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known Random Priority mechanism by characterizing it as the unique mechanism that is efficient,
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1 Introduction

Consider a group of agents who must come together to make a choice from some set of
potential outcomes that will affect each of them. This can be modeled as having the agents
play a “game”, taking turns choosing from sets of actions (possibly simultaneously), with
the final outcome determined by the decisions made by all of the agents each time they
were called to play. To ensure that the ultimate decision taken satisfies desirable normative
properties (e.g., efficiency), the standard approach in mechanism design is to provide agents
with incentives to play in a predictable optimal way. For instance, the designer may use a
Bayesian or dominant-strategy incentive-compatible direct mechanism where it is optimal
for agents to simply report all of their private information truthfully. This approach succeeds
if the participants understand that being truthful is in their interest, but there is evidence
many real-world agents do not report the truth, even in strategy-proof mechanisms.1 In
other words, Bayesian or dominant-strategy mechanisms, may not be sufficiently simple for
participants to play optimally in practice. Simpler mechanisms are also appealing because
they lower participation costs, attract participants, and equalize opportunities across partici-
pants with different levels of access to information and strategic sophistication. Additionally,
designing simpler mechanisms requires less information about participants’ beliefs.2

What mechanisms, then, are actually “simple to play”? We address this question by
introducing a general class of simplicity standards that vary the foresight abilities required
of agents in extensive-form imperfect-information games. We then use these standards to
assess the restrictions simplicity imposes on the mechanism designer, as well as to characterize
simple mechanisms for a broad range of social choice environments both with and without
transfers.3 Similarly to how the revelation principle allows a designer to limit the search for
a Bayesian mechanism to the space of incentive-compatible direct mechanisms, our results
construct classes of mechanisms that allows one to do the same when searching for simple
mechanisms.4 As applications, we provide microfoundations for popular simple mechanisms
such as posted prices, ascending auctions, and Random Priority.

1See, e.g., Kagel, Harstad, and Levin (1987), Li (2017b), Hassidim, Romm, and Shorrer (2016), Rees-Jones
(2017), Rees-Jones (2018), Shorrer and Sóvágó (2018), and Artemov, Che, and He (2017).

2See Vickrey (1961) for participation costs, Spenner and Freeman (2012) for attracting participants,
Pathak and Sönmez (2008) for leveling the playing field, and Wilson (1987) and Bergemann and Morris
(2005) for a designer’s informational requirements.

3Examples include auctions (Vickrey, 1961; Riley and Samuelson, 1981; Myerson, 1981), voting (Arrow,
1963), school choice (Abdulkadiroğlu and Sönmez, 2003), organ exchange (Roth, Sönmez, and Ünver, 2004),
course allocation (Sönmez and Ünver, 2010; Budish and Cantillon, 2012), and refugee resettlement (Jones
and Teytelboym, 2016; Delacrétaz et al., 2016).

4Direct mechanisms are not necessarily simple, and hence the revelation principle does not extend to
simple extensive form games, cf. Li (2017b).
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The main innovation in our approach is a departure from the standard assumption that
agents plan a complete strategy for every possible future contingency; rather, we consider
agents that, at each information set, make plans for only those information sets that they
perceive as simple from the current perspective. We refer to these plans as partial strategic
plans.5 A (partial) strategic plan is simply dominant if the called for action is weakly better
than any alternative, irrespective of what happens at information sets that are not simple.
As the game progresses, the agent’s perception of which information sets are simple may
change, and agents may update their strategic plans along the path of the game, which is
what differentiates strategic plans from the standard game-theoretic concept of a strategy.6

Variations in the sets of information sets perceived as simple gives rise to a family of sim-
ple dominance standards that vary in strength. The stronger the simplicity standard—i.e.,
the fewer information sets in the future that are perceived as simple from today’s perspec-
tive—the more robust the corresponding mechanisms is to agents who can plan for only
limited future horizons (e.g., because of non-exponential discounting) or whose decision ca-
pabilities are otherwise constrained.7 We focus on special cases of simple dominance in which
agents are able to plan some exogenously given number k ∈ {0,1, ...,∞} of future moves; that
is, they perceive as simple their current information set and only the first k information sets
at which they may be called to play in the continuation game. We show that the longer
the foresight horizon of the agents, the more social choice rules a designer can implement
in a simply-dominant way; furthermore, without loss of flexibility, the designer can restrict
attention to perfect-information extensive-form games.

We analyze three special cases of simple dominance in detail.

• k = ∞: agents perceive all of their own information sets as simple, and all information
sets of other agents as not simple—in other words, at each information set, an agent
can plan the actions they will take at any future information set at which they may be
called to play. This is equivalent to Li’s (2017b) notion of obvious dominance; for this
reason, we refer to the resulting simply dominant strategic plans as obviously dominant,

5Savage (1954) wrestles with whether decision-makers should be modeled as “look before you leap” (create
a complete contingent plan for all possible future decisions one may face) or “you can cross that bridge when
you come to it” (make choices as they arise). While standard strategic concepts of game theory formalize
the former modeling option, our approach formalizes the latter.

6We are agnostic as to whether the agents are sophisticated and understand that their plans might be
updated, or whether the agents are naive about this possibility. Simple dominance only requires that the
initial action of the strategic plan is unambiguously better than other actions the agent could have chosen
at the information set at which the plan is made; the subsequent actions of the strategic plan merely ensure
the optimality of the initial action.

7We show that a strategic plan is simply dominant if and only if in every game an agent may confuse
with the actual game being played, the strategic plan is weakly dominant in the standard sense (Theorem
3). Li (2017b) provides a related behavioral microfoundation for his obvious dominance, on which we build.
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and the corresponding mechanisms as obviously strategy-proof (OSP).

• k = 1: agents perceive as simple their current information set and only the first infor-
mation sets at which they may be called to play in the continuation game—in other
words, agents are able to plan at most one move ahead at a time. We refer to the re-
sulting simply dominant strategic plans as one-step dominant, and the corresponding
mechanisms as one-step simple (OSS).

• k = 0: agents perceive as simple only their own current information set—in other words,
agents cannot plan for any moves in the future. We refer to the resulting resulting
simply dominant strategic plans as strongly obviously dominant, and the corresponding
mechanisms as strongly obviously strategy-proof (SOSP).

The above concepts are nested: strongly obviously dominant strategic plans are one-step
dominant, which in turn are obviously dominant. While obvious dominance is the most
permissive standard, it relies on the assumption that agents can create a complete plan for
all possible contingencies going forward, and further are able to perform backwards induction
over at least their own future actions (though not over the actions of their opponents). As
an example, consider the game of chess: assuming that White can always force a win, any
winning strategy of White is obviously dominant; yet, the strategic choices in chess are far
from obvious. On the other hand, winning strategies in chess are not one-step dominant
dominant, nor strongly obviously dominant, as they require looking many steps into the
future. Games that admit one-step and/or strongly obviously dominant strategies do not
require agents to have such lengthy foresight.

For the above three simplicity standards we ask: which mechanisms are simple? For
obvious dominance, we focus on social choice environments without transfers, hence comple-
menting Li (2017b), who focuses on the case with transfers. We show that OSP games can
be represented as millipede games. In a millipede game, each time an agent is called to move,
she is presented with some subset of payoff-equivalent outcomes, or more simply payoffs, that
she can ‘clinch’, after which she leaves the game; she also may be given the opportunity to
‘pass’ and remain in the game, with the potential of being offered better clinching options
in the future. If this agent passes, another agent is presented with an analogous choice, etc.,
until one of them eventually clinches and leaves the game, and the process continues with the
next agent. While some millipede games, such as serial dictatorships, are frequently encoun-
tered and are indeed simple to play, others are rarely observed in market-design practice, and
their strategy-proofness is not necessarily immediately clear. In particular, similar to chess,
some millipede games require agents to look far into the future and to perform potentially
complicated backward induction reasoning (see Figure 2 in Section 4.2 for an example).
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We next study one-step dominance in environments both with and without transfers.
We first show that in the binary allocation environments with transfers studied by Li
(2017b)—which encompass canonical special cases such as single-unit auctions and binary
public good choice—any one-step simple mechanism is equivalent to a personal clock auction.
This strengthens Li’s result that personal clock auctions are OSP by showing that there is
no loss in imposing OSS relative to OSP: any social choice rule that is implementable in
obviously dominant strategies is also implementable in one-step dominant strategic plans.
In no-transfer environments, one-step simplicity eliminates the complex, yet still formally,
OSP millipede games discussed above (and also eliminates games such as chess). Indeed,
we can characterize OSS millipede games as those that satisfy the following monotonicity
property: each time an agent is called to move, at any next move in the continuation game
at which the agent is called again (or terminal history), the agent is able to clinch a payoff
that is either at least as good as anything she could have clinched previously, or at least as
good as anything that was possible but not clinchable. Monotonic games seem particularly
simple, both for a designer to implement, since the agent only needs to recognize that she
can do no worse at her very next move if she remains in the game.8

For strong obvious dominance, we show that SOSP games do not require agents to look far
into the future and perform lengthy backwards induction: in all such games, each agent has
essentially at most one payoff-relevant move. Thus, strongly obviously dominant strategic
plans are robust to agents who may be concerned about trembles, or have time-inconsistent
preferences. Building on this insight, we show that all SOSP games can be implemented
as sequential choice games in which each agent moves at most once, and, at this move, is
offered a choice from a menu of options. If the menu has three or more options for the
agent in question, then the agent’s final payoff is what they choose from the menu. If the
menu has only two options, then the agent’s final payoff might depend on other agents’
choices, but truthfully indicating the preferred option is the dominant choice. The offered
menu may include prices, in which case we call the mechanism a (sequential) posted price
mechanism. In this way, strong obvious dominance gives us a microfoundation for posted
prices, a ubiquitous sales mechanism.9

As an application of our analysis, we provide an axiomatic characterization of the well-
known Random Priority (RP; also known as Random Serial Dictatorship) mechanism using
simplicity, efficiency, and fairness axioms. In the context of no-transfer allocation problems,

8Note also that our monotonicity property is a generalization of a similar feature of ascending auctions
(and also Li’s personal clock auctions). In an ascending auction, if an agent passes (continues in the auction),
at any next move, she will be offered the opportunity to drop out (clinch the zero payoff), except if she wins.

9For earlier microfoundations of posted prices, see Hagerty and Rogerson (1987) and Copic and Ponsati
(2016).
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Random Priority works as follows: first Nature selects an ordering of agents, and then each
agent moves in turn and chooses her favorite object among those that remain available
given previous agents’ choices. This mechanism has a long history, and is used in a wide
variety of practical allocation problems, including school choice, worker assignment, course
allocation, and the allocation of public housing. Random Priority is well-known to have
good efficiency, fairness, and simplicity properties: it is Pareto efficient, it treats agents in a
symmetric way, and it is obviously strategy-proof (as well as one-step simple and strongly
obviously strategy-proof). However, it has until now remained unknown whether there are
other such mechanisms, and if so, what explains the relative popularity of Random Priority
over these alternatives.10 We show that there are none, thus resolving positively the quest
to establish Random Priority as the unique mechanism with good incentive, efficiency, and
fairness properties and thereby explaining its popularity in practical market design settings.

Our construction of the simplicity criteria is inspired by Li (2017b), who formalized obvi-
ous strategy-proofness and established its desirability as an incentive property; we go beyond
his work by allowing for the gradation of simplicity criteria—which allows us to assess the
trade-off between simplicity and implementation flexibility—and by providing simplicity-
based microfoundations for popular mechanisms such as posted prices and Random Priority.
Following up on Li’s work, but preceding ours, Ashlagi and Gonczarowski (2018) show that
stable mechanisms such as Deferred Acceptance (DA) are not obviously strategy-proof, ex-
cept in very restrictive environments whereDA simplifies to an obviously strategy-proof
game with a ‘clinch or pass’ structure similar to simple millipede games (though they do
not describe it in these terms). Other related papers include Troyan (2019), who stud-
ies obviously strategy-proof allocation via the popular Top Trading Cycles (TTC) mecha-
nisms, and provides a characterization of the priority structures under which TTC are OSP-
implementable.11 Following our work, Arribillaga et al. (2020) and Arribillaga et al. (2019)
characterize the voting rules that are obviously strategy-proof on domains of single-peaked

10The efficiency and fairness of Random Priority were recognized already by Abdulkadiroğlu and Sönmez
(1998), while its obvious strategy-proofness was established by Li (2017b). In single-unit demand allocation
with at most three agents and three objects, Bogomolnaia and Moulin (2001) proved that Random Priority
is the unique mechanism that is strategy-proof, efficient, and symmetric. In markets in which each object
is represented by many copies, Liu and Pycia (2011) and Pycia (2011) proved that Random Priority is
the asymptotically unique mechanism that is symmetric, asymptotically strategy-proof, and asymptotically
ordinally efficient. While these earlier results looked at either very small or very large markets, ours is the
first characterization that holds for any number of agents and objects.

11Li showed that the classic TTC mechanism of Shapley and Scarf (1974), in which each agent starts by
owning exactly one object, is not obviously strategy-proof. Following our and Troyan’s work, Mandal and Roy
(2020) characterize the priority structures under which Hierarchical Exchange of Pápai (2000) and Trading
Cycles (group strategy-proof and efficient mechanisms) of Pycia and Ünver (2017) are OSP-implementable;
cf. also Mandal and Roy (2021).
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preferences. Bade and Gonczarowski (2017) study obviously strategy-proof and efficient so-
cial choice rules in several environments. Mackenzie (2020) introduces the notion of a “round
table mechanism” for OSP implementation and draws parallels with the standard Myerson-
Riley revelation principle for direct mechanisms. There has been less work that goes beyond
Li’s obvious dominance. Li (2017a) extends his ideas to an ex post equilibrium context,
while Zhang and Levin (2017a; 2017b) provide decision-theoretic foundations for obvious
dominance and explore weaker incentive concepts.12

Our work contributes to the understanding of limited foresight and limits on backward
induction. Other work in this area—with different approaches from ours—includes Jehiel
(1995; 2001) on limited foresight equilibrium in which players’ forecasts are correct, Gabaix
et al. (2006) on directed cognition, Ke’s (2019) axiomatization of bounded-horizon backward
induction, as well as the rich literature on time-inconsistent preferences (e.g., Laibson (1997)
and Gul and Pesendorfer (2001; 2004)). A major difficulty for models of imperfect foresight
is the question of how an agent takes into account the future they are unable to foresee; we
resolve this difficulty by designing games in which all resolutions of the unforeseen lead the
agent to the same current decision.13

The paper also adds to our understanding of dominant incentives, efficiency, and fair-
ness in settings with and without transfers. In settings with transfers, these questions were
studied by e.g. Vickrey (1961), Clarke (1971), Groves (1973), Green and Laffont (1977),
Holmstrom (1979), Dasgupta et al. (1979), and Hagerty and Rogerson (1987). In settings
without transfers, in addition to Gibbard (1973, 1977) and Satterthwaite (1975) and the allo-
cation papers mentioned above, the literature on mechanisms satisfying these key objectives
includes Ehlers (2002) and Pycia and Unver (2020; 2017) who characterized efficient and
group strategy-proof mechanisms in settings with single-unit demand, and Pápai (2001) and
Hatfield (2009) who provided such characterizations for settings with multi-unit demand.14

Liu and Pycia (2011), Pycia (2011), Morrill (2015), Hakimov and Kesten (2014), Ehlers
and Morrill (2017), and Troyan et al. (2020) characterize mechanisms that satisfy incentive,
efficiency, and fairness objectives.

12Also of note is Glazer and Rubinstein (1996), who argued that extensive-form games may simplify the
solution of normal-form games, and Loertscher and Marx (2020), who study environments with transfers
and construct a prior-free obviously strategy-proof mechanism that becomes asymptotically optimal as the
number of buyers and sellers grows. A different strategic perspective on simplicity in mechanism design was
explored by Börgers and Li (2019).

13The issue of accounting for the unforeseen is also crucial for the analyses of incomplete contracts (e.g.,
Maskin and Tirole, 1999) and unawareness (e.g., Karni and Viero, 2013). Agents who rely on incomplete
models have been also studied in the context of persuasion (e.g., Schwartzstein and Sunderam, 2021).

14Pycia and Ünver (2020) characterized individually strategy-proof and Arrovian efficient mechanisms.
For an analysis of these issues under additional feasibility constraints, see also Dur and Ünver (2015) and
Root and Ahn (2020).
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2 Model

2.1 Preferences

Let N = {i1, . . . , iN} be a set of agents, and X a finite set of outcomes.15 An outcome might
involve a monetary transfer; we allow both environments with and without transfers. Each
agent has a preference ranking over outcomes, where, for any two x, y ∈ X , we write x ≿i y to
denote that x is weakly preferred to y. We allow for indifferences, and write x ∼i y if x ≿i y
and y ≿i x. For any ≿i, we let ≻i denote the corresponding strict preference relation, i.e.,
x ≻i y if x ≿i y but not y ≿i x. We use Pi to denote the domain of agent i’s preferences, and
refer to ≿i as agent i’s type.

We allow incomplete information through the standard imperfect-information construc-
tion of a meta-game in which Nature moves first and determines agents’ types, and only then
the designed game/mechanism is played. Due to the nature of the dominance properties we
study, we do not need to make any assumptions on agents’ beliefs about others’ types nor
on how agents’ evaluate lotteries.16

2.2 Extensive Form Games

To determine the outcome the planner designs a game Γ for the agents to play. We consider
imperfect-information, extensive-form games with perfect recall, which are defined in the
standard way: there is a finite collection of partially ordered histories, H. We write h′ ⊆ h
to denote that h′ ∈ H is a subhistory of h ∈ H, and h′ ⊂ h when h′ ⊆ h but h ≠ h′. Terminal
histories are denoted with bars, i.e., h̄. Each h̄ ∈ H is associated with an outcome in X . At
every non-terminal history h ∈ H, one agent, denoted ih, is called to play and has a finite set
of actions A(h) from which to choose. We write h′ = (h, a) to denote the history h′ that
is reached by starting at history h and following the action a ∈ A(h). To avoid trivialities,
we assume that no agent moves twice in a row and that ∣A(h)∣ > 1 for all non-terminal
h ∈ H. To capture random mechanisms, we also allow for histories h at which a non-strategic
agent, Nature, is called to move, and selects an action in A(h) according to some probability
distribution.

15Assuming X is finite simplifies the exposition and is satisfied in the examples listed in the introduction.
This assumption can be relaxed. For instance, our analysis goes through with no substantive changes if we
allow infinite X endowed with a topology such that agents’ preferences are continuous in this topology and
the relevant sets of outcomes are compact.

16It is natural to assume that an agent weakly prefers lottery µ over ν whenever for all outcomes x ∈

supp (µ) and y ∈ supp (ν) this agent weakly prefers x over y. This mild assumption is satisfied for expected
utility agents, as well as for agents who prefer µ to ν as soon as µ first-order stochastically dominates ν.
While our results do not rely on this assumption, it ensures that dominant actions always lead to weakly
preferred lotteries over outcomes.
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The set of histories at which agent i moves is denoted Hi = {h ∈ H ∶ ih = i}. The set Ii is
a partition of Hi into information sets, where, for any information set I ∈ Ii and h,h′ ∈ I
and any subhistories h̃ ⊆ h and h̃′ ⊆ h′ at which i moves, at least one of the following two
symmetric conditions obtains: either (i) there is a history h̃∗ ⊆ h̃ such that h̃∗ and h̃′ are in
the same information set, A(h̃∗) = A(h̃′), and i makes the same move at h̃∗ and h̃′, or (ii)
there is a history h̃∗ ⊆ h̃′ such that h̃∗ and h̃ are in the same information set, A(h̃∗) = A(h̃),
and i makes the same move at h̃∗ and h̃. We denote by I(h) ∈ Ii the information set
containing history h. We say that an information set I1 precedes information set I2 if there
are h1 ∈ I1 and h2 ∈ I2 such that h1 ⊆ h2; we then write I1 ≤ I2 (and I1 < I2 if I1 ≠ I2) and we
also say that I2 follows I1 and that I2 is a continuation of I1. We say that an outcome x
is possible at information set I if there is h ∈ I and a terminal history h̄ ⊇ h such that x
obtains at h̄.

3 Simple Dominance

We propose a class of simplicity standards that relaxes the standard assumption of economic
analysis that players can analyze and plan their actions arbitrarily far into the future of
the game. Such foresight assumptions are embedded in standard game theoretic concepts
of backward induction, dynamic programming, perfect Bayesian equilibrium, iterated domi-
nance, weak dominance, and Li’s obvious dominance. In relaxing the foresight assumption,
we build on the pioneering approach of Li (2017b) whose obvious dominance allows for
players who cannot fully analyze the actions of others, but maintains the assumption that
players understand the set of possible outcomes following their own actions and the structure
of precedence among their own information sets. While obvious dominance guarantees that
when taking an action, agents do not have to reason carefully about what their opponents
will do, it still may require that they search deep into the game with regard to their future
self. It assumes that they know all of their own actions they will take in the future, and
understand precisely the sets of outcomes that could possibly obtain, conditional on any
sequence of their own actions that they plan to take. This is the reason that if White has
a winning strategy in chess then—knowing at the start of the game what she needs to do
at any possible future configuration of the board in order to ensure a victory—White has
a strategy that is not only winning, but also obviously dominant. We relax Li’s foresight
assumptions, only maintaining that players know possible outcomes of actions at information
sets they perceive as simple and the precedence relations among these information sets.

The key innovation in our framework is that the information sets an agent perceives as
simple may update as the game is played. In other words, we allow the agent’s perception
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of the strategic situation, and hence, the planned actions—referred to as a “strategic plan”
below, to distinguish from the standard game-theoretic notion of a “strategy” as a complete
contingent plan of action—to vary as the game progresses.

Formally, for each player i and information set I∗ ∈ Ii at which i moves, there is a set of
information sets Ii,I∗ ⊆ {I ∈ Ii∣I ⊇ I∗} that are perceived as simple information sets from
the perspective of I∗. We assume that I∗ ∈ Ii,I∗ , but otherwise, the only restriction is that
Ii,I∗ ⊆ Ii.17 A (partial) strategic plan Si,I∗ (≻i) for agent i of type ≻i at information set
I∗ maps each simple information set I ∈ Ii,I∗ to an action at this information set.18 Note
that a strategic plan does not specify the play at all continuation information sets at which
i may be called to move, but rather only at the information sets that are simple from the
perspective of I∗. Sets of strategic plans (Si,I∗ (≻i))I∗∈Ii and (Si,I∗ (≻i))I∗∈Ii,≻i∈Pi of agent i
are called strategic collections.

An extensive-form mechanism (Γ, SN ,I), or simply a mechanism, is an extensive-
form game Γ together with a profile of strategic collections, SN ,I = ((Si,I∗ (≻i)) I∗∈Ii,≻i∈Pi) i∈N .
For any strategic collection (Si,I∗(≻i))I∗∈Ii , we define the induced strategy Ŝi (≻i) ∶ Ii →

∪I∈IiA(I) as the mapping from information sets to actions defined by Ŝi (≻i) (I) = Si,I (≻i) (I)
for each I ∈ Ii; that is, Ŝi(≻i) is a standard game-theoretic strategy (complete contingent
plan of action) defined by agent i selecting the action that is called for by the strategic
plan Si,I at information set I itself. For any SN ,I and type realization ≻N , we can find the
terminal history/outcome that is reached when the game is played according to the profile
of strategic collections SN ,I (≻N ) by following the profile of induced strategies ŜN (≻N ). For
each player i and type ≻i, the induced strategy Ŝi (≻i) allows us to define the set of on-path
information sets for a strategic collection as the information sets I ∈ Ii such that there
exists other players’ and Nature’s strategies such that I is on the path of play of Ŝi (≻i).

Induced strategies also allow us to define equivalence of mechanisms: two mechanisms
(Γ, SN ,I) and (Γ′, S′N ,I) are equivalent if, for every profile of types ≻N , the distribution over
outcomes from the induced strategies ŜN (≻N ) in Γ is the same as from the induced strategies
Ŝ′N (≻N ) in Γ̂. This equivalence definition is purely outcome-based, and allows that (Γ, SN ,I)

and (Γ′, S′N ,I) have different classes of simple information sets. Given a mechanism, we can
construct the corresponding social choice rule—that is, mapping from preference profiles
to outcomes—that is implemented. All mechanisms in the same equivalence class implement

17The assumption that Ii,I∗ ⊆ Ii is made for simplicity; in its absence we need to endow players with
beliefs of what other players do. A natural requirement on the collection of simple node sets is that if an
agent classifies an information set I > I1 as simple from the perspective of information set I1 then the agent
continues to classify I as simple from the perspective of all information sets I2 > I1 such that I ≥ I2; while
we do not impose this requirement, it is satisfied in all of the examples of simple dominance that we study.

18We focus on pure strategies; the extension to mixed strategies is straightforward.
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the same social choice rule.
Strategic plan Si,I∗ (≻i) is simply dominant at information set I∗ for type ≻i of player

i if the worst possible outcome for i in the continuation game assuming i follows Si,I∗ (≻i) (I)
at all I ∈ Ii,I∗ is weakly preferred by i to the best possible outcome for i in the continuation
game if i plays some other action a′ ≠ Si,I∗ (≻i) (I∗) at I∗. We say that a strategic collection
(Si,I∗ (≻i))I∗∈Ii,≻i∈Pi is simply dominant if, for each type ≻i∈ Pi, the strategic plan Si,I∗ (≻i)
is simply dominant at I∗ for each on-path information set I∗.19 We say that a game is simple
dominant if it admits simply dominant strategies.

Note that the collections of simple information sets, (Ii,I∗)I∗∈Ii , is a parameter of the
model. In the sequel, we focus on collections of simple information sets that vary in the
foresight of the agents, though this is not necessary, and there are other ways to con-
ceptualize what information sets are viewed as simple from a given perspective.20 Given
a fixed k ∈ {0,1,2, ...,∞}, we say that agent i can plan k moves ahead but not more if
Ii,I∗ = {I ∈ Ii∣I∗ ≤ I and I∗ < I1... < Ik < I ⇒ ∃` ∈ {1, ..., k} s.t. I` /∈ Ii}. We refer to the re-
sulting simply dominant strategic collections as k-step dominant and we say that a strat-
egy is k-simple if it is the induced strategy for some k-step dominant strategic collection.
Varying k allows us to embed in our model the following special cases:

• k = ∞ that is Ii,I∗ = {I ∈ Ii∣I∗ ≤ I}; i can plan all of her future moves. We refer to the
resulting simply dominant strategic collections as obviously dominant, because the
induced strategy is obviously dominant in the sense of Li (2017b), and any obviously
dominant strategy Si in the sense of Li (2017b) determines an obviously dominant
strategic collection (Si,I∗)I∗∈Ii by defining Si,I∗ (I) = Si (I) for any I∗ ≤ I. If a mech-
anism admits obviously dominant strategic collections, then we say it is obviously
strategy-proof (OSP).

• k = 1 that is Ii,I∗ = {I ∈ Ii∣I∗ ≤ I and I∗ < I ′ < I ⇒ I ′ /∈ Ii}; i can plan one move ahead
but not more. We refer to the resulting simply dominant strategic collections as one-
step dominant. The information sets in Ii,I∗ − {I∗} are called i’s next information

19When assessing Si,I∗(≻i)(I), we take the worst case over all game paths consistent with i following
Si,I∗(≻i)(I) at all I ∈ Ii,I∗ , and compare to the best case over all game paths following any alternative
action a′ ≠ Si,I∗(≻i)(I∗). While formulated slightly differently than Li (2017b), who invokes the notion of
an earliest point of departure between two strategies, our definition is formally equivalent to his when Ii,I∗
is the set of all continuation information sets at which i moves. Both we and Li (2017b) require simple
dominance (respectively, obvious dominance) only on-path; this choice is in line with e.g. Pearce’s (1984)
extensive form rationalizability and Shimoji and Watson’s (1998) conditional dominance. An alternative
approach is to require simple dominance at all nodes (information sets) in the game, including off-path ones.

20For instance, the collection of simple information sets could be those at which a measure of computational
complexity of a decision problem is below some threshold; cf. e.g. Arora and Barak (2009) for a survey of
computational complexity criteria.
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sets (from the perspective of I∗). If a mechanism admits one-step dominant strategic
collections, then we say it is one-step simple (OSS).

• k = 0 that is Ii,I∗ = {I∗}; i cannot plan any future moves. We refer to the result-
ing simply dominant strategic collections as strongly obviously dominant. In this
case, we can also talk about strongly obviously dominant strategies because, as for ob-
vious dominance, there is a one-to-one correspondence between strategic collections
(Si,I∗)I∗∈Ii and the induced strategies Ŝi (I∗) = Si,I∗ (I∗). If a mechanism admits
strongly obviously dominant strategic collections, then we say it is strongly obvi-
ously strategy-proof (SOSP).

Remark 1. Obviously dominant strategic collections and strongly obviously dominant strate-
gic collections are consistent in the following sense: Si,I∗(I) = Si,I(I) for all I ∈ Ii,I∗ and all
I∗ ∈ Ii. One-step dominant strategic collections, on the other hand, do not satisfy this prop-
erty; ascending auctions, discussed in Section 4.2, are an example of such a case. The failure
of this property does not mean that agents who plan only one step ahead are inconsistent or
irrational. Indeed, such agents might understand that they may adjust their plans later, and
think of the partial strategic plan Si,I∗ as an argument establishing that playing Si,I∗(I∗) is
better than any other action they could take at I∗. The tentativeness of such partial plans
is an important possibility in the under-explored game-theoretic paradigm of making choices
as they arise, a paradigm that Savage (1954) describes as “you can cross that bridge when
you come to it” (cf. Introduction).

A direct verification shows that the smaller the set of simple nodes, the stronger is the
resulting simplicity requirement. To formulate this result, for any simple information sets
Ii,I∗ and I ′i,I∗ such that I i,I∗ ⊆ I ′i,I∗ , we say that a strategic collection (S′i,I∗ (≻i))≻i∈Pi on
I ′i,I∗ is an I ′i,I∗-extension of a strategic collection (Si,I∗ (≻i))≻i∈Pi on I i,I∗ if S′i,I∗ (≻i) (I) =
Si,I∗ (≻i) (I) for all I ∈ I i,I∗ .

Theorem 1. (Nesting of Simplicity Concepts). If simple information sets Ii,I∗ and
I ′i,I∗ are such that I i,I∗ ⊆ I ′i,I∗ and strategic collection Si,I∗ is simply dominant at I∗ for
I i,I∗, then any I ′i,I∗-extension of Si,I∗ is simply dominant at I∗ for I ′i,I∗ .

As a corollary, we conclude that the lower the parameter k, the more restrictive k-
step simplicity becomes. Further, our class of simple dominance concepts has a natural
lattice structure, with obvious dominance as its least demanding concept and strong obvious
dominance as the most demanding one.

Corollary 1. (i) Take k, k′ ∈ {0,1,2, ...,∞} and assume k < k′. Then, any strategic collection
that is k-step dominant is also k′-step dominant.
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(ii) If a strategic collection (Si,I∗)I∗∈Ii is simply dominant for some collection of simple
information sets, then the induced strategy Ŝi (I∗) = Si,I∗ (I∗) is obviously dominant.

(iii) If the induced strategy Ŝi (I∗) = Si,I∗ (I∗) is strongly obviously dominant, then the
strategic collection is simply dominant for any (Ii,I∗)I∗∈Ii.

From an implementation perspective, an immediate consequence of Corollary 1 is that
the set of k-step simple implementable social choice rules weakly expands as k is increased.
The following result shows that in general, this inclusion is strict: that is, stronger simplicity
constraints (lower k) reduce the flexibility of the designer.21

Theorem 2. Let k, k′ ∈ {0,1,2, ...,∞} and assume k′ > k. There exist social choice rules
that are implementable in k′-step simple strategic collections, but are not implementable in
k-step simple strategic collections.

The presence of the simplicity-implementability trade-off depends on the preference en-
vironment: for instance, Theorem 6 shows that in some environments there is no loss in
imposing one-step simplicity (k = 1) relative to obvious strategy-proofness (k = ∞): in these
environments, any social choice rule that is OSP-implementable is also OSS-implementable.

To get a sense of why the inclusion can be strict consider an environment with transfers
in which there are at least two agents and each agents’ values come from the same support
with at least three distinct values. Suppose we want to allocate an object to the highest-
value agent. This social choice rule can be implemented via an ascending auction and
ascending auctions are OSS (we establish the one-step simplicity of ascending auctions in
Theorem 6). At the same time, this social choice rule, and the price discovery it entails,
cannot be implemented via SOSP mechanisms, which resemble posted prices (the posted
price characterization of SOSP is given by our Theorem 8). For k, k′ strictly larger than 0,
our proof in the appendix constructs social rules that are k′-step simple implementable but
not k-step simple implementable in no-transfer single-unit demand allocation environments.

3.1 Behavioral Microfoundations

We may think of simple strategic plans as providing guidance to a player that is unaffected
even when they may be confused about the game they are playing, in the sense that they
may mistake the game for a different game that has different players, actions, and precedence
relations at non-simple information sets. An alternative interpretation is that the player is
only given a partial description of the game: each time they are called to move, they are

21In particular, the theorem shows that for any k < ∞, there are social choice rules that are OSP-
implementable but not k-step implementable.
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told what happens at their own simple information sets, but not at any other non-simple
information set. If players have simply dominant strategic plans, the prediction of play is
unaffected by concerns that they might be so-confused.

To formalize this idea, say that game Γ′ is indistinguishable from Γ from the per-
spective of agent i at information set I∗ of game Γ if there is an injection λ from the
set of agent i’s simple information sets Ii,I∗ in Γ into the set of agent i’s information sets I ′i
in Γ′ such that:

1. If I1, I2 ∈ Ii,I∗ and I1 precedes I2 in Γ, then λ (I1) precedes λ (I2) in Γ′.

2. For each I ∈ Ii,I∗ , there is a bijection ηI that maps actions at agent’s i information set
I in Γ onto actions at agent’s i information set λ (I) in Γ′.

3. An outcome is possible following action a at I ∈ Ii,I∗ in Γ if and only if this outcome
is possible following ηI (a) at λ (I) in Γ′.

We say that λ (I) is the game Γ′ counterpart of information set I and ηI (a) is the game Γ′

counterpart of action a at information set I in game Γ. The concept of indistinguishability
captures the idea that agent i understands the precedence relation among simple information
sets, as well as the available actions and possible outcomes at these information sets.

Simple dominance is equivalent the standard weak dominance on all games that are
indistinguishable from the game played. We say that a strategy Si of player i weakly
dominates strategy S′i in the continuation game beginning at I∗ if following strategy Si

leads to weakly better outcomes for i than following strategy S′i, irrespective of the strategies
followed by other players. Note that here, Si and S′i denote full strategies in the standard
game-theoretic sense of a complete contingent plan of action.

Theorem 3. (Behavioral Microfoundation). For each game Γ, agent i, type ≻i, and
collection of simple information sets (Ii,I∗)I∗∈Ii, the strategic plan Si,I∗ is simply dominant
from the perspective of I∗ ∈ Ii in Γ if and only if, in every game Γ′ that is indistinguishable
from Γ from the perspective of i at information set I∗, in the continuation game of Γ′ starting
at the counterpart of I∗, any strategy that at the counterpart of each I ∈ Ii,I∗ selects the
counterpart of Si,I∗ (I) weakly dominates any strategy that does not select the counterpart of
Si,I∗ (I∗) at the counterpart of I∗.

This theorem tells us the strategic collection (Si,I∗)I∗∈Ii is simply dominant in Γ if and
only if for every I∗ ∈ Ii in every game Γ′ that is indistinguishable from the perspective of
information set I∗ every strategy S′i that agrees with the counterpart of Si at all I ∈ Ii,I∗

is weakly dominant in the continuation game starting at the counterpart of I∗. When the
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strategic collection is consistent, we can express this result equivalently in terms of simplicity
of the induced global strategies Si (I) = Si,I (I). When expressed in this way, this result
corresponds to Li’s (2017b) microfoundation for obvious strategy-proofness.22

3.2 Design Sufficiency of Perfect Information Games

Under perfect information, each information set I contains a single history (or node) h and,
to keep the notation at the minimum, we identify history h and information set {h}. The
key parameter of the simplicity definition then becomes the collection (Hi,h∗)h∗∈Hi of simple
histories, and we denote the corresponding strategic collections by (Si,h∗)h∗∈Hi .

Perfect information games plays a special role in designing simply dominant mechanisms
because for any imperfect-information simply dominant mechanism, we can find an equivalent
perfect-information one.23 To make this point precise, for any imperfect-information game
Γ, define the corresponding perfect information game Γ′ with the same set of histories as Γ.
Given a collection of simple information sets (Ii,I∗)I∗∈Ii in Γ, we define the induced collection
of simple histories (Hi,h∗)h∗∈Hi in Γ′ such that Hi,h∗ consists of all histories in Ii,I∗ . For a
strategic collection (Si,I∗)I∗∈Ii , we define the induced strategic collection (Si,h∗)h∗∈Hi such
that Si,h∗ (h) = Si,I∗ (I), where I is a continuation information set of I∗, h∗ ∈ I∗ and h ∈ I.

Theorem 4. (Perfect-Information Reduction). If (Si,I∗)I∗∈Ii is simply dominant in
an imperfect-information game Γ with simple information sets (Ii,I∗)I∗∈Ii, then in the cor-
responding perfect information game Γ′ with the induced simple histories (Hi,h∗)h∗∈Hi, the
induced strategic collection (Si,h∗)h∗∈Hi is simply dominant.

