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1 Introduction

Consider a setting where decision makers with different priors compete to predict a
variable y. To fix ideas, suppose that agents use a (possibly misspecified) statistical
model that treats y as a linear function of a number of possible covariates {xi}i∈{1,...,k}
plus a noise term, i.e., y =

∑
βixi + ε. For example, y could be a country’s GDP

growth, which agents are trying to predict using a long list of variables x. Both the
βi’s and the variance of ε, are unknown.

Agents share the same quadratic loss function about their prediction, but use
different models—different subsets of covariates as relevant to the prediction. In the
GDP example, some may believe that relevant factors include education level and net
trade surplus; others may also consider monetary supply and climate change data.
Suppose all agents are Bayesian and update their prior after observing a common
dataset: n draws of y and x from the unknown data generating process. What are
the characteristics of the model of the agent that, after observing the data, has the
highest confidence in its predictive ability, i.e., has the lowest posterior expected loss?

We provide a complete characterization and show that this depends both on the
model dimension of the agent, i.e., how many variables are considered, as well as
on the size of the dataset n. In particular, with big data, the most confident agent
instead uses a ‘large-dimensional’ model, with possibly more variables than the true
data generating process. By contrast, we show that with small samples the most
confident agent is one using a model that is small-dimensional, possibly smaller than
the true data generating process.

Our results characterize the agent with the highest confidence in her predictive
ability (lowest expected loss) according to her own (possibly misspecified) model and
prior. Studying each agent’s subjective expected loss is a key departure from standard
approaches, which instead typically consider the objective expected loss, based on the
true data generating process. As motivation, note that there are many competitive
situations in which more confident agents acquire prominence: these are the agents
who are willing to stake the most on their ability to forecast.

A practical example is a second-price auction in which agents are bidding to
acquire a productive asset. The value of this asset to an agent depends on their
ability to predict a given variable using a set of covariates. The asset could be ad-
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space on an online platform, the value of which depends on the sellers’ ability to
infer customers’ preferences using their observable characteristics; or it could be a
company, whose future value depends on how accurately the new owner is able to
predict market conditions. All bidders observe the same data, but may use different
variables to make this prediction, as they may have different priors, or models. The
auction is clearly won by the agent who is most confident in her predictive ability,
according to her own posterior after observing the dataset. In general, our results
are useful to characterize the winner (and their model) in competitive situations in
which a leading position is taken by those who are most confident in their predictive
ability. Other examples include political competition, or board meetings, where the
ability to credibly show one’s confidence may lead to selection.

Our results sit within the large and growing body of work in economic theory on
agents with misspecified model (we defer a full discussion of the literature to Section
6). In particular, it can be seen as trying to understand if, or when, competition
selects agents with correctly specified models. Our results may also, at a high level,
be reminiscent of model-selection methods in Econometrics and Machine learning—we
prove below how the selection they induce may coincide in large samples and in specific
cases. But there are very notable differences. First, our results follow very different
formal arguments. Second, the connection refers to the large-sample result and not
the small-sample results. Finally the motivation of our paper and that literature
are not comparable: our results emerge positively from a standard economic theory
framework in which different purely-Bayesian decision makers use different models,
and the selected model is the one of the agent who is most confident in her own
predictive ability. By contrast, the model selection literature is motivated normatively
by the need to avoid over-fitting: large-dimensional models may be too flexible and
give an illusion of fitting the data. It proposes and studies techniques which essentially
explicitly penalize large-dimensional models—there is no such penalty in our setting.

Summary of Results and Intuition. Our first result characterizes the expected
posterior loss of an agent who has prior π and observes data Dn. We show that this
loss can be decomposed as the sum of two components which we term: 1) model
fit : the agent’s posterior expectation of the variance of ε and 2) model estimation
uncertainty : the degree of uncertainty that the agent has about each of the coefficients
in its regression model. Crucially, we show that the latter in turn depends on the
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model dimension. This implies that while a Bayesian agent uses the Bayesian prior
to compute the best action and does not care about the dimension of the model she
is using, this very dimension affects her confidence in her own predictive ability.

This characterization has two immediate implications, depending on the size of
the dataset. For clarity, consider first the case in which the dataset is large. In this
case, the ‘model estimation uncertainty’ term vanishes: agents will have no uncer-
tainty about their fitted parameters, even if they are using the wrong model. The
comparison is therefore based only on model fit. As a result, incorrectly specified
models, i.e., models which omit an observable that is relevant for prediction, never
prevail. At the same time, we show that larger models that contain additional ob-
servables that are irrelevant to the true data generating process (DGP) may continue
to win, even asymptotically. Even though these larger models will converge to the
properly calibrated ones, for any finite sample they remain strictly different, and we
show that their probability of winning remains strictly above zero. Our results show
that the prior does not vanish asymptotically: it continues to affect a large model’s
probability of winning even with infinite data.

Our second set of results pertain to the case of small datasets. Here ‘model
estimation uncertainty’ plays a critical role. We show that the agent with the lowest
loss will have a model that is of smaller dimension than the true DGP. This is because
while agents with misspecified models may have a lower model fit, they will also have
a lower model estimation uncertainty (as they have less parameters to estimate). As
we mentioned earlier, in order to establish these results, we additionally assume that
all agents’ priors take the normal-inverse gamma form.

First, we prove that when the dataset consists of a single data point, the win-
ning model always involves exactly 1 observable. Deriving more general results is
challenging, as with small samples we cannot exploit the distributional approxima-
tions adopted in the large-sample analysis. Small samples have two features: the
dependence on specific data realizations, and the fact that the prior remains rele-
vant. In our analysis, we want to preserve the second feature, but circumvent the
first – the source of the difficulty in analytical tractability. To this is end, we use a
non-standard asymptotic framework that allows the prior to ‘drift’ with the sample
size. We present asymptotic results in which we let the dataset grow but at the same
time we make the priors more dogmatic. This allows us to use the Law of Large

3



Numbers and avoid issues pertaining to specific realizations while at the same time
maintaining the relevance of the prior. Using this approach, we show that indeed
small-dimensional models—possibly misspecified as they use fewer observables than
the true DGP—prevail.

Our main results above follow from a simple intuition. Suppose Dr. A and Dr. B
are both trying to predict y using a set of covariates {xi}i∈{1,...,100}. Dr. A believes
that only x1 matters—she assigns probability zero to the event that any other variable
is related to y. Dr. B, instead, considers all 100 covariates. Suppose the true DGP
is such that the best linear predictor of the outcome variable includes all variables:
thus, Dr. B has a ‘correct’ model, while Dr. A does not. Lastly, normalize the priors
so that, if no data is revealed, Drs. A and B have the same expected loss. After n
data points are revealed, who is more confident?

Suppose first that n is small, e.g. n = 5. Dr. A will believe she has a good grasp of
the data generating process—she is trying to fit only one parameter with 5 data points;
her confidence will be high. Dr. B, however, will make little headway in estimating
her model. Fitting 100 parameters using 5 observations; her confidence will be low.
Further, since the amount of data is “small,” both agents’ posterior estimates of σ2

ε

are close to their prior. Therefore the competition is mainly over who believes they
have a good grasp of the data generating process—i.e., Dr. A. Hence even though Dr.
A has a misspecified model that omits 99 out of the 100 relevant variables, and even
though the agents’ confidence without data is normalized to be the same, when n is
small she will nevertheless have higher confidence in her predictive ability.

What happens then as data accumulates? A tradeoff emerges. While Dr. A will
be able to estimate the parameters of her model well, she will also observe that it
has a poor fit on the data. After all, she must attribute all the explanatory power of
x2 . . . x100, which she does not consider in her model, to noise, therefore leading her to
increase her estimate of σ2

ε . Dr. B instead will take longer to estimate the parameters
of her model, but she will be able to fit the data with a lower σ2

ε . When n is small,
the first effect dominates, and Dr. A will be more confident. As n grows, however,
the second effect will acquire prominence, and Dr. B will become more confident.

This trade-off is the core of our results with small samples. A small number of
observations increases confidence faster for agents with small-dimensional models. It
is only as n grows larger that the confidence of agents with larger-dimensional models
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may catch up. Since this may happen even if the true DGP is large-dimensional, when
the dataset is small, agents with small-dimensional models are thus overconfident
about their predictive abilities — and may thus be the most confident of all.

One implication of our results is that in a competitive environment such as the
auction we described, if we observe the use of smaller-dimensional models, it may not
be possible to determine whether this is due to the use of model-selection techniques
or from the competitive selection between Bayesian agents. To illustrate, it may
be worth highlighting a parallel with the selection of entrepreneurs. In a context
of heterogeneous priors, it is often observed that entrepreneurs hold more optimistic
beliefs. The causality, however, may not be that being an entrepreneur leads agents to
become optimistic, but rather that agents whose priors are more optimistic are those
that tend to become entrepreneurs. Similarly, in our context, small dimensional-
models may be used because agents adopt them normatively; but our results also
show that it could be that every agent is purely Bayesian, but it is the agents who
have a smaller-dimensional model who are overconfident in their predictive ability,
and thus acquire a prominent position, i.e., win the auction.

The remainder of the paper is organized as follows: Section 2 outlines the formal
model and notation. Section 3 characterizes the expected posterior loss of a single
agent, the foundation of our results. Section 4 collects our main results characterizing
the winning model under competition: Section 4.1 for the case when n is large, and
Section 4.2 for the case when n is small. Section 5 considers some extentions and
implications of our results. Section 6 discusses the related literature in further detail.
Section 7 concludes. All proofs appear in the Appendix.

2 Model

A group of agents is competing to provide a forecast for a real-valued variable y
as a function of k real-valued covariates x ∈ Rk. In this section, we describe the
relationship between y and x postulated by each of the agents, the data available, the
agents competing, and the competition process itself.

Data Generating Process. A true Data Generating Process (DGP), denoted P,
determines the relationship between y and x. The agents do not know P, but all
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of them assume there is a linear relation between the variable y and the covariates
x ∈ Rk, i.e.,

y = x′β + ε, (1)

where ε|x ∼ N1(0, σ
2
ε ), β ∈ Rk.

That is, agents believe that the DGP is a homoskedastic linear regression with Gaus-
sian errors. For simplicity of exposition, we assume that the agents treat the distri-
bution of the observables x as known, and denote it by P . We assume that under this
distribution EP [xx′] is a full rank matrix. Let Θ := Rk × R+, with θ = (β, σ2

ε ) defin-
ing the unknown parameters of interest. As we discuss below, agents have (possibly
different) priors π over Θ. Fixing P , θ = (β, σ2

ε ) fully defines the DGP according to
agents, denoted by Qθ. We assume, for simplicity, that Qθ has a probability density
function q(x, y|θ), which holds whenever P has a probability density function.

Two comments are in order. First, about the linearity assumption: note that,
because the covariates in x can be correlated, the linearity assumption only mildly
restricts the models that agents can entertain. For example, if one wished to express
the non-linear DGP y = 3

x31√
x5

+ ε, one can simply define a new observable equal to
x31√
x5
. While not all non-linear DGPs can be expressed this way, good approximations

can always be achieved. Thus, our framework allows the agents to have a wide family
of non-linear relations as DGP.

Second, note that the assumptions above only concern the agents’ perceived DGP,
which is allowed to be misspecified: it may be that Qθ differs from the true P at every
θ—for example, errors may be heteroskedastic in the true DGP, or the conditional
expectation need not be linear. We discuss the implications when they arise.

