the payoffs of selected individuals rather than all agents in the network. We finally show that
having more information is not always beneficial to agents and can, in fact, reduce their welfare.

We illustrate all our results in the context of criminal networks in which offenders do not
know with certitude the probability of being caught and the severity of the judges if arrested
and do not want to be different from their peers in terms of criminal activities. It should be clear
that we could use our framework to study other outcomes as long as agents do not know with
certainty the private benefits and costs of their actions, are embedded in a network and pay a
cost from deviating from the social of their peers.

Consider, for example, tax evasion. Individuals who want to tax evade have to decide how
much income they have to declare but do not know the probability of being audited. They are
also strongly influenced by their peers (see, e.g., Alm, Bloomquist, and McKee (2017), Galbiati
and Zanella (2012) and Fortin, Lacroix, and Villeval (2007)). Environment practices such as
recycling can also be another nice application of our model. We know that social norms matter
and that people do know the exact benefit of having pro-environmental behavior (see e.g. Farrow,
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Grolleau, and Ibanez (2017)).
More generally, we believe that our model contributes to the theory of games on networks

with incomplete information and sheds some light on how different policies can be implemented
to increase welfare in different activities. These issues are complex and we hope that more
research will be undertaken in the future.
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A Criminal networks: A formal analysis of Section 2

This appendix provides all the details of the formal analysis of the criminal network game
of Section 2. It is exactly structured as in Section 2. Section A.1 specifies the network game.
Section A.2 discusses comparative statics with respect to social cost parameters and Section A.3
comparative statics with respect to the network. Section A.4 discusses optimal targeting with
respect to private cost parameters. Section A.5 discusses the value of information.

A.1 The Bayesian network game and Nash equilibrium

This section specifies a Bayesian network game, which is denoted by B(D), where the players
have incomplete information about the private cost parameters only.

Suppose I = 4 and the arc set of the network D is equal to {(1, 2), (2, 3), (3, 2), (4, 1), (4, 3)}.
See Figure A.1 for an illustration of D.

1

23

4

Figure A.1 Network D

As regards the probability space (Ω,S, P), suppose Ω is the unit square [0, 1]2,S is the Borel
σ-field on Ω, and P is the uniform distribution on (Ω,S).

To specify the signals and the payoff parameters, the private cost parameters in particular,
for any pair (c1, c2) ∈ {1/4, 3/4}2, letR(c1, c2) denote the square in Ω with center (c1, c2) and
vertical and horizontal sides of length 1/2, that is,

R(c1, c2) :=
{
(ω1, ω2) ∈ Ω

∣∣ |ω1 − c1| ≤ 1/4 and |ω2 − c2| ≤ 1/4
}

.

See Figure A.2 for an illustration ofR(c1, c2) with c1 = c2 = 3/4.
As regards the payoff parameters, for all i ∈ [I], let (ψi,1, ψi,2) ∈ {1/4, 3/4}2, and suppose αi

0 c1 1
0

c2

1

ω1

ω
2

Figure A.2 The squareR(c1, c2) with c1 = c2 = 3/4
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and γi are constant and βi satisfies, for all (ω1, ω2) ∈ Ω,

βi
(
(ω1, ω2)

)
=

{
θβ,low if (ω1, ω2) /∈ R(ψi,1, ψi,2),

θβ,high if (ω1, ω2) ∈ R(ψi,1, ψi,2),

where (θβ,low, θβ,high) ∈ R2
++ with θβ,low < θβ,high.

As regards the signals, for all i ∈ [I], let (ϕi,1, ϕi,2) ∈ {1/4, 3/4}2, and suppose the signal
components si,α and si,γ are constant and the component si,β satisfies, for all (ω1, ω2) ∈ Ω,

si,β
(
(ω1, ω2)

)
=

{
θβ,low if (ω1, ω2) /∈ R(ϕi,1, ϕi,2),

θβ,high if (ω1, ω2) ∈ R(ϕi,1, ϕi,2).

Suppose the signals have a common support Θ. It follows that Θ = {θ1, θ2} with

θ1 :=

 θα

θβ,low
θγ

 and θ2 :=

 θα

θβ,high
θγ


for some (θβ, θγ) ∈ R2.

The assumptions about the signals and payoff parameters imply that for all i ∈ [I], E(αi | si) =

E(αi), E(γi | si) = E(γi), and

E(βi | si) = E(βi | si,β) = θβ,high −
4qi

3
(θβ,high − θβ,low) +

16qi − 9
3

(si,β − θβ,low),

where

qi := P(βi = θβ,low, si,β = θβ,low) =


1
2

if (ϕi,1, ϕi,2) 6= (ψi,1, ψi,2),

3
4

if (ϕi,1, ϕi,2) = (ψi,1, ψi,2).

The Bayesian network game B(D) has a unique and interior BNE in pure strategies (Proposi-
tion B.1), which is denoted by (x?1(D), . . . , x?4(D)) and represented by the (column) vector

x?Θ(D) :=



x?1(D)(θ1)

x?1(D)(θ2)

x?2(D)(θ1)

x?2(D)(θ2)

x?3(D)(θ1)

x?3(D)(θ2)

x?4(D)(θ1)

x?4(D)(θ2)


.

Player i’s ex ante expected equilibrium action in B(D) is given by

E
(
x?i (D) ◦ si

)
=

3
4

x?i (D)(θ1) +
1
4

x?i (D)(θ2).

The social distance between player i and her out-neighbors at the BNE in B(D), which is referred

3



β1 β2 β3 β4

s1,β s2,β s3,β s4,β

Figure A.3 Private cost parameters (top panels) and signal components (bottom panels)

to as the equilibrium social distance in B(D) between player i and her out-neighbors, is denoted by

d?i (D)(s1, s2, s3, s4) :=
∣∣∣x?i (D) ◦ si − ∑

n∈[I]
āi,n(D)

(
x?n(D) ◦ sn

)∣∣∣.
Suppose θβ,low = 1/2, θβ,high = 3/2, E(α1) = E(α2) = E(α3) = E(α4) = 1, E(γ1) =

E(γ2) = 1/2, E(γ3) = E(γ4) = 1/3, (ϕ1,1, ϕ1,2) = (ϕ2,1, ϕ2,2) = (ψ1,1, ψ1,2) = (3/4, 3/4),
(ϕ3,1, ϕ3,2) = (ϕ4,1, ϕ4,2) = (ψ2,1, ψ2,2) = (ψ3,1, ψ3,2) = (1/4, 3/4), and (ψ4,1, ψ4,2) = (3/4, 1/4).
The squares that define the private cost parameters and the signals are depicted in the top and
bottom panels of Figure A.3, respectively; therein, the white area is the set of states of nature
on which βi (respectively, si,β) is equal to θβ,low, and the area shaded in dark gray is the set on
which βi (respectively, si,β) is equal to θβ,high.

The assumption about the structure of B(D) carries several implications worth mentioning.
First, for all i ∈ [I], si,β reveals the value of βi on the event {si,β = θβ,high}, that is, player i knows
the value of her private cost parameter on the event of a high signal component value. Second,
for all i ∈ {1, 3}, si,β reveals the value of βi because si,β = βi Third, the joint distribution of the
signals s1, s2, s3, s4 is given by, for all (t1, t2, t3, t4) ∈ {1, 2}4,

P(s1 = θt1 , s2 = θt2 , s3 = θt3 , s4 = θt4) =


1
4

if (t1, t2, t3, t4) ∈ T ,

0 else,

where T := {(1, 1, 1, 1), (2, 1, 1, 1), (1, 1, 1, 2), (1, 2, 2, 1)}, from which it follows that the ex ante
expected equilibrium social distance between player i and her out-neighbors in B(D) is given by

E
(
d?i (D)(s1, s2, s3, s4)

)
=

d?i (D)(θ1, θ1, θ1, θ1)

4
+

d?i (D)(θ2, θ1, θ1, θ1)

4

+
d?i (D)(θ1, θ1, θ1, θ2)

4
+

d?i (D)(θ1, θ2, θ2, θ1)

4
.

4



Table A.1 Changes in ex ante expected equilibrium actions from shifts in idiosyncratic components of
social cost parameters

∆γL = −5/12 ∆γL = −1/4

k = 1 k = 2 k = 1 k = 2

E(∆x?1(D, k) ◦ s1) 0.1219 0.0030 0.0541 −0.0014
E(∆x?2(D, k) ◦ s2) 0 −0.0149 0 −0.0141
E(∆x?3(D, k) ◦ s3) 0 −0.0299 0 −0.0172
E(∆x?4(D, k) ◦ s4) 0.0204 −0.0045 0.0091 −0.0031

Note: Real numbers in decimal notation are rounded to four decimal places.

Table A.2 Changes in ex ante expected equilibrium actions from shifts in the global component of social
cost parameters

∆γG = −5/48 ∆γG = −1/16

E(∆x?1(D, [I]) ◦ s1) 0.0203 0.0116
E(∆x?2(D, [I]) ◦ s2) 0.0029 0.0017
E(∆x?3(D, [I]) ◦ s3) 0.0271 0.0152
E(∆x?4(D, [I]) ◦ s4) −0.0003 0.0001

Note: Real numbers in decimal notation are rounded to four
decimal places.

A.2 Effects of changes in the social cost parameters

This section discusses the effects of a downward shift in the idiosyncratic component of a player’s
social cost parameter or the global component of the social cost parameters on ex ante expected
equilibrium actions in the Bayesian network game B(D) of Section A.1. The discussion shows
for both types of shifts that the signs of the effects can vary among affected players. Moreover, it
shows for shifts in idiosyncratic components that the magnitudes of the effects may not decrease
with the distance to the player who is the source of the change, more specifically, the magnitudes
of the effects may not decrease monotonically along the inverses of walks connecting players; in
other words, there is in general no effect attenuation within the network.

Let ∆γL be a negative constant. For all k ∈ {1, 2}, let (∆x?1(D, k), . . . , ∆x?4(D, k)) denote the
profile of changes in equilibrium strategies inB(D) that result from the downward shift∆γL in the
idiosyncratic component of player k’s social cost parameter, and let (∆x?1(D, [I]), . . . , ∆x?4(D, [I]))
denote the profile of changes in the equilibrium strategies in B(D) that result from the downward
shift ∆γG := (1/4)∆γL in the global component of the social cost parameters.

The changes in ex ante expected equilibrium actions resulting from the downward shifts
with ∆γL = −5/12 and ∆γL = −1/4 (and, therefore, ∆γG = −5/48 and ∆γG = −1/16) are
displayed in Tables A.1 and A.2.

First, we discuss the changes associatedwith a downward shift in the idiosyncratic component
of player 1’s social cost parameter. Players 2 and 3 are not affected by the shift because they are
not in-neighbors or higher-order in-neighbors of player 1. For both shifts ∆γL = −5/12 and
∆γL = −1/4, the sign of the change is the same for all affected players, that is, players 1 and 4,
and the magnitude of the change is strictly decreasing along the inverse of the walk from player 4
to player 1.

Second, we discuss the changes associated with a downward shift in the idiosyncratic com-

5



1

23

4

D1

1

23

4

D2

1

23

4

D3

1

23

4

D4

Figure A.4 Evolution of network over time

ponent of player 2’s social cost parameter. The signs of the changes associated with the shift
∆γL = −5/12 vary among the players, whereas those associated with the shift ∆γL = −1/4 are
the same for all players. The magnitude of the change is not monotonically decreasing along
the inverses of the walks (4, 1, 2) and (4, 3, 2); specifically, for both shifts ∆γL = −5/12 and
∆γL = −1/4, ∣∣E(∆x?4(D, 2) ◦ s4

)∣∣ > ∣∣E(∆x?1(D, 2) ◦ s1
)∣∣ < ∣∣E(∆x?2(D, 2) ◦ s2

)∣∣
and ∣∣E(∆x?4(D, 2) ◦ s4

)∣∣ < ∣∣E(∆x?3(D, 2) ◦ s3
)∣∣ > ∣∣E(∆x?2(D, 2) ◦ s2

)∣∣.
This shows that there is in general no effect attenuation within the network; specifically, the
magnitude of the change does not decrease with the distance to the player who is the source of
the change.

Third, we discuss the changes associated with a downward shift in the global component of
the social cost parameters. The signs of the changes associated with the shift ∆γG = −5/48 vary
among the players, whereas those associated with the shift ∆γG = −1/16 are the same for all
players.

A.3 Effects of changes in the network

This section discusses changes in the network and their effects on equilibrium strategies and ex
ante expected equilibrium actions, equilibrium social distances, equilibrium payoffs, aggregate
equilibrium actions, and equilibrium welfare in the Bayesian network game B(D) of Section A.1.
The discussion shows in particular that the signs of the effects of a new arc on ex ante expected
equilibrium actions can vary among affected players under incomplete information. In addition,
it shows that the magnitude of the effect on ex ante expected equilibrium actions is in general
not monotonically decreasing along the inverses of walks connecting players.

Let D1 := D, D2 := D1 + (2, 1), D3 := D2 + (3, 4), and D4 := D3 + (4, 2).1 See Figure A.4 for
an illustration of the networks D1 to D4. The finite sequence of networks (D1, . . . , D4) may be
interpreted as the evolution of the network D over four periods of time: the network D is given
by D1 in period 1; in period 2, player 2 forms an arc to player 1, which results in the network D2;
in period 3, player 3 forms an arc to player 4, which results in the network D3; finally, in period 4,
player 4 forms an arc to player 2, which results in the network D4.

The players’ equilibrium strategies and ex ante expected equilibrium actions are given by (all

1. For any network K on [I] and any (i, j) ∈ [I]2 with i 6= j, K + (i, j) denotes the network on [I] that results from K
by adding the arc (i, j) to the arc set of K, A(K), that is, K + (i, j) := ([I],A(K) ∪ {(i, j)}).

6



real numbers in decimal notation with more than one digit after the decimal mark are rounded
to five decimal places)

x?Θ(D1) =



1.70392
0.85294
1.41176
1.4
1.76471
0.8
1.26620
1.89373


, x?Θ(D2) =



1.72126
0.83578
1.34313
1.64128
1.73725
0.84387
1.26651
1.89170


,

x?Θ(D3) =



1.72161
0.83712
1.34850
1.63268
1.76521
0.80912
1.26761
1.89736


, x?Θ(D4) =



1.72136
0.83694
1.34777
1.63263
1.76155
0.80914
1.26794
1.84409


and 

E
(

x?1(D1) ◦ s1
)

E
(

x?2(D1) ◦ s2
)

E
(

x?3(D1) ◦ s3
)

E
(

x?4(D1) ◦ s4
)
 =


1.49118
1.40882
1.52353
1.42308

 ,


E
(
x?1(D2) ◦ s1

)
E
(
x?2(D2) ◦ s2

)
E
(
x?3(D2) ◦ s3

)
E
(
x?4(D2) ◦ s4

)
 =


1.49989
1.41767
1.51391
1.42281

 ,


E
(

x?1(D3) ◦ s1
)

E
(

x?2(D3) ◦ s2
)

E
(

x?3(D3) ◦ s3
)

E
(

x?4(D3) ◦ s4
)
 =


1.50049
1.41954
1.52618
1.42505

 ,


E
(
x?1(D4) ◦ s1

)
E
(
x?2(D4) ◦ s2

)
E
(
x?3(D4) ◦ s3

)
E
(
x?4(D4) ◦ s4

)
 =


1.50026
1.41898
1.52345
1.41198

 .

The graphs of the players’ equilibrium strategies at θ1 and θ2 and of their ex ante expected
equilibrium actions in B(Dτ) as functions of τ are displayed in the first three block columns of
Figure A.5. First, note that the signs of the effects of a new arc on equilibrium strategies vary
among the players for some networks; for example, x?1(D1)(θ1) < x?1(D2)(θ1) and x?2(D1)(θ1) >

x?2(D2)(θ1). Second, note that the signs of the effects of a new arc on ex ante expected equilibrium
actions are not the same for all players; for example, E(x?2(D1) ◦ s2) < E(x?2(D2) ◦ s2) and
E(x?3(D1) ◦ s3) > E(x?3(D2) ◦ s3). Third, note that the magnitude of the effect of a new arc on ex
ante expected equilibrium action is in general not monotonically decreasing along the inverse
of a walk connecting players, where the walk’s terminal vertex is the tail of the new arc; for
example, player 3 forms an arc to player 4 in period 3 and (4, 1, 2, 3) is a walk in D3 with

|E(x?4(D3) ◦ s4)−E(x?4(D2) ◦ s4)| > |E(x?1(D3) ◦ s1)−E(x?1(D2) ◦ s1)|
< |E(x?2(D3) ◦ s2)−E(x?2(D2) ◦ s2)| < |E(x?3(D3) ◦ s3)−E(x?3(D2) ◦ s3)|.

The graphs of ex ante expected equilibrium social distances between the players and their
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Figure A.6 Ex ante expected aggregate equilibrium actions (left panel) and equilibrium welfare (right
panel) in B(Dτ) for τ ∈ {1, . . . , 4}

out-neighbors and ex ante expected equilibrium payoffs in B(Dτ) as functions of τ are displayed
in the forth and fifth block columns of Figure A.5. Note that ex ante expected equilibrium
payoff increases by design for players who form a new arc; specifically, E(u?

2(D2)) > E(u?
2(D1)),

E(u?
3(D3)) > E(u?

3(D2)), and E(u?
4(D4)) > E(u?

4(D3)).2
The graphs of ex ante expected aggregate equilibrium actions and ex ante expected equilib-

rium welfare in B(Dτ) as functions of τ are displayed in Figure A.6. Note that ex ante expected
aggregate equilibrium actions is not monotone in the density of the network Dτ, which is equal
to (4 + τ)/12.3

A.4 Optimal targeting

This section discusses optimal targetingwith respect to the private cost parameters in the Bayesian
network games B(D1) and B(D4) of Section A.3. The discussion shows that a key player policy
is in general not strictly superior to a comparable global policy, and vice versa.

Let∆βL be a constant upward shift, and let∆βG be defined as (1/4)∆βL. Evidently, E(∆βG) =

(1/4)E(∆βL). For all τ ∈ {1, 4}, let (∆x?1(Dτ, [I]), . . . , ∆x?4(Dτ, [I])) denote the profile of changes
in equilibrium strategies in B(Dτ) that result from the upward shift ∆βG in all private cost
parameters, and for all k ∈ [I], let (∆x?1(Dτ, k), . . . , ∆x?4(Dτ, k)) denote the profile of changes in
equilibrium strategies in B(Dτ) that result from the upward shift ∆βL in player k’s private cost
parameter.

The changes in ex ante expected aggregate action resulting from two upward shifts with
E(∆βL) = 2/3 and E(∆βL) = 5/6 are displayed in Table A.3. For both values of E(∆βL), player 3
is the single key player of the corresponding KPP-β in B(D1), and player 2 is the single key
player of the corresponding KPP-β in B(D4). If E(∆βL) = 2/3, then the key player policy is
strictly superior to the global policy in B(D1) because

∑
i∈[I]

E
(
∆x?i (D1, 3) ◦ si

)
= −1.213 < −1.182 = ∑

i∈[I]
E
(
∆x?i (D1, [I]) ◦ si

)
,

2. Given the tail of a new arc, its head maximizes the tail player’s ex ante expected equilibrium payoff; specifically,
for all τ ∈ {2, 3, 4}, given player kτ (with k2 = 2, k3 = 3, and k4 = 4), the new arc (kτ , l?τ) maximizes player kτ ’s ex
ante expected equilibrium payoff:

l?τ = arg max
lτ∈[I]\{m∈[I]|(kτ ,m)∈A(Dτ−1)}

E
(
u?

kτ

(
B
(

Dτ−1 + (kτ , lτ)
)))

.

3. The density of a network of order I is defined as the ratio of the number of its arcs to the maximum number of
its arcs, I(I − 1).

9



Table A.3 Changes in ex ante expected aggregate action

E(∆βL) = 2/3 E(∆βL) = 5/6

τ = 1 τ = 4 τ = 1 τ = 4

∑i∈[I] E(∆x?i (Dτ , 1) ◦ si) −0.655 −0.855 −0.747 −0.969
∑i∈[I] E(∆x?i (Dτ , 2) ◦ si) −1.029 −0.988 −1.173 −1.126
∑i∈[I] E(∆x?i (Dτ , 3) ◦ si) −1.213? −0.958 −1.358 −1.078
∑i∈[I] E(∆x?i (Dτ , 4) ◦ si) −0.556 −0.694 −0.632 −0.788
∑i∈[I] E(∆x?i (Dτ , [I]) ◦ si) −1.182 −1.185? −1.406? −1.409?

Notes: Real numbers in decimal notation are rounded to three decimal places.
Numbers with a star indicate a column minimum.

and the global policy is strictly superior to the key player policy in B(D4) because

∑
i∈[I]

E
(
∆x?i (D4, 2) ◦ si

)
= −0.988 > −1.185 = ∑

i∈[I]
E
(
∆x?i (D4, [I]) ◦ si

)
.

If E(∆βL) = 5/6, then the global policy is strictly superior to the key player policy in B(D1)

and B(D4) because

∑
i∈[I]

E
(
∆x?i (D1, 3) ◦ si

)
= −1.358 > −1.406 = ∑

i∈[I]
E
(
∆x?i (D1, [I]) ◦ si

)
and

∑
i∈[I]

E
(
∆x?i (D4, 2) ◦ si

)
= −1.126 > −1.409 = ∑

i∈[I]
E
(
∆x?i (D4, [I]) ◦ si

)
.

This shows that the superiority of one policy over the other depends on the network and the
magnitudes of the upward shifts in the private cost parameters.

A.5 Value of information

This section discusses the value of more private information and the value of public information
in amodified version of the Bayesian network game of Section A.1. Themodification concerns the
private cost parameters; specifically, for all i ∈ [I], let (ψi,3, ψi,4) ∈ {1/4, 3/4}2 with (ψi,1, ψi,2) 6=
(ψi,3, ψi,4), and suppose βi satisfies, for all (ω1, ω2) ∈ Ω,

βi
(
(ω1, ω2)

)
=


θβ,low if (ω1, ω2) ∈ R(ψi,3, ψi,4),

θβ,mid if (ω1, ω2) /∈ R(ψi,1, ψi,2) ∪R(ψi,3, ψi,4),

θβ,high if (ω1, ω2) ∈ R(ψi,1, ψi,2),

where θβ,mid := (θβ,low + θβ,high)/2.
Suppose θβ,low = 1/2, θβ,high = 3/2, (ψ1,3, ψ1,4) = (ψ2,3, ψ2,4) = (1/4, 1/4), and (ψ3,3, ψ3,4) =

(ψ4,3, ψ4,4) = (3/4, 1/4). The private cost parameters are depicted in the top panels of Figure A.7;
therein, the white area is the set of states of nature on which a private cost parameter is equal
to θβ,low, the area shaded in light gray is the set on which it is equal to θβ,mid, and the area shaded
in dark gray is the set on which it is equal to θβ,high. Note that β1, β2, β3, β4 are identically
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Figure A.7 Private cost parameters and alternative signal components

distributed with expectation θβ,mid = 1.
Let B(σ) denote the Bayesian network game of Section A.1 with the modified private cost

parameters, where σ = (σ(s1), σ(s2), σ(s3), σ(s4)) denotes its information structure (see Sec-
tion 6.1), and let (x?1(σ), x?2(σ), x?3(σ), x?4(σ)) denote the BNE in B(σ).