To prove the theorem, consider an agent i with type ≻i. Notice that if some history h is
on-path for the strategic collection (Ŝi,h∗ (≻i))h∗∈Hi in Γ′, then the corresponding information
set I ∋ h is on-path for the strategic collection (Ŝi,I∗ (≻i))I∗∈Ii in Γ. Furthermore, the worst
outcome following Si,h∗ (h) = Si,I∗ (I) in Γ′ is weakly better than the worst outcome over the
entire information set I when following this strategy. Similarly, the best outcome following
an alternative action a ≠ Si,h∗ (h) at h is worse than the best outcome following an alternative
action a ≠ Si,h∗ (h) over the entire information set h. Thus, if the strategic plan Si,I∗ (I) is
simply dominant in Γ, then the induced strategic plan Si,h∗ (≻i) is simply dominant in Γ′.

22While the two results capture the same phenomenon, there is a slight difference between them even when
restricted to OSP, as Li’s (2017b) microfoundation assumes that λ is a bijection on all agent i’s information
sets. We could embed this assumption in our analysis by assuming that λ is a bijection from agent i’s simple
information sets in Γ to simple information sets in Γ′.

23An analogous property of obvious strategy-proofness was asserted in Ashlagi and Gonczarowski (2018).
Following our work, Mackenzie (2020) extended this property of obvious strategy-proofness to extensive-form
games without perfect recall.
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In light of Theorem 4 we focus on perfect information games in the study of design of
the next two sections.

4 Characterizing Simple Mechanisms

We now consider three special cases of the above simplicity standards—obvious dominance,
one-step dominance, and strong obvious dominance—and characterize simple mechanisms
and social rules in environments both with and without transfers. To make our analysis
relevant for market design applications and to avoid general impossibility results such as
the Gibbard-Satterthwaite Theorem, we must impose certain assumptions on the domains
of agent preferences. We formalize this as follows: We take as a primitive a structural
dominance relation over outcomes, denoted ⊵, where ⊵ is a reflexive and transitive binary
relation on X . The notation x ⊵ y is read as “x weakly dominates y” or “x trumps y”. If x ⊵ y
but not y ⊵ x, then we write x ⊳ y, and say that x strictly dominates (or strictly trumps)
y. For instance, in environments with transfers, outcome x trumps outcome y for an agent
if the agent receives a higher transfer under outcome x, and all else is equal. We say that a
preference ranking ≿i is consistent with ⊵ if x ⊵ y implies that x ≿i y and x ⊳ y implies that
x ≻i y.

We allow the possibility that different agents have different dominance relations, ⊵i, and
therefore different preference domains. We assume that all rankings in Pi are consistent
with ⊵i. If x ⊵i y and y ⊵i x then x and y are ⊵i-equivalent. Any ⊵i determines an
equivalence partition of X . We refer to each element [x] i = {y ∈ X ∶ x ⊵i y and y ⊵i x}

of the equivalence partition as a payoff of the agent in question. Consistency implies that
each preference ranking in Pi induces a well-defined preference ranking over payoffs in the
natural way: [x] i ≿i [y] i if x ≿i y and [x] i ≻i [y] i if x ≻i y. To avoid unnecessary formalism,
we use the same symbol for preferences over payoffs as for preferences over outcomes, and
write “payoff x” for [x] i and “payoff x obtains” when the realized outcome belongs to [x] i.
Unless stated otherwise, we assume in this section that the preference domain Pi is rich in
the following sense: the set of induced preferences over payoffs consists of all strict rankings
over payoffs.24

24Our use of the term richness shares with other uses of the term in the literature the idea that the domain
of preferences contains sufficiently many profiles: if certain preference profiles belong to the domain, then
some other profiles belong to it as well (cf. Dasgupta, Hammond, and Maskin (1979) and Pycia (2012)). The
more outcome pairs that are comparable by the structural dominance relation ⊵i, the smaller the resulting
preference domain, and hence—in Theorems 5, 7, and 8 below—simple dominance is required for fewer
preference types. At one extreme, ⊵i is an identity relation for each i ∈ N , agents’ preference domains consist
of all strict rankings, and the set of simple mechanisms resembles dictatorships as in Gibbard (1973) and
Satterthwaite (1975) and our Corollary 2. At the other extreme, ⊵i compares all outcomes, each agent is
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The framework of rich preference domains is flexible and encompasses many standard
economic environments. Examples of rich domains without transfers include:

• Voting: Every agent has strict preferences over all alternatives in X . This is captured
by the trivial dominance relation ⊵i in which x ⊵i y implies x = y for all i. Each agent’s
preference domain Pi partitions X into ∣X ∣ individual subsets. Richness implies that
each Pi consists of all strict preference rankings over X .

• Allocating indivisible goods without transfers: Each x ∈ X describes the entire
allocation of goods to each of the agents. Each agent has strict preferences over each
bundle of goods she may receive, but is indifferent over how goods she does not receive
are assigned to others. This is captured by a dominance relation ⊵i for agent i defined
as follows: x ⊵i y if and only if agent i receives the same set of goods in outcomes x
and y. Each element of agent i’s equivalence partition can be identified with the set
of objects she receives. Richness implies that every strict ranking of these sets belongs
to Pi for each i.

With such examples in mind, we say that an environment is without transfers if the
dominance relation ⊵i is symmetric for all i.25 Non-symmetric dominance relations ⊵i allows
us to model transfers: all else equal, having more money dominates having less. Examples
of rich domains with transfers include:

• Social choice with transfers: Let X = Y × WN , where Y is a set of substantive
outcomes and W ⊊ R a (finite) set of possible transfers. Each agent i prefers to pay
less rather than more (for a fixed y ∈ Y) and is indifferent between any two outcomes
that vary only in other agents’ transfers. The structural dominance relation is then
(y,w) ⊵i (y′,w′) if and only if y = y′ and wi ≥ w′

i (where w ≡ (wi)i∈N is the profile of
transfers).

• Auctions: Let X ⊆ NO ×WNwhere O is a finite set of goods and W ⊊ R is a finite set
of transfers. Each agent i prefers to win more goods and to pay less rather than more.
Denoting by Oi the set of goods allocated to i and writing O = (Oi)i∈N , the structural
dominance relation is given by (O;w) ⊵i (O′;w′) if and only if Oi ⊇ O′

i and wi ≥ w′
i.

indifferent among all outcomes, and all extensive-form games, with any strategies, are simple. In between
these extremes, we have other classes of simple mechanisms, as we explore in this section. We would like to
thank referees for these clarifications.

25A binary relation ⊵i is symmetric if x ⊵i y implies y ⊵i x. It is easy to see that this holds in the examples
without transfers above, but not in those with transfers below.
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These are just a few examples of settings that fit into our general model. While richness
is a flexible assumption, not all preference domains are rich. For instance, domains of single-
peaked preferences are typically not rich and Arribillaga, Massó, and Neme (2020) show that
our millipede construction does not extend to single-peaked preference domains.

4.1 Obvious Dominance

Obvious dominance (defined above) is the simplicity standard introduced by Li (2017b).
Recall that in analyzing obvious dominance we do not need to distinguish between strategies
and strategic plans; thus, for simplicity of exposition, we focus on strategies. If a game Γ

admits a profile of obviously dominant strategies, then the game and the resulting mechanism
(game and strategy profile) are said to be obviously strategy-proof (OSP).

Li’s (2017b) shows that in binary allocation environments with transfers, every OSP
mechanism is equivalent to a personal clock auction. In this section, we focus on environ-
ments without transfers and show that any OSP game is equivalent to what we call amillipede
game. Roughly speaking, a millipede game is a clinch-or-pass game similar to a centipede
game (Rosenthal, 1981), but in general with more players and more actions (i.e., “legs”) at
each node. A simple example of a millipede game in an object allocation environment is a
deterministic serial dictatorship in which there are no passing moves and all payoffs that
are not precluded by the earlier choices of other agents are clinchable (cf. Sections 4.3 and
5).

As a preliminary step to define millipede games, we introduce the following definitions,
which apply to any game Γ. Given some history h, we say that payoff x is possible for agent
i at h if there is a terminal history h̄ ⊇ h such that at the outcome associated with h̄, agent i
obtains payoff x. We use Pi (h) to denote the set of possible payoffs for i at h. We say that
agent i has clinched payoff x at history h if at all terminal histories h̄ ⊇ h, agent i receives
payoff x. If i moves at h, takes action a ∈ A(h), and has clinched x at the history (h, a),
then we call action a a clinching action; any action at h that is not a clinching action is
called a passing action. We denote by Ci(h) the set of all payoffs x that are clinchable
for i at h; that is, Ci(h) is the set of payoffs for which there is an action a ∈ A(h) such that i
has clinched x at the history (h, a). At a terminal history h̄, no agent is called to move and
there are no actions; however, it is notationally useful to define Ci(h̄) = {x}, where x is the
payoff that i obtains at terminal history h̄.

We further define C⊆i (h) = {x ∶ x ∈ Ci(h′) for some h′ ⊆ h s.t. ih′ = i} to be the set of
payoffs that i can clinch at some subhistory of h, and C⊂i (h) = {x ∶ x ∈ Ci(h′) for some h′ ⊊
h s.t. ih′ = i} to be the set of payoffs that i can clinch at some strict subhistory of h. Note
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that while the definition of Ci(h) presumes that i moves at h or h is terminal, the payoff
sets Pi(h), C⊆i (h) and C⊂i (h) are well-defined for any h, whether i moves at h or not, and
whether h is terminal or not. Finally, consider a history h such that ih′ = i for some h′ ⊊ h
and either ih = i or h is a terminal history. We say that payoff x becomes impossible for i
at h if x ∈ Pi(h′) for all h′ ⊊ h such that ih′ = i, but x ∉ Pi(h). We say payoff x is previously
unclinchable at h if x ∉ C⊂i (h).

Given a mechanism (Γ, SN ) and a type ≻i, we call strategy Si(≻i) a greedy strategy if
at any history h ∈ Hi it satisfies the following: if the ≻i-best still-possible payoff in Pi(h) is
clinchable at h, then Si(≻i)(h) clinches this payoff; otherwise, Si(≻i) (h) is a passing action.
A greedy strategic plan is defined in the same way.26

Given these definitions, we define a millipede game as a finite extensive-form game of
perfect information that satisfies the following properties:

1. Nature either moves once, at the empty history h∅, or Nature has no moves.

2. At any history at which an agent moves, all but at most one action are clinching
actions, and following any clinching action, the agent does not move again.

3. At all h, if there exists a previously unclinchable payoff x that becomes impossible for
agent ih at h, then C⊂ih(h) ⊆ Cih(h).

We refer to millipede games with greedy strategies as millipede mechanisms. In a
millipede game, it is obviously dominant for an agent to clinch the best possible payoff at h
whenever it is clinchable. The last condition of the millipede definition ensures that passing
at h is obviously dominant when an agent’s best possible payoff at h is not clinchable.

Theorem 5. (Millipedes). Consider an environment without transfers. Every OSP mech-
anism is equivalent to a millipede mechanism. Every millipede mechanism is OSP.

This theorem is applicable in many environments. This includes allocation problems in
which agents care only about the object(s) they receive, in which case, clinching actions
correspond to taking a specified (set of) object(s) and leaving the remaining objects to
be distributed amongst the remaining agents. Theorem 5 also applies to standard social
choice problems in which no agent is indifferent between any two outcomes (e.g., voting), in
which case clinching corresponds to determining the final outcome for all agents. In such
environments, we have the following:

26A stronger concept of a greedy strategy would additionally require that when passing, the agent takes
an action a such that they are indifferent between the best possible payoffs at h and (h, a). (Such an action
a exists because Pi (h) = ∪a∈A(h)Pi ((h, a)).) This distinction is immaterial for millipede games, since they
have at most one passing action at each history, and all of our results are valid for both concepts of greediness.
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Figure 1: An example of a non-dictatorial millipede game in a voting environment with two
outcomes, X = {x, y}. The obviously dominant (greedy) strategy profile is for any agent to
clinch if she is offered to clinch her preferred option among {x, y}, and otherwise pass.

Corollary 2. Let each agent’s preference domain Pi be the space of all strict rankings over
outcomes X . Then, every OSP game is equivalent to a game in which either:

(i) the first agent to move can clinch any possible outcome and has no passing action; or
(ii) there are only two outcomes that are possible when the first agent moves, and the first

mover can either clinch any of them, or can clinch one of them or pass to a second agent,
who is presented with an analogous choice, etc.

The former case of Corollary 2 is the standard dictatorship, with a possibly restricted
set of outcomes. The latter case is a generalization that allows an agent to enforce one of
the two outcomes, but not the other, at her turn;see Figure 1 for an example. In particular,
this corollary gives an analogue of the Gibbard-Satterthwaite dictatorship result, with no
efficiency assumption.

The full proof of Theorem 5 is in the appendix; here, we provide a brief sketch of the more
interesting direction that for any OSP game Γ, there is an equivalent millipede game. We
construct this millipede game via the following transformations. Starting with any arbitrary
game, we begin by breaking information sets; this only shrinks the set of possible outcomes
any time an agent is called to play, which preserves the min/max obvious dominance inequal-
ity. For similar reasons, we can shift all of Nature’s moves to the beginning of the game,
and so now have a perfect information game Γ′ in which Nature moves once, as the first
mover.27 Second, if there are two passing actions a and a′ at some on-path history h, then
there are (by definition) at least two payoffs that are possible for i following each. We show
that obvious dominance then implies that i must have some continuation strategy that can
guarantee his top possible payoff in the continuation game following at least one of a or a′.

27The first part of this transformation is a special case of Theorem 4. That every OSP game is equivalent
to an OSP game with perfect information was first pointed out in a footnote by Ashlagi and Gonczarowski
(2018), which also notes that de-randomizing an OSP game leads to an OSP game. For completeness, Lemma
A.4 provides the details.
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Figure 2: An example of a millipede game with two agents {i, j} and 100 objects
{o1, o2, . . . , o100}. If the first clinching is in an agent’s first 50 moves, then the other agent
is given the choice of clinching any object he or she could have clinched previously; if the
first clinching is after the clinching agent’s first 50 moves, then the other agent is given the
choice of clinching any still-available object.

Then, we can construct an equivalent game via a transformation in which we add an action
that allows i to clinch this payoff already at h by making all such “future choices” today. We
also rely on Li’s pruning, in which the actions no type chooses are removed from the game
tree, cf. Appendix A.1. We repeat these transformations until there is at most one passing
action remaining. The final step of the proof is to show that these transformations give us
a millipede game. This last step relies on richness and shows that if there remains some h
such that agent i cannot clinch her favorite possible payoff at h, the game must promise i
that she will never be strictly worse off by passing, which is condition 3.

4.2 One-Step Dominance

In this section, we analyze the stronger simplicity concept of one-step simple dominance. To
see why strengthening of obvious dominance might be useful, recall that obviously dominant
strategies may not be intuitively simple; an already discussed stark example is White’s
winning strategy in chess. As another example, consider a no-transfer object allocation
environment and the two-player millipede game in Figure 2. At the first move, type o100 ≻i

o1 ≻i o2 ≻i ⋯ ≻i o99 is offered her second-favorite object, o1, while her top choice, o100, is
possible. The obviously dominant greedy strategy of this type is to pass; however, if she
does so, she may not be offered the opportunity to clinch her top object, o100, or even go
back to her second-best object, o1, until far into the future. Thus, while passing is obviously
dominant, comprehending this requires the ability to reason far into the future of the game
and to perform lengthy backwards induction.28

28The first 100 moves of this millipede cannot be substantially shortened because, given the players’ greedy
strategies, for k = 1, ...,50, i can obtain ok+1 if and only if j’s top choice is o100−k+1 or a lower-indexed object,
and j can obtain o100−k+1 if and only if i’s top choice is ok or a higher-indexed object.
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The more demanding concept of one-step simplicity eliminates the intuitively complex,
yet still formally obviously dominant, strategies such as White winning strategy in chess and
the greedy strategy in the millipede of Figure 2, while still classifying greedy strategies in
serial dictatorships and ascending auctions as simple.

Binary allocation with transfers

Li (2017b) illustrates the usefulness of obvious dominance in the setting of binary allocation
with transfers, defined as follows. The set of outcomes is X = Y × RN , where Y ⊆ {0,1}N

is a set of feasible allocations and RN is the set of profiles of transfers, one for each agent;
a generic allocation is denoted y and a generic profile of transfers w = (wi)i∈N . In this
section, we denote types by θi ∈ [θi, θi], where 0 ≤ θi < θi < ∞, and assume each agent
has preferences represented by a quasilinear utility function: ui(θi, y,w) = θiyi + wi.29 This
framework captures many important environments of economic interest, including single-unit
auctions, procurement auctions, and binary public goods games.

For these environments, Li introduces the class of personal clock auctions, which gener-
alize the ascending auction in several ways: agents may face different individualized prices
(“clocks”); at any point, there may be multiple quitting actions that allow agents to drop
out of the auction, or multiple continuing actions that allow them to stay in the auction;
and when an agent quits, her transfer need not be zero. The key restrictions are that each
agent’s clock must be monotonic, and that whenever the personal price an agent faces strictly
changes, she must be offered an opportunity to quit. The formal definition of a personal
clock auction can be found in Appendix B.3, where we also prove Theorem 6.

Li (2017b) shows that in binary allocation settings, OSP games are equivalent to personal
clock auctions. Using our new conception of simplicity, we can strengthen this result to
show that personal clock auctions are also OSS, and so, perhaps surprisingly, there is no
loss in imposing one-step dominance: any OSP-implementable social choice rule is also
implementable in one-step dominant strategic collections.

Theorem 6. (OSS and Personal Clock Auctions). In binary allocation settings with
transfers, every one-step simple mechanism is equivalent to a personal clock auction with
one-step dominant strategic collections. Furthermore, every personal clock auction is one-
step simple.

Because our Corollary 1 shows that any OSS mechanism is also OSP, the first part
of the theorem follows from Li’s (2017b) result that any OSP mechanism is equivalent to

29We allow for a continuum of types and transfers here in order to reproduce the binary allocation envi-
ronment of Li (2017b). Our simplicity concepts extend to this environment when we substitute inf for min
and sup for max in our definitions. Richness plays no role in the binary allocation results.
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a personal clock auction with greedy strategies, provided we can find a profile of one-step
dominant strategic collections that replicates the play of Li’s greedy strategies. We construct
these collections in the proof of the second part of the theorem. For the special case of a
standard ascending auction for a single good, this can be easily done as follows: at any
information set I∗i such that the current price p is weakly lower than the bidder i’s value vi:
i stays In, with a plan to drop Out at any next-information set Ii ⊃ I∗i . For any information
set I∗i such that the current price is p > vi: i drops Out immediately. This strategic collection
leads to the same outcome as the greedy strategy of staying in at prices weakly below vi and
dropping out at prices strictly above. The collection is one-step dominant because at any p
at which the agent’s stay In, she can plan to quit at the next step and get a payoff of 0, which
is no worse than quitting now. For personal clock auctions more generally, a key feature is
whenever an agent’s price changes, she must be offered an opportunity to quit. This feature
allows us to construct one-step dominant strategic plans analogous to those just defined for
ascending auctions. The complete argument can be found in the Supplementary Appendix.

Environments without transfers

In environments without transfers, we have seen millipede games that, while OSP, may still
be quite complex and require lengthy foresight on the part of the agents (e.g., Figure 2).
Imposing the stronger standard of OSS eliminates these complex millipede games, and leaves
only games that are monotonic in the following sense: a millipede game Γ is monotonic if,
for any agent i and any histories h, h′ such that: (h, a∗) ⊆ h′ where a∗ is a passing action
at h, ih =i, ih′ = i or h′ is terminal, and ih′′ ≠ i for any h′′ such that h ⊊ h′′ ⊊ h′, either (i)
Ci(h) ⊆ Ci(h′) or (ii) Pi(h)∖Ci(h) ⊆ Ci(h′). In words, this says that if an agent passes at h,
the next time she moves, she is offered to clinch either (i) everything she could have clinched
at h or (ii) everything that was possible, but not clinchable at h. Some millipede games,
such as serial dictatorships in which each agent only moves once and has no passing action,
are trivially monotonic; for a less trivial example of a monotonic millipede game, see Figure
3 in Section 5. We say that a mechanism is monotonic when the underlying game is.

Theorem 7. (Monotonic Millipedes). In environments without transfers, every one-step
simple millipede mechanism is equivalent to a monotonic millipede mechanism with one-step
dominant strategic collections. Furthermore, every monotonic millipede mechanism is one-
step simple.

At any history h in a monotonic millipede game, the one-step dominant strategic plan
is as follows: if the agent can clinch her top still-possible outcome at h, then she does so;
otherwise, the agent passes at h, and for any next-history h′, the strategic plan is to clinch
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her top possible object in Ci(h′). If clause (i) of monotonicity holds, then this is at least as
good as anything she could clinch at h (since the clinchable set weakly expands); if clause
(ii) of monotonicity holds, then she obtains her best possible payoff in Pi(h), which is again
at least as good as anything that was clinchable at h.

From the perspective of an agent playing in a game, monotonic games seem particularly
simple: each time an agent is called to move, she knows that if she chooses to pass, at her
next move, she will either be able to clinch everything she is offered to clinch currently, or
she will be able to clinch her top remaining choice. On the other hand, in a non-monotonic
game such as that in Figure 2, an agent’s possible clinching options may be strictly worse
for many moves in the future, before eventually being re-offered what she was able to clinch
in the past (or something better). If agents are unable to plan far ahead in the game tree,
it may be difficult to recognize that passing is obviously dominant in such a game; in a
monotonic game, however, agents only need to be able to plan at most one step at a time
to recognize that passing is a dominant choice.

Further, from a practical implementation perspective, monotonic games are also partic-
ularly simple for a designer to run dynamically: at each step, the designer only need tell an
agent her possible clinching options today, plus that if she passes, at her very next move,
her clinchable set will either weakly expand, or she will be offered everything possible that
she was not offered today. Such a partial, one-step-at-a-time description is simpler than
trying to describe all of the possibilities many moves in the future that would be necessary
to implement more complex, non-monotonic OSP games.

4.3 Strong Obvious Dominance, Choice Mechanisms, and Posted

Prices

In light of Theorem 1, the strongest simplicity standard in our class is strong obvious domi-
nance. If a game Γ admits a profile of strongly obviously dominant strategic collections, we
say that it is strongly obviously strategy-proof (SOSP). Random Priority is SOSP, but
ascending auctions are not. Thus, SOSP mechanisms further delineate the class of games
that are simple to play, by eliminating millipede games that require even one-step forward-
looking behavior. As for obvious dominance, there is a one-to-one correspondence between
strongly obviously dominant strategic collections and strongly obviously dominant strate-
gies, and so for simplicity of exposition, in this section we focus on strategies. Additionally,
in this section we make use of the concept of an undominated payoff, where we say that a
payoff x is undominated (or untrumped) in a subset of payoffs for agent i if there is no
payoff y in this subset such that y ⊳i x. A mechanism (Γ, (Si(≻i))i∈N ) is pruned if every
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information set in Γ is on path for some type of some player; Li (2017b) observed that every
OSP mechanism is equivalent to a pruned OSP mechanism and the same is true for SOSP,
cf. Appendix A.1.

Strongly obvious strategy-proof games are particularly simple to play. Any strongly
obviously dominant strategy is greedy. Further, SOSP games can be implemented so that
each agent is called to move at most once and has at most one history at which her choice
of action is payoff-relevant. Formally, we say a history h at which agent i moves is payoff-
irrelevant for this agent if i receives the same payoff at all terminal histories h̄ ⊃ h; if i moves
at h and this history is not payoff-irrelevant, then it is payoff-relevant for i. The definition
of SOSP and richness of the preference domain give us the following.

Lemma 1. Along each game path of a pruned SOSP mechanism, there is at most one payoff-
relevant history for each agent.

This result—proven in Supplementary Appendix B.5—allows us to further conclude that,
for a given game path, the unique payoff-relevant history (if it exists) is the first history at
which an agent is called to move. While an agent might be called to act later in the game,
and her choice might influence the continuation game and the payoffs for other agents, it
cannot affect her own payoff.

Building on Lemma 1, we show that SOSP effectively implies that agents—in a se-
quence—are faced with choices from personalized menus, e.g., in allocation with transfers
this may be menus of object-price pairs. At the typical payoff-relevant history an agent is
offered a menu of payoffs that she can clinch, she selects one of the alternatives from the
menu, and she is never called to move again. More formally, we say that Γ is a sequential
choice game if it is a perfect-information game in which Nature moves first (if at all). The
agents then move sequentially, with each agent called to play at most once. The ordering
of the agents and the sets of possible outcomes at each history are determined by Nature’s
action and the actions taken by earlier agents. As long as there are either at least three
distinct undominated payoffs possible for the agent who is called to move or there is exactly
one such payoff, the agent can clinch any of the possible payoffs. When exactly two un-
dominated payoffs are possible for the agent who moves, the agent can be faced with either
(i) a set of clinching actions that allow the agent to clinch either of the two payoffs, (ii) a
passing action and a set of clinching actions that allow the agent to clinch exactly one of
these payoffs. Note that we allow potentially many ways of clinching the same payoff; we can
conceptualize the many was of clinching a fixed payoff as clinching it and sending a message
from a predetermined set of messages. Note also that (ii) does not allow the agent to clinch
the other payoff.
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Theorem 8. (Sequential Choice). Every strongly obviously strategy-proof mechanism is
equivalent to a sequential choice mechanism with greedy strategies. Every sequential choice
mechanism with greedy strategies is strongly obviously strategy-proof.

Theorem 8 applies to any rich preference environment, including both those with and
without transfers. In an object allocation model without transfers, every SOSP mechanism
resembles a sequential dictatorship, in which agents are called sequentially and offered to
clinch any object that still can be clinched given earlier clinching choices; they pick their
most preferred object and leave the game. The key difference between a sequential choice
game and a sequential dictatorship is that at an agent’s turn, she need not be offered all
still-available objects.

In environments with transfers, sequential choice games can be interpreted as sequential
posted-price games. In a binary allocation setting with a single good and transfers, each
agent is approached one at a time, and given a take-it-or-leave-it (TIOLI) offer of a price at
which she can purchase the good; if an agent refuses, the next agent is approached, and given
a (possibly different) TIOLI offer, etc. If there are multiple objects for sale, each agent is
offered a menu consisting of several bundles of objects with associated transfers, and selects
her most preferred option from the menu.

Price mechanisms are ubiquitous in practice. Even on eBay, which began as an auc-
tion website, Einav et al. (2018) document a dramatic shift in the 2000s from auctions to
posted prices as the predominant selling mechanism. Posted prices have also garnered sig-
nificant attention in the computer science community. For instance, computing the optimal
allocation in a combinatorial Vickrey auction can be complex even from a computational
perspective, and several papers have shown good performance using sequential posted price
mechanisms (e.g., Chawla, Hartline, Malec, and Sivan (2010) and Feldman, Gravin, and
Lucier (2014)). By formalizing a strategic simplicity-based explanation for the popularity of
these mechanisms, our Theorem 8 complements this literature.30

5 Random Priority

As an application we show that OSP can be combined with natural fairness and efficiency
axioms to provide a characterization of the popular Random Priority (RP) mechanism. In
Random Priority, first Nature selects an ordering of agents, and then each agent moves in
turn and chooses her favorite object among those that remain available given previous agents’

30Prior economic studies on the focal role of posted prices in mechanism design—e.g., Hagerty and Rogerson
(1987) and Copic and Ponsati (2016)—focused on bilateral trade, while our analysis is applicable to any
economic environment satisfying our richness assumption.
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choices. Random Priority succeeds on three important design dimensions: it is simple to
play, efficient, and fair.31 However, this is only a partial explanation of its success, as to
now, it has remained unknown whether there exist other such mechanisms, and, if so, what
explains the relative popularity of RP over these alternatives (cf. footnote 10). Theorem 9
provides an answer to this question: not only does Random Priority have good efficiency,
fairness, and incentive properties, it is the only mechanism that does so, thus explaining the
widespread popularity of Random Priority in practice.

We consider a canonical object allocation model with single-unit demand, a special case
of our general framework. There is a set N of agents, a set of objects, also of cardinality
∣N ∣, and global outcomes are bijections between agents and objects. Each agent has a
strict preference ranking ≻i over the objects. Our efficiency concept is Pareto efficiency: an
outcome is Pareto efficient when no other outcome is weakly preferred by all participants
and strictly preferred by at least one; a mechanism (Γ, SN ) is Pareto efficient if it generates
Pareto efficient outcomes for all Nature’s choices and agents’ types.32 Our fairness concept is
symmetry: a mechanism (Γ, SN ) is symmetric if, for any two agents i, j ∈ N , the outcome
distribution of the mechanism does not change when we transpose the preference rankings
of i and j and at the same time transpose the objects the two agents obtain. Informally,
the outcome of the mechanism would not change if i played the role of j and vice versa.33

The symmetry condition fails in a serial dictatorship in which player 1 chooses first among
all outcomes and then player 2 chooses among all remaining outcomes: if they have the
same most preferred object then 1 obtains this object in the original serial dictatorship but
not in the transposed one. Random Priority orders the agents randomly, and in effect the
probability agent 1 obtains the preferred object is the same before and after the transposition.

Theorem 9. (Random Priority). An obviously strategy-proof mechanism is symmetric
and Pareto efficient if and only if it is equivalent to Random Priority.

As discussed above, it is well-known Random Priority satisfies OSP, symmetry, and
Pareto efficiency. The converse implication is new. Theorem 9 remains true if we replace
OSP with OSS, SOSP, or any other of our simplicity standards; this is implied by combining
Theorem 9 with Theorems 1 and 8.

31Pareto efficiency and fairness of RP have been recognized at least since Abdulkadiroğlu and Sönmez
(1998), while Li (2017b) established OSP of RP. It is easy to see that the standard extensive-form imple-
mentation of RP also satisfies all of our more demanding simplicity requirements.

32Because we focus on obviously strategy-proof mechanisms, SN here denotes a profile of strategies in the
standard game-theoretic sense, rather than strategic plans.

33We formalize the concept of a role in the appendix. Because any permutation can be decomposed into a
composition of transpositions, we can equivalently state the symmetry property as σ−1○(Γ, SN )○σ = (Γ, SN )
for all permutations σ ∶ N → N .
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The first step in proving Theorem 9 is to recognize that it is sufficient to prove it for
any uniform randomization over Pareto efficient deterministic millipedes. The reduction
to symmetric randomizations over Pareto efficient deterministic OSP mechanisms follows
because every symmetric mechanism is a lottery over symmetric randomizations, and if each
of these randomizations is equivalent to Random Priority than so is the the lottery over them
(details are in the appendix). The further reduction to randomizations over Pareto efficient
millipedes follows from our Theorem 5.

At the core of the reminder of the proof is the construction of a bijection between permu-
tations of any deterministic Pareto-efficient millipede and permutations of serial dictatorships
such that the outcomes of the permuted millipede and permuted serial dictatorship are ex-
actly the same. The existence of such a bijection implies that uniform randomizations over
permutations of a deterministic Pareto-efficient millipede give the same resulting outcome
distribution as Random Priority.34 The full construction is lengthy and involved, and its
details can be found in the appendix. Here, we provide a simple three-agent example to
showcase the general idea.35

Consider the millipede game presented in Figure 3. The game allocates three objects
A,B, and C to three agents (or players) 1,2 and 3. Agent 1 moves first and can clinch one
of the objects A and B or pass. The second move is made by agent 2, who either clinches an
object (in which case the allocation is fully determined) or passes (the passing move is only
possible following a pass by 1). Agent 3 only moves following two passes; this player can
then clinch any object. If Agent 3 clinches A or B then the allocation is determined, and
if Agent 3 clinches C then Agent 1 can choose between A and B. This game is a millipede
(and OSP), and is Pareto efficient for any preference profile.

We can apply any permutation of agents, σ ∶ N → N , to permute an entire mechanism.
In a serial dictatorship, this corresponds to changing the order in which the agents select.
Similarly, in any arbitrary base game each permutation σ creates a permuted game in
which agent i is given the moves and payoffs of agent σ(i). For instance, if in game Γ in
such Figure 3 the agents are permuted by σ such that σ (1) = 1, σ (2) = 3, and σ (3) = 2, then
the first agent to move is still agent 1 but the second agent to move is agent 3, and agent 2

34The bijection idea was first employed by Abdulkadiroğlu and Sönmez (1998), and has since been used
by others (e.g., Pathak and Sethuraman (2011) and Carroll (2014)). Our construction is different from the
bijections in the earlier literature, and relies on the properties of millipede games established by us, and on
the properties of Pareto efficient OSP mechanisms subsequently obtained by Bade and Gonczarowski (2017).

35For ∣N ∣ = 1, the equivalence follows from Pareto efficiency. For ∣N ∣ = 2, the equivalence is implied by
Pareto efficiency when agents rank objects differently and it is implied by symmetry when they rank objects
in the same way. Cf. Bogomolnaia and Moulin (2001) who also analyze the three-agent case; their approach
is not applicable beyond three agents.
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Figure 3: An OSP and Pareto efficient game Γ among three players 1,2 and 3. Clinching
move marked by the object being clinched (A,B,or C); passing moves marked “pass.”

moves only after two passes of agents 1 and 3.
For the sake of illustration, suppose that the preferences are such that A ≻1 B ≻1 C

for agent 1, A ≻2 B ≻2 C for agent 2, and C ≻3 B ≻3 A for agent 3. We assume that
all agents play greedy strategies. Then, under each permutation σ such that agents 1 or
2 are the first movers, game Γ is played as serial dictatorship would be played: the first
mover picks their favorite object, A, and the second mover picks their favorite still-available
object, thus also determining the allocation of the third mover. In constructing the bijection
between permutations of Γ and permutations of serial dictatorships, we map each of the
above permutations σ (Γ) to the corresponding serial dictatorships. As we prove in the
appendix, whenever the game starts with several agents choosing clinching moves, we can
map it into a serial dictatorship that starts with the same agents moving in the same order.

The mapping of games that involve passing is more subtle. In our example, passing is
on the game path if σ (1) = 3. There are two such permutations: if σ (2) = 2 then the
resulting outcome is {(1,A) , (2,B) , (3,C)}, and if σ (2) = 1 then the resulting outcome
is {(1,B) , (2,A) , (3,C)}. To what serial dictatorships should we map these two permu-
tations? The unique mapping achieving the bijection—given how we mapped other per-
mutations—maps the first of the two permutations into the serial dictatorship with agents
ordered 3,1,2 and the second one into the serial dictatorship with agents ordered 3,2,1.
There is no simple rule of thumb in mapping permutations that entails passing on the path
of play—notice e.g. that in the present example the serial dictatorship order is not the order
in which the agents move, nor is it the order in which the agents clinch—and the bulk of the
proof is devoted to the general construction of such a mapping.
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6 Conclusion

We study the question of what makes a game “simple to play”, and introduce a general
class of simplicity standards that vary the foresight abilities required of agents in extensive-
form imperfect-information games. We consider agents that form a strategic plan only for
a limited horizon in the continuation game, though they may update these plans as the
game progresses and the future becomes the present. The least restrictive simplicity stan-
dard include in our class is Li’s (2017b) obvious strategy-proofness, which presumes agents
have unlimited foresight of their own actions, while the strongest, strong obvious strategy-
proofness, presumes no foresight. For each of these standards, as well as an intermediate
standard of one-step simplicity, we provide characterizations of simple mechanisms in various
environments with and without transfers, and show that our simplicity standards delineate
classes of mechanisms that are commonly observed in practice. Among these results, we show
that Li’s characterization of OSP mechanisms as personal clock auctions can be strengthened
to OSS, and that SOSP mechanisms are equivalent to price mechanisms, which are ubiqui-
tous in practice. Finally, in the context of object allocation without transfers, we provide
an explanation for the popularity of Random Priority by showing that it is the essentially
unique mechanism that is OSP, efficient, and symmetric. Along the way, we provide a log-
ically consistent—though limited to simple games—approach to the analysis of agents with
limited foresight.

Our results contribute to the understanding of the fundamental trade-off between sim-
plicity of mechanisms and the ability to implement other social objectives, such as efficiency
and revenues. In environments with transfers, Vickrey (1961), Riley and Samuelson (1981),
Myerson (1981), Manelli and Vincent (2010), and Gershkov, Goeree, Kushnir, Moldovanu,
and Shi (2013) show that the efficiency and revenues achieved with Bayesian implementa-
tion can be replicated in dominant strategies; thus the accompanying increase in simplicity
may come without efficiency and revenue costs. Li (2017b) and our paper advance this in-
sight further and establish that obviously strategy-proof and one-step simple mechanisms
can also implement efficient outcomes (and revenue-maximizing outcomes). At the same
time, strong obvious dominance is more restrictive, and more severely limits the class of im-
plementable objectives. In environments with transfers, SOSP generally precludes efficiency
and revenue maximization.36 In environments without transfers, however, even SOSP mech-

36For instance, when we want to allocate an object to the highest value agent with transfers and with at
least two agents and agents’ values are drawn iid from among at least three values, an impossibility result
obtains: no SOSP and efficient mechanism exists. This is implied by Theorem 8. This also shows that SOSP
mechanisms raise less revenue than optimal auctions. On the other hand, Armstrong (1996) shows that
posted prices achieve good revenues when bundling allows the seller to equalize the valuations of buyers, and
Chawla, Hartline, Malec, and Sivan (2010) and Feldman, Gravin, and Lucier (2014) show that sequential
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anisms—serial dictatorships—can achieve efficient outcomes. Combining our results with
the mechanism equivalence analysis of Pycia (2017) allows us to conclude that, in single-unit
demand allocation problems without transfers, the restriction to strongly obvious strategy-
proof mechanisms allows the designer to achieve virtually the same efficiency and many other
objectives as those achievable in merely strategy-proof mechanisms. Thus in many environ-
ments, simplicity entails no efficiency loss. In other environments, the trade-off between
simplicity and efficiency is more subtle. Our Theorem 2 shows that in general, in environ-
ments both with and without transfers, imposing more restrictive simplicity standards on
the mechanisms limits the set of implementable social choice functions.37

Our work is complementary to the experimental literature on how mechanism partici-
pants behave and what elements of design enable them to play equilibrium strategies, cf.
e.g. Kagel et al. (1987) and Li (2017b). While this literature identifies implementation fea-
tures that facilitate play and confirms that obviously strategy-proof mechanisms are indeed
simpler to play than merely strategy-proof mechanisms, while strongly obviously strategy-
proof mechanisms are easier still and nearly all participants play them as expected (see Bo
and Hakimov, 2020),38 our general theory of simplicity opens new avenues for experimental
investigations. For instance, we may define the simplicity level of a game in terms of the
smallest (in an inclusion sense) set of histories that an agent must see as simple in the sense
of Section 4 in order to play the equilibrium strategy correctly; or as the highest k that still
allows the agent to play k-simple strategies correctly. We may similarly define the measure
of sophistication of experimental subjects as the highest k that allows the subjects to play
k-simple strategies correctly.