Data. Before making a prediction, each agent observes a dataset, denoted Dn,
composed of n i.i.d. draws according to the true DGP, P. We denote the data as
Dn = (Y,X) where Y ∈ Rn and X ∈ Rn×k. We assume that all agents observe the
same data: this will be relevant for our application—as we shall see, in an auction
setting this will avoid Winner’s curse type concerns.
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Actions and utility. Agents make a prediction of y given the covariates x, which
formally means that they construct a prediction function f that maps x into y, i.e.,
f : Rk → R. Their utility is maximized by minimizing a standard quadratic loss
function, equal to the square of the difference between the true y and their forecast
f , i.e., −(y − f)2.

All agents are Bayesians, and thus choose a prediction function f that minimizes
their Expected Loss given their Bayes-updated posterior beliefs. Define L(f, θ) as the
agent’s loss under prediction function f assuming the true DGP is Qθ, i.e.

L(f, θ) := EQθ [(y − f(x))2]. (2)

The loss captures the average quadratic error incurred in predicting y using f(x),
assuming (x, y) are drawn randomly according to Qθ. If π is the agent’s prior over
θ, and Dn the observed data, then the optimal action for the agent is to choose a
prediction function f ∗(π,Dn) : Rk → R such that

f ∗(π,Dn) ∈ argmin
f

Eπ[L(f, θ)|Dn]. (3)

For convenience, we denote by L∗(π,Dn) the expected posterior loss of an agent
who has prior π, observes data Dn, and uses the optimal predictor defined above,
that is

L∗(π,Dn) := Eπ[L(f ∗(π,Dn), θ)|Dn] = min
f

Eπ[L(f, θ)|Dn]. (4)

2.1 “Models” and Competition

A key ingredient in our setting, as foreshadowed in the introduction, is that different
agents may have with different priors over the unknown parameters in θ. Of particular
interest will be the case in which these agents consider different subset of observables
as relevant for their prediction – they have different “models” of the world.

If {1, 2 . . . , k} label the observables, for any i of them, if the agent’s prior on βi is
degenerate at 0 it is easy to see that the agent is bound never to consider observable
i in its prediction. Denote by J(π) the set of observables that are instead considered
by an agent with prior π. Formally, if πi denotes the marginal over βi of prior π and
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δ0 is a Dirac measure at zero,

J(π) := {i ∈ 1, . . . , k : πi(βi) 6= δ0}.

In what follows, we sometimes use simply J ⊆ {1, . . . , k} to denote a model –
understood as the set of observables considered to make a prediction. Lastly, for a
given vector β, denote by βJ the subvector consisting solely of the components in
the set J ⊆ {1, . . . , k}. Define xJ as the analogous subvector of x, and XJ as the
corresponding submatrix of X.

Example: Normal-Inverse Gamma prior A convenient example is when the
prior on β|σ2

ε is normally distributed over the coordinates of the covariates that belong
to a set J , and degenerate at zero otherwise, while the prior over σ2

ε is an inverse
gamma distribution. This is the typical prior used for the Bayesian analysis of the
Normal linear regression model.

The Competition Mechanism. As we discussed, agents compete through a mech-
anism that selects the agent with the lowest posterior expected loss given her own
prior. Our analysis applies to any mechanism that leads to this selection. To give
a concrete example, the following is a simple game in which the dominant strategy
equilibrium results in this selection.

Consider a second-price auction, where, like in Atakan and Ekmekci (2014), the
winner of the auction gets to choose an action that affects the value of the asset.
Specifically, the action has a value that depends on her ability to predict a given vari-
able, as in the examples given in the introduction. Formally, fixing the environment
defined above (DGP, agents etc), consider a game with the following timing:

1. Nature draws θ ∈ Θ;

2. All agents see a common dataset Dn drawn according to Qθ;

3. Agents submit bid in a sealed-bid second-price auction;

4. The winner observes x randomly drawn according to P and chooses an real-
values action a;
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5. The winner gets a lump sum payoff of M − (y−a)2, where M is a large positive
number.

Every bidder seeks to minimize the expected value M − (y − a)2, leading to the
expected loss function discussed above.

Because agents see a common data set, an agent with prior π has an expected value
of M − L∗(π,Dn) for winning. In the standard dominant equilibrium, the winning
agent is the one with the highest value: since M is common across agents, the winner
is thus the agent with the lowest expected loss (according to her own prior) given
the observed data. Notice that since all agents observe the same dataset, and thus
there is no asymmetric information – only heterogenous priors – no winner-curse-type
consideration apply.

3 Characterizing the Posterior Expected Loss

We begin by characterizing (i) the optimal prediction function of a single Bayesian
agent, and (ii) her expected posterior loss (henceforth, posterior loss) conditional on
choosing the optimal prediction function using her own belief. The latter plays a
crucial role in our environment.

3.1 Optimal Prediction

Characterizing the optimal prediction is a standard problem. The agent chooses f to
minimize, Eπ[L(f, θ)|Dn], that can be rewritten as:

Eπ[σ2
ε |Dn] + EπEP [(x′β − f(x))2|Dn]. (5)

The first term does not depend on f . The second term involves the average error
incurred in predicting x′β using f(x).1 With standard arguments (i.e., exchanging
the order of integration and taking first order conditions), we can see that the inner

1The inner expectation averages over values of x. The outer expectation averages over the values
of β.
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expectation of the second term is minimized by the function:

f ∗(π,Dn)(x) := x′ Eπ[β|Dn] = x′J(π)Eπ[βJ(π)|Dn]. (6)

Thus, a Bayesian decision maker with a posterior π|Dn, model J(π), and a square
loss function, forecasts y at x as her Bayesian posterior mean of x′β. Again, this is a
standard result.

3.2 Posterior Loss

We now turn to characterizing the agent’s posterior loss computed using her own belief
and conditional on her adopting an optimal forecast. This measures how confident
each agent is of her predictive ability, and it will be the central driver of the dynamic
of our competition between agents. Most importantly, the key driving forces of our
results will already be evident from this simple analysis.

The following Lemma shows that the agent’s posterior loss L∗(π,Dn) can be de-
composed into the sum of two parts: one that we interpret as model fit, i.e., how well
is the agent’s model fitting existing data; and one that we interpret this as the agent’s
model’s estimation uncertainty according to her own prior.

Lemma 1. The agent’s posterior expected loss from her Bayes predictor is:

L∗(π,Dn) = Eπ
[
σ2
ε |Dn

]
+ Tr (Vπ[βJ |Dn] EP [xJx

′
J ]) , (7)

where V(·) is the variance-covariance operator, Tr is the trace operator, and J denotes
the agent’s model J(π).

The Lemma above shows that the agent’s expected posterior loss L∗(π,Dn) can
be characterized as made of two components. The first is standard: the posterior
expectation of the variance of the error— the agent’s estimate of the irreducible noise
in the system, in turns related to model fit, i.e., how well is the agent’s model fitting
existing data, because the agent must ascribe all unexplained variation to noise.

The second term, Tr (Vπ[β|Dn] EP [xx′]), is the trace of the variance-covariance
matrix of the coefficients of the model (adjusted by EP [xx′]). This is a measure of
how uncertain is the agent how her estimation of her model— thus capturing the to
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model estimation uncertainty faced by the agent according to her own prior. For an
intuition consider the simpler case in which observables are independent and have
the same variance (i.e., orthornormal). In this case, the second term reduces to
Tr (Vπ[β|Dn]), i.e.,

∑k
i=1Vπ[βi|Dn]. By comparison, directly evaluating the loss of

the Bayes estimator, i.e., substituting (6) in (5), the second term in (5) equals

EPEπ[(x′β − f ∗(π,Dn)(x))2|Dn]

=EPEπ[(x′β − x′Eπ[β|Dn])2|Dn]

=EPEπ[(x′(β − Eπ[β|Dn])2|Dn]

=
k∑
i=1

Vπ[βi|Dn]

where the last equality follows from the definition of variance and the assumption
that the x’s are orthonormal. Thus, the second part of the loss function is in this
case simply the sum of the variances of the parameters β, indeed a measure of model
estimation uncertainty. The exact formula in (7) extends this to cover the case of
observables with a general variance-covariance matrix.

4 Competing Models

Lemma 1 helps us understand the loss a single agent expects given her posterior. We
now apply this Lemma to understand the model of the ‘winning agent,’ i.e., the agent
with the lowest expected posterior loss among a collection of agents.

As we foreshadowed, we identify the winner both in the case that the dataset is
large (i.e. the number of observations n is ‘large’ relative to the number of observables
k), and the case that it is small. We will handle each in turn. We show that when the
dataset is big, the true (or larger) model prevail. Our results apply to general priors
(modulo some technical assumptions to ensure posteriors are well behaved enough)
and general data generating processes. Conversely, when the dataset is small, smaller
models may take a lead. Our small-sample results below are for the specific case when
all agents have priors of the Normal-Inverse Gamma form introduced earlier. For this
reason, we begin our discussion with the large-data analysis.

The main building block of our results is Lemma 1, which contains the key intu-
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ition. When n is large, the model estimation uncertainty component of the posterior
loss vanishes: each agent, even those with a ‘wrong’ model, will reduce the uncer-
tainty about the parameters to zero. All that matters is the model fit. Then, it is
easy to see that agents that use models that exclude relevant variables are bound to
have a higher expected loss, since they must estimate a higher σ2

ε to account for the
variation that they are disregarding. Put differently: with large data, agents whose
models are misspecified by excluding relevant variables will not win our competition.
Whether agents who consider more variables may win is a separate question, as in this
case the model fit achieved by two competing models will be the same. In what may
be less intuitive, we show that agents’ prior continue to affect the model competition
even with infinite data. This means that the initial choice of prior affects the model
competition, even in large samples.

When n is small, agents with small-dimensional models have instead an advantage,
because they are going to have smaller model estimation uncertainty, the second part
of the expected loss as characterized in Lemma 1. Even though all agents start with
the same expected loss with no data, when the data revealed is (relatively) small,
the expected loss decreases faster for agents with small-dimensional model. Thus,
agents who hold models that are misspecified in that they exclude relevant variable
may end up being more confident in their predictive ability. The example discussed
in the introduction (of Dr. A and B) may provide further intuition. To recap, ceteris
paribus, trying to estimate more parameters from the same amount data will result
in more model uncertainty, i.e., less concentrated posteriors. This uncertainty will
therefore be reflected in the agent’s expected loss.

Before we dive into the results, let us introduce them with simulation evidence.
The following definition is useful for these simulations and for results below.

Definition 1. We say that the agent’s prior π has Normal-Inverse Gamma form with
hyperparameters (γ, a0, b0) if

βJ(π)|σ2
ε ∼ N|J(π)|

(
0,

σ2
ε

γ|J(π)|
I|J(π)|

)
σ2
ε ∼ Inv-Gamma(a0, b0).

The priors above are simple Normal/Inverse-Gamma that are automatically nor-
malized so that they all have the same expected loss before data, i.e., for all π, π′,
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L∗(π, ∅) = L∗(π′, ∅). This implies that, without data, all subjects have the same con-
fidence, and any difference in confidence is due to different reactions to the data. This
simple normalization is useful to identify which agent is most confident after seeing
the data. The answer would be uninteresting if this difference was driven instead by
prior confidence; to avoid this, we normalize this prior confidence. More in general,
the intuition from Lemma 1 should illustrate the basic ideas applies, although prior
confidence would have to be accounted for.

Figure 1 shows simulation results in a setting where there are six observables in
the dataset, {x1, . . . , x6}, of which only the first five are relevant for prediction. We
suppose we have 63 agents, one for each non-empty subset of {x1, . . . , x6}, all with
Normal-Inverse Gamma priors with the same shared hyperparameters. We simulate
datasets of sizes n = 1 to 50, and plot the frequency of the size of the model of the
agent with the lowest subjective expected loss. Two main features emerge. First,
when n is “small” the winner tends to have a small model, indeed a model that
we know to be misspecified (since we chose the DGP to depend on observables x1
through x5). Secondly, as n grows large, the true model wins more often. However,
also the larger model, that includes the redundant variable x6, continues to win, with
relative frequencies that appear to converge to a steady state. In what follows, we
give analytical foundations to each of these observations.

