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1 Introduction

“No winning words about death to me, shining Odysseus!

By god, I’d rather slave on earth for an other man-

some dirt-poor tenant farmer who scrapes to keep alive-

than rule down here over all the breathless dead.”

Achilles’ ghost to Odysseus, Homer, Odyssey.

Consider the evolution of Botswana at the end of the last century. In 1990, life

expectancy in Botswana was 63.6 years while 33.6 % of its population was considered

as extremely poor. In 2000, life expectancy was 45.6 years, while the proportion of

extremely poor people had dropped to 29.5%.1 Over a decade in Botswana, extreme

(income) poverty has decreased, but people also lived a shorter life. The question

we raise in this paper is how to evaluate, in a simple, meaningful and unambiguous

manner, the evolution of total deprivation in Botswana between 1990 and 2000.

Deprivation is widely recognized as a multidimensional phenomenon (Alkire and

Foster, 2011). The dimensions most often discussed, e.g. income, education or health,

can only affect individuals when they are alive. We instead consider here premature

mortality, which involves taking into account dead individuals. As such, dying is

not a form of deprivation: everyone is mortal while being deprived means falling

short of a minimal standard in a given resource. However, an individual dying too

young is deprived in the sense that she will not live a number of years considered

as minimally acceptable. Therefore, from the perspective of premature mortality,

the resource of interest is the number of years spent alive, i.e. the lifespan.2 As

the lifespan is an important resource for well-being (Sen, 1998; Deaton, 2013), we

argue that lifespan deprivation is a serious form of deprivation and should therefore

be taken into account when evaluating total deprivation.

In this paper, we develop measures of deprivation that explicitly take lifespan

deprivation into account. In this respect, the measures of deprivation proposed

so far in the literature are unsatisfactory either because, as most poverty indices,

they simply ignore lifespan deprivation or because, as most composite indices, they

account for it in an questionable fashion. More precisely, the main weakness of

simple composite indices is that they do not hold constant the trade-off (i.e. the

exchange rate) between alive deprivation and lifespan deprivation. To illustrate this

point, consider the example given in Table 1, which compares three societies. In all

societies, two individuals are born every year and no individual lives for more than

two years. In society A, the two newborns are non-deprived and the two 1-year-old

are (income) poor. As we assume the age threshold defining lifespan deprivation to

be 2 years, no individual is lifespan deprived in society A. Society B is identical to

society A except for the status of a 1-year-old individual: she is prematurely dead

instead of being poor. Similarly, society C is identical to society B except for a

1-year-old individual who is prematurely dead instead of poor.

1We present our databases below.
2This way of accounting for premature mortality is different from the missing poor approach

followed by Lefebvre et al. (2013) and from the missing women approach (Anderson and Ray, 2010),
where individuals dying in excess to a death rate are considered missing (see Section 3). We take an
absolute deprivation approach to mortality, while the missing poor and missing women approaches
take a counterfactual approach based on reference mortality rates. In our view, any individual
dying early is deprived (and therefore, “missing"), while in the missing women and missing poor
approaches, individuals dying at an early age may or may not be considered “missing".
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Table 1: Composite indices are not consistent.

0 year old 1 year old HC LD P0.5

Society A Non-Poor, Non-Poor Poor, Poor 0.5 0 0.25
Society B Non-Poor, Non-Poor Poor, Dead 0.33 0.25 0.29
Society C Non-Poor, Non-Poor Dead, Dead 0 0.5 0.25

The age threshold defining lifespan deprivation is 2 years

Income poverty is measured by the head-count ratio (HC), i.e. the fraction of

alive individuals who are poor, which is 0.5, 0.33 and 0, respectively in society A,

B and C. Lifespan deprivation is measured by the fraction of individuals who are

lifespan deprived (LD), which is 0, 0.25 and 0.5 respectively, in society A, B and C.

A typical composite index of total deprivation simply aggregates the two dimensions

by weighing them:

Pw = wHC + (1− w)LD

where w ∈ [0, 1] is the weight parameter w. Assuming for instance w = 0.5, we get

that total deprivation as measured by P0.5 is smaller in society A than in society

B but larger in society B than in society C. Yet, comparing society B to A, or C

to B, the only difference between those societies is that a single individual changed

status, from being poor to being dead. We therefore call judgments based on simple

composite indices “inconsistent” as they do not satisfy a basic separability property

and typically imply that being poor is worse than being prematurely dead in some

situations but better in other situations. This inconsistency arises because the two

measures, HC and LD, are based on different reference populations. The measures

of deprivation we propose below do not suffer from this undesirable property.

In the first part of this paper, we develop, characterize axiomatically and com-

pare three new indices of total deprivation that explicitly combine alive deprivation

and lifespan deprivation. Two main lessons can be drawn from this exercice. First,

when aggregating different dimensions of deprivation, lifespan deprivation should be

treated separately. The fundamental reason lies in the exclusive nature of this di-

mension: individuals, once dead, cannot be considered as deprived along another

dimension. This implies that, to measure total deprivation, a lifespan deprivation

component can be added to an alive deprivation component. Second, when measur-

ing total deprivation in a given year, the lifespan deprivation component should be

measured in time units, i.e. the number of years prematurely lost due to early death.

The reason is twofold. First, the alive deprivation component is also measured in

time units since it records the number of (alive) individuals who are poor in a given

year, that is, the number of years spent in poverty by members of the population in

the given year. Second, as we show below, the number of individuals who should be

alive today but died prematurely in the past corresponds logically to the number of

person-years prematurely lost due to current mortality (they are actually identical

in stationary populations).

Our theory provides the foundations for a particular aggregation of alive depri-

vation and lifespan deprivation based on time units. More precisely, our indices

aggregate person-years in alive deprivation (PYADs) with person-years prematurely
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lost (PYPLs), given an age threshold below which dying is considered as premature.

The three indices we propose, Inherited Deprivation (ID), Generated Deprivation

(GD) and Expected Deprivation at birth (ED), are consistent and satisfy a number

of desirable properties unmet by all other measures combining deprivation among

the living and premature mortality. ID is based on past mortality, and records in-

dividuals who, in period t, should be alive given the age threshold but have died

prematurely. The two other indices are based on current age-specific mortality rates,

which makes them more sensitive to contemporaneous changes in the society. GD

is based on the actual number of years prematurely lost by individuals who die pre-

maturely in period t, while ED is based on the number of years a newborn expects

to lose prematurely, given the current mortality rates. This last measure has the

lowest inertia (i.e. reacts instantaneously to mortality shocks), is easily interpretable

and requires less information (as only age-specific mortality rates in period t are

necessary to compute the lifespan deprivation component). Moreover, we show that

ED judgments are under some conditions equivalent to decisions made under the

veil of ignorance à la Harsanyi (1953). These three indices divide the sum of years

spent in alive deprivation and years prematurely lost by the counterfactual number

of years obtained when no one dies before reaching the age threshold (which can be

interpreted as the minimum number of years an individual should normally live).

Some may question the value added of indices aggregating different deprivation

dimensions, like alive and lifespan deprivation, since such aggregation relies on a

normative weight given to one dimension over the other. The choice of such normative

weight may appear arbitrary. In the following, however, we rely on the relatively

mild normative assumption according to which one year prematurely lost is at least

as bad as one year spent in alive poverty. This is in sharp contrast with most

composite indices, for which no normative assumption can be brought upon to justify

a particular weight.

Several measures have been proposed in the literature to combine basic welfare

with mortality indicators into a single index. The first approach is to use composite

indices such as the Human Development Index. This simple indicator of well-being

aggregates mortality with income information as a weighted sum of its mortality and

income components, typically using equal weights. As discussed in Ravallion (2011),

this type of aggregation hides underlying trade-offs between the dimensions being

aggregated. More fundamentally, as shown above, composite indices of deprivation

fail to satisfy a basic separability property. By contrast, our proposed indices are

based on an explicit weighing parameter, which measures the marginal rate of substi-

tution between the two dimensions in the relevant space. The value of this weighing

parameter can therefore be chosen normatively, in a meaningful and transparent way.

The second approach is to use preference-based indicators that aggregate the

quality and quantity of life by assuming or calibrating a particular inter-temporal

utility function, unique across time and space (Gary S. Becker and Soares, 2005;

Grimm and Harttgen, 2008; Jones and Klenow, 2016). In contrast, our indicators

aggregate these two aspects without relying on a particular representation of the

preferences. From the perspective of the practitioner, they are therefore more work-

able as they require selecting values for only two transparent normative parameters:

the age threshold and the weighing parameter. Moreover, they are much less data

demanding, while providing easily interpretable indicators.
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The third approach is to aggregate both aspects while keeping an exclusive focus

on poverty. As discussed in Kanbur and Mukherjee (2007), differences in mortality

rates across income groups lead to serious mis-measurement of income poverty. In-

deed, higher mortality rates among the poor lead to a “mortality paradox”, whereby

poor who died early are ignored in most measures of deprivation. As a result, alive de-

privation is, in this sense, underestimated. They therefore propose to assign fictitious

incomes to the prematurely dead individuals, in order to provide a more accurate

measure of deprivation (see in particular Kanbur and Mukherjee (2007), Lefebvre

et al. (2013, 2017)). The validity of these approaches relies on the assumptions made

in the construction of these counterfactual, “fictitious” incomes. Our approach is

fundamentally different. We do not interprete the premature death of poor indi-

viduals as the source of a downward bias in the measurement of alive deprivation.

We rather consider premature death as a form of deprivation in itself, that differs

from alive deprivation. Moreover, we constrain ourselves to an information set-up

in which mortality rates are not known for different income groups (we discuss that

constraint in Section 3).

In the second part of the paper, we investigate the importance, the distribu-

tion and the evolution of total deprivation (income poverty and lifespan deprivation)

in the developing world over the period 1990-2014, combining data sets on income

deprivation (PovCalNet) and on mortality (Global Burden of Disease). Under conser-

vative assumptions, we show that lifespan deprivation is not negligible as compared

to income poverty, and that its relative importance increases over time. The omis-

sion of lifespan deprivation leads to an underestimation of global total deprivation

of at least 20 to 25% during the whole period. In 2014, there were 680 millions

income poor individuals (PYADs) and premature mortality in the same year caused

the loss of 390 millions person-years (PYPLs). Moreover, the relative importance of

lifespan deprivation in total deprivation has been increasing over time: the omission

of premature mortality from deprivation measures leads to an increasing bias.

At the country level, important differences arise between alive deprivation and

total deprivation, and the evolution of total deprivation regularly contradicts that

of income poverty for several countries and periods. Thus, for more than 7% of

the country-periods considered, total deprivation evolves in the opposite direction

as income deprivation. Deprivation assessments ignoring premature mortality are

therefore seriously biased, and may lead to flawed policy evaluations.

The remainder of the paper is organized as follows. The three indices are pre-

sented, characterized and discussed in Section 2. The differences between our indices

and alternative approaches are discussed in Section 3. Our empirical results at ag-

gregated level and at country level are presented in Section 4 and 5 respectively. We

conclude in Section 6.

2 Three families of total deprivation measures

2.1 Basic framework

In this section, we propose three measures of total deprivation that incorporate

in a single index alive deprivation and lifespan deprivation. We first present and

characterize an index based on past mortality. We refer to this index as the inherited
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deprivation index (ID).

In the next few paragraphs, we only introduce the minimal elements that are

necessary to define our ID index. The remainder of our framework is presented at

the beginning of Section 2.3.

In period t, each individual i is characterized by a bundle xi = (bi, si), where

bi ∈ Z is her birth year with bi ≤ t and si is a categorical variable capturing individual

status in period t, which can be either alive and non-poor (NP ), alive and poor (AP )

or dead (D), i.e. si ∈ S = {NP,AP,D}. To keep terminology short, we often write

that an indiviual whose status is AP is “poor”.

This three-status framework is intentionally restrictive in order to focus our at-

tention on the aggregation of lifespan deprivation with other forms of deprivation.

Our results can easily be extended to richer structures where individual achieve-

ments are measured in multiple dimensions. These achievements could perfectly well

be measured using continuous variables rather than with categorical variables.3

For simplicity, we assume that births occur at the beginning of a period while

deaths occur at the end of a period. As a result, an individual whose status in period

t is D died before period t.4

Let ai = t − bi be the age that individual i would have in period t given her

birth year bi. Measuring lifespan deprivation requires the definition of a norma-

tive lifespan threshold â ∈ N. The introduction of this age-threshold is in line

with the methodology used in the literature on multidimensional poverty measure-

ment (Alkire and Foster, 2011; Pattanaik and Xu, 2018). This literature assumes

dimension-specific thresholds in order to define dimension-specific deprivation sta-

tus. We consider the lifespan of individuals as one important dimension in which

individuals can be deemed deprived if their lifespan is too short. Threshold â defines

when a lifespan is too short. In our terminology, an individual is “prematurely dead”

if she died before reaching this minimal lifespan. We say that period t is prematurely

lost by any individual i with si = D and ai < â. This lifespan threshold is assumed

independent on the distribution, which corresponds to an “absolute” definition of

lifespan deprivation.

A distribution x = (x1, . . . , xn(x)) specifies the birth year and the status in period

t of all n(x) individuals. Excluding trivial distributions for which no individual is

alive or prematurely dead, the set of distributions in period t is denoted as:

X = {x ∈ ∪n∈N(Z × S)n | there is i for whom either si 6= D or â > t− bi}.

This framework extends the one used in the traditional poverty measurement

literature in two ways: to all individuals is attached a birth year and some individuals

may be dead. A total deprivation index ranks all distributions in the set X as a

function of the deprivation that they contain. Formally, it is a function P : X×N →

R+, where P (x, â) ≥ P (x′, â) means that x has weakly more deprivation than x′

3In such richer framework, we would need to define dimension-specific deprivation thresholds,
impose a series of classical axioms that would constrain how to aggregate the continuous achieve-
ments in these multiple dimensions, and ultimately obtain a classification of individuals into those
who are multidimensionally deprived and those who are not multidimensionally deprived. The first
category could be described by a continuous multidimensional poverty score, in the vein of Alkire
and Foster (2011). In order to simplify the exposition, we directly assume this score to be zero or
one.

4All newborns have age 0 during period t and some among these newborns may die at the end
of period t. This implies that bi = t ⇒ si 6= D.
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and strictly more if P (x, â) > P (x′, â). For expositional purpose, we simplify the

notation P (x, â) to P (x) in most of what follows since â is assumed fixed.

2.2 The inherited deprivation index

Our extended framework reveals that classical deprivation indices are not sensitive

to lifespan deprivation. Consider the following distribution in period t with three

individuals

x = ((young,NP ), (young,D), (old,D)),

where a birth year more distant than â years before t is noted as old (young other-

wise). Because she is young and dead, individual 2 is prematurely losing period t. We

contrast distribution x with two alternative distributions x′ and x′′ in period t that

are both obtained from x by changing the status of individual 2. In x′, individual 2

is alive and non-poor, while in distribution x′′ individual 2 is alive and poor, i.e.

x′ = ((young,NP ), (young,NP ), (old,D))

x′′ = ((young,NP ), (young, P ), (old,D)).

These three distributions are compared in Table 2.

Table 2: Comparing distributions using the head-count ratio and the Inherited
Deprivation index

(young, P) (young, NP) (young, D) (old, D)
Distribution x 0 1 1 1
Distribution x′ 0 2 0 1
Distribution x′′ 1 1 0 1

In these three distributions, no individual is alive and poor, except individual 2 in

distribution x′′. Therefore, the head-count ratios (HC) of distributions x (HC = 0
1 )

and x′ (HC = 0
2 ) are identical: it is zero and is lower than that of x′′ (HC = 1

2 ).5

However, distribution x′ is arguably better than distribution x, since individual 2 is

not prematurely dead in the former. It is also not clear that distribution x′′ is worse

than distribution x: individual 2 is poor in x′′ but prematurely dead in x. Whether

distribution x is doing better than distribution x′′ is a judgment based on how one

compares spending period t in poverty versus prematurely loosing period t. In our

epigraph, for example, Achilles clearly states that spending a year in poverty is much

preferable than spending a year in lifespan deprivation: Achilles would consider that

distribution x is much worse than distribution x′′.