In sum, the sophistication of agents may vary across applications, and so it is important to
have a range of simplicity standards. For sophisticated agents, a weaker simplicity standard
ensures they play the intended strategies, allowing the designer more flexibility on other
objectives; however, for less sophisticated agents, a stronger standard of simplicity may
need to be imposed to ensure the intended strategies are played, with potential limitations
on flexibility. Understanding the simplicity of games and the simplicity-flexibility tradeoff
requires an adaptable approach to thinking about simplicity. This paper puts forth one such
proposal, though there is much work still to be done in fully exploring this trade-off and
testing various simplicity standards empirically.

price mechanisms achieve decent revenues even without the bundling/equalization assumption.
37A different approach to the trade-off between simplicity and flexibility was proposed by Li and Dworczak

(2020), who study strategy-proofness, obvious strategy-proofness, and strong obvious strategy-proofness.
While we evaluate this tradeoff for designers who never confuse the mechanism participants, they evaluate
it for designers who can confuse participants. See also work in progress by Catonini and Xue (2021), who
study a weakening of one-step simplicity.

38For a test of the first claim see also Breitmoser and Schweighofer-Kodritsch (2019).
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A Appendix: Proofs

This appendix contains the central elements of the proofs of our main theorems. All lemmas
used in these proofs, as well as Theorem 6 and Lemma 1 from the main text, are proven in
the Supplementary Appendix.
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A.1 Pruning Principle

Given a game Γ and strategy profile (Si(≻i))i∈N , the pruning of Γ with respect to (Si(≻i))i∈N
is a game Γ′ that is defined by starting with Γ and deleting all histories of Γ that are never
reached for any type profile. Li (2017b) introduced the following pruning principle: if
(Si(≻i))i∈N is obviously dominant for Γ, then the restriction of (Si(≻i))i∈N to Γ′ is obviously
dominant for Γ′, and both games result in the same outcome. Thus, for any OSP mecha-
nism, we can find an equivalent OSP pruned mechanism. For strong obvious dominance the
pruning principle remains valid: if (Si(≻i))i∈N is strongly obviously dominant for Γ, then the
restriction of (Si(≻i))i∈N to its pruning Γ′ is strongly obviously dominant for Γ′, and both
games result in the same outcome.

A.2 Proof of Theorem 2

In light of Corollary 1, it is sufficient to prove the result for k < ∞ and k′ = k + 1. For k = 0,
the result follows from Theorems 6 and 8, applied to a single-unit auction with transfers.
Theorem 6 shows that in such a setting, personal clock auctions are efficient and OSS, while
Theorem 8 implies that an efficient, SOSP (k = 0) mechanism does not exist when there are
at least two agents whose valuations are drawn iid from at least 3 values (see also footnote
36). For k = 1 we construct below a 2-step simple social choice rule that cannot be one-step
implemented; we conclude the proof by extending this example to any larger k.

Consider an object allocation environment without transfers in which agents demand
exactly one object each. There are at least three agents i, j, ` and the objects included in
the game Γ are shown in Figure 4. Each branch of the game tree represents a clinching
action where the agent clinches the labeled object (x, x̃, etc.). The notation such as “`→ γ”
below terminal nodes denotes that agent ` is assigned to object γ at this node, without
needing to take any action. The root of the game is agent i’s choice between clinching x and
passing. If i clinches x at the first move, then the game immediately ends with j assigned
αj and ` assigned α`, and further, this is the only terminal history at which j receives αj
and ` receives α`. Similarly, there are objects β`, γ`, and δ` that agent ` receives only at the
denoted terminal histories, and nowhere else in the game.

It is straightforward to check that (Γ, SN ,H), where SN ,H is a profile of greedy strategic
collections, is k-step implementable for any k ≥ 2; in particular, this implies that Γ is OSP.
It is also easy to check that Γ itself is not OSS: the type of i that ranks w ≻i x ≻i z has
no one-step simple strategic plan when choosing between x and passing at the first move of
the game. Showing that the social choice rule implemented by (Γ, SN ,H) cannot be OSS-
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Figure 4: A game in which greedy strategies are two-step simple and for which no equivalent
one-step simple mechanism exists.

implemented by any other mechanism is subtler, and we relegate the proof of the following
lemma establishing this statement to Supplementary Appendix B.1.

Lemma A.1. No one-step simple mechanism is equivalent to (Γ, SN ,H).

For k = 2, game Γ(2) in Figure 5 is an example that is k′-step simple for any k′ > k, but
for which no equivalent k-step simple mechanism exists. This game is similar in structure to
that of Figure 4, but has the following additions:
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Figure 5: A game in which greedy strategies are three-step simple and for which no equivalent
two-step simple mechanism exists.

(i) In the subgame following i passing and j clinching x at its first move, we add the
possibility of i clinching z′. In this way we assure that i can then clinch any possible and
not previously clinchable object.39

(ii) In the subgame following i and j passing and ` clinching a at its first move, we add
the possibility of i clinching z′ (following which j can clinch x and x̃). In this way we assure

39This property and the property in (ii) were also true in game Γ in Figure 4 and these two modifications
simply reestablish these properties for the game Γ(2) in Figure 5, in which z′ becomes possible for i.
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that i can clinch any possible and not previously clinchable object.
(iii) Following i’s pass at its second move on the focal path, we add a node at which `

can clinch two new objects a′ and ã′ (following the clinching of a′, agent i can clinch any
possible not previously clinchable object, and then j can clinch any previously clinchable
object; following the clinching of ã′, agent j can clinch any previously clinchable object, and
then following the clinching of x agent i can clinch any possible but not previously clinchable
objects while following the clinching of x̃ agent i can clinch any previously clinchable object).

(iv) Following the pass at the added node for `, we add a node at which i can clinch an
additional object z′. Following i clinchhing z′, ` and then j can clinch any object they could
clinch previously).

To prove the theorem for arbitrary k ≥ 2, we recursively create game Γ(k) by adding to
game Γ(k−1) further objects z(k), a(k), and ã(k), and then adding the analogues of subgames
(i)-(iv). In the analogues of subgames (i)-(ii), we now allow i to additionally clinch z(k); in
the analogue of (iii), a(k) and ã(k) play the roles of a and ã, and in the analogue of (iv) z(k)

plays the role of z.
It is straightforward to check that (Γ(k), S(k)N ,H) is (k + 1)-step simple but not k-step

simple, where S(k)N ,H is a profile of greedy strategic collections. Showing that no equivalent
mechanism is k-step simple is done similarly to the k = 1 case. The details can be found in
Supplementary Appendix B.1.

Lemma A.2. For any k ≥ 2, no k-step-simple mechanism is equivalent to (Γ(k), S(k)N ,H).

Lemmas A.1 and A.2 establish the result for k ≥ 1. ∎

A.3 Proof of Theorem 3

The proof develops the proof of the similar result for OSP in Li (2017b). For one direction
of implication, suppose the strategic plan Si,I∗ is simply dominant from the perspective of
I∗ ∈ Ii in Γ. Then any outcome that is possible after playing Si,I∗ at all information nodes
I ∈ Ii,I∗ is weakly better than any outcome that is possible after playing S′i (I∗) ≠ Si,I∗ (I∗)
in Γ, and hence the analogue of this “weakly better” comparison applies to the counterparts
of these actions in any game Γ′ that is indistinguishable from Γ from the perspective of i at
I∗ (by condition (3) of indistinguishability). Hence, in any such Γ′, every strategy S′i that
calls for playing the counterparts of actions Si,I∗ (I) for counterparts of all I ∈ Ii,I∗ weakly
dominates any strategy S′′i that does not call for playing the counterpart of Si,I∗ (I∗) at the
counterpart of I∗.

For the other direction of implication, fix information set I∗ at which i moves, preference
ranking ≿i of agent i, and a partial strategic plan Si,I∗ such that in every game Γ′ that is
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indistinguishable from Γ from the perspective of agent i at I∗, any strategy S′i that plays
counterparts of Si,I∗ (I) for all counterparts of I ∈ Ii,I∗ weakly dominates any strategy S′′i
that plays at the counterpart of I∗ another action than the counterpart of Si,I∗ (I∗). Our
goal is to show that any outcome that is possible when i follows Si,I∗ at information sets Ii,I∗
is ≿i -weakly preferred to any outcome that is possible after i plays any a ≠ Si,I∗ (I∗) at I∗

in game Γ. To prove it consider Γ′ that differs from Γ only in that all moves of agent i and
other agents that follow history h∗ but are not not in Ii,h∗ are made by Nature instead of the
party making them in Γ and that Nature puts positive probability on all its possible moves.
Notice that such Γ′ is indistinguishable from Γ from the perspective of i at I∗. As in Γ′ any
strategy that selects counterparts of Si,I∗ at any counterpart of I ∈ Ii,I∗ weakly dominates
any strategy S′′i that selects a at the counterpart of I∗, we conclude from condition (3) of
indistinguishability that, in Γ, any outcome that is possible after i follows Si,I∗ at information
sets in Ii,I∗ is weakly better than any outcome that is possible following a. ∎

A.4 Proof of Theorem 5

Section 4 introduces the notions of possible and clinchable payoffs at a history h, and the
sets of such payoffs, denoted Pi(h) and Ci(h), respectively. For the proof, we also need
the notion of a guaranteeable payoff: a payoff x is guaranteeable for i at h if there is
some continuation strategy Si such that i receives payoff x at all terminal histories h̄ ⊇ h

that are consistent with i following Si. We use Gi(h) to denote the set of payoffs that are
guaranteeable for i at history h.

The proof is broken down into five steps, stated as Lemmas A.3-A.7 below. The proofs of
these lemmas can be found in Supplementary Appendix B.2. First, we check there that all
millipede games with greedy strategies are OSP, establishing one direction of the theorem.

Lemma A.3. Millipede games with greedy strategies are obviously strategy-proof.

Given Li’s pruning principle (see Subsection A.1), the converse implication of Theorem
5—that all OSP mechanisms are equivalent to millipedes—follows from the remaining four
lemmas.40 Lemma A.4 develops Theorem 4 (see this theorem for a discussion):

Lemma A.4. Every OSP game is equivalent to an OSP game with perfect information in
which Nature moves at most once, as the first mover.

40We actually prove a slightly stronger statement, which is that every OSP game is equivalent to a millipede
game that satisfies the following additional property: for all i, all h at which i moves, and all x ∈ Gi(h),
there exists an action ax ∈ A(h) that clinches x (see Lemma A.6 below).
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Lemma A.5 shows that if a game is OSP, then at every history, for all actions a with the
exception of possibly one special action a∗, all payoffs that are possible following a are also
guaranteeable at h.41

Lemma A.5. Let Γ be an obviously strategy-proof game of perfect information that is pruned
with respect to the obviously dominant strategy profile (Si(≻i))i∈N . Consider a history h

where agent ih = i is called to move. There is at most one action a∗ ∈ A(h) such that
Pi((h, a∗)) /⊆ Gi(h).

The above lemma leaves open the possibility that there are several actions that can
ultimately lead to multiple final payoffs for i, which can happen when different payoffs are
guaranteeable for i by following different strategies in the future of the game. The next
lemma shows that if this is the case, we can always construct an equivalent OSP game such
that all actions except for possibly one are clinching actions.

Lemma A.6. For any OSP game Γ, there exists an equivalent OSP game Γ′ such that the
following hold at each h ∈ H (where i is the agent called to move at h):

(i) At least ∣A(h)∣ − 1 actions at h are clinching actions.
(ii) For every payoff x ∈ Gi(h), there exists an action ax ∈ A(h) that clinches x for i.
(iii) If Pi(h) = Gi(h), then all a ∈ A(h) are clinching actions and ih′ ≠ i for any h′ ⊋ h.

The final lemma of the proof establishes the payoff guarantees in the game constructed
in the previous lemmas.

Lemma A.7. Let (Γ, SN ) be an obviously strategy-proof mechanism that satisfies the con-
clusions of Lemmas A.4 and A.6. At all h, if there exists a previously unclinchable payoff z

that becomes impossible for agent ih at h, then C⊂ih(h) ⊆ Ci(h).

This lemma concludes the proof of Theorem 5. ∎

A.5 Proof of Theorem 7

We first prove the second statement. Let Γ be a monotonic millipede game. Fix an agent i,
and, for any history h∗ at which i moves, let x̄h∗ = Top(≻i, Pi(h∗)) and ȳh∗ = Top(≻i,Ci(h∗)).
Let Hi,h∗ = {h ∈ Hi∣h∗ ⊊ h′ ⊊ h Ô⇒ h′ ∉ Hi} be the set of one-step simple nodes. Consider
the following strategic plan for any h∗:

• If x̄h∗ ∈ Ci(h∗), then Si,h∗(h∗) = ax̄h∗ , where ax̄h∗ ∈ A(h∗) is a clinching action for x̄h∗ .
41We emphasize the distinction between a payoff x being “guaranteeable” vs. “clinchable”: the latter means

the agent receives x at all terminal histories, while the former means there is a continuation strategy Si such
that she receives x at all terminal histories consistent with Si.
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• If x̄h∗ ∉ Ci(h∗), then Si,h∗(h∗) = a∗ (i passes at h∗), and, for any other h ∈ Hi,h∗ :

– If Pi(h∗) ∖Ci(h∗) ⊆ Ci(h), then Si,h∗(h∗) = ax̄h∗ .

– Else, we have Ci(h∗) ⊆ Ci(h) (by monotonicity) and we set Si,h∗(h∗) = aȳh∗ .

It is straightforward to verify that this strategic plan is one-step dominant at any h∗, and
thus the corresponding strategic collection (Si,h∗)h∗∈Hi is also one-step dominant.

In order to prove the first statement, let (Γ, SN ,H) be a millipede mechanism with a profile
of one-step dominant strategic collections SN ,H. Begin by constructing an equivalent milli-
pede mechanism that satisfies Lemma A.6. Note that the transformations used in the proof
to construct the equivalent millipede mechanism are one-step dominance preserving—i.e., if
(Γ, SN ,H) was an OSS millipede mechanism before the transformation, then the transformed
game (Γ′, S′N ,H) is another OSS millipede mechanism that satisfies Lemma A.6. It remains
to show:

Lemma A.8. Any OSS millipede mechanism that, at each h ∈ H, satisfies conditions (i),
(ii), and (iii) of Lemma A.6 is monotonic.

We prove this lemma in Supplementary Appendix B.4. ∎

A.6 Proof of Theorem 8

That sequential choice mechanisms are SOSP is immediate from the definition, and so we
focus on proving that every SOSP mechanism is equivalent to a sequential choice mechanism.
Following the same reasoning as in the proof of Lemma A.4, given any SOSP mechanism, we
can construct an equivalent SOSP mechanism of perfect information in which Nature moves
at most once, as the first mover. It remains to analyze the subgame after a potential move
by Nature and to show that every perfect-information SOSP mechanism in which there are
no moves by Nature is equivalent to a sequential choice mechanism.

Let (Γ, SN ) be such a mechanism. In line with the discussion in Section A.1, we can
assume that Γ is pruned. By Lemma 1, each agent i can have at most one payoff-relevant
history along any path of Γ, and this history (if it exists) is the first time i is called to play.
Consider any such history hi0. If there is some other history h′ ⊃ hi0 at which i is called to
play, then history h′ must be payoff-irrelevant for i; in other words, there is some payoff
x such that Pi((h′, a′)) = {x} for all a′ ∈ A(h′). Using the same technique as in the proof
of Lemma A.6, we construct an equivalent pruned game in which at history hi0, i is asked
to also choose her actions for all successor histories h′ ⊃ hi0 at which she might be called
to play, and then is not called to play again after hi0. Since all of these future histories
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were payoff-irrelevant for i, the new game continues to be strongly obvious dominant for i.
Strong obvious dominance is also preserved for all j ≠ i, since having i make all of her choices
earlier only shrinks the set of possible outcomes any time j is called to move, and thus, if
some action was strongly obviously dominant in the old game, the analogous action(s) will
be strongly obviously dominant in the new game. Repeating this for every agent and every
history, we construct a pruned SOSP game Γ′ that is equivalent to Γ and in which each agent
is called to move at most once along any path of play. It remains to show

Lemma A.9. Γ′ with greedy strategies is a sequential choice mechanism.

We prove this lemma in Supplementary Appendix B.6. ∎

A.7 Proof of Theorem 9

In the proof we use the concepts of roles and role assignment functions. Let R be a set
of players such that ∣R∣ = ∣N ∣; we call each r ∈ R a role. Let Σ be the set of bijections
σ ∶ R → N between the set of roles and the set of agents N ; we call these bijections role
assignment functions. Given a game Γ, let the function ρ ∶ H → R map each history h in
game Γ to the role ρ(h) that moves at this history. In the environment of the theorem, each
outcome in any game is an assignment of the objects to the agents playing the game. Given
a mechanism (Γ, S),42 each role assignment bijection σ determines a mechanism (Γσ, Sσ) for
the agents in N as follows: Γσ is the extensive-form game with the same game tree as Γ

and such that at each non-terminal history h, the agent called to move is σ(ρ(h)); at each
terminal history in Γσ the object assigned to agent i is the same as the object assigned to
role σ−1 (i) at the corresponding terminal history in Γ; the strategy Si of agent i in Γσ is the
same as the strategy of role σ−1 (i) in Γ. There are ∣Σ∣ = N ! possible mechanisms (Γσ, Sσ);
we call them the permuted mechanisms.43

We further define the symmetrization of mechanism (Γ∗, S∗) to be the following
random mechanism: first, Nature chooses a role assignment function σ uniformly at random
from the set of all possible role assignment functions, and then, the agents play Γσ with
strategies Sσ.44 To formally ensure that the symmetrization of a millipede is a millipede, we

42For brevity, we denote a profile of strategies as S rather than SR or SN .
43Our terminology of roles generalizes Carroll’s (2014) priority roles from Pápai (2000)’s hierarchical

exchanges to general extensive-form games.
44While this construction implies that different agents play the same strategies in the same role, our

arguments only rely on the weaker assumption that an agent’s strategy Sσ,i(≻i) depends only on her own
preferences and her role assignment, and not on the roles assigned to other agents. In other words, in any
two subgames ΓA and ΓB following Nature’s selection of role assignments σA and σB , if σ−1A (i) = σ

−1
B (i) = rn,

then SA,i(≻i)(hA) = SB,i(≻i)(hB) for any equivalent histories hA and hB in these two games.
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assume that Nature draws the role assignment σ and its initial decision in the subgame Γσ

in the same move.

Lemma A.10. Suppose that, for every deterministic OSP and Pareto-efficient perfect-
information mechanism, its symmetrization is equivalent to Random Priority. Then, every
symmetric, OSP and Pareto-efficient mechanism is equivalent to Random Priority.

Proof. Take a symmetric, OSP, and Pareto-efficient mechanism (Γ, S). By Lemma
A.4, we can assume that (Γ, S) has perfect information and that Nature moves only at the
beginning of the game. Because (Γ, S) is symmetric, its symmetrization (Γ∗, S∗) is equivalent
to (Γ, S). Furthermore, (Γ∗, S∗) is a lottery over symmetrizations of each deterministic
perfect-information continuation game Γ′ after Nature’s move in (Γ, S). The mechanism
given by game Γ′, together with the strategy profile induced from Γ, is OSP and Pareto
efficient, and hence by the assumption of the lemma it is equivalent to Random Priority.
Because every lottery over Random Priority lotteries is still equivalent to Random Priority,
the lemma obtains. ∎

In light of the above lemma, it is sufficient to prove Theorem 9 for symmetrizations. To
do so, we build on the bijective argument used by Abdulkadiroğlu and Sönmez (1998) to
show the equivalence of Random Priority and the Core from Random Endowments (see also
Pathak and Sethuraman, 2011 and Carroll, 2014). Let Ord denote the set of total linear
orders over the set of agents N . Given a function f ∶ Σ → Ord, for any σ ∈ Σ, let fσ(n)
denote the nth ranked agent under fσ.

Lemma A.11. Let (Γ, S) be a deterministic OSP and Pareto-efficient perfect-information
mechanism, and fix a preference profile ≻N . There exists a bijection f ∶ Σ → Ord such that,
for each σ ∈ Σ, the permuted mechanism (Γσ, Sσ(≻N )) results in the same final allocation
as the serial dictatorship in which the agents choose their most preferred object in the order
fσ(1), fσ(2), . . . , fσ(N).

We construct the bijection f and establish the lemma in Supplementary Appendix B.7.45

Because f is a bijection, we can associate to each role assignment function σ a unique serial
dictatorship that produces the same final allocation, thereby showing that the symmetriza-
tion of (Γ, S) is equivalent to Random Priority. As this holds for any mechanism, applying
Lemma A.10 completes the proof of Theorem 9. ∎

45The bijection f is constructed for a fixed mechanism and preference profile, i.e., different mechanisms
and preference profiles might have different bijections. While the full argument constructing f , and showing
it is bijective and results in the same final allocation as the serial dictatorship, is highly involved, Section 5
of the main text gives a simple example to showcase the idea.
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B Supplementary Appendix: Omitted Proofs (For On-

line Publication)

This supplementary appendix contains the proofs of the lemmas used in the proofs of the
main theorems in Appendix A, as well as the full proofs of Theorem 6 and Lemma 1 from
the main text.

B.1 Proofs of Lemmas for Theorem 2

Proof of Lemma A.1. In order to show that there is no OSS mechanism that is equivalent to
Γ, suppose, by way of contradiction, that there is such mechanism with game Γ̃ and a profile
of OSS strategic plans. Let S̃ be the profile of strategies in Γ̃ induced by the strategic plans;
by Theorem 1, this profile is obviously dominant.

The proof proceeds in a series of steps, which we label 1.1-1.6. (The labeling k.1 − k.6
is used because, after proving the result for k = 1, we use analogues of these steps to prove
Lemma A.2 for arbitrary k.)

Step 1.1. In Γ̃, the first mover must be i, and x must be guaranteeable for i. Furthermore,
at the empty history, w and z are not guaranteeable for i, but there is a unique action after
which w and z are possible. This action is taken by all types of player i that rank either w
or z first; we call this action i’s focal action.

Proof of Step 1.1. First notice that i must be the first mover. Indeed, in mechanism Γ,
agent j receives αj if and only if agent i prefers x to w and z. Assume that, under Γ̃, agent j
moves first. Something must be guaranteeable for agent j at this history, say λ.46 If λ = αj,
then we have non-equivalence when j prefers αj the most and agent i does not prefer x to
w and z. If λ ≠ αj, then, we have non-equivalence when j prefers λ the most and i prefers x
to w and z. Therefore, the first mover cannot be j. As the same argument works for agent
`, the first mover must be i.

Second, note that equivalence implies that i obtains x for any preference profile such that
i prefers x the most, and therefore, x is guaranteeable at the first move in Γ̃. Analogously, w
and z must be possible but not guaranteeable for i at the first move. To see that w cannot
be guaranteeable, note that if it were, i would receive w for all preference profiles where she
ranked it first, which is not the case in Γ, and so equivalence is violated; the same holds for
z. By equivalence, both w and z are possible for i, i.e., w, z ∈ Pi(h). Further, there must
be a unique action a∗ such that w, z ∈ Pi((h, a∗)). If there were two actions a1, a2 such that

46That something must be guaranteeable follows because each history has at least two actions, and in
any OSP game, there can be at most one action such that there is some payoff that is possible, but not
guaranteeable (see the proof of Theorem 5).
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w were possible after both, then any type that prefers w the most would have no obviously
dominant action, since w is not guaranteeable; the same holds for z. Therefore, each of w
and z are possible after exactly one action, label them aw and az. If aw ≠ az, then any
type that ranks w first and z second would have no obviously dominant action.47 Therefore,
aw = az; we call this action i’s focal action. Since w and z are possible following only the
focal action, all types that rank either w or z first must select it. This completes the proof
of Step 1.1.

Step 1.2. In Γ̃, at the history following the first focal action by i, agent j moves. At this
history, both x̃ and x are guaranteeable for j, while a is not guaranteeable. Further, there is
a unique action after which a is possible, and this action is taken by all types of j who rank
a first; we call this action j’s focal action.

Proof of Step 1.2. Since, per Step 1.1, both w and z are possible for i following the focal
action, the focal action cannot lead to a terminal history, and so there must be an agent
who moves. We start by showing that the mover must be j. Note that in Γ, agent ` receives
β` if and only if agent i prefers either w or z to x, and agent j prefers x̃ the most out of
{x, x̃, a}. Suppose that i prefers either w or z to x, so that i follows the focal action at the
initial history. By the same logic as in Step 1.1, if agent ` is the next mover, she must be
able to guarantee some payoff, say γ. If γ = β`, this would lead to a non-equivalence when `
ranks γ first and j ranks x first. If γ ≠ β`, then we have a non-equivalence when ` ranks γ
first and j ranks x̃ first. Therefore, ` cannot be the next mover, and neither can be i (as i
just moved) and so it must be j.

The equivalence of Γ and Γ̃ implies that for any profile such that i prefers w or z over x
and j prefers x the most, j receives x. Because, per Step 1.1, all types of i take the focal
action in Γ̃, we conclude that following i’s focal action, j must be able to guarantee himself
x. The same argument applies for x̃. Similarly, equivalence implies that there must be an
action for j such that a is possible. Outcome a cannot be guaranteeable for j, because if it
were, then j would receive a for all preference profiles where i ranks w or z first and j ranks
a first, which is not the case in Γ. By an argument similar to Step 1.1, there cannot be any
other actions after which a is possible, and all types of j that rank a first must select this
action. We label this action j’s focal action.

Step 1.3. In Γ̃, following i′s focal action and j’s focal action, there might be any finite
number of consecutive histories at which i and j move. At these histories where i moves,
i can clinch x, but neither w nor z are guaranteeable, and there is a unique action (the

47Since w is not guaranteeable and z is not possible after aw, the worst case from any strategy that selects
aw is strictly worse than z, which is possible from az. Similarly, since w is not possible following az, the
worst case is strictly worse than w, which is possible from aw. Note that an analogous argument would apply
to any type that ranks z first and w second.
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focal action) after which w and z are possible and that is taken by all types of i that rank
w or z first. At these histories where j moves, both x̃ and x are guaranteeable, but a is not
guaranteeable, and there is a unique action (the focal action) after which a is possible and
is taken by all types of j that rank a first. Following this sequence of focal actions, agent `
moves.

Proof of Step 1.3. Since, per Step 1.2, a is possible, but not guaranteeable following j’s
focal action, the focal action cannot lead to a terminal history, and so must lead to a history
at which an agent moves. As j just moved, the next mover must be either i or `. If the next
mover is i, as the history is on-path for all types of i who prefer w or z over x, the OSS
property of Γ̃ implies that either x or else both w and z are clinchable for i. Equivalence
implies that neither w nor z can be clinchable for i: if w were clinchable, then i receives w
for all profiles such that i prefers w the most and j prefers a the most, which is not the case
in Γ; an analogous argument applies for z. Therefore, x must be clinchable. Furthermore,
w and z are possible but not guaranteeable for i, and so, as in Step 1.1, OSP implies that
there is a unique action after which both w and z are possible, and all types that rank either
w or z first takes this action (note that these types must have taken the focal action at i’s
initial move, and so are on-path); we call this action the focal action.

Following the focal action by i, the next mover must be j or `. If it is j, then an analogous
argument as for i shows that this agent must have both x, x̃ clinchable, and that there must
be a unique action after which a is possible but not guaranteeable; we call it the focal action.

Following j’s focal action, the next move is by i or `. If it is by i then the above argument
applies again. We might then have a sequence of moves by i and j to which the above two
arguments apply. As the game is finite and at the end of every focal action in the sequence
more than one outcome is possible, the focal path of the game must lead to a history at
which ` is called to play. This proves Step 1.3.

Step 1.4. In Γ̃, at `’s move following the sequence of focal actions described in Step 1.3,
both ã and a are guaranteeable for `, while neither c nor x are guaranteeable. There is also a
unique action (the focal action) after which c and x are possible for `. This action is taken
by all types of ` that rank c first.

Proof of Step 1.4. Using arguments similar to Step 1.2, equivalence implies that at `’s
move, both ã and a are guaranteeable for `, while neither c nor x are guaranteeable, but
both c and x are possible following a unique action that is taken by all types of agent ` that
rank c first. Since c is not guaranteeable, this action cannot lead to a terminal history. Since
c is possible following only the focal action, all types of ` that rank c first must select this
action. This proves Step 1.4.

Step 1.5. In Γ̃, following the above sequence of focal actions that ends with the first focal
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action by `, there might be any finite number of consecutive histories at which j and ` move.
Each of these histories has a unique action (the focal action) after which a is possible for j’s
moves, and c and x are possible for `’s moves. All types of j that rank a first and all types of
` that rank c first take their respective focal actions. Following this sequence of focal actions,
the next mover is i.

Proof of Step 1.5. Since there are multiple possible outcomes for k following her focal
action, the focal action cannot lead to a terminal history. As k just moved, the next mover
must be either i or j. First consider the case in which j moves next. The OSS property
implies that either both x and x̃ are clinchable for j, or a is clinchable for j. Consider the
latter case. If this were true, then under a preference profile where i prefers w most and z
second, j prefers a most, and ` prefers c most, j would receive a, which is not the case in
Γ. Therefore, j must be able to clinch x and x̃. By equivalence, a must be possible for j,
but not guaranteeable, and so once again there must be a unique focal action after which a
is possible and that is taken by all types of j that prefer a the most (note that all of these
types have passed at j’s prior moves, and so are on-path). Following the focal action, the
next mover is i or `. If it is `, then an analogous argument implies that ` must be able to
clinch a and ã, with c possible but not guaranteeable following a unique focal action. There
may again be a sequence of moves by j and ` for which this argument can be repeated. As
the game is finite and at the end of every focal action more than one outcome is possible,
the focal path must lead to a history at which i is called to play. This proves step 1.5.

Step 1.6. In Γ̃, at i’s move following the sequence of focal actions described in Step 1.5,
x is not clinchable for i.48 At this move, there is a unique action (the focal action) after
which w is possible for i; the focal action is also the unique action after which x is possible
for i. This focal action is taken by all types of i that rank w first.

Proof of Step 1.6. By way of contradiction, suppose x is clinchable for i. Then OSP
implies that in the continuation game following i’s clinching of x, there must be a terminal
history at which j receives a: if there were not, then the type of j that prefers a the most
and x second would have no obviously dominant action at j’s prior moves. At this terminal
history, agent ` must be assigned something other than x (which was assigned to i) or a
(which was assigned to j). But then, the type of ` that prefers x the most and a second has
no obviously dominant action at `’s prior moves, which is a contradiction.49

An analogous argument to that which showed that there is a unique action after which
w is possible for i in Step 1.1, tell us that there is a unique action (the focal action) after

48The argument shows that x not only is not clinchable for i but also not guaranteeable.
49Note that by equivalence, x must be possible for ` at these prior moves, since in Γ, k receives x for type

profiles such that i ranks w first, j ranks a first, and ` ranks x first.
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which w is possible for i. By OSP, types of i ranking w first take this action. An analogous
argument shows that the focal action is the unique action after which x is possible.

Finishing the proof for k = 1.
As the previous step shows that x is not clinchable at the move of i considered there,

OSS implies that both w and z must be clinchable for i. This implies that for preference
profiles such that i ranks w first and x second, j ranks a first, and k ranks c first, agent i
is assigned w. However, under such profiles in Γ, i receives x, which is a contradiction to
equivalence. ∎

Proof of Lemma A.2. Take any k ≥ 2. By way of contradiction, suppose that Γ̃(k) with a
profile of strategic plans is a k-step simple mechanism equivalent to Γ(k) with greedy strategic
plans. The proof begins by repeating steps 1.1-1.6 from the proof of Lemma A.1 above, with
the only change being that Γ(k) plays the role of Γ and Γ̃(k) plays the role of Γ̃. Then,
we continue with the addition of steps k′.3-k′.6 for k′ = 2,3, . . . , k. Each step k′.3-k′.6 is
analogous to the corresponding step 1.3-1.6 from above, except that a(k) plays the role of
a, ã(k) plays the role of ã, and z(k) plays the role of z. Finally, the proof for arbitrary k

concludes with a final step that is the direct analogue of the finishing step for k = 1, except
that we apply k-step simplicity instead of OSS. ∎

B.2 Proofs of Lemmas for Theorem 5

Proof of Lemma A.3. Let Γ be a millipede game. For a set X of payoffs of agent i and a type
≻i, let Top(≻i,X) be the best payoff in X according to preferences ≻i. Consider some profile
of greedy strategies (Si(⋅))i∈N . If Top(≻i,Ci(h)) = Top(≻i, Pi(h)), then clinching a top payoff
is obviously dominant at h. What remains to be shown is if Top(≻i,Ci(h)) ≠ Top(≻i, Pi(h)),
then passing is obviously dominant at h.

Assume that there exists a history h that is on the path of play for type ≻i when following
Si(≻i) such that Top(≻i,Ci(h)) ≠ Top(≻i, Pi(h)), yet passing is not obviously dominant at
h; further, let h be any earliest such history for which this is true. To shorten notation, let
xP (h) = Top(≻i, Pi(h)), xC(h) = Top(≻i,Ci(h)), and let xW (h) be the worst possible payoff
from passing and continuing to follow Si(≻i) at all future nodes.

First, note that xW (h) ≿i xW (h′) for all h′ ⊊ h such that ih′ = i. Since passing is obviously
dominant at all h′ ⊊ h, we have xW (h′) ≿i xC(h′), and together, these imply that xW (h) ≿i

xC(h′) for all such h′. At h, since passing is not obviously dominant and all other actions are
clinching actions, we have xC(h) ≻i xW (h); further, since Top(≻i,Ci(h)) ≠ Top(≻i, Pi(h)),
there must be some x′ ∈ Pi(h) ∖ Ci(h) such that x′ ≻i xC(h) ≻i xW (h). The above implies
that x′ ≻i xC(h) ≻i xC(h′) for all h′ ⊊ h such that ih′ = i.
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Let X0 = {x′ ∶ x′ ∈ Pi(h) and x′ ≻i xC(h)}; in words, X0 is a set of payoffs that are
possible at all h′ ⊆ h, and are strictly better than anything that was clinchable at any h′ ⊆ h
(and therefore have never been clinchable themselves). Order the elements in X0 according
to ≻i, and without loss of generality, let x1 ≻i x2 ≻i ⋯ ≻i xM .

Consider a path of play starting from h that is consistent with Si(≻i) and ends in a
terminal history h̄ at which i receives xW (h). For every xm ∈ X0, let hm denote the earliest
history on this path such that xm ∉ Pi(hm) and either (i) ih = i or (ii) hm is terminal. Note
that because i is ultimately receiving payoff xW (h), such a history hm exists for all xm ∈X0.
Let ĥ−m be the earliest history at which i moves and at which all payoffs strictly preferred
to xm are no longer possible.

Claim. For all xm ∈X0 and all h′ ⊆ h̄, we have xm ∉ Ci(h′).

Proof of claim. First, note that xm ∉ Ci(h′) for any h′ ⊆ h by construction. We show that
xm ∉ Ci(h′) at any h̄ ⊇ h′ ⊃ h as well. Start by considering m = 1, and assume x1 ∈ Ci(h′) for
some h̄ ⊇ h′ ⊃ h. By definition, x1 = Top(≻i, Pi(h)); since h′ ⊃ h implies that Pi(h′) ⊆ Pi(h),
we have that x1 = Top(≻i, Pi(h′)) as well. Since x1 ∈ Ci(h′) by supposition, greedy strategies
direct i to clinch x1, which contradicts that she receives xW (h).50

Now, consider an arbitrary m, and assume that for all m′ = 1, . . . ,m − 1, payoff xm′ is
not clinchable at any h′ ⊆ h̄, but xm is clinchable at some h′ ⊆ h̄. Let xm′ ≻i xm be a payoff
that becomes impossible at ĥ−m ⊆ h̄; if such payoff does not exist then the argument of the
paragraph above applies. There are two cases:

Case (i): h′ ⊊ ĥ−m. This is the case in which xm is clinchable while there is some
strictly preferred payoff xm′ ≻i xm that is still possible. By assumption, all {x1, . . . , xm−1} are
previously unclinchable at ĥ−m, and so xm′ is previously unclinchable at ĥ−m. By definition
of a millipede game (part 3), we we have xm ∈ Ci(ĥ−m). Thus, xm is the best remaining
payoff at ĥ−m, and is clinchable, and so greedy strategies direct i to clinch xm at ĥ−m, which
contradicts that she receives xW (h) (as in footnote 50, the argument still applies if ĥ−m is a
terminal history).