Finally, a little more notation will be useful. Note that a dataset Dn induces an
order �Dn over priors according to the posterior loss they induce given Dn.

Definition 2. Fixing a dataset Dn we define the order �Dn over priors as:

π �Dn π
′ ⇐⇒ L∗(π,Dn) < L∗(π

′
, Dn). (8)

Definition 3. Given an arbitrary vector β0 ∈ Rk, J0 is the set of indices of the
coordinates of β0 that are nonzero; i.e.,

J0 := {κ|βκ 6= 0}.

13



Figure 1: Winning rates for different models with Normal Inverse-Gamma priors and
shared hyperparameters (a0, b0, γ) = (2, 1, 0.001) on 5, 000 simulated datasets of size
n = 1 to 50. 6 Covariates are distributed x ∼ N(0, I6). True d.g.p only depends on
covariates 1–5, (β1 . . . β5) ∼ N(0, I5), β6 = 0.
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Then define:

J S
0 := {J ∈ J | J ⊂ J0},

J L
0 := {J ∈ J | J0 ⊂ J},

JW
0 = {J ∈ J | J0 6⊂ J}.

In words, if J0 denotes the set of indexes useful for prediction, J S
0 are the strictly

smaller set of indexes nested in J0; J L
0 are the strictly larger ones that nest J0; and

JW
0 are “wrong” ones, i.e., those that rule out at least one explanatory variable that

is non-zero in J0. Note that J S
0 ⊂ JW

0 .

We also define the set of priors that give non-zero weight to indexes in J0,

Π0 := {π|J(π) = J0}.

The sets ΠS
0 ΠL

0 , ΠW
0 are defined analogously

4.1 The winner with n ‘large’

We characterize the winner for large n under the mildly technical regularity assump-
tions about the priors of the agents and a set of ‘standard’ high-level conditions on
the true DGP, P.

Assumption 1. Each agent has a prior over θ characterized by a probability density
function π(·) that is six times continuously differentiable and with full support over
the set (βJ(π)

′, σ2
ε )
′ ∈ R|J(π)| × R+.2

Assumption 1 posits that agents’ priors over the βi’s are either degenerate at
0, or full support. In the latter case, it requires a pdf to exist and to be suitably
differentiable. (This naturally holds for Normal-Inverse Gamma.)

We now turn to assumptions on the true DGP P. Before we do, recall that while
the analysis conducted by each of our Bayesian agents is based on a linear regression
model with Normal and homoskedastic errors (Eq. (1)), in the asymptotic results
below we allow for the possibility of their likelihoods being misspecified. For example,

2By definition, the prior of agent j for any βκ, κ /∈ J , is degenerate at 0.
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true errors may be heteroskedastic or non-Normal. We now impose assumptions on
the true DGP, P.

Assumption 2. Let P denote the joint distribution of (x, y). Let the data Dn :=

((x1, y1), . . . , (xn, yn)) denote an i.i.d. sample from P. Then:

1. (Population Second Moments) The smallest eigenvalue of the matrix EP[xx′] is
strictly positive, and its largest eigenvalue is finite.

2. (Central Limit Theorem for covariates and residuals) Define β0 as the parameter
that satisfies EP[x(y − x′β0)] = 0. Then

1√
n

n∑
i=1

xi(yi − x′iβ0)
d→ Nk(0,EP[(y − x′β0)2xx′]).

3. (Asymptotic behaviour of posterior variances for misspecified models) Let g(x, y|θ)
denote the probability density function of the possibly misspecified parametric
model for the distribution of (x, y) used by the agents. Let K(θ) := −EP[ln g(x, y|θ)]
and let D2K(θ) denote the Hessian of K(θ). Then

nV (θ|Dn)
p→
(
D2K(θ0)

)−1
,

where θ0 is the parameter that minimizes K(θ).

Let us briefly discuss the content of the assumption above. For the non-technical
reader, it may suffice to note that this assumption is satisfied when the true DGP
is well-behaved ‘enough’ that large-sample estimation/inference of this true DGP is
possible for our misspecified Bayesian agents —- indeed conditions satisfied by most
commonly used examples. Part (1) guarantees that the matrix of population second
moments is both finite and invertible. This implies there is a unique parameter β0
satisfying EP[x(y−x′β0)] = 0 and we interpret it as the true parameter.3 Part (2) is a
standard Central Limit Theorem, often invoked to obtain the asymptotic distribution

3This also implies that the population second moments can be consistently estimated from the
sample second moments of the data. We will use this assumption to characterize the probability
limit of the Maximum Likelihood Estimators based on the possibly misspecified likelihoods of the
Bayesian agents. Note that in principle, we allow for the distribution of covariates assumed by the
competing agents (denoted P ) to be different from the distribution of covariates under P.
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of the Ordinary Least Squares (OLS) estimator in a linear regression model.4 Part
(3) can be thought of as imposing a particular aspect of the large sample behavior of
posterior distributions captured by the Bernstein-Von Mises Theorem (BVMT).5

We are now ready to state our large-sample results.

Theorem 1. Let P denote the true data generating process and let the data Dn :=

((x1, y1), . . . , (xn, yn)) denote an i.i.d. sample from P. Define β0 as the parameter
such that EP[x(y − x′β0)] = 0 and let σ2

0 = EP[(y − x′β0)2] and π0 any element of Π0

satisfying Assumption 1. Let J0 denote the associated true model for β0. Then, for
any priors satisfying Assumptions 1 and any P satisfying Assumption 2:

i. If π ∈ ΠL
0 : P[π �Dn π0]→ c(π, π0, β0, σ

2
0) ∈ (0, 1].

ii. If π ∈ ΠW
0 ∪ ΠS

0 : P[π �Dn π0]→ 0.

Theorem 1 gives two main takeaways. The first item tells us that a model which
is larger than the true model, i.e., contains additional observables that are irrelevant
for prediction, continues to win against the true model with a probability that is
bounded away from zero, even with infinite data. The second item tells us that a
wrong model, i.e., a model which rules out an observable that is relevant for prediction
will eventually lose to the true model.

The second result is intuitive. By Lemma 1, we can decompose posterior loss into
two terms: expected variance of the noise and model estimation uncertainty. The
latter converges to zero for all agents (guaranteed by Assumption 2. The first term
is the posterior expectation of the noise term. The former term will instead differ:

4We will use this assumption to characterize the asymptotic distribution of the difference in
model fit for models that are larger than the true model. This assumption allows for conditional
heteroskedasticity of regression residuals.

5If we assume that the agents’ DGP, g(y, x|θ), is a correctly specified parametric statistical
model, the BVMT implies that the posterior distribution of a parameter θ is approximately Normal,
centered at the maximum likelihood estimator, and covariance matrix equal to(

D2K(θ0)
)−1

/n, (9)

where θ0 denotes the true parameter generating the data. A similar result is available for misspecified
models; see Bunke and Milhaud (1998) and Kleijn and Van der Vaart (2012). Instead of imposing
the BVMT theorem for misspecified models as a high-level assumption (as, for example, Condition
1 in Müller (2013)) we only assume that the variance of the posterior of θ in a possibly misspecified
model is approximately given by (9). In this case, θ0 refers to the parameter that minimizes the
Kullback-Leibler divergence between P and g(x, y|θ).
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agents who rule out an observable that is relevant for prediction must attribute its
explanatory power to noise. So, as n grows large, their posterior expectation of the
variance of the noise term will be necessarily larger than that of an agent with the
true model. Thus, he will always have a lower confidence.

But what about agents whose model is larger than the true model? This part,
covered by part (i) of the theorem, is slightly more subtle. After all, this agent
will also eventually learn the true data generating process: that is, her beliefs about
the βs associated to redundant observables must converge to zero. But how will
the confidence compare? For any fixed n, the agent with more observables in her
model will have a less concentrated posterior on β. On the other hand, she will also
have slightly smaller posterior expectation of the variance of the noise term: she will
mistakenly attribute some explanatory power to these superfluous observables. Which
of these two effects dominate, both of which can be shown to be Op(

1
n
), determines

the likelihood of winning. From a technical perspective, the comparison of these
vanishingly small terms is based on an asymptotic expansion for the posterior mean
of the variance parameter in the linear regression model that appears in Kass et al.
(1990). This is not a textbook result, and so we provide details in the appendix. At
the end, Part (i) of Theorem 1 says that the probability of the larger model winning
is bounded away from zero, even in the limit.

In fact, we show that as the sample size grows large, the comparison between
model fit and model uncertainty behaves as the probability of some positive random
variable (coming from the difference between the estimated variances of the smaller
and larger model) exceeding some constant (coming from the difference in model
uncertainty). The following corollary gives a concrete characterization of this relation,
under a conditional homoskedasticity assumption and restricting the agents to have
the correct specification of the distribution of covariates.

Corollary 1. Let θ0 := (β0, σ
2
0) where β0 and σ2

0 are defined as in Theorem 1. Suppose
that the data is conditionally homoskedastic; that is E[(y − x′β0)

2xx′] = σ2
0EP[xx′].

Suppose also that the distribution P assumed by the agents is correctly specified. Then,
under the assumptions of Theorem 1:

c(π, π0, β0, σ
2) = P (χ2

|J(π)−J(π0)| > 2(ηπ0(θ0(π0))− ηπ(θ0(π))),

where ηπ(θ) denotes the elasticity of the prior π with respect to σ2 at θ.
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A possibly less intuitive implication of Corollary 1 is that a large date set does
not completely ‘wash out’ the priors. Indeed, one may argue that aspects of priors
beside having the right states in the support typically should matter for Bayesian
agents with infinite datasets. But this is not the case here: we show that even in
large samples, the specific priors π and π0 affect the competition. Interestingly, our
result is very concrete about the feature of the prior that matters: the elasticity of the
prior density with respect to the variance parameter. This, along with the model’s
dimension, is the key aspect that affects the probability that a large model defeats
the correct one.

To give a more concrete sense of Corollary 1, consider the example of Normal-
Inverse Gamma prior. In this case, the elasticity of the prior density with respect to
the variance can be shown to equal:

ηπ(θ) =
|J(π)|

2

(
γβ′J(π)βJ(π)

σ2
ε

− 1

)
− (a0 + 1) +

b0
σ2
ε

.

Two implications follow. First, consider the competition between two agents πL
and π0, both with Normal-Inverse Gamma priors with the same parameters (a0, b0)

and a diffuse prior on β (γ = 0). In large samples the probability of πL �Dn π0

becomes
P (χ2

|J(πL)|−|J(π0)| > |J(πL)| − |J(π0)|).

This function is increasing in |J(πL)|− |J(π0)| and asymptotes to 50%, meaning that
a larger model can defeat the true model at most half of the time. This is intuitive
as the models become identical.

However, consider now the competition between the same Normal-Inverse Gamma
agents, but allow them to have different parameters (aπ, bπ). Algebra shows that if
bπ is large enough (meaning that the variance of the prior over σ2

ε is large), then
the probability that the larger model defeats a smaller model can become arbitrarily
close to 1. That is: the larger model ‘beats’ the correct one even in the limit, with a
probability that can be made close to 1.
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4.2 The winner with n ‘small’

We are now ready to discuss the properties of the winner model when the number of
observations n is relatively small. We have already seen in Section 3.2 how in this
case there are advantages given to be smaller-dimensional models, and the winner
may indeed be a model smaller-dimensional than the true DGP. We will now provide
additional formal results to strengthen this understanding, aiming to characterize
when this is the case.