Our inherited deprivation indices would consider distribution x more deprived

than distribution x′. The comparison between society distribution x and x′′ would

depend on a weighting parameter γ which transparently weights a year spent in alive

deprivation compared to a year spent in lifespan deprivation.

The HC is not able to capture the difference between distributions x and x′

because dead individuals do not matter in its computation. Formally, classical de-

5The comparison of distribution x′′ to distribution x is an example of the “mortality paradox”:
the reason why the HC of x′′ is higher than that of x is because the poor individual of distribution
x′′ is dead in distribution x.
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privation indices, such as HC, satisfy the property of Independence of Dead, which

requires that the presence of an additional dead individual does not affect them.

Deprivation axiom 1 (Independence of Dead). For all x ∈ X and i ≤ n(x),

if si = D, then P (xi, x−i) = P (x−i).

This property is too strong for total deprivation indices, because it implies that

prematurely dead individuals are irrelevant. Rather, the inherited deprivation index

satisfies a weaker property which requires that the presence of an additional dead

individual does not affect it only when this individual is born at least â years before

period t:

Deprivation axiom 2 (Weak Independence of Dead). For all x ∈ X and i ≤ n(x),

if si = D and â ≤ t− bi, then P (xi, x−i) = P (x−i).

Weak Independence of Dead defines the reference population relevant for total

deprivation indices. A priori, a distribution x contains all individuals that ever

lived in a particular society. Weak Independence of Dead implies that two types of

individuals are irrelevant in period t: those who died above the age threshold and

those who died below the age threshold but too far away in the past. Among the

dead individuals, only those who died prematurely and whose birth year is less than

â years before t enter the reference population.

We can now introduce the inherited deprivation index. Let d(x) denote the

number of prematurely dead individuals in distribution x, which is the number of

individuals i for whom si = D and â > t − bi, p(x) the number of individuals who

are poor and f(x) the number of alive and non-poor individuals. The ID index is

defined as

P ID
γ (x) =

p(x)

f(x) + p(x) + d(x)
︸ ︷︷ ︸

alive deprivation

+γ
d(x)

f(x) + p(x) + d(x)
︸ ︷︷ ︸

lifespan deprivation

, (1)

where γ > 0 is a parameter weighing the relative importance of alive deprivation and

lifespan deprivation. An individual losing prematurely period t matters γ times as

much as an individual spending period t in alive deprivation.

Index P ID
γ has an alive deprivation component (poverty) and a lifespan depri-

vation component (premature mortality). The alive deprivation component counts

the number of persons who are poor in period t, and the lifespan deprivation com-

ponent records the number of persons who were born less than â years before t but

have already died. The denominator of both components is identical and equal to

the number of individuals in the reference population. This reference population

includes all individuals born less than â years before t as well as all older individuals

who are still alive in t. This reference population may include dead individividuals

born less than â years before t. However, whether the individuals who were born less

than â years before t died or not does not change our reference population.

We are now able to further illustrate the main differences between the ID index

and a classical deprivation measure, such as HC. Consider again distributions x, x′

and x′′. As required by Weak Independence of Dead, P ID
γ compares these distribu-

tions by focusing on young individuals, no matter whether they are alive or not, and

old individuals who are alive. In all three distributions, the relevant population is
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composed of three individuals. As individual 2 is prematurely dead in distribution x

whereas she is alive and non-poor in distribution x′, P ID
γ (x) > P ID

γ (x′). In addition,

as individual 2 is prematurely dead in distribution x whereas she is alive and poor

in x′′, P ID
γ (x) ≥ P ID

γ (x′′) when γ ≥ 1. In that case, the larger premature mortal-

ity in x more than compensates for the larger alive deprivation in x′′, and the ID

index contradicts HC. ID therefore provides a more comprehensive picture of total

deprivation in period t than HC.

We now show that the ID index is characterized by a small number of desirable

properties. First, Least Deprivation requires that being non-poor is better than being

either poor or prematurely dead. This weak axiom compares distributions with a

unique individual, i.e. individual 1. Recall that we assumed for distributions with a

unique individual that, if the individual is dead, then she is prematurely dead.

Deprivation axiom 3 (Least Deprivation).

P (b1, NP ) < P (b1, AP ) and P (b1, NP ) < P (b1, D).

The second property, Weak Independence of Birth Year, requires that the partic-

ular year of birth of an individual in the reference population is irrelevant, only her

status matters. The birth year is only relevant in order to distinguish prematurely

dead from other dead individuals.6 This property implies that each person-year lost

due to premature death contributes equally to the index.

Deprivation axiom 4 (Weak Independence of Birth Year). For all x ∈ X and

i ≤ n(x), if si = s′i and d(xi, x−i) = d(x′

i, x−i), then P (xi, x−i) = P (x′

i, x−i).

Weak Independence of Birth Year requires that one person-year prematurely lost

matters equally in the index, independently of the particular age of the individual

who died. Thus, if â is equal to 50, the death of a newborn in t− 1 is equivalent to

the death of a 48 years old in t − 1 in the computation of the ID index at period t.

However, the death of the younger individual will be recorded in the ID indices for

several periods following her death, while the death of the 48 years old individual

will be accounted for only once (in the period t following her death). In that sense,

the death of the younger individual matters proportionally more.

Finally, we impose a standard separability property, Subgroup Consistency. This

axiom requires that, if deprivation decreases in a subgroup while remaining un-

changed in the rest of the distribution, overall deprivation must decline.7

Deprivation axiom 5 (Subgroup Consistency). For all (x, x′), (x, x′′) ∈ X,

if P (x′) > P (x′′) and f(x′)+p(x′)+d(x′) = f(x′′)+p(x′′)+d(x′′), then P ((x, x′)) >

P ((x, x′′)).

To be complete, three auxiliary properties are also needed. First, the name of

individuals should not influence the deprivation index (Anonymity). Second, if a

distribution is obtained by replicating another distribution several times, they both

6This is why Weak Independence of Birth Year has the precondition d(xi, x−i) = d(x′

i, x−i),
which holds the number of prematurely dead constant: the birth year b′i can be different from bi,
but if si = D, then individual i is either prematurely dead in both xi and x′

i, or in none of these
two bundles.

7The precondition f(x′) + p(x′) + d(x′) = f(x′′) + p(x′′) + d(x′′) ensures that distributions x′

and x′′ have a relevant population with the same size. The additive separability result of Foster
and Shorrocks (1991), which rationalizes the use of additive indices, is based on a stronger version
of Subgroup Consistency with the additional precondition f(x′) + p(x′) = f(x′′) + p(x′′).
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have the same deprivation (Replication Invariance). Finally, the deprivation index

evolves “continuously” on its domain. Given that this domain is discrete, the index

should satisfy a particular continuity property as proposed by Young (1975) (Young

Continuity).8

Proposition 1 fully characterizes the ID index, which implies that any deprivation

index satisfying our properties ranks distributions in exactly the same way as the ID

index.

Proposition 1 (Characterization of ID).

P is ordinally equivalent to P ID
γ if and only if P satisfies Weak Independence of

Dead, Least Deprivation, Weak Independence of Birth Year, Subgroup Consistency,

Anonymity, Replication Invariance and Young Continuity.

Proof. See Appendix 7.1.

Proposition 1 is a stepping stone for our main results in Section 2.3. Yet, this

proposition supports the first message coming out of our theory. It implies that alive

deprivation and lifespan deprivation enter the index in an additive way, so that com-

puting the ID index amounts to a very basic accounting exercise. The fundamental

intuition underlying this additive separability is that an individual cannot simultane-

ously be “prematurely dead” and “poor”: these two statuses are mutually exclusive,

which allows us to sum the number of prematurely dead individuals with the number

of individuals affected by alive deprivation. In contrast, non-exclusive dimensions of

alive deprivation such as (say) material deprivation and health deprivation would not

be additively separable. These two dimensions imply three different statuses, namely

being materially deprived, health deprived and deprived in both dimensions. If these

three statuses can still be aggregated in an additive way, it is clear that the two

dimensions are not additively separable because of the presence of the third mixed

status (deprived in both dimensions).

A number of remarks are in order. To begin with, the implementation of the ID

index involves two important normative choices. The first one is the choice of â, the

age threshold below which the death of an individual contributes to total deprivation.

The second one is the value of γ, the parameter weighing the relative importance of

alive deprivation and premature mortality.

Then, our definition of the individual status is agnostic to the particular definition

of alive deprivation, and could as well capture income deprivation, as in our empirical

application, or multidimensional poverty (Alkire and Foster, 2011). Proposition 1

can easily be extended to a framework in which alive deprivation is measured as

a continuous variable such as an income deprivation score or a multidimensional

poverty score, provided that the axioms are duly adapted (see Foster and Shorrocks

(1991)).

Finally, our definition of a distribution does not simultaneously contain informa-

tion about an individual deprivation status and on her chances of survival. This

particular assumption, which we discuss more carefully at the end of Section 2, is

consistent with the data constraints we face in real world measurements, in which it

is rare to find comparable data sets that simultaneously contain information about

lifetime duration and deprivation status at the individual level. The absence of this

8Formal definitions of these traditional axioms can be found in Appendix 7.1.
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information implies that all our measures are indifferent about the repartition across

individuals of periods spent in alive deprivation and periods prematurely lost. At

the end of Section 2, we discuss how to adapt our main index for applications for

which the relevant information is available.

The ID index suffers from two limitations arising from the fact that total depri-

vation in t depends on past mortality (before period t). First, computing this index

requires detailed information on mortality of each age cohort for all â years preceding

t, and can therefore only be computed for situations for which such data exist. Sec-

ond, the ID index exhibits inertia, which may be undesirable, for instance when used

to evaluate the impact of public policies. The impact of a mortality shock, whether

permanent or temporary, takes decades to be fully accounted for, as the impact of

a shock continues to matter for the â − (ai + 1) years following the death of i. For

instance, today’s ID index for Rwanda’s still accounts for children who died during

the genocide of 1994. One can consider that past mortality shocks which occurred

decades ago are not particularly relevant to current state of a society. The two in-

dices that we propose below still account for premature mortality while improving

on these limitations.

2.3 The generated and expected deprivation at birth indices

While the ID index is an intuitive and straightforward manner to include premature

mortality in deprivation measures, its limitations make its empirical implementation

difficult. We therefore propose two total deprivation indices who can easily be com-

puted with available datasets and have less inertia. They are based on mortality

rates in period t instead of on mortality before period t, but rely on the same intu-

ition as the ID index. In particular, these indices offer the same diagnostic as the

ID index when evaluating stationary populations (see the “ID equivalence” axiom,

which we formalize below). As an alternative foundation, we also show that the way

they aggregate lifespan deprivation to alive deprivation is closely linked to decision

making under the veil of ignorance à la Harsanyi (1953).

Let na(x) be the number of alive individuals of age a in distribution x, i.e.

the number of individuals i for whom ai = a and si 6= D. These numbers na(x)

entirely define the population pyramid in period t. Let da(x) be the number of dead

individuals born a years before t in distribution x. The total number of individuals

born a years before t is then equal to na(x) + da(x). The age-specific mortality rate

µa denotes the fraction of alive a-year-old individuals dying at the end of period t.

Hence, the number of a-year-old individuals dying at the end of period t is na(x)∗µa.

We have that µa ∈ M = [0, 1] ∩ Q, where Q is the set of rational numbers.9 Letting

a∗ ∈ N stand for the maximal lifespan (which implies µa∗ = 1), the vector of age-

specific mortality rates in period t is given by µ = (µ0, . . . , µa∗). Vector µ summarizes

mortality in period t, while distribution x summarizes alive deprivation in period t

9Given that distributions have finite numbers of individuals, mortality rates cannot take irra-
tional values.
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and mortality before period t.10 The set of mortality vectors is given by

M =
{

µ ∈ Ma∗+1|µa∗ = 1
}

.

We consider pairs (x, µ) ∈ X×M , for which the distribution x is a priori unrelated

to vector µ. We only impose that the age-specific mortality rates µa is feasible

given the number of alive individuals na(x), which is µa = c
na(x)

for some c ∈ N.

Our next total deprivation indices are defined on domain O, which is the subset of

pairs in X × M that meet the above restriction. Formally, an index is a function

P : O × N → R+. Again, we simplify the notation P (x, µ, â) to P (x, µ) since a fixed

value for â is considered.

We now focus on indices that do not depend on mortality before period t and,

hence, satisfy instead Independence of Dead* (where the asterisk denotes that Inde-

pendence of Dead is adapted to domain O, see Appendix 7.3). Rather than embark-

ing on a long axiomatic analysis of the two indices, we provide a characterization

that builds upon our definition of the ID index. Given that current mortality (in

period t) need not be the same as past mortality (before period t), the distribution

and mortality vector defining a pair are in general unrelated. Yet, current mortality

corresponds exactly to past mortality in stationary populations. A population is sta-

tionary if the number of newborns and the mortality vectors are constant over time.

In such case, the population pyramid in period t + 1 is the same as the population

pyramid in period t. In other words, the population pyramid exactly mirrors the

mortality vector. We say that a pair (x, µ) is stationary if, for some n∗ ∈ N and all

a ∈ {0, . . . , a∗}, we have:

• na(x) + da(x) = n∗ ∈ N (constant natality),

• na+1(x) = na(x) ∗ (1− µa) (constant population pyramid).

In a stationary pair, the population pyramid is such that the size of each cohort

can be obtained by applying to the preceding cohort the current mortality rate. This

population pyramid corresponds to the one prevailing in the long run if mortality

and natality rates in period t remain constant over time (see for instance Preston

et al. (2000)).

In a stationary pair, past and current mortality coincide and the mortality vector

µ does not convey any information that cannot be inferred from the distribution x.

Indeed, the population of prematurely dead individuals in x directly reflects µ: the

number of prematurely dead individuals in x can be computed from µ (and n∗).

Conversely, the mortality vector µ can be computed from the population pyramid

associated to x. As a result, the deprivation index can be computed from distribution

x only. Proposition 1 shows that, when measuring deprivation based on distribution

x only, one should use the ID index. Therefore, we require for stationary pairs that

the deprivation index is equal to the ID index.

Deprivation axiom 6 (ID Equivalence). For all (x, µ) ∈ O and some γ > 0,

if (x, µ) is stationary, then P (x, µ) = P ID
γ (x).

10Observe again that this framework is consistent with our data-constraint. A pair (x, µ) does
not simultaneously contain the information about an individual’s deprivation and the information
about her chances of survival.
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Such equivalence is a minimal requirement for deprivation indices based on mor-

tality in period t. Indeed, assuming constant natality, a permanent change in mor-

tality rates affects the long-run distribution. ID Equivalence requires that the index

agrees with the ID index on the long-run consequences of such a change. As we show

below, this requirement allows for two different indices.

We first define the generated deprivation index (GD) as follows:

PGD
γ (x, µ) =

p(x)

f(x) + p(x) + dGD(x, µ)
︸ ︷︷ ︸

alive deprivation

+γ
dGD(x, µ)

f(x) + p(x) + dGD(x, µ)
︸ ︷︷ ︸

lifespan deprivation

(2)

where dGD counts the number of person-years prematurely lost generated by deaths

occuring in period t:

dGD(x, µ) =

â−1∑

a=0

na(x) ∗ µa ∗ (â− (a+ 1)).

According to this definition, GD is closely related to ID, as they both sum up an alive

deprivation component, recording the number of person-years in alive deprivation

(PYADs) and a lifespan deprivation component. The lifespan deprivation component

of GD differs from that of ID, as it records the number of person-years prematurely

lost (PYPLs) generated by deaths occuring in period t. By contrast, the ID index

records the number of PYPLs inherited in period t, which were generated by deaths

occuring before period t. When an individual dies at age a < â, she prematurely loses

the â− (a+ 1) periods following her death. The GD index records these â− (a+ 1)

PYPLs and assigns this number to the year during which the death occurs. The

denominator of GD is analogous to that of ID, as it simply adds the number of alive

individuals in period t to the number of PYPLs.