Case (ii): h′ ⊇ ĥ−m. In this case, xm becomes clinchable after all strictly preferred
payoffs are no longer possible. Thus, again, greedy strategies instruct i to clinch xm, which
contradicts that she is receiving xW (h). ∎

To finish the proof of Lemma A.3, let ĥ = max{h1, h2, . . . , hM} (ordered by ⊂); in words,
ĥ is the earliest history on the path to h̄ at which no payoffs in X0 are possible any longer.
Let x̂ be a payoff in X0 that becomes impossible at ĥ. The claim shows that no x ∈ X0 is
clinchable at any h′ ⊆ ĥ, and so we can further conclude that x̂ is previously unclinchable at

50 If h′ is terminal, then, even though i takes no action at h′, according to our notational convention we
define Ci(h′) = {x1}, which also contradicts that she receives payoff xW (h).
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ĥ. Therefore, by part 3 in the definition of a millipede game, xC(h) ∈ Ci(ĥ). Since xC(h)
is the best possible remaining payoff at ĥ, greedy strategies direct i to clinch xC(h), which
contradicts that she receives xW (h) (as in footnote 50, the argument still applies if ĥ is a
terminal history). ∎

Proof of Lemma A.4. Ashlagi and Gonczarowski (2018) briefly mention this result in
a footnote; here, we provide the straightforward proof for completeness. That every OSP
game is equivalent to an OSP game with perfect information is implied by our more general
Theorem 4. To show that we can furthermore assume that Nature moves at most once, as
the first mover, consider a perfect-information game Γ. Let Hnature be the set of histories h at
which Nature moves in Γ. Consider a modified game Γ′ in which at the empty history Nature
chooses actions from ×h∈HnatureA (h). After each of Nature’s initial moves, we replicate the
original game, except at each history h at which Nature is called to play, we delete Nature’s
move and continue with the subgame corresponding to the action Nature chose from A(h)

at ∅. Again, note that for any agent i and history h at which i is called to act, the support
of possible outcomes at h in Γ′ is a subset of the support of possible outcomes at the
corresponding history in Γ (where the corresponding histories are defined by mapping the
A (h) component of the action taken at ∅ by Nature in Γ′ as an action made by Nature
at h in game Γ). When the support of possible outcomes shrinks, the worst-case outcome
from any fixed strategy can only improve, while the best-case can only diminish, and so
if a strategy was obviously dominant in Γ, the corresponding strategy will continue to be
obviously dominant in Γ′, and the two games will be equivalent. ∎

Proof of Lemma A.5. For any history h, let PnGi(h) = Pi(h) ∖Gi(h) (where “PnG” is
shorthand for ”possible but not guaranteeable”). Now, consider any h at which i moves, and
assume that at h, there are (at least) two such actions a∗1, a∗2 ∈ A(h) as in the statement. We
first claim that PnGi(h) ∩ Pi(h∗1) ∩ Pi(h

∗
2) = ∅, where h∗1 = (h, a∗1) and h∗2 = (h, a∗2). Indeed,

if not, then let x be a payoff in this intersection. By pruning, some type ≻i is following
some strategy such that Si(≻i)(h) = a∗1 that results in a payoff of x at some terminal history
h̄ ⊇ (h, a∗1). Note that Top(≻i, Pi(h)) ≠ x, because otherwise a∗1 would not be obviously
dominant for this type (since x ∉ Gi(h) and x ∈ Pi(h∗2)). Thus, let Top(≻i, Pi(h)) = y. Note
that y ∉ Gi(h) (or else it would not be obviously dominant for type ≻i to play a strategy
such that x is a possible payoff). Further, we must have y ∈ Pi(h∗1) and y ∉ Pi(h∗2). To see
the former, note that if y ∉ Pi(h∗1), then a∗1 is not obviously dominant for type ≻i, which
contradicts that Si(≻i)(h) = a∗1; given the former, if y ∈ Pi(h∗2), then once again a∗1 would not
be obviously dominant for type ≻i. Now, again by pruning, there must be some type ≻′i such
that Si(≻′i)(h) = a∗2 that results in payoff x at some terminal history h̄ ⊇ (h, a∗2). By similar
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reasoning as previously, Top(≻′i, Pi(h)) ≠ x, and so Top(≻′i, Pi(h)) = z for some z ∈ Pi(h∗2).
Since y ∉ Pi(h∗2), we have z ≠ y, and we can as above conclude that z ∉ Gi(h). It is without
loss of generality to consider a type ≻′i such that Top(≻′i, Pi(h)∖{z}) = y. Note that, for this
type, no action a ≠ a∗2 can obviously dominate a∗2 (since z ∉ Gi(h)). Further, a∗2 itself is not
obviously dominant for this type, since the worst case from a∗2 is strictly worse than y (since
y ∉ Pi(h∗2) and z ∉ Gi(h)), while y ∈ Pi(h∗1). Therefore, this type has no obviously dominant
action at h, which is a contradiction.

Thus, PnGi(h) ∩Pi(h∗1) ∩Pi(h
∗
2) = ∅, which means there must be distinct x, y such that

(i) x, y ∈ PnGi(h) (ii) x ∈ Pi(h∗1) but x ∉ Pi(h∗2) and (iii) y ∈ Pi(h∗2) but y ∉ Pi(h∗1). Next, for
all types of agent i that reach h, it must be that Top(≻i, Pi(h)) ≠ x, y. To see why, assume
there were a type that reaches h such that Top(≻i, Pi(h)) = x. Then, by richness, there is
a type that reaches h such that Top(≻i, Pi(h) ∖ {x}) = y. But, note that this type has no
obviously dominant action at h. An analogous argument applies switching x with y.

Now, by pruning, there is some type that reaches h that plays a strategy such that
Si(≻i)(h) = a∗1 and x is a possible payoff. Let Top(≻i, Pi(h)) = z for this type, where, as just
noted, z ≠ x, y. The fact that Si(≻i)(h) = a∗1 implies that z ∈ Pi(h∗1) and z ∉ Gi(h); if either
of these were false, it would not be obviously dominant for this type to play a strategy such
that Si(≻i)(h) = a∗1 and x is a possible payoff. In other words, z ∈ PnG(h) and z ∈ Pi(h∗1).
Since we just showed that PnGi(h) ∩ Pi(h∗1) ∩ Pi(h

∗
2) = ∅, we have z ∉ Pi(h∗2). Finally,

consider a type ≻i such that Top(≻i, Pi(h)) = z and Top(≻i, Pi(h) ∖ {z}) = y. Note that this
type has no obviously dominant action at h, which is a contradiction. ∎

Proof of Lemma A.6. Given an OSP mechanism (Γ, SN ), begin by using Lemma A.4
to construct an equivalent OSP game of perfect information in which Nature moves only at
the initial history (if at all). Further, prune this game according to the obviously dominant
strategy profile SN . With slight abuse of notation, we denote this pruned, perfect information
mechanism by (Γ, SN ). Consider some history h of Γ at which the mover is ih = i. By Lemma
A.5, all but at most one action (denoted a∗) in A(h) satisfy Pi((h, a)) ⊆ Gi(h); this means
that any obviously dominant strategy for type ≻i that does not choose a∗ guarantees the
best possible outcome in Pi(h) for type ≻i. Define the set

Si(h) = {Si ∶ Si(h) ≠ a
∗ and at all terminal h̄ consistent with Si, i receives the same payoff}.

In words, each Si ∈ Si(h) guarantees a unique payoff for i if she plays strategy Si starting
from history h, no matter what the other agents do.

We create a new game Γ′ that is the same as Γ, except we replace the subgame starting
from history h with a new subgame defined as follows. If there is an action a∗ such that
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Pi((h, a∗)) /⊆ Gi(h) in the original game (of which there can be at most one), then there is
an analogous action a∗ in the new game, and the subgame following a∗ is exactly the same
as in the original game Γ. Additionally, there are M = ∣Si(h)∣ other actions at h, denoted
a1, . . . , aM . Each am corresponds to one strategy Smi ∈ Si(h), and following each am, we
replicate the original game, except that at any future history h′ ⊇ h at which i is called on
to act, all actions (and their subgames) are deleted and replaced with the subgame starting
from the history (h′, a′), where a′ = Smi (h′) is the action that i would have played at h′ in
the original game had she followed strategy Smi (⋅). In other words, if i’s strategy was to
choose some action a ≠ a∗ at h in the original game, then, in the new game Γ′, we ask agent
i to “choose” not only her current action, but all future actions that she would have chosen
according to Smi (⋅) as well. By doing so, we have created a new game in which every action
(except for a∗, if it exists) at h clinches some payoff x, and further, agent i is never called
upon to move again.51

We construct strategies in Γ′ that are the counterparts of strategies from Γ, so that for
all agents j ≠ i, they continue to follow the same action at every history as they did in
the original game, and for i, at history h in the new game, she takes the action am that
is associated with the strategy Smi in the original game. By definition if all agents follow
strategies in the new game analogous to the their strategies from the original game, the same
outcome is reached, and so Γ and Γ′ are equivalent under their respective strategy profiles.

We must also show that if a strategy profile is obviously dominant for Γ, this modified
strategy profile is obviously dominant for Γ′. To see why the modified strategy profile is
obviously dominant for i, note that if her obviously dominant action in the original game was
part of a strategy that guarantees some payoff x, she now is able to clinch x immediately,
which is clearly obviously dominant; if her obviously dominant strategy was to follow a
strategy that did not guarantee some payoff x at h, this strategy must have directed i to
follow a∗ at h. However, in Γ′, the subgame following a∗ is unchanged relative to Γ, and
so i is able to perfectly replicate this strategy, which obviously dominates following any
of the clinching actions at h in Γ′. In addition, the game is also obviously strategy-proof
for all j ≠ i because, prior to h, the set of possible payoffs for j is unchanged, while for
any history succeeding h where j is to move, having i make all of her choices earlier in
the game only shrinks the set of possible outcomes for j, in the set inclusion sense. When
the set of possible outcomes shrinks, the best possible payoff from any given strategy only
decreases (according to j’s preferences) and the worst possible payoff only increases, and so,

51More precisely, all of i’s future moves are trivial moves in which she has only one possible action; hence
these histories may further be removed to create an equivalent game in which i is never called on to move
again. Note that this only applies to the actions a ≠ a∗; it is still possible for i to follow a∗ at h and be called
upon to make a non-trivial move again later in the game.
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if a strategy was obviously dominant in the original game, it will continue to be so in the new
game. Repeating this process for every history h, we are left with a new game where, at each
history, there are only clinching actions plus (possibly) one passing action, and further, every
payoff that is guaranteeable at h is also clinchable at h, and i never moves again following a
clinching action. This shows parts (i) and (ii). Part (iii) follows immediately from part (ii),
due to greedy strategies and the pruning principle. ∎

Proof of Lemma A.7. Let h be any earliest history where some agent i moves such
that there is a previously unclinchable payoff z that becomes impossible at h (the case for
terminal histories is dealt with separately below). This means that i moves at some strict
subhistory h′ ⊊ h and the following are true: (a) z ∉ Pi(h); (b) z ∈ Pi(h′) for all h′ ⊊ h such
that ih = i; and (c) z ∉ C⊂i (h). Points (b) and (c) imply that z is possible at every h′ ⊊ h
at which i is called to move, but it is not clinchable at any of them; thus, for any type of
agent i that ranks z first, any obviously dominant strategy has the agent choosing the unique
passing action at all h′ ⊊ h.

We want to show that C⊂i (h) ⊆ Ci(h). Towards a contradiction, assume that C⊂i (h) /⊆

Ci(h), and let x ∈ C⊂i (h) but x ∉ Ci(h). Consider a type ≻i that ranks z first and x second.
By the previous paragraph, this type must be playing some strategy that passes at any
h′ ⊊ h, and so h is on the path of play for type ≻i. Since z ∉ Pi(h) and x ∉ Ci(h), by Lemma
A.6, part (ii), the worst case outcome from this strategy is some y that it is strictly worse
than both z and x according to ≻i. However, we also have x ∈ Ci(h′) for some h′ ⊊ h , and so
the best case outcome from clinching x at h′ is x. This implies that passing is not obviously
dominant, and thus Γ is not OSP, a contradiction.

Last, consider a terminal history h̄. As above, let z be a payoff such that (a), (b), and (c)
hold (replacing h with h̄). Recall that for terminal histories, we define Ci(h̄) = {y}, where
y is the payoff that obtains at h for i. Towards a contradiction, assume that there is some
x ∈ Ci(h′) for some h′ ⊊ h̄ but x ∉ Ci(h̄). Note that (i) z ≠ y, by (a); (ii) z ≠ x, by (c); and
(iii) x ≠ y, since x ∉ Ci(h̄). In other words, x, y, and z are all distinct payoffs for i. Thus,
consider the type ≻i that ranks z first, x second, and y third, followed by all other payoffs.
By (b) and (c), z is possible at every h′′ ⊊ h̄ at which i moves, but is not clinchable at any
such h′′. Thus, any obviously dominant strategy for type ≻i must have agent i passing at
all such histories. This implies that y is possible for this type. However, at h′, i could have
clinched x, and so the strategy is not obviously dominant, a contradiction. ∎
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B.3 Proof of Theorem 6

Before proving the theorem, we first formally define a personal clock auction. Given some
perfect-information game Γ, define outcome functions g as follows: gy(h̄) ⊆ N is the set of
agents who are in the allocation ȳ that obtains at terminal history h̄ (that is, i ∈ gy(h̄) if and
only if ȳi = 1), and gw,i(h̄) ∈ R is the transfer to agent i at h̄. The following definition of a
personal clock auction is adapted from Li (2017b). Note that the game is deterministic, i.e.,
there are no moves by Nature.52

Γ is a personal clock auction if, for every i ∈ N , at every earliest history h∗i at which
i moves, either In-Transfer Falls: there exists a fixed transfer w̄i ∈ R, a going transfer
w̃i ∶ {hi ∶ h∗i ⊆ hi} → R and a set of “quitting actions” Aq such that

• For all terminal h̄ ⊃ h∗i , either (i) i ∉ gy(h̄) and gw,i(h̄) = w̄i or (ii) i ∈ gy(h̄) and
gw,i(h̄) = inf{w̃i(hi) ∶ h∗i ⊆ hi ⊊ h̄}.

• If h̄ ⊋ (h, a) for some h ∈ Hi and a ∈ Aq, then i ∉ gy(h̄).

• Aq ∩A(h∗i ) ≠ ∅

• For all h′i, h′′i ∈ {hi ∈ Hi ∶ h∗i ⊆ hi}:

– If h′i ⊊ h′′i , then w̃i(h′i) ≥ w̃i(h′′i )

– If h′i ⊊ h′′i , w̃i(h′i) > w̃i(h′′i ) and there is no h′′′i such that h′i ⊊ h′′′i ⊊ h′′i , then
Aq ∩A(h′′i ) ≠ ∅

– If h′i ⊊ h′′i and w̃i(h′i) > w̃i(h′′i ), then ∣A(h′i) ∖Aq ∣ = 1

– If ∣A(h′i) ∖ Aq ∣ > 1, then there exists a ∈ A(h′i) such that, for all h̄ ⊇ (h′i, a),
i ∈ gy(h̄);53

or, Out-Transfer Falls: as above replacing every instance of “i ∈ gy(h̄)” with “i ∉ gy(h̄)”
and vice-versa.

We now prove Theorem 6. As discussed in the main text, the first part of this theorem
follows from our Corollary 1, Li (2017), and the construction of the one-step simple strategic

52We slightly simplify Definition 15 of Li (2017b) by restricting it to perfect information games: by
Theorem 4, for any personal clock auction that satisfies Definition 15 of Li (2017b), there is an equivalent
mechanism that satisfies the definition we work with. This also applies to the minor correction provided by
Li in a corrigendum available on his website; cf. footnote 53 for further details.

53The corrigendum issued by Li replaces this statement with one that says if there is more than one non-
quitting action at h′i, there is a continuation strategy (rather than an action) that guarantees that i ∈ gy(h̄).
The corrigendum also notes, though, that this change does not expand the set of implementable choice rules,
because for any newly admissible mechanism, there is always an equivalent mechanism satisfying the original
definition in which the agent reports her type at h′i and does not move again. Thus, our notion of equivalence
allows us to work directly with this simpler definition of personal clock auctions.
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collections for each agent that we now present. This construction also proves the second part
of the theorem.

Let Γ be a personal clock auction. We present the construction and argument for in-
transfer falls; the case of out-transfer falls is analogous. Consider any hi ∈ Hi and simple-node
set Hi,hi = {h′ ∈ Hi ∶ hi ⊊ h′′ ⊊ h′ Ô⇒ h′′ ∉ Hi}, and define the strategic plan Si,hi(h

′) at
h′ ∈ Hi,hi as follows:

• If θi + w̃i(hi) > w̄i and A(hi) ∖Aq ≠ ∅:

– [Action at hi] Choose Si,hi(hi) = a ∈ A(hi) ∖Aq; if it further holds that ∣A(hi) ∖

Aq ∣ > 1, then choose Si,hi(hi) = a ∈ A(hi)∖Aq such that i ∈ gy(h̄) for all h̄ ⊇ (hi, a).

– [Actions at next-histories] For h′ ∈ Hi,hi ∖ {hi}, if there exists a ∈ A(h′) ∩Aq,
then Si,hi(h′) = a for some a ∈ A(h′) ∩Aq. Else, Si,hi(h′) = a′ for some a′ ∈ A(h′)

such that for all h̄ ⊇ (h, a′), i ∈ gy(h̄).

• Else, choose actions such that Si,hi(h′) ∈ Aq for all h′ ∈ Hi,hi .

To show that this is a one-step simple strategic collection, first consider hi such that A(hi)∖

Aq = ∅ . Then the only actions available at hi are quitting actions. Thus, the best- and
worst-cases from any action are all w̄i, and one-step dominance holds. Second, consider
θi + w̃i(hi) ≤ w̄i. Then, the worst case from quitting at hi is a payoff of w̄i. Since the going
transfer can only fall, the best case from playing a non-quitting action at hi is at most
θi + w̃i(hi) ≤ w̄i, and so again one-step dominance holds. Third, consider the remaining case
in which θi + w̃i(hi) > w̄i and there exists some a ∈ A(hi) ∖Aq. There are two subcases:

First, if ∣A(hi)∖Aq ∣ = 1, then all other actions at hi are quitting actions, and i’s best case
and worst case payoff from following any such action is w̄i. We must show that the worst
case from the perspective of node hi from following the specified strategic plan gives a weakly
greater payoff than w̄i. For any next-history h′i ∈ Hi,hi at which there is a quitting action (i.e.,
A(h′i)∩Aq ≠ ∅), the worst case from the perspective of hi of following the strategic plan is w̄i.
If there is no quitting action at h′i (i.e., A(h′i) ∩Aq = ∅), then, by construction of a personal
clock auction, we have that (i) w̃i(hi) = w̃i(h′i), and (ii) there exists an a′ ∈ A(h′i) such that,
for all h̄ ⊇ (h′i, a′), we have i ∈ gy(h̄). Further, for any h′′i ⊋ h′i, w̃i(h′′i ) = w̃i(h′i) = w̃i(hi),
and so, for any h̄ ⊇ (h′i, a′), gw,i(h̄) = w̃i(hi). Therefore, the worst case from following the
strategic plan from the perspective of hi conditional on reaching any such h′i is θi + w̃i(hi).
In either case, the worst case from the strategic plan from the perspective of hi is weakly
better than taking any other action at hi.

Second, if ∣A(hi)∖Aq ∣ > 1, then the strategic plan instructs i to follow the action a ∈ A(hi)

such that i ∈ gy(h̄) for all h̄ ⊇ (hi, a); further, by construction of a personal clock auction, at
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any h̄ ⊇ (hi, a), we have gw,i(h̄) = w̃i(hi). Since θi + w̃i(hi) > w̄i, this is strictly preferred to
the payoff from taking any quitting action at hi, and since the going transfer cannot rise, it
is also weakly preferable to taking any other non-quitting action at hi. ∎

B.4 Proof of Lemma for Theorem 7

Proof of Lemma A.8. By way of contradiction, let (Γ, SN ,H) be a millipede mechanism that
satisfies (i)-(iii) at each history but is not monotonic. The failure of monotonicity implies
that there exists an agent i, history h∗ ∈ Hi, history h that follows i’s passing move at h∗

that is either terminal or in Hi and such that i does not move between h∗ and h, and payoffs
x and y such that x ∈ (Pi(h∗) ∖Ci(h∗)) ∖Ci(h) and y ∈ Ci(h∗) ∖Ci(h); in particular, x ≠ y.
Without loss of generality, assume that h∗ is an earliest history at which monotonicity is
violated in this way. This implies that x ∉ Ci(h′) for any h′ ⊆ h∗ such that ih′ = i.54 In
particular, any type ≻i of agent i that ranks payoff x first passes at any h′ ⊆ h∗ at which this
agent moves.

As x, y ∉ Ci(h) by the choice of these payoffs, there is some third payoff z ≠ x, y such that
z ∈ Ci(h). Let ≻i be such that ≻i∶ x, y, z . . . and ≻′i be such that ≻′i∶ x, z, . . .; these types exist
by richness, given that we are in a no-transfer environment. Ranking x first, these types are
passing at all nodes h′ ⊆ h∗ at which they move: Si,h′(≻i)(h′) = Si,h′(≻′i)(h′) = a∗ (h′) where
a∗ (h′) denotes the passing action at h′.

We conclude the indirect argument by showing that none of the following two cases is
possible:

Case y ∉ Pi(h). If also x ∉ Pi(h), then Pi(h) contains some w ≠ x, y. If x ∈ Pi(h), then
x ∉ Ci(h) implies that x ∈ Pi((h, a∗ (h))) and by definition of a passing action, there is some
w ≠ x such that w ∈ Pi((h, a∗)); furthermore w ≠ y because y ∉ Pi(h). In either case, passing
at h∗ might lead to w which is worse for ≻i than y, and i can clinch y at h∗; thus Si,h∗(≻i),
which passes at h∗, is not one-step dominant; a contradiction.

Case y ∈ Pi(h). If z ∈ Pi((h, a∗)) then x, y ∉ Ci(h) implies that the worst case for type
≻i from passing at h∗ is at best z, which is worse than clinching y at h∗. Therefore, the
passing action Si,h∗(≻i) is not one-step dominant at h∗ for ≻i, a contradiction. We may thus
assume that z ∉ Pi((h, a∗)). Because x ∉ Ci(h), the assumptions of Lemma A.6 imply that
x is not guaranteeable at h, and in particular it is not guaranteeable at (h, a∗ (h)). Thus,

54If x ∈ Ci(h
′) for some h′, then, by monotonicity, at any next history h′′ ⊋ h′ following a pass where i

moves, either x ∈ Ci(h
′′) or Pi(h′) ∖ Ci(h′) ⊆ Ci(h′′). If the latter holds, then at h′′, i has been offered to

clinch everything that is possible for her, and so, by greediness, h is not on-path for any type of agent i, and
we can construct an equivalent game in which monotonicity is not violated at h∗. Therefore, x ∈ Ci(h

′′).
Repeating this argument for every history between h′ and h∗ at which i moves delivers that x ∈ Ci(h

∗),
which is a contradiction.
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the worst case for type ≻′i from passing at h is strictly worse than z; since z ∈ Ci(h), this
implies that Si,h(≻′i) clinches at h. Thus x ∉ Ci(h) allows us to conclude that x ∉ Pi(h),
as otherwise Si,h(≻′i) could not be clinching at h. Since y ∉ Ci(h) and y ∈ Pi(h), we infer
that y ∈ Pi((h, a∗ (h))). As at least two payoffs are possible following passing and x ∉ Pi(h),
there is some w ≠ x, y that is possible at (h, a∗ (h)) and hence also at h. As x is not possible
and y is not clinchable at h, the worst case for type ≻i from the perspective of node h∗ from
following Si,h∗(≻i) is at best w, which is strictly worse than clinching y at h∗. Thus Si,h∗(≻i)
is not one-step dominant. ∎

B.5 Proof of Lemma 1

Recall that any strongly obviously dominant strategy is greedy. We first note the following
lemmas. To state the lemmas, define P̂i(h) = {x ∈ Pi(h) ∶ ∄y ∈ Pi(h) s.t. y ▷i x} to be the
set of possible payoffs for i at h that are undominated in Pi(h).

Lemma B.1. Let Γ be a pruned SOSP game. If a history h at which agent i moves is
payoff-relevant, then ∣P̂i(h)∣ ≥ 2.

Proof of Lemma B.1. Assume not, and let P̂i(h) = {x}, where x is the unique undom-
inated payoff at h.55 In particular, x ▷i x′ for all x′ ∈ Pi(h), and Top(≻i, Pi(h)) = x for
all types of agent i. Because x is possible at h, there is an action a ∈ A(h) such that
x ∈ Pi((h, a)). Action a does not clinch x; indeed if Pi((h, a)) = {x} then greediness would
imply that only actions clinching x are taken, and in a pruned game h would not be payoff
relevant. Thus, there is another x′ ∈ Pi((h, a)) such that x ≻i x′ for all types of agent i. Let
a′ ≠ a be an action at A(h). If x ∈ Pi((h, a′)), then, analogously as for a, there is some other
x′′ ∈ Pi((h, a′)). It is then easy to check that neither a nor a′ strongly obviously dominates
the other. If x ∉ Pi((h, a′)) then it would not be strongly obviously dominant (SOD, for
shortness) for any type to take action a′, which would contradict the game being pruned. ∎

Lemma B.2. Let (Γ, S) be a pruned SOSP mechanism. Let hi0 be any earliest history at
which agent i is called to play. Then, ∣P̂i((hi0, a))∣ ≤ 2 for all a ∈ A(hi0), with equality for at
most one a ∈ A(hi0).

Proof of Lemma B.2. Since hi0 is the first time i is called to move, it is on-path for all
types of agent i. We first show that ∣P̂i((hi0, a))∣ ≤ 2 for all a ∈ A(hi0). By way of contradiction
assume that there exists some hi0 such that ∣P̂i((hi0, a))∣ ≥ 3. Let x, y, z ∈ P̂i((hi0, a)) be three
distinct undominated payoffs that are possible following a. As (Γ, S) is pruned, there must

55There must be at least one undominated payoff, since ⊵i is transitive and the number of payoffs is finite.
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be some type, ≻i, for which action a is SOD at hi0. Possibly by renaming the outcomes,
richness allows us to assume that Top(≻i, Pi(hi0)) = x and x ≻i y ≻i z. For a to be strongly
obviously dominant, for all other actions a′ ≠ a at h0, the best case outcome for type ≻i

following a′ must be no better than z; in particular, this implies that for all a′ ≠ a and all
w ∈ P̂i((hi0, a

′)), w ⋭i y. Let a′′ ≠ a be an action at h0. If there is w ∈ P̂i((hi0, a
′′)) such

that x ⋭i w, then there is a type ≻′i such that Top(≻′i, Pi(hi0)) = y and y ≻′i w ≻′i x. For
this type, the worst case from a is at best x, while w is possible following a′′ , so a is not
strongly obviously dominant; for any a′ ≠ a, the worst case is strictly worse than y as argued
above, while the best case from a is y, and so no a′ ≠ a is SOD either. Therefore, type ≻′i
has no SOD action, a contradiction showing that no w ∈ P̂i((hi0, a

′′)) satisfies x ⋭i w. An
analogous argument—with z playing the role of x—shows that no w ∈ P̂i((hi0, a

′′)) satisfies
z ⋭i w. Thus, for all a′′ and all w ∈ P̂i((hi0, a

′′)), x ⊵ w and z ⊵ w. As x and z are distinct,
for any type ≻′i, either x ≻′i w or z ≻′i w, and in either case a′′ is not a dominant action for a
type contrary to (Γ, S) being pruned. This contradiction shows that ∣P̂i((hi0, a))∣ ≤ 2 for all
a ∈ A(hi0).

Finally, we show that ∣P̂i((hi0, a))∣ = 2 for at most one a ∈ A(hi0). Towards a contradiction,
let a and a′ be two actions such that there are two possible undominated payoffs for i following
each, and, for notational purposes, let P̂i((hi0, a)) = {x, y} and P̂i((hi0, a′)) = {w, z}, where,
a priori, it is possible that w, z ∈ {x, y}. As the mechanism is pruned, there is some type ≻i
that selects action a as an SOD action; without loss of generality, let Top(≻i, Pi(hi0)) = x.
Since y is possible following a, in order for a to be SOD, the best case from any a′ ≠ a must
be no better than y, which implies that w, z ⋭i x, and thus x ≠ w, z. Pruning also implies
that some type ≻′i is selecting action a′′ as an SOD action; without loss of generality, let
Top(≻′i, Pi(h

i
0)) = z. Since w is possible following a′′, in order for a′′ to be SOD, the best

case from a must be no better than w for type ≻′i, thus x, y ⋭i z, and so z ≠ x, y. Thus,
we have shown that x, y, z are all distinct, that no outcome in Pi(hi0)—including z and
y—structurally dominates x, and that y ⋭i z. Richness then implies that there is a type ≻i
such that Top(≻i, Pi(hi0)) = x and x ≻i z ≻i y. This type has no SOD action: only a can be
SOD because only a makes x possible, but a is not SOD because the worst case from a is at
best y, while the best case from a′ is z. ∎

Continuing with the proof of Lemma 1, assume that there was a path of the game with
two payoff-relevant histories h1 ⊊ h2 for some agent i. It is without loss of generality to
assume that h1 and h2 are the first and second times i is called to play on the path. First,
we claim that there are at least two structurally undominated payoffs at h1, i.e., ∣P̂i(h1)∣ ≥ 2.
To show it by way of contradiction, suppose that P̂i(h1) = {x}, which implies that x▷i x′

for all other x′ ∈ Pi(h1). Then Pi((h1, a)) = {x} for all a ∈ A(h1). Indeed, suppose that
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x′ ≠ x is possible after some action a at h1. Then x,x′ ∈ Pi((h1, a)) because otherwise no
type of i finds a to be SOD, which is impossible as the game is pruned. If x ∈ Pi((h1, a′))

for some action a′ ≠ a at h1, then a is not SOD for any type of i, which again is impossible
as the game is pruned. Thus x ∉ Pi((h1, a′)) and no type of i finds a′ to be SOD, which
yet again is impossible in a pruned game. Thus, no x′ ≠ x is possible after any a ∈ A(h1),
which contradicts that h1 is payoff-relevant. This contradiction shows that P̂i(h1), being
non-empty, has at least two elements.

Let a∗1 be the action such that h2 ⊇ (h1, a∗1). By Lemma B.2, one of the below two cases
would need to obtain, and to conclude the indirect argument we now show that neither of
them obtains.

Case ∣P̂i((h1, a∗1))∣ = 1. Let z be the unique undominated payoff that is possible after
a∗1; z ∈ P̂i(h1) as otherwise no type of i would find a∗1 to be SOD, which is impossible in a
pruned mechanism. Because h2 is payoff-relevant, Lemma B.1 tells us that ∣P̂i(h2)∣ ≥ 2, and
thus z ∉ P̂i(h2) as z weakly structurally dominates all outcomes in Pi(h2) ⊆ Pi((h1, a∗1)). Let
x ≠ z be an outcome in P̂i(h1) and let z′, z′′ ∈ P̂i(h2) be distinct undominated payoffs that
are possible at h2, and consider a type ≻i that ranks the outcomes z ≻i x ≻i z′. For this type,
a∗1 is not SOD at h1 because z′ is possible following a∗1 while x /∈ {z} = P̂i((h1, a∗1)) is possible
following some other action at h1. No action a ≠ a∗1 is SOD for ≻i if z ∉ Pi((h1, a)). Hence
z ∈ Pi((h1, a)) but then a∗1 would not be SOD for any type; impossible as the mechanism is
pruned. This contradiction shows that the present case is impossible.

Case ∣P̂i((h1, a∗1))∣ = 2. Then a∗1 is the unique action with two undominated payoffs
from Lemma B.2; let us label these payoffs x and y. As the game is pruned, there is some
type ≻i for which a∗1 is strongly obviously dominant; in particular the payoff Top(≻i, Pi(h1))

is possible following a∗1 and by renaming payoffs we can set x = Top(≻i, Pi(h1)). For each
action a ≠ a∗1 at h1, Lemma B.2 implies that P̂i((h1, a)) = {wa}, for some payoff wa; action
a∗1 being SOD for type ≻i implies that wa ⋭i x (and in particular wa ≠ x); and a being SOD
for some other type implies that y ⋫i wa. If wa ≠ y then y ⋭i wa, and, given that x and y are
mutually undominated, richness would give us a type ≻ai such that x ≻ai wa ≻ai y, but for this
type neither a∗1 nor a nor any other action a′ at h1 is SOD because as shown above wa′ ≠ x.
We conclude that wa = y for all actions a ≠ a∗1 at h1.

To continue the indirect argument we now show that P̂i(h2) = {x, y}. The set P̂i(h2) has
two elements, by Lemma B.1, because h2 is payoff relevant. Thus, if P̂i(h2) ≠ {x, y} then
there would be some z ≠ x, y such that z ∈ P̂i(h2) ⊆ Pi(h1). As x and y are undominated
at (h1, a∗1) ⊊ h2, richness would give us type ≻2

i such that x ≻2
i y ≻2

i z and for this type a∗1
would not be SOD at h1 because z would be possible following a∗1 while, as shown above, y
would be possible following another action; further, no a ≠ a1 would be SOD at h1 because
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y would be possible following a while x would be possible following a∗1. The lack of an SOD
action is a contradiction showing that P̂i(h2) = {x, y}. Thus any z ∈ Pi(h2) is structurally
dominated by either x or y and for, each type, x or y is the top payoff in Pi(h2). Since
P̂i((h1, a)) = y for all a ≠ a∗1, strong obvious dominance implies that all and only types ≻1

i

with x = Top(≻1
i , Pi(h1)) select action a∗1 at h1 and hence these are the types for whom

h2 is on path. As y is possible at h2, there is at least one action a∗2 ∈ A(h2) after which
y is possible. As at each history agents have at least two actions, there is another action
a2 ∈ A(h2), and, as the mechanism is pruned, there are two types ≻a

∗
2
i and ≻

a2
i for which h2

is on path such that ≻a
∗
2
i selects a∗2 and ≻

a2
i selects a2 at h2. Because we established that x is

possible at h2 and that it is the top possible payoff for both these types, SOSP implies that
x ∈ Pi((h2, a∗2)) and x ∈ Pi((h2, a2)). By construction, y ∈ Pi((h2, a∗2)), and hence a∗2 is not
SOD for type ≻a

∗
2
i ; a contradiction that concludes the proof of the lemma. ∎

B.6 Proof of Lemma for Theorem 8

Proof of Lemma A.9. By way of contradiction suppose that game Γ′, together with greedy
strategies, is not a sequential choice mechanism. Let h be an earliest history where the
definition of a sequential choice mechanism is violated. As such h is payoff relevant and Γ′

is pruned, Lemma 1 implies that h is a first history at which i moves. Since Γ′ is not a
sequential choice mechanism, there must be some payoff x ∈ Pi(h) that i cannot clinch at
h. We may assume that x is not dominated, i.e., x ∈ P̂i(h); indeed, if all x′ ∈ P̂i(h) were
clinchable at h, then greediness would imply that all dominated actions were pruned in Γ′.
Since x is not clinchable, for any action a ∈ A(h) such that x ∈ Pi((h, a)), there is some
payoff in Pi((h, a)) that is different from x. We fix one such action a.

Case ∣Pi(h)∣ = 2. Let y be the other payoff in Pi(h). If y were clinchable then the
mechanism would satisfy the definition of sequential choice at h. Since we assumed that
the definition is not satisfied at h, neither x nor y is clinchable. Thus, for all a ∈ A(h),
Pi((h, a)) = {x, y}. As x and y are different payoffs, at least one of x ≻i y or y ≻i x holds for
some type at h. Because there are at least two actions in A(h), this type does not have a
strongly obviously dominant (SOD) action at h, which is a contradiction.

Case ∣Pi(h)∣ ≥ 3 and x▷i y for all y ≠ x in Pi((h, a)). There is an action a′ ≠ a at h
and, because x is not clinchable at h, there is some w ≠ x that belongs to Pi((h, a′)). We
have y ⊵i w; indeed, if not, then x being undominated implies that there would exist type ≻i
such that x ≻i w ≻i y, and, taking into account that x is not clinchable at h, this type would
have no SOD action at h. Thus, x▷i y ⊵i w; but this implies that a′ is not SOD for any
type, which contradicts the mechanism being pruned.
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Case ∣Pi(h)∣ ≥ 3 and there exists y ∈ Pi((h, a)) such that x and y do not dominate
each other. By Lemma B.2, for any a′ ≠ a, the set P̂i((h, a′)) is a singleton. We first
claim that for any a′ ≠ a, P̂i((h, a′)) = {y}. Assume not, i.e., there exists some a′ ≠ a and
w′ ≠ y such that P̂i((h, a′)) = {w′}. Then also w′ ≠ x; indeed, if w′ = x then, as x is both
structurally undominated and unclinchable at h, there would be w ∈ Pi((h, a′)) such that
x▷i w, and—with w possible after a′ and x possible after a—no type would find a′ to be
SOD, contrary to pruning. If w′▷ix then no type would find a to be SOD, which contradicts
pruning; we conclude that w′ ⋫i x. In particular, x ∉ Pi((h, a′)). If y▷iw′, then y ∉ Pi((h, a′))
because w′ ∈ P̂i((h, a′)) is undominated at (h, a′). Thus, a′ would not be SOD for any type,
a contradiction to pruning. We conclude that y ⋫i w′. If w′▷i y, then this and the previously
established w′ ⋫i x, gives us the existence of type ≻i such that x ≻i w′ ≻i y. This type has no
SOD action at h, a contradiction to pruning. We conclude that w′ ⋫i y. If x▷iw′, then type
x ≻i w′ ≻i y exists and has no SOD action at h; we conclude that x ⋫i w′. The above four
conclusions imply that x, y,w′ are mutually undominated at h. Thus, there is a type such
that x ≻i w′ ≻i y and this type has no SOD action at h. This final contradiction shows that
P̂i((h, a′)) = {y} for all a′ ≠ a.

