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Consumers can acquire information through their own search efforts or through

their social network. Information diffusion via word-of-mouth communication leads

to some consumers free-riding on their “friends” and less information acquisition

via active search. Free-riding also has an important positive effect, however, in

that consumers that do not actively search themselves are more likely to be able

to compare prices before purchase, imposing competitive pressure on firms. We

show how market prices depend on the characteristics of the network and on search

cost. For example, if the search cost becomes small, price dispersion disappears,

while the price level converges to the monopoly level, implying that expected prices

are decreasing for small enough search cost. More connected societies have lower

market prices, while price dispersion remains even in fully connected societies.
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1 Introduction

Decentralized markets rely on how information in the hands of individual agents is aggre-

gated (Hayek (1945)). Individual agents are, however, not endowed with a natural amount

of information. Often, they have to spend resources, such as time, to search and acquire

information. Accordingly, agents will only acquire information if the expected benefits ex-

ceed the opportunity cost of doing so. This has led Grossman and Stiglitz (1980) to pose

that efficient markets cannot exist if arbitrage is costly. Information can, however, also be

acquired in less costly ways, namely through word-of-mouth (WOM) communication via

friends (see, e.g., Ellison and Fudenberg (1995) and Campbell (2013)).1 WOM commu-

nication may come with a delay, however, as one has to wait for friends to communicate

their information.

Costly information acquisition and diffusion (WOM communication) are clearly re-

lated. When few people acquire information themselves, little information will be dif-

fused, while if information is disseminated efficiently, people may not have the incentive

to spend resources to acquire information themselves. Thus, it is important to under-

stand the interaction between the incentives to acquire information and the efficiency of

the information diffusion process. This is especially so for online markets and online in-

teraction through social networks, such as Facebook or LinkedIn. It is well documented2

that online technologies have significantly reduced the search cost related to information

acquisition and increased the possibilities of diffusion and it is important to understand

how these developments affect market outcomes.

Information, whether acquired through costly search or through WOM, allows con-

sumers to carefully compare product characteristics and prices of different firms. The

better consumers are able to make comparisons across firms, the smaller firms’ market

power. In this paper we study the interaction between information acquisition, diffusion

and market power, and explain the impact of changes in the connectedness of people (im-

pacting diffusion of information through WOM) and search costs on market outcomes.

1Katz and Lazarsfeld (1955) is the classic study showing that information acquired through personal

contacts is the prime reason why people buy a product.
2See, e.g., Brown and Goolsbee (2002), Jensen (2007) Aker (2010), and Aker and Mbiti (2010). On

word-of-mouth communication, see, e.g., Godes and Mayzlin (2004), Chen et al. (2011) and Seiler et al.

(2019).

2



We adopt a simple theoretical framework of a homogeneous goods market where firms

set prices and consumers engage in costly sequential search to acquire information about

prices before buying one unit of the good (Diamond (1971) and Stigler (1961)).3 Con-

sumers that have searched for prices themselves and bought the product spread this

information through their network. Consumers who do not engage in search rely on their

network of friends to get information on prices and where to buy. We discuss two versions

of this general set-up, depending on whether or not consumers have better knowledge of

the social network structure than firms before making price and search decisions.4

We find that independent of the acquisition (search) cost there always exists a no-trade

equilibrium as no one will acquire information if firms set very high prices and setting high

prices is optimal if no one acquires information.5 In models that exhibit the Diamond

paradox, no trade is the only equilibrium outcome: if all consumers have a positive search

cost and costly search is their only source of information, firms will sell the same output

at all prices that are smaller than or equal to a reservation price that is larger than the

average price consumers expect in the market. This gives firms an incentive to raise prices

above the expected price, contradicting the implicit assumption that there is an average

trading price.6

Importantly, WOM resolves the Diamond paradox in that it creates additional equi-

libria with positive sales. Under WOM, consumers determine whether or not to acquire

information themselves. The possibility to get information through their social network

implies that in any equilibrium it cannot be the case that all consumers acquire infor-

mation themselves. At a positive search cost, consumers have an incentive to free ride

on their friends if all of them actively search as this also allows them to buy, possibly

at the lowest price charged in the market without incurring the full search cost. Thus,

3Undoubtedly, in real world markets consumers also exchange information about product character-

istics, such as quality, appearance and/or convenience. Yet, people also share information online about

prices. In homogeneous goods markets, price communication is the only thing that matters.
4One may also distinguish between markets where consumers can or cannot credibly share information

with friends before they have actually bought the product. We show, however, that in our set-up these

two environments yield identical results.
5A no trade equilibrium exists in many simultaneous and sequential search models where the first

search is costly for all consumers (see, e.g., Burdett and Judd (1983) and Diamond (1971))
6If individual consumers have downward sloping demand (or the first search is somehow free), then

the Diamond paradox takes on a somewhat different form, namely that all firms charge the monopoly

price.
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an endogenously determined fraction of consumers is only informed through their friends.

This free-riding on the information acquisition of friends has an important positive effect

on the incentives of firms to compete in markets where consumers search sequentially. By

free-riding, the non-searching consumers will be informed with positive probability about

different prices and will buy at the lowest of these prices. This provides firms with an

incentive to compete with each other. In particular, if a firm raises its price above the

price of the competitor he will lose all free-riding consumers who are informed about both

prices. Thus, WOM eliminates the source of the Diamond paradox and creates price dis-

persion, because a fraction of consumers is informed about one price only, whereas others

are informed of more than one price.

The environment we study allows us to consider the impact of social networks and

search costs on information acquisition and market power. In our model, a network is

characterized by two features: (i) the number of friends different consumers are connected

to, and (ii) the speed with which information flows through the network. In terms of

the social network structure one would expect that prices are lower in societies where

consumers are better connected. The reason is that more connections allow them to

access more prices and the more consumers compare prices, the higher the competitive

pressure on firms. Importantly, when the network gets very dense and many consumers

have many connections, prices do not converge to marginal cost and price dispersion

remains. What matters for price dispersion and also for the expected market price is the

relative fraction of consumers that have access to only one price in equilibrium compared

to the fraction that is better informed. This fraction is endogenously determined. As

information from friends comes with a delay, the incentive to acquire information oneself

remains and a positive fraction of consumers buy immediately after acquiring information.

As passive consumers are likely to obtain more than one price quote and buy at the lowest

price, price dispersion remains.

The speed of information diffusion is important in that it is a key determinant of the

cost associated with waiting for information through WOM. A higher speed of information

flow allows passive consumers to realize quicker whether or not they will receive any

information via their social network. If they quickly realize their friends will not provide

them with information, they can engage in information acquisition themselves without

much delay. Thus, a higher speed of information diffusion in the population has a direct
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positive effect on the share of consumers who decide to wait for information from friends.

This has a dampening effect on prices. There is also an indirect effect, however, namely

that as prices and price dispersion decline, consumers have more incentives to become

active searchers themselves, especially when the speed of information diffusion is low to

begin with. Overall, the fraction of active consumers and firms’ profits has an inverted

U-shape with respect to the speed of information diffusion: when this speed is low to

begin with, firms have an incentive to increase it as this will also speed up their sales,

despite a decrease in prices. However, when the speed is already relatively large, the effect

on expected price dominates and firms want to slow down information diffusion.

The impact of search cost is best illustrated by considering the case where the search

cost becomes arbitrarily small. We show that in this case price dispersion disappears

and almost all consumers become active themselves and buy immediately after they have

searched themselves. As almost no consumer makes price comparisons, prices converge

to monopoly levels. When the search cost increases, more consumers remain passive and

a large fraction of consumers make price comparisons, resulting in lower prices. Thus,

prices are decreasing in search cost in our model.

Galeotti (2010) is the paper that is closest to ours. There are three main differences

between his paper and ours. First, in Galeotti (2010) consumers search for prices in a

non-sequential fashion, whereas we have a sequential search framework. In most consumer

retail markets, consumers observe the price at a firm before they decide whether to search

another firm, making the sequential search paradigm more relevant. Second, Galeotti

(2010) assumes the first search is free so that all consumers know at least one price.

This guarantees that in his setting market outcomes tend to the perfectly competitive

outcome when the number of connections each consumer has becomes large: the chance

that at least one of a consumer’s connections has observed a competitors’ price tends

to be close to 1. In our setting where the first search is also costly, consumers that do

not search themselves may not be informed of any price in first instance.7 If the number

of connections becomes large, we show that price dispersion and market power remain.

The positive impact, we find, of not searching on the equilibrium prices is not present in

7Janssen et al. (2005) were the first to study the impact of the first search being costly on the

participation of consumers in the marketplace. In their setting (and in contrast to ours), search is,

however, the only source of information acquisition.
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Galeotti (2010) as under non-sequential search with the first search being free, consumers

are informed about fewer prices when they do not search than when they do search.8

Finally, where all consumers have the same number of links in the basic model studied in

Galeotti (2010), we model the social network as a random graph.

There is also a literature on how WOM communication affects the pricing and adver-

tising policy of a monopoly firm in the market (see, e.g., Arbatskaya and Konishi (2016),

Biyalogorsky et al. (2001), Bloch (2016), Campbell (2013), Chuhay (2015), Fainmesser

and Galeotti (2016), Galeotti and Goyal (2009), Jun and Kim (2008), and Kornish and Li

(2010)).9 There are several key differences between this literature and our paper. Instead

of monopoly, we study a market where firms compete in prices. More importantly, whereas

this literature assumes that consumers passively wait until they receive an advertisement

from the firm, or they are informed through their network, we allow consumers to actively

reach out and search for information, making the consumers important strategic players

in the market. Whereas we provide more detail on how consumers acquire information,

this literature is able to consider more detail on specific firm strategies, such as referrals

and/or targeting.

The classic papers by Wolinsky (1986) and Stahl (1989) provide well-known solutions

to the Diamond paradox. Wolinsky (1986) imposes that firms produce heterogeneous

products, while Stahl (1989) imposes search cost heterogeneity among consumers, where

some exogenously determined fraction of “shoppers” have zero search cost and compare all

prices before buying. Unlike these two papers, we endow consumers with the possibility

to acquire information through WOM in addition to their own information acquisition by

means of search. In this way, we endogenize the fraction of price comparing consumers.

In our model this fraction is endogenously determined in equilibrium.