Second, the expected deprivation at birth index (ED) is based on expectations

given the poverty and mortality rates prevailing in period t. It again combines an

alive deprivation and a lifespan deprivation component in a additive way:

PED
γ (x, µ) =

LE(µ) ∗HC(x)

LE(µ) + LGEâ(µ)
︸ ︷︷ ︸

alive deprivation

+γ
LGEâ(µ)

LE(µ) + LGEâ(µ)
︸ ︷︷ ︸

lifespan deprivation

, (3)

where HC(x) = p(x)
p(x)+f(x) is the head-count ratio and LE(µ) is life expectancy at

birth:11

LE(µ) =
a∗

∑

a=0

a−1∏

l=0

(1− µl).

We interpret the term LE(µ)∗HC(x) as the expected number of years that a newborn

will spend in alive deprivation, given the mortality rates and head-count ratio in

period t. It represents the expected person-years spent in alive deprivation for such

a newborn. The second term, LGEâ, is the lifespan gap expectancy relative to the

11Life expectancy measures the expected lifespan of an individual facing throughout her life the
age-specific mortality rates reported in vector µ.
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age threshold:

LGEâ(µ) =

â−1∑

a=0

(â− (a+ 1)) ∗ µa ∗

a−1∏

l=0

(1− µl).

LGEâ measures the number of years that a newborn expects to lose prematurely if

confronted to the mortality rates of vector µ throughout her â first years of life.12

The ED index therefore takes the viewpoint of a newborn and compute the expected

proportion of her augmented life expectancy – a normative lifetime defined as the sum

of life expectancy and lifespan gap expectancy – that she expects to lose prematurely

or spend in alive deprivation. A more precise interpretation will be presented at the

end of Section 3.

As should be clear from their definitions, the essential difference between GD and

ED indices is that GD is based on the actual population pyramid prevailing in period

t, while ED, by taking the viewpoint of a newborn, is actually based on an abstract,

counterfactual population pyramid defined by the mortality rates in period t. This

observation invites two remarks. First, GD indirectly depends on past natality and

mortality, which shape the current population pyramid on which it is defined. This

implies that GD exhibits some inertia by partly reflecting deaths that occurred in

the past, even if the magnitude of this inertia is smaller than that of ID. Second,

unlike ED for which the only information needed is that on mortality rates in period

t, GD also requires information on the relative size of each cohort in the population.

Lemma 1 shows that these two indices meet our requirement.

Lemma 1. Both PGD
γ and PED

γ satisfy ID Equivalence.

Proof. See Appendix 7.2.

ID and GD indices are identical in a stationary population because dGD coincides

with d in that case. The intuition for this equivalence is illustrated in Figure 1.

The left panel shows that d counts “vertically” the number of individuals who are

younger than â years and died before period t. The right panel shows that dGD counts

“horizontally”, for each age group below â, the number of person-years prematurely

lost by individuals in that age group who die at the end of period t. When the

mortality rates of the young correspond to the population pyramid, the two shaded

areas coincide.

The intuition for the equivalence between ED and GD indices in stationary pairs

can be illustrated by graphical representations of LE and LGEâ, as shown in the

left panel in Figure 2 for a stationary pair. The green area below the population

pyramid represents life expectancy, while the lifespan gap expectancy corresponds

to the pink area between the young part of the population pyramid and the age

threshold. As long as the proportion of individuals of each generation corresponds

to the current mortality vector, GD and ED indices provide identical measures of

total deprivation.13 When compared with the right panel in Figure 1, the right panel

12Note that LGEâ is a particular version of the Years of Potential Life Lost, an indicator used
in medical research in order to quantify and compare the burden on society due to different death
causes (Gardner and Sanborn, 1990).

13Observe that LGEâ is inversely related to LE: when the age threshold is larger than a∗, the
two indicators move in opposite ways on any two mortality vectors.
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in Figure 2 reveals that ED and GD take equal values in stationary pairs; only the

interpretation of period-years lost slightly differs.

Age

Number

0 1 2 4

Dead indiv. born in t− 1

â
3

n0(x) = n∗

indiv.

Dead indiv. born in t− 2

Inherited Deprivation Generated Deprivation

Age

Number

0 1 2 4

Person-years lost by

3

indiv.

â

newborns dying in 0

Person-years lost by

1-year-old dying in 1

n0(x) = n∗

Figure 1: Left panel: The pink area above the population pyramid represents d(x).
Right panel: The pink area above the population pyramid represents dGD(x, µ).

Expected Deprivation at birth

Age

Number

0 1 2 4

Person-years lost by

3

indiv.

â

newborns expected

n0(x) = n∗

Age

Number

0 1 2 43

indiv .

n∗ ∗ LGEâ

n∗ ∗ LE

n0(x) = n∗

to die at age 0

Person-years lost by
newborns expected

to die at age 1

Expected Deprivation at birth

Figure 2: For the stationary pair (x, µ), the green area corresponds to a multiple of
life-expectancy (LE) and the pink area to a multiple of the lifespan gap expectancy
(LGEâ).

Lemma 1 supports the second message coming out of our theory. When aggre-

gating total deprivation in a given period t, the lifespan deprivation component must

be measured in number of periods prematurely lost, at least when this component

is computed from the mortality vector in t. The reason is that, in stationary pop-

ulations, counting the number of individuals who prematurely miss period t due to

mortality before period t is equivalent to counting the number of person-years lost

due to premature mortality in period t.

Because of their equivalence for stationary pairs, these two indices share many

similarities with the ID index. In particular, the person-years lost due to “mature”

deaths do not enter in the reference population of PYs (as implied by Weak Inde-

pendence of Dead for ID indices), all PYPLs have the same weight (in the spirit of

Weak Independence of Birth Year) and the weight γ given to a PYPL relative to a
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PYAD is constant (as implied by Subgroup Consistency). However, the properties

of GD and ED are different, as our next characterizations reveal.

Proposition 2 characterizes the ED index. In particular, this index does not

depend on the birth year of individuals (Independence of Birth Year).14

Proposition 2 (Characterization of ED).

P = PED
γ if and only if P satisfies Independence of Dead*, ID Equivalence, Repli-

cation Invariance* and Independence of Birth Year.

Proof. See Appendix 7.3.

Because ED satisfies Independence of Birth Year, it does not depend on the

population pyramid in period t, and therefore avoids the inertia associated with the

demographic evolution of population pyramids. This advantage comes at a price,

as ED cannot be decomposed additivitely between subgroups (unless the mortality

vector is the same in the subgroups). This non-decomposability is intrinsic to the

concept of life-expectancy, which underlies the ED index.

In contrast to ED, the GD index violates Independence of Birth Year but satisfies

Additive Decomposibility, a strengthening of Subgroup Consistency. This last prop-

erty implies that, if deprivation decreases in a subgroup while remaining unchanged

in the rest of the population, overall deprivation declines.

Deprivation axiom 7 (Additive Decomposibility). For all (x′, µ′), (x′′, µ′′) ∈ O,

if x = (x′, x′′) and µa =
na(x

′)∗µ′

a+na(x
′′)∗µ′′

a

na(x′)+na(x′′) for all a ∈ {0, . . . , a∗}, then

P (x, µ) =
η(x′, µ′) ∗ P (x′, µ′) + η(x′′, µ′′) ∗ P (x′′, µ′′)

η(x′, µ′) + η(x′′, µ′′)
, (4)

where the “size” function η : O → N0 is such that η(x, µ) = η(x′, µ′) + η(x′′, µ′′).

Proposition 3 (Characterization of GD).

P = PGD
γ if and only if P satisfies Independence of Dead*, ID Equivalence and

Additive Decomposibility.

Proof. See Appendix 7.4.

Given that GD and ED indices are different, Propositions 2 and 3 together imply

that the five axioms involved are jointly incompatible. Either the index is ED and it

cannot be decomposed in subgroups, or the index is GD and it exhibits some inertia

by relying on the actual population pyramid.

Alternative foundation

It is worth noting that a welfare approach à la Harsanyi provides an alternative

foundation for the additive separability of the lifespan deprivation and the alive

deprivation components, once the unit of account is based on time units, e.g. years.15

More precisely, there is an important link between ED and the welfare approach

developed in Harsanyi (1953). According to the latter, behind the veil of ignorance,

each individual faces a lottery whereby she ignores whether she will be in alive

14See Appendix 7.3 for the formal definitions of these axioms.
15We thank Dilip Mookherjee as well as Kristof Bosmans for raising this point in a discussion of

an early version of this paper.
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deprivation and for how long, or whether she will be the victim of a premature

death. When evaluating her welfare, she considers drawing at random the life of any

individual in that society. Following the formulation of Jones and Klenow (2016),

her expected lifetime utility is given by

EU(x, µ) = E

a∗

∑

a=0

βau(sa)S(a, µ), (5)

where β is the discount factor, S(a, µ) is the probability an individual survives to age

a given the mortality vector, the expectation operator applies to the uncertainty with

respect to individual status at age a (if alive) and u(NP ) > u(AP ) and u(NP ) >

0. Proposition 4 shows that, if the discount factor takes value one and the age

threshold is large enough, Harsanyi’s welfare evaluation and ED always yield identical

comparisons.

Proposition 4 (Connection between ED and Harsanyi’s welfare).

If β = 1 and â > a∗, then there exists γ > 0 such that

EU(x, µ) ≥ EU(x′, µ′) ⇔ PED
γ (x, µ) ≤ PED

γ (x′, µ′)

for all (x, µ), (x′, µ′) ∈ O.

Proof. See Appendix 7.5.

The equivalence demonstrated above relies on a three-status framework and does

not survive in richer structures where individual achievements are measured by con-

tinuous variables. The reason is that, by nature, deprivation measures attribute

the same value to all individuals who are non-deprived, regardless of their exact

achievements.

We now investigate the relation between our three indices by contrasting their

dynamic responses to mortality shocks.

2.4 Dynamic behavior of the three indices

Actual populations are typically not stationary. Permanent and transitory mortality

shocks regularly affect population pyramids, which take decades to adjust to these

shocks. In this section we compare the three indices for pairs that are not stationary,

by investigating their reactions to different kinds of mortality shocks.

For non-stationary pairs, GD and ED indices are not equivalent as they weigh

current mortality rates in young age in a different way. Proposition 5 shows that the

GD index relies on the current population pyramid to weight mortality rates while

the ED index uses the counterfactual population pyramid generated by the current

mortality vector.

Proposition 5 (PED and PGD weigh µ with different population pyramids).

Take any pair (x, µ) ∈ O for which x has a monotone population pyramid, i.e.

na+1(x) ≤ na(x) for all a ∈ {0, . . . , a∗ − 1}. Let µx be the mortality vector for which

(x, µx) is a stationary pair. If γ ≥ 1, then we have PED
γ (x, µ) ≤ PGD

γ (x, µ) if and
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only if

LGEâ(µ)

LE(µ) ∗HC(x) + LGEâ(µ)
≤

dGD(x, µ)

p(x) + dGD(x, µ)
(6)

if and only if

∑â−1
a=0(â− (a+ 1)) ∗ na

n0
(µ) ∗ µa

LE(µ)
≤

∑â−1
a=0(â− (a+ 1)) ∗ na

n0
(µx) ∗ µa

LE(µx)
(7)

where na

n0
(ν) =

∏a−1
l=0 (1 − νl) denotes the proportion of newborns expected to survive

until age a given mortality vector ν.

Proof. See Appendix 7.6.

Inequality (6) shows that when index GD is larger than index ED, the former

attributes a larger part of total deprivation to lifespan deprivation than the latter,

i.e. emphasizes lifespan deprivation more. Then, inequality (7) shows the condition

under which this happens: when the age-cohorts with a large value of (â−(a+1))∗µa

have a larger relative size in the actual population pyramid than in the counterfactual

population pyramid associated with µ.16 As the weight of a given age-cohort is given

by its mortality rate multiplied by its distance to the age threshold, each death in a

younger age cohort is then associated with a larger number of PYPLs.

Virtually all our empirical results have GD larger than ED. A simple explana-

tion can be found in inequality (7). Consider for instance a growing population

characterized by a constant mortality vector and a high child mortality. The actual

population pyramid has relatively more children than the counterfactual population

pyramid and GD is larger than ED.

Transitory mortality shocks

We first investigate the response of our three indices to a transitory mortality shock.

In the Online Appendix 1, we formally show that, in a stationary population af-

fected by a series of transitory mortality shocks, GD and ID indices compute the

same number of PYPLs, but distribute these PYPLs over different periods of time.

By contrast, as the example below illustrates, ED may record a different number

of PYPLs. This is again related to the fact that the latter uses a counterfactual

population pyramid to weigh mortality rates.

We consider a population with a fixed natality n0(x) = n∗ = 1 for all period t.

At each period, all alive individuals are non-poor, implying that HC(x) = 0. For

all t 6= 0, we assume a constant mortality vector µ = µ∗ = (0, 0, 1), so that each

individual lives exactly three periods. Let us fix the normative parameters at γ = 1

and â = 3, so that an individual dies prematurely if she dies before her third period

of life. Before period t = 0, the population is stationary, and the three indices are

equal to zero since there is no poor and no premature deaths. Let us now consider a

one period shock in period 0, such that all individuals die: µ0 = (1, 1, 1). After the

shock, mortality rates directly come back to their initial value and the population

16In the particular case γ < 1, whether inequality (7) holds or not depends on the level of alive
deprivation. For values of γ smaller than the level of alive deprivation, the intuition provided in
last paragraph is reversed.
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Figure 3: Response of ID, GD and ED indices to the transitory mortality shock
in t∗ = 0. The person-years that are prematurely lost are in pink. The population
pyramids are drawn. For ED indices, these population pyramids are counterfactual.

pyramid returns to its stationary state in period 3, after a (mechanical) transition in

period 1 and 2 during which the newborns of period 1 and 2 grow up. This example

is illustrated in Figure 3.

Let us first consider the ID index. In period 0, no premature deaths are recorded,

since they all happen at the end of period 0. The number of person-years prematurely

lost recorded by the ID index is equal to 2 in period 1, 1 in period 2 and 0 afterwards,

as illustrated by the shaded areas in the first row of Figure 3. Given that one

individual is born in every period and â = 3, the relevant population given by

nID = 3 in all periods. Therefore, the ID index is equal to 2
3 in period 1 and 1

3 in

period 2.

The GD index records the shock immediately in period 0. The newborn who dies

in period 0 produces 2 PYPLs and the individual aged 1 in that period produces 1

PYPL. To compute the GD index in period 0, we consider a total of 6 person-years

and the GD index is equal to 1
2 in period 0. Since the newborn in period 1 does

not die in period 1 and is the only individual alive, GD indices records one PY with

no deprivation and no PYPL. For period 2, there are 2 individuals alive, but no

deprivation, and the GD index is equal to 0 in periods 1 and 2.17

The ED index also records the shock in period 0. Mortality rates in period 0 are

such that LE(µ0) = 1 and LGEâ(µ
0) = 2. The ED index is therefore equal to 2

3 in

period 0. In period 1 and 2 the counterfactual population pyramid, computed from

17Note that the fact that the index returns to its inital value after one period is a particularity of
this simple example. If instead we had n∗ = 4, µ0 = ( 1

2
, 1, 1) and µ∗ = (0, 1

2
, 1), the index would

not return to its stationary value in period 1.
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µ∗, corresponds to the stationary population, with LE(µ∗) = 3 and LGEâ(µ
∗) = 0,

and the ED index is equal to 0. In contrast with the ID index (and the GD index

in general), the ED index features no inertia and is equal to its stationary value as

soon as the mortality vector µ∗ returns to its stationary value.

Finally, note that the ED index counts a smaller number of PYPLs than the ID

or the GD index. The reason for this difference is that the mortality rate µ0
1 = 1 is

given a lower weight in the ED index than in the GD and ID indices. (As a matter

of fact, given that µ0
0 = 1, the newborn does not expect to survive the first period,

so that the mortality rate µ0
1 = 1 is irrelevant for the ED index.)

Permanent mortality shocks

We now investigate the consequences of a permanent mortality shock on a stationary

population. After a mortality shock, a transition phase sets in during which the

population pyramid adjusts to the new mortality vector, before reaching a new long

run equilibrium. This transition takes several decades and is particularly long in the

case of a mortality shock on young age individuals. During this transition, the three

indices are not equivalent.