As regards the parameters defining the structure of B(σ) other than β1, β2, β3, β4, suppose
E(α1) = E(α2) = E(α4) = 1, E(α3) ∈ {2/100, 3/100, 1/3, 1}, E(γ1) = 1/2, E(γ2) = {1/2, 4},
and E(γ3) = E(γ4) = 1/3.

To facilitate comparison, we introduce the notion of normalized informativeness.

Definition A.1 Suppose the payoff parameter πi ∈ {αi, βi, γi} has positive variance. The normal-
ized informativeness of the signal si about πi is defined as var(E(πi | si))/ var(πi) and denoted
by IR(πi, si).

A.5.1 Value of private information

The section is structured as follows. First, we define for each player an alternative signal that is
more informative than her signal. Second, we define for each player an information structure
that is partially more informative for her. Third, we define for each information structure
a corresponding Bayesian network game. Fourth, we calculate the equilibrium strategies in
each network game, with a focus on players 2 and 3. Fifth, we analyze the ex post expected
equilibrium payoffs of players 2 and 3, which form the basis for discussing the value of more
private information.

Alternative signals As in Section 6, the alternative signals are denoted by s̃1, s̃2, s̃3, s̃4. They
have constant first and third components. As regards their second components, for all i ∈ [I], let
(ϕi,3, ϕi,4) ∈ {1/4, 3/4}2 with (ϕi,1, ϕi,2) 6= (ϕi,3, ϕi,4), and let s̃i,β be the simple random variable
on the probability space (Ω,S, P) that is defined by, for all (ω1, ω2) ∈ Ω,

s̃i,β
(
(ω1, ω2)

)
:=


θβ,low if (ω1, ω2) ∈ R(ϕi,3, ϕi,4),

θβ,mid if (ω1, ω2) /∈ R(ϕi,1, ϕi,2) ∪R(ϕi,3, ϕi,4),

θβ,high if (ω1, ω2) ∈ R(ϕi,1, ϕi,2).
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Suppose (ϕ1,3, ϕ1,4) = (1/4, 1/4), (ϕ2,3, ϕ2,4) = (ϕ3,3, ϕ3,4) = (3/4, 1/4), and (ϕ4,3, ϕ4,4) =

(1/4, 3/4). The components s̃1,β, s̃2,β, s̃3,β, s̃4,β are depicted in the bottom panels of Figure A.7;
analogous to the top panels, the white area is the set of states of nature on which a component is
equal to θβ,low, the area shaded in light gray is the set on which it is equal to θβ,mid, and the area
shaded in dark gray is the set on which it is equal to θβ,high. Note that, for all i ∈ [I], s̃i is more
informative than si, that is, σ(si) 6= σ(s̃i) and σ(si) ⊂ σ(s̃i), and βi and si as well as βi and s̃i
are stochastically dependent. Also note that the informational contents of s̃2, s̃3, s̃4 are identical,
that is, σ(s̃2) = σ(s̃3) = σ(s̃4).

Information structures Let

σ̃1 :=
(
σ(s̃1), σ(s2), σ(s3), σ(s4)

)
, σ̃2 :=

(
σ(s1), σ(s̃2), σ(s3), σ(s4)

)
,

σ̃3 :=
(
σ(s1), σ(s2), σ(s̃3), σ(s4)

)
, σ̃4 :=

(
σ(s1), σ(s2), σ(s3), σ(s̃4)

)
.

Evidently, for all i ∈ [I], the information structure σ̃i is partially more informative for player i
than the information structure σ.

For all i ∈ {1, 3, 4}, a change in the information structure from σ to σ̃i increases player i’s
normalized informativeness of her signal about her private cost parameter by one third to its
maximum possible value: IR(βi, si) = 2/3 and IR(βi, s̃i) = 1. A change in the information
structure from σ to σ̃2 does not affect the normalized informativeness of player 2 because
E(β2 | s2) = E(β2 | s̃2) = θβ,mid. This is an example of a signal and an alternative signal that
have the same normalized informativeness about a nonconstant payoff parameter, although the
alternative signal is more informative than the signal and each signal and the payoff parameter
are stochastically dependent: IR(β2, s2) = IR(β2, s̃2) = 0, but β2 is not constant, σ(s2) 6= σ(s̃2)

and σ(s2) ⊂ σ(s̃2), and P(β2 = θβ,high, s2,β = θβ,high) = P(β2 = θβ,high, s̃2,β = θβ,high) = 0 6=
1/16 = P(β2 = θβ,high)P(s2,β = θβ,high) = P(β2 = θβ,high)P(s̃2,β = θβ,high).

Bayesian network games For all i ∈ [I], let B(σ̃i) denote the Bayesian network game that has
the same structure as B(σ), except for its information structure, which is equal to σ̃i, and let
(x?1(σ̃i), x?2(σ̃i), x?3(σ̃i), x?4(σ̃i)) denote the BNE in B(σi).

Equilibrium strategies The equilibrium strategies in B(σ) satisfy the first-order condition,

x?1(σ) ◦ s1 =
E(α1)

E(β1 | s1) + E(γ1)
+

E(γ1)

E(β1 | s1) + E(γ1)
E
(
x?2(σ) ◦ s2

∣∣ s1
)
,

x?2(σ) ◦ s2 =
E(α2)

θβ,mid + E(γ2)
+

E(γ2)

θβ,mid + E(γ2)
E
(
x?3(σ) ◦ s3

∣∣ s2
)
,

x?3(σ) ◦ s3 =
E(α3)

E(β3 | s3) + E(γ3)
+

E(γ3)

E(β3 | s3) + E(γ3)
E
(
x?2(σ) ◦ s2

∣∣ s3
)
,

x?4(σ) ◦ s4 =
E(α4)

E(β4 | s4) + E(γ4)
+

E(γ4)

E(β4 | s4) + E(γ4)

E
(
x?1(σ) ◦ s1 + x?3(σ) ◦ s3

∣∣ s4
)

2
.

The equilibrium strategies of players 2 and 3 in B(σ) are given by

x?2(σ) ◦ s2 =
E(α3)E(γ2) + E(α2)

(
E(β3 | s3) + E(γ3)

)
θβ,mid

(
E(β3 | s3) + E(γ3)

)
+ E(γ2)E(β3 | s3)

,
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x?3(σ) ◦ s3 =
E(α2)E(γ3) + E(α3)

(
θβ,mid + E(γ2)

)
θβ,mid

(
E(β3 | s3) + E(γ3)

)
+ E(γ2)E(β3 | s3)

because s2 = s3 (see Section A.1).4 The equilibrium strategies of players 2 and 3 in B(σ̃1) are
equal to those in B(σ), that is,

x?2(σ̃1) ◦ s2 = x?2(σ) ◦ s2, x?3(σ̃1) ◦ s3 = x?3(σ) ◦ s3,

because players 2 and 3 are not in-neighbors or higher-order in-neighbors of player 1. The
equilibrium strategies in B(σ̃2) are equal to those in B(σ), that is,

x?1(σ̃2) ◦ s1 = x?1(σ) ◦ s1, x?2(σ̃2) ◦ s̃2 = x?2(σ) ◦ s2,

x?3(σ̃2) ◦ s3 = x?3(σ) ◦ s3, x?4(σ̃2) ◦ s4 = x?4(σ) ◦ s4,

because s2 = s3, σ(s2) ⊂ σ(s̃2), and E(β2 | s2) = E(β2 | s̃2) = θβ,mid.5 Although x?2(σ̃2) ◦ s̃2

and x?2(σ) ◦ s2 are equal, strictly speaking, x?2(σ) and x?2(σ̃2) are different strategies because
x?2(σ) has domain {θβ,low, θβ,high} and x?2(σ̃2) has domain {θβ,low, θβ,mid, θβ,high}. The equilibrium
strategies of players 1, 2, and 3 in B(σ̃4) are equal to those in B(σ), that is,

x?1(σ̃4) ◦ s1 = x?1(σ) ◦ s1, x?2(σ̃4) ◦ s2 = x?2(σ) ◦ s2, x?3(σ̃4) ◦ s3 = x?3(σ) ◦ s3,

because players 1, 2, and 3 are not in-neighbors or higher-order in-neighbors of player 4.

Equilibrium payoffs Columns two to five of Table A.4 report relative changes in ex ante
expected equilibrium payoffs under different assumptions about the common structural charac-
teristics of the Bayesian network games B(σ), B(σ̃1), B(σ̃2), B(σ̃3), B(σ̃4).

The results on equilibrium strategies imply that a change in the information structure from σ

to σ̃1 does not affect players 2 and 3, a change in the information structure from σ to σ̃2 does not
affect any player, and a change in the information structure from σ to σ̃4 does not affect players
1, 2, and 3. This explains the zeros in Table A.4.

The following discussion focuses on players 2 and 3. First, we show that, depending on the
values of E(α3) and E(γ2), more information to player 3 has no value, a negative value, or a
positive value to her. Player 3’s ex post expected equilibrium payoff in B(σ) is given by (see, for
example, the proof of formula (4))

E
(
u?

3(σ)
∣∣ s3
)
=

E(β3 | s3) + E(γ3)

2
(
x?3(σ) ◦ s3

)2 − E(γ3)

2
(
x?2(σ) ◦ s2

)2.

According to Taylor’s theorem,

E
(
u?

3(σ)
∣∣ s3
)
= p3,0 + p3,1

(
E(β3 | s3)− θβ,mid

)
+ p3,2

(
E(β3 | s3)− θβ,mid

)2

+O
(
|E(β3 | s3)− θβ,mid|3

)
, (A.1)

4. It follows from s2 = s3 that E(x?2(σ) ◦ s2 | s3) = x?2(σ) ◦ s2 and E(x?3(σ) ◦ s3 | s2) = x?3(σ) ◦ s3.
5. It follows from s2 = s3 and σ(s2) ⊂ σ(s̃2) that E(x?3(σ̃2) ◦ s3 | s̃2) = x?3(σ̃2) ◦ s3.

13



Table
A
.4

Relative
changesin

ex
ante

expected
equilibrium

payoffs

i
E
(u

?i (σ̃
1 ))−

E
(u

?i (σ
))

|E
(u

?i (σ
))|

E
(u

?i (σ̃
2 ))−

E
(u

?i (σ
))

|E
(u

?i (σ
))|

E
(u

?i (σ̃
3 ))−

E
(u

?i (σ
))

|E
(u

?i (σ
))|

E
(u

?i (σ̃
4 ))−

E
(u

?i (σ
))

|E
(u

?i (σ
))|

E
(u

?i (σ̃
))−

E
(u

?i (σ
))

|E
(u

?i (σ
))|

case
E
(α

3 )
=

2/
100

and
E
(γ

2 )
=

4

1
0.0328

0
0.0021

0
0.0349

2
0

0
0.0154

0
0.0267

3
0

0
−

0.0030
0

−
0.0011

4
−

0.0050
0

0.0027
0.0137

0.0169

case
E
(α

3 )
=

3/
100

and
E
(γ

2 )
=

4

1
0.0330

0
0.0023

0
0.0353

2
0

0
0.0155

0
0.0279

3
0

0
0.0007

0
0.0052

4
−

0.0051
0

0.0030
0.0138

0.0174

case
E
(α

3 )
=

1/
3
and

E
(γ

2 )
=

1/
2

1
0.0428

0
0.0007

0
0.0418

2
0

0
0.0003

0
0.0023

3
0

0
0.1701

0
0.2123

4
−

0.0102
0

0.0105
0.0167

0.0249

case
E
(α

3 )
=

1
and

E
(γ

2 )
=

1/
2

1
0.0513

0
−

0.0009
0

0.0449
2

0
0

−
0.0377

0
−

0.0342
3

0
0

0.0570
0

0.0702
4

−
0.0160

0
0.0187

0.0223
0.0364

N
otes:

The
reported

num
bers

are
based

on
the

assum
ption

that
θ

β,low
=

1/
2,

θ
β,high

=
3/

2,
E
(α

1 )
=

E
(α

2 )
=

E
(α

4 )
=

1,
E
(γ

1 )
=

1/
2,

and
E
(γ

3 )
=

E
(γ

4 )
=

1/
3.A

llrealnum
bersin

decim
alnotation

are
rounded

to
fourdecim

alplaces.

14



where p3,0, p3,1, p3,2 are constants that depend on θβ,mid, E(α2), E(α3), E(γ2), E(γ3); specifically,

p3,2 :=
E(α2)E(γ3) + E(α3)

(
θβ,mid + E(γ2)

)
2θ3

β,mid
(
θβ,mid + E(γ2) + E(γ3)

)4

(
n3,2 E(α2)E(γ3) + d3,2 E(α3)

(
θβ,mid + E(γ2)

))
with

n3,2 := θ2
β,mid + E(γ3)θβ,mid + E(γ2)

(
2 E(γ3)−E(γ2)

)
,

d3,2 := θ2
β,mid +

(
2 E(γ2) + E(γ3)

)
θβ,mid + E(γ2)

(
E(γ2) + 4 E(γ3)

)
,

where
p3,2 T 0 ⇔ E(α3)

E(α2)
T −n3,2

d3,2

E(γ3)

θβ,mid + E(γ2)
. (A.2)

Formula (A.1) and equivalence (A.2) suggest that there exist values of E(α3) and E(γ2) such
that more information to player 3 has no value, a negative value, or a positive value to her. Indeed,
if E(γ2) = 4, then there exists a constant µα3 in the interval (0.02, 0.03) such that E(u?

3(σ̃3)) =

E(u?
3(σ)) if E(α3) = µα3 , E(u?

3(σ̃3)) < E(u?
3(σ)) if E(α3) < µα3 (for example, if E(α3) = 2/100,

then (E(u?
3(σ̃3))−E(u?

3(σ)))/|E(u?
3(σ))| = −0.0030), and E(u?

3(σ̃3)) > E(u?
3(σ)) if E(α3) >

µα3 (for example, if E(α3) = 3/100, then (E(u?
3(σ̃3))−E(u?

3(σ)))/|E(u?
3(σ))| = 0.0007). If

E(α3) = 1 and E(γ2) = 1/2 (as in Section A.1), then more information to player 3 has a positive
value to her, specifically, a change from σ to σ̃3 increases her ex ante expected equilibrium payoff
by more than 5 per cent: (E(u?

3(σ̃3))−E(u?
3(σ)))/|E(u?

3(σ))| = 0.0570.
Second, we show that, depending on the values of E(α3) and E(γ2), more information to

player 3 imposes no externality, a negative externality, or a positive externality on player 2.
Player 2’s ex post expected equilibrium payoff in B(σ) is given by

E
(
u?

2(σ)
∣∣ s2
)
=

θβ,mid + E(γ2)

2
(
x?2(σ) ◦ s2

)2 − E(γ2)

2
(
x?3(σ) ◦ s3

)2.

According to Taylor’s theorem,

E
(
u?

2(σ)
∣∣ s2
)
= p2,0 + p2,1

(
E(β3 | s3)− θβ,mid

)
+ p2,2

(
E(β3 | s3)− θβ,mid

)2

+O
(
|E(β3 | s3)− θβ,mid|3

)
, (A.3)

where p2,0, p2,1, p2,2 are constants that depend on θβ,mid, E(α2), E(α3), E(γ2), E(γ3); specifically,

p2,2 :=
E(γ2)

(
θβ,mid + E(γ2)

)(
E(α2)E(γ3) + E(α3)

(
θβ,mid + E(γ2)

))
2θ3

β,mid
(
θβ,mid + E(γ2) + E(γ3)

)4

×
((

2 E(α2)− 3 E(α3)
)(

θβ,mid + E(γ2)
)
−E(α2)E(γ3)

)
where

p2,2 T 0 ⇔ 1
3

(
2− E(γ3)

θβ,mid + E(γ2)

)
T

E(α3)

E(α2)
. (A.4)

Formula (A.3) and equivalence (A.4) suggest that there exist values of E(α3) and E(γ2) such
that more information to player 3 imposes no externality, a negative externality, or a posi-
tive externality on player 2. Indeed, if E(γ2) = 1/2 (as in Section A.1), then there exists

15



Figure A.8 Public signal sp

a constant µα3 in the interval (0.34, 0.35) such that E(u?
2(σ̃3)) = E(u?

2(σ)) if E(α3) = µα3 ,
E(u?

2(σ̃3)) < E(u?
2(σ)) if E(α3) > µα3 (for example, if E(α3) = 1, as in Section A.1, then

(E(u?
2(σ̃3))−E(u?

2(σ)))/|E(u?
2(σ))| = −0.0377), and E(u?

2(σ̃3)) > E(u?
2(σ)) if E(α3) < µα3

(for example, if E(α3) = 1/3, then (E(u?
2(σ̃3))−E(u?

2(σ)))/|E(u?
2(σ))| = 0.0003).

A.5.2 Value of public information

The discussion is structured as follows. First, we define the public signal. Second, we define for
each player a compound signal consisting of the components of her private signal and the public
signal. Third, we define the information structure that corresponds to the compound signals.
Fourth, we define the Bayesian network game corresponding to this information structure. Fifth,
we calculate the equilibrium strategies. Sixth, we discuss the value of public information, with a
focus on players 2 and 3.

Public signal The public signal is the random variable sp : Ω→ R on (Ω,S, P) that is defined
by, for all (ω1, ω2) ∈ Ω,

sp
(
(ω1, ω2)

)
:=


θβ,low if (ω1, ω2) ∈ R(3/4, 1/4),

θβ,mid if (ω1, ω2) /∈ R(1/4, 3/4) ∪R(3/4, 1/4),

θβ,high if (ω1, ω2) ∈ R(1/4, 3/4).

See Figure A.8 for an illustration of sp.

Compound signals Every player observes the values of the components of her private signal
and the value of the public signal. For all i ∈ [I], player i’s compound signal, denoted by sc

i , is
defined by sc

i := (si,α, si,β, si,γ, sp).

Information structure Let σ̃ := (σ(sc
1), σ(sc

2), σ(sc
3), σ(sc

4)). Note that σ̃ is totally more in-
formative than σ, that is, for all i ∈ [I], σ(si) 6= σ(sc

i ) and σ(si) ⊂ σ(sc
i ). Also note that

σ(sc
1) = σ({R(1/4, 1/4),R(1/4, 3/4),R(3/4, 1/4),R(3/4, 3/4)}), and, for all i ∈ {2, 3, 4},

σ(sc
i ) = σ(sp) because si,α and si,γ are constant and σ(si,β) ⊂ σ(sp); specifically, player 1’s

compound signal is more informative than any other player’s compound signal, that is, for
all i ∈ {2, 3, 4}, σ(sc

i ) 6= σ(sc
1) and σ(sc

i ) ⊂ σ(sc
1).

For all i ∈ {1, 3, 4}, public information increases player i’s normalized informativeness
of her signal about her private cost parameter by one third to its maximum possible value:
IR(βi, si) = 2/3 and IR(βi, sc

i ) = 1.6 Public information does not affect player 2’s normalized
informativeness because E(β2 | s2) = E(β2 | sc

2) = θβ,mid: IR(β2, s2) = IR(β2, sc
2) = 0.

6. For all i ∈ {1, 3, 4}, E(βi | sc
i ) = βi.
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Bayesian network game Let B(σ̃) denote the Bayesian network game with the same structure
asB(σ), except for its information structure, which is equal to σ̃. Let (x?1(σ̃), x?2(σ̃), x?3(σ̃), x?4(σ̃))
denote the BNE in B(σ̃).

Equilibrium strategies The equilibrium strategies in B(σ̃) satisfy the first-order condition,

x?1(σ̃) ◦ sc
1 =

E(α1)

β1 + E(γ1)
+

E(γ1)

β1 + E(γ1)
E
(
x?2(σ̃) ◦ sc

2
∣∣ sc

1
)
,

x?2(σ̃) ◦ sc
2 =

E(α2)

θβ,mid + E(γ2)
+

E(γ2)

θβ,mid + E(γ2)
E
(
x?3(σ̃) ◦ sc

3
∣∣ sc

2
)
,

x?3(σ̃) ◦ sc
3 =

E(α3)

β3 + E(γ3)
+

E(γ3)

β3 + E(γ3)
E
(
x?2(σ̃) ◦ sc

2
∣∣ sc

3
)
,

x?4(σ̃) ◦ sc
4 =

E(α4)

β4 + E(γ4)
+

E(γ4)

β4 + E(γ4)

E
(
x?1(σ̃) ◦ sc

1 + x?3(σ̃) ◦ sc
3

∣∣ sc
4

)
2

.

The equilibrium strategies of players 2 and 3 in B(σ̃) are given by

x?2(σ̃) ◦ sc
2 =

E(α3)E(γ2) + E(α2)
(

β3 + E(γ3)
)

θβ,mid
(

β3 + E(γ3)
)
+ E(γ2)β3

,

x?3(σ̃) ◦ sc
3 =

E(α2)E(γ3) + E(α3)
(
θβ,mid + E(γ2)

)
θβ,mid

(
β3 + E(γ3)

)
+ E(γ2)β3

because sc
2 = sc

3. Player 1’s equilibrium strategy in B(σ̃) is given by

x?1(σ̃) ◦ sc
1 =

1
β1 + E(γ1)

(
E(α1) + E(γ1)

E(α3)E(γ2) + E(α2)
(

β3 + E(γ3)
)

θβ,mid
(

β3 + E(γ3)
)
+ E(γ2)β3

)
because σ(sc

2) ⊂ σ(sc
1). Player 4’s equilibrium strategy in B(σ̃) is given by

x?4(σ̃) ◦ sc
4 =

E(α4)

β4 + E(γ4)
+

1
2

E(γ4)

β4 + E(γ4)

E(α2)E(γ3) + E(α3)
(
θβ,mid + E(γ2)

)
θβ,mid

(
β3 + E(γ3)

)
+ E(γ2)β3

+
1
2

E(γ4)

β4 + E(γ4)

(
E(α1) + E(γ1)

E(α3)E(γ2) + E(α2)
(

β3 + E(γ3)
)

θβ,mid
(

β3 + E(γ3)
)
+ E(γ2)β3

)
E

(
1

β1 + E(γ1)

∣∣∣∣ sp

)
because σ(β3) = σ(sc

3) = σ(sc
4) = σ(sp), where

E

(
1

β1 + E(γ1)

∣∣∣∣ sp = θ

)
=


1
2

(
1

θβ,low + E(γ1)
+

1
θβ,high + E(γ1)

)
if θ = θβ,mid,

1
θβ,mid + E(γ1)

else.