The rest of the paper is organized as follows. The next section presents the model,

while Section 3 presents preliminary findings, the most important of which is that any equi-

librium with positive trade must be a reservation price equilibrium. Section 4 examines

markets where consumers and firms are symmetrically (un)informed about the network

structure, while Section 5 provides the comparative statics analysis of this model. Section

8Miegielsen (2014) adopts a sequential search framework but considers a model where somehow

consumers possess information about prices before engaging in search and the amount of information

that consumers have (and share with each other) is given exogenously.
9Fainmesser and Galeotti (2017) study an oligopolistic version of their 2016 paper.
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6 continues the analysis by examining markets where consumers and firms are asymmet-

rically informed about the network: consumers know from how many friends they may

acquire information before engaging in search activities, while firms only know aggregate

network characteristics. We conclude with a discussion.

2 The Model

We consider a duopoly10 market for a homogeneous good where firms compete in prices.

The unit cost of production is constant and normalized to zero. As firms may choose

mixed strategies, we denote the strategy of a firm i by Fi(p), representing the probability

that a firm charges a price not larger than p. The support of the price distribution is

determined endogenously with p and p being the lower and upper bound of the support,

with the possibility of some prices in the interior of the interval not being chosen.

On the demand side of the market, there is a countably infinite number of consumers,

normalized to one, each with unit demand and a willingness to pay equal to v. A consumer

buying at price p receives a pay-off of v−p. If a consumer does not consume, she receives a

payoff of zero. Before making a purchase, a consumer needs to be informed about at least

one price. We model the consumers’ choice situation as follows, where Figure 1 illustrates

the process. The basic idea behind the choice situation is that actively searching involves

a search cost, while waiting for information involves a time delay.

In first instance, each consumer individually and simultaneously has to decide whether

to acquire information by actively searching and visiting a firm herself at a cost s or to

passively wait for information from friends via a social network. We follow the consumer

search literature and assume that search is with perfect recall, i.e., once a firm is visited,

consumers can come back to the firm without having to incur a return cost. We denote by

q(k) the fraction of consumers with k friends who choose to become active. If consumers

do not or cannot condition their decision of becoming active searchers on the number of

connections, q is independent of k. If a consumer decides to become active and searches

herself, she has three options to choose from once she has observed a price: to buy, to

10With more than two firms, the characterization of the mixed strategy distribution in prices is more

complicated and in this case, it is difficult to analyze the gains of search versus the gains of free riding.

Galeotti (2010) also considers duopoly markets.
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Search
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Buy Not buy

Search

Active

Information exchange

Figure 1: Consumer decision tree

continue searching for a rival firm or to wait. Thus, a consumer can wait at any moment

in the decision process. All active consumers make their choices simultaneously without

knowing the behavior of others.

Following the literature on observational learning (see, Kircher and Postlewaite (2008),

Garcia and Shelegia (2015)), we initially consider an environment where consumers can

credibly exchange information only after having purchased goods so that information

exchange/diffusion takes place after all active consumers have finished their search and

purchases. This case is certainly the relevant case to consider in markets where consumers

may not be able to purchase the good due to sales restrictions (such as is the case in

many online markets where firms may not ship to international consumers). In the next

Section, we show however that our analysis continues to hold true if consumers also share
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information with friends after they have searched but before they have bought.

Diffusion takes time and the pay-offs of all consumers who decided to wait (either at the

beginning or after having observed a price) are discounted by a factor 0 < δ < 1.11 Thus,

active consumers that decided to wait for more information via friends before making

a purchase behave similarly to passive consumers and their pay-offs are also discounted

by δ. If after having exchanged information with friends, consumers are still not fully

informed about all prices, they may search at that stage themselves. This implies that,

in principle, a passive consumer who has not received any information from friends may

search two times, whereas active consumers who, in first instance, decided to wait for

information from friends may search one more time. In Figure 1, the option for passive

consumers of buying after information exchange is dashed to indicate that this option

may not be available if they did not receive any information from friends. Consumers

observing both prices buy at the lowest of these prices (if they buy at all).

The social network through which information is diffused is modeled by a given random

graph. Consumers communicate only with those consumers whom they are connected to

and provide all their immediate friends with information of the (lowest) price at which

they have bought the product.12 We take the point of view that consumers engage in

their social network for many reasons, not only to exchange price information through

friends. Thus, the social network is given and we do not study the incentives to form

links. Also, as consumers are not (negatively) affected by others using the information

they have acquired, we take it that all acquired information is exchanged.

The advantage of receiving information via friends instead of actively searching oneself

is to economize on search cost and is modeled in the following way. The full cost c of

searching for and buying from a firm is decomposed into two parts: a true cost of search

s > 0 and a cost b ≥ 0 of buying the good. A friend not only informs about the price at

which she bought the product, but also of how to find the firm. Accordingly, a consumer

11We think of δ > 0 as a measure of the speed of information communication. If δ is high, commu-

nication is fast and consumers that decided to wait quickly obtain information from active friends who

purchased the good. If δ = 0, information never gets disseminated so that the Diamond paradox arises.
12Formally, information decays after one step. This is also the setting studied in Bramoulle and

Kranton (2007), Banerji and Dutta (2009) and Ellison and Fudenberg (1995). The assumption is, however,

not crucial to our conclusions. In Section 3.2.2 of his paper, Galeotti (2010) shows how one can take into

account that information may also flow from friends of your friends and decays only after a finite number

of steps and a similar robustness check could be applied here.
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who wants to follow a referral from a friend economizes on the true search cost and only

incurs the purchasing cost b. The easiest way to understand the analysis is when b = 0. In

that case, a consumer can simply follow a referral and purchase without incurring a cost.13

When searching and buying online, the parameters s and b have a natural interpretation:

s is the cost of reviewing an alternative; once a decision is made from which firm to buy,

a consumer still has to go to the check-out page where billing information has to be filled

out.14

The probability a consumer has k links is denoted by t(k), k ∈ {1, 2, ...} = O with∑
k∈O t(k) = 1. For future use we define

τ(x) =
∑
k∈O

t(k)xk

as the probability generating function for 0 ≤ x ≤ 1. Two expressions will be of particular

importance in our analysis: τ(1− q) represents the probability that a consumer has only

friends that do not search themselves, if each of the friends searches with probability q,

whereas 1−τ
(
1− q

2

)
represents the probability an active consumer who has obtained one

price quote herself and decided to wait obtains information concerning the competitor’s

price through the network of friends. It follows that

N∑
k=1

tk

N∑
j=0

(
k

j

)
qj(1− q)k−jyj = τ(qy + (1− q)).

As τ(x) is a convex function with τ(1) = 1 and 1 − q
2

= (1 − q + 1)/2, it follows that

1 + τ(1− q)− 2τ
(
1− q

2

)
> 0 for all q > 0, a property we will use in the analysis below.

Also, τ ′(1) = limq→1 τ(1− q)/(1− q) = t(1).

The timing of decisions is as follows. First, firms simultaneously set prices. Second,

the network structure is realized (so that firms cannot condition their pricing strategy on

the details of the network structure). Third, not knowing the prices, consumers simulta-

neously choose their strategies as described above. In different sections we consider two

cases: one where consumers cannot condition their decision to become an active searcher

13Most of the search literature does not need to distinguish between s and b as active search is assumed

to be the only way to acquire information.
14Note that in this static model, b is not a switching cost as in Wilson (2010) as consumers have to

incur it at any firm they buy from.
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on their position in the social network and one where they can.15

We inquire into the existence of symmetric perfect Bayesian equilibria (PBE) and their

properties. A PBE is described by a set of firms’ and consumers’ strategies such that each

is choosing optimally given beliefs and the strategies of the others.

3 Preliminary Results

Existence of equilibrium is not an issue. As the first search is costly, there always exists

a trivial “no trade” equilibrium with q(k) = 0 for all k. In such an equilibrium, knowing

they will not sell to anyone, firms set prices larger than v − c and this pricing behavior

rationalizes consumers’ beliefs that it is not rational to search.

Proposition 1 For any s > 0, there exists an equilibrium without sales where q(k) = 0.

If t(1) = 1, i.e., all consumers have only one friend, then only a no trade equilibrium

exists as there would be no consumer who can make price comparisons.

In the sequel, we focus on symmetric equilibria with positive sales, where t(1) <

1. The pay-offs of consumers associated with buying and continuing to search after

observing a price p̃ are given by v − p̃− b and v − (1− F (p̃))p̃− F (p̃)E(p|p < p̃)− b− s,

respectively. We denote by r the cut-off price such that consumers are indifferent between

buying immediately and continuing to search, which using the expressions given above,

is implicitly given by

F (r)(r − E[p|p ≤ r]) = s. (1)

It is easy to see that, if there is a solution to (1), it must be unique for any non-degenerate

F (p).

Similarly, we denote by ρ the price at which an active consumer is indifferent between

the best option now (i.e. the better of buying and searching) and waiting for information

from friends. In principle, there could be multiple ρ’s. As firms never price below p, ρ’s

below p are irrelevant and we let ρ1 denote the smallest of those prices where ρ1 > p. As

payoffs from the different options of buying, waiting and continuing to search after having

observed the price p, are given by v− p− b, v− p− b− s, and δ
(
v − p− b

)
, respectively,

15In both cases, firms set uniform prices and cannot price discriminate on the basis of the number of

links a consumer has.
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buying outright at p is strictly preferred for s > 0 and δ < 1. By the continuity of payoffs

with respect to p, it follows that min{r, ρ1, v− b} > p so that active consumers are willing

to buy immediately if the price p is such that p ≤ p ≤ min{r, ρ1, v − b}.

The uniqueness of r helps us to establish the following lemma. In terms of Figure

1, the lemma rules out all equilibria where after receiving some information, consumers

decide to continue to search.

Lemma 1 Any symmetric equilibrium where goods are bought has F (r) = 1.

If an equilibrium with prices p larger than r would exist, a firm’s price will always be

compared with another price, which incentivizes the firms to undercut. Suppose that an

active consumer observes p > r at her first search. Clearly, she does not buy outright. She

may either search or wait. If she searches, the consumer obviously compares p to another

price. If she waits, the consumer may receive another firm’s price from her friends or

if she does not receive another firm’s price quote, she herself searches again after the

information exchange as p > r. In either case, the consumer compares prices. The same

is true for passive consumers. As any price larger than r is always compared to one more

price, consumers buy at the lowest of these prices and firms therefore have an incentive

not to charge prices above r.