In this subsection, we assume that agents have Normal-Inverse Gamma priors for
tractability.6 We also assume that all agents’ priors share the same hyperparameters:
as we discussed in the introduction, this ensures that all agents have the same prior
expected loss before data. Differences in posterior expected loss arise only from
the fact that the posterior evolves differently for models of different sizes given the
same model. Lastly, in some cases we will also assume that covariates are i.i.d., i.e.,
EP [x′x] = Ik.

The winner with 1 data point. We start with an extreme but stark result for
the case in which agents observe only one datapoint.

Proposition 1. Suppose all agents have Normal-Inverse Gamma priors with shared
hyper-parameters (a0, b0, γ) and that EP [x′x] = Ik. If the dataset consists of a single
observation, i.e. n = 1, then the winner is always some agent with a single variable
model, i.e., an agent with a prior π s.t. |J(π)| = 1.

Note that this result holds independently of the true DGP: even when that is
high-dimensional, with only one point it is always a 1-dimensional model to win.
Numerical simulations suggest that a generalization of this result appears to hold:
with n observations the winner is n-dimensional or smaller. We were not able to

6As these are a conjugate priors for the Normal linear regression model, posteriors have simple
analytical forms. Algebra shows that

Eπ[σ2
ε |Dn] =

2b0
n + 1

n minβ∈R|J(π)|(y −XJ(π)β)
′(y −XJ(π)β) + (γ|J(π)|) ||β||2

2a0
n + 1− 2

n

, (10)

Vπ[βJ(π)|Dn] = Eπ
[
σ2
ε |Dn

]
(X ′J(π)XJ(π) + (γ|J(π)|)I|J(π)|)−1. (11)
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formalize such an observation, as in finite samples the expressions for Eπ[σ2
ε |Dn] and

Tr(Vπ[β|Dn])) are algebraically less tractable: the reason is that they depend on the
inverse of a matrix of specific data realizations, which is hard to operate with.

A novel approach for small n analysis. We now suggest a novel way of ap-
proaching the problem of small sample analysis that allows us to obtain further re-
sults despite the analytical limitations discussed above. This general approach may
be of interest independently from the specifics of our problem.

The initial observation is that small samples appear to be distinct from large ones
for two basic properties: i) that the prior remains relevant instead of being partially
‘washed away’ by the data; and ii) that specific data realizations matter, instead of
only the population average mattering. It is the latter characteristic that leads to the
analytical difficulties we encountered above. In large samples these issues do not arise
because laws of large numbers can be invoked, circumventing the analytical concerns
as they allow us to replace specific observation with population averages.

But what if we find a way to maintain the first property of small samples—that the
prior still matters—while dispensing with the second, problematic one—that specific
realizations matter? To do this, we let n grow to infinity, thus allowing us to use
the law of large number, but at the same time vary the hyperparameters of priors
to simultaneously make them become more and precise, at a pace such that they
maintain their relevance. Such ‘alternative asymptotics’ framework, has been used to
study different inference problems in econometrics.7

The next result uses this approach to show that as long as the prior remains
relevant, smaller models have an advantage.

Theorem 2. Suppose all the agents have Normal-Inverse Gamma prior with shared
hyper-parameters (ao, bn, γ), where bn ∈ O (n2+υ) , for some υ > 0. Let P denote the
true data generating process and let the data Dn := ((x1, y1), . . . , (xn, yn)) denote an
i.i.d. sample from P. Define β0 as the parameter such that EP[x(y−x′β0)] = 0 and let
σ2
0 = EP[(y− x′β0)2]. Let J0 denote the associated true model for β0. If P is correctly

specified, then for any P satisfying Assumption 2:
7See the local-to-zero asymptotics of Staiger and Stock (1997) for the analysis of instrumental

variable regression with a weak instrument, the local-to-unity framework of Phillips (1987) for the
analysis of inference in a autoregressive model with autocorrelation close to 1.
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i. If π ∈ ΠL
0 , π0 ∈ Π0: P[π �Dn π0]→ 0 as n→∞.

ii. If π ∈ ΠS
0 , π0 ∈ Π0: P[π �Dn π0]→ 1 as n→∞.

Proof. See Section A.4 of the main Appendix. �

In words, this result shows that if the prior concentrates fast enough, the results
are the converse of the large data case (i.e., Proposition 1): models that are larger-
dimensional than the true DGP never win, and instead the winner is always smaller-
dimensional than the truth.

5 Extensions and Implications

We conclude our formal analysis with a discussion of two variants of our model, both
of which provide the same stark prediction of the “small data” world: agents with
“simple” models always win. Indeed, both of these strengthen our small data results.

Known Variance. What happens when the variance σ2 of the noise-term ε is
commonly known among the agents? This is an extreme special case of our analysis
above; it may be realistic in some situations, but not in others.8

Proposition 2. Suppose agents have Normal priors with shared hyper-parameter γ .
Fix a prior π with |J(π)| = k. For any k′ < k, and any dataset Dn for n > 0, there
exists a prior π′ such that J(π′) ⊆ J(π) with |J(π′)| = k′ and such that π′ �Dn π.

In short, for any model J(π), and any dataset of any size, some smaller model
with a subset of the explanatory variables will have a lower posterior loss.

8Indeed, there is an aspect that makes this assumption problematic in some environments. When
variance is not uncertain, agents with incorrect models of the world will, as data accrues, observe
that their model has an empirical error higher than the (known) σ2, because the model disregards
some observables relevant for prediction. For n large, this disparity in the empirical error and the
(known) σ2 should lead them to question their underlying model. However, as is standard with
Bayesians with dogmatic beliefs (here they have degenerate beliefs on σ2) they do not. When the
dataset is not too large, however, such issues will not arise.
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Bidding Before seeing the data. A different extension is to a setting where
agents know that they will see exactly n data points, but expected confidence before
they view the data: this is the case, for example, when agents have to submit a bid
before seeing the data, but know that they will see n data points before making their
prediction. Put differently, we study the expectation before seeing the data of the
expected loss after n datapoints.9 This situation may be not unusual in reality, as
often new data is revealed after bidding but before predictions needs to be made.

A stark result holds in this case: smaller models always win. In fact, in this case
the result is even stronger than previous ones, as we explain below.

Proposition 3. Suppose agents have Normal Inverse-Gamma priors with shared
hyper-parameters (a0, b0, γ), and that γ = 0. Suppose further that x ∼ Nk(0, Ik)
independently of ε. Fix a prior π. For any prior π′, such that |J(π′)| < |J(π)|, we
have that

Em(π′)[L
∗(π′, Dn)] < Em(π)[L

∗(π,Dn)],

whenever n > |J(π)| + 1. Here the outer expectation is taken over the agents’
‘marginal’ distribution of the data m(π) :=

∫
qθ(Dn)π(θ)dθ.10

Proposition 3 shows that when confidence is computed before data is realized, not
only smaller models ‘beat’ the correctly specified one, but this holds for any smaller
model, not just some of the smaller models, as was the case in some of the previous
results; moreover, this holds for any size of the dataset n.

For an intuition, consider again the decomposition of posterior loss obtained
through Lemma 1,

L∗(π,Dn) = Eπ
[
σ2
ε |Dn

]
+ Tr (Vπ[β|Dn] EP [xx′]) .

Depending on the realized Dn, the first term, model fit, can be larger or smaller than
the prior expectation of it before data is realized. Indeed, this is the complicating
factor in the analyses of Propositions 1 and 2. However, in the case of Proposition 3,
we take expectation over all possible datasets, and the first term reduces to its prior

9Note that since different agents have different beliefs about the data generating process, they
take expectations with respect to different probability distributions over the space of datasets Dn.

10Hence, the expression Em(π′)[L
∗(π′, Dn)] is the Bayes risk of the Bayes Predictor. See Equation

1.14 in Chapter 1.6 in Ferguson (1967).
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expectation. So we can focus only on the second term, model estimation uncertainty.
But then, for reasons analogous to the previous propositions, the residual model
uncertainty is smaller in expectation for smaller models. Proposition 3 follows.

Connection with the Akaike information criterion. A different way to under-
stand our results is to relate the model section induced by competing models to the
Akaike Information Criterion, a well-studied model selection criterion in Econometrics
and Statistics. In what follows, we illustrate that the loss function of an agent with
Normal-Inverse Gamma prior is “close” to the AIC for the linear regression model.

Definition 4 (Akaike Information Criterion). Given a dataset Dn = (y,X) with
n data points and k possible covariates, the Akaike information criterion for linear
regression evaluates a model based on XJ as:

LAkaike(J, n,Dn) = ln σ
∧2(J, n,Dn) +

2|J |
n
,

where

σ
∧2(J, n,Dn) =

1

n
min
β∈R|J|

(y −XJβ)′(y −XJβ).

In words, consider a model J with |J | observables. The expression σ
∧2(J, n,Dn) is

the OLS estimator of the residual variance based on a model with covariates XJ in
the dataset Dn with n observations. As is well understood, selecting a model with
a lower estimated variance may not favor the model with the best out of sample
performance. This is because selecting based on average residuals favors models
that have more covariates (i.e., regressions which “overfit” the data). The Akaike
Information Criterion (AIC) compensates for this by adding a penalty term equal to
2|J |
n
, i.e., twice the ratio of the number of covariates in the model and the number

of data points. Algebra shows that if agents have an uninformative Normal-Inverse
Gamma prior (γ = 0), then the posterior loss is approximately equal to

ln

(
σ
∧2(J, n,Dn)

)
+ ln

(
1 +

1

n
Tr

((
X ′JXJ

n

)−1
Ep[xJx′J ]

))
.

Thus, if the sample size is large and the agents’ distribution of covariates is well-
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specified, the posterior loss of an agent with prior π will be approximately equal to
the Akaike Information criterion (with a penalty of |J |/n instead of 2|J |/n).

The prevalence of larger models in the model competition can then associated
to the ‘conservativeness’ of the Akaike Criterion for model selection. Our Theorem
1, however, makes it clear that the relation is only qualitative: larger models will
indeed prevail in large samples, but the probability of a larger model being selected
will continue to be affected by the prior.

Finally, it is worth reiterating that the foundations of the AIC are normative: the
criterion was proposed as a way to select a model that avoids overfitting. Conversely,
our analyis provides a positive foundation for the AIC: we study the outcomes when
Bayesian agents compete in a way that selects the agent with the lowest posterior
expected loss.

6 Related Literature

A large literature has studied models of model misspecification in individual decision-
making, with famous examples like overconfidence and correlation neglect. A few
recent theoretical contributions to this enormous literature include Heidhues et al.
(2018) and Ortoleva and Snowberg (2015), to which we refer for further references.

Recent works have studied the implications of agents with misspecified models in
various strategic settings. For instance, Bohren (2016), Bohren and Hauser (2017),
Frick et al. (2019b) and Frick et al. (2019a) study social learning when agents have
misspecified models that cause them to misinterpret other agents’ actions. Mailath
and Samuelson (2019) study a stylized prediction market where Bayesian agents have
different models of the world (defined there as different partitions of a common state
space), and discuss the possibility of information aggregation.

In strategic settings, Esponda and Pouzo (2016) defines a learning-based solution
concept (‘Berk-Nash Equilibrium’) for games in which agents’ beliefs are misspecified.
More broadly, solution concepts have been posited for settings where agents suffer
from some sort of misspecification, including well-known examples like analogy-based
equilibrium (Jehiel, 2005) and cursed equilibrium (Eyster and Rabin, 2005).