We use simulations in order to illustrate the relative inertia of the three indices for

different types of permanent shocks. The results of these simulations can be found

in Figure 4. We compare indices P ID
1 , PGD

1 and PED
1 , and assume that natality

is constant, and there is no alive deprivation. The age threshold is â = 50 and

the maximal age is a∗ = 100. Before the shock, the population is stationary when

considering mortality rates equal to 1% for each age before 100. We simulate three

different types of shocks: (1) the mortality rates are increased from 1 to 2% for all

ages, (2) the mortality rate is increased from 1 to 2% only at age 40 and (3) the

mortality rate is increased from 1 to 2% only at age 10. Figure 4 shows the result of

our simulation experiments.

The upper graph illustrates the consequences of the uniform mortality shock, the

middle graph of the mortality shock at age 40 and the bottom graph of the mortality

shock at age 10. The three indices evolve very differently over the transition period.

In all scenarios, the ED index jumps immediately to the value corresponding to

the new long run equilibrium, and remains constant over the whole transition. By

contrast, the ID index remains unaffected during the period of the shock, but adjusts

in a smooth monotonic way afterwards. The GD index follows an intermediary

evolution, as it jumps discretely in the period of the shock, and continues to slowly

evolve, along with the long run transformation of the population pyramid. In the

new equilibrium, the three indices are equal.

Importantly, these simulations show that the evolution of GD is not necessarily

monotonic during the transition. This occurs because the relative size of young age

cohorts in the current population pyramid does not evolve in a monotonic way. This

property of the GD index is not necessarily desirable, as it indicates changes in total

deprivation that follow from the mechanics of the demographic evolution. We now

provide a stylized illustration of this questionable property.

Consider a stationary population with one individual born every year who lives

exactly for 4 periods, with a mortality rate at age 3 equal to 1. The mortality vector

is thus µ = (0, 0, 0, 1, . . . ). We assume that the age threshold, â, is equal to 12, and
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Figure 4: Simulation of permanent mortality shocks on a stationary population

γ = 1. There is no alive deprivation. The GD index for this situation is equal to

8/12, and is equal to the ID and ED indices. In period ts, there is a permanent

mortality shock such that the new mortality rate at age 1 is equal to 1. The new

mortality vector is thus µs = (0, 1, 0, 1, . . . ). Table 3 summarizes the evolution of

this population after this permanent shock.

Table 3: Non-monotonicity of GD indices after permanent mortality shock.

period 0 1 2 3 4 . . . 11 GD

t < ts NP NP NP NP D . . . D 8
12 = 0.66

ts NP NP NP NP D . . . D 18
22 = 0.82

ts + 1 NP NP D NP D . . . D 18
21 = 0.86

ts + 2 NP NP D D D . . . D 10
12 = 0.83

Two individuals die at the end of period ts and the GD index records 18 PYPLs.

Given that four individuals lived in period ts, GD is equal to 18/22. In period ts+1,

there is no individual of age 2, and one individual of age 0, 1 and 3. The GD index

records again 18 PYPLs, but given that only three individuals were alive, GD is

equal to 18/21. Two periods after the shock, the new stationary population is such
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that there are only two individuals alive, of age 1 and 2 respectively. There are 10

PYPLs, out of a total of 12, so that the GD index is equal to 10/12. Because of the

mechanical adaptation of the population pyramid, the GD index increases in ts + 1

but decreases in ts + 2. By contrast, the ED index remains constant and equal to

10/12 over these three periods.

How should we think about the non-monotonic behavior of the GD index? This

behavior reflects the evolution of the population. Indeed, the presence of the 3-years

old individual in ts+1 implies that the mortality vector µs does create more PYPLs

in ts + 1 than in ts + 2. So the GD index conveys correct information about actual

deprivation. However, a fixed mortality vector µs is related to fundamentals for a

population’s health situation. One should therefore not necessarily conclude from the

evolution of the GD index that these fundamentals have necessarily changed. The

non-monotonicity of the GD index creates a risk of misinterpretation of the evolution

in the fundamentals. This example illustrates the undesirable consequences of the

non-monotonicity: a situation in which one more person is prematurely dead instead

of alive is considered better, subject to less deprivation, according to the GD index.

To sum up, when compared to the ED index, the GD index can be misinterpreted

and requires additional information related to the current distribution of individuals

by age. However, it also has a very interesting property, as it is decomposable in

subgroups. The GD index measured on a set of individuals can always be calculated

as the weighted sum of the same index measured on any partition of this set, where

the weight attributed to a subset is the fraction of its reference population divided

by the total reference population. This is an important property, whose relevance

matters if one wishes to compare the relative deprivation of different groups in a

society, such as men and women, black and white, old and young, rural and urban,

south and north, etc. By contrast, the ED index is not decomposable, since life

expectancy is itself non-decomposable.

3 Comparison with alternative approaches

In this section we compare our deprivation indices to the alternative measures pro-

posed in the literature. This allows us to discuss some of the important assumptions

underlying the construction of our indices.

Composite indices

As we show in the Introduction, composite indices are inconsistent with a basic

separability property. We discuss this inconsistency. To do so, we define the mortality

statistic LDâ(µ) =
LGEâ(µ)

â
, which measures the fraction of the age threshold that

a newborn expects not to live.18 LDâ is an indicator of lifespan deprivation, and

satisfies the basic properties of a deprivation index, when these properties are adapted

to lifespan distributions. In particular, LDâ is unaffected by changes in mortality

in old ages (above â) but strictly decreases when mortality in young age is reduced.

Also, LDâ decreases when the death of a lifespan deprived individual is postponed

by one year.19

18See footnote 12 for references on LGEâ.
19A formal proof is given in the Online Appendix 1. We show in the Appendix that both the GD

index and the ED index violate one of the two basic properties of a lifespan deprivation indicator,
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We define a composite index of total deprivation by simply weighing alive depri-

vation as measured by HC and lifespan deprivation as measured by LDâ:

PC
w (x, µ) = w ∗HC(x) + (1 − w) ∗ LDâ(µ),

where weight w ∈ [0, 1].20 As illustrated in the Introduction, this index is not

consistent as it does not attribute a fixed relative weight to one PYPL compared to

one PYAD. In other words, when comparing stationary pairs, the index violates a

weakening of Subgroup Consistency that we call Separability of status comparisons.

This axiom requires that, for a given birth year, the comparison of two alternative

statuses does not depend on the remaining part of the distribution. The precondition

on birth years guarantees that i belongs to the reference population.21

Deprivation axiom 8 (Separability of status comparisons). For all x, x′ ∈ X,

if n(x) = n(x′), bi = b′i > t − â, then P (xi, x−i) ≥ P (x′

i, x−i) ⇔ P (xi, x
′

−i) ≥

P (x′

i, x
′

−i).

Consider the impact on PC
w of a reform that increases the lifespan of individuals

who would otherwise die prematurely, such that the additional time alive is spent

in alive deprivation. Depending on the fraction of the alive population that is poor,

a composite index PC
w may increase or decrease.22 The same inconsistency also

characterizes the Human Deprivation Index, a composite index which aggregates

both premature mortality and alive deprivation using the head-count ratio in both

dimensions (Watkins, 2006).23 By contrast, PED
1 is never affected by such reform.

Indeed, assuming γ = 1 implies weighing equally one PYAD and one PYPL. A higher

value of γ always involves a decreasing value of our index after such reform.

The intuition behind the inconsistency of composite indices is that their two

components consider different reference populations, i.e. different numbers of person-

years. Their deprivation component divides the number of PYADs by the number

of PY spent alive while their mortality component divides the number of PY spent

alive by the normative lifespan. The implicit weight that a composite index attaches

to one PYAD over one PYPL therefore depends on the levels of alive deprivation and

life expectancy. The root of the problem is that composite indices first normalize each

component using different reference populations and then take a weighed sum. In

contrast, our total deprivation indices add the number of PYADs with the number

of PYPLs before normalizing by the same reference population. As a result, the

relative weight attributed to one PYPL over one PYAD remains fixed, as required

by Separability of status comparisons.24

i.e. Current Mortality Focus or Current Mortality Monotonicity below â.
20This index satisfies the basic properties of a lifespan deprivation indicator. These properties,

Current Mortality Focus and Current Mortality Monotonicity below â, are defined in the online
Appendix 1.

21Even if index PC
w is defined on domain O, we provide an axiom for indices

defined on X for ease of exposition. The parallel axiom on O is: For all
((xi, x−i), µ), ((x

′

i, x−i), µ
′), ((xi, x

′

−i), µ
′′), ((x′

i, x
′

−i), µ
′′′) ∈ O that are stationary, if n(x) = n(x′)

and bi = b′i > t − â, then P ((xi, x−i), µ) ≥ P ((x′

i, x−i), µ
′) ⇔ P ((xi, x

′

−i), µ
′′) ≥ P ((x′

i, x
′

−i), µ
′′′).

22This problem does not depend on the value of the parameter parameter w. For all possible
values of the w ∈ (0, 1), one can always find situations under which the composite index PC

w is not
consistent.

23The premature mortality dimension of the human deprivation index is measured by the proba-
bility to die before reaching 40 years in developing countries and 60 years in developed countries.

24Another difference between our indices and composite indices is that our total deprivation
indices are a generalization of the alive deprivation index. In the absence of premature mortality,
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Preference-based indicators and weight γ

We now compare our indices to the preference-based indicators used in Gary S.

Becker and Soares (2005); Jones and Klenow (2016). In contrast to well-being indi-

cators, deprivation indices disregard the actual achievements of non-poor individuals

in order to focus on the fate of deprived individuals. Beyond this conceptual differ-

ence, the two approaches are not equivalent when it comes to applications. From the

practitioner’s point of view, applying our indices rely on fewer normative assump-

tions, as they only require selecting an age threshold and a value for the weight γ. By

contrast, preference-based indicators are based on explicit preferences and, therefore,

on a particular utility function.

Moreover, focusing on deprivation instead of well-being naturally leads us to use

a fixed weight γ. Consider HDI, a composite index measuring well-being. It is well-

known that the monetary value of one extra year of life implicitly attached by the

HDI is higher for richer countries (Ravallion, 2011). This non-separability of the HDI

is not problematic per se as it reflects the higher opportunity cost of dying in richer

countries (a similar remark also holds for lifetime utility approaches (Gary S. Becker

and Soares, 2005; Jones and Klenow, 2016).) Things are very different when the

two dimensions being compared are deprivations (PYPLs and PYADs) rather than

achievements (GDP and LE). Indeed, deprivations are assumed to involve similar

trade-offs and, therefore, carry the same relative weight in all countries. There is

indeed a priori no reason to trade-off differently these dimensions according to the

observed levels of alive deprivation and life expectancy, and Separability of status

comparisons is a natural requirement.

In the empirical application presented below, we shall assume γ = 1, as we believe

that γ = 1 is a reference value of particular interest. First, it is a conservative choice

if we believe that one PYPL is at least as bad as one PYAD, which requires γ ≥ 1.

A revealed preference argument supports γ ≥ 1 given that committing suicide is an

outside option (plausibly) available. More generally, this inequality is relevant as

long as the fraction of “young” individuals who prefer to be dead instead of poor is

quantitatively negligible. Finally, if we believe that γ ≥ 1, then any disagreement

between HC and our indices when γ = 1 is robust to taking a larger value of γ (see

Lemma 2 in the Online Appendix).

Second, when γ = 1, one PYPL and one PYAD have the same weight. As a result,

computing the index is a simple accounting exercise, which consists in measuring the

fraction of person-years that are either spent in alive deprivation or prematurely lost.

The interpretation of the ED index becomes straightforward as we can then write it

as:25

PED
1 (x, µ) =

LE(µ) ∗HC(x) + LGEâ

LE(µ) + LGEâ(µ)
.

This index takes the perspective of a newborn that would be confronted throughout

our total deprivation indices is identical to alive deprivation, as measured by HC.
25It may seems odd that the ED index combines a head-count ratio for alive deprivation, which

captures the incidence of income deprivation, with a form of Poverty Gap ratio for lifespan depri-
vation, which captures the depth of lifespan deprivation. However, the unit used is not defined in
terms of individuals, but in terms of person-years. An individual who is poor in period t loses one
person-year while an individual who dies prematurely in period t loses as many person-years as the
difference between her age and the age threshold.
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her life to the mortality rates and alive deprivation rates observed in period t. The

first term of the numerator measures the number of years that a newborn may expect

to spend in alive deprivation. The second term measures the number of years that

a newborn expects to lose prematurely. The denominator measures the augmented

life expectancy of a newborn, which is the life expectancy of a newborn who is

confronted to a mortality vector µâ constructed from µ by postponing all premature

deaths in µ to the age threshold.26 Index PED
1 measures the fraction of years in her

augmented life expectancy that a newborn expects to lose to deprivation given the

alive deprivation and mortality observed in period t.

Deprivation measures improving on the mortality paradox

As noted in the Introduction, our approach differs from the literature on the mortality

paradox (Kanbur and Mukherjee, 2007; Lefebvre et al., 2013, 2017) which proposes

various methods to assign fictitious incomes to missing individuals. One such method

assigns fictitious incomes regardless of the pre mortem income of missing individuals

(e. g. Lefebvre et al. (2013, 2017)). This idea can be applied in our constrained

information setup. However the definition of a missing poor used there is conceptually

very different from ours as it relies on a reference mortality vector, corresponding to

that of the most affluent societies such as Norway or the US. In this perspective, the

missing population is defined as those individuals who died in excess with respect

to the reference mortality vector. As a result, not all individuals dying early are

considered as missing individuals and an 80-year-old individual dying in excess can

be considered missing while this may not be true for a 5-year-old child (as long as

the reference society also present some form of child mortality). Our deprivation

approach does not rely on such a reference mortality vector.

The fictitious incomes assigned may also depend on the incomes earned before

dying. Thus, Kanbur and Mukherjee (2007) attribute to rich individuals dying pre-

maturely fictitious incomes that are above the deprivation threshold. In our ap-

proach, we do not distinguish between the premature mortality affecting the poor

and that affecting the non-poor. As noted in the Introduction, the necessary in-

formation on the mortality rates of different income groups is not always available.

More fundamentally, the availability of such information is not sufficient to solve the

underlying normative issue, which was raised by the literature on multidimensional

poverty (Alkire and Foster, 2011): there is more overall poverty when the same indi-

viduals concentrate several dimensions of deprivation. In this respect, the premature

mortality of poor individuals constitutes such a non-desirable concentration of depri-

vations, and to address this question, we should distinguish mortality rates of poor

and non poor individuals. To make our ED index sensitive to concentration, we can

define an individual as being in total poverty if she spends more than k person-years

in deprivation, either in the form of PYPLs or PYADs. Our indices can therefore

be accommodated to allow for this type of approach.27 However, to compute such

concentration-sensitive indices of total poverty, we not only need mortality rates by

26Mortality vector µâ is constructed from µ by letting µâ
a = 0 for all a ∈ {0, . . . , â − 2}, µâ

â−1
=

1− Πâ−1

a=0
(1− µa) and µâ

a = µa for all a ∈ {â, . . . , a∗}.
27Such a definition of total poverty is consistent with the definition of multidimensional poverty

proposed by (Alkire and Foster, 2011): an individual is multidimensionally poor if she is deprived
in at least k dimensions.
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income groups but also information on mobility in and out alive deprivation across

consecutive periods, a type of information which is typically not available.28

4 Aggregate deprivation

4.1 The data

We apply our indices of total deprivation to real world data. In the process, we

compare our results to those using more conventional deprivation measures, such

as the HC.29 The definition of ED requires a value for the age threshold â and the

weight γ. As already discussed, the latter will be set conservatively at 1, so that

one person-year prematurely lost is equivalent to one person-year spent in income

deprivation. Choosing a higher value for γ, by increasing the weight given to the

mortality component, would simply magnify the difference between the ED index

and more traditional deprivation measures.

The choice of the age threshold is essentially similar to the choice of an income

threshold used for income deprivation. It is ultimately a normative choice about the

minimum number of years of life that a society judges essential for its members. In

the following, we use a threshold â = 50 years, which is much lower than the median

age at death observed in our data (64 years old). Of course, a higher age threshold

would inflate our indices and their difference with income deprivation measures. The

robustness of our empirical findings was tested by using alternative thresholds (40

and 60 years), and we present these alternative results in the Online Appendix of the

paper. In our code, available online, the reader can herself chose her own threshold

of â as well as for γ.