Equilibrium payoffs The last column of Table A.4 reports relative changes in ex ante expected
equilibrium payoffs under different assumptions about the common structural characteristics of
the Bayesian network games B(σ) and B(σ̃).

Analogous to the discussion in Section A.5.1, depending on the values of E(α3) and E(γ2),

17



public information has no value, a negative value, or a positive value to players 2 and 3. If
E(γ2) = 4, then there exists a constant µα3 in the interval (0.02, 0.03) such that E(u?

3(σ̃)) =

E(u?
3(σ)) if E(α3) = µα3 , E(u?

3(σ̃)) < E(u?
3(σ)) if E(α3) < µα3 (for example, if E(α3) =

2/100, then (E(u?
3(σ̃))−E(u?

3(σ)))/|E(u?
3(σ))| = −0.0011), and E(u?

3(σ̃)) > E(u?
3(σ)) if

E(α3) > µα3 (for example, if E(α3) = 3/100, then (E(u?
3(σ̃))−E(u?

3(σ)))/|E(u?
3(σ))| =

0.0052). If E(γ2) = 1/2 (as in Section A.1), then there exists a constant µα3 in the interval
(0.41, 0.42) such thatE(u?

2(σ̃)) = E(u?
2(σ)) ifE(α3) = µα3 , E(u?

2(σ̃)) < E(u?
2(σ)) ifE(α3) > µα3

(for example, if E(α3) = 1, as in Section A.1, then (E(u?
2(σ̃))−E(u?

2(σ)))/|E(u?
2(σ))| =

−0.0342), and E(u?
2(σ̃)) > E(u?

2(σ)) if E(α3) < µα3 (for example, if E(α3) = 1/3, then
(E(u?

2(σ̃))−E(u?
2(σ)))/|E(u?

2(σ))| = 0.0023).
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B Existence and uniqueness of the Bayesian Nash equilibrium

A Bayesian Nash equilibrium (BNE for short) in pure strategies in the Bayesian network game B
is a profile (x?1 , . . . , x?I ) ∈ ×i∈[I]R+

Θi such that

∀i ∈ [I] ∀xi ∈ R+
Θi E

(
E
(
ui
(
idΩ, (x?1 ◦ s1, . . . , xi ◦ si, . . . , x?I ◦ sI)

) ∣∣ si
))

≤ E
(
E
(
ui
(
idΩ, (x?1 ◦ s1, . . . , x?i ◦ si, . . . , x?I ◦ sI)

) ∣∣ si
))

.7

A profile (x?1 , . . . , x?I ) is an interior BNE in pure strategies in B if and only if it satisfies three
conditions: the interiority condition, for all i ∈ [I], x?i > 0; the first-order condition, for all i ∈ [I]
and for all q ∈ [|Θi|], the partial derivative of E(ui(idΩ, (x?1 ◦ s1, . . . , x?I ◦ sI)) | si = θi,q) with
respect to x?i (θi,q) is zero, that is,

∀i ∈ [I] ∀q ∈ [|Θi|] x?i (θi,q) =
E(αi | si = θi,q)

E(βi + γi | si = θi,q)

+ ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)

E(βi + γi | si = θi,q)
x?n(θn,r);

and the second-order condition, for all i ∈ [I] and for all q ∈ [|Θi|], the second-order partial
derivative of E(ui(idΩ, (x?1 ◦ s1, . . . , x?I ◦ sI)) | si = θi,q) with respect to x?i (θi,q) is negative.

The Bayesian network game B has a unique and interior BNE in pure strategies (x?1 , . . . , x?I ).
The statement of this result (Proposition B.1), the characterization of the profile (x?1 , . . . , x?I ) in
particular, requires additional notation.

Let x?Θ denote the (column) vector in R
∑ι∈[I]|Θι|
+ that is defined by, for all i ∈ [I] and for all q ∈

[|Θi|], the component in row ∑ι∈[i−1]|Θι|+ q is equal to x?i (θi,q). Note that x?Θ is a representation
of the profile (x?1 , . . . , x?I ). Let D((αι)ι∈[I]) and D((βι + γι)ι∈[I]) denote the diagonal matrices
of orders ∑ι∈[I]|Θι| that are defined by, for all i ∈ [I] and for all q ∈ [|Θi|], the components in
row ∑ι∈[i−1]|Θι|+ q and column ∑ι∈[i−1]|Θι|+ q of the former matrix is equal to E(αi | si = θi,q)

and of the latter matrix is equal to E(βi + γi | si = θi,q). Let B(D, ((βι, γι))ι∈[I]) denote the
square matrix of order ∑ι∈[I]|Θι| that is defined by, for all (i, n) ∈ [I]2 and for all (q, r) ∈
[|Θi|]× [|Θn|], if i 6= n and P(si = θi,q, sn = θn,r) > 0, then the component in row ∑ι∈[i−1]|Θι|+ q
and column ∑ι∈[n−1]|Θι|+ r is equal to

āi,n(D)P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)

E(βi + γi | si = θi,q)
, (B.1)

and else it is zero.8
Having introduced the requisite notation, we state the main result of this section.

Proposition B.1 The Bayesian network game B has a unique and interior BNE in pure strategies

7. The symbol idΩ denotes the identity mapping on Ω.
8. See Appendix D for a product representation of the matrix B(D, ((βι, γι))ι∈[I]) in terms of a so-called beliefs

matrix (involving conditional probabilities, that is, beliefs, of the type P(sn = θn,r | si = θi,q)) and a so-called
predictions matrix (involving conditional expectations, that is, predictions, of the type E(γi | si = θi,q, sn = θn,r) if
P(si = θi,q, sn = θn,r) > 0).
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(x?1 , . . . , x?I ) ∈ ×i∈[I]R+
Θi , which is given by

x?Θ =
(

E∑ι∈[I]|Θι| − B
(

D,
(
(βι, γι)

)
ι∈[I]
))−1

D
(
(βι + γι)ι∈[I]

)−1D
(
(αι)ι∈[I]

)
1∑ι∈[I]|Θι|. (B.2)

Some comments on Proposition B.1 are in order. First, the statement involves no assumptions
about the payoff parameters beyond those made with respect to their signs in Section 3.1. Second,
there exists no BNE where at least one pure strategy assumes a value at the boundary of the
action space. Third, unless a player’s payoff parameters are constant, their values depend on
the state of nature; and because it is unobservable, the player needs to make predictions of their
values based on her signal. The definition of a BNE implies that these predictions are in the form
of conditional expectations, which explains their occurrence in the first-order condition and
formula (B.2). Forth, a player’s equilibrium strategy depends not only on her predictions of her
payoff parameters but possibly also on other players’ predictions of their payoff parameters. Fifth,
the matrix E∑ι∈[I]|Θι| − B(D, ((βι, γι))ι∈[I]) is a nonsingular M-matrix whose inverse is bounded
below by the identity matrix E∑ι∈[I]|Θι| because B(D, ((βι, γι))ι∈[I]) is a nonnegative matrix whose
spectral radius is less than one (Lemma F.4).9 The magnitudes of the positive components
of the inverse of the matrix E∑ι∈[I]|Θι| − B(D, ((βι, γι))ι∈[I]) determine the precise nature of the
aforementioned dependence of a player’s equilibrium strategy on other players’ predictions of
their payoff parameters.10

Proposition B.2 gives sufficient conditions for a symmetric BNE that is constant across the
states of nature. Note that the statement involves no assumption about the players’ predictions
of their social cost parameters. This result is remarkable for it implies that, under the stated
conditions, uncertainty about social cost parameters has no effect on equilibrium strategies
(because they are functionally independent of the social cost parameters).

Proposition B.2 The BNE in pure strategies in B is symmetric and constant across the states of nature
if the players are homogeneous with respect to their predictions of their private benefit and private cost
parameters and these predictions are constant across the states of nature.

It is instructive to state formula (B.2) for the case of constant signals, which covers—but is
not equivalent to—the case of complete information. To this end, let

α :=

α1
...

αI

 , β :=

β1
...

β I

 , γ :=

γ1
...

γI


denote the random I-vectors of the private benefit, private cost, and social cost parameters. For
any random I-vector z : Ω→ RI , let E(z) denote the (column) vector in RI whose component
in row i is equal to the first moment of the ith component of z, and let diag(E(z)) denote the
diagonal matrix of order I whose component in row i and column i is equal to the ith component
of E(z).

9. For the definition of M-matrices see, for example, Berman and Plemmons (1994, Definition 1.2 on p. 133).
10. See Lemma G.1 on page 44 in Appendix G for statements about the components of the inverse of the ma-

trix E∑ι∈[I] |Θι | − B(D, ((βι, γι))ι∈[I]).
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Corollary B.3 If all signals are constant, then

x?Θ =
(

diag
(
E(β)

)
− diag

(
E(γ)

)(
Ā(D)− EI

))−1
E(α). (B.3)

Formula (B.3) characterizes the unique and interior Nash equilibrium in a network game
with complete information that is strategically equivalent to the Bayesian network game B where
the payoff parameters are constant across the states of nature and, therefore, equal to their
expectations: for all i ∈ [I] and for all ω ∈ Ω, αi(ω) = E(αi), βi(ω) = E(βi), γi(ω) = E(γi).
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C Other examples

This appendix contains a collection of examples of the Bayesian network game B that illustrate
terminology, a result, or the absence of a certain property like, for example, a monotone relation.
To economize on notation, some symbols introduced in one example may be redefined in another.

Example C.1

This example illustrates Definitions 4.2 and 4.3 and Results 5 and 6 of Proposition 4.6. It shows
in particular that the signs of the effects of a FOSD upward shift in a player’s idiosyncratic
component of the social cost parameter or in the global component of the social cost parameters
on ex ante expected equilibrium actions and aggregate action depend on the structure of the
Bayesian network game B.

Suppose I = 4 and the arc set of the network D is equal to {(1, 2), (2, 3), (3, 2), (4, 3)}. See
Figure C.1 for an illustration of D.

1 2 3 4

Figure C.1 A network of order 4 (Examples C.1 and C.2)

As regards the probability space (Ω,S, P), suppose Ω is the unit square [0, 1]2,S is the Borel
σ-field on Ω, and P is the uniform distribution on (Ω,S).

To specify the signals and the payoff parameters, the social cost parameters in particular, for
any c ∈ [0, 1], let P1(c) denote the polygon in the unit square with area c that is defined by

P1(c) :=


{
(ω1, ω2) ∈ Ω

∣∣∣ ω1 − c
1− c

≤ ω2 ≤ c + (1− c)ω1

}
if c < 1,

Ω if c = 1.

See Figure C.2 for an illustration of P1(c).
As regards the payoff parameters, for all i ∈ [I], let ψi ∈ [0, 1], and suppose αi and βi are

constant and γi satisfies, for all (ω1, ω2) ∈ Ω,

γi
(
(ω1, ω2)

)
=

{
θγ,low if (ω1, ω2) ∈ P1(ψi),

θγ,high else,

where (θγ,low, θγ,high) ∈ R2
+ with θγ,low < θγ,high.

0 c 1
0

c

1

ω1

ω
2

Figure C.2 The polygon P1(c) (Examples C.1 and C.2)
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P1(ψ1) P1(ψ2) P1(ψ3) P1(ψ4)

P1(ϕ1) P1(ϕ2) P1(ϕ3) P1(ϕ4)

Figure C.3 Poligons (Examples C.1 and C.2)

As regards the signals, for all i ∈ [I], let ϕi ∈ (0, 1), and suppose the signal components si,α
and si,β are constant and the component si,γ satisfies, for all (ω1, ω2) ∈ Ω,

si,γ
(
(ω1, ω2)

)
=

{
θγ,low if (ω1, ω2) ∈ P1(ϕi),

θγ,high else.

Suppose the signals have a common support Θ. It follows that Θ = {θ1, θ2} with

θ1 :=

 θα

θβ

θγ,low

 and θ2 :=

 θα

θβ

θγ,high


for some (θα, θβ) ∈ R2.

Suppose θγ,low = 0, ϕ1 = ϕ4 = ψ2 = 1/4, ϕ2 = ϕ3 = ψ3 = 3/4, and ψ1 = ψ4 = 1/2. It
follows that γ1 = γ4, s1 = s4, and s2 = s3. The polygons that define the social cost parameters
and the signals are depicted in the top and bottom panels of Figure C.3, respectively; therein, the
white area is the set of states of nature on which γi (respectively, si,γ) is equal to θγ,high, and the
area shaded in dark gray is the set on which γi (respectively, si,γ) is equal to θγ,low.

The equilibrium strategies of players 2 and 3 are given by

x?2 ◦ s2 =
E(α2)E(β3) + E(α2)E(γ3 | s3) + E(α3)E(γ2 | s2)

E(β2)E(β3) + E(β2)E(γ3 | s3) + E(β3)E(γ2 | s2)
,

x?3 ◦ s3 =
E(α3)E(β2) + E(α2)E(γ3 | s3) + E(α3)E(γ2 | s2)

E(β2)E(β3) + E(β2)E(γ3 | s3) + E(β3)E(γ2 | s2)
.

Note that
x?2 ◦ s2 T x?3 ◦ s3 ⇔ E(α2)

E(β2)
T

E(α3)

E(β3)
.

Also note that if E(α2)/ E(β2) and E(α3)/ E(β3) are equal, then players 2 and 3 behave not only
identically but as if theywere quasi-isolated: x?2 ◦ s2 = E(α2)/ E(β2) and x?3 ◦ s3 = E(α3)/ E(β3).
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Illustration of Result 5 of Proposition 4.6 Let ∆γL be a FOSD upward shift in player 3’s
idiosyncratic component of the social cost parameter, that is, ∆γL is a nonnegative random
variable on the probability space (Ω,S, P) with P(∆γL > 0) > 0. Suppose the probability that
both events {s3 = θ2} and {∆γL > 0} occur is zero. It follows that the probability that both
events {s3 = θ1} and {∆γL > 0} occur is positive because the family ({s3 = θ1}, {s3 = θ2}) is a
partition of the state space Ω.

First, we analyze the effect on player 3’s ex ante expected equilibrium action. If E(α3)/ E(β3)

is greater (respectively, less) than E(α2)/ E(β2), then player 3’s equilibrium strategy x?3 ◦ s3 is
greater (respectively, less) than her social norm x?2 ◦ s2 on the entire state space Ω and, therefore,
on all events on which ∆γL is positive with positive probability. It follows from Result 5 of
Proposition 4.6 that the FOSD upward shift in player 3’s idiosyncratic component of the social
cost parameter strictly decreases (respectively, increases) her ex ante expected equilibrium action
if E(α3)/ E(β3) is greater (respectively, less) than E(α2)/ E(β2). The FOSD upward shift in
player 3’s idiosyncratic component of the social cost parameter leaves all equilibrium strategies
unchanged if E(α2)/ E(β2) and E(α3)/ E(β3) are equal.

Second, we analyze the effect on player 1’s ex ante expected equilibrium action. There exists
a single walk in D from player 1 to player 3, namely, (1, 2, 3). The walk (1, 2, 3) is conductive
because for all triples (t1, t2, t3) in the set {(2, 1, 1), (2, 2, 2)},

P(γ1 > 0, s1 = θt1 , s2 = θt2) =
1
4
> 0 and P(γ2 > 0, s2 = θt2 , s3 = θt3) =

1
t2 + t3

> 0;

it has two head events, {s3 = θ1} and {s3 = θ2}. If E(α3)/ E(β3) ≷ E(α2)/ E(β2), then

P
(
{s3 = θ1} ∩ {∆γL(x?3 ◦ s3 − x?2 ◦ s2) ≷ 0}

)
= P({s3 = θ1} ∩ {∆γL > 0}) > 0

because x?3 ◦ s3 ≷ x?2 ◦ s2 if E(α3)/ E(β3) ≷ E(α2)/ E(β2). This shows that thewalk (1, 2, 3) has a
positive (respectively, negative) intersectionwith∆γL(x?3 ◦ s3− x?2 ◦ s2) if E(α3)/ E(β3) is greater
(respectively, less) than E(α2)/ E(β2). It follows from Result 5 that the FOSD upward shift in
player 3’s idiosyncratic component of the social cost parameter strictly decreases (respectively,
increases) player 1’s ex ante expected equilibrium action if E(α3)/ E(β3) is greater (respectively,
less) than E(α2)/ E(β2).

Third, we analyze the effect on player 2’s ex ante expected equilibrium action. There exists a
single walk in D from player 2 to player 3, namely, (2, 3). The walk (2, 3) is conductive, has two
head events, {s3 = θ1} and {s3 = θ2}, and has a positive (respectively, negative) intersection
with ∆γL(x?3 ◦ s3 − x?2 ◦ s2) if E(α3)/ E(β3) is greater (respectively, less) than E(α2)/ E(β2). It
follows fromResult 5 of Proposition 4.6 that the FOSDupward shift in player 3’s idiosyncratic com-
ponent of the social cost parameter strictly decreases (respectively, increases) player 2’s ex ante
expected equilibrium action if E(α3)/ E(β3) is greater (respectively, less) than E(α2)/ E(β2).

Fourth, we analyze the effect on player 4’s ex ante expected equilibrium action. There exists
a single walk in D from player 4 to player 3, namely, (4, 3). The walk (4, 3) is conductive because
P(γ4 > 0, s4 = θ2, s3 = θ2) = 1/4 > 0; it has a single head event, {s3 = θ2}. The walk (4, 3) has,
however, not a positive intersection with ∆γL because the probability that both events {s3 = θ2}
and {∆γL > 0} occur is zero. It follows from Result 5 of Proposition 4.6 that the FOSD upward
shift in player 3’s idiosyncratic component of the social cost parameter does not change player 4’s
ex ante expected equilibrium action.

The preceding analysis shows that the FOSD upward shift in player 3’s idiosyncratic com-
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ponent of the social cost parameter strictly decreases (respectively, increases) ex ante expected
aggregate equilibrium action if E(α3)/ E(β3) is greater (respectively, less) than E(α2)/ E(β2).

Illustration of Result 6 of Proposition 4.6 Let ∆γG be a FOSD upward shift in the global
component of the social cost parameters, that is, ∆γG is a nonnegative random variable on the
probability space (Ω,S, P)withP(∆γG > 0) > 0. In addition to θγ,low = 0, ϕ1 = ϕ4 = ψ2 = 1/4,
ϕ2 = ϕ3 = ψ3 = 3/4, and ψ1 = ψ4 = 1/2, suppose E(α2)/ E(β2) = E(α3)/ E(β3).

The equilibrium strategies are given by

x?1 ◦ s1 =

E(α1) +
E(α2)

E(β2)
E(γ1 | s1)

E(β1) + E(γ1 | s1)
,

x?2 ◦ s2 =
E(α2)

E(β2)
,

x?3 ◦ s3 =
E(α2)

E(β2)
,

x?4 ◦ s4 =

E(α4) +
E(α2)

E(β2)
E(γ1 | s1)

E(β4) + E(γ1 | s1)
.

It follows from x?2 ◦ s2 = x?3 ◦ s3 = E(α2)/ E(β2) that the equilibrium strategies of players
2 and 3 are not affected by the FOSD upward shift in the global component of the social cost
parameters. The two equivalences

x?1 ◦ s1 T x?2 ◦ s2 ⇔ E(α1)

E(β1)
T

E(α2)

E(β2)

and

x?4 ◦ s4 T x?3 ◦ s3 ⇔ E(α4)

E(β4)
T

E(α2)

E(β2)

imply that all players’ equilibrium strategies are greater than or equal to (respectively, less than or
equal to) their social norms if E(α1)/ E(β1) ≥ E(α2)/ E(β2) and E(α4)/ E(β4) ≥ E(α2)/ E(β2)

(respectively, E(α1)/ E(β1) ≤ E(α2)/ E(β2) and E(α4)/ E(β4) ≤ E(α2)/ E(β2)). It follows
from Result 6 of Proposition 4.6 that the FOSD upward shift in the global component of the
social cost parameters strictly decreases (respectively, increases) player 1’s ex ante expected
equilibrium action if E(α1)/ E(β1) > E(α2)/ E(β2) and E(α4)/ E(β4) ≥ E(α2)/ E(β2) (re-
spectively, E(α1)/ E(β1) < E(α2)/ E(β2) and E(α4)/ E(β4) ≤ E(α2)/ E(β2)) and strictly de-
creases (respectively, increases) player 4’s ex ante expected equilibrium action if E(α1)/ E(β1) ≥
E(α2)/ E(β2) and E(α4)/ E(β4) > E(α2)/ E(β2) (respectively, E(α1)/ E(β1) ≤ E(α2)/ E(β2)

and E(α4)/ E(β4) < E(α2)/ E(β2)).
The preceding analysis shows that the FOSD upward shift in the global component of the

social cost parameters strictly decreases (respectively, increases) ex ante expected aggregate
equilibrium action if E(α1)/ E(β1) ≥ E(α2)/ E(β2) and E(α4)/ E(β4) ≥ E(α2)/ E(β2) (respec-
tively, E(α1)/ E(β1) ≤ E(α2)/ E(β2) and E(α4)/ E(β4) ≤ E(α2)/ E(β2)) and at least one of
the two inequalities is strict.
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Example C.2

This example discusses the effects of a FOSD upward shift in the global component of the social
cost parameters on ex ante expected equilibrium actions and shows in particular that the signs
of the effects can vary among affected players.

Consider the Bayesian network game of Example C.1, where γ1 = γ4, s1 = s4, and s2 = s3.
Suppose E(α2)/ E(β2) = E(α3)/ E(β3).

The equilibrium strategies are given by

x?1 ◦ s1 =

E(α1) +
E(α2)

E(β2)
E(γ1 | s1)

E(β1) + E(γ1 | s1)
,

x?2 ◦ s2 =
E(α2)

E(β2)
,

x?3 ◦ s3 =
E(α2)

E(β2)
,

x?4 ◦ s4 =

E(α4) +
E(α2)

E(β2)
E(γ1 | s1)

E(β4) + E(γ1 | s1)
.

First, we discuss the case where a FOSD upward shift in the global component of the social
cost parameters has no effect on ex ante expected equilibrium actions. Note that x?1 ◦ s1 =

E(α1)/ E(β1) if E(α1)/ E(β1) = E(α2)/ E(β2) and x?4 ◦ s4 = E(α4)/ E(β4) if E(α2)/ E(β2) =

E(α4)/ E(β4). It follows that a FOSD upward shift in the global component of the social cost
parameters leaves all players’ equilibrium strategies and, therefore, their ex ante expected equi-
librium actions unchanged if E(α1)/ E(β1) = E(α2)/ E(β2) = E(α4)/ E(β4).