There are several works that consider outcomes when some agents behave in a

25



way that can be construed as coming from a misspecified model. For instance in
Spiegler (2006) or Spiegler (2013) society misunderstands the relationship between
outcomes and the actions of strategic agents, which affects the actions the latter take
in equilbrium and resulting outcomes (in the former, in the context of a market for
quacks, in the latter with implications to the reforms taken by a policitican). Liang
(2018) studies outcomes in games of incomplete information where agents behave like
statisticians and have limited information.11

A novel approach to modeling misspecification in economic theory is the directed
acyclic graph approach; see Pearl (2009). This is exploited in a single person decision
framework in Spiegler (2016), which studies a single decision maker with a misspecified
causal model and large amounts of data. The paper shows that the decision maker
may evaluate actions differently than their long-run frequencies, and exhibit artifacts
such as “reverse causation” and coarse decision making. This approach is then used
in Eliaz and Spiegler (2018), which proposes a model of competing narratives. A
narrative is a causal model that maps actions into consequences, including other
random, unrelated variables. An equilibrium notion is defined, and the paper studies
the distribution of narratives that obtains in equilibrium.

Finally, the understanding that agents should be cognizant that their models
may be misspecified has also led to new approaches in mechanism design, where
the designer accounts for misspecification in various ways. The literature on robust
mechanism design (beginning with the seminal Bergemann and Morris 2005) provides
foundations for using stronger solution concepts. Madarász and Prat (2017) shows
that an optimal mechanism may perform very poorly if the planner’s model is even
slightly misspecified, and identifies a class of near optimal mechanisms that degrade
gracefully. Works such as Chassang (2013) and Carroll (2015) develop optimal ‘robust’
contracts in general settings and contrast to classical optimal contracting.

Since one natural application of our model is an auction, our results are related
to Atakan and Ekmekci (2014), who consider the competitive sale of assets whose
value depends on how they are utilized.12 The successful bidder chooses an action
that determines, together with the state of the world, the payoff generated by the

11There is a larger literature which studies the outcomes when agents are modeled as statisticians
or machine learners, e.g., Al-Najjar (2009), Al-Najjar and Pai (2014), Acemoglu et al. (2016) and
Cherry and Salant (2018).

12Bond and Eraslan (2010) study a trading environment with a similar feature.

26



asset. They focus on a setting where bidders have a common prior but observe
private signals. Their main result is the possibility of (complete) failure of information
aggregation. Our results are similar in that in our applications as well the value of
the object depends on an action taken by the agent. However, our paper considers
a complementary environment where all bidders observe the same information but
they have different priors. Information aggregation is ruled out by assumption, and
our key theme is model selection.

We assume that agents have different priors and are fully aware they have different
priors: that is to say our agents agree to disagree. This assumption has been used
in economic theory at least since Harrison and Kreps (1978). We refer the reader to
Morris (1995) for a discussion of the common and heterogeneous prior traditions in
economic theory. Heterogenous priors have been used in a number of applications in
bargaining (Yildiz, 2003), trade (Morris, 1994), financial markets (Scheinkman and
Xiong, 2003; Ottaviani and Sørensen, 2015) and more.

Relation to Model Selection. As we mentioned in the Introduction, there is
a large body of literature in Statistics, Econometrics, and Machine Learning that
studies model selection methods and provides normative foundations. That litera-
ture is too vast to comprehensively cite here; we refer the reader to Claeskens and
Hjort (2008) and Burnham and Anderson (2003) for textbook overviews. Popular
approaches include, for example, the Cp criterion of Mallows (1973), the Akaike In-
formation Criterion (AIC) of Akaike (1974), and the Bayes Information Criterion
(BIC) of Schwarz (1978).

We showed that there exists a connection between our large data results and the
Akaike Information Criterion (AIC) introduced in Akaike (1974). in particular there
is a link to the asymptotic properties of the AIC characterized in the seminal paper
of Nishii (1984).

While some of our asymptotic results are reminiscent of the model selection liter-
ature, there are three important differences. First, the aims of this literature are very
different to ours. Ours is a positive approach of studying which model emerges from a
competition between Bayesian agents with misspecified models. The approach in the
model-selection literature is instead normative: various methods of model-selection
are proposed and studied with a view to avoiding over-fitting and/or selecting ‘good’
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models according to some metric. The results we are aware of broadly speak to the
asymptotic efficiency of these techniques. Second, not only our results are derived
from a completely different model, but they are also proven with different techniques.
Third, the connection is limited to the large-data result. We are also not aware of
any analogs to our small-sample results in the model selection literature.

We also use techniques and approaches from the statistics and econometrics lit-
erature. The proof of Theorem 2 uses ‘non-standard asymptotics’ that allow for the
parameters of a statistical model to be indexed by the sample size have been used
extensively in econometrics. The typical goal of an alternative asymptotic frame-
work is to provide better approximations to finite-sample distributions of estimators,
tests, and confidence intervals, while exploiting Laws of Large Numbers and Cen-
tral Limit Theorems. For example, the local-to-unity asymptotics of Phillips (1987)
studies auto-regressive models that are close to being nonstationary; the local-to-
zero asymptotics of Staiger and Stock (1997) studies Instrumental Variables models
that are close to being unidentified; and Cattaneo et al. (2018) studies models where
possibly many covariates are included for estimation and inference.

7 Discussion and Conclusion

We analyze a novel model of competition between agents. A variable of interest is
related to a vector of covariates. Agents have different models of these relationship: in
particular they rule in/ rule out different x′s as being potentially related to prediction.
All agents observe a common dataset of size n, drawn from the true data generating
process. The winner is the agent with the lowest expected loss, expectations taken
with respect to their own subjective posterior. This winner corresponds to the winner
under a stylized auction model we formally define and analyze, but may also be of
interest more generally in situations where subjective confidence in predictions lead
to selection. We study the relationship between the true data generating process and
the model of the winner, and how this relationship changes as a size of the available
dataset, n. We show two stark results.

Firstly, when n is large, the winner is qualitatively similar to the model with the
lowest value of the Akaike Information Criterion. Misspecified models (i.e., models
that rule out an observable which is relevant for prediction) never win, but overly
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large models may continue to win even as data grows unboundedly large. The prior
is not completely ‘washed out’ by the large sample. The elasticity of the prior density
with respect to the variance parameter continues to affect the model competition even
with infinite data. This result is established for a very general class of priors and true
data generating processes.

Secondly, when n is small, we show that ‘simple’ models, i.e. models that employ
few observables, take the lead, even if the true data generating process is rich. To
establish this result, we used a ‘drifting’ Normal-Inverse Gamma prior; where we
allowed the elasticity of the prior density with respect to the variance to increase
with the sample size.

There are several natural avenues to future research. An obvious one is a setting
in which agents each observe a private dataset: this complicates our analysis because
now a notion of the winner’s curse applies. Each agent must consider whether they
are beating the others because their model is truly performing well on the data,
or because their dataset is non-representative. Another one is to consider dynamic
variants: if agents got feedback or could invest to acquire more data, what kinds of
models would be selected?
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A Main Appendix

A.1 Proof of Lemma 1

Proof. Fix a data set Dn. We need to analyze

Eπ
[
EP
[
(x′β − f ∗(π,Dn)(x))2

]∣∣∣Dn

]
.

Substituting f ∗ from (6), we have that this term

=Eπ
[
EP
[
((β − Eπ[β|Dn])′x)2

]∣∣∣Dn

]
.

Recalling that for a scalar a, a = Tr(a), we have

=Eπ
[
EP
[
Tr[((β − Eπ[β|Dn])′x)2]

]∣∣∣Dn

]
,

and then by symmetry and linearity of the trace operator, we can conclude,

=Eπ
[
EP
[
Tr[(β − Eπ[β|Dn])(β − Eπ[β|Dn])′xx′]

]∣∣∣Dn

]
=Eπ

[
Tr[(β − Eπ[β|Dn])(β − Eπ[β|Dn])′EP [xx′]]

∣∣∣Dn

]
=Tr

[
Eπ
[
(β − Eπ[β|Dn])(β − Eπ[β|Dn])′

∣∣∣Dn

]
EP [xx′]

]
.

Finally, by the definition of variance, we have the desired form

=Tr(Vπ(β|Dn)EP [xx′]] �

A.2 Proof of Theorem 1

Proof of (i): Consider two agents, one with prior πL ∈ ΠL
0 and another with prior

π0 ∈ Π0. Given dataset Dn, the agent with prior πL defeats the agent with prior π0
whenever

L∗(πL, Dn) < L∗(π0, Dn).

By Lemma 1 this happens if and only if
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Eπ0 [σ2|Dn]− EπL [σ2|Dn] (12)

is strictly larger than

Tr
(
VπL

(
βJ(πL)|Dn

)
EP [xJ(πL)xJ(πL)

′]
)
− Tr

(
Vπ0
(
βJ(π0)|Dn

)
EP [xJ(π0)xJ(π0)

′]
)
. (13)

The proof has four main steps.

Step 0 (Maximum Likelihood Estimators): Since an agent with prior π only
uses covariates with indices in J(π), this agent’s posterior can be obtained using the
likelihood

f(Y |XJ(π); βJ(π), σ
2) :=

1

(2π)n/2
1

σn
exp

(
− 1

2σ2
(Y −XJ(π)βJ(π))

′(Y −XJ(π)βJ(π))

)
.

(14)
Let β

∧
(π) and σ

∧2(π) denote the parameters θ(π) := (βJ(π), σ
2) that maximize such

likelihood. It is well known that under Assumption 2:

θ
∧
(πL) := (β

∧
(πL), σ

∧2(πL))
p→ (β0,J(πL), σ

2
0),

θ
∧
(π0) := (β

∧
(π0), σ

∧2(π0))
p→ (β0,J(π0), σ

2
0).

This happens because J(πL) nests the true model J(π0) and the true model estimates
the coefficients of the best linear prediction of y given x. Moreover, standard algebra
of linear regression13 shows that

n(σ
∧2(π0)− σ

∧2(πL)) = (
√
nRβ
∧

(πL))′[R(X ′J(πL)XJ(πL)/n)−1R′]−1(
√
nRβ
∧

(πL)),

where R is the |J(πL)− J(π0)| × |J(πL)| matrix that selects the entries of βJ(πL) that
are zero under the model specified by π0 and |J | denotes the cardinality of the set J .
Under Assumption 2

n(σ
∧2(π0)− σ

∧2(πL))/σ
∧2(π0)

d→ ζ ≡ ξ′[R(EP[xJ(πL)x
′
J(πL)

])−1R′]−1ξ/σ2
0,

where
ξ ∼ N|J(πL)−J(π0)|(0, REP[(y − x′β0)2(xJ(πL)x′J(πL))

−1]R′).

13See Theorem 3.4 and Theorem 3.5 in Greene (2003).
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Under conditional homoskedasticity ζ has a χ2
|J(πL)−J(π0)| distribution and conse-

quently.
n(σ
∧2(π0)− σ

∧2(πL))/σ
∧2(π0)

d→ χ2
|J(πL)|−|J(π0)|. (15)

More generally, ζ is just a quadratic form of multivariate normal random variables.

One additional piece of notation. We define the scaled log-likelihood function for
an agent with prior π as

hn(θ(π)) :=
1

n
ln f(Y |XJ(π); θ(π)).

The (i, j) component of the matrix of second derivatives of hn(θ(π)) with respect to
θ(π) (the Hessian of the scaled log-likelihood) will be denoted as hij(·). We omit
the dependence on n, unless confusion arises. The components of the inverse of the
Hessian will be written as hij(·). Finally, hrsj(·) denotes the partial derivative of hrs
with respect to the j-th component of θ(π).