The computation of the ED index requires information on alive deprivation as

well as information on mortality and population by age. Ideally, this information

should be comparable across countries and over time. In the following, we make use

of two publicly available data sets to construct our measures of deprivation. The

data on population and mortality by country, age group and year comes from the

Global Burden of Disease database (2016 version of the data). It is available for the

1990-2016 period and is, to our knowledge, the most comprehensive mortality data

available for international comparison. To construct this database, population and

mortality data are systematically recorded across countries and time from various

data sources (from official vital statistics data, to fertility history data as well as

to data sources compiling deaths from events such as wars and other catastrophic

events). These primary data are then converted into data at the age group, year

and country level using various interpolations and inference methods.30 Details on

the method used are given in the appendix of Mortality and of Death Collaborators

28Note that, when mobility is very low and premature mortality is mostly concentrated on poor
individuals, our indices approximately count the number of person-years lost to deprivation by the
poor.

29Remember that to construct ID measures, we would need information on the number of death
by age in the past â years. Such information does exist, for example via the Human Mortality
Database (https://www.mortality.org/), but the countries and years available in this database are
very different from those for which comparable alive deprivation data is available.

30Therefore, the number of deaths in each cell is an estimate and comes with a confidence interval.
Following the convention in the literature, we do not use these confidence intervals, and only consider
the point estimate of the number of death. (See also Hoyland et al. (2012) for a critique of this
approach).
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(2016).31

Our data on alive deprivation come from the PovcalNet website which provides

internationally comparable estimates of income deprivation level. This data set is

based on income and consumption data from more than 850 representative surveys

carried out in 127 low- and middle-income countries between 1981 and 2014.32 Each

country’s income deprivation level in PovCalNet is computed on a three yearly basis,

so that the yearly data used below were obtained by linear interpolation of the income

deprivation estimates across years. A complete description of the data set is given

in Chen and Ravallion (2013).33 In our empirical application, we follow the World

Bank’s definition of extreme income deprivation, corresponding to the 1.9$ a day

threshold (Ferreira et al., 2016).

To compute the GD and ED indices, we merged the two databases at the year

and country level. The Global Burden of the Disease data are only available since

1990 and the PovCalNet data for low and middle income country, until 2014. As

a result, we focus in the following on the 1990-2014 period for a total of 124 low-

and middle-income countries, representing 79% of the World population in 2014 (see

Online Appendix 2 for a list of those countries).

4.2 World deprivation

We begin with the GD approach. Remember that a feature of this approach is that

it relies on the computation of the total number of years of deprivation generated in

a given year. Table 4 presents this computation and decomposes it into lifespan and

income deprivation for the year 2014. In 2014, 1,070 billion person-years of depriva-

tion have been generated, 680 million from income deprivation and 390 from lifespan

deprivation. That is, 17.6% of the person-years of 2014 were lost to deprivation.

Table 4: Generated Deprivation in the developing world in 2014, with â = 50.

PY ADs PY PLs PY ADs+ PY PLs PGD
1

person− years person− years person− years %
(millions) (millions) (millions)

World 680 390 1,070 17.6

The ED approach takes the perspective of a newborn: how many years of live does

a newborn expect to spend deprived? Table 5 presents this approach by computing

the ED index for the World in 2014. That year, 11.9% of the world’s population was

extremely poor and a newborn had a life expectancy of 69.1 years. Hence, such a

newborn expected to spend 8.2 years in extreme poverty. The same newborn had a

lifespan gap expectancy of 3.8 years. In total, in 2014, newborns expected to spend 12

31Moreover, the mortality information is given into 5 year age brackets (except for the 0-5 years
group, for which the information is decomposed into 0-1 and 1-5). When necessary, we transform
the data into age groups of one year by assuming a uniform death rate within an age category.
Finally, the older age group is “95 and above”. As we do not know the precise age of death of
individuals in that category, we assume that 95 is the maximum age they can reach. This last
assumption is of no consequence here, since our age threshold â is well below 95.

32The website address is http://iresearch.worldbank.org/PovcalNet/povOnDemand.aspx.
33Clearly, these transformations may matter for the empirical analysis, as they tend to smooth the

evolution of income deprivation across years. In particular, in the case of catastrophic events such
as earthquakes or tsunami, income deprivation appears as less reactive then lifespan deprivation,
which may be due to the interpolated nature of the data. In the following, we therefore do not
analyze these events.
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years either in alive deprivation or in lifespan deprivation. Therefore, the ED index

is 16.5%, which is the share of her “augmented” life expectancy that a newborn

expects to spend in deprivation.

Table 5: Expected Deprivation in the developing world in 2014.

HC LE E(PY ADs) LGE50 E(PY ADs) + LGE50 PED
1

% years years years years %

World 11.9 69.1 8.2 3.8 12 16.5

Figure 5 presents the evolution of world’s total deprivation, as measured by GD

and ED, and of their two components, the alive deprivation component (income

deprivation, in our case) and the lifespan deprivation component (LDC). We also

report the HC for comparison purposes. A first major point is that the lifespan

deprivation component is far from negligible.

In 1990, according to ED, a newborn expected to spend 10% of his “augmented”

life expectancy in lifespan deprivation, as compared to 39% in income deprivation:

lifespan deprivation thus represented 20% of total deprivation. In other words, if one

were to focus on alive deprivation only, it would result in an underestimation of total

deprivation of 20% in 199034. Also, the relative importance of lifespan deprivation

increased over time: its share in total deprivation increased from 20% in 1990 to

more than 30% in 2014. Therefore, focusing on alive deprivation only leads to an

underestimation of total deprivation which is both substantial and growing. Note

that given our conservative choice of parameters, these estimates can be considered

as lower bounds: in 2014, total deprivation is underestimated by at least 30% if

lifespan deprivation is neglected. A similar result is obtained when using the GD

index, for which the share of lifespan deprivation in total deprivation is even larger

and increased from 27% to 37%. This increase in the share of lifespan deprivation

indicates that much more progress has been made against alive deprivation as against

lifespan deprivation over the past 25 years. One can only wonder if that would have

been the case had premature mortality systematically been taken into account in

deprivation measures.

Figure 5: Decomposition of Total Deprivation with â = 50, World Level

15

20

25

30

35

40

45

50

55

60

65

70

%

0

10

20

30

40

50

60

70

%

1
9
9
0

1
9
9
2

1
9
9
4

1
9
9
6

1
9
9
8

2
0
0
0

2
0
0
2

2
0
0
4

2
0
0
6

2
0
0
8

2
0
1
0

2
0
1
2

2
0
1
4

Year

Income Deprivation Lifespan Deprivation (LDC)

Headcount ratio LDC/ED (right axis)

Expected Deprivation at birth with â = 50
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A second point to note is that these three measures follow parallel trends. They do

34Note that HC and ED can not be directly compared, since their denominator is different.
However, comparing the lifespan deprivation component of ED to ED enables to rigorously evaluate
how large is the underestimation of deprivation when premature mortality is not taken into account.
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not offer a different diagnostic about the evolution of world deprivation in the last 25

years. World deprivation fell dramatically between 1990 and 2014: while a newborn

in 1990 could expect to spend 49% of his “augmented” life expectancy in deprivation,

this proportion fell down to 16% in 2014. Note that these results derive from the

very conservative choice of 50 years as the lifespan deprivation threshold. One may

wonder how total deprivation would evolve if a more ambitious threshold had been

set. In Figure 6, we reproduce Figure 5, but using 80 instead of 50 as a threshold. It

is striking to see that with such a threshold, lifespan deprivation constitutes a very

important component of total deprivation even in the early 1990’s, representating

more than 40% in total deprivation at the beginning of our period and more than

60% at the end of our period. By construction, deprivation rates are also much

higher, but note as well how they decrease less rapidly over time.

Figure 6: Decomposition of Total Deprivation with â = 80 ,World Level
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15

20

25

30

35

40

45

50

55

60

65

70

%

0

10

20

30

40

50

60

70

%
1
9
9
0

1
9
9
2

1
9
9
4

1
9
9
6

1
9
9
8

2
0
0
0

2
0
0
2

2
0
0
4

2
0
0
6

2
0
0
8

2
0
1
0

2
0
1
2

2
0
1
4

Year

Income Deprivation Lifespan Deprivation (LDC)

Headcount ratio LDC/GD (right axis)

Generated Deprivation with â = 80

Finally, both in terms of levels and in terms of trends, GD and ED offer very

similar diagnostics. For the sake of simplicity, we will therefore focus in the following

on ED. We reproduce the graphs presented in the following sections using GD instead

of ED in the Online Appendix. The main difference between GD and ED is that GD

gives more weight to premature mortality because the number of newborns in the

developing world has been increasing over time. This implies that the counterfactual

population pyramids considered by ED have relatively smaller cohorts affected by

premature mortality than the actual population pyramids considered by GD. The

choice of ED for the results presented in the main text can therefore be considered

as conservative.

4.3 Regional deprivation

Figure 7 compares the evolution of deprivation for the six World Bank regions as

measured by HC and the ED index. The regional diagnostic is similar to that of the

global one. Indeed, focusing on alive deprivation leads to a large underestimation of

deprivation in all regions. This is particularly the case of the Middle East and North

Africa and of East Asia and the Pacific, for which alive deprivation has been almost

eradicated while total deprivation remained non negligible.35 In the latter region for

instance, the share of lifespan deprivation in total deprivation increased substantially

from 10% in 1990 to 46% in 2014. In addition, for all regions but Sub Saharan Africa,

35In our data, the Middle East and North Africa region only includes Djibouti, Iran, Morocco
and Tunisia.
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this underestimation is growing over time since the 2000’s (Middle East and North

Africa, Latin America and Caribbean, Europe and Central Asia) or the 2010’s (South

Asia, East Asia and Pacific). For Sub Saharan Africa, the underestimation, while

substantial (around 20%) remain stable throughout. More generally, while lifespan

deprivation decreases smoothly across all regions, the evolution of alive deprivation

varies much more across regions and across periods. This latter finding parallels

and complements the well-documented fact that GDP inequalities across countries

are larger than inequalities in life expectancy (see for instance Jones and Klenow

(2016)).

In addition, note that the relative position of each region as measured with ED is

similar to that mesured with HC: the income-poor regions are also the most deprived

ones.

Figure 7: Decomposition of Total Deprivation, Continental Level. ED with â = 50
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5 Countries’ deprivation

5.1 Countrie’s levels of deprivation

We now investigate deprivation for individual countries. The extent and the evolution

of deprivation at the country level measured by ED can substantially differ from those

described with more traditional measures of deprivation. We will show that focusing

on alive deprivation biases our understanding of individual countries’ deprivation: in

terms of level (some countries are much more deprived than we thought), in terms

of trajectories (countries which we thought were doing better in terms of deprivation

may actually be doing worse) and in terms of international ranking.

Figure 8 maps the median value36 of each country’s yearly share of the lifespan

deprivation component in ED over 1990-2014, that is, the extent to which omitting

premature mortality leads to an underestimation of deprivation in that country.

This underestimation is particularly pronounced in the ex-USSR countries as well

as in Turkey or Iran, where lifespan deprivation represents at least 55% of ED. In

these countries, premature mortality is an essential component of deprivation, and

its omission leads to a very severe underestimation of deprivation.

Figure 8: Map of LD/ED ratio, 1990 to 2014 (â = 50)

(0.55,0.97]
(0.31,0.55]
(0.23,0.31]
[0.08,0.23]

Median LD/ED yearly ratio,1990 and 2014.
Reading: the yearly LD/ED ratio in the Russian Federation was at least 55% at least 50%
of the time in the 1990-2014 period.

Individual countries are often compared and ranked according to a measure of

deprivation (Hoyland et al., 2012). In the following, we investigate the extent to

which the use of our measures of deprivation changes our understanding of the rank-

ing of countries. Figure 9 provides the example of Morocco and Gabon. According

to HC, throughout the 1990s, Gabon and Morocco are virtually at the same level of

deprivation. However, deprivation was much higher in Gabon once lifespan depri-

vation is taken into account. Ranking countries according to deprivation (starting

from the least poor), Gabon was ranked 32nd and Morocco 33rd in 1993. When the

ranking is based on ED, Gabon was 46th and Morocco 38th. Table 6 decomposes the

sources of this re-ranking in 1993. While both countries have a similar level of alive

deprivation (a HC close to 6%), their mortality differs widely. Indeed, in 1993, the

life expectancy at birth in Morocco was 67 years, against 59 years in Gabon. Hence,

a newborn in Morocco expects to live 67∗5.9%= 3.9 years in alive deprivation against

36We use the median rather that the mean to prevent extreme values to bias the general picture.
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3.4 in Gabon. However, as early mortality is higher in Gabon than in Morocco, a

newborn in Gabon expects to loose 6.6 years of life, as against 4.5 in Morocco. Total

expected years lost to deprivation therefore amount to 8.4 in Morocco against 10 in

Gabon, while augmented life expectancy is respectively 71.5 and 65.6. A newborn

in Morocco is therefore expected to lose 11.8% of her “augmented” life expectancy to

deprivation, as against 15.2% in Gabon.

Figure 9: Examples of re-rankings: Gabon and Morocco. HC and ED with â = 50
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Table 6: Decomposition of re-rankings: Gabon and Morocco in 1993.

Country HC LE E(PY ADs) LGE50 E(PY ADs) + LGE50 PED
1

% years years years years %

Morocco 5.9 67 3.9 4.5 8.4 11.8
Gabon 5.8 59 3.4 6.6 10 15.2

More generally, our measures lead to substantial re-rankings across countries.

Indeed, throughout the period, the average change in ranking across all countries is

equal to 3.4 ranks. How are these changes distributed across countries and time?

Figure 10 reports each country’s median change in rank during the period. These

changes can be particularly important: countries of the ex-USSR and a few African

countries lose up to 14 ranks while some Latin American countries improve their

ranking substantially.

How do these re-rankings evolve over time? Figure 11 reports for each year the box

plot of the absolute value of the change in the ranking of all countries when it is based

on ED instead of HC. The figure clearly indicates that re-ranking between countries

is more frequent and larger over time. This is due to the increasing importance of

premature mortality in total deprivation, and implies that the relevance of rankings

based on total deprivation instead of income poverty increases over time.

5.2 Countrie’s trajectory of deprivation

Our indices also change our assessment of the evolution of deprivation in a given

country. Let us take, for instance, the cases of the Comoros and of Botswana. Fig-

ure 12 presents the evolution of HC and ED for these two countries. In the Comoros

throughout the period, HC increased while ED decreased, due to the important

progress made against premature mortality which more than compensates for the in-
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Figure 10: Map of re-rankings of countries. ED with â = 50 vs HC

(2,14]
(0,2]
(−1,0]
(−3,−1]
[−10,−3]

Median absolute rank change between 1990 and 2014.
Reading: the Russian federation is ranked 2 to 14 ranks lower with ED than with HC at
least 50% of the time in the 1990-2014 period.

Figure 11: Evolution of re-rankings of countries: 1990-2014. ED with â = 50
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Reading: in 1990, the 25th percentile was a change in 1 rank, the 75th in 4 ranks and
the median 3 ranks, the upper adjacent value was 7 and the lower adjacent value 0.

crease in alive deprivation. By contrast, in Botswana during the 1990s, HC decreased

substantially, while ED increased dramatically due to the HIV epidemics.