Second, we discuss the case where a FOSD upward shift in the global component of the social
cost parameters affects the ex ante expected equilibrium actions of players 1 and 4. Suppose
E(α1)/ E(β1) 6= E(α2)/ E(β2) and E(α2)/ E(β2) 6= E(α4)/ E(β4). Note that a FOSD upward
shift in the global component of the social cost parameters strictly increases E(γ1 | s1) on at least
one event in the family ({s1 = θ1}, {s1 = θ2}), which implies that both equilibrium strategies
x?1 ◦ s1 and x?4 ◦ s4 change on at least one event in the aforementioned family. Also note that for
all t ∈ {1, 2},

∂x?1(θt)

∂ E(γ1 | s1 = θt)

∂x?4(θt)

∂ E(γ1 | s1 = θt)
< 0

if and only if
E(α1)

E(β1)
<

E(α2)

E(β2)
<

E(α4)

E(β4)
or

E(α4)

E(β4)
<

E(α2)

E(β2)
<

E(α1)

E(β1)
. (C.1)

It follows that the effects of a FOSD upward shift in the global component of the social cost
parameters on ex ante expected equilibrium actions vary among players 1 and 4 if and only if
one of the chains of inequalities (C.1) is true.

Example C.3

This example illustrates that ex ante expected equilibrium payoff and equilibrium welfare are
in general not monotone in the informativeness of a player’s signal about her private benefit
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parameter. The example satisfies Condition 6.4 (1) but relaxes Condition 6.4 (2); specifically, it
retains the assumption that the players’ signals are completely uninformative about their private
and social cost parameters but drops the assumption of pairwise stochastically independent
signals.

Suppose I = 3 and the arc set of the network D is equal to {(1, 2), (2, 3), (3, 2)}, that is, the
network D is star-shaped with central player 2. See Figure C.4 for an illustration of D.

1 2 3

Figure C.4 A star-shaped network of order 3 (Example C.3)

As regards the probability space (Ω,S, P), suppose Ω is equal to the unit square [0, 1]2,S is
equal to the Borel σ-field on Ω, and P is equal to the uniform distribution on (Ω,S).

To specify the signals and the payoffs parameters, the private benefit parameters in particular,
for any c ∈ [0, 1], let P2(c) denote the polygon in the unit square with area 1/2 that is defined by

P2(c) :=


{
(ω1, ω2) ∈ Ω

∣∣∣∣ ω1 − c
1− c

≤ ω2 ≤ 1 + c(ω1 − 1)
}

if c < 1,

{(ω1, ω2) ∈ Ω |ω2 ≤ ω1} if c = 1.

See Figure C.5 for an illustration of P2(c).
As regards the payoff parameters, for all i ∈ [I], let ζi ∈ [0, 1], and suppose βi and γi are

constant and αi satisfies, for all (ω1, ω2) ∈ Ω,

αi
(
(ω1, ω2)

)
=


θα,low + θα,high

2
− ζi

θα,high − θα,low

2
if (ω1, ω2) ∈ P2(1),

θα,low + θα,high

2
+ ζi

θα,high − θα,low

2
else,

where (θα,low, θα,high) ∈ R2
++ with θα,low < θα,high. It follows that the expectation of αi is the same

for all players and the variance of αi is strictly increasing in ζi:

E(αi) =
θα,low + θα,high

2
and var(αi) = ζ2

i

(
θα,high − θα,low

2

)2

.

As regards the signals, for all i ∈ [I], let ε i ∈ [0, 1], and suppose the signal components si,β

0 c 1
0

1− c

1

ω1

ω
2

Figure C.5 The polygon P2(c) (Example C.3)
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and si,γ are constant and the component si,α satisfies, for all (ω1, ω2) ∈ Ω,

si,α
(
(ω1, ω2)

)
=

{
θα,low if (ω1, ω2) ∈ P2(ε i),

θα,high else.

For reasons to become clear below, ε i is called player i’s informativeness parameter. Suppose the
signals have a common support Θ. It follows that Θ = {θ1, θ2} with

θ1 :=

θα,low
θβ

θγ

 and θ2 :=

θα,high
θβ

θγ


for some (θβ, θγ) ∈ R2. The expectation and the variance of player i’s signal component si,α are
functionally independent of the informativeness parameter ε i:

E(si,α) =
θα,low + θα,high

2
and var(si,α) =

(
θα,high − θα,low

2

)2

.

The informativeness of player i’s signal si about αi is given by

I(αi, si) = 4
(

ε i −
1
2

)2

ζ2
i var(si,α) = 4

(
ε i −

1
2

)2

var(αi)

because
E(αi | si) = E(αi | si,α) =

(
1− (2ε i − 1)ζi

)
E(αi) + (2ε i − 1)ζisi,α.

If ζi > 0, then I(αi, si) is strictly increasing in the distance between ε i and 1/2; it is minimal
at ε i = 1/2, in which case E(αi | si,α) = E(αi), and maximal at ε i = 0 and ε i = 1, in which cases
E(αi | si) = αi. In other words, if ζi > 0, then the poorest (in terms of mean squared error)
prediction of αi occurs at ε i = 1/2 and the best at ε i = 0 and ε i = 1. Note that player i’s signal is
completely uninformative about her or another player’s private benefit parameter if ε i = 1/2
because for all (i, n) ∈ [I]2, si,α and αn are stochastically independent if ε i = 1/2. Also note
that a change in I(αi, si) that is caused by a change in ε i is mean-preserving because E(αi) is
functionally independent of ε i. Besides the joint distribution of a player’s signal and her or another
player’s private benefit parameter, the informativeness parameters ε1, ε2, ε3 characterize the joint
distribution of the signals s1, s2, s3. For example, for all pairs (i, n) ∈ [I]2, the joint distribution
of the signal components si,α and sn,α is given by the probabilities, for all (q, r) ∈ {low,high}2,

P(si,α = θα,q,, sn,α = θα,r) =


1− |ε i − εn|

2
if q = r,

|ε i − εn|
2

if q 6= r.

It follows that si,α and sn,α are stochastically independent if and only if |ε i − εn| = 1/2; they
are negatively (respectively, positively) correlated if and only if |ε i − εn| > 1/2 (respectively,
|ε i − εn| < 1/2) because cov(si,α, sn,α) = (1− 2|ε i − εn|) var(s1,α). Note that the signal compo-
nents s1,α, s2,α, s3,α are stochastically dependent because they cannot be pairwise stochastically
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Figure C.6 Ex ante expected equilibrium payoffs and equilibrium welfare as functions of the informa-
tiveness parameters (Example C.3)

independent.11
To perform calculations, suppose θα,low = 1, θα,high = 2, ζ1 = ζ3 = 1/5, ζ2 = 1, E(β1) =

E(β2) = E(β3) = 1, E(γ1) = E(γ3) = 2/3, and E(γ2) = 1/3. It follows that the unique and
interior BNE (x?1 , x?2 , x?3) is symmetric in expectations:

E(x?1 ◦ s1) = E(x?2 ◦ s2) = E(x?3 ◦ s3) =
E(α1)

E(β1)
=

3
2

.

The ex ante expected equilibrium payoffs are given by (se formula (4))

E
(
u?

1(σ)
)
=

5
6

E
(
(x?1 ◦ s1)

2)− 1
3

E
(
(x?2 ◦ s2)

2),
E
(
u?

2(σ)
)
=

2
3

E
(
(x?2 ◦ s2)

2)− 1
6

E
(
(x?3 ◦ s3)

2),
E
(
u?

3(σ)
)
=

5
6

E
(
(x?3 ◦ s3)

2)− 1
3

E
(
(x?2 ◦ s2)

2).
The graphs of ex ante expected equilibrium payoffs and their sum, ex ante expected equilib-

riumwelfare, as functions of ε1 at (ε2, ε3) = (3/4, 1/2), as functions of ε2 at (ε1, ε3) = (1/2, 1/2),
and as functions of ε3 at (ε1, ε2) = (1/2, 3/4) are displayed in the first, second, and third block
column of Figure C.6. The graphs of the functions ε1 7→ E(u?

1(σ)) and ε3 7→ E(u?
3(σ)) show that

a mean-preserving increase in the informativeness of a player’s signal about her private benefit
parameter does not necessarily increase her ex ante expected equilibrium payoff; specifically,

11. The signal components s1,α, s2,α, s3,α cannot be pairwise stochastically independent because there does not exist
a triple (ε1, ε2, ε3) ∈ [0, 1]3 such that for all (i, n) ∈ [I]2 with i 6= n, |εi − εn| = 1/2.
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both functions ε1 7→ E(u?
1(σ)) and ε3 7→ E(u?

3(σ)) are strictly decreasing on [3/4, 1]. By con-
trast, player 2’s ex ante expected equilibrium payoff is strictly increasing in the informativeness
of her signal about her private benefit parameter; specifically, the function ε2 7→ E(u?

2(σ)) is
strictly decreasing on [0, 1/2] and strictly increasing on [1/2, 1]. The graphs of the functions
ε2 7→ E(u?

1(σ)) and ε2 7→ E(u?
3(σ)) show that the ex ante expected equilibrium payoffs of

players 1 and 3 decrease in the informativeness of player 2 signal about her private benefit
parameter. Finally, the graphs of the functions ε1 7→ ∑3

i=1 E(u?
i (σ)), ε2 7→ ∑3

i=1 E(u?
i (σ)),

ε3 7→ ∑3
i=1 E(u?

i (σ)) show that a mean-preserving increase in the informativeness of a player’s
signal about her private benefit parameter is not necessarily welfare-improving. As regards the
graphs displayed in the first block column of Figure C.6, note that both equilibrium strategies
x?2 and x?3 are functionally independent of ε1 because player 1 is neither an out-neighbor nor a
higher-order out-neighbor of players 2 and 3. This explains why the functions ε1 7→ E(u?

2(σ))

and ε1 7→ E(u?
3(σ)) are constant.
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D Product representation of matrix B(D, ((βι, γι))ι∈[I])

This appendix introduces the notions of the beliefs matrix and the predictions matrix and gives a
product representation of the matrix B(D, ((βι, γι))ι∈[I]) (see Section 3.2 or below for its defini-
tion) in terms of the aforementioned two matrices.

Beliefs matrix

For all (i, n) ∈ [I]2, let Πi,n denote the |Θi| × |Θn| matrix with the component in row q and
column r equal to P(sn = θn,r | si = θi,q). Let (i, n) ∈ [I]2 with i 6= n. The qth row of Πi,n is a
complete characterization of the conditional probability mass function of player n’s signal sn

given the event {si = θi,q}, that is, player i is of type θi,q. The matrix Πi,n represents, therefore,
player i’s beliefs about player n’s type. Note that Πi,n is row-normalized, that is, Πi,n1|Θn| = 1|Θi |.
Also note that Πi,i is equal to E|Θi |, the identity matrix of order |Θi|. The beliefs matrix, denoted
by Π, is the square matrix of order ∑ι∈[I]|Θι| defined by

Π :=



Π1,1 . . . Π1,n . . . Π1,I
...

...
...

Πi,1 . . . Πi,n . . . Πi,I
...

...
...

ΠI,1 . . . ΠI,n . . . ΠI,I

 .

Example D.1 In Example C.3 (see Appendix C), for all (i, n) ∈ [I]2 and for all (q, r) ∈ {1, 2}2,

P(sn = θn,r | si = θi,q) =

{
1− |ε i − εn| if q = r,

|ε i − εn| if q 6= r,

which implies that for all (i, n) ∈ [I]2,

Πi,n = Πn,i =

(
1− |ε i − εn| |ε i − εn|
|ε i − εn| 1− |ε i − εn|

)
,

which in turn implies that the beliefs matrix Π is symmetric. �

Example D.2 Consider the Bayesian network game B(σ̃) of Section A.5.2 (see Appendix A),
where each player receives a compound signal consisting of the components of her signal and
a public signal. The type spaces are given by Θ1 = {θ1,1, θ1,2, θ1,3, θ1,4}, Θ2 = {θ2,1, θ2,2, θ2,3},
Θ3 = {θ3,1, θ3,2, θ3,3}, Θ4 = {θ4,1, θ4,2, θ4,3}, where

θ1,1 :=


θα

θβ,high
θγ

θβ,mid

 , θ1,2 :=


θα

θβ,low
θγ

θβ,high

 , θ1,3 :=


θα

θβ,low
θγ

θβ,mid

 , θ1,4 :=


θα

θβ,low
θγ

θβ,low

 ,

θ2,1 :=


θα

θβ,low
θγ

θβ,mid

 , θ2,2 :=


θα

θβ,high
θγ

θβ,high

 , θ2,3 :=


θα

θβ,low
θγ

θβ,low

 ,

31



θ3,1 := θ2,1, θ3,2 := θ2,2, θ3,3 := θ2,3,

θ4,1 :=


θα

θβ,low
θγ

θβ,mid

 , θ4,2 :=


θα

θβ,low
θγ

θβ,high

 , θ4,3 :=


θα

θβ,high
θγ

θβ,low

 .

The beliefs matrix is given by

Π =


Π1,1 Π1,2 Π1,3 Π1,4

Π2,1 Π2,2 Π2,3 Π2,4

Π3,1 Π3,2 Π3,3 Π3,4

Π4,1 Π4,2 Π4,3 Π4,4

 =


E4 Π1,2 Π1,2 Π1,2

Π2,1 E3 E3 E3

Π2,1 E3 E3 E3

Π2,1 E3 E3 E3

 ,

where

Π1,2 =


1 0 0
0 1 0
1 0 0
0 0 1


and

Π2,1 =

1/2 0 1/2 0
0 1 0 0
0 0 0 1

 . �

Predictions matrix

For all (i, n) ∈ [I]2, let Γi,n denote the |Θi| × |Θn| matrix with the component in row q and
column r equal to E(γi | si = θi,q, sn = θn,r) if P(si = θi,q, sn = θn,r) > 0 and zero else. If i 6= n
and P(si = θi,q, sn = θn,r) > 0, then the component in row q and column r of Γi,n is player i’s
prediction of her social cost parameter given she is of type θi,q and player n is of type θn,r. The
predictions matrix, denoted by Γ, is the square matrix of order ∑ι∈[I]|Θι| defined by

Γ :=



Γ1,1 . . . Γ1,n . . . Γ1,I
...

...
...

Γi,1 . . . Γi,n . . . Γi,I
...

...
...

ΓI,1 . . . ΓI,n . . . ΓI,I

 .

Example D.1 (cont’d) For all (i, n) ∈ [I]2 and for all (q, r) ∈ {1, 2}2,

P(si = θi,q, sn = θn,r) =


1− |ε i − εn|

2
if q = r,

|ε i − εn|
2

if q 6= r,
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which implies that for all (i, n) ∈ [I]2,

Γi,n =


E(γi)(121T

2 − E2) if i 6= n and |ε i − εn| = 1,

E(γi)121T
2 if i 6= n and |ε i − εn| 6= 1 and ε i 6= εn,

E(γi)E2 else,

because γi is constant. �

Example D.2 (cont’d) The predictions matrix is given by

Γ =


Γ1,1 Γ1,2 Γ1,3 Γ1,4

Γ2,1 Γ2,2 Γ2,3 Γ2,4

Γ3,1 Γ3,2 Γ3,3 Γ3,4

Γ4,1 Γ4,2 Γ4,3 Γ4,4

 =


E(γ1)E4 Γ1,2 Γ1,2 Γ1,2

Γ2,1 E(γ2)E3 E(γ2)E3 E(γ2)E3

Γ3,1 E(γ3)E3 E(γ3)E3 E(γ3)E3

Γ4,1 E(γ4)E3 E(γ4)E3 E(γ4)E3

 ,

where

Γ1,2 = E(γ1)


1 0 0
0 1 0
1 0 0
0 0 1


and

∀i ∈ {2, 3, 4} Γi,1 = E(γi)

1 0 1 0
0 1 0 0
0 0 0 1

 .

Product representation of matrix B(D, ((βι, γι))ι∈[I])

Recall that B(D, ((βι, γι))ι∈[I]) is the square matrix of order ∑ι∈[I]|Θι| that is defined by, for
all (i, n) ∈ [I]2 and for all (q, r) ∈ [|Θi|]× [|Θn|], if i 6= n and P(si = θi,q, sn = θn,r) > 0, then the
component in row ∑ι∈[i−1]|Θι|+ q and column ∑ι∈[n−1]|Θι|+ r is equal to

āi,n(D)P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)

E(βi + γi | si = θi,q)
,

and else it is zero. Also recall that D((βι + γι)ι∈[I]) is the diagonal matrix of order ∑ι∈[I]|Θι|
that is defined by, for all i ∈ [I] and for all q ∈ [|Θi|], the component in row ∑ι∈[i−1]|Θι| + q
and column ∑ι∈[i−1]|Θι| + q is equal to E(βi + γi | si = θi,q). Let A be the square matrix of
order ∑ι∈[I]|Θι| that is defined by

A :=



ā1,1(D)1|Θ1|1
T

|Θ1| . . . ā1,n(D)1|Θ1|1
T

|Θn| . . . ā1,I(D)1|Θ1|1
T

|ΘI |
...

...
...

āi,1(D)1|Θi |1
T

|Θ1| . . . āi,n(D)1|Θi |1
T

|Θn| . . . āi,I(D)1|Θi |1
T

|ΘI |
...

...
...

āI,1(D)1|ΘI |1
T

|Θ1| . . . āI,n(D)1|ΘI |1
T

|Θn| . . . āI,I(D)1|ΘI |1
T

|ΘI |


.
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If |Θ1| = . . . = |ΘI |, then A = Ā(D)⊗ 1|Θ1|1
T

|Θ1|, where ⊗ denotes the Kronecker product.
The definitions of the matrices B(D, ((βι, γι))ι∈[I]), D((βι + γι)ι∈[I]), A, Π, and Γ yield the

following representation of B(D, ((βι, γι))ι∈[I]):

B
(

D,
(
(βι, γι)

)
ι∈[I]
)
= D

(
(βι + γι)ι∈[I]

)−1
(A ◦Π ◦ Γ), (D.1)

where ◦ denotes the Hadamard product.
Proposition B.1 and formula (D.1) imply that the unique and interior BNE in pure strategies

in the Bayesian network game B satisfies

x?Θ =
(

D
(
(βι + γι)ι∈[I]

)
− A ◦Π ◦ Γ

)−1D
(
(αι)ι∈[I]

)
1∑ι∈[I]|Θι|.
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E Basic concepts of graph theory

This appendix reviews basic concepts of the theory of digraphs (for a comprehensive introduction
see, for example, Bang-Jensen and Gutin 2009).

Basic terminology

A directed graph (digraph for short) D consists of a nonempty, finite set of elements called vertices
and a finite set of ordered pairs of distinct vertices called arcs. The set of vertices of D is called
the vertex set of D and is denoted by V(D). The set of arcs of D is called the arc set of D and is
denoted by A(D). It follows that D is represented by the pair (V(D),A(D)).

The order of D is the cardinality of V(D). The size of D is the cardinality of A(D). The
digraph D is called empty if A(D) = ∅.

Suppose D is of order at least two and not empty. An arc (u, v) in D is directed from u to v,
where u and v are called the tail and the head of (u, v), respectively. The definition of a digraph
implies that D contains no multiple arcs, that is, pairs of arcs with the same head and the same
tail, and no self-loops, that is, arcs whose head and tail are equal.

The digraph D is called symmetric if for all distinct vertices u and v in V(D), (u, v) is an arc
in D if and only if (v, u) is an arc in D.

The digraph that results from D by adding the arc (u, v) is denoted by D + (u, v), that is,
D + (u, v) := (V(D),A(D) ∪ {(u, v)}).

Walk

Let x and y be two (not necessarily distinct) vertices in V(D), and let p be a positive integer.
A walk in D of length p from x to y is a finite sequence (v0, . . . , vp) in V(D) of length p + 1 such
that v0 = x, vp = y, and for all k ∈ [p], (vk−1, vk) ∈ A(D). The inverse of the walk (v0, . . . , vp)

in D is the finite sequence (vp, . . . , v0), which may or may not be a walk in D.

Neighborhoods

Let u be a vertex in V(D), and let r be a positive integer. The in-neighborhood of u (in D) is the set
N−D (u) := {v ∈ V(D) | (v, u) ∈ A(D)}, and the out-neighborhood of u (in D) is the setN+

D (u) :=
{v ∈ V(D) | (u, v) ∈ A(D)}. The vertices of N−D (u) and N+

D (u) are called in-neighbors and out-
neighbors of u (in D), respectively. The in-degree of u (in D) is defined by deg−D(u) := |N−D (u)|
and the out-degree of u (in D) by deg+

D(u) := |N+
D (u)|. The out-neighborhood of order r of u (in D),

denoted by N+
D,r(u), is defined recursively by

N+
D,1(u) := N+

D (u),

∀r > 1 N+
D,r(u) :=

⋃
v∈N+

D,r−1(u)

N+
D (v).

The vertices of the set
⋃

r∈N\{1}N+
D,r(u) are called higher-order out-neighbors of u (in D). The

in-neighborhood of order r of u (in D), which is denoted byN−D,r(u), and the higher-order in-neighbors
of u (in D) are defined analogously.
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Adjacency matrix

A digraph D of order I > 1 can be represented by a square matrix of order I. This can be
seen as follows. Let h : V(D) → [I] be a bijection. By means of h, the vertex set V(D) can
be identified with the set [I] and the arc set A(D) with a subset of [I]2, namely, Ah(D) :=
{(h(u), h(v)) | (u, v) ∈ A(D)}. It follows that h is a digraph isomorphism from (V(D),A(D))

to ([I],Ah(D)), that is, h is an arc-preserving bijection. The adjacency matrix of D with respect
to h, denoted by Ah(D), is the square matrix of order I with the component in row i and column j
equal to one if (i, j) ∈ Ah(D) and zero else. Note that Ah(D) is different from OI , the zero matrix
of order I, if D is not empty. Note also that all components on the main diagonal of Ah(D) vanish
because D has no self-loops.
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F Basic results of matrix analysis

This appendix contains a collection of basic results in matrix analysis that are referenced in the
proofs of the main results (Appendix G). Lemmata F.1, F.2, and F.3, Result 1 of Lemma F.4, and
Lemma F.5 are well known in the literature. Let d ∈N \ {1}.

Lemma F.1 Let A ∈ M(d, R) with A 6= Od. The Neumann series ∑∞
k=0 Ak converges (strongly) if and

only if ρ(A) < 1. If ∑∞
k=0 Ak converges (strongly), then Ed − A is nonsingular with inverse ∑∞

k=0 Ak.