Step 1 (Asymptotic Expansions of posterior moments): Kass et al. (1990)
provide “large n” asymptotic expansions for posterior moments around the maximizer
of the likelihood used to compute the posterior.

In the linear regression model, Theorem 4 and 5 in Kass et al. (1990) imply that for
any prior π satisfying Assumption 1, P satisfying Assumption 2, and for any six-times
differentiable positive real-valued function the posterior of g(θ) can be expanded as

Eπ[g(θ)|Dn] = g(θ
∧
(π)) +

1

n

∑
1≤i,j≤dim(θ(π))

(
∂g

∂θi
(θ
∧
(π))

)
hij(θ

∧
(π))

{(
∂π

∂θj
(θ
∧
(π))

)
·

1

π(θ
∧
(π))

− 1

2

∑
1≤r,s≤dim(θ(π))

hrs(θ
∧
(π))hrsj(θ

∧
(π))


+

1

2n

∑
1≤i,j≤dim(θ(π))

hij(θ
∧
(π))

(
∂g

∂θiθj
(θ
∧
(π))

)

+ O

(
1

n2

)
.

See equation 2.6 in p. 481 of Kass et al. (1990).
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Consider the positive function

g(θ(π)) = g(βJ(π), σ
2) = σ2.

Because

∂g

∂σ2
(θ
∧
(π)) = 1 and

∂g

∂θi
(θ
∧
(π)) = 0,

for any i < |J(π)|+ 1, the expansion above simplifies to

Eπ[σ2|Dn] = σ
∧2(π) +

1

n

∑
1≤j≤|J(π)|+1

h(|J(π)|+1)j(θ
∧
(π))

{(
∂π

∂θj
(θ
∧
(π))

)
·

1

π(θ
∧
(π))

− 1

2

∑
1≤r,s≤dim(θ(π))

hrs(θ
∧
(π))hrsj(θ

∧
(π))


+ O

(
1

n2

)
.

Moreover, the Hessian matrix of hn(θ(π)) equals

(
−1
nσ2XJ(π)

′XJ(π) − 1
nσ4XJ(π)

′(Y −XJ(π)
′βJ(π))

− 1
nσ4 (Y −XJ(π)

′βJ(π))
′XJ(π)

1
2σ4 − 1

nσ6 (Y −XJ(π)
′(Y −XJ(π)),

)
(16)

and the inverse Hessian evaluated at θ
∧
(π) is

(
−σ
∧2(π)

(
XJ(π)

′XJ(π)/n
)−1

0

0 −2σ
∧4(π),

)
(17)

This further simplifies the expansion to
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Eπ[σ2|Dn] = σ
∧2(π)− 2σ

∧4(π)

n

{(
∂π

∂σ2
(θ
∧
(π))

)
· 1

π(θ
∧
(π))

− 1

2

∑
1≤r,s≤|J(π)+1|

hrs(θ
∧
(π))hrs(|J(π)|+1)(θ

∧
(π))

+O

(
1

n2

)
.

Finally, the terms
hr(|J(π)|+1), h(|J(π)|+1)s

are both 0 for any r, s < |J(π)|+ 1. Algebra shows that

∑
1≤r,s≤|J(π)|+1

hrs(θ
∧
(π))hrs(|J(π)|+1)(θ

∧
(π)) =

∑
1≤r,s≤|J(π)|

hrs(θ
∧
(π))hrs(|J(π)|+1)(θ

∧
(π))

+ h(|J(π)|+1)(|J(π)|+1)(θ
∧
(π)) ·

h(|J(π)|+1)(|J(π)|+1)(|J(π)|+1)(θ
∧
(π))

= −σ
∧−2(π)|J(π)|

− 4σ̂−2.

We conclude that the Kass-Tierney-Kadane expansion of Eπ[σ2|Dn] equals

σ
∧2(π)− 2σ

∧4(π)

n

{(
∂π

∂σ2
(θ
∧
(π))

)
· 1

π(θ
∧
(π))

}
− σ
∧2(π)

|J(π)|+ 4

n
+OP

(
1

n2

)
. (18)
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Step 2 (Comparison of Model Fit): The expansion in (18) implies

n
(
Eπ0 [σ

2|Dn]− EπL [σ2|Dn]
)

= n
(
σ
∧2(π0)− σ

∧2(πL)
)

− 2σ4
0

{(
∂π0
∂σ2

(θ0(π0))

)
· 1

π0(θ0(π0))

−
(
∂πL
∂σ2

(θ0(πL))

)
· 1

πL(θ0(πL))

}
− σ2

0 (|J(π0)| − |J(πL)|)

+ OP

(
1

n

)
.

Step 3 (Comparison of Model Uncertainty): Let β0, σ2
0 denote the true pa-

rameters of the model as defined in the statement of Theorem 1. Under Assumption
2.4, for π ∈ {π0, πL} we have

nVπ
(
βJ(π)|Dn

) p→ σ2
0EP[xJ(π)x

′
J(π)]

−1.

Consequently:

nTr
(
Vπ
(
βJ(π)|Dn

)
EP [xJ(π)xJ(π)

′]
) p→ σ2

0Tr(EP[xJ(π)x
′
J(π)]

−1EP [xJ(π)xJ(π)
′]).

Step 4 (Model Fit vs. Model Uncertainty): πL defeats π0 if the gain in model
fit in equation (12) is larger than the increase in model uncertainty, as captured by
(13).

Define

ηπ(θ0(π)) :=

(
∂π0
∂σ2

(θ0(π0))

)
· σ2

0

π0(θ0(π0))
.

This parameter denotes the elasticity of the prior π with respect to the parameter
σ2 at the true parameter θ0(π).
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Let

∆(πL, π0) ≡ Tr(EP[xJ(πL)x
′
J(πL)

]−1EP [xJ(πL)xJ(πL)
′])

− Tr(EP[xJ(π0)x
′
J(π0)

]−1EP [xJ(π0)xJ(π0)
′])

Step 2 and Step 3 imply that the probability of the event in which πL defeats π0
can be approximated in large samples by

n
(
σ
∧2(π0)− σ

∧2(πL)
)
/σ2

0 > ∆(πL, π0)

− (|J(πL)| − |J(π0)|)

− 2(ηπL(θ0(πL))− ηπ0(θ0(πL)))

+ Op(1).

We have shown that under Assumption 2

n
(
σ
∧2(π0)− σ

∧2(πL)
)
/σ2

0
d→ ζ.

Consequently:

P[πL �Dn π0]→ c(πL, π0, θ0),

where c(πL, π0, θ0) is the function

P (ζ > ∆(πL, π0)− (|J(πL)| − |J(π0)|) + 2(ηπ0(θ0(π0))− ηπL(θ0(πL)))) .

Proof of (ii): We show that an agent with prior π ∈ ΠW
0 ∪ ΠS

0 can never defeat
an agent with prior π0 ∈ Π0. Given dataset Dn, the agent with prior π0 is victorious
over π whenever

L∗(π0, Dn) < L∗(π,Dn).

Using Lemma 1 this happens if and only if
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Eπ[σ2|Dn]− Eπ0 [σ2|Dn] (19)

is strictly larger than

Tr
(
Vπ0
(
βJ(π0)|Dn

)
EP [xJ(π0)xJ(π0)

′]
)
− Tr

(
Vπ
(
βJ(π)|Dn

)
EP [xJ(π)xJ(π)

′]
)
. (20)

Assumption 2.4 implies that (20) converges in probability to zero. In addition,
using the expansion of Kass et al. (1990) we can write (19) as

σ
∧2(π)− σ

∧2(π0) +OP

(
1

n

)
.

It is well-known that the probability limit of the difference

σ
∧2(π)− σ

∧2(π0)

is strictly positive: under our assumptions, the misspecified model has strictly larger
residual variance than the true model.

A.3 Proof of Proposition 1

Proof. Denote the single datapoint as D1 = (Y,X), where Y ∈ R and X ∈ R1×k (k
is the number of covariates), and X = x′. First, observe that for any agent j with a
single explanatory variable κ in his model (denoted xκ). By Lemma 2

L∗(πj, D1) =
b0 + 1

2

(
y2 − y2x2κ

x2κ+γ

)
a0 − 1

2

(
1 +

1

x2κ + γ

)

=
b0 + 1

2
y2γ
x2κ+γ

a0 − 1
2

(
1 +

1

x2κ + γ

)
.

The winning agent among the single variable models will therefore clearly be the
agent with the variable κ that maximizes xκ. Without loss of generality, call this
variable 1.

To economize on notation, now consider the full model with all the explanatory
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variables, it will be clear from the logic that this argument will work for any model
larger than a single variable. For an agent j with all k variables, we know that

L∗(πj, D1) =
b0 + y2

2
(1−X(X ′X + γkIk)−1X ′)

a0 − 1
2

(
1 + Tr

[
(X ′X + γkIk)−1

])
To show that this model always loses, we need to show that this model’s loss is always
larger than the “best” single variable model. To do this, it is sufficient to show that:

(1−X(X ′X + γkIk)−1X ′) ≥
γ

x21 + γ
,

Tr
[
(X ′X + γkIk)−1

]
≥ 1

x21 + γ
.

We will handle each of these separately. Let’s start with the second. Recall that for
any matrix A, Tr(A) equals the sum of eigenvalues of A. Further, the eigenvalues
of A−1 are the reciprocals of the eigenvalues of matrix A for an invertible matrix.
Finally if A is positive definite, all the eigenvalues are strictly positive.

By the Gershgorin circle theorem (see e.g. Theorem 6.1.1 of Horn and Johnson
(1990)), all the eigenvalues of a matrix A lie within

⋃k
κ=1[aκ,κ −Rκ, aκ,κ +Rκ] where

Rκ is the sum of the absolute values of the non-diagonal terms on row κ, and aκ,κ is
the κ diagonal element.

Consider the matrix (X ′X+γkIk). Observe thatRκ in this case = |xκ|(
∑

κ′ 6=κ |xκ′ |),
while aκ,κ = x2κ + kγ. Therefore the largest possible eigenvalue is |x1|(

∑
κ |xκ|) + kγ,

which in turn is small than k(x21 + γ).

Therefore for the matrix (X ′X + γkIk)−1, all eigenvalues are larger than 1
k(x21+γ)

,
and therefore the sum of eigenvalues is at least 1

(x21+γ)
(since there are k eigenvalues)!

We can therefore conclude that

Tr
[
(X ′X + γkIk)−1

]
≥ 1

x21 + γ
,

as desired.
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We are left to prove that:

(1−X(X ′X + γkIk)−1X ′) ≥
γ

x21 + γ
,

⇐⇒ X(X ′X + γkIk)−1X ′ ≤
x21

x21 + γ
.

Now, observe that X(X ′X + γkIk)−1X ′ is a scalar. We know that for a scalar,
a = Tr(a). Therefore we have that

X(X ′X + γkIk)−1X ′,

=Tr[X(X ′X + γkIk)−1X ′],

=Tr[(X ′X + γkIk)−1X ′X]

=Tr[(
1

γk
X ′X + Ik)−1

1

γk
X ′X]

Denote 1
γk
X ′X as A. Substituting

=Tr[(A+ Ik)−1A]

Now, observe that if λ is an eigenvalue of A, then λ
1+λ

is an eigenvalue of (A+ Ik)−1A.
To see this, suppose v is an eigenvector of A with eigenvalue λ. Then,

Av = λv

=⇒ (A+ Ik)v = (λ+ 1)v

=⇒ (A+ Ik)−1v =
1

1 + λ
v

=⇒ (A+ Ik)−1Av =
λ

1 + λ
v

Substituting this in, we have

Tr[(A+ Ik)−1A]

=
k∑
i=1

λi
1 + λi

43



Therefore we are left to show that

k∑
i=1

λi
1 + λi

≤ x21
x21 + γ

Here λi’s are the eigenvalues of 1
γk
X ′X. This implies that

∑
i λi = 1

γk

∑
i x

2
i .