In table 7, we present a more detailed analysis of these cases. According to HC,

deprivation increased in the Comoros by 25% between 1990 and 2014. However,

according to ED, total deprivation fell by 14% during that same period. Focusing

on alive deprivation hides the large progress made in lifespan deprivation: life ex-
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Figure 12: Differences in trends between ED and HC: Comoros and Botswana. HC
and ED with â = 50

0

10

20

30

%

1
9
9
0

1
9
9
2

1
9
9
4

1
9
9
6

1
9
9
8

2
0
0
0

2
0
0
2

2
0
0
4

2
0
0
6

2
0
0
8

2
0
1
0

2
0
1
2

2
0
1
4

Year

Income Deprivation Lifespan Deprivation

Headcount ratio

Comoros

0

10

20

30

40

50

%

1
9
9
0

1
9
9
2

1
9
9
4

1
9
9
6

1
9
9
8

2
0
0
0

2
0
0
2

2
0
0
4

2
0
0
6

2
0
0
8

2
0
1
0

2
0
1
2

2
0
1
4

Year

Income Deprivation Lifespan Deprivation

Headcount ratio

Botswana

pectancy increased from 57 to 66 years and the lifespan gap expectancy decreased

from 8.5 to 4.5 years. Conversely, in 1990, a newborn would expect to spend 6.4

years in alive deprivation, as against 9.2 years in 2014. Overall, the number of years

spent in deprivation decreased from 14.9 to 13.7 and the augmented life expectancy

increase from 65.5 to 70.5 years. Botswana evolved very differently between 1990

and 2000: HC decreased by 12% during that period while ED increased by 13%.

Table 7: Example of evolution reversals: Comoros and Botswana

Year HC LE E(PY ADs) LGE50 E(PY ADs) + LGE50 PED
1

% years years years years %

Comoros

1990 11.2 57 6.4 8.5 14.9 22.7
2014 14.0 66 9.2 4.5 13.7 19.5

+ 25% + 12.6 +2.8 -4.0 -1.2 - 14%

Botswana

1990 33.6 63.6 21.5 4.8 26.3 38.2
2000 29.5 45.6 13.5 11.1 24.6 43.3

- 12% - 11 -8 + 6.3 -1.7 + 13%

How often do these opposite diagnostics arise in the last 25 years? In Figure

13, we plot the ratio of the value of ED in year t relative to its value in t-5 for each

country in our sample against that for HC. As indicated by the figure, overall, the two

measures generally agree. For most countries and periods, a decrease (increase) in

HC is accompanied by an increase (decrease) in ED. Note that the relation between

the two measures is flatter than the 45◦ line, which indicates that HC varies more

than ED, owing to the greater inertia of lifetime deprivation. However, the two

measures do not always agree, as attested by the large number of points located in

the North-West and in the South-East quadrants. These points represent 7.4% of the

comparisons made: in these cases, the diagnostic of deprivation based on deprivation

among the living is so biased that the sign of its evolution is wrong. Note that this

result relies on the conservative assumption γ = 1. This percentage tends to 26.2%

as γ → ∞.
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Figure 13: Deprivation trends. HC and ED with â = 50, t to (t-5) ratios.
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Countries for which the deprivation rate increased by more than 200% are dropped
from this figure.37

6 Concluding remarks

Most measures of poverty or deprivation ignore premature mortality. In this paper,

we propose three measures of “total deprivation” that combine meaningfully infor-

mation on income poverty and early mortality in a population, by adding time units

spent in income poverty and time units of life lost due to premature mortality. This

additive approach follows from the exclusive nature of the two dimensions considered,

income poverty and premature death. We characterize our proposed measures, show

that they satisfy a number of desirable properties, and contrast their implications

with existing multidimensional indices, such as the MPI index of the World Bank.

Our aggregation method allows placing an explicit and meaningful lower bound

on the normative trade-off (the weight γ) between premature mortality and poverty.

This lower bound is based on the view that being prematurely dead is no better than

being in alive deprivation (γ ≥ 1). Using this conservative approach, our empirical

results show that ignoring premature mortality regularly leads to biased evaluations

in the level and in the evolution of deprivation. Their frequency is increasing over

time due to the relative importance of premature mortality. Therefore, our results

suggests that lifespan deprivation should be integrated in deprivation measusures.
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7 Appendix 1: Proofs

7.1 Proof of Proposition 1

We first provide the formal definition of the three axioms left undefined in the main

text.

Deprivation axiom 9 (Anonymity). For all x ∈ X,

if n(x′) = n(x) and x′ is obtained from x by a permutation of the index set {1, . . . , n(x)},

then P (x) = P (x′).

For any k ∈ N, we denote by xk the k-replication of x, which is the distribution

such that n(xk) = kn(x) and xk = (x, x, . . . , x).

Deprivation axiom 10 (Replication Invariance). For all x ∈ X and k ∈ N,

P (xk) = P (x).

Deprivation axiom 11 (Young Continuity). For all x, y, z ∈ X,

if P (x) > P (y) and n(z) = 1, then for k ∈ N sufficiently large we have P (xk, z) >

P (y) and P (x) > P (yk, z).

It is easy to check that the ID index satisfies the seven axioms, so that the proof

of necessity is omitted. Herebelow, we concentrate on the proof of sufficiency.

Let Q+ denote the set of non-negative rational numbers. Consider ∆, the 2-

simplex on rational numbers, i.e. ∆ = {v ∈ Q3
+ | v1 + v2 + v3 = 1}.

Step 1: Construct a mapping m : X → ∆ such that m(X) = ∆ and for any two

x, x′ ∈ X , if m(x) = m(x′) then P (x) = P (x′).

We construct mapping m as the composition of four mappings, i.e. m(x) =

m4 ◦m3 ◦m2 ◦m1(x).38

First, mapping m1 removes individuals who are not in the reference population.

Let X∗ be the subset of distributions that do not have any individual who is born at

least â years before t and is dead, i.e. X∗ = {x ∈ X | bi > t−â for all i for whom si =

D}. Let mapping m1 : X → X∗ return for any x ∈ X the image x∗ = m1(x) with

n(x∗) = f(x) + p(x) + d(x) and for any i ≤ n(x∗) the ith component of x∗ is defined

as x∗

i ≡ xj , where j is the ith individual in x for whom either si 6= D or si = D and

bi > t− â. By the definition of mapping m1, we have for all x ∈ X∗ that m1(x) = x.

Hence, m1(X) = X∗. Also, any two x, x′ ∈ X for which m1(x) = m1(x′) are such

that P (x) = P (x′) by Weak Independence of Dead and Anonymity.

Second, mapping m2 removes the birth year of individuals. Recalling that S =

{NP,AP,D}, let mapping m2 : X∗ → ∪n∈NS
n return for any x ∈ X∗ the image

o = m2(x) with n(o) = n(x) and for any i ≤ n(o) the ith component of o is defined

from xi = (bi, si) as oi ≡ si. By construction of m2, we have m2(X∗) = ∪n∈NS
n.

By construction of m1, all dead individuals in a distribution x ∈ X∗ are prematurely

dead. Hence, if oi = D, then i is prematurely dead. Therefore, any two x, x′ ∈ X∗

for which m2(x) = m2(x′) are such that P (x) = P (x′) by Weak Independence of

Birth Year.

38The composite mapping m is defined a m(x) = m4(m3(m2(m1(x)))).
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Third, mapping m3 counts the number of individuals exhibiting each status.

Consider the set N3
0\(0,0,0), which contains all triplets of numbers in N0 = {0, 1, 2, . . .}

except the nul triplet (0, 0, 0). Let the mapping m3 : ∪n∈NS
n → N3

0\(0,0,0) return

for any o ∈ ∪n∈NS
n the image w = m3(o) such that w1 ≡ #{i ≤ n(o) | oi = NP},

w2 ≡ #{i ≤ n(o) | oi = AP} and w3 ≡ #{i ≤ n(o) | oi = D}.39 By construction,

we have m3 ◦m2(X∗) = N3
0\(0,0,0). Also, any two x, x′ ∈ X∗ for which m3 ◦m2(x) =

m3 ◦m2(x′) are such that P (x) = P (x′) by Anonymity and Weak Independence of

Birth Year.

Fourth, mapping m4 computes the fraction of individuals exhibiting each status.

Let mapping m4 : N3
0\(0,0,0) → ∆ return for any w ∈ N3

0\(0,0,0) the image v = m4(w)

is defined as

v = (v1, v2, v3) ≡

(
w1

w1 + w2 + w3
,

w2

w1 + w2 + w3
,

w3

w1 + w2 + w3

)

,

where v1 is the fraction of non-poor, v2 is the fraction of poor and v3 is the fraction

of prematurely dead. Let mapping m : X → ∆ be defined as m(x) = m4 ◦m3 ◦m2 ◦

m1(x).

First, we show that for any v ∈ ∆ there exists a x ∈ X∗ such that m(x) = v. As

v ∈ ∆, there exist c1, c2, c3, e1, e2, e3 ∈ N such that (v1, v2, v3) = (c1/e1, c2/e2, c3/e3).

Consider any distribution x with n(x) = e1e2e3, where c1e2e3 individuals are non-

poor, c2e1e3 individuals are poor, and c3e1e2 individuals are prematurely dead. As

v1+ v2+ v3 = 1, we have that c1e2e3+ c2e1e3+ c3e1e2 = e1e2e3. All individuals in x

who are dead are prematurely dead, hence, x ∈ X∗. By construction of x, we have

m(x) = v.

There remains to show that for any two x, x′ ∈ X such that m(x) = m(x′) we have

P (x) = P (x′). We have shown above that if m3◦m2◦m1(x) = m3◦m2◦m1(x′), then

P (x) = P (x′). There remains to show that if m3 ◦m2 ◦m1(x) 6= m3 ◦m2 ◦m1(x′)

and m(x) = m(x′), we have P (x) = P (x′). To do so, we show that for any two

w,w′ ∈ N3
0\(0,0,0) such that m4(w) = m4(w′), there exist y, y′ ∈ X such that

m3 ◦ m2 ◦ m1(y) = w, m3 ◦ m2 ◦ m1(y′) = w′ and P (y) = P (y′). By construc-

tion of mapping m4, any two w,w′ ∈ N3
0\(0,0,0) for which m4(w) = m4(w′) are such

that for k = w′

1+w′

2+w′

3 and k′ = w1+w2+w3 we have a w′′ ∈ N3
0\(0,0,0) such that

w′′ = kw = k′w′. Then, there exist y, y′, y′′, y′′′ ∈ X∗ with m3 ◦ m2 ◦ m1(y) = w,

m3 ◦m2 ◦m1(y′) = w′, m3 ◦m2 ◦m1(y′′) = m3 ◦m2 ◦m1(y′′′) = w′′ such that y′′ is a

k-replication of y and y′′′ is a k’-replication of y′. By Replication Invariance, we have

that P (y) = P (y′′) and P (y′) = P (y′′′). As m3 ◦m2 ◦m1(y′′) = m3 ◦m2 ◦m1(y′′′),

we have P (y′′) = P (y′′′). Together, P (y) = P (y′).

Step 2: Using mapping m, define an ordering � on ∆ from the ordering on X

represented by P .

Let � be an ordering on ∆ defined such that for any two v, v′ ∈ ∆ we have

v ≻ v′ (resp. v ∼ v′) if there exist x, x′ ∈ X such that v = m(x) and v′ = m(x′)

and P (x) < P (x′) (resp. P (x) = P (x′)). We showed at the end of Step 1 that

there always exist x, x′ ∈ X such that v = m(x) and v′ = m(x′), which shows that

39For any set A, we denote the cardinality of A by #A.
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ordering � is complete. Moreover, any two x, x′ ∈ X with m(x) = m(x′) are such

that P (x) = P (x′), which shows that ordering � is well-defined. Together, we have

that for any two x, x′ ∈ X and v, v′ ∈ ∆ with v = m(x) and v′ = m(x′), we have

P (x) ≤ P (x′) ⇔ v � v′. (8)

Step 3: Identifying the appropriate value for γ.

First, we show that � satisfies the following convexity property: for any two

v, v′ ∈ ∆ with v ≻ v′ and any rational λ ∈ (0, 1) we have v ≻ λv + (1 − λ)v′ ≻ v′.

Take any two x, y ∈ X∗ such that v = m(x) and v′ = m(y). Using Replication

Invariance, these two distributions can be taken such that n(x) = n(y), which we

assume henceforth. By (8), we have P (x) < P (y). By definition of λ, there exists

c, e ∈ N such that λ = c/e. Let xc be a c-replication of x, x(e−c) be a (e − c)-

replication of x, yc be a c-replication of y and y(e−c) be a (e − c)-replication of y.

By construction, we have n(xc) = n(yc) and n(x(e−c)) = n(y(e−c)). By Replication

Invariance, we have

P (xc) = P (x(e−c)) = P (xc, x(e−c)) < P (yc) = P (y(e−c)) = P (yc, y(e−c)).

As all these distributions belong to X∗, we have by Subgroup Consistency that

P (xc, x(e−c)) < P (xc, y(e−c)) and that P (xc, y(e−c)) < P (yc, y(e−c)). Now, we con-

structed these replications such that v = m(xc, x(e−c)), v′ = m(yc, y(e−c)) and also

λv + (1− λ)v′ = m(xc, y(e−c)). This yields the desired result by (8).

Second, we derive the value γ > 0 for which P is ordinally equivalent to Pγ . Let

the three vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) ∈ ∆ be respectively denoted by v100, v010

and v001. By Least Deprivation and (8), we have that v100 ≻ v010 and v100 ≻ v001.

There are three cases.

• Case 1: v010 ∼ v001.

Take γ = 1.

• Case 2: v010 ≻ v001.

Consider the edge connecting vertices v100 and v001, which we denote by E100
001 =

{v ∈ ∆ | v2 = 0}. As v100 ≻ v001, the convexity property implies that for any

v, v′ ∈ E100
001 , if v1 > v′1 then v ≻ v′ and if v1 < v′1 then v ≺ v′. Let ∆R+ be

the 2-simplex on the set of real numbers. As v100 ≻ v010 ≻ v001, there exists a

v∗ ∈ ∆R+ on the edge connecting the two vertices v100 and v001 such that for

any v ∈ E100
001 , if v1 > v∗1 then v ≻ v010 and, if v1 < v∗1 then v ≺ v010. Moreover,

if v∗ ∈ ∆, then v∗ ∼ v010 (see proof below). As Q is dense in R, there is always

a rational between two irrationals. Therefore, v∗ is the unique element of ∆R+

with these properties.

We show that if v∗ ∈ ∆, then v∗ ∼ v010. Consider the contradiction assumption

that v∗ ∈ ∆ and v∗ ≻ v010.40 We construct a v′ ∈ E100
001 such that v′1 < v∗1 and

v′ ≻ v010. Such v′ is in contradiction with the definition of v∗, which requires

that for any v′ ∈ E100
001 with v′1 < v∗1 we have v′ ≺ v010. We construct v′ ∈ E100

001

40The alternative contradiction assumption for which v∗ ∈ ∆ and v∗ ≺ v010 also leads to an
impossibility.
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as follows. Take any two distributions x, y ∈ X∗ such that v010 = m(x) and

v∗ = m(y). As v∗ ≻ v010, we have by (8) that P (x) > P (y). Let z ∈ X∗

be a distribution with n(z) = 1 and whose unique individual is prematurely

dead. By Young Continuity, there exists some k such that P (x) > P (yk, z).

Consider v′ = m(yk, z). By (8), we have v′ ≻ v010. As v∗ ∈ E100
001 , we have by

construction that v′ ∈ E100
001 and v′1 < v∗1 , the desired result.

We take γ = 1
v∗

3

. We have v∗3 ∈ (0, 1) because v010 ≻ v001 and v100 ≻ v010

respectively imply that v∗ 6= v001 and v∗ 6= v100. As v∗3 ∈ (0, 1), we have γ > 1.

• Case 3: v010 ≺ v001.

The construction of γ is similar to that proposed in Case 2. We find the unique

element v∗∗ ∈ ∆R+ that splits the edge from v100 to v010 between elements v

for which v ≻ v001 and elements v′ for which v′ ≺ v001. We take γ = v∗∗2 and

have γ ∈ (0, 1).

We assume henceforth that Case 2 applies, i.e. v010 ≻ v001. We omit the proof

for Case 1 that is is simpler and the proof for Case 3 that is very similar.

Step 4: Show that Pγ is ordinally equivalent to P .

Let function F : ∆R+ → R− be defined by F (v) = −(v2 + γv3). By construction

of mapping m and the definition of Pγ , for any v ∈ ∆ and any x ∈ X such that

v = m(x) we have that F (v) = −Pγ(x). If we show that F represents the ordering �

on ∆, then we get from (8) that Pγ is ordinally equivalent to P , the desired result.

First, we show that for any v ∈ ∆ we have v � v010 if and only if F (v) ≥ F (v010).