We further claim that Pi((h, a′)) = {y} for all a′ ≠ a; indeed, if this were not the case,
then there is some a′ and some w′ ∈ Pi((h, a′)) such that y ▷i w′. As the mechanism is
pruned, some type ≻′i takes action a′; but, the worst case from a′, for all types, is at best w′,
while y is possible following a; thus a′ is not SOD for type ≻′i. This contradiction shows that
Pi((h, a′)) = {y} for all a′ ≠ a.

Finally, let z ≠ x, y be some third payoff that is possible at h. In light of the previous
paragraph, z ∈ Pi((h, a)), and z ∉ Pi((h, a′)) for all other a′ ≠ a. As P̂i(h) = {x, y}, z
dominates neither x nor y, and richness gives us a type such that x ≻i y ≻i z. This type
has no SOD action at h; this contradicts the mechanism being SOSP and established the
theorem.) ∎

B.7 Proof of Lemma A.11 for Theorem 9

To prove Lemma A.11, we first construct a mapping from role assignment functions σ to
partial orderings »σ over agents in Subsection B.7.2. In Subsection B.7.3, we then verify
that any mapping fσ to from role assignment functions to total orderings that is consistent
with »σ satisfies the Same-Allocations claim of Lemma A.11:

• Same Allocations: For each σ ∈ Σ, the permuted mechanism (Γσ, Sσ(≻N )) results in
the same final allocation as a serial dictatorship in which the agents choose their most
preferred object in the order fσ(1), fσ(2), . . . , fσ(N).
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We complete the proof of Lemma A.11 in B.7.4, by constructing a mapping fσ consistent
with »σ that satisfies the Bijectivity claim of the lemma:

• Bijectivity: fσ is a bijection between Σ and Ord.

With a slight abuse of notation, in this section, we use X to denote the set of objects to
be allocated (rather than global outcomes), and use x, y, z, etc. to refer to objects from X .
As objects determine agents’ payoffs, we identify the two concepts and talk about possible,
guaranteeable, clinchable, and clinched objects referring to the corresponding payoffs. We
refer to objects that are clinched as being assigned.

B.7.1 Efficient Millipedes

We study randomization over a deterministic efficient millipede (Γσ, Sσ(≻N )). Lemma A.6
allows us to assume that Γ has the following properties:56

1. At each history h, there is at most one passing action in A(h); this action, if it exists, is
denoted a∗ ∈ A(h). With slight abuse of notation, when the context is clear, we use the
symbol a∗ to represent the unique passing action at any history h (if such an action

exists), and write h′ = (h,

n times
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
a∗, . . . , a∗) to denote that history h′ is the superhistory of h

that is reached by starting at h and following n passing actions in a row; since there is
at most one passing action at any given history, h′ is uniquely defined.

2. If i moves at h and x ∈ Gi(h), then there exists a clinching action ax ∈ A(h) that clinches
x for i.

3. If i is the unique active agent for whom Pi(h) = Gi(h), then i moves at h.

4. If i moves at h and Pi(h) = Gi(h), then Ci(h) = Pi(h), there there is no passing action
at h, and i is not called to move at any h′ ⊋ h.

We can impose on the millipede several further assumptions. In order to formulate them
we say that agent i is active at h if she has been previously called to play at some h′ ⊆ h,
and has not yet clinched an object at h. Let A(h) denote the set of active agents at h.
Among active agents we distinguish the class of lurkers that is a more restrictive version of

56Property 1 is the basic structure of the millipede established in the lemma; we restate it in order to
introduce the a∗ notation. That, without loss of generality, we can assume property 2 is established in the
proof of the lemma, and the same argument allows us to assume property 3. We can assume property 4
because by property 2 and greedy strategies, any passing move at h can be pruned.
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a similar concept introduced by Bade and Gonczarowski (2017, hereafter BG).57 Informally,
a lurker is an active agent who has been offered to clinch all objects that are possible for
him except for exactly one, which he is said to “lurk”. If an agent lurks some object x, then
we can infer that x is the agent’s favorite possible object, and so we might exclude x from
other agents without violating Pareto efficiency.

To formally define a lurker, recall that C⊆i (h) = {x ∶ x ∈ Ci(h′) for some h′ ⊆ h} is
the objects agent i has been offered to clinch at some subhistory of h and C⊊i (h) = {x ∶

x ∈ Ci(h′) for some h′ ⊊ h} is the objects agent i has been offered to clinch at some strict
subhistory of h. We consider a history h and an active agent i who has moved at a strict
subhistory of h. Let h′ ⊊ h be the maximal strict subhistory such that ih′ = i. Agent i is said
to be a lurker for object x at h if (i) Pi(h) ≠ Gi(h), (ii) x ∈ Pi(h′), (iii) C⊆i (h′) = Pi(h′)∖{x},
and (iv) x ∉ C⊆j (h′) for any other active j ≠ i that is not a lurker at h′. If some agent i is a
lurker for an object x at a history h, then we say x is a lurked object at h. We use the
term BG lurker to refer to any agent that satisfies (i), (ii), and (iii).58 We will see below
that at any history at most two active agents are not lurkers (cf. Lemma B.11).

At any h, we partition the set of active agents as A(h) = L(h) ∪ L̄(h), where L(h) =

{`h1 , . . . , `
h
m} is the set of lurkers and L̄(h) is the set of active non-lurkers. Let X(h) denote the

set of still-available (unclinched) objects at h, and partition this set as X(h) = X L(h)∪X̄ L(h),
where X L(h) = {xh1 , . . . , x

h
λ(h)} is the set of lurked objects and X̄ L(h) = X(h) ∖ X L(h) is the

set of unlurked objects at h. Each `hm has a unique object that she lurks, xhm, and each xhm
has a unique lurker. We order the sets so that if m′ <m, then lurker `hm′ is older than lurker
`hm, in the sense that `hm′ first became a lurker for xhm′ at a strict subhistory of the history at
which `hm became a lurker for xhm; we then say that lurker `hm is younger than lurker `hm′ .
We use the same older and younger comparisons for BG lurkers. Lemmas B.9-B.12 show
that this construction is well-defined.

Any efficient millipede game satisfies the following additional conditions. If there are
lurkers at a history then the last agent to moved along this history passed and, as long as
no one has taken a clinching action, the set of lurkers and the set of lurked objects continue
to grow, until eventually, we reach a history h where some agent i clinches some object x.59

57They focus on understanding which OSP mechanisms are Pareto efficient. In this proof we build on their
insights, and in turn their analysis follows our 2016 characterization of OSP mechanisms through millipede
games.

58BG lurkers were studied in BG. Because we impose condition (iv), our definition of a lurker is more
restrictive than BG (Definition E.9): all lurkers in our sense are BG lurkers, but the converse need not hold.
On the other hand, our definition of a non-lurker is more permissive: a non-lurker in our usage may not be a
BG non-lurker. We include (iv) in the definition of a lurker because it simplifies the definition of our coding
algorithm that maps role assignment functions to agent orderings; our coding algorithm treats BG lurkers
who do not satisfy (iv) the same as other non-lurkers and differently from how it treats lurkers.

59It is immediate that lurker conditions (i)-(iii) continue to hold at each history reached by passing from
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When i clinches at h, this allows us to determine the assignments of all lurkers as follows:

• If x ∈ X̄ L(h), each lurker `hm ∈ L(h) receives her lurked object, xhm.

• If x = xhm1
for some lurked xhm1

∈ X L(h), then all older lurkers `hm′ for m′ < m1 receive
their lurked objects xhm′ ; lurker `hm1

, whose lurked object is assigned to i, receives her
favorite object from the remaining set of unclinched objects, X(h) ∖ {xh1 , . . . , x

h
m1

}.

– If `hm1
is assigned an unlurked object, then all remaining lurkers get their lurked

objects; if `hm1
is assigned a lurked object xhm2

for some m2 > m1, then all older
unmatched lurkers (`hm′ for m1 <m′ <m2) receive their lurked objects. Lurker `hm2

gets his favorite object from X(h) ∖ {xh1 , . . . , x
h
m2

}.

– This process is repeated until some lurker `hm̄ receives an unlurked object, at which
point all remaining unassigned lurkers are assigned their lurked objects.

These assignments are implied by Lemma E.17 in BG (who show that it is valid under the
definition of BG lurkers) and by our Lemma B.8, which shows that, at any history, there is
at most one BG lurker who is not a lurker and it is the youngest BG lurker.

Via the argument from Lemma A.6, this structure of assignments allows us, without loss
of generality, to further restrict attention to millipedes satisfying the following:

5. Following the clinching action, the next moves are taken by lurkers who are not assigned
to their lurked objects (if there are any), from oldest to youngest. At each of these
moves, the lurker is offered for clinching all objects that have not been assigned prior
to the move. The remaining lurkers (if there are any) never move after h.

In the above structure of assignments, there is a unique agent j who clinches an unlurked
object y; this agent might be the agent i above or one of the lurkers. Lemmas B.11 and
B.13 show that there might be at most one additional active agent, j′, who is neither i nor
one of the lurkers. If such a j′ exists and y ∈ C⊆j′ (h) then j′ receives her favorite object that
was neither assigned prior to h nor to other active agents at h.60 This allows us to further
restrict the attention to millipedes satisfying the following:

the history at which agent i became a lurker. To see that (iv) also continues to hold, suppose it fails at a
history (h, a∗, ..., a∗) because some agent j was offered object x lurked by i till this history, then Lemma B.7
implies that at the history at which j passed, she was offered all objects possible for her; a contradiction
with greedy strategies of the millipede.

60Let y′ be the top choice for j′ among objects that were neither assigned prior to h nor to other active
agents at h. Then j′ can at best receive y′. As there is a preference profile of other agents at which they
rank y′ lowest, making y′ impossible for j′ would violate Pareto efficiency. Thus y′ is possible for j′. At the
same time, the payoff guarantee properties of a millipede imply that j′ is offered for clinching all objects
that were possible but not clinchable for her when j′ passed on y. Thus, the footnoted claim follows.

66



6. If the agent j′ just described exists and y ∈ C⊆j′ (h), then j′ moves right after agent j and
is offered for clinching all objects that have not been assigned prior to her move.

7. If the agent j′ just described exists and y ∉ C⊆j′ (h), then j′ moves right after j and is
offered for clinching all objects in C⊆j′ (h); j′ might also have other clinching moves or
a passing move.

Remark 2 (Recursive structure). Properties 5 and 6 guarantee that the games we study have
a recursive structure. The continuation game following the last move described in properties
5 and 6 (by j or j′) or by agent i = j (if neither condition 5 nor 6 are applicable) is just
a smaller Pareto efficient millipede game on the remaining unmatched agents and objects.
This continuation game has the structure described above. Property 7 guarantees that, if j′

moves in the continuation game, then, after the property 7 move, the set of objects j′ could
have clinched till a history in the continuation game is the same as the set of objects this
agent could have clinched till this history in the entire game.

B.7.2 Constructing the mapping from role assignment functions σ to partial
orderings »σ

We provide an algorithm that, for a given mechanism (Γ, S) and fixed preference profile,
follows the path of the game from the root node h∅ to the terminal node h̄ and outputs
a partial ordering—also called a coding—of the agents, denoted ». This ordering is only
partial because agents may tie. Each role assignment function σ ∈ Σ induces a game Γσ and
an associated coding, »σ, via our coding algorithm. Running the algorithm on all N ! role
assignment functions gives N ! codings. We then argue that it is possible to break the ties
in a way that gives us a bijection f ∶ Σ → Ord such that for each σ, a serial dictatorship
(SD for shortness) run under serial dictatorship ordering (SD orderings for shortness) fσ
results in the same allocation as game Γσ.

The intuitive idea behind constructing the coding » is as follows. We start by finding the
first agent to clinch some object x (after a possibly empty series of passes) at some history h.
This induces a chain of assignments of the active agents A(h) as described above in Section
B.7.1 above. We create » by ordering agents who receive lurked objects in order of when the
lurked object became lurked, i.e., the first agent in the ordering is the agent who receives
the object that became lurked first, etc. After this is done, there are at most 2 active agents
who have yet to be coded, one of whom has clinched an unlurked object, say y; if y was
previously offered to the remaining active agent, then we add both remaining agents to the
order without distinguishing between them, i.e., these two agents tie; if y was not previously
offered to the other remaining active agent, then we only add to the ordering the agent who
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clinched y, The other active agent (if such an agent exists) will be added in a later segment
triggered by clinching; at the beginning of the next segment this agent is still active with the
carried over “endowment” C⊆j (h) (cf. Remark 2). After clearing this first segment of agents,
we continue along the game path and find the first unordered agent to clinch an object, and
repeat.

Coding Algorithm. Consider any game path from the root node h∅ to a terminal node
h̄, which is associated with a unique allocation of objects to agents. Each step k of the
algorithm below produces a partial ordering »̃

k on the set of agents who are processed in
step k. At the end of the final step K, we concatenate the K components to produce », the
final coding on the set of all agents N .

Step 1 Find the first object to be clinched along the game path, say x1 at history h1 by agent
i1.61 Let L(h1) = {`1, . . . , `λ(h1)} be the set of lurkers, and X L(h1) = {x1, . . . , xλ(h1)} be
the set of lurked objects at h1, where xk is the k-th object to become lurked and `k

the lurker of this object; if these sets are empty, skip directly to step 1.2 below.

1. For xk ∈ X L(h1), let ixk be the agent who receives xk at h̄.62

2. Let j ∈ L(h1) ∪ {i1} be the unique agent that is not one of the agents ix1 , ..., ixλ(h1)

from step 1.1. By the properties introduced in Subsection B.7.1, j receives an unlurked
object y ∈ X̄ L(h1) and there may be at most one active agent j′ ∈ A(h1)∖(L(h1)∪{i1}).

(a) If such a j′ exists and y ∈ C⊆j′(h1), then define »̃1 as:

ix1»̃
1ix2»̃

1
⋯»̃

1ixλ(h1)»̃
1
{j, j′}

(b) Otherwise, define »̃1 as
ix1»̃

1ix2»̃
1
⋯»̃

1ixλ(h1)»̃
1j

In particular, if j′ exists and y ∉ C⊆j′(h1) then we do not yet order agent j′.

Step k Find the first object to be clinched along the game path by an agent that has not
yet been ordered, say xk at history hk by agent ik. Let L(hk) = {`1, . . . , `λ(hk)} be the
set of lurkers, and X L(hk) = {x1, . . . , xλ(hk)} be the set of lurked objects, and carry out
a procedure analogous to that from step 1 to produce the step k order »̃k.

61That is, ih1 = i1, and i1 selects a clinching action ax1 ∈ A(h1) that clinches x1. By Lemma B.13,
i1 ∉ L(h1). Notice the difference between superscript in x1, which refers to the step of the algorithm, and the
subscripts in lurked objects, which refer to the order in which they were lurked. In the notation for lurkers
`h

1

k and lurked objects xh
1

k we suppress the history superscript.
62Note that ixk

is not necessarily the agent who lurks xk at h1.
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This produces a collection of codings (»̃
1, . . . , »̃K), where each »̃

k is a partial order on the
agents processed in step k. We then create the final » in the natural way: for any two agents
i, j who were processed in the same step k, i » j if and only if i»̃kj. For any two agents i, j
processed in different steps k < k′, respectively, we order i » j and say that i precedes j.

The output of the coding algorithm is a partial order, », on N , the set of agents. If
there are two agents j and j′ such that j /» j′ and j′ /» j, then we say j and j′ tie under ».
Note that by construction, all ties are of size at most 2, and agents can only tie if they are
processed in the same step of the algorithm.

Remark 3. The coding algorithm divides the game path from the root to the terminal node
into a series of K steps. At the end of each coding step, there may be one agent, say j′,
who was active during the step, and was not coded in the step. When this occurs, at the
the initial history of the continuation game that begins after all agents from the previous
step have been assigned their objects, agent j′ is called to move, and is offered the to clinch
everything that she has been offered to clinch previously in the game (and might have other
moves). The next step of the coding algorithm is initiated the first time an agent clinches
an object in this continuation game, and the process is repeated. This recursive structure is
further discussed in Remark 2.

B.7.3 Proof of the Same-Allocations claim

Take a role assignment function σ, corresponding game Γσ, and the partial ordering »σ that
results from applying the coding algorithm to Γσ. Let fσ be a total (strict) ordering of the
agents, where fσ(1) = i is the first agent, fσ(2) = j is the second agent, etc. We say that
fσ is consistent with »σ if, for all j, j′: j »σ j′ implies f−1

σ (j) < f−1
σ (j′). In other words,

given some coding »σ, total order fσ is consistent if there is some possible way to break the
ties in »σ that delivers f . We further say that fσ is consistent with »σ on an initial
segment till an agent i if, for all j, j′ that either precede i or tie with i, if j »σ j′ then
f−1
σ (j) < f−1

σ (j′).

Lemma B.3. For any agent i and any total order fσ consistent with »σ on an initial segment
till i, the allocation of agents who precede or tie with i under the serial dictatorship with agent
ordering fσ is the same as their allocation in Γσ. In particular, given two games ΓA and ΓB

played under role assignment functions σA and σB, respectively, if »A=»B, then ΓA and ΓB

end with the same final allocations to all agents.

We prove this lemma in subsection B.7.6 below. Given »σ, any way of breaking the ties
(if any tie exist) between agents produces a total order fσ that is consistent with »σ. Thus,
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by Lemma B.3, the mechanism (Γσ, Sσ(»N )) ends with the same allocation as the serial
dictatorship with agent ordering fσ, which proves the Same Allocations claim.

B.7.4 Proof of the Bijectivity claim

We prove the Bijectivity claim using two lemmas—Lemmas B.4 and B.5—on the properties
of the partial orders produced by the coding algorithm applied to games with different role
assignments. To streamline the presentation, the proofs of these lemmas can be found in
subsection B.7.6.

Let hkA be the history that initiates step k of the coding algorithm when it is applied to
game ΓA. For instance, h1

A = (h∅, a∗, . . . , a∗) is a history following a sequence of passes such
that agent ih1

A
moves at h1

A and is the first agent to clinch in the game. This induces a chain
of assignments of the agents in L(h1

A) ∪ {ih1
A
}, plus possibly one other active non-lurker at

h1
A, as described above. History h2

A ⊋ h1
A is then the next time along the game path that an

agent who was not ordered in step 1 of the coding algorithm clinches an object, etc. Define
hkB analogously, and let KA and KB be the total number of steps in the coding algorithm
when applied to games ΓA and ΓB, respectively.

Lemma B.4. Let σA and σB be two role assignment functions, and ΓA and ΓB their asso-
ciated games. Let »kA be the initial segment of »A consisting of agents ordered till step k of
the coding algorithm in game ΓA. If ordering »kA equals to an initial segment of »B, then
hk

′
A = hk

′
B for all k′ = 1, . . . , k and σ−1

A (i) = σ−1
B (i) for all agents i who are coded up to step k.

In particular, if »A=»B, then hkA = hkB for all k, KA =KB, and σ−1
A (i) = σ−1

B (i) for all i ∈ N .

The previous lemma shows that the mapping from role assignments to codings (partial
orderings) is injective. As there may be ties in some codings, what remains to show is that
it is possible to break the ties in all codings in such a way that preserves the injectivity. The
next lemma provides the key tool needed to do this.

We write j1⋯jP » i » j⋯ when » ranks j1, ..., jP first, possibly with ties; ranks i imme-
diately (and strictly) after, and then either (a) ranks singleton j immediately (and strictly)
after i, or (b) there is some k such that the tie {j, k} is ranked immediately after i. We also
write j1⋯jP » i » j » ⋯ for case (a) and j1⋯jP » i » {j, k}⋯ for case (b).

Lemma B.5. Assume that there exist positive integers n,m ≥ 1 and two sequences of role
assignment functions, Σ = {σ1, σ2, . . . , σn, σn+1} and Σ′ = {σ′1, σ

′
2, σ

′
3, . . . , σ

′
m, σ

′
m+1} such that
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σ1 = σ′1 and the resulting codings are:

Sequence Σ: j1⋯jP »1 {i, k1} »1 ⋯

j1⋯jP »2 k1 »2 {i, k2} »2 ⋯

j1⋯jP »3 k1 »3 k2 »3 {i, k3} »3 ⋯

⋮

j1⋯jP »n k1 »n k2 »n k3 »n ⋯ »n kn−1 »n {i, kn} »n ⋯

j1⋯jP »n+1 k1 »n+1 k2 »n+1 k3 »n+1 ⋯ »n+1 kn−1 »n+1 kn »n+1 i⋯

Sequence Σ′: j1⋯jP »
′
1 {i, k1} »

′
1 ⋯

j1⋯jP »
′
2 i »

′
2 {k1, k

′
2} »

′
2 ⋯

j1⋯jP »
′
3 i »

′
3 k

′
2 »

′
3 {k1, k

′
3} »

′
3 ⋯

⋮

j1⋯jP »
′
m i »

′
m k

′
2 »

′
m k

′
3 »

′
n ⋯ »′m k

′
m−1 »

′
m {k1, k

′
m} »′m ⋯

j1⋯jP »
′
m+1 i »

′
m+1 k

′
2 »

′
m+1 k

′
3 »

′
m+1 ⋯ »′m+1 k

′
m−1 »

′
m+1 k

′
m »′m+1 k1⋯

where the partial order on j1⋯jP is the same in all above codings. Then, one of the following
must hold:

(I) In »n+1, agent i ties with some agent kn+1; or
(II) In »′m+1, agent k1 ties with some agent k′m+1.

Notice the symmetry between sequences Σ and Σ′, to which we also refer as arms. They
have the following properties:

• Each arm starts with the same role assignment and codings, i.e., σ1 = σ′1 and »1=»
′
1.

• In arm Σ, every subsequent coding ranks k1 strictly ahead of all other agents (besides
the jp’s), while in Σ′, every subsequent coding ranks i ahead of all other agents (besides
the jp’s).

• Within arm Σ, the only difference from ` to `+1 is that the agent k` who tied with i in
»` is now ranked strictly above i, with i now tied with a different agent, k`+1 (except
for »n+1, in which case i is ranked next, but may or may not tie with another agent).
A similar remark applies to Σ′.

• Across the two arms, it is possible that some or all of the agents k2, . . . , kn are the same
as the agents k′2, . . . , k′m, though it is not necessarily assumed. We also do not require
m = n.
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By Lemma B.4, the mapping from role assignments σ to codings »σ generated by the coding
algorithm is injective. Using Lemma B.5, we break the ties to create from each »σ a consistent
total order fσ in a way that preserves the injectivity. We proceed with the following two
tie-breaking steps:

Tie-Breaking Step 1. For all permutations σ, in coding »σ we break any tie {i, k1} so
that i »σ k1 if and only if, in the original set of codings, there is an arm of the form Σ from
Lemma B.5 in which the second coding starts with j1⋯jP » k1 » for some j1, ..., jP ≠ i and
in the last coding agent i does not tie; analogously, we break any tie {i, k1} so that k1 »σ i

if and only if there is an arm of the form Σ′ from Lemma B.5 in which the second coding
starts with j1⋯jP » i » for some j1, ..., jP ≠ k1 and in the last coding agent k1 does not tie.

Lemma B.5 guarantees that the tie-breaking procedure just described is well-defined, in
the sense that it will produce no conflicts in how to break a given tie. In particular, if there
is an arm that forces a tie-break such that, say, i »σ k1, then Lemma B.5 implies that there
cannot be an arm that forces a tie-break such that k1 »σ i.

Lemma B.5 further implies that, if »σ starts with j1⋯jP »1 {i, k1} and we broke the tie
i »σ′ k1 (the other fully case is symmetric) then (i) no other coding starts with j1⋯jP »σ′

i »σ′ k1 »σ′ and (ii) no other coding starts with j1⋯jP »σ′ i »σ′ {k1, k2} for some k2 and the
above tie-breaking procedure breaks the tie so that k1 »σ′ k2. By applying observations (i)
and (ii) to tie breaks, starting at the end of each coding, we infer that the resulting mapping
from permutations to partially tie-broken codings remain injective.

Importantly, the above tie-breaking procedure did not create any new ties that could be
broken as in Tie-Breaking Step 1. Indeed, if, say, a broken tie {i, k`} creates a new arm that
would allow a tie break at {i, k1} then, the structure of the arms in the statement of Lemma
B.5 implies that before the former tie-break, the latter tie is broken by the union of the arm
from {i, k1} till {i, k`} and the arm that allowed us to break the tie {i, k`}.

Tie-Breaking Step 2. After the end of Tie-Breaking Step 1, there may still be ties remain-
ing. If there are no ties remaining, then Step 1 has already produced an injective mapping
from codings to consistent total orderings, and we skip to the last paragraph of the proof.
If there are ties remaining, then it must be that all arms that begin with these ties end
with the last agent being in a tie. We then proceed recursively. We look over all ties in the
partial orders created in Tie-Breaking Step 1 across all permutations σ and find a tie—say
{i, k1}—that has the largest number of agents ranked above it. If such a tie {i, k1} exists
then we break this tie arbitrarily. Because we broke only one such tie, the “at least one tie”
structure of arms stated in Lemma B.5 holds for the resulting set of partial orderings. We
can thus perform the same tie breaking as was done in Tie-Breaking Step 1 and, as above,
the resulting mapping from permutations to partially tie-broken codings remain injective
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and, in all remaining ties, all arms end with the last agent being in a tie.
We repeat the above tie-breaking procedure iteratively: we look over all ties in partial

orders created so far in Tie-Breaking Step 2, across all permutations σ, and again find a
tie that has the largest number of agents ranked above it and repeat the Step-2 tie break
procedure above. We proceed in this way till all ties are broken and we have constructed an
injective mapping from permutations to total orderings.

As the resulting total orderings are created by breaking ties in the original codings, the
complete orderings are consistent with the original codings. Hence we created an injective
mapping from permutations to total orderings that are consistent with codings. In this
way we obtain an injection from role assignments σ to serial dictatorships with orders fσ.
Because in this injection the domain of role assignments σ and the range of serial dictatorship
orderings fσ are finite and have equal size, this injection is a bijection. ∎

B.7.5 Preliminary Results for the Proofs of Lemmas B.3, B.4, and B.5

In this section, we present several auxiliary lemmas elucidating the properties of lurkers
and other active agent in Pareto efficient millipede games satisfying properties 1-4; these
properties allow us to then restrict attention in the rest of the proof to millipede games
satisfying also Assumptions 6-8. We first present two new results—Lemmas B.6 and B.8—on
the connection between lurkers and BG lurkers. Then, we give five lemmas that are analogues
of corresponding lemmas first given by BG for BG lurkers in Pareto efficient OSP games,
and show that these lemmas continue to hold for our definition of lurkers. We finish with
two additional lemmas.

Given some history h, let h′ be the maximal superhistory of the form h′ = (h, a∗, . . . , a∗).
Following BG, we call h′ a terminating history, and the agent who moves at h′ a termi-
nator. The terminating history provides an upper bound on the number of passes that can
be taken in a row, i.e., at the terminating history, the agent that moves has only clinching
actions, and his action triggers a chain of assignments as described in Section B.7.1. Note
that there may be many terminating histories along the full game-path, and that the defini-
tion of the terminating history is only a function of the game form Γ, and is independent of
the lurker definition that is considered.

Lemma B.6. Let h be a history such that there is an active BG non-lurker j such that
x ∈ C⊆j (h) for some object x that is BG-lurked at h. Then, h is a terminating history, and j
is the terminator.

Proof. Let h̄ be the largest proper subhistory of h, h̄ ⊊ h, such that the set of BG-
lurked objects at h̄ is empty. It is sufficient to show that for the smallest superhistory h ⊇ h̄

73



that satisfies the statement of the lemma, h is a terminating history. Define h′ such that
h = (h′, a∗), i.e., h′ is the immediate predecessor of h; such a predecessor exists because there
are BG-lurked objects at h. By the supposition that h is the smallest superhistory of h̄ that
satisfies the statement of the lemma, we have that either (i) x is not BG-lurked at h′ or (ii)
x is BG-lurked at h′, but x ∉ C⊆j (h′).

For case (i), x first becomes BG-lurked at h. Let ` be the agent that BG-lurks x at h,
and notice that it must be ` that moves at h′.63 This implies that both j and ` are active at
h′, and neither are BG lurkers. Because there can be at most two active BG non-lurkers at
any history, all other active agents at h′ are BG lurkers. Now, consider h. At h, x ∈ C⊆j (h),
and so Lemma E.14 of BG implies Pj(h) = Gj(h). Further, j is the unique active agent
such that Pj(h) = Gj(h).64 Thus, by properties 4 and 5 of Section B.7.1, j moves at h and
Pi(h) = Gi(h) = Ci(h), and there is no passing action at h. Thus, h is the terminating
history.

For case (ii), x ∉ C⊊j (h′) but x ∈ C⊆j (h) implies that j must move at h, and x ∈ Cj(h). By
BG Lemma E.14, Pj(h) = Gj(h). By property 4 in Section B.7.1, Pi(h) = Gi(h) = Ci(h),
and there is no passing action at h. Thus, h is the terminating history. ∎

Lemma B.7. If i ∈ L̄(h) and x` ∈ C⊆i (h) for some x` ∈ X L(h), then ih = i, Pi(h) = Gi(h) =

Ci(h), and there is no passing action at h (that is, h is a terminating history).

Proof. If x` is lurked at h then x` is BG-lurked at h; thus if i is a BG non-lurker at h,
then the result follows from Lemma B.6. So, assume that i is a non-lurker that is a BG
lurker at h. We claim that for any lurked object x` ∈ X L(h), we have x` ∉ C⊆i (h), and so the
result holds vacuously. To show it, let h′ be such that h = (h′, a∗), i.e., h′ is the immediate
predecessor of h. By Lemma B.8, h must be a terminating history, agent i moves at h′ and
passes, and becomes a BG lurker at h. Note that x` is BG-lurked at h. If x` ∈ C⊆i (h), then,
since i does not move at h, we have x` ∈ C⊆i (h′) as well. Because x` cannot be the object i
BG lurks at h, object x` must be BG-lurked at h′ by some other agent. But then, at h′, i

63Assume not, i.e., assume some k ≠ ` moved at h′. Then, the maximal strict subhistory of h where
` moves is some h′′ ⊊ h′, and by definition of a BG lurker (i) P`(h) ≠ G`(h), (ii) x ∈ P`(h

′′), and (iii)
C⊆` (h

′′) = P`(h
′′) ∖ {x} hold.

This implies that ` is already a lurker for x at h′: since h′′ ⊊ h′, (i) and (ii) continue to hold at h′, while
for for (iii), if P`(h′) = G`(h′), then, since the game is a millipede game that satisfies properties 1-4, there is
no passing action at h′. This contradicts that x is not lurked at h′.

64For any active lurker ` at h, P`(h) ≠ G`(h) by definition. The only other possibility is that some k
becomes active at h, and is such that Pk(h) = Gk(h). If this is the case, by BG Lemma E.11, all BG-
unlurked objects are possible for k at h. If Pk(h) = Gk(h), then she can clinch any BG-unlurked object at
h, by property 4. Consider k clinching some BG-unlurked object y. By BG Lemma E.17, all BG lurkers at
h are assigned their BG lurked objects, and so no BG-lurked object is in Gj(h). But, y was arbitrary, and
so no BG-unlurked object is in Gj(h) either, and so Gj(h) is empty, which contradicts that Pj(h) = Gj(h).

74



is not a BG lurker, and has previously been offered to clinch a BG-lurked object. Thus, by
Lemma B.6, h′ is a terminating history, which is a contradiction. ∎

Lemma B.8. At any h, there is at most one BG lurker that is not a lurker. If such an agent
i exists, then i is the youngest BG lurker at h, and h is a terminating history. Further, i
does not move at h.

Proof. Consider a history h̄ at which there are no BG lurkers (and thus, also no lurkers).
Because at each history, only one new BG lurker can be added, it is sufficient to show that
if h ⊋ h̄ is the smallest superhistory of h̄ such that there is a BG lurker that is not a lurker,
then h is a terminating history. Thus, let h = (h′, a∗), where at h′, all BG lurkers are lurkers,
but at h, there is a BG lurker that is not a lurker; label this agent i. Then, it must be
that i first becomes a BG lurker at h, and at h, point (iv) fails, i.e., there is some active
BG non-lurker j ≠ i that has been previously offered to clinch the object that i BG lurks.
Lemma B.6 implies that h is the terminating history, and agent j moves at h. Since no new
agent has entered the game at h, and all agents other than j are BG lurkers at h, there is
only one BG lurker that is not a lurker. The rest of the statements follow easily from the
fact that h is a terminating history. ∎

The next four lemmas are analogues of statements derived for BG lurkers in BG; we give
the analogous BG lemmas in parentheses. Recall that L(h) and X L(h) are the sets of lurkers
and lurked objects, respectively, at history h. Let LBG(h) and X L,BG(h) denote the sets
of BG lurkers and BG-lurked objects. Notice that L(h) ⊆ LBG(h) and X L(h) ⊆ X L,BG(h),
by definition. Further, by Lemmas B.6 and B.8, if L(h) ⊊ LBG(h) = {`1, . . . , `λBG(h)}, then
L(h) = LBG(h) ∖ {`λBG(h′)}, where `λBG(h′) is the youngest BG lurker. Similarly, if X L(h) ⊊
X L,BG(h) = {x1, . . . , xλ(h)} then X L(h) = X L,BG(h)∖{xλBG(h)}, where xλBG(h) is the youngest
BG-lurked object.

Lemma B.9. (BG Lemma E.11) If agent i is active at h, then X̄ L(h) ⊆ Pi(h) ∪C
⊊
i (h). If

i ∈ L(h), then X̄ L(h) ⊆ C⊊i (h).

Proof. For the first part, for any x ∈ X̄ L(h) that is also BG-unlurked, the statement
follows from BG Lemma E.11. So, consider some x ∈ X̄ L(h) but x ∈ X L,BG(h). As shown
above, there is only one such object, and it is x = xλ(h), the youngest lurked object at h.
Further, by Lemma B.8, this condition only obtains when h is a terminating history, and the
active agents at h are `1, . . . , `λ(h), j where: `1, . . . , `λ(h)−1 are both lurkers and BG lurkers,
`λ(h) is a BG lurker but not a lurker, and j is the terminator (and neither a lurker nor a BG
lurker). By BG Lemma E.16, xλ(h) ∈ P`′(h) for all `′ ∈ {`1, . . . , `λ(h)}, while by BG Lemma
E.18, xλ(h) ∈ C⊆j (h).

The second part follows from the first part and the definition of a lurker. ∎
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Corollary B.1. If, at history h, agent i clinches x ∈ X̄ L(h) that is unlurked at h, then
x = Top(≻i, X̄ L(h)).

Lemma B.10. (BG Lemma E.16) Let L(h) = {`h1 , . . . , `
h
λ(h)} be the set of lurkers at h and

X L(h) = {xh1 , . . . , x
h
λ(h)}, with `

h
1 lurking xh1 , `h2 lurking xh2 , etc., where m < m′ if and only if

`hm became a lurker at a strict subhistory of the history at which `hm′ became a lurker. Then,

1. xh1 , . . . , xhλ(h) are all distinct objects.

2. For all m = 1, . . . λ(h), P`hm(h) = X(h) ∖ {xh1 , . . . , x
h
m−1}.

Proof. Because any lurker is a BG lurker, and the same applies to lurked objects, this is
immediate from BG Lemma E.16. ∎

Lemma B.11. (BG Lemma E.19) For all h, ∣L̄(h)∣ ≤ 2.

Proof. By BG Lemma E.19, there can be at most two BG non-lurkers at h. If there
exists a non-lurker that is not a BG non-lurker, by Lemmas B.6 and B.8, all active agents
except for one are BG lurkers, and at most one BG lurker is a non-lurker. Thus, there are
at most two non-lurkers at h. ∎

Lemma B.12. (BG Lemma E.18, E.20) Let h be a history with lurked objects and let ih′ = t
be the agent who moves at the maximal superhistory of the form h′ = (h, a∗, . . . , a∗). Then:

(i) Agent t is not a lurker at h.
(ii) C⊆t (h′) = X(h).

(iii) If ih ≠ t, then Cih(h) ∩C
⊆
t (h) = ∅.

(iv) If x` ∈ Pj(h) for some non-lurker j and lurked object x` ∈ X L(h), then j = t.
(v) C⊆t (h′) = X(h).