Proof See, for example, Meyer (2000, pp. 618–19) or Frommer (1990, Satz A.2.2). �

Lemma F.2 Let c ∈ R \ {0}, and let A ∈ M(d, R) with A 6= Od. If |c|ρ(A) < 1, then the Neumann
series ∑∞

k=0 ck Ak converges (strongly) and Ed − cA is nonsingular with inverse ∑∞
k=0 ck Ak.12

Proof Let c ∈ R \ {0}, and let A ∈ M(d, R) with A 6= Od. Suppose |c|ρ(A) < 1. Note that for
all a ∈ R, ρ(aA) = |a|ρ(A) because σ(aA) = aσ(A). It follows that |c|ρ(A) < 1 is equivalent to
ρ(cA) < 1. Finally, note that, according to Lemma F.1, the Neumann series ∑∞

k=0 ck Ak converges
(strongly) and Ed − cA is nonsingular with inverse ∑∞

k=0 ck Ak. �

Lemma F.3 (Perron 1907; Frobenius 1912) Let A ∈ M(d, R) be nonnegative.

(1) The matrix A has a nonnegative real eigenvalue that is equal to its spectral radius, that is, ρ(A) ∈
σ(A).

(2) To the eigenvalue ρ(A) of A there corresponds a nonnegative eigenvector, that is, there exists an
x ∈ Rd

+ \ {0d} with Ax = ρ(A)x.

Proof See, for example, Varga (2000, Theorem 2.20). �

Lemma F.4 Let c ∈ R+, and let A ∈ M(d, R) be nonnegative.

(1) The matrix Ed − cA is nonsingular with a nonnegative inverse if and only if cρ(A) < 1.

(2) If cρ(A) < 1, then Ed ≤c (Ed − cA)−1.

Proof Let c ∈ R+, and let A ∈ M(d, R) be nonnegative. Results 1 and 2 are trivial if c = 0.
Suppose c > 0 in what follows.

(1) First, note that Ed − cA is nonsingular with a nonnegative inverse if and only if (1/c)Ed − A
is nonsingular with a nonnegative inverse because c > 0 and Ed − cA = c((1/c)Ed − A).
Second, note that (1/c)Ed − A is an M-matrix if and only if (1/c) ≥ ρ(A) (for the definition
of M-matrices see, for example, Berman and Plemmons 1994, Definition 1.2 on p. 133). Third,
note that (1/c)Ed − A is singular if 1/c = ρ(A). Indeed, if 1/c = ρ(A), then (1/c) ∈ σ(A)

(Lemma F.3). Thus, (1/c)Ed − A is a nonsingular M-matrix if and only if (1/c) > ρ(A).
Fourth, note that (1/c)Ed − A is nonsingular with a nonnegative inverse if and only if
(1/c)Ed − A is a nonsingular M-matrix (see, for example, Theorem 2.3 on pp. 134–38, in
particular Condition N38). The foregoing results imply that Ed − cA is nonsingular with a
nonnegative inverse if and only if 1/c > ρ(A) or, equivalently, cρ(A) < 1.

12. The expressions 00 and O0
d are left undefined.
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(2) Suppose cρ(A) < 1. Note that the matrix Ed − cA is nonsingular with a nonnegative
inverse (Result 1). Postmultiplying both sides of Ed = (Ed − cA) + cA by (Ed − cA)−1 gives
(Ed − cA)−1 = Ed + cA(Ed − cA)−1, which implies that Ed ≤c (Ed − cA)−1 because c > 0
and A and (Ed − cA)−1 are nonnegative. �

Lemma F.5 For any sub-multiplicative matrix norm ‖·‖ onM(d, C) and for any matrix A ∈ M(d, C),
ρ(A) ≤ ‖A‖.

Proof The proof follows the lines in Meyer (2000, Example 7.1.4). Let ‖·‖ be a sub-multiplicative
matrix norm onM(d, C), and let A ∈ M(d, C). We show that

∀λ ∈ σ(A) |λ| ≤ ‖A‖, (F.1)

from which ρ(A) ≤ ‖A‖ follows. Let λ ∈ σ(A) with associated eigenvector v ∈ Cd. By the
definition of an eigenvector, v 6= 0d. Let B be the matrix inM(d, C) whose first column is equal
to v andwhose other columns are equal to 0d. We find λB = AB and |λ|‖B‖ = ‖λB‖ = ‖AB‖ ≤
‖A‖‖B‖, which is equivalent to |λ| ≤ ‖A‖ because ‖B‖ > 0 (v 6= 0d implies that B 6= Od). �
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G Proofs

Throughout this appendix, we use the following notation: for all i ∈ [I], Ti := ∑i
k=1|Θk|, and

T := TI .

Proof of Proposition B.1

A profile (x?1 , . . . , x?I ) ∈ ×i∈[I]R+
Θi is an interior BNE in pure strategies in the Bayesian network

game B if and only if it satisfies three conditions: the interiority condition, for all i ∈ [I] and for
all q ∈ [|Θi|], x?i (θi,q) > 0; the first-order condition,

∀i ∈ [I] ∀q ∈ [|Θi|]
∂ E
(
ui
(
idΩ, (x?1 ◦ s1, . . . , x?I ◦ sI)

) ∣∣ si = θi,q
)

∂x?i (θi,q)
= 0; (G.1)

and the second-order condition,

∀i ∈ [I] ∀q ∈ [|Θi|]
∂2 E

(
ui
(
idΩ, (x?1 ◦ s1, . . . , x?I ◦ sI)

) ∣∣ si = θi,q
)

∂x?i (θi,q)
2 < 0.

Let i ∈ [I] and q ∈ [|Θi|]. We find

E
(
ui
(
idΩ, (x?1 ◦ s1, . . . , x?I ◦ sI)

) ∣∣ si = θi,q
)

= E
(
αi(x?i ◦ si)

∣∣ si = θi,q
)
− 1

2
E
(

βi(x?i ◦ si)
2 ∣∣ si = θi,q

)
− 1

2
E

(
γi

(
x?i ◦ si − ∑

n∈[I]
āi,n(D)(x?n ◦ sn)

)2
∣∣∣∣∣ si = θi,q

)

= E(αi | si = θi,q)x?i (θi,q)−
1
2

E(βi | si = θi,q)x?i (θi,q)
2 − 1

2
E(γi | si = θi,q)x?i (θi,q)

2

+ ∑
n∈[I]

āi,n(D)E
(
γi(x?n ◦ sn)

∣∣ si = θi,q
)
x?i (θi,q)

− 1
2

E

(
γi

(
∑

n∈[I]
āi,n(D)(x?n ◦ sn)

)2
∣∣∣∣∣ si = θi,q

)
,

from which it follows that

∂ E
(
ui
(
idΩ, (x?1 ◦ s1, . . . , x?I ◦ sI)

) ∣∣ si = θi,q
)

∂x?i (θi,q)
= E(αi | si = θi,q)

−E(βi + γi | si = θi,q)x?i (θi,q) + ∑
n∈[I]

āi,n(D)E
(
γi(x?n ◦ sn)

∣∣ si = θi,q
)

(G.2)

and
∂2 E

(
ui
(
idΩ, (x?1 ◦ s1, . . . , x?I ◦ sI)

) ∣∣ si = θi,q
)

∂x?i (θi,q)
2 = −E(βi + γi | si = θi,q) < 0,

where the inequality follows from βi > 0 and γi ≥ 0. Note that for all n ∈ [I],

E
(
γi(x?n ◦ sn)

∣∣ si = θi,q
)
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= E
(
γi(x?n ◦ sn) 1Ω

∣∣ si = θi,q
)

= E

(
γi(x?n ◦ sn) ∑

r∈[|Θn|]
1{sn=θn,r}

∣∣∣∣ si = θi,q

)
= ∑

r∈[|Θn|]
E
(
γi(x?n ◦ sn) 1{sn=θn,r}

∣∣ si = θi,q
)

= ∑
r∈[|Θn|]

E
(
γi(x?n ◦ sn) 1{si=θi,q} 1{sn=θn,r}

)
P(si = θi,q)

= ∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

P(si = θi,q, sn = θn,r)

P(si = θi,q)

E
(
γi(x?n ◦ sn) 1{si=θi,q}∩{sn=θn,r}

)
P(si = θi,q, sn = θn,r)

= ∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

P(sn = θn,r | si = θi,q)E
(
γi(x?n ◦ sn)

∣∣ si = θi,q, sn = θn,r
)

= ∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)x?n(θn,r).

Using (G.2) and the preceding result, the first-order condition (G.1) is equivalent to

∀i ∈ [I] ∀q ∈ [|Θi|] x?i (θi,q) =
E(αi | si = θi,q)

E(βi + γi | si = θi,q)

+ ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)

E(βi + γi | si = θi,q)
x?n(θn,r),

which in turn are equivalent to(
ET − B

(
D,
(
(βι, γι)

)
ι∈[I]
))

x?Θ = D
(
(βι + γι)ι∈[I]

)−1D
(
(αι)ι∈[I]

)
1T. (G.3)

In the remainder of the proof, we show that the system of equations (G.3) has a single unique and
interior solution. To this end, we show that the spectral radius of the matrix B(D, ((βι, γι))ι∈[I]),
denoted by ρ(B(D, ((βι, γι))ι∈[I])), is less than one. Note that

ρ
(

B
(

D,
(
(βι, γι)

)
ι∈[I]
))
≤
∥∥B
(

D,
(
(βι, γι)

)
ι∈[I]
)∥∥

∞

according to Lemma F.5. We find for all i ∈ [I] and for all q ∈ [|Θi|],

∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)

E(βi + γi | si = θi,q)

=
1

E(βi + γi | si = θi,q)
∑

n∈[I]
āi,n(D)E(γi | si = θi,q)

=
E(γi | si = θi,q)

E(βi | si = θi,q) + E(γi | si = θi,q)

< 1,
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where the first equality follows from

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r) = E(γi | si = θi,q)

and the inequality from βi > 0 and γi ≥ 0. This concludes the proof that ρ(B(D, ((βι, γι))ι∈[I]))

is less than one. Note that ET − B(D, ((βι, γι))ι∈[I]) is a nonsingular M-matrix whose inverse is
bounded below by the identity matrix ET because the matrix B(D, ((βι, γι))ι∈[I]) is nonnegative
with ρ(B(D, ((βι, γι))ι∈[I])) < 1 (Lemma F.4). It follows that the system of equations (G.3) has
a single unique solution,

x?Θ =
(

ET − B
(

D,
(
(βι, γι)

)
ι∈[I]
))−1

D
(
(βι + γι)ι∈[I]

)−1D
(
(αι)ι∈[I]

)
1T. (G.4)

In addition, x?Θ >c 0T because D((βι + γι)ι∈[I])
−1D((αι)ι∈[I])1T >c 0T. This shows that the

profile (x?1 , . . . , x?I ) given by (G.4) is the unique interior BNE in B.
Finally, note that B has no BNE where at least one pure strategy assumes a value at the

boundary of the action space. In order to prove this, suppose, for the sake of contradiction, that
the profile (x̃?1 , . . . , x̃?I ) ∈ ×i∈[I]R+

Θi is a BNE in B such that x̃?k (θk,t) = 0 and

∂ E
(
uk
(
idΩ, (x̃?1 ◦ s1, . . . , x̃?I ◦ sI)

) ∣∣ sk = θk,t
)

∂x̃?k (θk,t)
≤ 0 (G.5)

for some k ∈ [I] and some t ∈ [|Θk|]. Using (G.2), we find

∂ E
(
uk
(
idΩ, (x̃?1 ◦ s1, . . . , x̃?I ◦ sI)

) ∣∣ sk = θk,t
)

∂x̃?k (θk,t)
= E(αk | sk = θk,t)

+ ∑
n∈[I]

āk,n(D)E
(
γk(x̃?n ◦ sn)

∣∣ sk = θk,t
)
> 0

because αk > 0 and γk ≥ 0, which contradicts (G.5). This shows that the profile (x̃?1 , . . . , x̃?I )
cannot be a BNE in B.

Proof of Proposition B.2

Assume that the players are homogeneous with respect to their predictions of their private
benefit parameters and private cost parameters and these predictions are constant across the
states of nature, that is, for all i ∈ [I] and for all q ∈ [|Θi|], E(αi | si = θi,q) = E(α1 | s1 = θ1,1)

and E(βi | si = θi,q) = E(β1 | s1 = θ1,1). It follows that D((αι)ι∈[I]) = E(α1 | s1 = θ1,1)ET and
D((βι)ι∈[I]) = E(β1 | s1 = θ1,1)ET. Let C(D, ((βι, γι))ι∈[I]) denote the square matrix of order T
that is defined by

C
(

D,
(
(βι, γι)

)
ι∈[I]
)

:= D
(
(βι + γι)ι∈[I]

)
B
(

D,
(
(βι, γι)

)
ι∈[I]
)
− D

(
(γι)ι∈[I]

)
.

First, note that C(D, ((βι, γι))ι∈[I])1T = 0T because for all i ∈ [I] and for all q ∈ [|Θi|],

E(γi | si = θi,q)
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= ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r).

Second, note that the matrix ET − D((βι)ι∈[I])
−1C(D, ((βι, γι))ι∈[I]) is nonsingular because

D
(
(βι + γι)ι∈[I]

)(
ET − B

(
D,
(
(βι, γι)

)
ι∈[I]
))

= D
(
(βι + γι)ι∈[I]

)
− D

(
(βι + γι)ι∈[I]

)
B
(

D,
(
(βι, γι)

)
ι∈[I]
)

= D
(
(βι)ι∈[I]

)
−
(

D
(
(βι + γι)ι∈[I]

)
B
(

D,
(
(βι, γι)

)
ι∈[I]
)
− D

(
(γι)ι∈[I]

))
= D

(
(βι)ι∈[I]

)(
ET − D

(
(βι)ι∈[I]

)−1C
(

D,
(
(βι, γι)

)
ι∈[I]
))

and the matrices D((βι + γι)ι∈[I]) and ET − B(D, ((βι, γι))ι∈[I]) are nonsingular. Third, note that
premultiplying both sides of the identity

ET = ET − D
(
(βι)ι∈[I]

)−1C
(

D,
(
(βι, γι)

)
ι∈[I]
)
+ D

(
(βι)ι∈[I]

)−1C
(

D,
(
(βι, γι)

)
ι∈[I]
)

by the inverse of ET − D((βι)ι∈[I])
−1C(D, ((βι, γι))ι∈[I]) yields

(
ET − D

(
(βι)ι∈[I]

)−1C
(

D,
(
(βι, γι)

)
ι∈[I]
))−1

= ET

+
(

ET − D
(
(βι)ι∈[I]

)−1C
(

D,
(
(βι, γι)

)
ι∈[I]
))−1

D
(
(βι)ι∈[I]

)−1C
(

D,
(
(βι, γι)

)
ι∈[I]
)
.

Given the preceding results, we find

x?Θ =
(

ET − B
(

D,
(
(βι, γι)

)
ι∈[I]
))−1

D
(
(βι + γι)ι∈[I]

)−1D
(
(αι)ι∈[I]

)
1T

=
(

ET − D
(
(βι)ι∈[I]

)−1C
(

D,
(
(βι, γι)

)
ι∈[I]
))−1

D
(
(βι)ι∈[I]

)−1D
(
(αι)ι∈[I]

)
1T

= D
(
(βι)ι∈[I]

)−1D
(
(αι)ι∈[I]

)
1T

+
(

ET − D
(
(βι)ι∈[I]

)−1C
(

D,
(
(βι, γι)

)
ι∈[I]
))−1

× D
(
(βι)ι∈[I]

)−1C
(

D,
(
(βι, γι)

)
ι∈[I]
)

D
(
(βι)ι∈[I]

)−1D
(
(αι)ι∈[I]

)
1T

=
E(α1 | s1 = θ1,1)

E(β1 | s1 = θ1,1)
1T,

where the first equality is according to formula (B.2).

Proof of Corollary B.3

Assume that all signals are constant, that is, for all i ∈ [I],Θi = {θi,1}. Note that for all (i, n) ∈ [I]2,
P(si = θi,1) = 1 = P(sn = θn,1 | si = θi,1), E(αi | si = θi,1) = E(αi), E(βi | si = θi,1) = E(βi),
E(γi | si = θi,1) = E(γi) = E(γi | si = θi,1, sn = θn,1). It follows that D((αι)ι∈[I]) = diag(E(α)),
D((βι + γι)ι∈[I]) = diag(E(β + γ)), B(D, ((βι, γι))ι∈[I]) = diag(E(β + γ))−1 diag(E(γ))Ā(D).
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Given these results, we find

x?Θ =
(

EI − B
(

D,
(
(βι, γι)

)
ι∈[I]
))−1

D
(
(βι + γι)ι∈[I]

)−1D
(
(αι)ι∈[I]

)
1I

=
(

EI − diag
(
E(β + γ)

)−1 diag
(
E(γ)

)
Ā(D)

)−1
diag

(
E(β + γ)

)−1 diag
(
E(α)

)
1I

=
(

diag
(
E(β)

)
− diag

(
E(γ)

)(
Ā(D)− EI

))−1
E(α),

where the first equality is according to formula (B.2).

Proof of Proposition 4.6

The basic idea underlying the proofs of Results 1 to 6 is first to show that a FOSD upward shift
in the idiosyncratic or global component of a player’s payoff parameter strictly increases the
predictor, that is, conditional expectation, of that component on at least one event and second to
determine how the increase in the predictor affects the player’s and other players’ equilibrium
strategies and ex ante expected equilibrium actions. For example, a FOSD upward shift ∆αL

in player j’s idiosyncratic component of the private benefit parameter αL
j strictly increases the

predictor E(αL
j | sj) : Ω → R++ on at least one event {sj = θj,t}, where θj,t ∈ Θj. The increase

in the value that the function E(αL
j | sj) assumes on {sj = θj,t}, that is, E(αL

j | sj = θj,t), affects
player j’s equilibrium strategy x?j , which is given by the values x?j (θj,1), . . . , x?j (θj,|Θj|) it assumes
on the type space Θj, and her ex ante expected equilibrium action,

E(x?j ◦ sj) = ∑
t∈[|Θj|]

P(sj = θj,t)x?j (θj,t) = ∑
t∈[|Θj|]

P(sj = θj,t)eT
T,Tj−1+tx

?
Θ,

where for all t ∈ [T], eT,t denotes the tth (column) basis vector of the canonical basis of RT. The
magnitude of the effect on E(x?j ◦ sj) is determined by the nature of the FOSD upward shift, that
is, by the family of events on which the predictor E(αL

j | sj) strictly increases, by the magnitudes
of theses increases, and by how these increases affect the equilibrium strategy x?j .

The proofs of Results 1 to 6 are based on results (see LemmaG.1 below) about the components
of the inverse of the nonsingular M-matrix

M
(

D,
(
(βι, γι)

)
ι∈[I]
)

:= ET − B
(

D,
(
(βι, γι)

)
ι∈[I]
)
.

If there is no potential for ambiguity, then the notation B(D, ((βι, γι))ι∈[I]) is abbreviated to B
and the notation M(D, ((βι, γι))ι∈[I]) to M. For all (i, j) ∈ [I]2 and for all (ti, tj) ∈ [|Θi|]× [|Θj|],
the component in row Ti−1 + ti and column Tj−1 + tj of M−1 is denoted by 〈M−1〉Ti−1+ti ,Tj−1+tj

;
the same applies to the components of B. Recall from Section 3.2 that for all (i, j) ∈ [I]2 and for
all (ti, tj) ∈ [|Θi|]× [|Θj|], if i 6= j and P(si = θi,ti , sj = θj,tj) > 0, then

〈B〉Ti−1+ti ,Tj−1+tj
=

āi,j(D)P(sj = θj,tj | si = θi,ti)E(γi | si = θi,ti , sj = θj,tj)

E(βi + γi | si = θi,ti)
, (G.6)
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and 〈B〉Ti−1+ti ,Tj−1+tj
= 0 else. If T = I, then for all (i, j) ∈ [I]2,

〈B〉i,j =
āi,j(D)E(γi)

E(βi + γi)
.

As regards the terms appearing on the right-hand side of equality (G.6), a few comments are
in order. First, note that E(βi + γi | si = θi,ti) > 0 because βi > 0, γi ≥ 0, and P(si = θi,ti) > 0
by assumption. Second, note that āi,j(D) > 0 if and only if (i, j) is an arc in D. Third, note
that, provided that P(si = θi,ti , sj = θj,tj) > 0, E(γi | si = θi,ti , sj = θj,tj) > 0 if and only if
P(γi > 0, si = θi,ti , sj = θj,tj) > 0 because

E(γi | si = θi,ti , sj = θj,tj) =
1

P(si = θi,ti , sj = θj,tj)

∫
{si=θi,ti}∩{sj=θj,tj}

γi dP

and
∫
{si=θi,ti}∩{sj=θj,tj}

γi dP > 0 if and only if P(γi > 0, si = θi,ti , sj = θj,tj) > 0. Finally, note

that P(si = θi,ti , sj = θj,tj) ≥ P(γi > 0, si = θi,ti , sj = θj,tj).

Lemma G.1 Let (i, j) ∈ [I]2 and (ti, tj) ∈ [|Θi|]× [|Θj|].

(1) 〈M−1〉Ti−1+ti ,Tj−1+tj
≥ 0 and 〈M−1〉Ti−1+ti ,Ti−1+ti

≥ 1.

(2) If Ti−1 + ti 6= Tj−1 + tj, then 〈M−1〉Ti−1+ti ,Ti−1+ti
> 〈M−1〉Tj−1+tj,Ti−1+ti

.

(3) If there exists a walk (i0, . . . , ip) in D of length p from i0 = i to ip = j and, provided that p > 1,
there exists a (ti1 , . . . , tip−1) ∈ ×

p−1
z=1 [|Θiz |] such that

∀z ∈ [p] P(γiz−1 > 0, siz−1 = θiz−1,tiz−1
, siz = θiz,tiz

) > 0, (G.7)

then 〈M−1〉Ti−1+ti ,Tj−1+tj
> 0.

(4) If Ti−1 + ti 6= Tj−1 + tj and 〈M−1〉Ti−1+ti ,Tj−1+tj
> 0, then there exists a nonempty subset S of N

such that for all p ∈ S , there exists a walk (i0, . . . , ip) in D of length p from i0 = i to ip = j and,
provided that p > 1, there exists a (ti1 , . . . , tip−1) ∈ ×

p−1
z=1 [|Θiz |] that satisfies condition (G.7).

(5) If no walk exists in D from i to j, then 〈M−1〉Ti−1+ti ,Tj−1+tj
= δi,jδti ,tj .13

In order to prove Lemma G.1, Results 3, 4, and 5 in particular, we establish the following
auxiliary result.