By definition of F , we have that F (v100) = 0, F (v010) = −1 and F (v001) = −γ.

Partition ∆ into three subsets, i.e. ∆ = ∆100 ∪∆010 ∪∆001 defined as ∆010 = {v ∈

∆ | F (v) = −1}, ∆100 = {v ∈ ∆ | F (v) > −1} and ∆001 = {v ∈ ∆ | F (v) < −1}.41

We need to show that any v ∈ ∆100 is such that v ≻ v010, any v ∈ ∆010 is such

that v ∼ v010 and any v ∈ ∆001 is such that v ≺ v010. In order to avoid repetitions,

we only prove that any v ∈ ∆100 is such that v ≻ v010. To do so, we show that

v = λv010 + (1 − λ)v′ for some rational λ ∈ [0, 1) and some v′ on the edge E100
001

with v′1 > v∗1 . This construction is illustrated in Panel A of Figure 14. Given that

any v′ ∈ E100
001 for which v′1 > v∗1 is such that v′ ≻ v010, the convexity property of �

then implies that v ≻ v010. Take v′ ≡
(

1− v3
1−v2

, 0, v3
1−v2

)

. As v ∈ ∆, the definition

of v′ is such that v′ ∈ E100
001 . Let v′′ ≡ λv010 + (1 − λ)v′ where λ ≡ v2 ∈ [0, 1)

since v ∈ ∆100. We have v′′ = v since, by construction of v′, we have v′′2 = λ = v2

and v′′3 = (1 − λ)v′3 = v3. There remains to show that v′1 > v∗1 . Last inequality is

equivalent to 1− v3
1−v2

> 1− 1
γ
, which simplifies to 1

γ
> v3

1−v2
. This inequality holds

because, as v ∈ ∆100, we have F (v) > −1, which simplifies to the same inequality.

41We have defined F and γ such that F (v∗) = F (v010). From a geometric perspective, the set
of elements v ∈ ∆R+ for which F (v) = −1 is the segment connecting v010 with v∗. Observe that
if v∗ /∈ ∆, then the only element in this segment belonging to ∆ is the vertex v010 and, therefore,
∆010 degenerates to {v010}. The subset ∆100 contains vertex v100 and all elements of ∆ that are
on v100’s side of the segment connecting v010 with v∗. In turn, ∆001 contains vertex v001 and all
elements of ∆ that are on v001’s side of the segment connecting v010 with v∗.
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b
v

b v̂∗
v̂′b

Figure 14: Panel A: construction used in order to show that v ≻ v010 when F (v) >
F (v010). Panel B: construction used in order to show that v ≻ v′ when F (v) > F (v′).
Iso-F lines are dashed.

Geometrically, we have just shown that the segment connecting v010 to v∗ is an

“implicit” indifference curve of �.42 The intuition for the rest of the proof is that all

parallel segments are also “implicit” indifference curves of �.

Take any two v, v′ ∈ ∆ with F (v) ≥ F (v′), we show that v � v′. If F (v) ≥

−1 ≥ F (v′), then the previous argument directly yields the result. We focus on the

particular case −1 > F (v) > F (v′) and show that v ≻ v′ (the proofs for the other

cases are similar). The construction is illustrated in Panel B of Figure 14. This case

is such that there exists a v̂ = (0, v̂2, 1 − v̂2) ∈ E010
001 with F (v) > F (ŝ) > F (v′),

because F (v010) = −1 and F (v001) = minv′′∈∆ F (v′′). By the convexity property of

�, our assumption v010 ≻ v001 implies that v010 ≻ v̂ � v001. Therefore, there exists

a unique v̂∗ ∈ ∆R+ on the edge connecting vertices v100 and v001 such that for any

v′′ ∈ E100
001 , if v′′1 > v̂∗1 then v′′ ≻ v̂, if v′′1 < v̂∗1 then v′′ ≺ v̂ and if v̂∗ ∈ ∆, then v̂∗ ∼ v̂

(the omitted proof for this claim follows the argument provided in Step 3 Case 2).

First, we show that the segment connecting v̂ to v̂∗ is parallel to the segment

connecting v010 to v∗. Formally, this is equivalent to showing that v̂2 =
v̂∗

1

v∗

1

. Consider

the contradiction assumption for which v̂2 >
v̂∗

1

v∗

1

.43 Assume that v̂∗ ∈ ∆.44 Consider

now v̂
′

= (
v̂∗

1

v̂2
, 0, 1−

v̂∗

1

v̂2
) ∈ E100

001 . By the contradiction assumption, we have v̂
′

1 < v∗1

and, hence, v010 ≻ v̂
′

. By construction, for the rational λ = v̂2 we have:

v̂ = λv010 + (1− λ)v001 and v̂∗ = λv̂
′

+ (1 − λ)v001.

We use that v010 ≻ v̂
′

in order to show that v̂ ≻ v̂∗, a contradiction to the definition

of v̂∗. Take any three distributions x, y, z ∈ X∗ such that v010 = m(x), v̂
′

= m(y) and

v001 = m(z). By (8), we have P (x) < P (y) < P (z). Using Replication Invariance,

these three distributions can be taken such that n(x) = n(y) = n(z), which we

assume henceforth. As λ = v̂2, there exist c, e ∈ N such that λ = c/e. Let xc be a

c-replication of x, yc be a c-replication of y and z(e−c) be a (e − c)-replication of z.

By Replication Invariance, we have P (xc) < P (yc) < P (z(e−c)). Thus, by Subgroup

Consistency, we have that P (xc, z(e−c)) < P (yc, z(e−c)). Now, we constructed these

replications such that v̂ = m((xc, z(e−c))) and v̂∗ = m((yc, z(e−c))). By (8), we

obtain v̂ ≻ v̂∗, the desired contradiction.

Second, we use the previous result to show that v ≻ v′. Partition ∆ into three

42We call this indifference curve “implicit” because it is defined in ∆R+ rather than in ∆.
43The alternative contradiction assumption for which v̂2 <

v̂∗

1

v∗

1

also leads to an impossibility.

44If v̂∗ /∈ ∆, then replace v̂∗ by a nearby ṽ∗ ∈ E100

001
for which ṽ∗

1
> v̂∗

1
and v̂2 >

ṽ∗

1

v∗

1

. As ṽ∗
1
> v̂∗

1
,

we have ṽ∗ ≻ v̂.
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subsets, i.e. ∆ = ∆100′ ∪ ∆v̂ ∪ ∆001′ defined as ∆v̂ = {v′′ ∈ ∆ | F (v′′) = F (v̂)},

∆100′ = {v′′ ∈ ∆ | F (v′′) > F (v̂)} and ∆001′ = {v′′ ∈ ∆ | F (v′′) < F (v̂)}. We

have by construction that v ∈ ∆100′ and v′ ∈ ∆001′ . We can show that v′ ≺ v̂ using

the same proof technique as above, i.e. show that v′ is on a segment connecting

v̂ to a v′′ on the edge E100
001 with v′′1 < v̂∗1 and, hence, such that v′′ ≺ v̂. By the

convexity property of �, this yields in turn v′ ≺ v̂. Similarly, we can show that

v ≻ v̂ by showing that v is on a segment connecting v̂ to a v′′′ that is either on the

edge E100
001 with v′′′1 > v̂∗1 and, hence, such that v′′′ ≻ v̂ or on the edge E100

010 and, as

v100 ≻ v010 ≻ v̂, such that v′′′ ≻ v̂. This implies in both cases that v ≻ v̂.

7.2 Proof of Lemma 1

We prove in Proposition 6 a slightly more general result, which requires to refine the

definition of a constant population pyramid.

Definition 1 (Constant population pyramid up to a′).

The pair (x, µ) ∈ X ×M has a constant population pyramid up to a′ if we have for

all a ∈ {0, . . . , a′} that

na+1(x) = na(x) ∗ (1− µa). (9)

The pair (x, µ) has a constant population pyramid if it has a constant pop-

ulation pyramid up to a∗ − 1, implying that (9) holds for all a ∈ {0, . . . , a∗ − 1}.

Observe that a constant population pyramid does not require that past mortality

rates and natality were constant.

Proposition 6 (Equivalence between ID, GD and ED indices in equilibrium).

If the pair (x, µ) ∈ X ×M has a constant population pyramid, then we have that

PED
γ (x, µ) = PGD

γ (x, µ).

If in addition na(x) + da(x) = n∗ ∈ N for all a ∈ {0, . . . , â− 1},

PED
γ (x, µ) = PGD

γ (x, µ) = P ID
γ (x).

Proof. We prove both equalities in turn.

First, we show that PED
γ (x, µ) = PGD

γ (x, µ), where

PGD
γ (x, µ) =

(p(x) + f(x)) ∗HC(x)

p(x) + f(x) + dGD(x, µ)
+ γ

dGD(x, µ)

p(x) + f(x) + dGD(x, µ)
.

Given that (x, µ) has a constant population pyramid, we have for all a ∈ {0, . . . , a∗}

that

na(x) = n0(x) ∗

a−1∏

l=0

(1− µl). (10)

43



Using (10), the definition of dGD(x, µ) may be rewritten

dGD(x, µ) =
â−1∑

a=0

na(x) ∗ µa ∗ (â− (a+ 1)),

= n0(x)

â−1∑

a=0

(â− (a+ 1)) ∗ µa ∗

a−1∏

l=0

(1 − µl),

= n0(x)LGEâ(µ).

Similarly, given that (x, µ) has a constant population pyramid, we may rewritte

p(x) + f(x) using (10) as

p(x) + f(x) =

a∗

∑

a=0

na(x),

= n0(x)

a∗

∑

a=0

a−1∏

l=0

(1− µl),

= n0(x)LE(µ).

Replacing dGD(x, µ) and p(x) + f(x) in the definition of PGD
γ (x, µ) yields

PGD
γ (x, µ) =

n0(x)LE(µ)HC(x)

n0(x)LE(µ) + n0(x)LGEâ(µ)
+ γ

n0(x)LGEâ(µ)

n0(x)LE(µ) + n0(x)LGEâ(µ)
,

=
LE(µ) ∗HC(x)

LE(µ) + LGEâ(µ)
+ γ

LGEâ(µ)

LE(µ) + LGEâ(µ)
= PED

γ (x, µ).

Second, we show that PGD
γ (x, µ) = P ID

γ (x). As the pair (x, µ) has a constant

population pyramid and for all cohorts a ∈ {0, . . . , â−1} we have that na(x)+da(x) =

n∗, Lemma 2 applies and we have d(x) = dGD(x, µ). Therefore, the definition of

PGD
γ (x, µ) becomes

PGD
γ (x, µ) =

(p(x) + f(x)) ∗HC(x)

p(x) + f(x) + dGD(x, µ)
+ γ

dGD(x, µ)

p(x) + f(x) + dGD(x, µ)
,

=
(p(x) + f(x)) ∗HC(x)

p(x) + f(x) + d(x)
+ γ

d(x)

p(x) + f(x) + d(x)
= P ID

γ (x).

Lemma 2 (Equivalence between d and dGD in stationary pairs).

If the pair (x, µ) ∈ O has a constant population pyramid up to â−2 and for all cohorts

a ∈ {0, . . . , â− 1} we have na(x) + da(x) = n∗ ∈ N, then we have d(x) = dGD(x, µ).

Proof. The proof is direct. Take any pair (x, µ) ∈ X × M that has a constant

population pyramid up to â − 2 and such that for all cohorts a ∈ {0, . . . , â − 1}

we have na(x) + da(x) = n∗ ∈ N. By definition, the number of prematurely dead

individuals in period t counted by the inherited deprivation approach is

d(x) =

â−1∑

a=1

da(x).
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Given that the number of newborns is assumed constant in earlier periods,

d(x) =

â−1∑

a=1

(n∗ − na(x)) .

As n0(x) = n∗, we may rewritte the previous equation as

d(x) =

â−1∑

a=1

(
a−1∑

a′=0

(na′(x)− na′+1(x))

)

,

and developing the sums, we get

d(x) = (â− 1)(n0(x)− n1(x)) + (â− 2)(n1(x)− n2(x)) + · · ·+ (â− (â− 1))(nâ−2(x) − nâ−1(x)),

=

â−2∑

a=0

(na(x) − na+1(x))(â − (a+ 1)),

and given that â− ((â− 1) + 1) = 0, this is equivalent to

d(x) =
â−1∑

a=0

(na(x) − na+1(x))(â − (a+ 1)).

Finally, as the pair (x, µ) has a constant population pyramid up to â− 2 we have for

all a ∈ {0, . . . , â− 2} that na+1(x) = na(x)− na(x) ∗ µa and therefore we have

d(x) =

â−1∑

a=0

na(x) ∗ µa ∗ (â− (a+ 1)) = dGD(x, µ).

7.3 Proof of Proposition 2

First, we provide the formal definition of the axioms not defined in the text.

Deprivation axiom 12 (Independence of Dead*). For all (x, µ) ∈ O and i ≤ n(x),

if si = D, then P ((xi, x−i), µ) = P (x−i, µ).

Deprivation axiom 13 (Independence of Birth Year). For all (x, µ) ∈ O and

i ≤ n(x), if si = s′i, then P ((xi, x−i), µ) = P ((x′

i, x−i), µ).

Deprivation axiom 14 (Replication Invariance*). For all (x, µ) ∈ O and k ∈ N,

P (xk, µ) = P (x, µ).

Proving that the ED index satisfies Independence of Dead*, Replication Invari-

ance* and Independence of Birth Year is straightforward and left to the reader.

Finally, Lemma 1 shows that the ED index satisfies ID Equivalence.

We prove sufficiency. Take any pair (x, µ) ∈ O. We construct another pair (x′′′, µ)

that is stationary and such that P (x′′′, µ) = P (x, µ) and PED(x′′′, µ) = PED(x, µ).

Given that (x′′′, µ) is stationary, we have by ID Equivalence that P (x′′′, µ) = PED(x′′′, µ).

The characteristics of (x′′′, µ) then imply that P (x, µ) = PED(x, µ), the desired re-

sult.

We turn to the construction of the stationary pair (x′′′, µ). One difficulty is to

ensure that the mortality rates µa are feasible in a constant population pyramid
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given the number of alive individuals na(x
′′′), which is µa = c

na(x′′′) for some c ∈ N.

We first construct a k−replication of x that has sufficiently many alive individuals

to meet this constraint. By definition, mortality rates can be expressed as µa = ca
ea

where ca, ea ∈ N. Let e =
∏a∗

−1
j=0 ej , n

′

a = e
∏a−1

j=0 (1−
cj
ej
) and n′ =

∑a∗

j=0 n
′

j . Let x′

be a n′−replication of x. Letting nx =
∑a∗

j=0 nj(x) be the number of alive individuals

in distribution x, we have by construction that x′ has n′ ∗ nx alive individuals. We

have P (x′, µ) = P (x, µ) by Replication Invariance*.

We define x′′ from x′ by changing the age of alive individuals in such a way that

(x′′, µ) has a constant population pyramid. We construct x′′ with n(x′′) = n(x′)

such that

• dead individuals in x′ are also dead in x′′,

• alive individuals in x′ are also alive in x′′ and have the same status,

• the birth year of alive individuals are changed such that, for each a ∈ {0, . . . , a∗},

the number of a-years old individuals is n′ ∗ nx ∗

∏a−1

j=0
(1−

cj

ej
)

∑
a∗

k=0

∏k−1

j=0
(1−

cj
ej

)
.

One can check that (x′′, µ) has a constant population pyramid and that each

age group has a number of alive individuals in N. We have P (x′′, µ) = P (x′, µ) by

Independence of Birth Year.

Define x′′′ from x′′ by changing the number and age of dead individuals in such

a way that (x′′′, µ) is stationary. To do so, place exactly n0(x
′′) − na(x

′′) dead

individuals in each age group a. We have P (x′′′, µ) = P (x′′, µ) by Independence of

Dead*.

Together, we have that P (x′′′, µ) = P (x, µ). Finally, by construction, HC(x′′′) =

HC(x), which implies that PED(x′′′, µ) = PED(x, µ).