The next result establishes that in equilibrium it is not possible that there exists a ρ

such that ρ < r. The proof essentially shows that a consumer, who is indifferent between

being active and passive, would prefer to continue to search rather than wait after having

observed a first price quote. The only reason for an active consumer to wait after having

observed a first price quote is that she hopes to be able to economize on the search cost

s by getting informed about the other price quote via a friend. However, the chance of

being informed through the social network about another price is smaller than the chance

of being informed about any price. Thus, intuitively it makes more sense to be passive

right from the beginning, than to be active first and then wait. A similar argument holds

if consumers strictly prefer to be active rather than be passive. Hence, it must be that

consumers strictly prefer to search than to wait after having observed a first price quote.

Proposition 2 In any equilibrium where there is active search, we have that r ≤ ρ.

Thus, in what follows, we will focus on reservation price equilibria (RPE) where there

is active search. These equilibria are characterized as follows.
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Definition 1 A symmetric RPE is characterized by a distribution of prices F (p) and

consumers’ reservation price strategy (q(k), r) such that given the strategies of the other

players

(i) Each firm employs a price strategy F (p) with p = r that maximizes its expected profit

given the equilibrium pricing strategy of other firms and consumers’ equilibrium

search strategy;

(ii) Each consumer optimally chooses the probability of being an active searcher q(k)

and searches optimally according to the reservation price rule given by r, given

her correct expectations concerning the equilibrium strategies of the firms and other

consumers.

It follows that in any equilibrium where there is active search and trade, it must be

the case that a fraction of consumers is passive from the beginning and does not engage

in active search, i.e., q < 1. The argument is akin to the consumer search literature and

derives from the argument supporting the Diamond paradox (1971): if all consumers are

active and search themselves, then no one compares prices and firms would charge a price

equal to v−b. But then no one would be willing to invest the search cost in the first place.

Thus, we have the following important result.

Proposition 3 There does not exist an equilibrium where q(k) = 1 for all k ∈ O.

Interestingly, it is the passive consumers that make an equilibrium with sales possible.

Given that they wait for information from friends, there is a positive probability that they

are informed about both prices without incurring the search cost s. A firm may then not

have an incentive to marginally increase the price from p as he may lose these consumers

to the competitor. This proposition also implies that the market must be characterized

by price dispersion as some consumers do compare both prices whereas others do not.

In terms of Figure 1, this section has argued that in an equilibrium with active trade

the equilibrium path in the consumer search problem is such that (i) some consumers

are active, while others are passive, (ii) active consumers immediately buy and (iii)

passive consumers who obtained information from friends, buy immediately after they

have received this information, while passive consumers who did not obtain information
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from friends, search and then buy immediately. Given these results it is quite intuitive that

the results of this section continue to hold in a modified model, where active consumers

share price information even if they themselves have not bought the product.

Proposition 4 If active consumers share information of prices they have observed with-

out buying, then in any equilibrium we continue to have r < ρ and F (r) = 1.

The main difference between the two versions of the model is when active consumers

have observed prices, but do not buy themselves. If in equilibrium, however, active

consumers immediately buy, this situation does not arise and the two versions of the model

are equivalent. Thus, the analysis that follows applies to both market environments.

4 Active Markets

We start by analyzing markets where all participants have imperfect information on the

network structure when making their strategic decisions. Another way to interpret this is

to say that even though consumers may know the number of friends they are connected

to, they do not condition their search strategy on this information. We focus on equilibria

with positive sales, i.e., 0 < q < 1. As F (r) = 1, all active consumers make a purchase at

the first search so that an active consumer’s expected payoff is equal to

v − E[p]− s− b.

Given that a passive consumer will always follow the information they are provided

with, their expected payoff is given by

δ
∑
k∈O

t(k)

[
v − b−

k∑
m=1

(
k
m

)
qm(1− q)k−m

(
1

2m−1E[p]−
(
1− 1

2m−1

)
Emin[p]

)
− (1− q)k(E[p] + s)

]
.

This expression can be understood as follows. A passive consumer always makes a pur-

chase either because she gets informed about a price from friends or she searches herself.

The probability that m of a consumer’s k friends search is equal to
(
k
m

)
qm(1−q)k−m. They

all visit the same firm with probability 1/2m−1, in which case she buys at the expected

price. When the friends happen to search different firms, which happens with probability

1 − 1/2m−1, the consumer pays the lowest of the two prices, which in expected terms is

14



Emin[p]. The probability that none of a consumer’s k friends search is (1− q)k, in which

case the consumer searches herself incurring s and buys from the first visited firm paying

E[p]. In all these cases, she incurs a purchase cost b. The entire payoff depends on how

fast information arrives to the consumer, and thus the discount factor δ.

The probability q is determined such that the consumer is indifferent between being

active and passive and, therefore, in equilibrium these two expressions have to be equal.

Applying the probability generating function described in the beginning of Section 2, the

indifference condition can be written as

(1− δ)(v − E[p]− b) = (1− δτ(1− q))s+ δτ̃(q) (E[p]− Emin[p]) , (2)

where τ̃(q) ≡ 1+ τ(1−q)−2τ
(
1− q

2

)
is the ex ante probability that a consumer’s friends

have observed two different prices.

We now turn to the determination of the equilibrium pricing strategy of the firms.

Setting price p, an individual firm’s expected profit is given by

Π(p) =

(
q

2
+ δ(1− q)

{∑
k∈O

t(k)
k∑

m=1

(
k
m

)
qm(1− q)k−m

[
1

2m
+

(
1− 1

2m−1

)
(1− F (p))

])
+

(1− q)k

2

}
p.

Clearly, a consumer is active with probability q and half of the times she visits the firm

under question to buy outright. With probability 1−q, a consumer is passive in which case

she purchases only after the information arrives to her, thus speed of information diffusion

δ. She definitely buys from the firm if all of her m (out of k) active friends happen to

visit the firm, which happens with probability 1/2m. With probability 1− 1/2m−1, these

active friends happen to visit different firms, in which case the firm under question makes

sales only if its price is lower than that of the rival firm, or 1 − F (p). Finally, with

probability (1− q)k none of her friends search, in which case a consumer searches herself

and buys from the firm half of the time. Using probability generating functions, the profit

expression can be rewritten as follows:

Π(p) =

(
q

2
+ δ(1− q)

[
τ
(

1− q

2

)
− τ(1− q)

2
+ τ̃(q)(1− F (p))

])
p.

Equating these expected profits with the profit of setting a price equal to the upper
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bound of the distribution gives the equilibrium price distribution as

F (p) = 1 + η − ηp
p
, with support [p, p] (3)

where

η =

q
2

+ δ(1− q)
(
τ
(
1− q

2

)
− τ(1−q)

2

)
δ(1− q)τ̃(q)

> 0, (4)

and p = η
1+η

p solves F (p) = 0, whereas p = min {r, v − b}. The fraction η is the ratio

of consumers who do not compare prices to those that do compare prices (as in the

traditional models of Varian (1980) and Stahl (1989)). Here, the fraction of consumers who

are informed about only one price consists of the fraction of active consumers and those

passive consumers who receive only one price quotation from friends, while the fraction

of consumers who are informed about both prices consists of only passive consumers who

receive through their social network information about the offerings of both firms.

Let us first discuss the extreme cases where δ = 0 or δ = 1. In these cases, the

Diamond paradox emerges and only an equilibrium with no trade exists. If δ = 0, there

is no advantage to being passive and no consumer ever compares prices. The left-hand

side of (2) reduces to v − E[p]− b and the right-hand side to s. Consumers choose to be

active if the expected price is below v− c and drop out of the market if it is greater than

v−c. From (4) it is clear that η (and thus expected price) become infinitely large. Hence,

consumers prefer not to be active. On the other hand, if δ = 1, there is no advantage to

being active so that q = 0. If no consumer acquires information herself, no one compares

prices and again η (and thus expected price) become infinitely large. In this case, this is

because τ̃(0) = 0. Hence, passive consumers prefer not to search themselves in the market.

Proposition 5 If δ = 0 or δ = 1, there does not exist an equilibrium with active trade.

Having explained the different conditions that should hold in an RPE with positive

sales, we are now able to provide the main result of this section, namely that for any

0 < δ < 1 an equilibrium exists if the search cost is sufficiently small.

Theorem 1 For any given 0 ≤ t(1) < 1, 0 < δ < 1, v > 0 and 0 ≤ b < v, there exists a

s ≤ v− b such that an RPE exists if, and only if, s ≤ s. If an RPE exists it is determined

by the triple (q, r, F (p)) solving (1), (2), and (3). Furthermore, as s → 0 the optimal
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search probability q converges to 1, while price dispersion disappears with

p = p = v − b.

The proof of the proposition is given in the appendix. The main intuition can be

understood as follows. If a fraction 0 < q < 1 of consumers actively search themselves,

while the others are passive, then there is a strictly positive probability that some of the

inactive consumers are informed about two prices so that the price distribution of firms

is non-degenerate. For each such a non-degenerate price distribution one can define a

reservation price r and a cutoff price ρ. The main challenge then is to find a value of q such

that consumers are indifferent between being active and passive. The proof shows that

when s ≤ s there exists such a q. It is clear that s depends on the exogenous parameters

and in particular (in line with Proposition 4) that s approaches 0 as δ approaches 0 or 1.

The interesting aspect is that if a fraction 0 < q < 1 of consumers actively search

themselves, while the others do not, then as long as some consumers have more than one

connection, i.e., t(1) < 1, it is the fraction of the passive consumers who are free-riding

that provide a positive service to the active consumers as they are the ones who are

informed about two prices. Thus, the passive consumers play a crucial role here to resolve

the Diamond paradox. If s becomes arbitrarily small, it is clear that the incentives to

actively search are larger, reducing the incentives for firms to undercut and creating less

price dispersion.

In the limit when s becomes arbitrarily small, price dispersion must vanish as con-

sumers can obtain another price quote at virtually no additional cost. Then, the share of

passive consumers must disappear in the limit as passive consumers pay almost the same

price as active ones but incur a cost of waiting for 0 < δ < 1. This, however, raises the

market power of firms as only passive consumers compare prices. In the limit when no

one compares prices, firms obtain monopoly power, thus resulting in the monopoly price

v − b. Interestingly, and different from the Diamond paradox, consumers choose to be

active for s > 0.

Figure 2 illustrates the equilibrium construction. The horizontal axis represents the

fraction q of active consumers, while the cost and the expected benefit of search are

presented on the vertical axis. The solid curve represents the expected benefits, while
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Figure 2: An illustration of existence of an RPE for δ = 0.9, b = s = 0.05 and t(k) = nkγ ,
where γ = −1, k = 100 and

∑
k∈O nk

γ = 1.

the dashed horizontal line represents the cost of search. These parameters determine the

shape of the bold curve representing the relative benefit of search. The proof shows what

the figure presents, namely that when q approaches 0 or 1 the expected benefit of search

approaches 0. As for interior values of q the expected benefits are positive and continuous

in q, it must be the case that for small enough search cost values an equilibrium exists.