Lemma G.2 For all p ∈N, for all (i, j) ∈ [I]2, and for all (ti, tj) ∈ [|Θi|]× [|Θj|], 〈Bp〉Ti−1+ti ,Tj−1+tj
>

0 if and only if there exists a walk (i0, . . . , ip) in D of length p from i0 = i to ip = j and, provided that
p > 1, there exists a (ti1 , . . . , tip−1) ∈ ×

p−1
z=1 [|Θiz |] that satisfies condition (G.7).

The following result is an immediate consequence of Lemma G.2.

Corollary G.3 For all p ∈ N, for all (i, j) ∈ [I]2, and for all (ti, tj) ∈ [|Θi|]× [|Θj|], there exists a
walk in D of length p from i to j if 〈Bp〉Ti−1+ti ,Tj−1+tj

> 0.
13. The symbol δi,j denotes Kronecker’s delta of i and j.
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Proof of Lemma G.2 The proof is by induction on p. First, the base case. Let p = 1, and let
(i, j) ∈ [I]2 and (ti, tj) ∈ [|Θi|]× [|Θj|].

⇒ Assume that 〈B〉Ti−1+ti ,Tj−1+tj
> 0. It follows that āi,j(D) > 0, P(sj = θj,tj | si = θi,ti) > 0, and

E(γi | si = θi,ti , sj = θj,tj) > 0. Note that (i, j) is an arc in D because āi,j(D) > 0. Also note
that P(γi > 0, si = θi,ti , sj = θj,tj) > 0 because E(γi | si = θi,ti , sj = θj,tj) > 0. We conclude
that (i, j) is an arc in D and P(γi > 0, si = θi,ti , sj = θj,tj) > 0.

⇐ Assume that (i, j) is an arc in D andP(γi > 0, si = θi,ti , sj = θj,tj) > 0. It follows that āi,j(D) >

0, P(sj = θj,tj | si = θi,ti) > 0, and E(γi | si = θi,ti , sj = θj,tj) > 0. We conclude that
〈B〉Ti−1+ti ,Tj−1+tj

> 0.

Second, the inductive step. Let p ∈N. Suppose the following statement is true:

For all (i, j) ∈ [I]2 and for all (ti, tj) ∈ [|Θi|]× [|Θj|], 〈Bp〉Ti−1+ti ,Tj−1+tj
> 0

if and only if there exists a walk (i0, . . . , ip) in D of length p from i0 = i
to ip = j and, provided that p > 1, there exists a (ti1 , . . . , tip−1) ∈ ×

p−1
z=1 [|Θiz |]

that satisfies condition (G.7).

(∗)

We show that statement (∗) is true for p + 1. Let (i, j) ∈ [I]2 and (ti, tj) ∈ [|Θi|]× [|Θj|].

⇒ Assume that 〈Bp+1〉Ti−1+ti ,Tj−1+tj
> 0. The identity

〈Bp+1〉Ti−1+ti ,Tj−1+tj
= ∑

k∈[I]
∑

t∈[|Θk |]
〈Bp〉Ti−1+ti ,Tk−1+t〈B〉Tk−1+t,Tj−1+tj

implies that 〈Bp〉Ti−1+ti ,Tk̄−1+t̄ > 0 and 〈B〉Tk̄−1+t̄,Tj−1+tj
> 0 for some k̄ ∈ [I] and some t̄× [|Θk̄|].

Statement (∗) and 〈Bp〉Ti−1+ti ,Tk̄−1+t̄ > 0 imply that there exists a walk (i0, . . . , ip) in D of

length p from i0 = i to ip = k̄ and, provided that p > 1, a (ti1 , . . . , tip−1) ∈ ×
p−1
z=1 [|Θiz |] that

satisfies condition (G.7). The inequality 〈B〉Tk̄−1+t̄,Tj−1+tj
> 0 implies that (k̄, j) is an arc

in D and P(γk̄ > 0, sk̄ = θt̄, sj = θj,tj) > 0. Let ip+1 := j and tip := t̄. We conclude that
(i0, . . . , ip, ip+1) is a walk in D of length p + 1 from i to j and (ti1 , . . . , tip) ∈ ×

p
z=1[|Θiz |] has

the required property.

⇐ Assume that (i0, . . . , ip, ip+1) is a walk in D of length p + 1 from i0 = i to ip+1 = j and
(ti1 , . . . , tip−1 , tip) ∈ ×

p
z=1[|Θiz |] has the required property. It follows from Statement (∗)

that 〈Bp〉Ti−1+ti ,Tip−1+tip
> 0 because (i0, . . . , ip) is a walk in D of length p from i to ip

and, provided that p > 1, (ti1 , . . . , tip−1) ∈ ×
p−1
z=1 [|Θiz |] satisfies condition (G.7). Note that

āip,j(D) > 0 because (ip, j) is an arc in D. Also note that P(sj = θj,tj | sip = θip,tip
) > 0 and

E(γip | sip = θip,tip
, sj = θj,tj) > 0 because P(γip > 0, sip = θip,tip

, sj = θj,tj) > 0. The three
inequalities āip,j(D) > 0, P(sj = θj,tj | sip = θip,tip

) > 0, and E(γip | sip = θip,tip
, sj = θj,tj) > 0

imply that 〈B〉Tip−1+tip ,Tj−1+tj
> 0. We conclude that

〈Bp+1〉Ti−1+ti ,Tj−1+tj
= ∑

k∈[I]
∑

t∈[|Θk |]
〈Bp〉Ti−1+ti ,Tk−1+t〈B〉Tk−1+t,Tj−1+tj

≥ 〈Bp〉Ti−1+ti ,Tip−1+tip
〈B〉Tip−1+tip ,Tj−1+tj

> 0. �
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Proof of Lemma G.1 Let (i, j) ∈ [I]2 and (ti, tj) ∈ [|Θi|]× [|Θj|].

Proof of Result 1 The two inequalities follow from ET ≤c M−1 (Lemma F.4). �

Proof of Result 2 The statement follows from McDonald et al. (1995, Theorem 3.2 and Re-
mark 3.3) because M is a nonsingular, strictly row diagonally dominant M-matrix. It is clear
that M is a nonsingular M-matrix. We need to show that M is strictly row diagonally dominant,
that is, M1T >c 0T. For all k ∈ [I] and for all q ∈ [|Θk|],

∑
l∈[I]

∑
t∈[|Θl |]

〈M〉Tk−1+q,Tl−1+t

= 1− ∑
l∈[I]

∑
t∈[|Θl |]: P(sk=θk,q,sl=θl,t)>0

āk,l(D)P(sl = θl,t | sk = θk,q)E(γk | sk = θk,q, sl = θl,t)

E(βk + γk | sk = θk,q)

= 1−
E(γk | sk = θk,q)

E(βk | sk = θk,q) + E(γk | sk = θk,q)

=
E(βk | sk = θk,q)

E(βk | sk = θk,q) + E(γk | sk = θk,q)

> 0,

that is, the component in row Tk−1 + q of M1T is positive. �

Proof of Result 3 Assume that (i0, . . . , ip) is a walk in D of length p from i0 = i to ip = j and,
provided that p > 1, (ti1 , . . . , tip−1) ∈ ×

p−1
z=1 [|Θiz |] satisfies condition (G.7). It follows from

Lemma G.2 that 〈Bp〉Ti−1+ti ,Tj−1+tj
> 0. We find

〈M−1〉Ti−1+ti ,Tj−1+tj
=

∞

∑
k=0
〈Bk〉Ti−1+ti ,Tj−1+tj

≥ 〈Bp〉Ti−1+ti ,Tj−1+tj
> 0,

where the equality is according to Lemma F.1 because ρ(B) < 1 and the first inequality follows
from OT ≤c B. �

Proof of Result 4 Assume that Ti−1 + ti 6= Tj−1 + tj and 〈M−1〉Ti−1+ti ,Tj−1+tj
> 0. It follows from

〈M−1〉Ti−1+ti ,Tj−1+tj
=

∞

∑
k=0
〈Bk〉Ti−1+ti ,Tj−1+tj

that there exists a nonempty subset S of N ∪ {0} such that for all p ∈ S , the inequality
〈Bp〉Ti−1+ti ,Tj−1+tj

> 0 is true. We must have S ⊂N. To see this, suppose, for the sake of contra-
diction, that 0 ∈ S , that is, 〈B0〉Ti−1+ti ,Tj−1+tj

> 0. It follows from 0 < 〈B0〉Ti−1+ti ,Tj−1+tj
= δi,jδti ,tj

that i = j and ti = tj, which contradicts the assumption that Ti−1 + ti 6= Tj−1 + tj. This con-
cludes the proof that S ⊂ N. Finally, Lemma G.2 implies that for all p ∈ S , there exists a
walk (i0, . . . , ip) in D of length p from i0 = i to ip = j and, provided that p > 1, there exists a
(ti1 , . . . , tip−1) ∈ ×

p−1
z=1 [|Θiz |] that satisfies condition (G.7). �
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Proof of Result 5 Assume that no walk exists in D from i to j. It follows from Corollary G.3 that
for all k ∈N, 〈Bk〉Ti−1+ti ,Tj−1+tj

= 0. We find

〈M−1〉Ti−1+ti ,Tj−1+tj
=

∞

∑
k=0

〈
Bk〉

Ti−1+ti ,Tj−1+tj
=
〈

B0〉
Ti−1+ti ,Tj−1+tj

= δi,jδti ,tj ,

where the first equality is according to Lemma F.1 because ρ(B) < 1. �

This concludes the proof of Lemma G.1. �

In the remainder, we establish Results 1 to 6 of Proposition 4.6. To economize on notation,
some symbols introduced in the proof of Result 1 are redefined in the proofs of Results 2 to 6.
Let (j, k) ∈ [I]2 with j 6= k. The unique and interior BNE in pure strategies x? := (x?1 , . . . , x?I ) ∈
×i∈[I]R+

Θi in the Bayesian network game B satisfies the first-order condition,

∀i ∈ [I] ∀q ∈ [|Θi|] E(βi + γi | si = θi,q)x?i (θi,q) = E(αi | si = θi,q)

+ ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)x?n(θn,r).

Proof of Result 1 of Proposition 4.6 Let ∆αL be a FOSD upward shift in αL
k , that is, ∆αL is a

nonnegative random variable on (Ω,S, P) with P(∆αL > 0) > 0. It follows that there exists a
nonempty, maximal subset SL

k of [|Θk|] such that for all t ∈ SL
k , P(∆αL > 0, sk = θk,t) > 0, and

for all t ∈ [|Θk|] \ SL
k , P(∆αL > 0, sk = θk,t) = 0. To see this, note that

0 < P(∆αL > 0) = P

( ⋃
t∈[|Θk |]

{∆αL > 0} ∩ {sk = θk,t}
)
= ∑

t∈[|Θk |]
P(∆αL > 0, sk = θk,t)

because the family ({∆αL > 0} ∩ {sk = θk,t})t∈[|Θk |] is a partition of {∆αL > 0}, from which the
statement follows. Note that

∀t ∈ SL
k E(∆αL | sk = θk,t) > 0 (G.8)

because for all t ∈ [|Θk|], E(∆αL | sk = θk,t) > 0 if and only if P(∆αL > 0, sk = θk,t) > 0. For
all i ∈ [I], let α̃i := αi + δi,k∆αL. Let B̃ denote the Bayesian network game that results from B by
introducing the FOSD upward shift ∆αL in αL

k , and let x̃? := (x̃?1 , . . . , x̃?I ) ∈ ×i∈[I]R+
Θi denote

the unique and interior BNE in pure strategies in B̃ (Proposition B.1). The profile x̃? satisfies the
first-order condition,

∀i ∈ [I] ∀q ∈ [|Θi|] E(βi + γi | si = θi,q)x̃?i (θi,q) = E(α̃i | si = θi,q)

+ ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)x̃?n(θn,r).

For all i ∈ [I], let ∆x?i := x̃?i − x?i . Let ∆x?Θ denote the (column) vector in RT that is defined by, for
all i ∈ [I] and for all t ∈ [|Θi|], the component in row Ti−1 + t is equal to ∆x?i (θi,t). Subtracting
each equation of the first-order condition for x? from the corresponding equation for x̃? yields
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the following system of equations,

∀i ∈ [I] ∀q ∈ [|Θi|] E(βi + γi | si = θi,q)∆x?i (θi,q) = δi,k E(∆αL | sk = θk,q)

+ ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)∆x?n(θn,r),

which is equivalent to

∆x?Θ = M
(

D,
(
(βι, γι)

)
ι∈[I]
)−1D

(
(βι + γι)ι∈[I]

)−1 ∑
t∈SL

k

E(∆αL | sk = θk,t)eT,Tk−1+t.

Using the preceding representation of ∆x?Θ, we find for all i ∈ [I] and for all q ∈ [|Θi|],

∆x?i (θi,q) = eT
T,Ti−1+q∆x?Θ

= ∑
t∈SL

k

E(∆αL | sk = θk,t)

E(βk + γk | sk = θk,t)

〈
M
(

D,
(
(βι, γι)

)
ι∈[I]
)−1〉

Ti−1+q,Tk−1+t. (G.9)

First, we analyze the effect on player k’s behavior. Formula (G.9), statement (G.8), and
Result 1 of Lemma G.1 imply that ∆x?k ≥ 0 on Θk and ∆x?k > 0 on {θk,t | t ∈ SL

k }. We conclude
that the FOSD upward shift ∆αL in player k’s idiosyncratic component of the private benefit
parameter αL

k strictly increases her ex ante expected equilibrium action.
Second, we analyze the effect on player j’s behavior. Formula (G.9), statement (G.8), and

Results 1, 3, and 4 of Lemma G.1 imply that (a) ∆x?j ≥ 0 on Θj and (b) ∆x?j > 0 on a nonempty
subset of Θj if and only if there exists a conductive walk in D from player j to player k that has
a positive intersection with ∆αL. We conclude that the FOSD upward shift ∆αL in player k’s
idiosyncratic component of the private benefit parameter αL

k strictly increases player j’s ex ante
expected equilibrium action if and only if there exists a conductive walk in D from player j to
player k that has a positive intersection with ∆αL. �

Proof of Result 2 of Proposition 4.6 Let ∆αG be a FOSD upward shift in αG, that is, ∆αG is a non-
negative random variable on (Ω,S, P) with P(∆αG > 0) > 0. It follows that for all i ∈ [I], there
exists a nonempty, maximal subset SG

i of [|Θi|] such that for all t ∈ SG
i , P(∆αG > 0, si = θi,t) > 0,

and for all t ∈ [|Θi|] \ SG
i , P(∆αG > 0, si = θi,t) = 0. Note that

∀i ∈ [I] ∀t ∈ SG
i E(∆αG | si = θi,t) > 0. (G.10)

For all i ∈ [I], let α̃i := αi +∆αG. Let B̃ denote the Bayesian network game that results from B by
introducing the FOSD upward shift ∆αG in αG, and let x̃? := (x̃?1 , . . . , x̃?I ) ∈ ×i∈[I]R+

Θi denote
the unique and interior BNE in pure strategies in B̃ (Proposition B.1). The profile x̃? satisfies the
first-order condition,

∀i ∈ [I] ∀q ∈ [|Θi|] E(βi + γi | si = θi,q)x̃?i (θi,q) = E(α̃i | si = θi,q)

+ ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)x̃?n(θn,r).

For all i ∈ [I], let ∆x?i := x̃?i − x?i . Let ∆x?Θ be defined as in the proof of Result 1 of Proposition 4.6.
Subtracting each equation of the first-order condition for x? from the corresponding equation
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for x̃? yields the following system of equations,

∀i ∈ [I] ∀q ∈ [|Θi|] E(βi + γi | si = θi,q)∆x?i (θi,q) = E(∆αG | si = θi,q)

+ ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)∆x?n(θn,r),

which is equivalent to

∆x?Θ = M
(

D,
(
(βι, γι)

)
ι∈[I]
)−1D

(
(βι + γι)ι∈[I]

)−1 ∑
l∈[I]

∑
t∈SG

l

E(∆αG | sl = θl,t)eT,Tl−1+t.

Using the preceding representation of ∆x?Θ, we find for all i ∈ [I] and for all q ∈ [|Θi|],

∆x?i (θi,q) = eT
T,Ti−1+q∆x?Θ

= ∑
l∈[I]

∑
t∈SG

l

E(∆αG | sl = θl,t)

E(βl + γl | sl = θl,t)

〈
M
(

D,
(
(βι, γι)

)
ι∈[I]
)−1〉

Ti−1+q,Tl−1+t (G.11)

≥ ∑
t∈SG

i

E(∆αG | si = θi,t)

E(βi + γi | si = θi,t)

〈
M
(

D,
(
(βι, γι)

)
ι∈[I]
)−1〉

Ti−1+q,Ti−1+t, (G.12)

where the inequality follows statement (G.10) and Result 1 of Lemma G.1. Inequality (G.12),
statement (G.10), andResult 1 imply that for all i ∈ [I],∆x?i ≥ 0 onΘi and∆x?i > 0 on {θi,t | t ∈ SG

i }.
We conclude that the FOSD upward shift ∆αG in the global component of the private benefit
parameters αG strictly increases all ex ante expected equilibrium actions. �

Proof of Result 3 of Proposition 4.6 Let ∆βL be a FOSD upward shift in βL
k , that is, ∆βL is a

nonnegative random variable on (Ω,S, P) with P(∆βL > 0) > 0. It follows that there exists a
nonempty, maximal subset SL

k of [|Θk|] such that for all t ∈ SL
k , P(∆βL > 0, sk = θk,t) > 0, and

for all t ∈ [|Θk|] \ SL
k , P(∆βL > 0, sk = θk,t) = 0. Note that

∀t ∈ SL
k E(∆βL | sk = θk,t) > 0. (G.13)

For all i ∈ [I], let β̃i := βi + δi,k∆βL. Let B̃ denote the Bayesian network game that results from B
by introducing the FOSD upward shift ∆βL in βL

k , and let x̃? := (x̃?1 , . . . , x̃?I ) ∈ ×i∈[I]R+
Θi denote

the unique and interior BNE in pure strategies in B̃ (Proposition B.1). The profile x̃? satisfies the
first-order condition,

∀i ∈ [I] ∀q ∈ [|Θi|] E(β̃i + γi | si = θi,q)x̃?i (θi,q) = E(αi | si = θi,q)

+ ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)x̃?n(θn,r).

For all i ∈ [I], let ∆x?i := x̃?i − x?i . Let ∆x?Θ be defined as in the proof of Result 1 of Proposition 4.6.
Subtracting each equation of the first-order condition for x? from the corresponding equation
for x̃? yields the following system of equations,

∀i ∈ [I] ∀q ∈ [|Θi|] E
(

β̃i + γi
∣∣ si = θi,q

)
∆x?i (θi,q) + δi,k E(∆βL | sk = θk,q)x?k (θk,q)

= ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)∆x?n(θn,r),
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which is equivalent to

∆x?Θ = −M
(

D,
(
(β̃ι, γι)

)
ι∈[I]
)−1D

(
(β̃ι + γι)ι∈[I]

)−1 ∑
t∈SL

k

E(∆βL | sk = θk,t)x?k (θk,t)eT,Tk−1+t.

Using the preceding representation of ∆x?Θ, we find for all i ∈ [I] and for all q ∈ [|Θi|],

∆x?i (θi,q) = eT
T,Ti−1+q∆x?Θ

= − ∑
t∈SL

k

E(∆βL | sk = θk,t)x?k (θk,t)

E(βk + ∆βL + γk | sk = θk,t)

〈
M
(

D,
(
(β̃ι, γι)

)
ι∈[I]
)−1〉

Ti−1+q,Tk−1+t. (G.14)

First, we analyze the effect on player k’s behavior. Formula (G.14), statement (G.13), and
Result 1 of LemmaG.1 imply that∆x?k ≤ 0 onΘk and∆x?k < 0 on {θk,t | t ∈ SL

k }. We conclude that
the FOSD upward shift∆βL in player k’s idiosyncratic component of the private cost parameter βL

k
strictly decreases her ex ante expected equilibrium action.

Second, we analyze the effect on player j’s behavior. Formula (G.14), statement (G.13), and
Results 1, 3 and 4 imply that (a) ∆x?j ≤ 0 on Θj and (b) ∆x?j < 0 on a nonempty subset of Θj if and
only if there exists a conductive walk in D from player j to player k that has a positive intersection
with ∆βL. We conclude that the FOSD upward shift ∆βL in player k’s idiosyncratic component of
the private cost parameter βL

k strictly decreases player j’s ex ante expected equilibrium action
if and only if there exists a conductive walk in D from player j to player k that has a positive
intersection with ∆βL. �

Proof of Result 4 of Proposition 4.6 Let∆βG be a FOSD upward shift in βG, that is, ∆βG is a non-
negative random variable on (Ω,S, P) with P(∆βG > 0) > 0. It follows that for all i ∈ [I], there
exists a nonempty, maximal subset SG

i of [|Θi|] such that for all t ∈ SG
i , P(∆βG > 0, si = θi,t) > 0

and for all t ∈ [|Θi|] \ SG
i , P(∆βG > 0, si = θi,t) = 0. Note that

∀i ∈ [I] ∀t ∈ SG
i E(∆βG | si = θi,t) > 0. (G.15)

For all i ∈ [I], let β̃i := βi +∆βG. Let B̃ denote the Bayesian network game that results from B by
introducing the FOSD upward shift ∆βG in βG, and let x̃? := (x̃?1 , . . . , x̃?I ) ∈ ×i∈[I]R+

Θi denote
the unique and interior BNE in pure strategies in B̃ (Proposition B.1). The profile x̃? satisfies the
first-order condition,

∀i ∈ [I] ∀q ∈ [|Θi|] E(β̃i + γi | si = θi,q)x̃?i (θi,q) = E(αi | si = θi,q)

+ ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)x̃?n(θn,r).

For all i ∈ [I], let ∆x?i := x̃?i − x?i . Let ∆x?Θ be defined as in the proof of Result 1 of Proposition 4.6.
Subtracting each equation of the first-order condition for x? from the corresponding equation
for x̃? yields the following system of equations,

∀i ∈ [I] ∀q ∈ [|Θi|] E
(

β̃i + γi
∣∣ si = θi,q

)
∆x?i (θi,q) + E(∆βG | si = θi,q)x?i (θi,q)

= ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)∆x?n(θn,r),
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which is equivalent to

∆x?Θ = −M
(

D,
(
(β̃ι, γι)

)
ι∈[I]
)−1D

(
(β̃ι + γι)ι∈[I]

)−1 ∑
l∈[I]

∑
t∈SG

l

E(∆βG | sl = θl,t)x?l (θl,t)eT,Tl−1+t.