Proof. Notice first that parts (ii), (iii), and (v) do not make any reference to lurkers or
lurked objects, and thus these parts follow immediately from the corresponding statements
in BG Lemma E.18. BG Lemma E.18 part (i) says that agent t is not a BG lurker, and
thus, agent t is not a lurker either. What remains is to show part (iv). For all h ⊊ h′, any
non-lurker is also a BG non-lurker by Lemmas B.6 and B.8, and any lurked object is also
a BG lurked object, and so the result follows from the corresponding lemma of BG. Thus,
consider h′. By Lemma B.6 and Corollary B.8, at h′, either LBG(h′) = L(h′) or L(h′) =

LBG(h′)∖{`λBG(h′)}. Similarly, either X L,BG(h) = X L(h) or X L(h′) = X L,BG(h′)∖{xλBG(h)}.
If j is a BG non-lurker, then the result is immediate from the corresponding lemma of BG.
It remains to consider j who is a non-lurker but a BG lurker. By Corollary B.8, j is a
BG lurker for xλBG(h′). Notice that xλBG(h′) is not lurked at h′ (though it is BG-lurked).
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Thus, the lurked objects at h′ are X L(h′) = {x1, . . . , xλBG(h′)−1}. By Lemma E.16 from BG ,
Pj(h′) = X(h′) ∖ {x1, . . . , xλBG(h′)−1}; in other words, for any x ∈ X L(h′), we have x ∉ Pj(h′),
and so the statement holds vacuously. ∎

Lemma B.13. For any history h and any superhistory h′ ⊇ h of the form h′ = (h, a∗, a∗, . . . , a∗),
we have ih′ ∉ L(h) and ih′ ∉ L(h′).

Proof. The claim is immediate if L(h) = ∅. Suppose L(h) ≠ ∅. We only show ih′ ∉ L(h)

as ih′ ∉ L(h′) then follows by setting h′ = h. Let L(h) = {`h1 , . . . , `
h
λ(h)} be the set of lurkers

at h and X L(h) = {xh1 , . . . , x
h
λ(h)} the set of lurked objects.

First, assume h ≠ h′. Assume that the statement was false, and let h′ = (h, a∗, a∗, . . . , a∗)

be the smallest superhistory of h such that ih′ = `hm for a lurker `hm (that is, ih′′ ∉ L(h)
for all h ⊆ h′′ ⊊ h′). Note first that, for any h′′ such that h ⊆ h′′ ⊊ h′, ih′′′ = j ∈ L̄(h),
and if there exists some lurked xhm ∈ C⊆j (h′′), by Lemma B.7, there is no passing action
at h′′, which is a contradiction. Therefore, any clinching action ay ∈ A(h′′) clinches some
y ∈ X(h) ∖ X L(h), and for all terminal histories h̄ ⊃ (h′′, ay), each lurker `hm ∈ L(h) receives
his lurked object xhm. Finally, consider history h′. By Lemma B.10, for each `hm ∈ L(h),
P`hm(h′) = P`hm(h) = X(h) ∖ {xh1 , . . . , x

h
m−1} (note that h′ is reached from h via a series of

passes, and so X(h) = X(h′)), and Top(≻`hm , P`hm(h′)) = xhm for all types ≻`hm such that h′

is on the path of play. Therefore, by property 4 and greedy strategies, at h′, there is no
clinching action ax for any x ∈ P`hm(h′) ∖ {xhm}. Thus, the only possibility is that every
action a ∈ A(h′) clinches xhm.65 This then implies that `hm gets xhm at all terminal h̄ ⊃ h′.
Combining this with the previous statement that `hm gets xhm for all terminal h̄ ⊃ (h′′, ay) for
any h ⊆ h′′ ⊊ h′ and clinching action ay ∈ A(h′′), we conclude that `hm gets xhm for all terminal
h̄ ⊃ h, i.e., `hm has already clinched his object xhm at h. Thus, by definition of a millipede
game, ih′ ≠ `hm, which is a contradiction proving the first claim for h′ ≠ h.

Second, if h = h′ then let h∗ ⊊ h be the immediate predecessor history of h. By the just
proven part of the lemma, ih is not a lurker at h∗, and because ih moves at h, she cannot
move at h∗, and hence she is not a lurker at h. ∎

Lemma B.14. Let i and j be active non-lurkers at a history h, and let y ∈ X̄ L(h) be an
unlurked object at h. Further, assume that ih = i and y ∈ Ci(h) ∩C

⊊
j (h). Consider a type ≻j

that reaches h, and define x̄ = Top(≻j, X̄ L(h)). Then, x̄ ≻j y.

Proof. By Lemma B.12, part (iii), agent j cannot be the terminator. By Lemma B.12,
part (iv), Pj(h) ⊆ X̄ L(h). Since i can clinch y at h, there must be some x ∈ Pj(h) such that
x ≻j y, by OSP. Since Pj(h) ⊆ X̄ L(h), we have x ∈ X̄ L(h), i.e., Top(≻j, X̄ L(h)) ≻j y. ∎

65Note that there cannot be a passing action either: if there were, then, since every history is non-trivial,
there must be another action. But, as just argued, there can be no clinching actions for any other x ≠ xhm,
and thus there must be a clinching action for xhm, and the passing action would be pruned.
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B.7.6 Proofs of Lemmas B.3, B.4, and B.5

In the proofs that follow, we refer to roles in a game form Γ to state properties of Γ that
are independent of the specific agent that is assigned to that role; for a formal definition
of roles see Appendix A.7. Below, we write Cr(h) to refer to the set of outcomes that are
clinchable for the role r ∈ R at h and Pr(h) for the set of outcomes that are possible for role r;
these sets do not depend on the role assignment function σ; if σ(r) = i, then Ci(h) = Cr(h),
Pi(h) = Pr(h), etc. Analogously to the sets A(h) and L(h) for active agents and lurkers at a
history h, we write AR(h) for the set of active roles at a history h, and LR(h) for the set of
roles that are lurkers at h. When we want to refer to the game form with agents assigned to
roles via a specific role assignment function σA, we write ΓA. In the proofs, we often move
fluidly between agents and roles; to avoid confusion, we use the notation i, j, k to refer to
specific agents, and the notation r, s, t to refer to generic roles. Finally, note that while the
set of agents who are lurkers at any h may differ depending on the role assignment function,
the set of lurked objects, the order in which they become lurked, and the set of lurker roles
depend only on h, and are independent of the specific agent assigned to the role that moves
at h.

Unless otherwise specified, when we write the phrase “i clinches x at h” (or similar
variants), what is meant is that i moves at h, takes some clinching action ax ∈ A(h), and
receives object x at all terminal histories h̄ ⊇ (h, ax).

The following is a restatement of part (iv) of the definition of a lurker, but deserves an
emphasis, as it arises frequently in the arguments below.

Remark 4. If, at a history h, object x is such that x ∈ Cj(h) for an active non-lurker j at
h, then, for any history h′ = (h, a∗, . . . , a∗) such that L(h) = L(h′), x is not lurked at h; in
other words, if x has been offered to an active non-lurker, it cannot become the next lurked
object along the passing path.

Proof of Lemma B.3

We show the first statement; the second statement is then an immediate corollary. Suppose
agent i is ordered in step k of the ordering algorithm. First consider the case k = 1 and let
agent i∗ be the first agent to clinch in game Γσ and let h∗ be the history at which i∗ clinches;
this clinching induces the ordering of the first segment of agents in step 1 of the ordering
algorithm. Let X L(h∗) = {x1, . . . , xn} be the set of lurked objects at h∗; this set may be
empty.

Case: A(h) = L(h) ∪ {i∗}. If i∗ clinches an unlurked object y ∈ X̄ L(h∗), then, in Γσ,

all lurkers get their lurked objects (the oldest lurker `1 gets x1, the second oldest lurker `2
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gets x2, etc.), and in the resulting SD fσ, the agents are ordered fσ ∶ `1, `2, . . . , `n, i∗. By
Lemma B.10, for each lurker `m, we have xm = Top(≻`m ,X ∖ {x1, . . . , xm−1}). When it is
agent `m’s turn in the SD, she is offered to choose from X ∖ {x1, . . . , xm−1}, and thus selects
xm. Finally, consider agent i∗. In game Γσ, when she clinches y at h∗, it is unlurked. By
Corollary B.1, y = Top(≻i∗ , X̄ L(h∗)). At her turn in the SD, the set of objects remaining is
precisely X̄ L(h∗), and so i∗ selects y.

In the remaining possibility, i∗ clinches some lurked object xm. Then all older lurkers
`1, . . . , `m−1 get their lurked objects in Γσ, and the resulting SD begins as fσ ∶ `1, . . . , `m−1, i∗.
By an argument equivalent to the previous paragraph, each of the lurkers once again gets the
same object under the SD. For agent i∗, since she took a lurked object at h∗ in Γσ, we have
xm = Top(≻i,X), and thus, at her turn in the SD, she once again selects xm, since it is still
available. Then, in Γσ, agent `m is offered to clinch anything from X∖{x1, . . . , xm}. If `m takes
another lurked object xm′ for some m′ > m, then each lurker `m+1, . . . , `m′−1 is assigned to
their lurked object, and we add to the SD order as fσ ∶ `1, . . . , `m−1, i∗, `m+1, . . . , `m′−1, `m. By
the same argument as above, at their turn in the resulting SD, each agent `m+1, . . . , `m′−1, `m

gets the same object in the SD.66 This process continues until someone eventually takes an
unlurked object, all remaining lurkers are ordered, and step 1 is completed.

Case: A(h) = L(h) ∪ {i∗, j} for some j ∈ A(h) ∖ (L(h) ∪ {i∗}). First consider the case
that i∗ clinches an unlurked object y ∈ X̄ L(h∗). If y ∉ C⊆j (h∗), then the argument is exactly
the same as in Case (1) (note that j is not ordered in step 1 in this case). If y ∈ C⊆j (h∗),
then the step 1 partial order is `1»̃

1
⋯»̃

1`n»̃
1
{i∗, j}. We must show that any SD run under

fσ ∶ `1, . . . , `n, i∗, j, . . . and f ′σ ∶ `1, . . . , `n, j, i∗, . . . result in the same outcome as Γσ for these
agents. For the lurkers, the argument is as above in either case. For i∗ and j, in game Γσ, by
construction, y ∈ Cj(h′) for some h′ ⊊ h∗. Let z = Top(≻j, X̄ L(h∗)), and note that by Lemma
B.14, z ≻j y. Since i clinched y at h∗, we have y ≻i z. In the SD, after all lurkers have picked,
the set of remaining objects is precisely X̄ L(h∗). Thus, it does not matter whether i∗ or j is
ordered next in the SD, as there is no conflict between them: in both cases, i∗ takes y, and
j takes z, and both fσ and f ′σ give the same allocation as Γσ. For the case where i∗ begins
by clinching some lurked object xm ∈ X L(h∗), we consider agent j and the lurker who, in
the chain of assignments, eventually takes an unlurked object y; otherwise, the argument is
analogous.

The proof so far has shown that we get the same allocation for all agents ordered in step
1 of the ordering algorithm. If k > 1 then we proceed recursively through steps 2, ..., k, as

66When it is agent `m’s turn in the SD, the set of available objects is a subset of the set of objects that
were offered to her when she clinched in Γσ ∶ X ∖ {x1, . . . , xm′−1} ⊆ X ∖ {x1, . . . , xm}. However, xm′ belongs
to both sets, and so since `m takes xm′ in Γσ, she also takes it at her turn in the SD, when her offer set is
smaller.
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follows: If all active agents at A(h∗) are processed in step 1 of the ordering algorithm, then
we repeat the same argument for the continuation subgame following the clinching by i∗ at
h∗; the second step of the coding algorithm for the original game is the same as the first step
of the coding algorithm for this continuation subgame. If not all active agents at A(h∗) are
processed in step 1, then there is at most one active agent j ∈ A(h∗) who is not processed
in this step. Agent j has been previously offered some objects in the set C⊆j (h∗) where
C⊆j (h∗) ⊆ X̄ L(h). The coding in the continuation subgame following the clinching at h∗ is
the same as coding in the Pareto efficient auxiliary millipede that begins with agent j being
offered clinching from C⊆j (h∗) and passing, and that then moves into the above continuation
subgame; the second step of the coding algorithm for the original game is the same as the
first step of the coding algorithm for this auxiliary millipede. ∎

Proof of Lemma B.4

First consider k = 1 and suppose »̃1
A is equal to the initial part of the ordering »B. Define

the function gA(i) = ∣j ∈ N ∶ j »A i∣ + 1, which is the number of agents ranked strictly ahead
of i under »A. This function will almost corresponds to i’s picking order in the resulting
serial dictatorship, except if i ties under »A; if i and i′ tie, then gA(i) = gA(i′). Define gB
similarly.

Claim B.1. If »̃1
A is equal to an initial segment of »B, then h1

A = h1
B.

Proof of Claim B.1. Note that both h1
A and h1

B consist of a, possibly empty, sequence
of passing moves, and so one of these histories must be a subset of the other. Towards a
contradiction, assume that h1

A ≠ h1
B.

First, consider the case h1
A ⊊ h1

B. Define iA to be the agent that clinches at h1
A, and xA

to be the object that is clinched. Since there is a passing action at h1
A, object xA is unlurked

at h1
A, by Lemma B.7. Since iA clinches an unlurked object at h1

A, we have xA = Top(≻iA
, X̄ L(h1

A)) by Corollary B.1. By construction of the coding algorithm, gA(iA) = λ(h1
A) + 1,

where λ(h1
A) = ∣LR(h1

A)∣ is the number of lurkers (and hence also the number of lurked
objects) that are present at h1

A. Since »̃
1
A is equal to an initial segment of »B and iA is

ordered in step 1 of ΓA, we have gB(iA) = λ(h1
A) + 1 as well.67

We claim that X L(h1
A) = X

L(h1
B). First, notice that h1

A ⊊ h1
B implies LR(h1

A) ⊆ LR(h
1
B)

and X L(h1
A) ⊆ X

L(h1
B), which follows because at each history in the millipede at most one

object becomes lurked, and once an object is lurked, it remains lurked until it is clinched. If
67This is a key point, and its analogue remains true in the alternate case h1B ⊊ h1A. There, gB(iB) =

λ(h1B) + 1, and we infer that also gA(iB) = λ(h1B) + 1. This follows because h1B ⊊ h1A implies λ(h1A) ≥ λ(h
1
B),

and so at least λ(h1B) + 1 agents are coded in step 1 of »̃1
A. Thus, at least the first λ(h1B) + 1 agents in »B

are in the same position in »A, which includes agent iB .
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X L(h1
B) ⊋ X

L(h1
A), then the (λ(h1

A)+1)th lurked object in ΓB (denoted xλ(h1
A)+1) must be xA

because (i) the coding algorithm puts the agent who receives xλ(h1
A)+1 as the (λ(h1

A) + 1)th

agent, and hence this agent is iA, and (ii) by Lemma B.3, iA receives the same object under
both σA and σB. But, because xA ∈ Cr(h1

A), where r is the role that moves at h1
A and is

not a lurker, xA cannot be the (λ(h1
A) + 1)th lurked object, by part (iv) of the definition

of a lurker, which is a contradiction. Therefore, X L(h1
A) = X

L(h1
B). This also means that

LR(h1
A) = LR(h

1
B) and λ(h1

A) = λ(h
1
B); for simplicity, define λ1 ∶= λ(h1

A) = λ(h
1
B). Since xA is

unlurked at h1
A, it is also unlurked at h1

B.
Next, notice that some j ≠ iA moves at h1

A in ΓB, because otherwise, iA would take the
same (clinching) action at h1

A in ΓB, which contradicts h1
A ⊊ h1

B. Let s = ρ(h1
A) be the role

that moves at h1
A, and so by definition, σA(s) = iA and σB(s) = j. At h1

B, there are two
active non-lurker roles: role s and another role s′. This follows because role s moves at h1

A,
and there is a passing action, so the history h′ = (h1

A, a
∗) must be controlled by a different

active non-lurker role. Since there are no new lurkers at h1
B, and there can be at most two

active non-lurkers at any history, both roles s and s′ remain active non-lurkers at h1
B.

We claim that iA must tie with another agent in »B. To see this, note that if role s′

moves at h1
B, then iA will tie with agent j in »B, since xA ∈ C⊊s (h1

B) and σB(s) = j. If role s
moves at h1

B, then it is j that clinches at h1
B in ΓB. If j clinches an unlurked object at h1

B,
then gB(j) = λ1 + 1, and so iA ties with j in »B. If j clinches a lurked object, then role s
is the terminator role. Therefore, agent iA was in the terminator role in ΓA, and, since she
clinched xA first, we have xA = Top(≻A,X), which follows because all available objects are
possible for the agent in the terminator role, by Lemma B.12. This implies that iA cannot
be a lurker at h1

B in ΓB, because if she were, she would have been offered to clinch xA, and
since it is her top object, would have clinched it prior to h1

B, by greedy strategies. Thus, the
only way for agent iA to be such that gB(iA) = λ1 + 1 is if she is an active non-lurker that
does not move at h1

B, which means that she must tie in »B with some agent.
Thus, we have shown that iA must tie with some agent k in »B, i.e., gB(iA) = gB(k) = λ1+1

for some k. Since iA is coded in step 1 of ΓA, and »̃
1
A is equal to an initial segment of »B,

we further have gA(iA) = gA(k) = gB(iA) = gB(k) = λ1 + 1; in other words, agent iA ties with
agent k in both »A and »B.

Since iA ties with k in ΓA, at h1
A, we have xA ∈ C⊊s′(h

1
A) for the other active non-lurker

role s′ at h1
A. We have seen that σ−1

B (iA) ≠ s. If σB(s′) = iA, then in ΓB, iA passed
at some history h′ ⊊ h1

A at which she was offered to clinch xA in ΓB. By Lemma B.14,
Top(≻iA , X̄

L(h1
A)) ≻iA xA, which is a contradiction. Since we know that iA is coded in step 1

of ΓB, the only other possibility is that in ΓB, iA is a lurker for some object z at h1
B, which

implies that z ≻iA xA. It also means that the agent that moves at h1
B in ΓB is clinching a
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lurked object (because if an unlurked object were clinched, then iA would be assigned to z,
a contradiction). This implies that h1

B is the terminating history, by Lemma B.7, and ρ(h1
B)

is the terminator role. We cannot have ρ(h1
B) = s, because then role s is the terminator role,

and iA is in the terminator role in ΓA and would not clinch xA first in ΓA, a contradiction.
Thus, ρ(h1

B) = s
′, and s′ is the terminator role. Finally, notice that at h1

A, role s is offered
xA and xA ∈ C⊊s′(h

1
A), which contradicts Lemma B.12, part (iii).

The case h1
B ⊊ h1

A follows an analogous argument; cf. footnote 67 for the needed adjust-
ments. ∎

Thus far, we have shown that if »̃1
A is equal to the initial part of the ordering »B, then

h1
A = h1

B. We next show that the same roles are coded in step 1 of ΓA and ΓB, and further
that σA(r) = σB(r) for all such roles r.

Define h1 ∶= h1
A = h1

B. In both games, the first clinching is taken by the agent in role ρ(h1),
and the set of lurked objects and active lurker-roles are equivalent at the first clinching in
both ΓA and ΓB. Letting r0 = ρ(h1), write

σA(r0) → xa1 → σA(ra1) → xa2 → ⋯→ σA(raM ) → xaM+1
(A)

to represent the chain of clinching that is initiated in ΓA by agent σA(r0) at h1: agent σA(r0)

clinches some (possibly lurked) object xa1 , the agent σA(ra1) who was lurking xa1 clinches
lurked object xa2 , etc., until eventually agent σA(raM ) ends the chain by being the first agent
to clinch an unlurked object xaM+1

. Similarly, for ΓB, write

σB(r0) → xb1 → σB(rb1) → xb2 → ⋯→ σB(rbM ′) → xbM ′+1
. (B)

Note that the agents who begin the chains, σA(r0) and σB(r0) are not lurkers in their
respective games, while all of the remaining agents are lurkers.68 Also, not all of the agents
ordered in step 1 need to appear in the corresponding chain; in particular, any lurker who
receives their lurked object does not appear, nor does the other active non-lurker, if such an
agent exists. If M = M ′ and σA(ram) = σB(rbm) for all m = 0, . . . ,M , then we say (A) and
(B) are equivalent chains.

Claim B.2. Suppose that (A) and (B) are equivalent chains. Then, the same roles are coded
in step 1 in ΓA and ΓB, and further, for all such roles, σA(r) = σB(r).

Proof of Claim B.2. By construction of the coding algorithm, the set of roles coded during
the coding step initiated at h1

A consists of (i) all lurker-roles at h1
A, (ii) the non-lurker-role

that moves at h1
A, and potentially (iii) the active non-lurker role that does not move at h1

A;
68If there are no lurkers at h1, this is obvious; if there are lurkers, it follows from Lemma B.13.

82



label this role s. Since h1
A = h1

B, (i) and (ii) are the same in ΓA and ΓB. For (iii), role s is
coded in ΓA if and only if the first unlurked object in the chain, xaM+1

, has been offered to
role s to clinch prior to h1

A. Since the chains are equivalent, this holds in ΓA if and only if it
holds in ΓB, which establishes the first statement.

To see that σA(r) = σB(r) for all roles that are coded in step 1 of ΓA (and hence also step
1 of ΓB), note that because (A) and (B) are equivalent, the statement holds for any role that
appears in the chain. For roles that do not appear in the chain, if r′ is a lurker role that is
active at h1, the corresponding lurked object x′ is assigned to its lurker in both ΓA and ΓB,
and so »̃1

A equivalent to the initial part of the ordering »B implies that σA(r′) = σB(r′) for
all such roles, by Lemma B.3.

It remains to consider the active non-lurker role s that does not move at h1. Note that
M = M ′ and σA(rM) = σB(rM) implies, by Lemma B.3, that xaM+1

= xbM ′+1
; let xM+1 ∶=

xaM+1
= xbM ′+1

, and recall that xM+1 is unlurked. If there is no such active role s, or if
xM+1 ∉ C

⊊
s (h1), then this role is not coded in step 1, and we are done. Thus, assume that s

exists, and that xM+1 ∈ C
⊊
s (h1). In this case, the agent assigned to role s is ordered in step 1

in both ΓA and ΓB, and by construction, ties with agent σ(rM) ∶= σA(rM) = σB(rM) in both
»A and »B. Once again, »̃1

A equivalent to the initial part of the ordering »B implies that
σA(s) = σB(s). ∎

Claim B.3. Chains (A) and (B) are equivalent.

Proof of Claim B.3. We begin by showing that σA(r0) = σB(r0). Towards a contradiction,
assume that σA(r0) ≠ σB(r0), which implies also that that xa1 ≠ xb1 Lemma B.3. If M =

M ′ = 0, then both chains have only one agent, σA(r0) and σB(r0), who immediately clinch
unlurked objects. Define σA(r0) = i and σB(r0) = j, where i ≠ j, since they are clinching
different objects in their respective games. Since »̃1

A is equal to the initial part of »B, and
both i and j clinch unlurked objects, this implies that i and j must tie under »A and »B.
Thus, by construction of the coding algorithm, there must be another non-lurker role s ≠ r0

that is active at h1, and σA(s) = j and σB(s) = i, and xa1 , xb1 ∈ C
⊂
s (h

1). Since i clinches an
unlurked object xa1 at h1 in ΓA, we have xa1 = Top(≻i, X̄ L(h1)), by Corollary B.1. Now,
consider game ΓB. Since σB(s) = i and xa1 ∈ C⊊s (h1), in game ΓB, there is some history
h′ ⊊ h1 such that xa1 ∈ Ci(h

′). By Lemma B.14, we have Top(≻i, X̄ L(h1)) ≻i xa1 , which is a
contradiction.

Now, consider the case that M > 0. This implies that a lurked object, xa1 , is clinched
at h1 in ΓA, which means that role r0 is the terminator role by Lemma B.7. It also implies
that that xa1 is agent σA(r0)’s favorite object (among all objects X ). So, in game ΓB, agent
σA(r0) must be lurking object xa1 , i.e., she is in role ra1 in ΓB.69 Agent σA(ra1)—the agent

69Since xa1 is lurked, it is only possible for “older” lurkers and the terminator. Agent σA(r0) cannot be
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who lurks xa1 in ΓA—receives xa2 , and so in ΓB, must be the lurker for xa2 .70 Similarly,
agent σA(r2) must lurk xa3 in ΓB, etc., until we reach agent σA(rM). By similar reasoning as
footnote 70, we conclude that agent σA(rM) must be in role s in ΓB. For shorthand, define
k ∶= σA(rM), and so σ−1

B (k) = s.71

Finally, since σ−1
B (k) = s and k is ordered in step 1 of ΓB (see footnote 71), there must

be some other agent j such that gB(j) = λ(h1) + 1, and so gA(j) = gA(k) = gB(j) = gB(k) =
λ(h1) + 1. Since gA(j) = λ(h1) + 1, j must be clinching an unlurked object in ΓA. Since
the first person to clinch an unlurked object in ΓA is k who clinches xaM+1

, it must be that
σ−1
A (j) = s and xaM+1

∈ C⊆s (h1). Finally, since σ−1
B (k) = s, we have xaM+1

∈ C⊆k (h
1) in ΓB, and

by Lemma B.14, Top(≻k, X̄ L(h1)) ≻k xaM+1
. However, since k chose to clinch xaM+1

in ΓA

and xaM+1
was unlurked, we have Top(≻k, X̄ L(h1)) = xaM+1

, which is a contradiction.
The case where xb1 is lurked is analogous, and the argument is omitted. We have thus

shown that σA(r0) = σB(r0).
If agent σA(r0) clinches an unlurked object, then the proof is complete. If not, then the

above arguments can be repeated to show that σA(ra1) = σB(rb1), etc., until an unlurked
object is reached. This completes the proof of Claim B.3. ∎

Claims B.2 and B.3 imply the following:

Claim B.4. The same roles r′ are coded in step 1 of the coding algorithm applied to games
ΓA and ΓB, and for all these roles σA(r′) = σB(r′).

To complete the proof we establish the claim of the lemma for steps k > 1 of the coding
algorithm by an inductive argument. Suppose that the lemma obtains for steps 1, ..., k of
the coding algorithm. After the chain of clinchings initiated at hkA (which is the same as
hkB), we enter a subgame among agents and objects that were unmatched till step k. By
the inductive assumption, these subgames begin at some history ĥk+1 that is the same under
both σA and σB. As argued in Remark 2, these subgames continue to have the structure
described in Section B.7.1. Let hk+1

A ⊇ ĥk+1 be the first history at which a clinching action is
taken following a (possibly empty) sequence of passes in the subgame of ΓA starting at ĥk+1;

an older lurker in ΓB , because then she would have been offered xa1 , and, by greedy strategies, would have
clinched it. Nor can she be the the terminator, because σB(r0) ≠ σA(r0). Therefore, she must be in role ra1
in ΓB .

70This is because by definition of a lurker, agent σA(ra1) strictly prefers xa1 to all younger lurked objects
and all unlurked objects; thus, in ΓB , she cannot be an older lurker, because she would have been offered
xa1 , and thus could not end up with something she strictly disprefers (recall that by Lemma B.3, all agents
receive the same objects in both games). She cannot be the terminator, because then, since h1A = h1B , and all
objects are possible for the terminator, she would clinch xa1 , which is again a contradiction to Lemma B.3.

71Note that k is coded in step 1 of the coding algorithm applied to ΓA, and receives an unlurked object,
so gA(k) = λ1 + 1, and therefore, gB(k) = λ1 + 1 . Since at least λ1 + 1 agents are coded in step 1 of ΓB , this
is only possible if agent k is also coded in step 1 of ΓB , and thus she must be active at h1, and so the only
possibility is that σ−1B (k) = s.
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define hk+1
B ⊇ hk+1 analogously. If now »k+1

A equals to an initial segment of »B, then we can
repeat the arguments developed for k = 1 above to show that hk+1

A = hk+1
B , the same roles are

coded in step k + 1 under σA and σB, and σA(r′) = σB(r′) for all roles coded in step k + 1.
The inductive argument completes the proof. ∎

Proof of Lemma B.5

For a (fixed) game form Γ, we let Γτ denote the specific game under role assignment στ .
Note that the set of objects that are lurked at any given history depends only on the game
form, and is independent of the specific role assignment. We use the notation h∗τ for the first
history at which an object is clinched in Γτ ; that is, h∗τ = (h∅, a∗, . . . , a∗), where a∗ is the
number of passes taken by the agents until the agent who moves at h∗τ chooses to clinch at
this history. The number of passes will depend on τ . For any agent j, we write xj to denote
the object that is ultimately received by agent j.

Note that it is without loss of generality to assume that for all games Γτ that we consider,
at h∗τ , the objects xj1 , . . . , xjP are all lurked, in this order. To see this, note that if not, then,
there is some game Γτ and p′ < P such that the last lurked object is xjp′ . Consider the
smallest such p′. Since p′ < P , this means that the agents coded in step 1 of the coding
algorithm are j1, . . . , jp′ , jp′+1, and possibly jp′+2, which can only occur if there is a tie at the
end of the step.72 Now, since all codings under consideration are exactly the same on the
agents j1, . . . , jp′ , jp′+1, jp′+2, by Lemma B.4 we have that in all of the games we consider,
all of these agents are in the same roles, and, at the end of the first coding step, we reach
the same history in each game to begin the next coding step. Thus, we can disregard these
agents, and begin the analysis for each game at this history. Repeating this argument, we
continually eliminate all higher ranked agents until we reach a coding step at which all of
the remaining agents ranked strictly head of k1 are coded in the first step in all games.

Thus, for the entirety of this proof (including all sublemmas stated therein), we assume
that the objects xj1 , . . . , xjP are all lurked at h∗τ for all games we consider. Note that this
also implies that all agents j1, . . . , jP are ranked strictly, without ties, in all codings, and
that there are at least P + 1 agents coded in the first step of every game Γτ . We allow the
case P = 0, in which case there are no agents jp.

Since agent i ties in »1, she receives an object that is unlurked at h∗1, which means that
xi = Top(≻i, X̄ L(h∗1)). By the structure of the sequence, this also implies that for n′ ≥ 2, if
xi ∈ X̄ L(h∗n′), then xi = Top(≻i, X̄ L(h∗n′)) because each of the agents i, j1, ..., jP receives the

72By construction of the coding algorithm, if there are p′ lurked objects at the initiation of a coding step,
then the number of agents coded in that step is either p′ + 1 or p′ + 2. Since all of the agents jp are ranked
strictly above the remaining agents, and p′ < P , none of the agents i nor kn′ can be coded in step 1 of the
game.
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same object under both σ1 and σn′ (by Lemma B.3), and from the game Γ1 we infer that i
prefer the object received (xi) to all objects except the objects assigned to j1, ..., jP , and in
game Γn′ no other object belongs to X̄ L(h∗n′).

We begin with the following Lemmas B.15, B.16, and B.17, which show that, under
certain conditions, either condition (I) or (II) in the statement of the lemma will hold.
Then, we apply these lemmas to show that all cases are covered, which will prove the result.
The proofs of these lemmas can be found following the conclusion of this proof.

The first of these lemmas shows that if there is a sequence Σ such that n ≥ 2 and
such that the lurked objects on the initial passing path of the game form are (in order)
xj1 , . . . , xjP , xk1 , . . . , xkn−1 , then i must tie in »n+1.

Lemma B.15. Assume that there exists a sequence of role assignment functions Σ as defined
in the statement of Lemma B.5, and such that n ≥ 2. Further, assume that along the initial
passing path of the game form, the first lurked objects are (in order) xj1 , . . . , xjP , xk1 , . . . , xkn−1.73

Then, at h∗n+1 in Γn+1, there is an agent ` ≠ j1, . . . , jP , k1, . . . , kn, i such that ` is an active
non-lurker at h∗n+1 that does not move at h∗n+1 and xi ∈ C

⊊
` (h

∗
n+1). Further, i must tie with

some other agent in »n+1, and we label this agent kn+1.

Remark 5. A supposition in Lemma B.15 (and in Lemma B.18, below) is that the first
lurked objects of the game form are xj1 , . . . , xjP , xk1 , . . . , xkn−1 , in this order, where n ≥ 2. A
sufficient condition for this to hold is the following: there is a game ΓA such that j1⋯jP »A

k1 »A ⋯ »A kn−1 »A {i, kn} »A ⋯ and i is coded in the initial step of the coding algorithm.
To see this, assume not, and let n′ be the smallest n such that xj1 , . . . , xjP , xk1 , . . . , xkn′−1

become lurked, but xkn′ is not the next lurked object. This means that at h∗A (the history
of the first clinching in ΓA), there are at most λ∗A = P +n′ − 1 lurked objects. Consider agent
kn′ . By construction, n′ < n, and so kn′ does not tie in »n. Thus, in the coding step in ΓA

that begins at h∗A, agent kn′ must be the first agent to clinch an unlurked object. This ends
the coding step at kn′ , without a tie, which contradicts that i is coded in this step in game
ΓA. ∎

The second of these lemmas shows that if there is a sequence Σ, plus an additional role
assignment function σ0 in which all j1, . . . , jP are ranked strictly above i, who is ranked
strictly above k1, who is ranked strictly above all other remaining agents, then i must tie in
»n+1.

Lemma B.16. Assume that there exists a sequence of role assignment functions Σ as defined
in the statement of Lemma B.5. If there exists another role assignment function σ0 with a

73We allow for the possibility that P = 0, but whether P = 0 or P > 0, the assumption that n ≥ 2 implies
that along the initial passing path of the game form, at least xk1 becomes lurked.
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corresponding coding,
j1⋯jP »0 i »0 k1 »0 ⋯,

then in »n+1 of Σ, i must tie with some agent kn+1.

Remark 6 (Symmetry). Lemmas B.15 and B.16 were stated for sequence Σ, and concluded
that i must tie in »n+1. There are also symmetric versions of these lemmas that apply to
sequence Σ′ and conclude that k1 must tie in »m+1 that have the exact same proof.

The last of these lemmas deals with the case that neither xi nor xk1 are the (P + 1)th

lurked object on the initial passing path, nor does there exist a σ0 as in Lemma B.16.

Lemma B.17. Assume that there exist two sequences of role assignment functions Σ and
Σ′ as defined in the statement of Lemma B.5 such that n,m ≥ 2. Further, assume that along
the initial passing path of the game form, the objects xj1 , . . . , xjP all become lurked, in this
order, but neither xi nor xk1 is the (P +1)th lurked object.Then, one of the following is true:

1. In »n+1, agent i must tie with some agent kn+1.

2. In »′m+1, agent k1 must tie with some agent k′m+1.

With these lemmas in hand, we can complete the proof of Lemma B.5 as follows:

• If there exists σ0 such that j1⋯jP »0 i »0 k1 »0 ⋯, then we apply Lemma B.16 to Σ

conclude that (I) holds.

• If there exists σ′0 such that j1⋯jP »′0 k1 »
′
0 i »

′
0 ⋯, then we apply the symmetric version

of Lemma B.16 with k1 and i swapped to Σ′ to conclude that (II) holds.

• If neither of the above two cases hold (i.e., there do not exist σ0 nor σ′0):74

– If xk1 is the (P + 1)th lurked object along the initial passing path, then we apply
Lemma B.15 to Σ to conclude that (I) holds.

– If xi is the (P + 1)th lurked object along the initial passing path, then we apply
the symmetric version of Lemma B.15 with k1 and i swapped to Σ′ to conclude
that (II) holds.

– If neither xk1 nor xi is the (P + 1)th lurked object along the initial passing path,
then we apply Lemma B.17 to conclude that either (I) or (II) must hold. ∎

74Notice that the assumption that there is no σ0 or σ′0 imply that n,m ≥ 2, which is needed to apply
Lemma B.15 below.
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Proofs of Lemmas B.15, B.16, and B.17

Proof of Lemma B.15. We start with the following lemma.

Lemma B.18. Assume that there exists a sequence of role assignment functions Σ as defined
in the statement of Lemma B.5, and such that n ≥ 2. Further, assume that along the initial
passing path of the game form, the first lurked objects are (in order) xj1 , . . . , xjP , xk1 , . . . , xkn−1.75

Then:
(a) For all n′ = 1, . . . , n − 1, the agent that moves at h∗n′ in Γn′ is agent i, and at h∗n′, the

number of lurked objects is P + n′ − 1.
(b) h∗1 ⊊ h∗2 ⊊ ⋯ ⊊ h∗n−1 ⊊ h

∗
n.

(c) For all n′ = 1, . . . , n, the number of lurked objects at h∗n′ is P + n′ − 1.
(d) For all n′ = 1, . . . , n− 1, p = 1, . . . , P , and n′′ = 1, . . . , n′, in Γn′, agent jp is in the role

that lurks xjp and agent kn′′ is in the role that lurks xkn′′ .
(e) h∗n−1 ⊊ h

∗
n+1 and the number of lurked objects at h∗n+1 is at least P + n − 1.

Proof of Lemma B.18. Part (a). Let λ∗n′ be the number of lurked objects at his-
tory h∗n′ . Notice that since »n′ has a tie in the (P + n′)th place, we have λ∗n′ ≤ P + n′ − 1

for all n′ = 1, . . . , n. Towards a contradiction, assume there was a game Γn′ for which
i does not move at h∗n′ .. Since λ∗n′ ≤ P + n′ − 1, the structure of »n′ implies that the
lurked objects are {xj1 , . . . , xjP , xk1 , . . . , xkλ∗

n′ −P
},76 and the agents coded in step 1 of Γn′

are {j1, . . . , jP , k1, . . . , kλ∗
n′−P+1} (if λ∗n′ < P + n′ − 1) or {j1, . . . , jP , k1, . . . , kλ∗

n′−P+1, i} (if λ∗n′ =
P + n′ − 1). and the set of lurked objects is {xj1 , . . . , xjP , xk1 , . . . , xkλ∗

n′ −P
}. Now, notice that

it cannot be a lurked object that is clinched at h∗n′ . Indeed, if this were true, then h∗n′ is
the terminating history, which implies that xkλ∗

n′ −P
is the last lurked object on the initial

passing path of the game (Lemma B.7). But, this contradicts the assumption that xkλ∗
n′ −P+1

is the next lurked object on the initial passing path, where notice that such an object exists
because λ∗n′ −P + 1 ≤ n′ ≤ n − 1. Thus, it must be an unlurked object that is clinched at h∗n′ .
In particular, by the structure of »n′ , the only possibilities are that agent kλ∗n−P+1 clinches
object xkλ∗n−P+1

, or agent i clinches xi, where the latter case is only possible if λ∗n′ = P +n′+1.
However, if agent kλ∗n−P+1 clinches object xkλ∗n−P+1

, then object xkλ∗n−P+1
has been offered to

an active non-lurker at h∗n′ , and so xkλ∗n−P+1
cannot be the next lurked object along the initial

passing path (Remark 4), a contradiction. Therefore, it must be that λ∗n′ = P + n′ − 1, and
agent i is the agent that moves at h∗n′ .