The figure shows that for (given) small enough values of s there are two intersection

points and, hence, two equilibrium values of q where the market is active.16 One may

argue, however, as in other search models (see, e.g. Burdett and Judd (1983), Fersht-

man and Fishman (1992), Janssen and Moraga-Gonzalez (2004), and Honda (2015)) that

the equilibrium corresponding to the higher search probability can be called a “stable”

equilibrium in the sense that if the real search probability falls (slightly) short of the

equilibrium value the expected benefit of search exceeds the cost so that consumers have

an incentive to search more intensively. It follows that if the search cost asymptotically

approaches zero, the optimal search probability in the active equilibrium approaches 1.17

The comparative static analysis focuses on this “stable” equilibrium.

16For certain parameter configurations with high search costs, there may exist four equilibria with

positive trade. For our comparative static analysis, we focus on sufficiently small search costs such that

only two equilibria with active trade exist.
17The figure also shows there is a stable equilibrium where the market is inactive (q = 0) and (2) does

not hold.
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5 Comparative Statics

Given the equilibrium characterization, we now can provide insights into how market

outcomes depend on exogenous parameters. We will first focus on the impact of network

structure on equilibrium prices, before concentrating on the speed of communication in

the network (represented by δ), and the impact of the cost of searching s and making

the purchase b. A social network like Facebook has significantly increased the number

of connections people have (although there remain a non-negligible fraction of consumers

who do not use Facebook or other social networks) and the speed of information diffusion

through the network. Online markets have significantly reduced search cost s, but not so

much the cost b of making the purchase. In this section, we discuss the implications of

these effects on market outcomes, especially the expected market price. Unless explicitly

discussed otherwise, the changes in firms’ profits is perfectly in line with expected price

(as in an RPE eventually all consumers buy). In an RPE, the expected market price is

proportional to s and given by E[p] = s

(
η ln(1+ 1

η )
1−η ln(1+ 1

η )

)
, which is increasing in η.

We investigate the limiting behavior when the network of consumers is dense and all

consumers tend to be linked to each other. One may think that if all consumers poten-

tially get information from many friends, competition would prevail and prices converge

to marginal cost with price dispersion being eliminated. Surprisingly, however, as the

next result shows, price dispersion remains an essential feature of any reservation price

equilibrium.

Proposition 6 For any s > 0, any RPE with active search is characterized by price

dispersion even if all consumers tend to be linked to each other in the sense that lim
k→∞

t(k) =

1. Moreover, an RPE with active search exists if s is small enough.

A consequence of the limiting price dispersion is that prices do not converge to marginal

cost. The reason that price dispersion remains is that in any RPE without price dispersion,

the reservation price, and hence, the expected price should be infinitely large. But then

consumers are better off not being active. We show that if s is small, an equilibrium with

active search and trade exists.

It is important to understand that for this result to hold the first search should be

costly. If this were not the case, all consumers would search at least once and the proba-

bility of obtaining the second price from friends then goes to one as the number of links
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to each consumer in the population goes to infinity. As a consequence, market frictions

would disappear and prices converge to marginal cost. This also explains why in Galeotti

(2010) prices do converge to marginal cost if the network of consumers gets dense: it is

the consequence of the first search being assumed to be free in his model.

By means of numerical simulations, we can analyze intermediate cases of network

connectivity. We assume the social network can be described by a random graph that

follows a power law18 t(k) = nkγ, as the probability a consumer has k links, where

γ ∈ R represents the network density and larger γ values stand for denser networks where

consumers tend to have more connections. In particular, comparing two networks with

probabilities of connections being given by t(k) and t̃(k), the network with probabilities

t(k) is generated by a higher γ (and thus, denser) if there exists a k̃ ∈ O such that

t(k) < t̃(k) for all k < k̃, whereas t(k) > t̃(k) for all k > k̃. In Figures 3 and 4,19 we

gradually increase γ from −2 to 2.

Figure 4 depicts the impact of network density on the expected price. It shows that

the expected price is decreasing in γ and that certainly when the network is not very dense

(γ is small), this impact is quite strong as the expected price may decrease by around

50% as γ increases from around −2 to 0. The main, direct impact can be understood by

noting that if the network is described by the power law t(k) = nkγ it follows from (4)

that the ratio η is given by

η =

q

2
+ δ(1− q)

∑
k∈O nk

γ

[(
1− q

2

)k
− (1− q)k

2

]

δ(1− q)
(

1 +
∑

k∈O nk
γ

[
(1− q)k − 2

(
1− q

2

)k]) .
As the term in square brackets in the numerator is positive and decreasing in k, while the

term in square brackets in the denominator is negative and increasing in k, it follows that

networks with higher γ’s put relatively more weight on a higher number of connections,

which implies that η is decreasing in γ. As lower η’s reflect the fact that there are relatively

more price comparing consumers in the market, the direct effect puts downward pressure

on prices. There is, however, also an indirect effect through the consumers’ search prob-

18Empirical analysis has demonstrated that many social networks can be described by a power-law of

the form we assume here (see, for example, Price (1965)).
19The following parameter values have been used: v = 1, s = 0.05, b = 0.04, δ = 0.9, and k = 100.
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ability q. A decrease in price levels is associated with a decrease in price dispersion, as

measured by the difference E[p]−Emin[p]. This makes it more attractive for consumers to

become active as the main benefit of waiting, namely being informed about both prices

and therefore being able to buy at the lowest of the prices, becomes smaller. In addition,

as the expected price is lower, consumers would like to have the benefit of the purchase

now rather than having to wait for information through friends. The associated increase

in the share of active consumers as illustrated in Figure 3 increases η and therefore also

increases expected price. This indirect effect is, however, smaller than the direct effect

and thus, the overall impact on expected price is decreasing.

Figure 3: Impact of network density on the
share of active consumers

Figure 4: Impact of network density on the
expected price

Note that the above result on the fraction of consumers actively acquiring information

is strikingly different from Galeotti (2010) and Galeotti and Goyal (2010) where an agent’s

probability of actively acquiring information negatively correlates with the number of

links she has. Intuitively, one might expect that the more connections a consumer has

the less likely she is to become active as, all else being equal, the probability that she

obtains information from friends rises. In our case, however, it is the combined price effect

through a lower expected price and lower price dispersion as measured by E[p]− Emin[p]

that overrides this intuitive effect.

Next, we investigate the impact of a change in δ. Online social media networks have

significantly increased the speed with which consumers may share information, which in

our model is measured by δ. We know that a higher δ, resulting in faster information

transmission, permits a consumer to access information quickly from friends, but that
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Figure 5: Impact of δ on the share of active
consumers

Figure 6: Impact of δ on expected price

this may have repercussions on the incentives to search. Proposition 4 establishes that at

extreme values of δ an equilibrium with active search and trade does not exist. Numerical

simulations in Figures 5 and 6 show the effect of an increase in δ on the share of active

consumers and the expected price when we change the value of δ in an intermediate range

(here from 0.1 to 0.94). For larger values of δ, an equilibrium with active search ceases

to exist.20 As before, there is a direct and an indirect effect of δ on prices. The direct

effect can be seen by taking the derivative of η with respect to δ in (4). It is easy to see

that this derivative is negative so that an increase in the speed of information processing

in the population increases the share of price comparing (passive) consumers. This has

a dampening effect on prices. There is also an indirect effect via q, however. For small

values of δ the indirect effect is very similar to the indirect effect we mentioned in relation

to the impact of γ, namely that as prices and price dispersion decline, consumers have

more incentives to become active searchers themselves. In this case, there is, however,

also a direct effect of δ on q (as shown in Equation (2)). As δ becomes large, there is

almost no downside to waiting anymore and consumers massively change their behavior

and become passive. As, focusing on stable equilibria, η is increasing in q this further

strengthens the direct effect so that the total effect of δ on the expected price becomes

more pronounced.

Interestingly, the speed of information diffusion also has a non-monotonic effect on

firms’ profits as shown in Figure 7. When the speed of information diffusion is relatively

20The Figures are drawn for the following parameter values: v = 1, b = s = 0.05, t(k) = nkγ , k = 100,

and γ = 0.
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Figure 7: Impact of δ on firm profit

low, firms have an incentive to increase the number of active consumers as these con-

sumers buy immediately in an RPE, whereas the sales to passive consumers are heavily

discounted. Thus, even though expected price is monotonically decreasing in the speed of

information diffusion, the fact that the fraction of active consumers is increasing offsets

the decrease in revenue per consumer. On the other hand, when the speed of information

diffusion is already relatively high to begin with, then firms would not want to increase

it further. At some point, if the speed of information diffusion is very large, both firms

and consumers suffer from a further increase in the diffusion speed as an equilibrium with

active trade ceases to exist.

Finally, we proceed by studying the impact of a change of s and b. We already know

that the optimal search probability goes to 1 in the limit when s goes to zero, suggesting

that as s starts increasing from 0 the optimal search probability decreases. The next

proposition shows that the underlying effects of changes in b and s are similar to each

other and also hold true outside the region where s is close to 0.

Proposition 7 In any stable RPE, the share of active consumers is decreasing in b and

s.

We know from Theorem 1 that in the limit when s is arbitrarily small, prices converge

to the monopoly price v− b. This immediately implies that for small enough search cost,

the expected price must be decreasing in s as more consumers make price comparisons

and firms will compete for these consumers. As in the stable equilibria we consider η is

increasing in q and expected price is increasing in η, it follows that the expected price is

23



Figure 8: Impact of s on expected price Figure 9: Impact of b on expected price

decreasing in s for larger values of s as well, as illustrated in Figure 8.21 Not surprisingly,

Figure 9 shows a similar pattern with respect to b.

6 Information Asymmetry about Connections

In many markets consumers know how well they are connected before deciding whether to

search. In our model, this implies they can condition their search decision on the number

of connections. Denote by k the largest number of links any consumer in the population

has. Most firms, on the other hand, do not know the exact number of connections of

each consumer, but may well know the distribution of the network structure, i.e., firms

cannot price discriminate between consumers with different numbers of friends. Thus, in

this section we analyze markets where consumers and firms have asymmetric knowledge

about the relevant network structure and show that the qualitative results obtained so

far continue to hold.