Using the preceding representation of ∆x?Θ, we find for all i ∈ [I] and for all q ∈ [|Θi|],

∆x?i (θi,q) = eT
T,Ti−1+q∆x?Θ

= − ∑
l∈[I]

∑
t∈SG

l

E(∆βG | sl = θl,t)x?l (θl,t)

E(βl + ∆βG + γl | sl = θl,t)

〈
M
(

D,
(
(β̃ι, γι)

)
ι∈[I]
)−1〉

Ti−1+q,Tl−1+t

≤ − ∑
t∈SG

i

E(∆βG | si = θi,t)x?i (θi,t)

E(βi + ∆βG + γi | si = θi,t)

〈
M
(

D,
(
(β̃ι, γι)

)
ι∈[I]
)−1〉

Ti−1+q,Ti−1+t, (G.16)

where the inequality follows statement (G.15) and Result 1 of Lemma G.1. Formula (G.16), state-
ment (G.15), and Result 1 imply that for all i ∈ [I], ∆x?i ≤ 0 on Θi and ∆x?i < 0 on {θi,t | t ∈ SG

i }.
We conclude that the FOSD upward shift ∆βG in the global component of the private cost
parameters βG strictly decreases all ex ante expected equilibrium actions. �

Proof of Result 5 of Proposition 4.6 Let ∆γL be a FOSD upward shift in γL
k , that is, ∆γL is a

nonnegative random variable on (Ω,S, P) with P(∆γL > 0) > 0. It follows that there exists a
nonempty, maximal subset SL

k of [|Θk|] such that for all t ∈ SL
k , P(∆γL > 0, sk = θk,t) > 0, and

for all t ∈ [|Θk|] \ SL
k , P(∆γL > 0, sk = θk,t) = 0. Note that

∀t ∈ SL
k ∑

n∈[I]
āk,n(D)(x?n ◦ sn) ≷ x?k ◦ sk on {∆γL > 0} ∩ {sk = θk,t}

⇒ ∀t ∈ SL
k P

(
∆γL

(
∑

n∈[I]
āk,n(D)(x?n ◦ sn)− x?k ◦ sk

)
≷ 0, sk = θk,t

)
> 0

⇔ ∀t ∈ SL
k E

(
∆γL

(
∑

n∈[I]
āk,n(D)(x?n ◦ sn)− x?k ◦ sk

) ∣∣∣∣ sk = θk,t

)
≷ 0. (G.17)

The FOSD upward shift ∆γL in γL
k causes E(γL

k (∑n∈[I] āk,n(D)(x?n ◦ sn)− x?k ◦ sk) | sk) to strictly
decrease (respectively, increase) on all events in ({sk = θk,t})t∈SL

k
if x?k ◦ sk is greater (respectively,

less) than ∑n∈[I] āk,n(D)(x?n ◦ sn) on all events in ({∆γL > 0} ∩ {sk = θk,t})t∈SL
k
. For all i ∈ [I], let

γ̃i := γi + δi,k∆γL. Let B̃ denote the Bayesian network game that results from B by introducing
the FOSD upward shift ∆γL in γL

k , and let x̃? := (x̃?1 , . . . , x̃?I ) ∈ ×i∈[I]R+
Θi denote the unique

and interior BNE in pure strategies in B̃ (Proposition B.1). The profile x̃? satisfies the first-order
condition,

∀i ∈ [I] ∀q ∈ [|Θi|] E(βi + γ̃i | si = θi,q)x̃?i (θi,q) = E(αi | si = θi,q)

+ ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γ̃i | si = θi,q, sn = θn,r)x̃?n(θn,r).

For all i ∈ [I], let ∆x?i := x̃?i − x?i . Let ∆x?Θ be defined as in the proof of Result 1 of Proposition 4.6.
Subtracting each equation of the first-order condition for x? from the corresponding equation
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for x̃? yields the following system of equations,

∀i ∈ [I] ∀q ∈ [|Θi|] E
(

βi + γ̃i
∣∣ si = θi,q

)
∆x?i (θi,q) + δi,k E

(
∆γL(x?k ◦ sk)

∣∣ sk = θk,q
)

= δi,k ∑
n∈[I]

āk,n(D)E
(
∆γL(x?n ◦ sn)

∣∣ sk = θk,q
)

+ ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γ̃i | si = θi,q, sn = θn,r)∆x?n(θn,r),

which is equivalent to

∆x?Θ = M
(

D,
(
(βι, γ̃ι)

)
ι∈[I]
)−1D

(
(βι + γ̃ι)ι∈[I]

)−1

× ∑
t∈SL

k

E
(

∆γL
(

∑
n∈[I]

āk,n(D)(x?n ◦ sn)− x?k ◦ sk

) ∣∣∣ sk = θk,t

)
eT,Tk−1+t.

Using the preceding representation of ∆x?Θ, we find for all i ∈ [I] and for all q ∈ [|Θi|],

∆x?i (θi,q) = eT
T,Ti−1+q∆x?Θ

= ∑
t∈SL

k

E
(
∆γL(∑n∈[I] āk,n(D)(x?n ◦ sn)− x?k ◦ sk

) ∣∣ sk = θk,t
)

E(βk + γk + ∆γL | sk = θk,t)

×
〈

M
(

D,
(
(βι, γ̃ι)

)
ι∈[I]
)−1〉

Ti−1+q,Tk−1+t. (G.18)

First, we analyze the effect on player k’s behavior. LetRk be a nonempty subset of SL
k . Formula

(G.18), statement (G.17), and Result 1 of Lemma G.1 imply that ∆x?k ≤ 0 (respectively, ∆x?k ≥ 0)
on Θk and ∆x?k < 0 (respectively, ∆x?k > 0) on {θk,t | t ∈ Rk} if ∑n∈[I] āk,n(D)(x?n ◦ sn) ≤ x?k ◦ sk
(respectively, ∑n∈[I] āk,n(D)(x?n ◦ sn) ≥ x?k ◦ sk) on all events in ({∆γL > 0} ∩ {sk = θk,t})t∈SL

k

and ∑n∈[I] āk,n(D)(x?n ◦ sn) < x?k ◦ sk (respectively, ∑n∈[I] āk,n(D)(x?n ◦ sn) > x?k ◦ sk) on all events
in ({∆γL > 0} ∩ {sk = θk,t})t∈Rk

. We conclude that the FOSD upward shift ∆γL in player k’s
idiosyncratic component of the social cost parameter γL

k strictly decreases (respectively, increases)
her ex ante expected equilibrium action if her equilibrium strategy x?k ◦ sk is greater (respectively,
less) than her social norm ∑n∈[I] āk,n(D)(x?n ◦ sn) on at least one event on which ∆γL is positive
with positive probability and greater than or equal to (respectively, less than or equal to) her
social norm on all other events on which ∆γL is positive with positive probability.

Second, we analyze the effect on player j’s behavior. Formula (G.18), statement (G.17),
and Results 1 and 3 imply that ∆x?j ≤ 0 (respectively, ∆x?j ≥ 0) on Θj and ∆x?j < 0 (respec-
tively, ∆x?j > 0) on a nonempty subset of Θj if ∑n∈[I] āk,n(D)(x?n ◦ sn) ≤ x?k ◦ sk (respectively,
∑n∈[I] āk,n(D)(x?n ◦ sn) ≥ x?k ◦ sk) on all events in ({∆γL > 0} ∩ {sk = θk,t})t∈SL

k
and there exists

a conductive walk in D from player j to player k that has a positive (respectively, negative) inter-
section with ∆γL(x?k ◦ sk−∑n∈[I] āk,n(D)(x?n ◦ sn)). We conclude that the FOSD upward shift ∆γL

in player k’s idiosyncratic component of the social cost parameter γL
k strictly decreases (respec-

tively, increases) player j’s ex ante expected equilibrium action if player k’s strategy x?k ◦ sk is
greater than or equal to (respectively, less than or equal to) her social norm ∑n∈[I] āk,n(D)(x?n ◦ sn)

on all events on which the FOSD upward shift ∆γL in γL
k is positive with positive probability

and there exists a conductive walk in D from player j to player k that has a positive(respectively,
negative) intersection with ∆γL(x?k ◦ sk −∑n∈[I] āk,n(D)(x?n ◦ sn)); it does not change player j’s
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ex ante expected equilibrium action if there does not exist a conductive walk in D from player j
to player k that has a positive intersection with ∆γL. �

Proof of Result 6 of Proposition 4.6 Let∆γG be a FOSDupward shift in γG, that is,∆γG is a non-
negative random variable on (Ω,S, P) with P(∆γG > 0) > 0. It follows that for all i ∈ [I], there
exists a nonempty, maximal subset SG

i of [|Θi|] such that for all t ∈ SG
i , P(∆γG > 0, si = θi,t) > 0,

and for all t ∈ [|Θi|] \ SG
i , P(∆γG > 0, si = θi,t) = 0. Note that

∀i ∈ [I] ∀t ∈ SG
i ∑

n∈[I]
āi,n(D)(x?n ◦ sn) ≷ x?i ◦ si on {∆γG > 0} ∩ {si = θi,t}

⇒ ∀i ∈ [I] ∀t ∈ SG
i E

(
∆γG

(
∑

n∈[I]
āi,n(D)(x?n ◦ sn)− x?i ◦ si

) ∣∣∣∣ si = θi,t

)
≷ 0. (G.19)

For all i ∈ [I], let γ̃i := γi +∆γG. Let B̃ denote the Bayesian network game that results from B by
introducing the FOSD upward shift ∆γG in γG, and let x̃? := (x̃?1 , . . . , x̃?I ) ∈ ×i∈[I]R+

Θi denote
the unique and interior BNE in pure strategies in B̃ (Proposition B.1). The profile x̃? satisfies the
first-order condition,

∀i ∈ [I] ∀q ∈ [|Θi|] E(βi + γ̃i | si = θi,q)x̃?i (θi,q) = E(αi | si = θi,q)

+ ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γ̃i | si = θi,q, sn = θn,r)x̃?n(θn,r).

For all i ∈ [I], let ∆x?i := x̃?i − x?i . Let ∆x?Θ be defined as in the proof of Result 1 of Proposition 4.6.
Subtracting each equation of the first-order condition for x? from the corresponding equation
for x̃? yields the following system of equations,

∀i ∈ [I] ∀q ∈ [|Θi|] E(βi + γ̃i | si = θi,q)∆x?i (θi,q) + E
(
∆γG(x?i ◦ si)

∣∣ si = θi,q
)

= ∑
n∈[I]

āi,n(D)E
(
∆γG(x?n ◦ sn)

∣∣ si = θi,q
)

+ ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γ̃i | si = θi,q, sn = θn,r)∆x?n(θn,r),

which is equivalent to

∆x?Θ = M
(

D,
(
(βι, γ̃ι)

)
ι∈[I]
)−1D

(
(βι + γ̃ι)ι∈[I]

)−1

× ∑
l∈[I]

∑
t∈SG

l

E
(

∆γG
(

∑
n∈[I]

āl,n(D)(x?n ◦ sn)− x?l ◦ sl

) ∣∣∣ sl = θl,t

)
eT,Tl−1+t.

Using the preceding representation of ∆x?Θ, we find for all i ∈ [I] and for all q ∈ [|Θi|],

∆x?i (θi,q) = eT
T,Ti−1+q∆x?Θ

= ∑
l∈[I]

∑
t∈SG

l

E
(
∆γG(∑n∈[I] āl,n(D)(x?n ◦ sn)− x?l ◦ sl

) ∣∣ sl = θl,t
)

E(βl + γl + ∆γG | sl = θl,t)

×
〈

M
(

D,
(
(βι, γ̃ι)

)
ι∈[I]
)−1〉

Ti−1+q,Tl−1+t. (G.20)
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Formula (G.20) shows that the FOSD upward shift ∆γG in the global component of the social
cost parameters γG may decrease, increase, or leave unchanged a player’s ex ante expected
equilibrium action. Formula (G.20), statement (G.19), and Result 1 of Lemma G.1 imply that
for all i ∈ [I], ∆x?i ≤ 0 (respectively, ∆x?i ≥ 0) on Θi and ∆x?i < 0 (respectively, ∆x?i > 0)
on a nonempty subset of Θi if for all l ∈ [I], player l’s strategy x?l ◦ sl is greater than or equal
to (respectively, less than or equal to) her social norm ∑n∈[I] āl,n(D)(x?n ◦ sn) on all events in
({∆γG > 0} ∩ {sl = θl,t})t∈SG

l
and player i’s strategy x?i ◦ si is greater (respectively, less) than

her social norm ∑n∈[I] āi,n(D)(x?n ◦ sn) on at least one event in ({∆γG > 0} ∩ {si = θi,t})t∈SG
i
. We

conclude that the FOSD upward shift ∆γG in the global component of the social cost parame-
ters γG strictly decreases (respectively, increases) player i’s ex ante expected equilibrium action
if all equilibrium strategies are greater than or equal to (respectively, less than or equal to) their
social norms on all events on which ∆γG is positive with positive probability and player i’s
equilibrium strategy is greater (respectively, less) than her social norm on at least one event on
which ∆γG is positive with positive probability. �

Proof of Proposition 4.7

The proof uses the notation introduced in the proof of Result 5 of Proposition 4.6. Let (j, k) ∈ [I]2

with j 6= k, and let ∆γL be a FOSD upward shift in γL
k . Assume that Condition 4.4 is satisfied in

B and B̃.
The first-order condition for the unique and interior BNE in pure strategies (x?1 , . . . , x?I ) in B

is equivalent to

∀i ∈ [I] E
(
(βi + γi)(x?i ◦ si)

∣∣ si
)
− ∑

n∈[I]
āi,n(D)E

(
γi(x?n ◦ sn)

∣∣ si
)
= E(αi | si),

from which it follows that

∀i ∈ [I] E(βi + γi)E(x?i ◦ si)−E(γi) ∑
n∈[I]

āi,n(D)E(x?n ◦ sn) = E(αi) (G.21)

because for all i ∈ [I], E((βi + γi)(x?i ◦ si)) = E(βi + γi)E(x?i ◦ si), and for all i ∈ [I] and for
all n ∈ N+

D (i), E(γi(x?n ◦ sn)) = E(γi)E(x?n ◦ sn), according to the assumption that Condition 4.4
is satisfied inB. Similarly, the unique and interior BNE in pure strategies (x̃?1 , . . . , x̃?I ) in B̃ satisfies,

∀i ∈ [I] E(βi + γ̃i)E(x̃?i ◦ si)−E(γ̃i) ∑
n∈[I]

āi,n(D)E(x̃?n ◦ sn) = E(αi). (G.22)

Subtracting each equation of the system of equations (G.21) from the corresponding equation
of (G.22) yields the following system of equations,

∀i ∈ [I] E(βi + γ̃i)E(∆x?i ◦ si)−E(γ̃i) ∑
n∈[I]

āi,n(D)E(∆x?n ◦ sn)

= δi,k E(∆γL)

(
∑

n∈[I]
āk,n(D)E(x?n ◦ sn)−E(x?k ◦ sk)

)
,
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which is equivalent to

∀i ∈ [I] E(∆x?i ◦ si)−
E(γ̃i)

E(βi + γ̃i)
∑

n∈[I]
āi,n(D)E(∆x?n ◦ sn)

= δi,k
E(∆γL)

E(βk + γk + ∆γL)

(
∑

n∈[I]
āk,n(D)E(x?n ◦ sn)−E(x?k ◦ sk)

)
. (G.23)

Let γ̃ denote the random I-vector whose ith component is γ̃i. The system of equations (G.23) is
equivalent to

(
EI − diag

(
E(β + γ̃)

)−1 diag
(
E(γ̃)

)
Ā(D)

)
E


∆x?1 ◦ s1

...
∆x?I ◦ sI




=
E(∆γL)

E(βk + γk + ∆γL)

(
∑

n∈[I]
āk,n(D)E(x?n ◦ sn)−E(x?k ◦ sk)

)
eI,k. (G.24)

Note that thematrix EI−diag(E(β + γ̃))−1 diag(E(γ̃))Ā(D) is nonsingular because it is equal to
the nonsingularM-matrix M(D, ((βι, γ̃ι))ι∈[I]) for the case T = I (see the proof of Proposition 4.6
for the definition of M(D, ((βι, γι))ι∈[I])). It follows that the system of equations (G.24) is
equivalent to

E


∆x?1 ◦ s1

...
∆x?I ◦ sI


 =

E(∆γL)

E(βk + γk + ∆γL)

(
∑

n∈[I]
āk,n(D)E(x?n ◦ sn)−E(x?k ◦ sk)

)

×
(

EI − diag
(
E(β + γ̃)

)−1 diag
(
E(γ̃)

)
Ā(D)

)−1
eI,k.

We find for all i ∈ [I],

E(∆x?i ◦ si) = eT
I,i E


∆x?1 ◦ s1

...
∆x?I ◦ sI




=
E(∆γL)

E(βk + γk + ∆γL)

(
∑

n∈[I]
āk,n(D)E(x?n ◦ sn)−E(x?k ◦ sk)

)
×
〈(

EI − diag
(
E(β + γ̃)

)−1 diag
(
E(γ̃)

)
Ā(D)

)−1〉
i,k

. (G.25)

It follows from formula (G.25) and Results 1 and 2 of Lemma G.1, if player j is affected by the
shift ∆γL, then

sgn
(
E(∆x?j ◦ sj)

)
= sgn

(
E(∆x?k ◦ sk)

)
= sgn

(
∑

n∈[I]
āk,n(D)E(x?n ◦ sn)−E(x?k ◦ sk)

)

and |E(∆x?j ◦ sj)| < |E(∆x?k ◦ sk)|.
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In summary, the signs of the effects of a FOSD upward shift ∆γL in player k’s idiosyncratic
component of the social cost parameter γL

k on ex ante expected equilibrium actions are the same
for all players who are affected by the shift; if player j is affected by the shift, then the magnitude
of the effect on her ex ante expected equilibrium action is less than that of player k.

Proof of Proposition 4.8

Let (j, k, l) ∈ [I]3 with j 6= k and k 6= l. Assume that there is no arc in D from player k to player l,
player k is not quasi-isolated (that is, P(γk > 0) > 0), and Condition 4.5 is satisfied. The Bayesian
network game B has a unique and interior BNE in pure strategies (x?1 , . . . , x?I ) ∈ ×i∈[I]R+

Θi

(Proposition B.1), which satisfies the first-order condition,

∀i ∈ [I] ∀q ∈ [|Θi|] E(βi + γi | si = θi,q)x?i (θi,q) = E(αi | si = θi,q)

+ ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n(D)P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)x?n(θn,r).

Adding the arc (k, l) to D yields the network D + (k, l) := ([I],A(D) ∪ {(k, l)}). Let B̃ denote
the Bayesian network game that results from B by substituting D + (k, l) for D. The Bayesian
network game B̃ has a unique and interior BNE in pure strategies (x̃?1 , . . . , x̃?I ) ∈ ×i∈[I]R+

Θi

(Proposition B.1), which satisfies the first-order condition,

∀i ∈ [I] ∀q ∈ [|Θi|] E(βi + γi | si = θi,q)x̃?i (θi,q) = E(αi | si = θi,q)

+ ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n
(

D + (k, l)
)

P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)x̃?n(θn,r).

For all i ∈ [I], let ∆x?i := x̃?i − x?i . Let ∆x?Θ denote the (column) vector in RT that is defined
by, for all i ∈ [I] and for all t ∈ [|Θi|], the component in row Ti−1 + t is equal to ∆x?i (θi,t).
Subtracting each equation of the first-order condition for (x?1 , . . . , x?I ) from the corresponding
equation for (x̃?1 , . . . , x̃?I ) yields the following system of equations,

∀i ∈ [I] ∀q ∈ [|Θi|] E(βi + γi | si = θi,q)∆x?i (θi,q) = 0

+ ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n
(

D+(k, l)
)

P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)∆x?n(θn,r)

+ ∑
n∈[I]

(
āi,n
(

D + (k, l)
)
− āi,n(D)

)
E
(
γi(x?n ◦ sn)

∣∣ si = θi,q
)
. (G.26)

Note that for all (i, n) ∈ [I]2,

āi,n
(

D + (k, l)
)
− āi,n(D) =

1N+
D+(k,l)(i)

(n)

deg+
D+(k,l)(i)

−
1N+

D (i)(n)

deg+
D(i)

=


0 if i 6= k,

1N+
D (k)∪{l}(n)

deg+
D(k) + 1

−
1N+

D (k)(n)

deg+
D(k)

if i = k,

=
δi,k

deg+
D(k) + 1

(
1N+

D (k)(n) + 1{l}(n)−
deg+

D(k) + 1
deg+

D(k)
1N+

D (k)(n)
)
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=
δi,k

deg+
D(k) + 1

(
δl,n − āk,n(D)

)
,

where 1N+
D (k)∪{l}(n) = 1N+

D (k)(n) + 1{l}(n) because there is no arc in D from player k to player l.
Given the preceding result, the system of equations (G.26) is equivalent to

∀i ∈ [I] ∀q ∈ [|Θi|] E(βi + γi | si = θi,q)∆x?i (θi,q) = 0

+ ∑
n∈[I]

∑
r∈[|Θn|]: P(si=θi,q,sn=θn,r)>0

āi,n
(

D+(k, l)
)

P(sn = θn,r | si = θi,q)E(γi | si = θi,q, sn = θn,r)∆x?n(θn,r)

+ δi,k
E
(
γk
(
x?l ◦ sl −∑n∈[I] āk,n(D)(x?n ◦ sn)

) ∣∣ sk = θk,q
)

deg+
D(k) + 1

,

which in turn is equivalent to

∆x?Θ = M
(

D + (k, l),
(
(βι, γι)

)
ι∈[I]
)−1D

(
(βι + γι)ι∈[I]

)−1

× ∑
t∈[|Θk |]

E
(
γk
(

x?l ◦ sl −∑n∈[I] āk,n(D)(x?n ◦ sn)
) ∣∣ sk = θk,t

)
deg+

D(k) + 1
eT,Tk−1+t.

Using the preceding representation of ∆x?Θ, we find for all i ∈ [I] and for all q ∈ [|Θi|],

∆x?i (θi,q) = eT
T,Ti−1+q∆x?Θ

= ∑
t∈[|Θk |]

E
(
γk
(

x?l ◦ sl −∑n∈[I] āk,n(D)(x?n ◦ sn)
) ∣∣ sk = θk,t

)(
deg+

D(k) + 1
)

E(βk + γk | sk = θk,t)

×
〈

M
(

D + (k, l),
(
(βι, γι)

)
ι∈[I]
)−1〉

Ti−1+q,Tk−1+t. (G.27)

It is clear from formula (G.27) and Results 1 and 3 of Lemma G.1 that the new arc from player k
to player l may decrease, increase, or leave unchanged player k’s and other players’ ex ante
expected equilibrium actions. The signs of the effects depend on the structure of the Bayesian
network game B.