75We allow for the possibility that P = 0, but whether P = 0 or P > 0, the assumption that n ≥ 2 implies
that along the initial passing path of the game form, xk1 is the (P + 1)th lurked object. .

76This is implicitly assuming that λ∗n′ > P . An analogous argument works for the case that λ∗n′ ≤ P , but,
for brevity, this argument is omitted.
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Parts (b). As shown in part (a), for n′ = 1, . . . , n − 1, there are λ∗n′ = P + n′ − 1 lurked
objects at h∗n′ , which immediately implies that h∗1 ⊊ h∗2 ⊊ ⋯ ⊊ h∗n−2 ⊊ h

∗
n−1 (because the number

of lurked objects only grows as we go down the initial passing path).
It remains to show that h∗n−1 ⊊ h

∗
n. By way of contradiction, assume that h∗n ⊆ h∗n−1. Then,

λ∗n ≤ λ∗n−1 = P +n−2, and the lurked objects at h∗n are {xj1 , . . . , xjP , xk1 , . . . , xkλ∗n
}. If a lurked

object is clinched at h∗n, then h∗n is the terminating history, and there is no passing action at
h∗n (Lemma B.7). However, this contradicts that xkλ∗n+1

is the next lurked object on the initial
passing path. So, it must be an unlurked object that is clinched. By the structure of »n, it
must be kλ∗n+1 that clinches xkλ∗n+1

. But then, xkλ∗n+1
has been offered to active nonlurker at

h∗n, and so xkλ∗n+1
cannot be the next lurked object along the initial passing path (Remark

4), which is a contradiction. Therefore, h∗n−1 ⊊ h
∗
n.

Part (c). Part (a) shows this for n′ ≤ n−1. So, we must show λ∗n = P +n−1. Notice that
h∗n−1 ⊊ h

∗
n implies that λ∗n ≥ λ∗n−1 = P + n − 2, while the structure of »n (in particular, the tie

between agent i and kn), implies that λ∗n ≤ P + n − 1. Thus, we need to show λ∗n ≠ P + n − 2.
Assume that λ∗n = P + n − 2. Then, the lurked objects are xj1 , . . . , xjP , xk1 , . . . , xkn−2 , and the
agents coded in step 1 are j1, . . . , jP , k1, . . . , kn−2, kn−1. If a lurked object is clinched at h∗n,
then this is the terminating history, which contradicts that xkn−1 is the next lurked object
along the initial passing path (Lemma B.7). If an unlurked object is clinched, then it must be
kn−1 clinching xkn−1 , but since this is offered to an active non-lurker, xkn−1 cannot be the next
lurked object along the initial passing path (4), a contradiction. Therefore, λ∗n = P + n − 1.

Part (d). By part (a), agent i moves at h∗n′ in Γn′ , and, since i ties in »′n, object xi
is unlurked. Therefore, all lurked objects are immediately assigned to their lurkers, which
delivers the result.

Part (e). To show h∗n−1 ⊊ h
∗
n+1, assume not. Then, h∗n+1 ⊆ h

∗
n−1, and λ∗n+1 = P + n̄ − 1 for

some n̄ ≤ n − 1. So, the lurked objects at h∗n+1 are xj1 , . . . , xjP , xk1 , . . . , xkn̄−1 , and the agents
coded in step 1 are j1, . . . , jP , k1, . . . , kn̄. Since n̄ ≤ n − 1, we know that xkn̄ must be the
next lurked object on the initial passing path. An argument analogous to those given above
delivers a contradiction.

To show λ∗n+1 ≥ P + n − 1, note that h∗n−1 ⊊ h
∗
n+1 implies λ∗n+1 ≥ λ

∗
n−1 = P + n − 2. Thus, we

must just show that λ∗n+1 ≠ P +n−2. So, assume this was the case. Then, the lurked objects
are xj1 , . . . , xjP , xk1 , . . . , xkn−2 , and the agents coded in step 1 are j1, . . . , jP , k1, . . . , kn−2, kn−1.
If a lurked object is clinched at h∗n+1, then this is the terminating history, which contradicts
that xkn−1 is the next lurked object along the initial passing path (Lemma B.7). If an unlurked
object is clinched, then it must be kn−1 clinching xkn−1 , but since this is offered to an active
non-lurker, xkn−1 cannot be the next lurked object along the initial passing path (Remark
4), a contradiction. Therefore, λ∗n+1 ≥ P + n − 1.
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This completes the proof of Lemma B.18. ∎

Continuing with the proof of Lemma B.15, we first show the first statement, that at h∗n+1

there is an agent ` ≠ j1, . . . , jP , k1, . . . , kn, i such that ` is an active non-lurker at h∗n+1 that
does not move at h∗n+1, and xi ∈ C

⊊
` (h

∗
n+1). By Lemma B.18, we have (i) h∗n−1 ⊊ h∗n, h∗n+1

(ii) λ∗n = P + n − 1 and (iii) λ∗n+1 ≥ P + n − 1. In particular, the lurked objects at h∗n are
{xj1 , . . . , xjP , xk1 , . . . , xkn−1}. Since there is a tie in »n, there are two active non-lurker roles
at h∗n, and both of these roles have been offered to clinch xi at h∗n. Let s be the role that
moves at h∗n, and s′ be the other active non-lurker that does not move at h∗n.

Case 1: xkn is the next lurked object along the initial passing path of the
game form. Since xkn is the next lurked object along the initial passing path, it must be
i that moves at h∗n and clinches xi, i.e., σn(s) = i. 77 Further, we have h∗n ⊊ h∗n+1. To see
this, note that if not, then h∗n+1 ⊆ h

∗
n, and xkn is not lurked at h∗n+1. Thus, it cannot be a

lurked object that is clinched at h∗n+1, because this would imply that h∗n+1 is the terminating
history (Lemma B.7), which contradicts that xkn becomes lurked along the initial passing
path. So, the object clinched at h∗n+1 must be unlurked, and so the set of lurked objects
is {xj1 , . . . , xjP , xk1 , . . . , xkn̄−1}, where xkn̄ is the unlurked object that is clinched, and n̄ ≤ n,
which follows because h∗n+1 ⊆ h∗n. But then, xkn̄ is offered to an active non-lurker at h∗n+1,
which contradicts that it is the next lurked object along the initial passing path (Remark
4). Therefore, h∗n ⊊ h∗n+1.

Since xkn is the next lurked object along the initial passing path, we must have xkn
becoming lurked at some h′ such that h∗n ⊊ h′ ⊆ h∗n+1. But, notice that there is still some role
r such that, at h′, r is an active non-lurker, and xi ∈ C

⊊
r (h′). Thus, xi cannot be the next

lurked object along the initial passing path. Therefore, for i to be ranked immediately after
kn in »n+1, she must clinch xi while it is unlurked, either at h∗n+1, or in the resulting step 1
assignment chain of the coding algorithm.

We next claim that in Γn+1, σ−1
n+1(i) ≠ s, s′. To see this, first note that if σ−1

n+1(i) = s,
then i has the same role in Γn and Γn+1, and thus would once again clinch at h∗n in Γn+1,
which contradicts h∗n ⊊ h∗n+1. Therefore, σ−1

n+1(i) ≠ s. Next, assume that σn+1(s′) = i. Notice
that role s′ cannot be the terminator role, by Lemma B.12(iii) and the fact that xi ∈ Cs(h∗n)
and xi ∈ C

⊊
s′(h

∗
n). Thus, only objects that are unlurked at h∗n are possible for role s′, and

so if σn+1(s′) = i, since xi is i’s top unlurked object, she would clinch it at some history
h′ ⊊ h∗n ⊆ h∗n+1, which is a contradiction. Therefore, σ−1

n+1(i) ≠ s, s
′.

We showed above that s′ is not the terminator role. If s is the terminator role, then,
77Agent kn cannot move at h∗n, because then xkn would have been offered to an active non-lurker at

h∗n, which contradicts that xkn is the next lurked object along the initial passing path. Nor can it be any
xj1 , . . . , xjP , xk1 , xkn−1 , because then they would be clinching a lurked object, and so h∗n is the terminating
history, which again contradicts that xkn is the next lurked object along the initial passing path.
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when i clinches at h∗n, we conclude that xi is her top possible object among all of those that
are available. This implies that i cannot be in a role that is a lurker at h∗n. So, we have
shown that in Γn+1, agent i is not a lurker at h∗n, nor is she is role s or s′. Thus, i is not active
at h∗n in Γn+1, and so there must be some agent ` ≠ j1, . . . , jP , k1, . . . , kn such that σ−1

n+1(`) = s

or s′. But then, since i is unlurked at h∗n+1, we have that xi ∈ C
⊊
` (h

∗
n+1), as desired.

If s is not the terminator role, we once again claim that i cannot be in a role that is a
lurker at h∗n. Indeed, if this were true, then some agent j who is receiving a lurked object is
not a lurker at h∗n. Therefore, this agent must be in the terminator role, and clinch at h∗n+1.
Since the terminator role is not s or s′, it is not yet active at h∗n, and so j is not active at
h∗n in Γn+1. Therefore, there must be some ` ≠ j1, . . . , jP , k1, . . . , kn such that σ−1(`) = s or s′,
and that is still active when j clinches at h∗n+1, which implies that xi ∈ C

⊊
` (h

∗
n+1), as desired.

Case 2: xkn is not the next lurked object along the initial passing path. By
Lemma B.18, at h∗n, there are P + n − 1 lurked objects. This implies that both i and kn are
coded in step 1 of the coding algorithm for Γn, and thus that the first unlurked object that
is clinched is either xi or xkn .78 This gives rise to two subcases.

Case 2.1: xkn is the first unlurked object that is clinched in the coding algo-
rithm in Γn. In this case, σn(s′) = i, and there is some history h̃ ⊊ h∗n such that xkn ∈ Ci(h∗n).

Claim B.5. The following are true: (a) h∗n−1 ⊊ h
∗
n+1 ⊊ h

∗
n and (b) agent kn clinches xkn at h∗n+1

in Γn+1, and xkn is unlurked at this history.

Proof of Claim B.5. Part (a). First notice that h∗n−1 ⊊ h
∗
n+1 follows from Lemma B.18.

So, we must show that h∗n+1 ⊊ h∗n. Towards a contradiction assume that h∗n ⊆ h∗n+1. Since
h∗n−1 ⊊ h

∗
n, we have h∗n−1 ⊊ h

∗
n ⊆ h

∗
n+1. Lemma B.18 also implies that λ∗n = P + n − 1. Since i

does not move at h∗n in Γn, it must be some j1, . . . , jP , k1, . . . , kn that does. If a lurked object
is clinched at h∗n, then h∗n is the terminating history. It also implies that agent kn is a lurker
for some lurked object, and therefore in step 1 of the coding algorithm, some agent takes
the object kn lurks, and he ends the step by clinching xkn , which is unlurked. This means
that xkn is his favorite object that is unlurked at h∗n. Now, consider Γn+1, and note that
h∗n ⊆ h∗n+1 and h∗n being the terminating history implies that h∗n = h∗n+1. In Γn+1, the set of
lurked objects is the same as in Γn, so xkn is again the first unlurked object that is clinched
in step 1 of the coding algorithm. But, since h∗n = h∗n+1, there is again an agent in role s′

who is an active non-lurker at h∗n+1, and so this agent would once again tie with kn in »n+1,
a contradiction. Therefore, it must be that kn is the agent that moves at h∗n in Γn, which
means that xkn has been offered to both active non-lurker roles at h∗n. Since we assumed
that h∗n ⊆ h∗n+1, it is impossible for kn to be ranked nth strictly, without ties, in »n+1,79 which

78Note that this does not necessarily mean that the object clinched at h∗n is xi or xkn .
79Note that xkn cannot be the next lurked object, so, there must be no newly lurked objects at h∗n+1
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is a contradiction. Thus, we have shown that h∗n+1 ⊊ h
∗
n, which is part (a).

Part (b). Part (a) plus Lemma B.18 implies that λ∗n+1 = P + n − 1. Additionally,
h∗n+1 ⊊ h

∗
n means that h∗n+1 is not the terminating history, so it must be an unlurked object

that is clinched there. Thus, since kn is ordered (P + n)th without ties, it must be that kn
clinches xkn at h∗n+1, and xkn is unlurked. ∎

By Lemma B.18, the agent that moves at h∗n−1 must be agent i, and therefore, at h∗n−1,
there are two active non-lurker roles that both have been offered xi. Let the role that moves
at h∗n−1 be denoted r, and the other active non-lurker at h∗n−1 be denoted r′. Thus, by
definition, σn−1(r) = i.

We claim that in Γn+1, i cannot be active at h∗n−1. At h∗n−1, there are P + n − 2 active
lurker roles, and two active non-lurker roles, r and r′. First, it is clear that σn+1(r) ≠ i,
because otherwise i is in the same role in Γn−1 and Γn+1, and so would clinch at h∗n−1 in Γn+1,
which contradicts h∗n−1 ⊊ h

∗
n+1 from Claim B.5. Second, assume that in Γn+1, agent i is in a

lurker role for a lurked object at h∗n−1, say y. By part (b) of Claim B.5, agent kn clinches an
unlurked object at h∗n+1, and so all lurkers are immediately assigned to their lurked objects,
which means that i would receive y which is a contradiction.

It remains to rule out that σ−1
n+1(i) = r′. By construction, xi ∈ Cr(h∗n−1), where xi ∈

Cr′(h̃) for some h̃ ⊊ h∗n−1. This implies that role r′ cannot be the the terminator role,
by Lemma B.12(iii), and the fact that xi ∈ Cr(h∗n−1). Since role r′ is not the terminator
role, only unlukred objects are possible for role r′, by Lemma B.12(iv). As xi is agent
i’s most preferred unlurked object, by greedy strategies, she would clinch at h̃, which is a
contradiction. Therefore, i is not active at h∗n−1 in Γn+1.

We also claim that i is not active at h∗n−1 in Γn, either. The arguments are the same as
above for Γn+1, except for the case in which i lurks some lurked object at h∗n−1. This is ruled
out by the fact that σn(s′) = i, and s′ is a non-lurker at h∗n−1.

Next, we claim that σn+1(s) ≠ i. To see this, recall that σn(s′) = i, and, as we showed, i
is not active at h∗n−1 in Γn or Γn+1. This means that s′ ≠ r, r′, or in other words, s′ is a role
that becomes active after h∗n−1. Thus, we must have s = r or r′, and so role s is active at
h∗n−1, which implies that σn+1(s) ≠ i.

Next, we claim that σn+1(s′) = kn. Indeed, since h∗n−1 ⊊ h
∗
n+1 ⊊ h

∗
n and kn moves at h∗n+1,

kn must be in role either s or s′. If σn+1(s) = kn, then, since she does not tie in »n+1, she
must clinch xkn at some history h′ such that h∗n−1 ⊊ h

′ ⊊ ĥ, where ĥ is the history at which
role s′ is offered to clinch xkn . This implies that σn(s) ≠ kn, or else in Γn, she would also

(Remark 4). If kn clinches at h∗n+1, she would tie with the other active non-lurker. If some other agent
clinches at h∗n+1, then either this agent is ranked strictly ahead of kn, or she ties with kn, which again is a
contradiction.
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clinch at h′. So, in Γn, σn(s) = kn′ for some n′ < n, and kn is in the lurker role for some
object xkn̄ . The former implies that h∗n is the terminating history, while the latter implies
that kn strictly prefers xkn̄ to xkn . But then, since σn+1(s) = kn, agent kn is in the terminator
role in Γn+1, and thus xkn̄ is a possible outcome for her, she would not choose to clinch xkn
first at h∗n+1, a contradiction. Therefore, σn+1(s′) = kn.

Concluding the argument for Case 2.1, because kn clinches an unlurked object at h∗n+1 in
Γn+1, all agents j1, . . . , jP , k1, . . . , kn−1 must be in the lurker role for their respective objects.
Therefore, none of them are in role s. As just shown, σn+1(s) ≠ kn or i, either. All of this
means that σn+1(s) = ` for some ` ≠ j1, . . . , jP , k1, . . . , kn, i, and in Γn+1, we have xi ∈ C

⊊
` (h

∗
n+1),

as desired.
Case 2.2: xi is the first unlurked object that is clinched in step 1 of the coding

algorithm in Γn. In this case, we have that σn(s′) = kn, and xi ∈ Cs′(h̃) for some h̃ ⊊ h∗n.
There are two further subcases:

Case 2.2.1: σn(s) ≠ i. In this subcase, σn(s) is one of j1, . . . , jP , k1, . . . , kn−1, and is
clinching a lurked object at h∗n. This implies that h∗n is the terminating history, and s is
the terminator role, which also means that we have h∗n−1 ⊊ h

∗
n+1 ⊆ h

∗
n. This combined with

Lemma B.18 implies that there are P + n − 1 lurkers at h∗n, and the structure of »n+1 means
that xkn is the first unlurked object clinched in step 1 of Γn+1, and, at h∗n+1, xkn has not been
offered to the active non-lurker who does not move at h∗n+1.

We also claim that role s cannot be active at history h∗n−1. Indeed, since i clinches at h∗n−1

in Γn−1 and ties, we know that there are two active non-lurker roles, say r and r′, and they
both have been offered xi. If role s were one of these roles, then, since s is the terminator
role, Lemma B.12 implies that xi ∉ Cs′(h̃), which is a contradiction. This implies that role
s is a role that becomes active after h∗n−1. Since there is only one new lurker between h∗n−1

and h∗n+1, this further implies that role s′ must have been active at h∗n−1, and xi ∈ C
⊆
s′(h

∗
n−1).

We next claim that σn+1(s′) ≠ i. To see why this is true, notice that s′ is not the
terminator role (because that is role s). Thus, only unlurked objects are possible for role s′

(Lemma B.12(iv)), and, since we know that xi is i’s favorite unlurked object, if she were in
role s′, she would clinch at h̃ ⊊ h∗n+1, a contradiction. Therefore, σn+1(s′) ≠ i.

Now, if it is one of the j1, . . . , jP , k1, . . . , kn−1 that moves at h∗n+1, then h∗n+1 is the ter-
minating history, and so h∗n+1 = h∗n. This implies that xi has been offered to the agent in
role σn+1(s′) (who is not coded in step 1). As we just showed that σn+1(s′) ≠ i, we have
σn+1(s′) = ` for some ` ≠ j1, . . . , jP , k1, . . . , kn, and xi ∈ C`(h∗n+1) in Γn+1, as desired.

Concluding subcase 2.2.1, assume that it is kn that moves at h∗n+1 in Γn+1. This means
that kn is in role s or s′ in Γn+1. Note that we cannot have σn+1(s′) = kn, because if this were
true, then kn has the same role in Γn as in Γn+1, and would pass at all histories in Γn+1, just
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as she did in Γn. Therefore, σn+1(s) = kn. Again, as we know that σn+1(s′) ≠ i, we have that
σn+1(s′) = ` for some ` ≠ j1, . . . , jP , k1, . . . , kn, and xi ∈ C`(h∗n+1) in Γn+1, as desired.

Case 2.2.2: σn(s) = i. In this subcase, i clinches xi at h∗n. If h∗n ⊆ h∗n+1, then notice that
at h∗n in Γn+1, there are two active non-lurker roles, s and s′, that have been offered xi. We
claim that σ−1

n+1(i) ≠ s, s
′. First, it is clear that σn+1(s) ≠ i, as otherwise, i would clinch at

h∗n in Γn+1, just as she did in Γn. To see that σn+1(s′) ≠ i, notice that role s′ cannot be the
terminator role, by Lemma B.12 and the fact that xi ∈ Cs(h∗n) and xi ∈ C

⊊
s′(h

∗
n). Thus, only

unlurked objects are possible for role s′, and so if σn+1(s′) = i, since xi is i’s top unlurked
object, she would clinch it at some history h′ ⊊ h∗n ⊆ h∗n+1, which is a contradiction. Therefore,
σ−1
n+1(i) ≠ s, s

′, and so there must be some ` ≠ j1, . . . , jP , k1, . . . , kn such that xi ∈ C`(h∗n+1), as
desired.

It remains to consider h∗n+1 ⊊ h
∗
n. Then, there are P +n−1 lurkers at h∗n+1, and, since h∗n+1

is not the terminating history, it must be agent kn that moves at h∗n+1. This also implies that
kn is in role s or s′. If σn+1(s′) = kn, then kn is in the same role in Γn+1 as in Γn, and would
pass at h∗n+1 in Γn+1 as she did in Γn,which is a contradiction. Therefore, σn+1(s) = kn.

We claim that role s is not an active at history h∗n−1. Indeed, notice that because i clinches
at h∗n−1 in Γn−1, we have that xi ∈ C⊆s (h∗n−1). This implies that role s is not the terminator
role, which follows by Lemma B.12 and the fact that xi ∈ Cs′(h′) for some h′ ⊋ h∗n−1. This
implies that only unlurked objects are possible for role s when she is called to play. Thus, if
role s were an active non-lurker at history h∗n−1, then, in Γn, when σn(s) = i, agent i is offered
to clinch xi at some h′ ⊆ h∗n−1. Since we know that only unlurked objects are possible, and xi
is i’s top unlurked object, she would clinch at h′ ⊊ h∗n in Γn, which is a contradiction. Since
role s is not active at h∗n−1, there are two roles that are not s that are active non-lurkers
at h∗n−1 and such that both have been offered to clinch xi. At h∗n+1 in Γn+1, at least one of
these roles must still be active and not assigned to any agent j1, . . . , jP , k1, . . . , kn, i. Thus,
there must be some ` ≠ j1, . . . , jP , k1, . . . , kn, i such that ` is an active non-lurker that does
not move at h∗n+1 and xi ∈ C

⊊
` (h

∗
n+1), as desired. This concludes the analysis of subcase 2.2.2,

and hence of case 2.2.
The above shows that in all cases, there is some ` ≠ j1, . . . , jP , k1, . . . , kn, i such that `

is an active non-lurker that does not move at h∗n+1 and xi ∈ C
⊊
` (h

∗
n+1) in game Γn+1. Recall

that, by Lemma B.18, λ∗n+1 ≥ P +n−1. If λ∗n+1 > P +n−1, then there are at least P +n lurked
objects at h∗n+1, and the only way i can be ranked in the (P + n + 1)th position in »n+1 is if
she is coded in the first step. Since there is some agent ` ≠ i such that xi ∈ C

⊊
` (h

∗
n+1), i can at

best tie with this agent. If λ∗n+1 = P + n − 1, then by the structure of »n+1, it must be agent
kn that clinches at h∗n+1, and there is no tie at the end of step 1. This means that ` is not
coded in step 1, and so the continuation game that begins step 2 of the coding algorithm
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starts with agent ` being offered xi. Now, for i to be ranked immediately after kn, she must
be ordered first in step 2 of the coding algorithm, and for i to be ordered first without ties,
either she must lurk xi and it is the first lurked object, or i must clinch xi while there are
no lurked objects and before xi has not been offered to another active non-lurker. However,
neither of these can occur because ` begins the step 2 continuation game being offered xi.
Therefore, in »n+1, i must tie with some agent that we label kn+1. This completes the proof
of Lemma B.15. ∎

Before proving Lemmas B.16 and B.17, we first state and prove Lemma B.19, on which
both rely. To state the lemma, we introduce the following notation: define Q to be the step
of the coding algorithm in which i is coded in game Γn. Also, define hq∗n to be the history at
which the first object is clinched in step q of the coding algorithm for game Γn.

Lemma B.19. Assume that there exists a sequence of role assignment functions Σ as defined
in the statement of Lemma B.5, and such that n ≥ 2. If either (i) Q = 1, or (ii) Q ≥ 2 and
at h1∗

n , there is an agent ` that is an active nonlurker at h1∗
n that does not move at h1∗

n , and
xi ∈ C

⊊
` (h

1∗
n ), then, in »n+1, agent i must tie with some agent kn+1.

Proof of Lemma B.19. We start with the following lemma.

Lemma B.20. Consider two games ΓA and ΓB, with corresponding role assignment func-
tions σA and σB, and resulting agent orderings »A and »B. Assume that »A begins as
{i, j} »A ⋯, and »B begins as: j »B i⋯. Further, assume that in game ΓA, there is some his-
tory h where j moves such that: (i) h ⊆ h∗A, (ii) xi ∈ Cj(h) (iii) xj ∉ C

⊆
j (h) (iv) xi, xj ∉ C

⊆
i (h).

Then:
(a) If agent j clinches at h∗A in ΓA, then in ΓB, agent j clinches at h∗B ⊊ h∗A, and there is

some agent k ≠ i that is an active non-lurker at h∗B such that xi ∈ Ck(h∗B).
(b) In »B, agent i must tie with some other agent k.

Proof of Lemma B.20. Let h∗A and h∗B be the first time an agent clinches in ΓA and ΓB.
Notice that by the structure of »A, at history h∗A, there are two active roles, and both are
nonlurkers at h∗A; label the roles s and s′, and, wlog, let σA(s) = i and σA(s′) = j. Using these
definitions, we can write the presumptions of the lemma as (ii) xi ∈ Cj(h) (iii) xj ∉ C⊆j (h)
(iv)xi, xj ∉ C⊆i (h). Also, notice that h ⊆ h∗A implies that there are no lurkers at h, and so the
only roles that may possibly be active at h are s and s′. Finally, since xi and xj tie for the
top ranking in »A, it must be that xi is i’s favorite object among all objects and xj is j’s
favorite object among all objects. Therefore, by greedy strategies, if at any history i is able
to clinch xi, she will do so, and the same for j and xj.

Part (a). The structure of »A implies that xj ∈ Cs(h′) for some h′ ⊊ h∗A. Now, consider
ΓB. The only way for j to be ranked first without ties is that σB(s) = j, and j clinches at
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h∗B ⊊ h∗A.80 Let k ∶= σB(s′), and notice that, by the assumptions of the lemma, xj ∉ C⊆s (h),
and so h ⊊ h∗B, and therefore xi ∈ C

⊊
s′(h

∗
B). It is clear that k ≠ j. Further, k ≠ i because if

k = i, then xi ∈ Ci(h) in ΓB, and thus, i would clinch xi at h ⊊ h∗B in ΓB, which contradicts
that the first clinching in ΓB is j clinching at h∗B. Therefore, σB(s′) = k for some k ≠ i, j,
and k is an active non-lurker that does not move at h∗B such that xi ∈ Ck(h∗B) in ΓB.

Part (b). If j clinches at h∗A, ,then by part (a), there is an agent k such that xi ∈ C
⊊
k (h

∗
B)

and k is not coded in the coding step initiated at h∗B in ΓB. Let h∗∗B ⊋ h∗B be the history at
which the next clinching occurs in ΓB. Since k was offered xi in the previous coding step,
but is still active, at the initial history of the continuation game that begins step 2, k is
offered to clinch xi again (see Remark 3). Thus, xi cannot be the first lurked object on the
initial passing path of the continuation game form (Remark 4), and so there must be no
lurked objects at h∗∗B . For i to be coded next, she must be active at h∗∗B , and since there are
no lurked objects, there are two active agents, i and k. If k clinches at h∗∗B , it is obvious that
i can at best tie; if i clinches at h∗∗B , i once again ties with k, because xi ∈ Ck(h∗∗B ).

The other possibility is that i clinches at h∗A, which implies that xi ∈ Cs′(h′) for some
h′ ⊊ h∗A. For j to be ranked first without ties in »B, at h∗B, either (a) there are lurkers, and
xj is the first lurked object or (b) there are no lurkers, j clinches xj, and xj has not been
offered to another non-lurker that is active at h∗B. There are 3 cases:

Case: σB(s′) = i. In this case, i would clinch xi at h and would be ranked first in »B,
which is a contradiction.81

Case: σB(s′) = j. Here, j is in the same role in both games, and therefore σB(s) = ` ≠ i,
which follows because if ` = i, then both j and i are in the same roles, and we would get the
same initial orderings for »A and »B, a contradiction. This implies that h∗B ⊋ h∗A, because if
h∗B ⊆ h∗A, then, since j is in the same role, she would clinch at h∗B in ΓA, a contradiction.82

Now, notice that because xi has been offered to both j and ` (weakly) prior to h∗A, xi cannot
be the first or second lurked object of the game. This means that, for i to be ranked second,
there can be at most one lurked object at h∗B, and if it exists it must be xj that is lurked.

If xj is lurked at h∗B, it must be by either j or `. If it is lurked by `, then xj must clinch
at h∗B, but, since there is only one lurker, this implies that ` must clinch an unlurked object,
and will be ranked second (possibly tied with i). If xj is lurked by j, then ` is still an active
non-lurker at h∗B such that xi ∈ C`(h∗B). If i clinches xi at h∗B, she will tie with `; if i does
not clinch, she can at best tie with ` (and may be ranked strictly lower). In either case, the

80The only other way for j to be ranked first without ties is that xj is the first lurked object; however,
this cannot obtain, because xj ∈ Cs(h′) at some history h′ where there are no lurkers.

81Note that xj has not been offered to any agent at h, by the presumptions of the lemma.
82The case h∗B = h∗A is ruled out because i moves at h∗A in ΓA, and this history is controlled by role s, not

s′.
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result holds.
The final case is that nothing is lurked at h∗B. This implies that xj clinches at h∗B, but

again, xi ∈ C`(h∗B). Therefore, at the initial history of the continuation game that begins
step 2 of the coding algorithm, xi is offered to agent `. Let h∗∗B be the first time an object is
clinched in this continuation game. Since xi is offered to ` at the initial history, xi cannot be
the first lurked object, and so, for i to be ranked first in this continuation game without ties,
she must clinch xi while it is unlurked and has not been offered to another active non-lurker.
But, we have just seen that xi is offered to ` at the initial history, and so this cannot hold.

Case: σB(s′) = `′ for some `′ ≠ i, j. First, notice that σB(s) = ` for some ` ≠ i. To
see this, assume that ` = i. Then, i is in the same role in ΓA and ΓB. This implies that
h∗B ⊊ h∗A, because if h∗A is reached in ΓB, i would clinch there, and be ranked above j. But,
h∗B ⊊ h∗A implies that j is not ranked first in »B (since she is not yet active at h∗B), which is
a contradiction.

If σB(s) = j, then for j to be ranked first in »B, either (a) xj is the first lurked object on
the path to h∗B or (b) there are no lurked objects at h∗B, j clinches xj at h∗B, and xj has not
been offered to another active non-lurker. Notice that h∗B ⊋ h,83 which implies that agent
xi ∈ C`′(h∗B). But, then it is impossible for i to be ranked immediately after j »B without
ties, which is a contradiction.

If σB(s) ≠ j, then roles s and s′ are assigned to agents ` and `′ in ΓB, neither of which
are j or i. So, for j to be ranked first without ties, xj must be the first lurked object (and
be lurked by either ` or `′), and j must clinch it at some h∗B ⊋ h∗A. For i to be ranked second
without ties in this case, there must be two lurked objects at h∗B,84 and xi must be the second
lurked object (after xj). But, at the history h′′ ⊋ h∗A where xj becomes lurked, one of agents
` or `′ is an active non-lurker who has been previously offered to clinch xi, and so xi cannot
be the next lurked object, a contradiction. ∎

Continuing with the proof of Lemma B.19, first, consider Q = 1. Then, all agents
j1, . . . , jP , k1, . . . , kn, i are coded in step 1 of game Γn. By Remark 5, xj1 , . . . , xjP , xk1 , . . . , xkn−1

all become lurked on the initial passing path of the game form, and further, since n ≥ 2, we
can apply Lemma B.15 to conclude that i ties in »n+1.

It remains to consider Q ≥ 2. Since we have assumed that P + 1 agents are coded in step
1, all agents jp have been coded in the first step, and so the agent who is coded first in step
Q of the coding algorithm of Γn is kn̄ for some n̄ < n. So, the subcoding of »n starting from

83In case (a), this follows because there are no lurkers at h; in case (b), it follows from the assumption of
the lemma that xj ∉ C⊆s (h).

84Since j clinches at h∗B , if there is no other lurked object at h∗B , the only active agents are `, `′, and j,
and so one of ` or `′ will be ranked above i in »B , which is a contradiction.
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step Q is:
kn̄ »n kn̄+1 »n ⋯ »n kn−1 »n {i, kn}.

Consider the sequence of games Γn̄,Γn̄+1 . . . ,Γn,Γn+1. Notice that the codings for all of
these games are exactly the same, up to agent kn̄−1. Therefore, by Lemma B.4, all agents
j1, . . . , jP , k1, . . . , kn̄−1 are in the same roles in all of these games. In particular, agent kn̄−1

is the last agent coded in step Q − 1 in all of these games, and the initial history of the
continuation game that begins step Q is the also the same in all of these games; label this
history hQ∅ . Now, applying the coding algorithm to the sequence of continuation games of
Γn̄, . . . ,Γn,Γn+1 starting from history hQ∅ , we get the sub-codings:

{i, kn̄} »n̄ ⋯

kn̄ »n̄+1 {i, kn̄+1} »n̄+1 ⋯

⋮

kn̄ »n kn̄+1 »n ⋯ »n kn−1 »n {i, kn} »n ⋯.

kn̄ »n+1 kn̄+1 »n+1 ⋯ »n+1 kn »n+1 i⋯

There are two cases.
Case 1: n̄ < n. In this case, we can apply Lemma B.15 to the game form starting from

hQ∅ to conclude that i must tie in »n+1. To see this, simply note that upon reindexing to
start from hQ∅ rather than h∅, the condition “n ≥ 2” becomes “n ≥ n̄+1′′. Then, we have that
xkn̄ , . . . , xkn−1 all become lurked on the initial passing path of the game form starting from
hQ∅ , which follows from Remark 5, n ≥ n̄ + 1, and the fact that i is coded in the initial step
of the continuation game of Γn starting from hQ∅ . Thus, all of the conditions of Lemma B.15
are satisfied.

Case 2: n̄ = n. In this case, the games we are concerned with are Γn and Γn+1, with
subcodings:

{i, kn} »n ⋯ (C)

kn »n+1 i⋯.

Notice that here, we can no longer apply Lemma B.15, since we do not have at least two
games in which i ties in the sequence. Our goal is to apply Lemma B.20 instead, but to do
so, we must show that the conditions (i)-(iv) of Lemma B.20 are satisfied at hQ∅ .

For each each coding step q = 1, . . . ,Q of game Γn, let hq∗n denote history at which the first
object is clinched in the qth coding step, and let h∅qn denote the initial history that begins
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the continuation game for the next step, after all of the agents in step q − 1 are coded (in
particular, h∅1

n = h∅, and h1∗
n = h∗n in our earlier notation). In »n, all agents who are coded

in steps q < Q are ranked strictly, without ties. Let knq denote the agent who is coded last
in the qth step. With this notation, the subcoding from the qth step is:

knq−1+1 »n knq−1+1 »n ⋯ »n knq ,

where we define n0 = 0. It is possible that knq−1+1 = knq , in which case only one agent is coded
in step q. Since there are no ties, agent knq ends the coding step by clinching an unlurked
object that has not been offered to another non-lurker who is active at hq∗n .

Claim B.6. For all q < Q, there is an agent ` ≠ k1, . . . , knq , i such that ` is an active nonlurker
at hq∗n that does not move at hq∗n , and xi ∈ C

⊊
` (h

q∗
n ).

Claim B.6 (whose proof can be found immediately after the proof of this lemma) implies
that when we reach step Q in Γn, at the initial history of the continuation game h∅Qn that
begins this step, there is some agent ` ≠ k1, . . . , kn−1, i such that xi ∈ C`(h

∅Q
n ). Since the

subcodings for »n in this step begin with a tie between i and kn (see Equation C), it must
be that ` = kn. Finally, we apply Lemma B.20 by setting A = n, B = n + 1, h = h

∅Q
n , j = kn,

and i = i to conclude that i must tie in »n+1.85 ∎

Proof of Claim B.6. By the supposition of the lemma, at h1∗
n , there is an agent ` that

is an active nonlurker at h1∗
n that does not move at h1∗

n , and xi ∈ C
⊊
` (h

1∗
n ). It is clear that `

is not coded (since there is no tie in step 1), and so ` ≠ k1, . . . , kn1 . To see that ` ≠ i, note
that if ` = i , then step 2 begins with agent i being offered to clinch xi. If i is not coded
in step 2, then step 3 begins with i being offered xi, etc.. The same continues up to and
including step Q, in which i is coded. Since i is coded first in step Q (tying with kn) xi is
her top object among those that remain at the beginning of step Q. Since xi ∈ Ci(h

(Q−1)∗
n ),

agent i begins step Q by being offered to clinch xi at the initial history of this step. Since
xi is her top remaining object, she would clinch it, and thus would not tie with kn, which is
a contradiction. Thus, the statement holds for q = 1.

Now, consider step q = 2 of game Γn, which begins at h∅2
n and produces the subcoding:

kn1+1 »n kn1+2 »n ⋯ »n kn2 »n .