If consumers know the number of links they have before engaging in search, not all

consumers search with the same probability. There may be consumers whose optimal

search probability is between zero and one, and there will be ones who either definitely

search or do not search at all. As consumers with more connections are more likely to

obtain information via their social network than consumers with fewer links, the expected

payoff from waiting is increasing in the number of connections. Thus, if a consumer with,

say, k̂ connections is indifferent between becoming an active searcher and staying passive,

21We use the following parameter values for the both figures: v = 1, t(k) = nkγ , k = 100, γ = 0, δ =

0.5. For Figure 8 we set b = 0.05, while for Figure 9 we fixed s = 0.05.
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so that 0 < q(k̂) < 1, then all consumers with more connections wait to obtain information

through their social network, while those with fewer connections definitely search. If there

is no consumer who is indifferent, then we can set k̂ to be the largest number such that

q(k̂) = 1. Clearly, for any s > 0 it cannot be the case that k̂ = k and q(k) = 1 as then all

consumers would search themselves and no one would compare prices.

Proposition 8 Let k̂, 1 ≤ k̂ ≤ k be as defined above. Consumers with a number of

friends less than k̂ search with probability one and consumers with more than k̂ friends

do not search.

Thus, consumers with more connections are more inclined to not search themselves

and wait for information from their friends. Given this result, the consumer behavior in

any equilibrium can be characterized by k̂, q(k̂) and a reservation price r. In what follows

we use q as a short-hand notation for q(k̂).

Correctly anticipating the optimal behavior of consumers, an individual firm’s ex-

pected profit of setting a price equal to p ≤ r is equal to

Π(p) =
1

2
ŵp+ δt(k̂)(1− q)

 k̂∑
m=1

(
k̂

m

)
wm (1− w)k̂−m

(
1

2m

)
+

(1− w)k̂

2

 p
+ δt(k̂)(1− q)

k̂∑
m=1

(
k̂

m

)
wm (1− w)k̂−m

(
1− 1

2m−1

)
(1− F (p))p

+ δ

 k∑
k=k̂+1

t(k)
k∑

m=1

(
k

m

)
wm (1− w)k−m

(
1

2m

)
+

(1− w)k̂

2

 p
+ δ

k∑
k=k̂+1

t(k)
k∑

m=1

(
k

m

)
wm (1− w)k−m

(
1− 1

2m−1

)
(1− F (p))p,

(5)

where ŵ =
∑k̂−1

k=1 t(k) + t(k̂)q is the average search probability of a consumer and w =∑k̂−1
k=1 t(k)k+t(k̂)k̂q∑k

k=1 t(k)k
is the search probability of a consumer’s neighbor (not knowing how many

friends the neighbor has).

This expression can be understood as follows. A fraction of
∑k̂−1

k=1 t(k) consumers has

less than k̂ links. They search themselves and visit the firm with probability 0.5. Since

they do not compare prices they pay the price charged by the firm (if this is not larger than

their reservation price). Consumers with k̂ links, who make a share of t(k̂) of the popula-
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tion, search with probability q and visit the firm in half of the cases, and these consumers

along with those with fewer links give the first term in (5). With probability (1 − q),

consumers with k̂ links do not search and can be informed by their friends about price(s).

Each of their friends searches with an expected probability w. Then, consumers obtain

information only about the firm’s price if all of their searching friends, represented by m,

happen to visit that firm, which occurs with probability 1
2m

(
k̂
m

)
wm (1− w)k̂−m. If none of

her friends search, meaning m = 0, the consumer searches herself later and visits the firm

half of the time. This gives the second term. The third term represents the probability

that a consumer does not search and obtains information about both prices from her m

searching friends. The probability of this event is equal to
(
1− 1

2m−1

) (
k̂
m

)
wm (1− w)k̂−m.

In this case, a consumer buys from the firm if the other firm charges a higher price than p,

which happens with probability 1−F (p). Finally, the last two terms in the profit function

account for the share of the population with more than k̂ links. These expressions are

similar to the ones for the consumers with k̂ links who do not search themselves. As all

waiting consumers buy with a delay (after the information about prices arrives to them),

the payoff from these consumers is discounted by δ.

The expected profit in (5) can be simplified as 22

Π(p) =

ŵ
2

+ δt(k̂)(1− q)

((
1− w

2

)k̂
− (1− w)k̂

2

)
+ δ

k∑
k=k̂+1

t(k)

((
1− w

2

)k
− (1− w)k

2

) p
+ δ

t(k̂)(1− q)
(

1 + (1− w)k̂ − 2
(

1− w

2

)k̂)
+

k∑
k=k̂+1

t(k)

(
1 + (1− w)k − 2

(
1− ŵ

2

)k) (1− F (p))p,

where, in the square brackets in the first line, we have the share of consumers who do

not compare prices and in the square brackets in the second line, we have the share of

consumers who compare prices.

Equating this expression to the profit that the firm expects to make by charging p, we

can derive the equilibrium pricing distribution function:

F (p) = 1 + η̂ − η̂ p
p
, with support

[
p, p
]
, (6)

where (similar to the previous section) η̂ is the fraction of the share of consumers who do

22Unfortunately, we cannot use probability generating functions to simplify this expression further due

to the fact that consumers search differently depending on the number of their connections.
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not compare prices to the share of consumers who compare prices. As before, the upper

bound of the distribution is not larger than the reservation price r and v − b, where the

reservation price of a consumer is determined in (1) and F (p) is given by (6).

Obviously, a full equilibrium analysis under asymmetric information on network struc-

ture is somewhat tedious. For a given k̂ and a q(k̂) one can derive the equilibrium price

distribution, but given the equilibrium price distribution one should check whether the

postulated behavior of consumers is indeed optimal and all consumers with k > k̂ prefer

to be passive and all consumers with k < k̂ prefer to be active.

The proposition below states the main result for small enough values of s :

Proposition 9 For any given 0 ≤ t(1) < 1, 0 < δ < 1, v > 0, 0 ≤ b < v, and sufficiently

small search cost s, there exists an RPE given by the triple (q, r, F (p)) and the cutoff k̂,

which are determined by (1), (6), and

s

v − b
≤ 1− δ

1− δ(1− w)k̂ + η̂

1−η̂ ln(1+ 1
η̂ )

[
δ
(

1 + (1− w)k̂ − 2
(
1− w

2

)k̂)(
(1 + 2η̂) ln

(
1+η̂
η̂

)
− 2
)

+ (1− δ) ln
(

1+η̂
η̂

)] ,

where the inequality holds with equality if 0 < q(k̂) < 1. Furthermore, as s→ 0, the cutoff

number of links k̂ equals k and the optimal search probability q converges to 1, while price

dispersion disappears with

p = p = v − b.

Figure 10 provides an illustrative example of the Proposition.23 Note that on the

horizontal axis we represent w, the probability a random neighbor is active. The solid line

representing the expected benefit from search has vertical elements. This is a consequence

of the fact that for certain ranges of search costs, there is no indifferent consumer so that

w, and the underlying decision of consumers whether or not to become active, does not

change. This can be explained as follows. Suppose that the search cost is such that

consumers with k̂ < k links search with strictly positive probability, 0 < q(k̂) < 1.

This is a situation represented by one of the non-vertical parts of the stable, right-hand

side of the Figure. From Proposition 8, it follows that consumers with more than k̂

connections still search with probability one. Suppose then that the search cost decreases

23The Figure is drawn for the following parameter values: v = 1, b = 0.1, s = 0.025, δ = 0.92, k = 5,

and γ = −2.5.
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gradually. This change in search cost first affects the equilibrium search probability q(k̂)

of consumers with k̂ connections, until this search probability obtains an extreme value

of 1. At this point, consumers with k̂ connections are indifferent between searching and

not searching only when they search with probability one, while those with more than

k̂ connections still search with probability zero. The difference in payoffs from being

passive between consumers with k̂ friends and those with k̂ + 1 friends is related to the

number of connections they have. This means that these two types of consumers cannot

be indifferent between searching and not searching simultaneously. Then, obviously there

is a range of search costs where consumers with k̂ connections strictly prefer to search,

whereas those with k̂ + 1 links strictly prefer not to search (yet).

Figure 10: Illustration of existence of an RPE when consumers observe their number of links

We do not explicitly perform the comparative statics exercise for this asymmetric

model of search and information acquisition, as it is similar to the one in the previous

section. In particular, it remains true that for any positive (sufficiently) small cost s price

dispersion remains if the number of connections becomes large as some consumers will be

free riding.

7 Conclusion

In this paper we have analyzed how word-of-mouth (WOM) communication through social

networks affects information acquisition and diffusion by consumers and how this impacts

the market power of firms. Without WOM communication our model is prone to the
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Diamond paradox where the market breaks down due to the fact that no consumer makes

price comparisons. WOM communication overcomes the Diamond paradox. Consumers

that do not actively search themselves and free-ride on their friends in the social network

may well be informed about different prices. The price comparisons they make provide

positive externalities to the rest of the consumer population that actively searches as firms

compete to be able to also sell to them.

As some consumers do compare prices, while others do not, the market is characterized

by price dispersion. The level of prices and the nature of price dispersion depends on the

network architecture, the search cost and how quickly information is diffused in the social

network. In the context of evaluating the impact of online markets and social networks it

is important to know how expected price, price dispersion and firms’ profits react to (i)

a decrease in search cost, (ii) an increase in the connectivity of the social network and

(iii) an increase in the speed of information diffusion in the network. We find that there

are opposing effects as the increased connectivity and speed of information diffusion lower

expected market prices, whereas the decrease in search cost increases them. Importantly,

price dispersion does not disappear even if all consumers are very well connected.

We see our paper as making a first step in analyzing how WOM communication and

sequential search interact with each other. There are obvious ways our work can be ex-

tended in different directions. When introducing WOM communication in a sequential

search framework, one has to specify in detail at which stage in the search process con-

sumers are able to exchange information. In this paper we have taken the view that active

searchers search simultaneously and exchange information after they have all searched.

Alternatively, one may consider different scenarios where some early adopters search first

before others. Another direction that may be taken is to analyze markets with product

differentiation a la Wolinsky (1986). In this case, consumers may not only communicate

about prices, but also about the product match. In such markets, the degree of homophily

(defined as the closeness of a consumer’s preferences to those of his neighbors) will be im-

portant. Another direction for future research would be to model the incentives to share

information directly. In some markets, consumers receive a financial benefit from firms

for a successful referral and an important question is how consumers will react to such

incentives and when such a financial incentive is optimal from a firm’s perspective and to

whom to give it.
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8 Appendix A: Proofs

Before we prove Proposition 2, we first show that if there is some ρ < r, it must be
unique. Clearly, if all ρ’s other than ρ1 are larger than r, there is a unique ρ < r. Thus,
in what follows we rule out that there exists a ρ2 6= ρ1 that is smaller than r.