Note that X ′X is not full rank, indeed, its null space is of dimension k − 1.
Therefore it has k − 1 multiplicity eigenvalue of 0. The unique non-zero eigenvalue
must then be 1

γk

∑
i x

2
i .

Substituting in, we have

k∑
i=1

λi
1 + λi

=

1
γk

∑
i x

2
i

1
γk

∑
i x

2
i + 1

=
1
k

∑
i x

2
i

1
k

∑
i x

2
i + γ

≤ x21
x21 + γ

where the last inequality follows since we assumed that x21 = maxi{x2i : 1 ≤ i ≤
k}. �

A.4 Proof of Theorem 2

Proof. It is well known that for a prior π in the Normal-Inverse Gamma family:

Vπ[βJ(π)|Dn] = Eπ
[
σ2
ε |Dn

]
(X ′J(π)XJ(π) + γ|J(π)|I|J(π)|)−1

= Eπ
[
σ2
ε |Dn

] 1

n

(
X ′J(π)XJ(π)

n
+
γ|J(π)|I|J(π)|

n

)−1

Under the Assumptions on P in Theorem 2

(
X ′J(π)XJ(π)

n
+
γ|J(π)|I|J(π)|

n

)−1
= EP[xJ(π)x

′
J(π)]

−1 + oP(1).

Consequently,
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Tr
(
Vπ[βJ(π)|Dn]EP[xJ(π)x

′
J(π)]

)
= Eπ

[
σ2
ε |Dn

](J(π)

n
+ oP

(
1

n

))
. (21)

Algebra shows that for any priors π, π′ in the Normal-Inverse Gamma family

L∗(π′, Dn) > L∗(π,Dn)

if and only if

(
Eπ
[
σ2
ε |Dn

]
− Eπ′

[
σ2
ε |Dn

])(
1 +

J(π′)

n
+ oP

(
1

n

))
(22)

is strictly larger than

Eπ[σ2
ε |Dn]

(
J(π)− J(π′)

n

)
. (23)

Proof of (i): It is well known that for a prior π in the Normal-Inverse Gamma
family, the posterior mean of βJ(π) is the ‘Ridge estimator’

β
∧

π := (X ′J(π)XJ(π) + γ|J(π)|IJ(π))−1X ′J(π)y,

which solves the problem

min
β∈R|J(π)|

(y −XJ(π)β)′(y −XJ(π)β) + (γ|J(π)|) ||β||2

Consider two priors π, π′ such that J(π′) ⊂ J(π). In a slight abuse of notation let β
∧

π′

denote the vector in RJ(π) with all the coordinates in J(π)\J(π′) equal to zero. Also,
let J be used to abbreviate J(π)

Equation (10) implies that for any such two priors π, π′

n(Eπ′ [σ2
ε |Dn]− Eπ[σ2

ε |Dn])

is proportional to the sum of

(y −XJβ
∧

π′)′(y −XJβ
∧

π′)− (y −XJβ
∧

π)′(y −XJβ
∧

π) (24)
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and
γ
(
|J(π′)| ||β

∧

π′ ||2 − |J | ||β
∧

π||2
)
. (25)

where the proportionality constant is cn := (2a0/n+ 1− 2/n)−1.

Algebra shows that the expression in (24) equals

−2(y −XJβ
∧

π)′XJ(β
∧

π′ − β
∧

π) + (β
∧

π − β
∧

π′)′X ′JXJ(β
∧

π − β
∧

π′)

and the expression in (25)

γ|J(π′)|(β
∧

π − β
∧

π′)′(β
∧

π − β
∧

π′)− γ(|J | − |J(π′)|)β
∧′
πβ
∧

π + 2γ|J(π′)|β
∧′
π(β
∧

π′ − β
∧

π).

The first-order conditions defining the Ridge estimator imply

−2(y −XJβ
∧

π)′XJ + 2γ|J |β
∧′
π = 0.

Therefore, in any finite sample

n(Eπ′ [σ2
ε |Dn]− Eπ[σ2

ε |Dn]) = cn
(
(β
∧

π − β
∧

π′)′(X ′JXJ + γ|J(π′)|IJ)(β
∧

π − β
∧

π′)

+ γ(|J | − |J(π′)|)β
∧′
πβ
∧

π

− 2γ(|J | − |J(π′)|)β
∧′
π′β
∧

π

)
.

Under the assumptions of Theorem (2) and letting π′ ∈ Π0:

n(Eπ′ [σ2
ε |Dn]− Eπ[σ2

ε |Dn]) = OP(1).

However, under the same assumptions

Eπ[σ2
ε |Dn] =

2bn
n

+ oP(1).

Since bn ∈ O (nv+2). This implies

P
(
n(Eπ′ [σ2

ε |Dn]− Eπ[σ2
ε |Dn])

(
1 +

J(π′)

n
+ oP(1)

)
> Eπ[σ2

ε |Dn])(J(π)− J(π′))

)
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converges to zero. We conclude that π ∈ ΠL
0 , π′ ∈ Π0 implies

P[π �Dn π′]→ 0.

Proof of (ii): Consider the same framework as above, but let π now denote an
element of Π0 and π′ an element of ΠS

0 . The probability that the smaller model, π′,
is defeated by π is

P
(

(Eπ′ [σ2
ε |Dn]− Eπ[σ2

ε |Dn])

(
1 +

J(π′)

n
+ oP(1)

)
>

Eπ[σ2
ε |Dn])

n
(J(π)− J(π′))

)
,

where J(π) > J(π′). Under the assumptions of the theorem

(Eπ′ [σ2
ε |Dn]− Eπ[σ2

ε |Dn]) = OP(1).

However,
Eπ[σ2

ε |Dn])

n
=
bn
n2

+ oP

(
1

n

)
.

Since bn ∈ O (nυ+2) , for υ > 0. We conclude that if π′ ∈ ΠS
0 and π ∈ Π0:

P[π′ �Dn π]→ 1.

�
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B Supplementary Material

B.1 Posterior Loss for Normal-Inverse Gamma Priors

We derive the specific formula of the posterior loss in the case of Normal-Inverse
Gamma priors.

Lemma 2. Suppose the agent has a Normal-Inverse gamma prior π with hyper-
parameters (γ, a0, b0). Then, if the observed dataset is Dn = (y,X) we have that her
log posterior expected loss can be written as:

ln(L∗(π,Dn)) = ln

(
2b0
n

+ 1
n

minβ∈R|J(π)|
(
(y −XJ(π)β)′(y −XJ(π)β) + (γ|J(π)|)||β||2

)
2a0
n

+ 1− 2
n

)
+ ln

(
1 + Tr

[(
(X ′J(π)XJ(π) + γ|J |I|J(π)|

)−1 EP [xJ(π)x
′
J(π)]

])
(26)

Proof. We break the proof into two steps. Step 1 shows provides an expression for
the posterior mean of σ2

ε . Step 2 plugs-in this expression into the formula for the
posterior loss.

Step 1 First we show that the posterior mean of σ2
ε in a regression model with a

Normal-Inverse Gamma prior with hyperparameters (γ, a0, b0) is given by:

Eπ[σ2
ε |Dn] =

2b0
n

+ 1
n

minβ∈Rk(y −Xβ)′(y −Xβ) + (γk) ||β||2
2a0
n

+ 1− 2
n

(27)

It is known that

σ2
ε |Dn ∼ Inv-Gamma

(
a0 +

n

2
, b0 +

1

2
(y′y − β

∧′
R(γk)(X ′X + (γk)Ik)β

∧

R(γk))
)
.

where β
∧

R(γk) is the ridge estimator with penalty parameter γk. Since the mean of
a random variable distributed as Inv-Gamma(a, b) is b

a−1 , to show (10) it is sufficient
to show that:

min
β∈Rk

(y −Xβ)′(y −Xβ) + (γk) ||β||2 = y′y − β
∧

R(γk)′(X ′X + (γk)Ik)β
∧

R(γk). (28)
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To condense notation, let β
∧

R ≡ β
∧

R(λ), where λ = γk is fixed. Note that:

y′Xβ
∧

R =y′X(X ′X + λIk)−1X ′y

=y′X(X ′X + λIk)−1(X ′X + λIk)(X ′X + λIk)−1X ′y

=β
∧′

R(X ′X + λIk)β
∧

R

=β
∧′

RX
′Xβ
∧

R + λβ
∧′

Rβ
∧

R.

This implies that

(y −Xβ
∧

R)′(y −Xβ
∧

R)

=y′y − 2y′Xβ
∧

R + β
∧′

RX
′Xβ
∧

R

=y′y − β
∧′

RX
′Xβ
∧

R − 2λβ
∧′

Rβ
∧

R.

Therefore:

y′y − β
∧′

R(X ′X + λIk)β
∧

R

=y′y − β
∧′

R(X ′X)β
∧

R − λβ
∧′

Rβ
∧

R

=(y −Xβ
∧

R)′(y −Xβ
∧

R) + λβ
∧′

Rβ
∧

R

Comparing, (28) follows, concluding our proof of (10).

Step 2 From Lemma 1, we have that the posterior loss

L∗(π,Dn) = Eπ[σ2
ε |Dn] +

∫ ∞
0

Tr(Vπ(β|Dn, σ
2
ε )EP [xx′])π(σ2

ε |Dn)dσ2
ε .

It is known that

Vπ(β|Dn, σ
2
ε ) = σ2

ε (X
′X + (γk)Ik)−1,
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This implies that

L∗(π,Dn) =Eπ[σ2
ε |Dn] +

∫ ∞
0

Tr(σ2
ε (X

′X + (γk)Ik)−1)EP [xx′])π(σ2
ε |Dn)dσ2

ε ,

=Eπ[σ2
ε |Dn] + Eπ[σ2

ε |Dn]Tr((X ′X + (γk)Ik)−1Ep[xx′]).

Taking logs on both sides and using the formula for the posterior mean of σ2
ε from

Step 1, we obtain the desired formula. �

B.2 Posterior Loss for Normal-Inverse Gamma priors in large

samples

Observation 1. Suppose the agent has a Normal-Inverse Gamma prior. Then, for
n large, we have

ln (L∗(π,Dn)) ≈ ln
(
Eπ
[
σ2
ε |Dn

])︸ ︷︷ ︸
Model Fit

+ ln

(
1 +
|J |
n

)
︸ ︷︷ ︸
Model Dimension

. (29)

Proof. The posterior upon observing dataset Dn is

βJ |Dn, σ
2
ε ∼ N|J |(β

∧

J,Ridge, σ
2
ε (X

′
JXJ + (γ|J |)I|J |)−1),

=⇒ Vπ[βJ |Dn] = Eπ
[
σ2
ε |Dn

]
(X ′JXJ + (γ|J |)I|J |)−1.

Therefore, substituting back, we have that

Tr (Vπ[βJ |Dn] EP [xJx
′
J ]) = Eπ

[
σ2
ε |Dn

]
Tr
(
(X ′JXJ + (γ|J |)I|J |)−1 EP [xJx

′
J ]
)
,

= Eπ
[
σ2
ε |Dn

]
Tr

(
1

n

(
1

n

(
X ′JXJ + (γ|J |)I|J |

))−1
EP [xJx

′
J ]

)
,

3



which for n large, by the law of large numbers

≈ Eπ
[
σ2
ε |Dn

]
Tr
(

1

n
(EP [xJx

′
J ])
−1 EP [xJx

′
J ]

)
,

= Eπ
[
σ2
ε |Dn

]
Tr
(

1

n
I|J |
)
,

= Eπ
[
σ2
ε |Dn

] |J |
n
.