It follows from P(γk > 0) > 0 that there exists a nonempty, maximal subset Sk of [|Θk|] such
that for all t ∈ Sk, P(γk > 0, sk = θk,t) > 0, and for all t ∈ [|Θk|] \ Sk, P(γk > 0, sk = θk,t) = 0.
Note that

∀t ∈ Sk x?l ◦ sl ≷ ∑
n∈[I]

āk,n(D)(x?n ◦ sn) on {γk > 0} ∩ {sk = θk,t}

⇒ ∀t ∈ Sk P

(
γk

(
x?l ◦ sl − ∑

n∈[I]
āk,n(D)(x?n ◦ sn)

)
≷ 0, sk = θk,t

)
> 0

⇔ ∀t ∈ Sk E

(
γk

(
x?l ◦ sl − ∑

n∈[I]
āk,n(D)(x?n ◦ sn)

) ∣∣∣∣ sk = θk,t

)
≷ 0 (G.28)

because for all t ∈ Sk, {γk(x?l ◦ sl − ∑n∈[I] āk,n(D)(x?n ◦ sn)) ≷ 0} ∩ {sk = θk,t} = {γk > 0} ∩
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{sk = θk,t} if x?l ◦ sl ≷ ∑n∈[I] āk,n(D)(x?n ◦ sn) on {γk > 0} ∩ {sk = θk,t}. Also note that

∀t ∈ [|Θk|] \ Sk E

(
γk

(
x?l ◦ sl − ∑

n∈[I]
āk,n(D)(x?n ◦ sn)

) ∣∣∣∣ sk = θk,t

)
= 0. (G.29)

First, we analyze the effect on player k’s behavior. LetRk be a nonempty subset of Sk. For-
mula (G.27), statements (G.28) and (G.29), and Result 1 of Lemma G.1 imply that ∆x?k ≤ 0
(respectively, ∆x?k ≥ 0) on Θk and ∆x?k < 0 (respectively, ∆x?k > 0) on {θk,t | t ∈ Rk} if
x?l ◦ sl ≤ ∑n∈[I] āk,n(D)(x?n ◦ sn) (respectively, x?l ◦ sl ≥ ∑n∈[I] āk,n(D)(x?n ◦ sn)) on all events
in ({γk > 0} ∩ {sk = θk,t})t∈Sk

and x?l ◦ sl < ∑n∈[I] āk,n(D)(x?n ◦ sn) (respectively, x?l ◦ sl >

∑n∈[I] āk,n(D)(x?n ◦ sn)) on all events in ({γk > 0} ∩ {sk = θk,t})t∈Rk
. We conclude that a new

arc from player k to player l strictly decreases (respectively, increases) player k’s ex ante expected
equilibrium action if player l’s strategy x?l ◦ sl is less (respectively, greater) than player k’s social
norm ∑n∈[I] āk,n(D)(x?n ◦ sn) on at least one event on which player k’s social cost parameter γk is
positive with positive probability and less than or equal to (respectively, greater than or equal to)
her social norm on all other events on which her social cost parameter is positive with positive
probability.

Second, we analyze the effect on player j’s behavior. Formula (G.27), statements (G.28)
and (G.29), and Results 1 and 3 of Lemma G.1 imply that ∆x?j ≤ 0 (respectively, ∆x?j ≥ 0) on Θj
and∆x?j < 0 (respectively,∆x?j > 0) on a nonempty subset ofΘj if x?l ◦ sl ≤ ∑n∈[I] āk,n(D)(x?n ◦ sn)

(respectively, x?l ◦ sl ≥ ∑n∈[I] āk,n(D)(x?n ◦ sn)) on all events in ({γk > 0} ∩ {sk = θk,t})t∈Sk
and

there exists a conductive walk in D and, therefore, in D + (k, l) from player j to player k that
has a negative (respectively, positive) intersection with γk(x?l ◦ sl −∑n∈[I] āk,n(D)(x?n ◦ sn)). We
conclude that a new arc from player k to player l strictly decreases (respectively, increases)
player j’s ex ante expected equilibrium action if player l’s strategy x?l ◦ sl is less than or equal
to (respectively, greater than or equal to) player k’s social norm ∑n∈[I] āk,n(D)(x?n ◦ sn) on all
events on which player k’s social cost parameter γk is positive with positive probability and
there exists a conductive walk in D from player j to player k that has a negative (respectively,
positive) intersection with γk(x?l ◦ sl −∑n∈[I] āk,n(D)(x?n ◦ sn)); it does not change player j’s ex
ante expected equilibrium action if there does not exist a conductive walk in D from player j to
player k that has a positive intersection with γk.

Proof of Proposition 4.9

The proof uses the notation introduced in the proof of Proposition 4.8. Let (j, k, l) ∈ [I]3 with
j 6= k and k 6= l. Assume that there is no arc in D from player k to player l and Conditions 4.4
and 4.5 are satisfied in D + (k, l).

The first-order condition for the unique and interior BNE in pure strategies (x?1 , . . . , x?I ) in B
is equivalent to

∀i ∈ [I] E
(
(βi + γi)(x?i ◦ si)

∣∣ si
)
− ∑

n∈[I]
āi,n(D)E

(
γi(x?n ◦ sn)

∣∣ si
)
= E(αi | si),

from which it follows that

∀i ∈ [I] E(βi + γi)E(x?i ◦ si)−E(γi) ∑
n∈[I]

āi,n(D)E(x?n ◦ sn) = E(αi) (G.30)
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because for all i ∈ [I], E((βi + γi)(x?i ◦ si)) = E(βi + γi)E(x?i ◦ si), and for all i ∈ [I] and for
all n ∈ N+

D (i), E(γi(x?n ◦ sn)) = E(γi)E(x?n ◦ sn), according to the assumption that Condition 4.4
is satisfied in D + (k, l) and, therefore, also in D. Similarly, the unique and interior BNE in pure
strategies (x̃?1 , . . . , x̃?I ) in B̃ satisfies,

∀i ∈ [I] E(βi + γi)E(x̃?i ◦ si)−E(γi) ∑
n∈[I]

āi,n
(

D + (k, l)
)

E(x̃?n ◦ sn) = E(αi). (G.31)

Subtracting each equation of the system of equations (G.30) from the corresponding equation
of (G.31) yields the following system of equations,

∀i ∈ [I] E(βi + γi)E(∆x?i ◦ si)−E(γi) ∑
n∈[I]

āi,n
(

D + (k, l)
)

E(∆x?n ◦ sn)

= E(γi) ∑
n∈[I]

(
āi,n
(

D + (k, l)
)
− āi,n(D)

)
E(x?n ◦ sn),

which is equivalent to

∀i ∈ [I] E(∆x?i ◦ si)−
E(γi)

E(βi + γi)
∑

n∈[I]
āi,n
(

D + (k, l)
)

E(∆x?n ◦ sn)

=
δi,k

deg+
D(k) + 1

E(γk)

E(βk + γk)

(
E(x?l ◦ sl)− ∑

n∈[I]
āk,n(D)E(x?n ◦ sn)

)
(G.32)

because for all (i, n) ∈ [I]2,

āi,n
(

D + (k, l)
)
− āi,n(D) =

δi,k

deg+
D(k) + 1

(
δl,n − āk,n(D)

)
.

The system of equations (G.32) is equivalent to

(
EI − diag

(
E(β + γ)

)−1 diag
(
E(γ)

)
Ā
(

D + (k, l)
))

E


∆x?1 ◦ s1

...
∆x?I ◦ sI




=
1

deg+
D(k) + 1

E(γk)

E(βk + γk)

(
E(x?l ◦ sl)− ∑

n∈[I]
āk,n(D)E(x?n ◦ sn)

)
eI,k. (G.33)

Note that the matrix EI − diag(E(β + γ))−1 diag(E(γ))Ā(D + (k, l)) is nonsingular because
it is equal to the nonsingular M-matrix M(D + (k, l), ((βι, γι))ι∈[I]) for the case T = I (see the
proof of Proposition 4.6 for the definition of M(D, ((βι, γι))ι∈[I])). It follows that the system of
equations (G.33) is equivalent to

E


∆x?1 ◦ s1

...
∆x?I ◦ sI


 =

1
deg+

D(k) + 1
E(γk)

E(βk + γk)

(
E(x?l ◦ sl)− ∑

n∈[I]
āk,n(D)E(x?n ◦ sn)

)

×
(

EI − diag
(
E(β + γ)

)−1 diag
(
E(γ)

)
Ā
(

D + (k, l)
))−1

eI,k.
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We find for all i ∈ [I],

E(∆x?i ◦ si) = eT
I,i E


∆x?1 ◦ s1

...
∆x?I ◦ sI




=
1

deg+
D(k) + 1

E(γk)

E(βk + γk)

(
E(x?l ◦ sl)− ∑

n∈[I]
āk,n(D)E(x?n ◦ sn)

)
×
〈(

EI − diag
(
E(β + γ)

)−1 diag
(
E(γ)

)
Ā
(

D + (k, l)
))−1〉

i,k
. (G.34)

It follows from formula (G.34) and Results 1 and 2 of Lemma G.1, if player j is affected by the
new arc, then

sgn
(
E(∆x?j ◦ sj)

)
= sgn

(
E(∆x?k ◦ sk)

)
= sgn

(
E(x?l ◦ sl)− ∑

n∈[I]
āk,n(D)E(x?n ◦ sn)

)

and |E(∆x?j ◦ sj)| < |E(∆x?k ◦ sk)|.
In summary, the signs of the effects of a new arc from player k to player l on ex ante expected

equilibrium actions are the same for all players who are affected by the new arc; if player j is
affected by the new arc, then the magnitude of the effect on her ex ante expected equilibrium
action is less than that of player k.

Proof of Proposition 5.2

Let ∆αL and ∆αG be α-admissible FOSD downward shifts that satisfy E(∆αG) = (1/I)E(∆αL);
specifically, ∆αL and ∆αG are nonpositive random variables on (Ω,S, P) with P(∆αL < 0) > 0
and P(∆αG < 0) > 0. For all k ∈ [I], let (∆x?1(k), . . . , ∆x?I (k)) denote the profile of changes
in equilibrium strategies in the Bayesian network game B that result from the shift ∆αL in
player k’s private benefit parameter. Let (∆x?1([I]), . . . , ∆x?I ([I])) denote the profile of changes in
equilibrium strategies in B that result from the shift ∆αG in all private benefit parameters.

Assume that k? ∈ [I] is a key player of the KPP-α(∆αL). It follows from the definition of the
KPP-α(∆αL) that

∀k ∈ [I] ∑
i∈[I]

E
(
∆x?i (k

?) ◦ si
)
≤ ∑

i∈[I]
E
(
∆x?i (k) ◦ si

)
. (G.35)

If the number of key players of the KPP-α(∆αL) is less than I, then there exists a k̄ ∈ [I] such that
∑i∈[I] E(∆x?i (k

?) ◦ si) < ∑i∈[I] E(∆x?i (k̄) ◦ si).
Analogous to the proof of Result 1 of Proposition 4.6 (see formula (G.9) in particular), for

all (i, k) ∈ [I]2, the decrease in player i’s ex ante expected equilibrium action resulting from the
shift ∆αL in player k’s private benefit parameter is given by

E
(
∆x?i (k) ◦ si

)
= ∑

q∈[|Θi |]
P(si = θi,q) ∑

t∈SL
k

E(∆αL | sk = θk,t)

E(βk + γk | sk = θk,t)

×
〈

M
(

D,
(
(βι, γι)

)
ι∈[I]
)−1〉

Ti−1+q,Tk−1+t, (G.36)
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where SL
k ⊂ [|Θk|] is such that for all t ∈ SL

k , P(∆αL < 0, sk = θk,t) > 0, and for all t ∈ [|Θk|] \ SL
k ,

P(∆αL < 0, sk = θk,t) = 0.
Analogous to the proof of Result 2 of Proposition 4.6 (see formula (G.11) in particular),

for all i ∈ [I], the decrease in player i’s ex ante expected equilibrium action resulting from the
shift ∆αG in all private benefit parameters is given by

E
(
∆x?i ([I]) ◦ si

)
= ∑

q∈[|Θi |]
P(si = θi,q) ∑

k∈[I]
∑

t∈SG
k

E(∆αG | sk = θk,t)

E(βk + γk | sk = θk,t)

×
〈

M
(

D,
(
(βι, γι)

)
ι∈[I]
)−1〉

Ti−1+q,Tk−1+t, (G.37)

where for all k ∈ [I], SG
k ⊂ [|Θk|] is such that for all t ∈ SG

k , P(∆αG < 0, sk = θk,t) > 0, and for
all t ∈ [|Θk|] \ SG

k , P(∆αG < 0, sk = θk,t) = 0.
First, consider the case where ∆αG = (1/I)∆αL a.s. If follows that

∀k ∈ [I] SL
k = SG

k (G.38)

and

∀ k ∈ [I] ∀t ∈ SL
k E(∆αL | sk = θk,t) = I E(∆αG | sk = θk,t). (G.39)

We find

∑
i∈[I]

E
(
∆x?i (k

?) ◦ si
)
≤ 1

I ∑
k∈[I]

∑
i∈[I]

E
(
∆x?i (k) ◦ si

)
=

1
I ∑

k∈[I]
∑

i∈[I]
∑

q∈[|Θi |]
P(si = θi,q) ∑

t∈SL
k

E(∆αL | sk = θk,t)

E(βk + γk | sk = θk,t)

×
〈

M
(

D,
(
(βι, γι)

)
ι∈[I]
)−1〉

Ti−1+q,Tk−1+t

= ∑
i∈[I]

∑
q∈[|Θi |]

P(si = θi,q) ∑
k∈[I]

∑
t∈SG

k

E(∆αG | sk = θk,t)

E(βk + γk | sk = θk,t)

×
〈

M
(

D,
(
(βι, γι)

)
ι∈[I]
)−1〉

Ti−1+q,Tk−1+t

= ∑
i∈[I]

E
(
∆x?i ([I]) ◦ si

)
,

where the inequality follows from statement (G.35) and is strict if the number of key players of
the KPP-α(∆αL) is less than I, the first equality from formula (G.36), the second equality from
statements (G.38) and (G.39), and the last equality from formula (G.37).

Second, consider the case where all signals are completely uninformative about ∆αL and ∆αG.
If follows that

∀k ∈ [I] SL
k = [|Θk|] = SG

k
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and

∀ k ∈ [I] ∀t ∈ [|Θk|] E(∆αL | sk = θk,t) = E(∆αL) = I E(∆αG) = I E(∆αG | sk = θk,t).

The proof of the inequality ∑i∈[I] E
(
∆x?i (k

?) ◦ si
)
≤ ∑i∈[I] E

(
∆x?i ([I]) ◦ si

)
is analogous to the

case where ∆αG = (1/I)∆αL a.s.
In summary, if ∆αG = (1/I)∆αL a.s. or all signals are completely uninformative about ∆αL

and ∆αG, then the key player policy is weakly superior to the comparable global policy, and if in
addition the number of key players of the KPP-α(∆αL) is less than I, then the key player policy
is strictly superior to the global policy.

Proof of Lemma 6.2

Let i ∈ [I], and let πi ∈ {αi, βi, γi}. The statement follows from the Pythagorean theorem in the
Hilbert space of square-integrable random variables on the probability space (Ω,S, P). Note
that πi −E(πi | si) and E(πi | si)−E(πi) are orthogonal because

E
((

πi −E(πi | si)
)(

E(πi | si)−E(πi)
) ∣∣∣ si

)
= 0.

We find

var(πi) = ‖πi −E(πi)‖2
2

= ‖πi −E(πi | si) + E(πi | si)−E(πi)‖2
2

= ‖πi −E(πi | si)‖2
2 + ‖E(πi | si)−E(πi)‖2

2

= ‖πi −E(πi | si)‖2
2 + var

(
E(πi | si)

)
,

from which I(πi, si) = var(πi)− ‖πi −E(πi | si)‖2
2 follows.

Proof of Lemma 6.3

Let i ∈ [I], and let πi ∈ {αi, βi, γi}. Assume that σ(si) 6= σ(s̃i) and σ(si) ⊂ σ(s̃i). The statement
follows from the tower property and the contraction property of conditional expectations (see,
for example, Klenke 2014, Theorem 8.14 and Corollary 8.21):

I(πi, si)− I(πi, s̃i) = var
(
E(πi | si)

)
− var

(
E(πi | s̃i)

)
= E

(
E(πi | si)

2)−E
(
E(πi | s̃i)

2)
= ‖E(πi | si)‖2

2 − ‖E(πi | s̃i)‖2
2

=
∥∥E
(
E(πi | s̃i)

∣∣ si
)∥∥2

2 − ‖E(πi | s̃i)‖2
2

≤ 0.
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Proof of Formula (4)

The formula follows from the definition of the payoff function and the first-order condition for
the unique and interior BNE in pure strategies (x?1 , . . . , x?I ) in B, which is equivalent to

∀i ∈ [I] E(βi + γi | si)(x?i ◦ si) = E(αi | si) + ∑
m∈[I]

āi,m(D)E
(
γi(x?m ◦ sm)

∣∣ si
)
. (G.40)

Let i ∈ [I]. Multiplying each term in (G.40) by x?i ◦ si yields

E(βi + γi | si)(x?i ◦ si)
2 = E(αi | si)(x?i ◦ si) + (x?i ◦ si) ∑

m∈[I]
āi,m(D)E

(
γi(x?m ◦ sm)

∣∣ si
)
. (G.41)

We find

E
(
ui
(
idΩ, (x?1 ◦ s1, . . . , x?I ◦ sI)

) ∣∣ si
)

= E

(
αi(x?i ◦ si)−

βi

2
(x?i ◦ si)

2 − γi

2

(
x?i ◦ si − ∑

m∈[I]
āi,m(D)(x?m ◦ sm)

)2
∣∣∣∣∣ si

)

= E(αi | si)(x?i ◦ si)−
1
2

E(βi + γi | si)(x?i ◦ si)
2 + (x?i ◦ si) ∑

m∈[I]
āi,m(D)E

(
γi(x?m ◦ sm)

∣∣ si
)

− 1
2 ∑

m∈[I]
∑

n∈[I]
āi,m(D)āi,n(D)E

(
γi(x?m ◦ sm)(x?n ◦ sn)

∣∣ si
)

=
1
2

E(βi + γi | si)(x?i ◦ si)
2 − 1

2 ∑
m∈[I]

∑
n∈[I]

āi,m(D)āi,n(D)E
(
γi(x?m ◦ sm)(x?n ◦ sn)

∣∣ si
)

=
1
2

E(βi + γi | si)(x?i ◦ si)
2 − 1

2 ∑
m∈[I]

āi,m(D)2
E
(
γi(x?m ◦ sm)

2 ∣∣ si
)

− ∑
m∈[I]

∑
n∈[m−1]

āi,m(D)āi,n(D)E
(
γi(x?m ◦ sm)(x?n ◦ sn)

∣∣ si
)
,

where the second to last equality follows from (G.41). We conclude that

E
(
u?

i (σ)
)
= E

(
E
(
ui
(
idΩ, (x?1 ◦ s1, . . . , x?I ◦ sI)

) ∣∣ si
))

=
1
2

E
(
(βi + γi)(x?i ◦ si)

2)− 1
2 ∑

m∈[I]
āi,m(D)2

E
(
γi(x?m ◦ sm)

2)
− ∑

m∈[I]
∑

n∈[m−1]
āi,m(D)āi,n(D)E

(
γi(x?m ◦ sm)(x?n ◦ sn)

)
.

Proof of Formula (5)

Assume that Condition 6.4 is satisfied. Formula (5) follows from the first-order condition for the
unique and interior BNE in pure strategies (x?1 , . . . , x?I ) in B. The first-order condition implies
that

∀i ∈ [I] E
(
(βi + γi)(x?i ◦ si)

)
−E

(
γi ∑

n∈[I]
āi,n(D)(x?n ◦ sn)

)
= E(αi),
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that is,

E

diag(β + γ)

x?1 ◦ s1
...

x?I ◦ sI


−E

diag(γ)Ā(D)

x?1 ◦ s1
...

x?I ◦ sI


 = E(α),

which is equivalent to

(
EI − diag

(
E(β + γ)

)−1 diag
(
E(γ)

)
Ā(D)

)
E


x?1 ◦ s1

...
x?I ◦ sI


 = diag

(
E(β + γ)

)−1
E(α)

because of Condition 6.4. Note that the matrix EI − diag(E(β + γ))−1 diag(E(γ))Ā(D) is non-
singular because it is equal to the nonsingular M-matrix M(D, ((βι, γι))ι∈[I]) for the case T = I
(see the proof of Proposition 4.6 for the definition of M(D, ((βι, γι))ι∈[I])). We conclude that

E


x?1 ◦ s1

...
x?I ◦ sI


 =

(
diag

(
E(β)

)
− diag

(
E(γ)

)(
Ā(D)− EI

))−1
E(α).

Proof of Proposition 6.5

Assume that Condition 6.4 is satisfied. Let i ∈ [I]. Note that E(βi + γi | si) = E(βi + γi) and
for all n ∈ N+

D (i), E(γi(x?n ◦ sn) | si) = E(γi(x?n ◦ sn)). Using these results and the first-order
condition for the unique and interior BNE in pure strategies (x?1 , . . . , x?I ) in B, we find

x?i ◦ si =
1

E(βi + γi)

(
E(αi | si) + ∑

n∈[I]
āi,n(D)E

(
γi(x?n ◦ sn)

))
,

from which
x?i ◦ si −E(x?i ◦ si) =

E(αi | si)−E(αi)

E(βi + γi)

follows. We conclude that

var(x?i ◦ si) =
var
(
E(αi | si)

)(
E(βi + γi)

)2 =
I(αi, si)(

E(βi + γi)
)2 .

Proof of Proposition 6.6

Assume that Condition 6.4 is satisfied. Let i ∈ [I]. It follows from Condition 6.4 that

E
(
(βi + γi)(x?i ◦ si)

2) = E(βi + γi)E
(
(x?i ◦ si)

2),
for all m ∈ N+

D (i),
E
(
γi(x?m ◦ sm)

2) = E(γi)E
(
(x?m ◦ sm)

2),
and for all (m, n) ∈ N+

D (i)2 with m 6= n,

E
(
γi(x?m ◦ sm)(x?n ◦ sn)

)
= E(γi)E(x?m ◦ sm)E(x?n ◦ sn).
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Using these result, formula (4), and Proposition 6.5, we find

E
(
u?

i (σ)
)
=

I(αi, si)

2 E(βi + γi)
− E(γi)

2 ∑
n∈[I]

āi,n(D)2 I(αn, sn)(
E(βn + γn)

)2

+
E(βi + γi)

2
(
E(x?i ◦ si)

)2 − E(γi)

2

(
∑

n∈[I]
āi,n(D)E(x?n ◦ sn)

)2

.

This proves Result 1. Result 2 follows from formula (5) and Result 1.

Proof of Corollary 6.8

Results 1 and 2 follow from Result 2 of Proposition 6.6.
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