Case 1: n2 = n1 + 1. Then only one agent, agent kn1+1, is coded in step 2 of game Γn,
which begins with the continuation game that starts at history h∅2

n . The result from step 1
85Condition (i) of Lemma B.20 is immediate. For condition (ii) was just shown. Condition (iii) holds

because, if xkn ∈ Ckn(h
∅Q
n ), then kn would immediately clinch it at h∅n

n , and would not tie with i in »n.
Condition (iv) is also immediate, as i has not yet been called to move at h∅Q

n .
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implies that at h∅2
n , some agent ` ≠ k1, . . . , kn1 , i moves and xi ∈ C`(h∅2

n ).
Since kn1+1 is the only agent coded in step 2 of Γn, and does not tie, she must clinch

xkn1+1
at h2∗

n in Γn while it is unlurked, and before it is offered to another active non-lurker.
Now, since »n and »n1+1 are the same up til agent kn1 , Lemma B.4 implies that h∅2

n = h∅2

n1+1
;

for shorthand, define h∅2 ∶=h∅2
n = h∅2

n1+1
. The second step continuation games of Γn1+1 and Γn

both start from h∅2 , and lead to the initial subcodings:

{i, kn1+1} »n1+1 ⋯

kn1+1 »n ⋯

Let role s be the role that moves at h∅2 , and role s′ be the second role that becomes
active on the initial passing path of the game form starting from h∅2 . These two roles exist
because there is an initial tie in »n1+1, and in Γn1+1, s and s′ are assigned to kn1+1 and i,
in some manner. If σn1+1(s) = i, then i would clinch at h∅2 in Γn1+1, and would not tie, a
contradiction. Therefore, σn1+1(s) = kn1+1, which implies that xkn1+1

∉ Ckn1+1
(h∅2

n ); indeed, if
this were true, then kn1+1 would clinch it at h∅2

n1+1
in Γn1+1, which contradicts that kn1+1 ties

in »n1+1.
Now, if σn(s) = kn1+1, then kn1+1 is in the same role in both games, and so it must be i

that clinches at h2∗
n1+1

, which means that xi ∈ Cs′(h2∗
n1+1

).86 It also means that h2∗
n ⊋ h2∗

n1+1
,

and that σn(s′) ≠ i, and so, there exists some agent `′ ≠ i such that in Γn, xi ∈ C`′(h2∗
n ),

which is what we wanted to show.
Last, if σn(s) ≠ kn1+1, then σn(s′) = kn1+1. Thus, in this case, there is some agent other

agent ` such that σn(s) = `. Again, ` ≠ i, because xi ∈ Cs(h∅2
n ). Thus, when kn1+1 clinches at

h2∗
n in Γn, we have xi ∈ C

⊊
` (h

2∗
n ), as desired.

Case 2: n2 > n1 + 1. Consider games Γn1+1,Γn1+2, . . . ,Γn and notice that the codings
for all of these games are equivalent up to agent kn1 . Therefore, by Lemma B.4, all agents
k1, . . . , kn1 are in the same roles in all of these games, and so these agents will take the same
actions, which implies that, for each of these games, step 2 of the coding algorithm begins
at the same history of the game form, which we denote h∅2 .

Consider the continuation game form starting at h∅2 , and recall that h2∗
n′ is the first

time an object is clinched in step 2 of game Γn′ , which is also the first time an object is
clinched in step 1 of the continuation game beginning at h∅2 . Notice that by the structure
of »n, the objects xkn1+1

, . . . , xkn2−1
are lurked at h2∗

n in Γn, while xkn2 is not, i.e., objects
xkn1+1

, . . . , xkn2−1
are the first lurked objects (in order) along the initial passing path of the

86If kn1+1 clinched first in Γn1+1 and Γn, and is in the same role, then the subcodings »n1+1 and »n would
be the same up to kn1+1, which is a contradiction.
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game form, beginning at h∅2 .
The subcodings of games Γn1+1,Γn1+2, . . . ,Γn2+1 beginning at history h∅2 are:

{i, kn1+1} »n1+1 ⋯

⋮

kn1+1 »n2 kn1+2 »n2 ⋯ »n2 kn2−1 »n2 {i, kn2} »n2 ⋯.

kn1+1 »n2+1 kn1+2 »n2+1 ⋯ »n2+1 kn2 »n2+1 {i, kn2+1}⋯

By Lemma B.15 applied to the continuation game and subcodings beginning at h∅2 , in Γn2+1,
at h2∗

n2+1
, there is an agent ` such that ` is an active non-lurker at h2∗

n2+1
that does not move

at h2∗
n2+1

and xi ∈ C
⊊
` (h

2∗
n2+1

). Since »n is equivalent to »n2+1 up to agent kn2 , and agent kn2 is
the last agent in a coding step of game Γn, we have that h2∗

n = h2∗
n2+1

, by Lemma B.4. This
implies that at h2∗

n , there is an agent ` that is an active non-lurker at h2∗
n that does not move

at h2∗
n and xi ∈ C

⊊
` (h

2∗
n ) (which may or may not be the same such agent in Γn2+1, depending

on the role assignment functions).
It remains to show that ` ≠ k1, . . . , kn2 , i. It is clear that ` ≠ k1, . . . , kn2 , since all of these

agents are coded by the end of step 2 in Γn, while agent ` is not. If ` = i, step 3 begins with
agent i being offered to clinch xi. If i is not coded in step 3, then i continues to be active in
step 4, which begins with i being offered xi, etc.. The same continues up to and including
step Q, in which i is coded. Since i is coded first in step Q (tying with kn) xi is her top
object among those that remain at the beginning of step Q. Since xi ∈ Ci(h

(Q−1)∗
n ), agent

i begins step Q by being offered to clinch xi at the initial history of this step. Since xi is
her top remaining object, she would clinch it, and thus would not tie with kn, which is a
contradiction. Therefore, ` ≠ i. This completes the result for q = 2.

We then just repeat the arguments for the q = 2 case for all q = 3,4, . . . ,Q − 1, which
completes the proof of Lemma B.19. ∎

Proof of Lemma B.16. We begin by showing the result for n = 1, as part of the following
claim.

Claim B.7. Assume that there exist σ0 and σ1 such that:

j1⋯jP »0 i »0 k1 »0 ⋯

j1⋯jP »1 {i, k1} »1 ⋯.

Then:
(a) We have h∗0 ⊊ h∗1, and the agent that moves at h∗0 in Γ0 is agent i.
(b) If there exists a σ2 such that j1⋯jP »2 k1 »2 i⋯, then h∗0 ⊊ h∗2. Further, in »2, agent i
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must tie with some other agent k2.
(c) If xk1 is not the (P + 1)th lurked object on the initial passing path, then in Γ2, agent

k1 clinches at h∗2 ⊊ h∗1. Further, at h∗2, there is an active non-lurker ` ≠ j1, . . . , jP , i, k1 such
that xi ∈ C

⊊
k2
(h∗2).

The proof of this claim can be found at the end of the proof of the lemma. Now, consider
a sequence Σ such that n ≥ 2. We will show that i must tie in »n+1.

In game Γn, i is coded in some step of the coding algorithm with some subset of the
agents j1 . . . , jP , k1, . . . , kn−1. Let Q be the step number in which i is coded in game Γn. The
goal is to apply Lemma B.19, which the following claim allows us to do.

Claim B.8. If Q ≥ 2, then at h∗n, there is an agent ` that is an active non-lurker at h∗n that
does not move at h∗n and xi ∈ C

⊊
` (h

∗
n).

The proof of this claim is found below, immediately after the proof of Claim B.7. Given
Claim B.8, we can apply Lemma B.19 to conclude that i must tie in »n+1, which completes
the proof of Lemma B.16. ∎

Proof of Claim B.7. Since we assume there are at least P lurkers at h∗1, by the structure
of »1, there are exactly P lurkers at h∗1. This implies that the first P lurked objects are
xj1 , . . . , xjP . Additionally, objects xi and xk1 are unlurked at h∗1, and so xi and xk1 are agent
i and k1’s favorite objects among the set of those that are unlurked at h∗1, respectively.

Part (a). Suppose not, then the passing structure of histories implies that h∗1 ⊆ h∗0.
Notice that at h∗1, there must be two active non-lurker roles.

Case 1: P = 0. In this case, there are no agents jp, so at h∗1, there are exactly two active
roles, label them s and s′, and wlog, let σ1(s) = i and σ1(s′) = k1. If i clinches at h∗1 in Γ1,
then xi ∈ C

⊊
s′(h

∗
1) and xi ∈ Cs(h∗1). Now, for i to be ranked first without ties in »0 is either (i)

xi is the first lurked object of the game or (ii) i clinches xi first as an unlurked object, and
it has not been offered to another active non-lurker. However, h∗1 ⊆ h∗0 implies that neither
(i) nor (ii) can obtain, as xi has been offered to both active non-lurkers at h∗1, which is a
contradiction.

If k1 clinches at h∗1 in Γ1, then xk1 ∈ C
⊊
s (h∗1) and xk1 ∈ C

⊆
s′(h

∗
1). Now, h∗1 ⊆ h∗0 implies that

in Γ0, σ−1
0 (k1) ≠ s, s′.87 Since k1 is not in either of these roles, there is some ` ≠ i, k1 that is

active at h∗1 in Γ0 and is such that xi ∈ C⊆` (h
∗
1). Notice also that since xk1 has been offered

to both active agents at h∗1, it cannot be the second lurked object along the initial passing
path (Remark 4), and so for k1 to be ranked second, there can be at most 3 active agents
at h∗0, in particular agents i, k1, and `. If k1 moves at h∗0, i must be lurking xi, and k1 will

87If σ−10 (k1) = s, then k1 would clinch at some h′ ⊊ h∗1; if σ
−1
0 (k1) = s

′, then k1 is in the same role in Γ0

and Γ1, and thus would clinch at h∗0 = h
∗
1, and would once again tie for first in »0.
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tie with agent `. If ` moves at h∗0, it is clear k1 will not be ranked second without ties. If
i moves at h∗0, then there must be no lurked objects at h∗0.88 But, since h∗1 ⊆ h∗0, we have
xk1 ∈ C`(h

∗
0), and so, since ` was not coded in the first step, she begins the second step by

being offered xk1 at the initial history of the continuation game. Thus, it is impossible for
k1 to be ranked first without ties in this continuation game, a contradiction.

Case 2: P ≥ 1. In this case, there is at least one lurker jp at h∗1. Further, at h∗1, there
are P active lurker roles for the objects xj1 , . . . , xjP , and 2 active non-lurkers roles; label
the role that moves at h∗1 as s, and the other active nonlurker at h∗1 as s′. There are three
subcases, depending on who is in role s.

Subcase 2.1. σ1(s) = i. In this case, we have σ1(s′) = k1 and xi ∈ C
⊊
s′(h

∗
1). We first

claim that i cannot be active at h∗1 in Γ0. First, notice that i cannot move at h∗1 in Γ0,
because if she did, she would choose the same action at h∗1 in both games, and would tie in
»0, just as she did in »1. So, σ0(s) ≠ i. Next, assume i is a lurker at h∗1 in Γ0, for some lurked
object xj1 , . . . , xjP . Note that xi cannot be the next object lurked along the initial passing
path because it has been offered to (both) active non-lurkers at h∗1, so at h∗0, there must be
no newly lurked objects, and roles s and s′ are still active non-lurkers. The first coding of
step Γ0 thus ends when i clinches xi, which is unlurked. But, because h∗1 ⊆ h∗0, xi has been
offered to both role s and s′ at h∗0, and one of these is an active non-lurker who does not
move at h∗0, and so i would tie with this agent in »0.

Second, assume that σ0(s′) = i. Then, notice that xi ∈ Cs′(h′) for some h′ ⊊ h∗1. We claim
that i would clinch xi at this history. Indeed, at h′, role s′ is an active non-lurker that is not
the terminator.89 This means that only unlurked objects are possible for the agent in this
role, and since xi is i’s favorite unlurked object, she will clinch it at h′, by greedy strategies.
Therefore, i is not active at h∗1 in Γ0.

Now, i is not active at h∗1 in Γ0, but there are two active non-lurkers, those in roles s and
s′, and both of these have been offered xi. Thus, xi cannot be the next lurked object along
the initial passing path of the game form, and so there can be no newly lurked objects at
h∗0. But then, i is not active at h∗0 (since no new agent can become active unless something
else becomes lurked), and so i is not coded in this step, which contradicts that she is ranked
(P + 1)th in »0.

Subcase 2.2: σ1(s) = k1. In this case, we have xk1 ∈ Cs′(h
′) for some h′ ⊊ h∗1 ⊆ h∗0 and

xk1 ∈ Cs(h
∗
1). This implies that xk1 cannot be either of the next two lurked objects on the

88If there were, it must be xi. It cannot be lurked by k1, since this would mean xi is her top object, which
is a contradiction. So, it must be lurked by some ` ≠ i, k1, and so ` will be ranked ahead of or tie with k1 in
»1.

89This follows from Lemma B.12. If this role were the terminator, then role s could not be offered xi at
h∗1 ⊋ h

′.
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initial passing path of the game form (if they exist). Since k1 is ordered immediately after i
in »0 and k1 does not tie, there can be at most one newly lurked object at h∗0, and it must
be xi.

We next claim that k1 cannot be active at h∗1 in Γ0. It is clear that σ0(s) ≠ k1, because
otherwise k1 would clinch at h∗1 in Γ0, and once again tie in »0. We also have that σ0(s′) ≠ k1.
To see why, notice that s′ is not the terminator role (see footnote 89). So, only unlurked
objects are possible for the agent in this role, and thus, if k1 was in this role, she would clinch
xk1 at h′ ⊊ h∗0, since it is her favorite unlurked object. Last, if k1 lurks some object xjp at
h∗1, then she strictly prefers xjp to xk1 . It then must be some agent jp′ that moves at h∗0 and
clinches a lurked object xjp′ . This means that jp′ is in the terminator role. We claim that
σ−1

0 (jp′) ≠ s, s′. We know (see footnote 89) that s′ is not the terminator role, so σ−1
0 (jp′) ≠ s′.

If σ0(s) = jp′ , then s is the terminator role. But, this contradicts that k1 clinched xk1 first
at h∗1 in Γ1, since in that game she was in the terminator role and so xjp is possible for her,
and she strictly prefers it. Therefore, in Γ0, jp′ is in some role s′′ that was not active at h∗1.
This implies that one of s or s′ is still active at h∗0 in Γ0, and whoever it is, this agent has
been offered xk1 prior to h∗0. So, k1 would tie with this agent in »0, a contradiction.

So, k1 is not active at h∗1 in Γ0. So, there is some agent ` ≠ j1, . . . , jP , i, k1 that is active
at h∗1 in Γ0. This agent cannot be a lurker at h∗0, since if she were, she would necessarily be
coded in step 1, and, as xk1 is not lurked at h∗0, k1 could at best tie with her. Thus, σ−1

0 (`) = s

or s′, and no matter which, we have xk1 ∈ C`(h
∗
1). If xk1 is clinched in step 1, then k1 can at

best tie with `. If k1 is not coded in step 1, then in at the start of the continuation game for
step 2, ` is offered xk1 . But, if this is the case, then k1 cannot be ordered first without ties
in step 2, which contradicts the definition of »0.

Subcase 2.3: σ1(s) = jp for some p = 1, . . . , P . In this case, agent jp is clinching a
lurked object at h∗1, and so h∗1 is the terminating history. Then, h∗1 ⊆ h∗0 implies that h∗1 = h∗0.
Thus, in Γ0, xi is the first (and only) unlurked object clinched in step 1, and so xi ∉ C

⊊
s′(h

∗
1).

So, because there is a tie in Γ1, it must be that xk1 ∈ C
⊊
s′(h

∗
1).

Next, we claim that in Γ0, k1 is not active at h∗1. Indeed, k1 is not in role s (as that is
occupied by jp). She also cannot be a lurker, because she is not coded in step 1 (which ends
with i). Finally, consider role s′. Notice that s′ is not the terminator role (because that is
role s), and so, if k1 were in role s′, she would clinch xk1 at some history h′ ⊊ h∗1 at which it
was offered to her, a contradiction.

Therefore, there is some ` ≠ j1, . . . , jP , i, k1 that is such that σ0(s′) = ` and xk1 ∈ C`(h
∗
1).

Since ` is not coded in step 1, she begins the continuation game for step 2 by being offered
xk1 . Thus, k1 cannot be ordered first in step 2 without ties, which is a contradiction.

The above shows that h∗0 ⊊ h∗1. To finish the proof of part (a), we must show that agent
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i moves at h∗0 in Γ0. Notice that h∗0 ⊊ h∗1 and the structure of »1 implies there can be at
most P lurkers at h∗0. First, if there are no lurkers (P = 0) at h∗0, then, it is clear that i must
move at h∗0, as that is the only way she can be ranked first without ties. Now, presume that
P > 0. If it is some jp that moves at h∗0, then jp clinches a lurked object xjp , which implies
that h∗0 is the terminating history, which contradicts h∗0 ⊊ h∗1. Therefore, no agent j1, . . . , jP
can move at h∗0. Since there can be at most P lurkers at h∗0, given that i is ranked (P + 1)th

without tying, the only other possibility is that it is agent i that moves at h∗0 and clinches
xi.

Part (b). We first show that h∗0 ⊊ h∗2. By part (a), h∗0 ⊊ h∗1. This means that agent i
cannot move at h∗0 in Γ1. Nor can any potential agent jp, because if they did, they would
be clinching a lurked object, which means h∗0 is the terminating history, which contradicts
h∗0 ⊊ h

∗
1. Therefore, it must be k1 that moves at h∗0 in Γ1.

By way of contradiction suppose that h∗0 ⊊ h∗2 fails; because of the passing structure of
this histories, it means that h∗2 ⊆ h∗0. The structure of »2 implies that k1 clinches at h∗2 in
Γ2, which also means that h∗2 and h∗0 are controlled by different roles, and further h∗2 ⊊ h∗0.90

So, in Γ0, it must be some agent ` ≠ j1, . . . , jP , i, k1 that moves at h∗2. But then, we have
xk1 ∈ C`(h

∗
0), so at the initial history of the continuation game that begins step 2, agent `

is offered xk1 , and so k1 cannot be ordered first in step 2, which is a contradiction to the
definition of Γ0. Therefore, h∗0 ⊊ h∗2.

Thus, we have h∗0 ⊊ h∗1, h∗2, and so agent i does not move at h∗0 in Γ1 or Γ2.
Case 1: Agent k1 moves at h∗0 in Γ2. Here, k1 is in the same role as in Γ1, and so

h∗1 ⊊ h∗2. This implies that i must clinch at h∗1 in Γ1, and so i does not move at h∗1 in Γ2.
If some jp moves at h∗1 in Γ2, then this agent must also clinch at h∗2, and she must clinch a
lurked object. This means that i must be a lurker for some xjp′ , and so she strictly prefers
xjp′ to xi. But then, the agent that moves at h∗1 is in the terminator role, and so in Γ1,
i is in the terminator role, and since she clinches xi at h∗1 , this implies that xi is her top
object (lurked or unlurked) by Lemma B.12(v), which is a contradiction. So, it must be
some ` ≠ j1, . . . , jP , i, k1 that moves at h∗1 in Γ2, and so xi ∈ C

⊊
` (h

∗
2) in Γ2. Since ` is not

coded in step 1, she is offered xi at the initial history of the continuation game that begins
step 2. Therefore, i cannot be ranked first without ties in this continuation game.

Case 2: Some agent j1, . . . , jP moves at h∗0 in Γ2. This agent, say jp, must be the
one clinching at h∗2 (since jp is not a lurker at h∗0, but ultimately receives a lurked object),
and she must clinch a lurked object. This implies that the agent who moves at h∗0 is in the
terminator role, and that h∗2 is the terminating history, so h∗1 ⊆ h∗2. Let r be the other role

90If they were the same role, then k1 is in this role in Γ1, and would clinch at h∗2 in Γ1, which is a
contradiction.
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that is active at h∗1. Since there is a tie in »1, this role must be such that either xi ∈ C⊆r (h∗1) or
xk1 ∈ C

⊆
r (h

∗
1). In the latter subcase, xk1 cannot be the next lurked object along the passing

path (from h∗1), and so there must be no newly lurked objects at h∗2. Next, notice that
σ2(r) ≠ k1, because otherwise, k1 would clinch xk1 at the history h′ ⊊ h∗1 where it was offered
in Γ2. Thus, k1 can at best tie with the agent σ2(r), which is a contradiction.

For the subcase xi ∈ C⊆r (h∗1), if σ2(r) = k1, then there is some agent ` ≠ j1, . . . , jP , k1 who
is a lurker for some xj1 , . . . , xjP . We also have ` ≠ i. This is because the agent who moves at
h∗0 is in the terminator role, and so in Γ0, i is in this role, and since she clinches, xi is her top
available object (lurked or unlurked), and therefore i cannot lurk any of the xjp ’s. Therefore,
agent ` will be ranked ahead of i in »2, a contradiction.91 We also cannot have σ2(r) = i,
because i would clinch xi at the history h′ ⊊ h∗1 at which she was offered xi. Thus, σ2(r) = `

for some ` ≠ j1, . . . , jP , i, k1. Agent ` is not coded in step 1, and thus, she is offered xi at the
initial history of the continuation game that begins step 2, and so i cannot be ranked first
without tying in step 2.

Part (c). If xk1 is not the (P + 1)th lurked object, then, because k1 is ordered without
tying in »2, at h∗2, k1 must clinch xk1 , and it has not been offered to another active non-lurker.
Notice also that h∗0 ⊊ h∗2 implies that i does not move at h∗0 in Γ1 or Γ2, and that k1 moves at
h∗0 in Γ1. If k1 moves at h∗0 in Γ2, then she is in the same role in both games, and so h∗1 ⊊ h∗2.
This also means that i moves at h∗1 in Γ1 (because if it was k1, then xk1 is offered to both
active roles at h∗1, and so in Γ2, k1 would clinch at some h′ ⊊ h∗2). Thus, xi has been offered
to both active non-lurker roles at h∗1. This implies that i cannot be active at h∗1 in Γ2, and
so there is some ` ≠ j1, . . . , jP , i, k1 such that xi ∈ C`(h∗2) in Γ2. If k1 does not move at h∗0 in
Γ2, then it is some ` ≠ j1, . . . , jP , i, k1 that moves at h∗0. In either case, we have xi ∈ C

⊊
` (h

∗
2)

in Γ2. ∎

Proof of Claim B.8. (See above for the statement of the claim).Since it is without loss
of generality to assume that there are at least P lurkers at h∗n, there are two cases. Recall
that k1 is ranked strictly, without ties, in »n.

Case 1: There are exactly P lurkers at h∗n. In this case, k1 is the last agent coded
in step 1 of Γn. Consider game Γ2, and notice that »n=»2 up to agent k1. Since agent k1 is
the last agent in a coding step, by Lemma B.4, all agents j1, . . . , jP , k1 are in the same roles
in Γ2 and Γn, and h∗n = h∗2. Further, notice that xk1 is not the (P + 1)th lurked object along
the initial passing path,92 and so, by Claim B.7 part (c), there is an agent ` that is an active

91Note that xi cannot be lurked at h∗2, since it has been offered to agent jp at h∗0, who is the terminator.
92If k1 clinches at h∗n, then xk1 is offered to an active non-lurker, and so cannot be the next lurked object

along the initial passing path; if some jp clinches at h∗n, then they are clinching a lurked object, and so h∗n is
the terminating history, which again implies that xk1 is not (P + 1)th lurked object along the initial passing
path (because no such object exists).
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non-lurker at h∗2 that does not move at h∗2 and xi ∈ C
⊊
` (h

∗
2). Since h∗2 = h∗n, the result holds.

Case 2: There are strictly greater than P lurkers at h∗n. In this case, the objects
xj1 , . . . , xjP , xk1 , . . . , xkn′−1

are lurked at h∗n, while xkn′ is not, where n > n′ > 1.93 Consider
game Γn′+1, and notice that »n is equivalent to »n′+1 up to agent kn′ . Therefore, by Lemma
B.4, all agents k1, . . . , kn′ are in the same roles in all of these games, and h∗n = h∗n′+1. By
Lemma B.15, in Γn′+1, at h∗n′+1, there is an active agent ` such that ` is an active non-lurker
at h∗n′+1 that does not move at h∗n′+1 and xi ∈ C

⊊
` (h

∗
n′+1). Since h∗n = h∗n′+1, the result holds. ∎

Proof of Lemma B.17. By the assumption that n,m ≥ 2 in Σ and Σ′, we have that there
exist (at least) the following codings:

j1⋯jP »1 {i, k1} »1 ⋯

j1⋯jP »2 k1 »2 {i, k2}⋯

j1⋯jP »
′
2 i »

′
2 {k1, k

′
2}⋯.

We start by presenting the following two conditions, one of which, when combined with
prior lemmas, will imply that Statement 1 of the lemma holds, and the other of which will
imply Statement 2 of the lemma holds.

• Condition 2: In Γ2, at h∗2 there is an active non-lurker ` such that ` does not move at
h∗2 and xi ∈ C

⊊
` (h

∗
2).

• Condition 2′: In Γ′
2, at h∗2′ , there is an active non-lurker ` such that ` does not move

at h∗2′ and xk1 ∈ C
⊊
` (h

∗
2′).94

We first show that these conditions imply the lemma. Then, we show that one of these
conditions must hold.

We will show that Condition 2 implies that Statement 1 of Lemma B.17 holds. The two
statements are symmetric, so this will also show that Condition 2′ implies Statement 2 of
Lemma B.17.

To show Condition 2 implies Statement 1, we use Lemma B.19. So, consider the sequence
93Because Q ≥ 2, the last agent coded in step 1 of Γn is at most kn−1, which means that xkn−1 is not lurked,

i.e., the last lurked object is at most xkn−2 , which is why we have n′ < n.
94We use h∗2′ (instead of h

′∗
2 ) to denote the first history at which an object is clinched in game Γ′2 (under

role assignment σ′2).
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of codings

j1⋯jP »1 {i, k1} »1 ⋯

j1⋯jP »2 k1 »2 {i, k2}⋯

j1⋯jP »3 k1 »3 k2 »3 {i, k3} »3 ⋯

⋮

j1⋯jP »n k1 »n k2 »n k3 »n ⋯ »n kn−1 »n {i, kn} »n ⋯

j1⋯jP »n+1 k1 »n+1 k2 »n+1 k3 »n+1 ⋯ »n+1 kn−1 »n+1 kn »n+1 i⋯

Recall that it is wlog to assume that there are at least P lurked objects at h∗n′ for each n′.
We claim further that in this case, there are exactly P lurked objects at h∗n′ for each n′. For
n′ = 1, this follows from the fact that i and k1 tie. For n′ > 1, the next ordered agent is k1.
So, if there were p > P lurked objects at h∗n′ , the (p + 1)th lurked object would have to xk1 ,
which contradicts the supposition of the lemma. Therefore, for all n′ = 1, . . . , n + 1, at h∗n′ in
game Γn′ , there are exactly P lurked objects, and by definition, these must be xj1 , . . . , xjP ,
in this order.

Next, notice that for all n′ ≥ 2, since there are exactly P lurked objects at h∗n′ , the set
of agents coded in step 1 of Γn′ must be j1, . . . , jP , k1. In particular, this is true for Γ2 and
Γn, and since »2 is equivalent to »n up to agent k1, by Lemma B.4, all of these agents are
in the same roles in both games, and h1∗

n = h∗2. By Condition 2, there is some agent ` such
that ` is an active non-lurker that does not move at h∗2 and xi ∈ C

⊊
` (h

∗
2). Since h1∗

n = h∗2, we
have that in Γn, there is some agent `′ that is an active non-lurker at h1∗

n and that does not
move at h1∗

n and xi ∈ C
⊊
` (h

1∗
n ). Further, Q ≥ 2. Thus, all of the conditions of Lemma B.19

are satisfied, and we conclude that i must tie with some agent kn+1 in »n+1.
We complete the proof of Lemma B.17 by showing that at least one of Condition 2 or

Condition 2′ must hold. This assertion is proven as Lemma B.21 below. ∎

Lemma B.21. Assume that there are three codings:

j1⋯jP »A {i, k} »A ⋯

j1⋯jP »B i »B ⋯

j1⋯jP »C k »C ⋯

such that:

• At each of h∗A, h
∗
B, h

∗
C, the objects xj1 , . . . , xjP are all lurked, in this order, and

• Neither xi nor xk are the (P +1)th lurked object on the initial passing path of the game.
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Then, one of the following conditions must hold:
Condition (B): In ΓB, at h∗B there is an active non-lurker ` such that ` does not move at

h∗B and xk ∈ C
⊊
` (h

∗
B).

Condition (C): In ΓC, at h∗C, there is an active non-lurker ` such that ` does not move
at h∗C and xi ∈ C

⊊
` (h

∗
C).

Proof of Lemma B.21. First, notice that in each of the games, there must be exactly P
lurkers at h∗γ for γ = A,B,C. It is a presumption of the lemma that there are at least P
lurkers. To see that there are at most P lurkers, notice that, for ΓA, this holds because i
and k tie. In ΓB, it holds because xi is not the next lurked object along the initial passing
path, and thus, xi must be the first—and since there is no tie, only—unlurked object that
is coded in step 1. The same applies to ΓC . Therefore, in ΓA, there are exactly P + 2 agents
coded in step 1, while in ΓB and ΓC , there are exactly P + 1 agents coded in step 1.

In ΓA, at h∗A, there are P active lurker roles and two active non-lurker roles. The objects
xj1 , . . . , xjP are lurked, and xi and xk are unlurked. Let s be the active non-lurker role that
moves at h∗A, and s′ the role of the other active non-lurker. One of xi or xk must be the first
unlurked object that is clinched in step 1 of the coding algorithm, either at h∗A itself, or in
the chain of assignments that follows. Assume it is xi (a symmetric argument works if it is
xk). This implies that xi ∈ C

⊊
s′(h

∗
A), and σA(s′) = k. There are two cases, depending on who

is in role s.
Case 1: σA(s) = jp for some p. Agent jp must be clinching a lurked object at h∗A, which

implies that h∗A is the terminating history, and s is the terminator role. This means that s′

is not the terminator role, and so xk ∉ C⊆s′(h∗A); indeed, if this were true, then xk would have
clinched it in ΓA, because it is her favorite unlurked object and only unlurked objects are
possible for a non-lurker who is not the terminator (Lemma B.12(iv)). It also means that
agent i must be a lurker for some object xjp̄ , and thus, agent i strictly prefers xjp̄ to xi.

Now, consider game ΓC . The agents coded in step 1 of ΓC are j1, . . . , jP , k, and so it must
be one of these agents that moves at h∗C .

Subcase 1.1: The agent that clinches at h∗C is some jp′. Here, h∗C must also be the
terminating history, and so σC(s) = xjp′ and h

∗
A = h∗C . Since k is coded in step 1, she must

then be a lurker, and so there is some other agent ` ≠ j1, . . . , jP , k such that σC(s′) = `. We
claim that ` ≠ i. Indeed, if ` = i, then there is some history h′ ⊊ h∗C such that xi ∈ Ci(h′).
Since s′ is not the terminator role, only unlurked objects are possible for i in ΓC , and since xi
is her top unlurked object, she would clinch at h′, a contradiction. Therefore, σC(s′) = ` ≠ i,
and Condition (C) holds.

Subcase 1.2: Agent k clinches at h∗C in ΓC. Here, we have σC(s) = k, because, as
we saw above, xk ∉ C⊆s′(h∗A) and h∗A is the terminating history, so h∗C ⊆ h∗A. Let h′ ⊊ h∗A be
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the history at which role s′ is offered to clinch xi.
If h∗C ⊋ h′, then, by similar logic to subcase 1.1, σC(s′) = ` for some ` ≠ j1, . . . , jP , k, i, and

Condition (C) holds.
Finally, consider h∗C ⊊ h′.95 In ΓB, since there are exactly P + 1 agents coded in step 1,

xi is the first (and only) unlurked object that is clinched, and since there is no tie, it has
not been offered to another active non-lurker. This implies that h∗B ⊆ h̃ ⊊ h∗A. Since h∗B is
not the terminating history, it must be an unlurked object that is clinched, and therefore,
it must be i that clinches xi. If σB(s) = i, then i is in the terminator role, and would not
clinch xi first at h∗B (recall that she prefers xjp̄ to xi). Thus, it must be that σB(s′) = i, and
i clinches xi at h∗B. If h∗B ⊊ h∗C , then by similar logic to the above, Condition (C) holds. If
h∗C ⊊ h∗B, then xk ∈ C

⊊
s (h∗B) for the agent in role s. Notice that σB(s) ≠ k, because if so, then

k has the same roles in ΓB and ΓC , and so would clinch at h∗C ⊊ h∗B in ΓB, a contradiction.
It is also immediate that σB(s) ≠ j1, . . . , jP , since they must be in the lurker roles for their
respective objects. Thus, σB(s) = ` for some ` ≠ j1, . . . , jP , i, k, and Condition (B) holds.

Case 2: σA(s) = i. We once again have that role s′ is not the terminator role,96 and
so, as in Case 1, xk ∉ C⊆s′(h∗A). Once again, consider game ΓC . As in Case 1, there are two
subcases.

Subcase 2.1: The agent that clinches at h∗C in ΓC is some jp′. Here, jp′ clinches
a lurked object at h∗C , and so h∗C is the terminating history. This implies that h∗A ⊆ h∗C , and
σC(s) = jp′ . But then, notice that the agent in role s′ is an active non-lurker at h∗C that
does not move at h∗C , and xi ∈ C

⊊
s′(h

∗
C). Since this agent is not coded in step 1, we know

that σC(s′) ≠ j1, . . . , jP , k. If σC(s′) = i, then i is offered to clinch xi at some h′ ⊊ h∗C , and
since s′ is not the terminator role, only unlurked objects are possible for her, and therefore,
since xi is i’s top object, she would clinch at h′, a contradiction. Thus, σC(s′) = ` for some
` ≠ j1, . . . , jP , i, k, and xi ∈ C

⊊
` (h

∗
C), i.e., Condition (C) holds.

Subcase 2.2: The agent that clinches at h∗C in ΓC is k. Since k clinches first, and
xk is unlurked, all lurked objects are immediately assigned to their lurkers, which implies
that jp is in the lurker role for xjp for all p = 1, . . . , P .

If h∗A ⊆ h∗C , then, at h
∗
C , there are two active non-lurkers, σC(s) and σC(s′), and both

have been offered xi. One of these must be k. If σC(s′) = k, then notice that σC(s) ≠ i,
because if σC(s) = i, then i is in the same role in ΓA and ΓC , and would clinch at h∗A in
ΓC , which contradicts that k clinches first in ΓC . Thus, σC(s) = ` ≠ i. If σC(s) = k, then if
σC(s′) = i, then i is in the non-terminator role, and xi ∈ Ci(h̃) for some h̃ ⊊ h∗A ⊆ h∗C , and
since xi is i’s favorite unlurked object, she will clinch it at h̃, a contradiction. Therefore, in

95Note that h∗C = h′ is ruled out because role s′ moves at h′, while role s moves at h∗C .
96This follows from Lemma B.12.
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either case, there is some agent ` ≠ j1, . . . , jP , i, k such that xi ∈ C
⊊
` (h

∗
C), and Condition (C)

holds.
It remains to consider h∗C ⊊ h∗A. Here, we must have σC(s) = k, because if σC(s′) = k, then

as we showed above, xk ∉ C
⊊
s′(h

∗
A), which contradicts that k clinches at h∗C . Now, consider

ΓB. In ΓB, since there are exactly P + 1 agents coded in step 1, xi is the first (and only)
unlurked object that is clinched, and the agents coded in step 1 are j1, . . . , jP , i.

If h∗B ⊆ h∗C , then, h
∗
B ⊊ h∗A, and h∗B is not the terminating history. Thus, in ΓB, agent

i must move at h∗B and clinch xi. This implies that σB(s′) = i, because if σB(s) = i, then
i has the same role in ΓA and ΓB and clinches at both h∗B and h∗A, which contradicts that
h∗B ⊊ h∗A. Further, this means that h∗B ≠ h∗C , because role s moves at h∗C and role s′ moves at
h∗B. Thus, at h∗C in ΓC , we have xi ∈ C

⊊
s′(h

∗
C). We cannot have σC(s′) = i, because i would

clinch at h∗B in ΓC , a contradiction. Therefore, σC(s′) = ` for some ` ≠ j1, . . . , jP , i, k and
xi ∈ C

⊊
` (h

∗
C), and thus, Condition (C) holds.

If h∗C ⊊ h∗B, then if some jp′ clinches at h∗B in ΓB, then h∗B is the terminating history, and
h∗A ⊆ h∗B. But then, there is an active non-lurker—the agent σB(s′)—that has been offered to
clinch xi prior to h∗B, and so i would at best tie with this agent in »B, a contradiction. Thus,
it must be i that clinches at h∗B in ΓB, which implies that σ−1

B (i) = s or s′. If σ−1
B (i) = s, then

i has the same roles in ΓA and ΓB, and so h∗A = h∗B, and i would tie with the agent in role
s′ in »B, a contradiction. Thus, σB(s′) = i. This means that h∗C and h∗B are controlled by
different roles, and xk ∈ C

⊊
s (h∗B). Finally, we cannot have σB(s) = k, because then k is in the

same role as ΓC , and would clinch at h∗C ⊊ h∗B in ΓB. So, we must have σB(s) = ` for some
` ≠ j1, . . . , jP , i, k, and in ΓB, xk ∈ C

⊊
` (h

∗
B). Therefore, Condition (B) holds.

Finally, notice that all of this was done under the assumption that xi was the first unlurked
object that was clinched in step 1 of the coding algorithm in ΓA. The other possibility is
that this object is xk. However, everything is symmetric, and so the exact same argument,
swapping the i and k, shows that either Condition (B) or Condition (C) must hold in this
case as well. ∎
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