Two cases need to be considered: at price p such that ρ1 < p < ρ2 (i) active consumers
prefer waiting to buying, and (ii) active consumers prefer buying to waiting. In (i), prices
in that interval are not exchanged. Let Pr[I, p̃] be the probability that an active consumer
who himself observes a price p̃ has friends who share information about a price of the other
firm which happens to price below p̃. Then, it must be that Pr[I, ρ1] = Pr[I, ρ2]. The
equations determining ρ1 and ρ2 are then

(1− δ)(v − b− ρ1) = δ Pr[I, ρ1](ρ1 − E[p ≤ ρ1]),

(1− δ)(v − b− ρ2) = δ Pr[I, ρ1](ρ2 − E[p ≤ ρ1]),

respectively. It is easy to see that these equations cannot hold simultaneously.
In (ii), given that a share q of consumers is active, we have Pr[I, ρ1] =(

1− τ(1− q
2
)
)
F (ρ1). The equation determining ρ1 can then be written as

(1− δ)(v − b− ρ1) = δ
(

1− τ(1− q

2
)
)
F (ρ1)(ρ1 − E[p ≤ ρ1]).

However, the LHS of the equation is strictly decreasing in ρ1 while the RHS is increasing,
which means that at prices slightly above ρ1 active buyers prefer waiting to buying, a
contradiction. Thus, there is at most one ρ < r.

Next, we present two lemmas that are relevant for the case where r would be larger
than ρ. First, in that case observe that for any price in region (ρ, r) consumers cannot be
indifferent between searching and waiting. We know that there is a unique ρ (if it exists)
such that for p > ρ consumers (strictly) prefer waiting to buying. Also uniqueness of r
implies that consumers strictly prefer buying to searching for any p < r. These two facts
imply that buyers strictly prefer waiting to searching as waiting is preferred to buying
and buying is preferred to searching for p ∈ (ρ, r).

Lemma 2 For r > ρ, consumers strictly prefer waiting to searching for any p ∈ (r, ρ).

An immediate consequence of the lemma is, that in a symmetric price dispersed equi-
librium with ρ < r and F (r) = 1, F (p) must be a continuous and strictly increasing
function of p for p ∈ [p, ρ],where p is the lower bound of the support of F (p). Notice that
there is a discontinuity in the demand of a firm at ρ. If a firm prices at ρ, it certainly
sells to active consumers who searches it first. Yet if it prices at ρ + ε, its demand from
active consumers who buy outright vanishes—these consumers choose to wait and may be
informed of a lower price and therefore do not buy from the firm. Thus, there must be a
r with ρ < r ≤ r such that F (p) is flat for p ∈ (ρ, r). However, we can go one step further
as prices larger than ρ never get shared as active consumers who observe those prices do
not make purchase, but wait. Therefore, firms’ demand is the same for any price larger
than ρ and smaller than r. Thus, setting r dominates setting any price between ρ and r.

Lemma 3 If ρ < r, it must be that r = r and that there a mass point at r.

We are now ready to prove Proposition 2.
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Proof of Proposition 2

Given that F (r) = 1, it is clear that any ρi > r is irrelevant for our analysis as firms
do not price above r. Then, if ρ1 > r, all ρ’s are irrelevant for our analysis. Thus, we
suppose that ρ < r and prove the proposition by contradiction. We consider two cases:
F (ρ) = 1 and F (ρ) < 1.

For F (ρ) = 1, it is easy to see that r solves

r = E[p] + s. (7)

If to the contrary of what is claimed in the proposition, r > ρ, then after observing r a
consumer prefers waiting to buying, which results in the following inequality:

v − b− r < δ
(
v − b− r +

(
1− τ(1− q

2
)
)

(r − E[p])
)
.

Taking the terms containing v−b−r to the LHS and employing (7) simplifies the inequality
as

(1− δ)(v − b− E[p]− s) < δ
(

1− τ(1− q

2
)
)
s,

or
(1− δ)(v − b− E[p]) <

(
1− δτ(1− q

2
)
)
s. (8)

Next, in an equilibrium with active search, consumers should at least weakly prefer being
active. An active consumer’s expected payoff is equal to

v − E[p]− s− b,

while (always following the information they are provided with), a passive consumer’s
expected payoff is given by

δ
∑
k∈O

t(k)

[
v − b−

k∑
m=1

(
k
m

)
qm(1− q)k−m

(
1

2m−1E[p]−
(
1− 1

2m−1

)
Emin[p]

)
− (1− q)k(E[p] + s)

]
.

Weakly preferring being active implies that

(1− δ)(v − b− E[p]) ≥ (1− δτ(1− q))s+ δτ̃(q)(E[p]− Emin[p]),

where τ̃(q) = 1 + τ(1− q)− 2τ(1− q/2). As τ(1− q/2) > τ(1− q), it is easy to see that
this inequality and (8) cannot hold simultaneously.

We next consider the case where F (ρ) < 1. Given Lemma 3 there must be a mass
point at r and no probability mass in (ρ, r). Then, the reservation price r is determined
by r = E[p ≤ ρ]− s

F (ρ)
, or

s = F (ρ)(r − E[p ≤ ρ]). (9)

As at price r buyers strictly prefer waiting to buying, which results in the following
inequality

v − b− r < δ
{
v − b− r + F (ρ)

(
1− τ(1− q

2
)
)

(r − E[p ≤ ρ])
}
.
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Employing (9) we obtain

v − b− r < δ
{
v − b− r +

(
1− τ(1− q

2
)
)
s
}
,

or
(1− δ)(v − b− r) < δ

(
1− τ(1− q

2
)
)
s. (10)

Now, consider that consumers should at least weakly prefer being active. The payoff
of being active is

F (ρ)(v−b−E[p ≤ ρ])+δ(1−F (ρ))
(
v − b− r + F (ρ)

(
1− τ(1− q

2
)
)

(r − E[p ≤ ρ])
)
−s,

or adding F (ρ)(r − r) = 0 to the first term and employing (9) we get

F (ρ)(v − b− r) + δ(1− F (ρ))
(
v − b− r +

(
1− τ(1− q

2
)
)
s
)
.

Finally, adding and subtracting v − b− r, we obtain

v − b− r − (1− F (ρ))
[
(1− δ)(v − b− r)− δ

(
1− τ(1− q

2
)
)
s
]

Next, the payoff of being passive is

δ

{
v − b−

[
F 2(ρ) + 2F (ρ)(1− F (ρ))

(
1−

τ(1− q
2
)

2

)]
E[p ≤ ρ]

−τ(1− q

2
)F (ρ)(1− F (ρ))r − (1− F (ρ))2r + F 2(ρ)τ̃(q)(E[p ≤ ρ]− Emin[p ≤ ρ])

−
[
F 2(ρ)τ(1− q) + 2F (ρ)(1− F (ρ))τ(1− q

2
) + (1− F (ρ))2

]
s
}
,

or

δ
{
v − b− E[p ≤ ρ]−

[
1− F (ρ)− F (ρ)(1− F (ρ))

(
1− τ(1− q

2
)
)]

(r − E[p ≤ ρ])

+F 2(ρ)τ̃(q)(E[p ≤ ρ]− Emin[p ≤ ρ])

−
[
F 2(ρ)τ(1− q) + 2F (ρ)(1− F (ρ))τ(1− q

2
) + (1− F (ρ))2

]
s
}

= δ
{
v − b− r + F (ρ)

[
1 + (1− F (ρ))

(
1− τ(1− q

2
)
)]

(r − E[p ≤ ρ])

+F 2(ρ)τ̃(q)(E[p ≤ ρ]− Emin[p ≤ ρ])

−
[
F 2(ρ)τ(1− q) + 2F (ρ)(1− F (ρ))τ(1− q

2
) + (1− F (ρ))2

]
s
}
.

Employing (9), we obtain

δ
{
v − b− r +

[
1 + (1− F (ρ))

(
1− τ(1− q

2
)
)]
s+ F 2(ρ)τ̃(q)(E[p ≤ ρ]− Emin[p ≤ ρ])

−
[
F 2(ρ)τ(1− q) + 2F (ρ)(1− F (ρ))τ(1− q

2
) + (1− F (ρ))2

]
s
}
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It is easy to verify that the multiplicative terms of s can be simplified so that we have

δ
{
v − b− r +

[
(1 + F (ρ))

(
1− τ(1− q

2
)
)
− F 2(ρ)τ̃(q)

]
s+ F 2(ρ)τ̃(q)(E[p ≤ ρ]− Emin[p ≤ ρ])

}
.

Hence, the weak inequality that consumers should weakly prefer being active can be
written as

v − b− r − (1− F (ρ))
[
(1− δ)(v − b− r)− δ

(
1− τ(1− q

2
)
)
s
]

≥ δ
{
v − b− r +

[
(1 + F (ρ))

(
1− τ(1− q

2
)
)
− F 2(ρ)τ̃(q)

]
s+ F 2(ρ)τ̃(q)(E[p ≤ ρ]− Emin[p ≤ ρ])

}
.

Transferring all terms containing v− b− r to the LHS and those containing s to the RHS
and simplifying yields

(1− δ)(v − b− r) ≥ δ
(

1− τ(1− q

2
) + 1− τ(1− q

2
)− F (ρ)τ̃(q)

)
s

+δF (ρ)τ̃(q)(E[p ≤ ρ]− Emin[p ≤ ρ]).

Observe that the LHS of the inequality is equal to the LHS of (10). The RHS of the
equation is certainly larger than the RHS of (10) if

1− τ(1− q

2
)− F (ρ)τ̃(q) > 0,

1− τ(1− q

2
)− F (ρ)

(
1− τ(1− q

2
) + τ(1− q)− τ(1− q

2
)
)

> 0,

(1− F (ρ))
(

1− τ(1− q

2
)
)

+ F (ρ)
(
τ(1− q

2
)− τ(1− q)

)
> 0,

which is clearly true. Then, the weak inequality that consumers should weakly prefer
being active and (10) cannot hold simultaneously. This completes the proof.