Thus for n large, (29) follows. �

B.3 Proof of Proposition 2

Proof. Suppose the known variance of ε is σ2
ε . Then for any agent with prior π, upon

seeing data Dn, the posterior expected loss evaluates to:

L∗(πj, Dn) = σ2
ε + Tr(Vπ[β|Dn]),

where we have assumed that Ep[xx′] = I.

Without loss of generality, suppose the larger model J ′ is the entire set of ob-
servables of size k. We need to show that there exists a model J of size |J | such
that

Tr(X ′X + γkIk)−1 ≥ Tr(X ′JXJ + γ|J |I|J |)−1.

In particular let J be such that
∑

j∈J ej(X
′X+γkIk)−1ej ≤

∑
j∈J ′′ ej(X

′X+γkIk)−1ej
for any J ′′ such that |J ′′| = |J | . Then, it must be the case that

Tr(X ′X + γkIk)−1 ≥
k

|J |
∑
j∈J

ej(X
′X + γkIk)−1ej

Therefore it is sufficient to show that for this model J , we have

k

|J |
∑
j∈J

ej(X
′X + γkIk)−1ej ≥ Tr(X ′JXJ + γ|J |I|J |)−1.

Without loss we can renumber the indices so that J = {1, 2, . . . , |J |}. Let L denote
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the set of remaining indices, i.e. L = {|J | + 1, . . . , k}. We can thus write the left
hand size of the inequality as:

k

|J |
∑
j∈J

ej

(
X ′JXJ + γkI|J | X ′JXL

X ′LXJ X ′LXL + γkI|L|

)−1
ej.

Using the standard formula for block inverse of a matrix we can write this as

=
k

|J |
∑
j∈J

ej

(
A1 A2

A3 A4

)−1
ej.

where A1 = (X ′JXJ + γkI|J | −X ′JXL(X ′LXL + γkI|L|)−1X ′LXJ)−1. Substituting that
in we have

=
k

|J |
Tr(X ′JXJ + γkI|J | −X ′JXL(X ′LXL + γkI|L|)−1X ′LXJ)−1.

Therefore, taking k
|J | to the other side, we are left to show that

Tr(X ′JXJ + γkI|J | −X ′JXL(X ′LXL + γkI|L|)−1X ′LXJ)−1 ≥ Tr(
k

|J |
X ′JXJ + γkI|J |)−1

(30)

Next, given 4 matrices A,B,C, and D where A and C are invertible, it is easy to
show that

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)DA−1.

Suppose we define

A = X ′JXJ + γkI|J |,

B = −X ′JXL,

C = (X ′LXL + γkI|L|)−1,

D = X ′LXJ .

Note that in this case, A and C are invertible by observation. In light of this, and
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the linearity of the Trace operator, we can rewrite the left hand side of (30) as

Tr(A−1 − A−1B(C−1 +DA−1B)DA−1)

=TrA−1 − Tr(A−1B(C−1 +DA−1B)DA−1)

=Tr(X ′JXJ + γkI|J |)−1 − Tr(A−1B(C−1 +DA−1B)DA−1)

where A,B,C and D are as defined above. So (30) can be written as:

Tr(X ′JXJ + γkI|J |)−1 − Tr(A−1B(C−1 +DA−1B)DA−1) ≥ Tr(
k

|J |
X ′JXJ + γkI|J |)−1

To show this inequality it is therefore sufficient to show that

Tr(A−1B(C−1 +DA−1B)DA−1) ≤ 0, (31)

Tr(X ′JXJ + γkI|J |)−1 ≥ Tr(
k

|J |
X ′JXJ + γkIk)−1. (32)

We now show each of these in turn. Let us start with the first. Note that B = −D′

we have:

(31) ⇐⇒ Tr(A−1D′(C−1 −DA−1D′)DA−1) ≥ 0.

In turn, since A is symmetric, so is A−1, so defining Q ≡ A−1D′

⇐⇒ Tr(Q(C−1 −DA−1D′)Q′) ≥ 0.

Since QMQ′ is a positive semidefinite matrix if M is a positive semidefinite matrix
(see e.g. Observation 7.1.8 of Horn and Johnson (1990)), it is sufficient to show that
(C−1 − DA−1D′) is a positive semidefinite matrix (the trace of a matrix equals the
sum of all its eigenvalues, and the eigenvalues of a positive semidefinite matrix are
all non-negative). So to show (31), it is sufficient to show that (C−1 − DA−1D′) is
positive semidefinite. To see this, observe that:

(C−1 −DA−1D′)

=X ′LXL + γkI|L| −X ′LXJ(X ′JXJ + γkI|J |)−1X ′JXL

=X ′L
(
IN −XJ(X ′JXJ + γkI|J |)−1X ′J

)
XL + γkI|L|

6



It is therefore sufficient to show that each of these two matrices are positive semidefi-
nite. The latter is positive definite by observation. To show that the former is positive
semidefinite, by another appeal to Observation 7.1.8 of Horn and Johnson (1990), it
is sufficient to show that

(
Ik −XJ(X ′JXJ + γkI|J |)−1X ′J

)
is positive semidefinite. But

observe that:

Ik −XJ(X ′JXJ + γkI|J |)−1X ′J

=Ik −
1

γk
XJ(

1

γk
X ′JXJ + I|J |)−1X ′J (33)

Now, we know that for any square matrix P ,

(I + P )−1 = I − (I + P )−1P,

= I − P + (I + P )−1P 2,

= I +
∞∑
j=1

(−1)jP j.

Substituting in P = 1
γk
X ′JXJ , we have that

XJ(
1

γk
X ′JXJ + I|J |)−1X ′J = XJ

(
I|J | −

∞∑
j=1

(− 1

γk
)j(X ′JXJ)j

)
X ′J

= XJX
′
J −

∞∑
j=1

(− 1

γk
)j(XJX

′
J)j+1

= (XJX
′
J)(I|J | −

∞∑
j=1

(− 1

γk
)j(XJX

′
J)j)

= (XJX
′
J)(I|J | +

1

γk
XJX

′
J)−1

Therefore we have that

(33) = Ik −
1

γk
(XJX

′
J)(I|J | +

1

γk
XJX

′
J)−1

= Ik − (XJX
′
J)(γkI|J | +XJX

′
J)−1

= γk(γkI|J | +XJX
′
J)−1

which is positive definite by observation.
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We are left, then, to show (32), i.e. that:

Tr(X ′JXJ + γkI|J |)−1 ≥ Tr(
k

|J |
X ′JXJ + γkIk)−1,

⇐⇒ Tr((X ′JXJ + γkI|J |)−1 − (
k

|J |
X ′JXJ + γkIk)−1) ≥ 0.

Algebra shows

Tr((X ′JXJ + γkI|J |)−1 − (
k

|J |
X ′JXJ + γkIk)−1)

=Tr((X ′JXJ + γkI|J |)−1
(
k − |J |
|J |

X ′JXJ

)
(
k

|J |
X ′JXJ + γkIk)−1)

=Tr(
k − |J |
|J |

XJ(X ′JXJ + γkI|J |)−1(
k

|J |
X ′JXJ + γkIk)−1X ′J).

The final matrix into the trace operator is positive semidefinite by Observation 7.1.8
of Horn and Johnson (1990). �

B.4 Proof of Proposition 3

Proof. For an agent with prior π the agent’s ex-ante expected loss on seeing a dataset
of size n is

Em(π)[L
∗(π,Dn)] =

∫
θ=(β,σ2

ε )

∫
Dn

∫
y,x

(y − x′β
∧

(Dn))2dQθ(y, x)dQθ(Dn)dπ(θ).

The agents’ statistical model is y = x′β + ε, ε ∼ N (0, σ2)

=

∫
θ=(β,σ2

ε )

∫
Dn

∫
y,x

(x′β + ε− x′β
∧

(Dn))2dQθ(x, ε)dQθ(Dn)dπ(θ),

=

∫
θ=(β,σ2

ε )

∫
Dn

∫
x,ε

((x′(β − β
∧

(Dn)))2 + ε2)dQθ(x, ε)dQθ(Dn)dπ(θ)

= Eπ[σ2
ε ] +

∫
θ=(β,σ2

ε )

∫
Dn

∫
x

(x′(β − β
∧

(Dn)))2dQθ(x)dQθ(Dn)dπ(θ)

= Eπ[σ2
ε ] +

∫
θ=(β,σ2

ε )

∫
Dn

(∫
x

((β − β
∧

(Dn))′xx′(β − β
∧

(Dn))dQθ(x)

)
dQθ(Dn)dπJ(θ)

= EπJ [σ2
ε ] +

∫
θ=(β,σ2

ε )

∫
Dn

((β − β
∧

(Dn))′(β − β
∧

(Dn))dQθ(Dn)dπ(θ)
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Where the last equality follows since EP [xx′] = I by assumption. Now, since γ = 0 by
assumption, for dataset Dn = (Y,X), we have that β

∧
(Dn) = (X ′J(π)XJ(π))

−1X ′J(π)Y .
In a slight abuse of notation abbreviate J(π) as J . Writing that Y = XJβ+ e, where
e is the n× 1 vector collecting εi:

(β
∧

(Dn)− β) = (X ′JXJ)−1X ′Je.

Substituting back in we have that:

Em(π)[L
∗(π,Dn)] = Eπ[σ2

ε ] +

∫
θ=(β,σ2

ε )

∫
Dn

((β − β
∧

(Dn))′(β − β
∧

(Dn))dQθ(Dn)dπ(θ)

= EπJ [σ2
ε ] +

∫
θ=(β,σ2

ε )

∫
Dn

(
e′XJ(X ′JXJ)−1(X ′JXJ)−1X ′Je

)
dQθ(Dn)dπ(θ)

since e′XJ(X ′JXJ)−1(X ′JXJ)−1X ′Je is a scalar

= Eπ[σ2
ε ] +

∫
θ=(β,σ2

ε )

∫
Dn

Tr(e′XJ(X ′JXJ)−1(X ′JXJ)−1X ′Je)dQθ(Dn)dπJ(θ)

Using the cyclic property of the trace operator,

= Eπ[σ2
ε ] +

∫
θ=(β,σ2

ε )

∫
Dn

Tr((X ′JXJ)−1X ′Jee
′XJ(X ′JXJ)−1)dQθ(Dn)dπJ(θ)

by assumption, XJ and e are independent and EQθ [ee′] = σ2
ε In. Thus,

= Eπ[σ2
ε ] +

∫
θ=(β,σ2

ε )

σ2
ε

∫
XJ

Tr((X ′JXJ)−1X ′JXJ(X ′JXJ)−1)dQθ(XJ)dπJ(θ)

= Eπ[σ2
ε ] +

∫
θ=(β,σ2

ε )

σ2
ε

∫
XJ

Tr(X ′JXJ)−1dQθ(XJ)dπJ(θ)

= Eπ[σ2
ε ]

(
1 +

|J |
n− |J | − 1

)
.

The last equation follows because when x ∼ N (0, Ik), (X ′JXJ) is a Wishart distribu-
tionW(IJ , n). Thus, (X ′JXJ)−1 has an inverse wishart distribution and its expectation
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equals IJ/(n− |J | − 1), provided n > |J |+ 1. Finally

J ′

n− J ′ − 1
<

J

n− J − 1
,

if and only if n > 1. Since Eπ[σ2
ε ] is common across all agents by assumption, the

result follows. �
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