7.4 Proof of Proposition 3

We first prove necessity. Proving that the FP index satisfies Independence of Dead*

is straightforward and left to the reader. Lemma 1 shows that the GD index satisfies

ID Equivalence. Finally, the GD index satisfies Additive Decomposibility when the

size function is defined as η(x, µ) = f(x) + p(x) + dGD(x, µ). We show that this

function is indeed such that η(x, µ) = η(x′, µ′) + η(x′′, µ′′). Given that f(x′, x′′) +

p(x′, x′′) = f(x′) + p(x′) + f(x′′) + p(x′′), we must show that dGD((x′, x′′), µ) =

dGD(x′, µ′) + dGD(x′′, µ′′). We have

dGD((x′, x′′), µ) =

â−1∑

a=0

na(x
′, x′′) ∗ µa ∗ (â− (a+ 1))

=

â−1∑

a=0

(na(x
′) + na(x

′′)) ∗
na(x

′) ∗ µ′

a + na(x
′′) ∗ µ′′

a

na(x′) + na(x′′)
∗ (â− (a+ 1))

= dGD(x′, µ′) + dGD(x′′, µ′′).

It is then straighforwd to verify (4) by replacing P and η by their expressions.

We now prove sufficiency. Take any pair (x′, µ) ∈ O. Consider the distribution x

obtained from x′ by removing all dead individuals in x. We have P (x, µ) = P (x′, µ)

by Independence of Dead* and also PGD
γ (x, µ) = PGD

γ (x′, µ).
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The proof requires to define, for each a ∈ {0, . . . , a∗}, two counterfactual pairs

(x∗

a, µ
∗

a) and (x0
a, µ

0
a), which are illustrated in the center and right panels of Figure

15.

Age

Number

0 1 2 4
â = a∗
3

indiv.

pair (x, µ)

na(x)

# Death at age a at end of period t

a

# NP at age a

# AP at age a

Age

0 1 2 4
â = a∗
3

pair (x∗
a, µ

∗
a)

na(x)

a

Age

0 1 2 4
â = a∗
3

pair (x0
a, µ

0
a)

na(x)

a

Figure 15: Left panel: pair (x, µ). Center panel: stationary pair (x∗

a, µ
∗

a), where
dead individuals are not shown. Right panel: degenerated pair (x0

a, µ
0
a).

The counterfactual pair (x∗

a, µ
∗

a) is stationary. The vector µ∗

a is such that mor-

tality rates are zero except for two cases: µ∗

a = µa and µ∗

a∗ = 1, which is µ∗

a =

(0, . . . , 0, µa, 0, . . . , 0, 1). We now turn to the construction of the distribution x∗

a. At

all ages a′ ≤ a, there are exactly na(x) alive individuals (i.e. na′(x∗

a) = na(x)); for

ages a′ > a we have na′(x∗

a) = na(x) ∗ (1 − µa). At all ages a′ ≤ a, there are no

dead individuals; for ages a′ > a, this number is na(x) ∗µa. There are no poor (AP)

individuals in x∗

a except at age a, where this number is equal to the number of a-years

old individuals in x whose status is AP, i.e. #{i ≤ n(x)|si = AP and bi = t− a}.

The counterfactual pair (x0
a, µ

0
a) is not stationary and all its alive individuals are

a-years old. The vector µ0
a = µ∗

a, which is µ0
a = (0, . . . , 0, µa, 0, . . . , 0, 1). We now

turn to the construction of distribution x0
a. At all ages a′ 6= a, there are no alive

individuals (i.e. na′(x0
a) = 0); and we have na(x

0
a) = na(x). There are no dead

individuals. The number of AP individuals in x0
a is equal to the number of a-years

old individuals in x who are AP, i.e. #{i ≤ n(x)|si = AP and bi = t− a}.

By iterative application of Additive Decomposibility, we have that

P (x, µ) =

∑a∗

j=0 η(x
0
j , µ

0
j) ∗ P (x0

j , µ
0
j)

∑a∗

j=0 η(x
0
j , µ

0
j)

. (11)

Expression (11) holds in particular for the stationary pair (x∗

a, µ
∗

a):

P (x∗

a, µ
∗

a) =

∑a∗

j=0 η((x
∗

a)
0
j , (µ

∗

a)
0
j ) ∗ P ((x∗

a)
0
j , (µ

∗

a)
0
j )

∑a∗

j=0 η((x
∗
a)

0
j , (µ

∗
a)

0
j )

, (12)

where the pair ((x∗

a)
0
j , (µ

∗

a)
0
j) is the degenate pair associated to stationary pair (x∗

a, µ
∗

a)

at age j. In particular, the mortality vector (µ∗

a)
0
j = µ∗

a for j = a and (µ∗

a)
0
j =

(0, . . . , 0, 1) for j 6= a; and for j = a we have ((x∗

a)
0
j , (µ

∗

a)
0
j) = (x0

a, µ
0
a).

For all j 6= a we show that P ((x∗

a)
0
j , (µ

∗

a)
0
j ) = 0. Recall that (µ∗

a)
0
j = (0, . . . , 0, 1)

and that (x∗

a)
0
j has zero j-years old individuals whose status is AP. Consider the

stationary pair (x′′′, µ′′′) such that µ′′′ = (0, . . . , 0, 1) and such that distribution x′′′
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has zero AP individual and zero dead individual. By ID Equivalence, we have that

P (x′′′, µ′′′) = PGD
γ (x′′′, µ′′′) = 0. Provided that n(x′′′) = nj(x

∗

a) ∗ (a
∗ + 1), we have

that P ((x∗

a)
0
j , (µ

∗

a)
0
j ) appears in the decomposition (11) applied to (x′′′, µ′′′). Given

that P does not yield negative images, we must have that P ((x∗

a)
0
j , (µ

∗

a)
0
j) = 0.45

As (x∗

a, µ
∗

a) is stationary, we have from ID Equivalence that P (x∗

a, µ
∗

a) = PGD
γ (x∗

a, µ
∗

a).

Given that P ((x∗

a)
0
j , (µ

∗

a)
0
j) = 0 for all j 6= a, and

∑a∗

j=0 η((x
∗

a)
0
j , (µ

∗

a)
0
j) = η(x∗

a, µ
∗

a),

(12) may be rewritten as

P ((x∗

a)
0
a, (µ

∗

a)
0
a) =

η(x∗

a, µ
∗

a) ∗ P
GD
γ (x∗

a, µ
∗

a)

η((x∗
a)

0
a, (µ

∗
a)

0
a)

.

As ((x∗

a)
0
a, (µ

∗

a)
0
a) = (x0

a, µ
0
a), this last identity becomes

P (x0
a, µ

0
a) =

η(x∗

a, µ
∗

a) ∗ P
GD
γ (x∗

a, µ
∗

a)

η(x0
a, µ

0
a)

.

Inserting this last expression in (11), where
∑a∗

j=0 η(x
0
j , µ

0
j) = η(x, µ), yields

P (x, µ) =

∑a∗

j=0 η(x
∗

j , µ
∗

j ) ∗ P
GD
γ (x∗

j , µ
∗

j )

η(x, µ)
. (13)

Equation (13) holds for all pairs in O. If we have that function η is defined

as η(x, µ) = f(x) + p(x) + dGD(x, µ), then (13) simplifies to P (x, µ) = PGD
γ (x, µ)

and the proof is complete. We now show that the function η is indeed expressed

as η(x, µ) = f(x) + p(x) + dGD(x, µ). Equation (13) holds in particular for any

stationary pair (x′, µ′). Therefore, by ID Equivalence we have

PGD
γ (x′, µ′) =

∑a∗

j=0 η((x
′)∗j , (µ

′)∗j ) ∗ P
GD
γ ((x′)∗j , (µ

′)∗j )

η(x′, µ′)
, (14)

where the pair ((x′)∗j , (µ
′)∗j ) is the stationary pair associated to the pair (x′, µ′) at

age j. Then, last expression only holds if function η has the appropriate expression.

7.5 Proof of Proposition 4

Take any (x, µ) ∈ O. For the sake of notation simplicity, we henceforth use usa

to denote u(sa). Consider the affine transformation of EU defined as EU ′(x, µ) =
1
â
EU(x, µ)− uNP . As β = 1, we can write

EU ′(x, µ) =
1

â

[

E

a∗

∑

a=0

u(sa)S(a, µ)−
a∗

∑

a=0

S(a, µ)uNP −

(

â−
a∗

∑

a=0

S(a, µ)

)

uNP

]

.

Letting πa(x) denote the fraction of the alive individuals of age a who are poor in

distribution x, we have Eu(sa) = πa(x)uAP + (1− πa(x))uNP and therefore

EU ′(x, µ) =
1

â

[
a∗

∑

a=0

πa(x) (uAP − uNP )S(a, µ)−

(

â−

a∗

∑

a=0

S(a, µ)

)

uNP

]

.

45In order to be complete, there remains to show that η((x∗

a)
0

j , (µ
∗

a)
0

j ) > 0 when nj(x∗

a) > 0. If

not, one can derive a contradiction with the requirement that η(x, µ) = η(x′, µ′) + η(x′′, µ′′).
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As
∑a∗

a=0 S(a, µ) =
∑a∗

a=0

∏a−1
l=0 (1 − µl) = LE(µ), the previous expression becomes

EU ′(x, µ) =
1

â

[

LE(µ)HC(x) (uAP − uNP )−

(

â−

a∗

∑

a=0

S(a, µ)

)

uNP

]

.

When â > a∗, we have that â = LE(µ)+LGEâ(µ) and therefore â−
∑a∗

a=0 S(a, µ) =

LGEâ(µ), hence

EU ′(x, µ) =
1

LE(µ) + LGEâ(µ)
[LE(µ)HC(x) (uAP − uNP ) + LGEâ(µ)(−uNP )] .

As (uAP − uNP ) < 0 we have for any two (x, µ), (x′, µ′) ∈ O that

EU ′(x, µ) ≥ EU ′(x′, µ′) ⇔
EU ′(x, µ)

uAP − uNP

≤
EU ′(x′, µ′)

uAP − uNP

,

the desired result since PED
γ = EU ′

uAP−uNP
when γ = −uNP

uAP−uNP
and the affine trans-

formation preserves the ranking of all pairs.

7.6 Proof of Proposition 5

The definition of PED
γ (x, µ) is

PED
γ (x, µ) =

LE(µ) ∗HC(x)

LE(µ) + LGEâ(µ)
+ γ

LGEâ(µ)

LE(µ) + LGEâ(µ)
.

Let n(x) = p(x) + f(x) be the number of alive individuals in x. When multiplying

the numerator and denomitor by n(x)
LE(µ) , we get

PED
γ (x, µ) =

n(x) ∗HC(x) + γ ∗ LGEâ(µ)∗n(x)
LE(µ)

n(x) + LGEâ(µ)∗n(x)
LE(µ)

,

Therefore inequality PED
γ (x, µ) ≤ PGD

γ (x, µ) becomes

n(x) ∗HC(x) + γ ∗ LGEâ(µ)∗n(x)
LE(µ)

n(x) + LGEâ(µ)∗n(x)
LE(µ)

≤
n(x) ∗HC(x) + γ ∗ dGD(x, µ)

n(x) + dGD(x, µ)
. (15)

When γ ≥ 1, each of the two fractions compared in inequality (15) is monotonically

increasing in the factor multiplying γ, respectively LGEâ(µ) ∗ n(x)/LE(µ) and dGD.46

Therefore, inequality (15) is equivalent to

LGEâ(µ) ∗ n(x)

LE(µ)
≤ dGD(x, µ). (16)

46For example, PGD
γ is increasing in dGD as we have by chain derivation that

∂PGD
γ

∂dGD
=

γ(n(x) + dGD)− (n(x) ∗HC(x) + γ ∗ dGD)

(n(x) + dGD)2
=

n(x) ∗ (γ −HC(x))

(n(x) + dGD)2
,

where γ ≥ HC(x) when γ ≥ 1 as there is at least one individual who is non-poor.
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Last inequality is equivalent to

p(x)

p(x) + n(x) ∗ LGEâ(µ)
LE(µ)

≥
p(x)

p(x) + dGD(x, µ)
,

and recalling that HC(x) = p(x)
n(x) , we obtain

LE(µ) ∗HC(x)

LE(µ) ∗HC(x) + LGEâ(µ)
≥

p(x)

p(x) + dGD(x, µ)
,

which is equivalent to inequality (6).

Then, replacing dGD and LGEâ in inequality (16) by their definitions leads to

n(x)

LE(µ)
∗

â−1∑

a=0

(â− (a+ 1)) ∗ µa ∗

a−1∏

l=0

(1− µl) ≤

â−1∑

a=0

(â− (a+ 1)) ∗ µa ∗ na(x).

As µx is the mortality vector for which (x, µx) has a constant population pyramid,

we have for all a ∈ {0, . . . , a∗} that na(x) = n0(x) ∗
∏a−1

l=0 (1− µx
l ). Replacing na(x)

in last inequality leads to

n(x)

LE(µ)
∗

â−1∑

a=0

(â− (a+ 1)) ∗ µa ∗

a−1∏

l=0

(1− µl) ≤ n0(x) ∗

â−1∑

a=0

(â− (a+ 1)) ∗ µa ∗

a−1∏

l=0

(1 − µx
l ).

where n(x) =
∑a∗

a=0 n0(x) ∗
∏a−1

l=0 (1 − µx
l ) = n0(x) ∗ LE(µx), yielding

∑â−1
a=0(â− (a+ 1)) ∗

∏a−1
l=0 (1− µl) ∗ µa

LE(µ)
≤

∑â−1
a=0(â− (a+ 1)) ∗

∏a−1
l=0 (1− µx

l ) ∗ µa

LE(µx)
,

the desired result.

7.7 Lemma 3

Lemma 3 (LGEâ equivalent to LE for large â).

For any two mortality vectors µ, ν ∈ M , if we have â > a∗, then we have

LGEâ(µ) ≤ LGEâ(ν) ⇔ LE(µ) ≥ LE(ν)

Proof. Take any µ, ν ∈ M . If we show for all µ′ ∈ M that if â > a∗ we have

LE(µ′) = â− LGEâ(µ
′), (17)

then LE(µ) ≥ LE(ν) may be rewritten as

â− LGEâ(µ) ≥ â− LGEâ(ν),

which is equivalent to LGEâ(µ) ≤ LGEâ(ν), the desired result.
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There remains to prove that (17) holds for all µ′ ∈ M . For all µ′ ∈ M we have

LE(µ′) =
a∗

∑

a=0

a−1∏

l=0

(1 − µ′

l),

=

a∗

∑

a=0





a∗

∑

a′=a

µ′

a′ ∗

a′
−1∏

l=0

(1− µ′

l)



 ,

and developing the sums, we get

LE(µ′) =(a∗ + 1)

(

µ′

a∗ ∗
a∗

−1∏

l=0

(1− µ′

l)

)

+ (a∗)

(

µ′

a∗−1 ∗
a∗

−2∏

l=0

(1− µ′

l)

)

+

· · ·+ 2

(

µ′

1 ∗
0∏

l=0

(1 − µ′

l)

)

+ µ′

0,

=

a∗

∑

a=0

(a+ 1) ∗ µ′

a ∗

a−1∏

l=0

(1− µ′

l)

=

a∗

∑

a=0

(â− â+ (a+ 1)) ∗ µ′

a ∗

a−1∏

l=0

(1− µ′

l)

=

a∗

∑

a=0

â ∗ µ′

a ∗

a−1∏

l=0

(1− µ′

l)−

a∗

∑

a=0

(â− (a+ 1)) ∗ µ′

a ∗

a−1∏

l=0

(1− µ′

l)

and because we have that
∑a∗

a=0 µ
′

a ∗
∏a−1

l=0 (1 − µ′

l) = 1 since µ′

a∗ = 1, last equation

becomes

LE(µ′) = â−

a∗

∑

a=0

(â− (a+ 1)) ∗ µ′

a ∗

a−1∏

l=0

(1− µ′

l).

For all a ≥ a∗+1 we have that
∏a−1

l=0 (1−µ′

l) = 0 since µ′

a∗ = 1 as µ′ ∈ M . Therefore,

as â > a∗ we have that

LE(µ′) = â−

â∑

a=0

(â− (a+ 1)) ∗ µ′

a ∗

a−1∏

l=0

(1− µ′

l),

= â− LGEâ(µ
′),

the desired result.
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