Proof of Proposition 4

Consider a market environment where active consumers share all prices they observe
whether or not they buy themselves at these prices. Let q > 0 be the share of active
consumers. Then, an active consumer who waits after searching the first firm receives a
price quote of the other firm from friends with probability 1− τ(1− q

2
). Thus, the payoff

of buying and searching after observing price p̃ are v − b − p̃ and v − b − (1 − F (p̃))p̃ −
F (p̃)E[p|p < p̃] − s, respectively. It is easy to see that r is determined by (1). If there
exists a solution to (1), it must be unique. Moreover, at a price around p, it is easy to see
that active buyers prefer buying to both searching and waiting.

Lemma 4 If active buyers share information of all prices they observe, then F (r) = 1
must hold in any equilibrium.

Proof. For the proof, it suffices to show that consumers who observe p > r always
compare prices. An active buyer who observes p > r never buys outright. Searching the
other firm may be optimal for the buyer, in which case she clearly compares prices. It may
also be that waiting is optimal for the buyer, in which case she either receives the second
price quote from active friends or does not receive any information and, thus, searches
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herself. In either case, she compares prices. This establishes that any price greater than
r is compared to another price.

It follows that we can write the payoff of an active buyer who observes price p̃ and
waits as δ

[
v − b−

(
1− τ(1− q

2
)
)
F (p̃)E[p|p < p̃]−

[
1−

(
1− τ(1− q

2
)
)
F (p̃)

]
p̃
]
. Then,

ρ is implicitly given by

(1− δ) (v − ρ− b) = δ
(

1− τ(1− q

2
)
)
F (ρ) (ρ− E[p|p < ρ]) ,

or

ρ =
(1− δ) (v − b) + δ

(
1− τ(1− q

2
)
)
F (ρ)E[p|p < ρ]

(1− δ) + δ
(
1− τ(1− q

2
)
)
F (ρ)

. (11)

Thus, ρ is a weighted average of v − b and E[p|p < ρ]. It is easy to establish that there
must be a unique ρ that satisfies (11) if a solution exists. Note that, depending on the
parameter values, r and/or ρ may be outside the relevant domain of prices [0, v − b].

As active buyers are willing to buy immediately at prices around p, they prefer buying
outright for p such that p < p ≤ min{r, ρ} ≤ v − b. This follows from the continuity in p
of the payoffs of buying, searching, and waiting.

Lemma 5 In equilibrium, F (p) cannot have atoms.

Proof. Suppose that in equilibrium there is an atom at p̃, such that p ≤ p̃ ≤ r. As
the share of active consumers is strictly positive, this price p̃ gets compared to another
price with strictly positive probability. Put differently, there is a strictly positive share of
consumers that compare any price in the support of F (p). Then, undercutting p̃ would
be beneficial as this yields a discontinuous increase in the demand. This means that
undercutting is profitable for firms, a contradiction.

Notice that ρ is irrelevant for ρ > r. Therefore we focus consider ρ < r in order to
show this cannot be the case.

Observe that at p ∈ (ρ, r), active consumers prefer waiting to searching (which is
equivalent to Lemma 2). Then, in a symmetric price dispersed equilibrium with ρ < r
and F (r) = 1, F (p) must be a continuous and strictly increasing function of p for p ∈ [p, ρ].
Notice that there is a discontinuity in the demand of a firm at ρ. If a firm prices at ρ,
it certainly sells to active consumers who searches it first. Yet if it prices at ρ + ε, its
demand from active consumers who buy outright vanishes—these consumers choose to
wait and may be informed of a lower price and therefore do not buy from the firm. Thus,
there must be a r with ρ < r ≤ r such that F (p) is flat for p ∈ (ρ, r).

Lemma 6 If ρ < r, it must be that F (p) is flat in (ρ, r).

It follows that the reservation price r is determined by

s = r − E[p]

= r − E[r ≤ p ≤ r] + F (ρ)(E[r ≤ p ≤ r]− E[p ≤ ρ]).
(12)

As at price r buyers prefer waiting to buying, we can write that

(1− δ)(v − b− r) < δ
(

1− τ(1− q

2
)
)
s. (13)
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In equilibrium, an individual buyer is indifferent between being active and passive. The
payoff from being active is

F (ρ)(v − b− E[p ≤ ρ]) + δ(1− F (ρ))

×
(
v − b− E[r ≤ p ≤ r] + F (ρ)

(
1− τ(1− q

2
)
)

(E[r ≤ p ≤ r]− E[ρ ≤ p])
)
− s.

Use (12) to expand the first term and simplify to obtain

F (ρ)(v − b− E[r ≤ p ≤ r])− (r − E[r ≤ p ≤ r]) + δ(1− F (ρ))

×
(
v − b− E[r ≤ p ≤ r] + F (ρ)

(
1− τ(1− q

2
)
)

(E[r ≤ p ≤ r]− E[p ≤ ρ])
)
.

Add and subtract v − b and simplify to obtain

v − b− r − (1− δ)(1− F (ρ))(v − b− E[r ≤ p ≤ r])

+δF (ρ)(1− F (ρ))
(

1− τ(1− q

2
)
)

(E[r ≤ p ≤ r]− E[p ≤ ρ]).

The payoff from being passive is

δ

{
v − b−

[
F 2(ρ) + 2F (ρ)(1− F (ρ))

(
1−

τ(1− q
2
)

2

)]
E[p ≤ ρ]

−
[
τ(1− q

2
)F (ρ)(1− F (ρ)) + (1− F (ρ))2

]
E[r ≤ p ≤ r] + F 2(ρ)τ̃(q)(E[r ≤ p ≤ r]− E[p ≤ ρ])

−
[
F 2(ρ)τ(1− q) + 2F (ρ)(1− F (ρ))τ(1− q

2
) + (1− F (ρ))2

]
s

}
or

δ
{
v − b− E[r ≤ p ≤ r] + F (ρ)

[
1 + (1− F (ρ))

(
1− τ(1− q

2
)
)]

(E[r ≤ p ≤ r]− E[p ≤ ρ])

+F 2(ρ)τ̃(q)(E[r ≤ p ≤ r]− E[p ≤ ρ])−
[
F 2(ρ)τ(1− q) + 2F (ρ)(1− F (ρ))τ(1− q

2
) + (1− F (ρ))2

]
s

}
.

Use (12) for the third term in the curly brackets and simplify it as

δ
{
v − b− r + F (ρ)

[
1 + F (ρ)τ(1− q)− (1 + F (ρ))τ(1− q

2
)
]

(E[r ≤ p ≤ r]− E[p ≤ ρ])

+
[
1− F 2(ρ)τ(1− q)− 2F (ρ)(1− F (ρ))τ(1− q

2
)− (1− F (ρ))2

]
s

}
.

Thus, the indifference condition of buyers is

(1− δ)(v − b− r) = (1− δ)F (ρ)(v − b− E[r ≤ p ≤ r])

+δ(E[r ≤ p ≤ r]− E[p ≤ ρ]) + δ
[
2(1− τ(1− q

2
))− F (ρ)τ̃(q)

]
s.

The LHS of the equation is equal to the LHS of (13). The RHS of the indifference equation
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is certainly greater than the RHS of (13) if

δ
[
2(1− τ(1− q

2
))− F (ρ)τ̃(q)

]
> δ

(
1− τ(1− q

2
)
)
,

1− τ(1− q

2
) > F (ρ)

(
1− τ(1− q

2
)−

[
τ(1− q

2
)− τ(1− q)

])
,

(1− F (ρ))
(

1− τ(1− q

2
)
)

> − F (ρ)
(
τ(1− q

2
)− τ(1− q)

)
.

which is clearly true. Then, however, the indifference condition of consumers and (13)
cannot hold simultaneously.

Proof of Theorem 1.

We use the following facts to rewrite the consumer’s indifference condition. First, E[p] =

p −
∫ p
p
F (p)dp = ηp ln

(
1 + 1

η

)
. Second, p = r = s

1−η ln(1+ 1
η )

. Third, E[min {p1, p2}] =

p− 2
∫ p
p
F (p)dp+

∫ p
p
F 2(p)dp so that

E[p]− E[min {p1, p2}] =

∫ p

p

F (p)dp−
∫ p

p

F 2(p)dp

= ηp

(
(1 + 2η) ln

(
1 +

1

η

)
− 2

)
.

Thus, the consumers’ indifference condition can be rewritten as

(1− δ)(v − b) = (1− δτ(1− q))s+ δτ̃(q)
η
(

(1 + 2η) ln
(

1 + 1
η

)
− 2
)

1− η ln
(

1 + 1
η

) s

+ (1− δ)s
η ln

(
1 + 1

η

)
1− η ln

(
1 + 1

η

) ,
or

s

v − b
=

1− δ

1− δτ(1− q) + η

1−η ln( 1+η
η )

[
δτ̃(q)

(
(1 + 2η) ln

(
1+η
η

)
− 2
)

+ (1− δ) ln
(

1+η
η

)] ,
(14)

We know that η is a function of q and that limq↑1 η(q) =∞.
As the RHS of (14) is continuous in 0 < q < 1, to prove the existence of an RPE

for small enough values of s it is sufficient to show that the RHS of (14) is positive and

approaches 0 zero as q ↑ 1. As η ln
(

1+η
η

)
< 1, the denominator is clearly positive if

ln
(

1+η
η

)
> 2

1+2η
. As for η ↓ 0 this latter inequality clearly holds, while the LHS and the

RHS both approach 0 as η → ∞, this inequality holds for all η if the derivative of the
LHS is more negative than that of the RHS. The derivate of the LHS is − 1

η(1+η)
, while

the derivate of the RHS is − 2
(1+2η)2

. It is easy to see that the former derivate is smaller

than the latter. Thus, as both numerator and denominator of (14) are positive, the whole
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expression is clearly positive.
Also that 1− δ ≤ 1− δτ(1− q) means that the numerator is smaller than the denom-

inator of the RHS of (14) for 0 < q < 1. Thus, there exists an upper bound s on the
search cost for which an RPE may exist.

To demonstrate the RHS of (14) converges to zero as q → 1, we employ the following
evaluations:

lim
η→∞

η ln

(
1 +

1

η

)
= lim

z↓0

ln(1 + z)

z

l’Hopital
= lim

z↓0

1

1 + z
= 1, (15)

lim
η→∞

η ln
(

1 + 1
η

)
1− η ln

(
1 + 1

η

) =
lim
η→∞

η ln
(

1 + 1
η

)
1− lim

η→∞
η ln

(
1 + 1

η

) =∞, (16)

and

lim
η→∞

η
(

(1 + 2η) ln
(

1+η
η

)
− 2
)

1− η ln
(

1+η
η

) = lim
z↓0

1
z

((
1 + 2

z

)
ln(1 + z)− 2

)
1− ln(1+z)

z

= lim
z↓0

(2 + z) ln(1 + z)− 2z

z2 − z ln(1 + z)

l’Hopital
= lim

z↓0

ln(1 + z) + 2+z
1+z
− 2

2z − ln(1 + z)− z
1+z

= lim
z↓0

(1 + z) ln(1 + z)− z
z(1 + 2z)− (1 + z) ln(1 + z)

l’Hopital
= lim

z↓0

z
(1+z)2

z(3+2z)
(1+z)2

= lim
z↓0

1

3 + 2z
=

1

3
.

(17)

Finally, noting lim
q↑1

τ̃(q) = 1 − 2τ(1/2), we can see that the denominator of the RHS of

(14) increases unboundedly as q ↑ 1. This means that the RHS of (14) converges to zero
as q ↑ 1.

Now, we show the limiting price for s ↓ 0. We know that s approaching zero is
associated with q ↑ 1, or η →∞ implying that price dispersion vanishes. Then, it suffices
to evaluate the limiting value of r. We note that

r =
s

1− η ln
(

1 + 1
η

)
=

(1− δ)(v − b)

(1− δτ(1− q))
(

1− η ln
(

1 + 1
η

))
+ η

[
δτ̃(q)

(
(1 + 2η) ln

(
1+η
η

)
− 2
)

+ (1− δ) ln
(

1+η
η

)] .
Notice that the numerator of r does not depend on s. Recalling (15), we can see that the
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first term in the denominator converges to zero as q ↑ 1 (with associated η →∞). As

lim
η→∞

η

(
(1 + 2η) ln

(
1 + η

η

)
− 2

)
= lim

z↓0

(
(1 + 2

z
) ln (1 + z)− 2

)
z

= lim
z↓0

((z + 2) ln (1 + z)− 2z)

z2

l’Hopital
= lim

z↓0

ln(1 + z) + 2+z
1+z
− 2

2z

= lim
z↓0

(1 + z) ln(1 + z)− z
2z(1 + z)

l’Hopital
= lim

z↓0

ln(1 + z) + 1− 1

2 + 4z
= 0,

it follows that the second term in the denominator approaches 1 − δ as η → ∞. Then,
the entire term converges to (1 − δ)(v − b)/(1 − δ) = v − b as q ↑ 1. This completes the
proof.

Proof of Proposition 6

The proof that price dispersion must remain in the limit as t(∞)→ 1 is by contradiction.
Suppose to the contrary that price dispersion vanishes in the limit, or alternatively, that
η →∞.

As
lim
η→∞

r = lim
η→∞

s

1− η ln(1 + 1
η
)

=∞,

it follows that in an RPE E[p] must also increase without bound. But this would imply
that the pay-off of becoming active is negative, which cannot be the case in active mar-
kets. Hence, price dispersion cannot vanish as k → ∞ (or alternatively t(∞) → 1) and
limt(∞)→1 q = q, where 0 < q < 1.

We next consider the question whether an active market exists in the limit as t(∞)→
1. To this end, rewrite the consumers’ indifference condition

v − b− E[p]− s = δ
(
v − b− E[p] + τ̃(q)(E[p]− Emin[p])− τ(1− q)s

)
,

as

s

v − b
=

1− δ

1− δτ(1− q) +
[
δτ̃(q)E[p]−Emin[p]

s
+ (1− δ)E[p]

s

]
=

1− δ

1− δτ(1− q) +

[
η

1−η ln(1− 1
η )

{
δτ̃(q)

(
(1 + 2η) ln

(
1 + 1

η

)
− 2
)

+ (1− δ) ln(1 + 1
η
)
}] ,

where the LHS is the normalized cost of being active, while the RHS represents the
incremental benefit of being so. Observe that the denominator of the RHS consists of
three terms, the third one of which is the sum in the large square brackets. The first
and the third terms are positive, while the second term is negative. As the second term
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converges to zero and τ̃(q) to 1 (when t(∞) → 1), the limiting indifference condition is
approximately

s

v − b
=

1− δ

1 + 1
s

[
lim

t(∞)→1
E[p]− δ lim

t(∞)→1
Emin[p]

]
=

1− δ

1 + lim
t(∞)→1

η

1−η ln(1− 1
η )

[
ln(1 + 1

η
)− 2δ

(
1− η ln

(
1 + 1

η

))] . (18)

As the RHS approaches 0 if η →∞ it is clear this equation can always be satsified if
s is small enough.

Proof of Proposition 7

Observe that changes in b and s affect the LHS of (14) only. In particular, the LHS
is increasing in both b and s. As the RHS of the indifference equation (14) must be
decreasing in q in a stable RPE, the optimal search probability q must be decreasing in
both b and s.

Proof of Proposition 8

We prove the proposition with the help of two claims.

Claim 1 If consumers with 1 ≤ k̂ ≤ k number of links search with strictly positive
probability, all consumers with numbers of links less than k̂ links (if there are such) search
with probability one.

Proof. As w represents the probability a consumer assigns to a neighbor actively search-
ing, a consumer with k̂ friends searches with positive probability only if doing so is weakly
better than not searching, i.e.,

δ
(
v − b− E[p] +

(
1 + (1− w)k̂ − 2

(
1− w

2

)k̂)
(E[p]− Emin[p])− (1− w)k̂s

)
≤ v − E[p]− b− s.

For consumers with less than k̂ links, searching yields the same payoff as the RHS of
the inequality, whereas not searching yields a payoff strictly smaller than the LHS of the
inequality as the LHS is increasing in k̂ for 0 < w < 1. Hence, consumers with less than
k̂ connections search for sure.

Claim 2 If consumers with 1 ≤ k̂ ≤ k number of links search with positive probability
less than 1, all consumers with numbers of links greater than k̂ links (if there are such)
do not search.

Proof. The proof is analogous to the proof of Claim 1.
If a consumer with k̂ links is indifferent between searching and not searching, her

optimal search probability lies between zero and one. Then, from the above two claims
it follows that consumers with lower than k̂ search for sure, whereas those with greater
than k̂ links do not search at all.
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Proof of Proposition 9

Some parts of the proof are similar to the proof of Theorem 1. To avoid repetition, we
omit some details here. It is clear that to obtain the equilibrium distribution function in
(6), we should have

η̂ =

ŵ
2

+ δt(k̂)(1− q)
((

1− w
2

)k̂ − (1−w)k̂
2

)
+ δ

∑k
k=k̂+1 t(k)

((
1− w

2

)k − (1−w)k
2

)
δt(k̂)(1− q)

(
1 + (1− w)k̂ − 2

(
1− w

2

)k̂)
+ δ

∑k
k=k̂+1 t(k)

(
1 + (1− w)k − 2

(
1− ŵ

2

)k) .
It is clear that η̂ is a function of k̂ and q and that lim

q→1
η̂(k̂ = k, q) =∞.

If a consumer with k̂ friends is indifferent between being passive and active, then it
must be the case that the pay-off of being passive

δ

(
v − b− E[p] +

(
1 + (1− w)k̂ − 2

(
1− w

2

)k̂)
(E[p]− Emin[p])− (1− w)k̂s

)
is equal to the pay-off v − E[p] − b − s of being active. We can rewrite this indifference
equation as (

1− δ(1− w)k̂
)
s+ δW (E[p]− Emin[p]) = (1− δ)(v − E[p]− b),

where W =
[
1 + (1− w)k̂ − 2

(
1− w

2

)k̂]
and, using the expressions for E[p], E[p]−Emin[p]

and p developed in the beginning of the proof of Theorem 1, express this condition further
as

(
1− δ(1− w)k̂

)
s+ sδW

η̂
(

(1 + 2η̂) ln
(

1 + 1
η̂

)
− 2
)

1− η̂ ln
(

1 + 1
η̂

) = (1− δ)

v − b− η̂ ln
(

1 + 1
η̂

)
1− η̂ ln

(
1 + 1

η̂

)s
 .

Bringing all the terms with s on one side and re-arranging gives the condition mentioned
in the Proposition.

We now show that if s → 0, k̂ = k and q(k̂) ↑ 1 hold in equilibrium. It is clear that
if s → 0 price dispersion must disappear as otherwise active consumers would have an
incentive to continue searching. Suppose then that if s→ 0, k̂ < k. This would imply that
for consumers with k friends the pay-off of waiting is strictly larger than the pay-off of
actively searching. However, with price dispersion disappearing if s→ 0, for all 0 < δ < 1
and for every consumer (no matter how many friends she has) this cannot be the case.

If q(k̂) would not converge to 1 if s → 0, then η̂ would converge to a finite number and
price dispersion would persist, a contradiction.

Finally, we focus on the price level to which the price distribution converges if s→ 0.
As k̂ = k, η̂ reduces to

η̂ =

ŵ
2

+ δt(k̂)(1− q)
((

1− w
2

)k̂ − (1−w)k̂
2

)
δt(k̂)(1− q)W
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so that lim
q↑1

η̂ = ∞ as both w and ŵ converge to 1. Since search behavior of consumers

with k links is of interest in the limit, we can write

lim
s→0

r = lim
s→0

s

1− η̂ ln
(

1
η̂

+ 1
)

= lim
q↑1

(1− δ)(v − b)(
1− δ(1− w)k̂

)(
1− η̂ ln

(
1 + 1

η̂

))
+ η̂

[
δW

(
(1 + 2η̂) ln

(
1+η̂
η̂

)
− 2
)

+ (1− δ) ln
(

1+η̂
η̂

)] .
(19)

To evaluate the limit, we undertake similar steps as when we evaluated the limiting r
in the proof of Theorem 1. Note that the numerator of the expression is independent of
q. In the denominator, the first two term converges to zero, following (15). The second
term in the denominator converges to 1− δ since

lim
η̂→∞

η̂

(
(1 + 2η̂) ln

(
1 + η̂

η̂

)
− 2

)
= lim

z↓0

(
(1 + 2

z
) ln (1 + z)− 2

)
z

= lim
z↓0

((z + 2) ln (1 + z)− 2z)

z2

l’Hopital
= lim

z↓0

ln(1 + z) + 2+z
1+z
− 2

2z

= lim
z↓0

(1 + z) ln(1 + z)− z
2z(1 + z)

l’Hopital
= lim

z↓0

ln(1 + z) + 1− 1

2 + 4z
= 0.

Summing up, the limiting r converges to (1−δ)(v−b)
1−δ = v − b. The proof is complete.
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